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Abstract

Multivariate time series forecasting involves utilizing past and present information

to predict future outcomes, enabling informed decision-making. Multivariate time

series forecasting holds considerable importance across various domains such as

finance, healthcare, and weather forecasting. In multivariate time series forecast-

ing, the accuracy and efficiency of forecasts hinge on how effectively the method

captures relationships, correlations, and dependencies from past data. This task

is particularly challenging due to the complexity introduced by multiple correlated

time series variables. Moreover, significant historical events leave notable impacts

on time series data, offering valuable insights that are beneficial if leveraged ap-

propriately. However, existing models in literature make forecasts based on the

generalized scenario and lack exploration into investigating and extracting insights

from these significant historical events. This study proposes a history preservation

technique aimed at identifying and utilizing these events within the forecasting

process.

This history preservation method uses anomaly detection to identify historically

significant events. Then through a data augmentation method, this information is

integrated into the original times series dataset. This augmented dataset is then

used in forecasting. Experiments were conducted with this method using three

machine-learning models and two datasets with two different anomaly detection

methods. Results indicated that although there was a decrease in efficiency, accu-

racy notably improved over the baseline in eight out of a possible twelve instances.

Furthermore, five out of the eight improved instances exhibited accuracy improve-

ments exceeding 15% over the baseline. Therefore this approach allows the model

to forecast based not only on the generalized scenario but also on significant events

that deviate from the norm, leading to greater accuracy in forecasting.
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Preface

The primary focus of this study is to explore history preservation as a means to

enhance the accuracy and efficiency of multivariate time series forecasting. This

method incorporates anomaly detection to identify historically significant events,

followed by a data augmentation process to integrate this anomaly information

into the original time series dataset. The augmented dataset is then utilized for

multivariate time series forecasting.

To the best of my knowledge, the approach presented in this study has not

been previously applied to aid in multivariate time series forecasting. Finally, with

the continuous guidance and supervision of my supervisor and co-supervisor, we

believe that the conclusions drawn in this study represent new contributions to the

body of knowledge in multivariate time series forecasting.
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Chapter 1

Introduction

1.1 Introduction & Background

The progression from past to present shapes the future, and understanding this

progression offers an advantage in mastering it. Forecasting is the study of the past

and present to know the future. A common forecasting approach involves predicting

one variable’s future values based on its historical patterns alone. For instance,

forecasting gold prices considering only its past price trends. While this method

can produce accurate forecasts, it overlooks other significant factors. Additional

variables, such as economic indicators like unemployment rates or import levels,

can enhance forecasting accuracy by providing more comprehensive insights into

price dynamics. To illustrate, let’s explore the relationship between unemployment

rates, import levels, and gold prices in the United States.

The historical movements in gold prices, as depicted in Figure 1.1, provide

valuable insights for forecasting its future trajectory. Analysis of past gold price

data alone reveals noticeable patterns that can inform forecasts. However, incor-

porating historical movements in unemployment rates and import levels alongside

gold price data, as shown in Figure 1.2, produces more comprehensive and robust

information. In the context of gold price dynamics, the observed increase in prices

can be attributed to external factors, such as the global economic downturn. Dur-

ing periods of economic uncertainty, investors tend to store wealth in stable assets,

with gold being a primary choice. By considering additional variables, such as un-

employment rates and import levels, one can explain the fluctuations in gold prices
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in correlation with broader economic conditions, particularly during downturns.

Figure 1.1: Price behavior of ounce of gold

Figure 1.2 highlights a notable similarity between the periods of 2009-2012 and

2020-2021, albeit with some temporal differences, as the 2009 downturn spanned a

longer duration. This similarity is attributable to both periods being characterized

by economic downturns. Such similar events offer valuable insights for forecasting,

as they allow us to leverage past experiences to understand current circumstances

better and make better forecasts. Utilizing multivariate time series analysis enables

a more precise identification of these similar events, enhancing our ability to extract

relevant information for forecasting purposes.

Figure 1.2: Behavior of gold prices with unemployment and imports of the United

States

The variables discussed, namely gold price, unemployment, and imports, are all

examples of time series data. Time series data consists of sequential observations
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collected over time and arranged in chronological order. Typically, such data is

gathered at regular intervals, maintaining a fixed sampling frequency. However, in

certain cases, irregular sampling frequencies may occur due to variations in data

collection methods or the presence of missing values.

When discussing time series, it’s important to introduce the inherent compo-

nents of time series: Trend, Seasonality, and Residuals [1].

The trend represents the long-term movement of a time series, which can exhibit

either increasing or decreasing patterns over time. While trends are often discussed

in broad time scales, they may also alternate between increasing and decreasing,

or even plateau for extended periods.

Seasonality refers to recurring similar behaviors in time series data at regular

intervals. For instance, the demand for chocolates on Valentine’s Day demonstrates

a seasonal behavior. Identifying and understanding such patterns can significantly

aid in forecasting.

Residuals are the remaining components of a time series after removing both

the trend and seasonality. Ideally, these residuals should exhibit no correlation

with each other. However, if correlations persist, it suggests that some information

inherent in the data has not been sufficiently removed during preprocessing [2].

These residuals pose challenges for accurate forecasting.

Forecasting is predicting future outcomes with minimal errors using historical

data and relevant domain knowledge. Time series forecasting is the same with

sequential data. In time series forecasting, the goal is to predict the next value

within the series for the upcoming sampling interval. A fundamental categorization

in time series forecasting determines the type of data utilized in the forecasting

process: univariate and multivariate time series forecasting.

In univariate time series forecasting, forecasts rely solely on the time-ordered

sequence data of a single variable, which is also the variable being forecasted.

Conversely, multivariate time series forecasting involves forecasting either a single

variable or multiple variables by considering multiple related variables, all of which

are time series themselves.

Multivariate time series forecasting is a crucial area of research in statistics and

Machine Learning (ML) that has significant implications in various fields such as
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finance, economics, healthcare, weather forecasting, and more. With the increas-

ing availability of large-scale data and the rapid advancements in computational

methods, the ability to accurately predict future values of multivariate time series

has become an essential tool for decision-making in various domains.

Currently in literature hybrid models like the Exponential Smoothing-Recurrent

Neural Network (ES-RNN) [3] and combination models based on the Light Gradient-

Boosting Machine (LightGBM) are performing the best[4], [5]. Hybrid models that

use both statistical methods, as well as ML methods, are performing well because

each method accounts for the other’s weakness[5]. Whereas LightGBM utilizes a

set of methods and combines them for the multivariate time series forecasting ef-

fort. This has proved to be quite useful as four out of the top five performers of

the M5 competition used the LightGBM technique[4]. The value of combination

models lies in the fact that different models used can focus on different aspects of

the time series[4].

The accuracy and efficiency of multivariate time series forecasting models are

influenced by the model’s ability to infer relationships, correlations, and dependen-

cies from past data of different time series. An all-encompassing term that can be

used for this activity is history preservation.

History preservation involves effectively capturing the past behavior of a given

time series in a meaningful manner to support forecasting efforts. Even Moving

Average (MA) methods utilize this concept, albeit in a basic form. MA forecasting

calculates the next value by averaging the most recent values within a specified

window size, thereby preserving and utilizing recent historical data for future pre-

dictions. In multivariate time series forecasting, capturing the behavior of multiple

time series over extended periods for effective history preservation remains an area

of ongoing research. When executed correctly, history preservation can enhance

the efficiency and accuracy of forecasts.

Furthermore, it is rather difficult to preserve history in multivariate time series

forecasting owing to the complexity introduced by multiple correlated time series

data. This complexity can reduce the accuracy and efficiency of multivariate time

series forecasting. This study explored the current models of multivariate time

series forecasting and adapted them for history preservation to improve the accu-
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racy of multivariate time series forecasting. Accuracy improvement was achieved,

however efficiency of the forecasting effort was affected slightly.

1.2 Problem Significance and Contribution

The ability to accurately forecast the future is essential for making informed deci-

sions in a variety of domains such as financial forecasting [6], weather prediction

[7], electricity demand forecasting [8] and sales forecasting [4]. The more accurate

the forecasts the better a decision maker can utilize them to prepare for the future.

In forecasting, understanding the historical context as well as the current state

of the situation is of utmost importance since the future evolves from the present

influenced by the past. This future depends not only on the past behavior of the

forecasted variable but also on the interplay with other related variables. The

essence of forecasting lies in the recognition that history is not a mere collection

of isolated data points, but rather a complex web of interconnected events and

patterns spanning over multiple variables. These events and patterns shape the

evolving nature of the system. Preserving the history of events and patterns in

data will enable us to capture the evolving nature of the system which will allow

for effective and accurate forecasts.

This research aims to make contributions to the field of multivariate time series

forecasting by delving deeper into the intricate relationship between historical data,

the current state, and the evolving nature of the forecasted system, by developing

a technique that effectively captures the complex dynamics at play when it comes

to preservation of recurrent significant historical events. This study seeks to en-

hance the accuracy and efficiency of multivariate time series forecasting techniques,

ultimately enabling better decision-making and more precise forecasts in various

domains and applications.

1.3 Research Aim

Improve the accuracy and efficiency of multivariate time series forecasting.
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1.4 Research Questions

RQ1. What are the techniques used in literature for multivariate time series fore-

casting?

RQ2. How can we adopt multivariate time series forecasting techniques to preserve

history?

RQ3. How preservation of recurrent significant historical events aid in improving

the accuracy and efficiency of multivariate time series forecasting?

1.5 Research Objectives

RO1.1. Determine the aspects that contribute to the performance of different multi-

variate time series forecasting techniques.

RO2.1. Analyze the recurrence of significant historical events and whether they are

generalizable.

RO2.2. Develop a technique to capture the characteristics of recurrent significant

historical events to aid in multivariate time series forecasting.

RO3.1. Examine the relationship between preservation of recurrent significant his-

torical events and the accuracy of forecasts.

RO3.2. Study the influence of preservation of recurrent significant historical events

on the efficiency of multivariate time series forecasting models.

1.6 Scope

• Exploring the techniques used in multivariate time series forecasting and

the aspects that contribute to the performance of multivariate time series

forecasting.

• Explore history preservation techniques used in literature for multivariate

time series forecasting and evaluate their effectiveness.

• Develop a technique for preservation of recurrent significant historical events.

Use the developed technique in multivariate time series forecasting and eval-

uate its effectiveness.

• Examine how preservation of recurrent significant historical events aid in
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improving the accuracy and efficiency of multivariate time series forecasting.

1.7 Methodology and Approach

The research methodology adheres to the Scientific Method in developing a tech-

nique for history preservation, intended for application in multivariate time series

forecasting. This technique utilizes anomaly detection and data augmentation to

retain and leverage historical data. Further discussion on the research design can

be found in Chapter 3.

1.8 Summery

This chapter introduces the research study, outlining its research problem, aim,

questions, objectives, and scope. Additionally, it provides an overview of multi-

variate time series forecasting. Following this introduction, Chapter 2 delves into

the Literature Review, while Chapter 3 offers a detailed account of the Research

Design. Implementation and results are discussed in Chapter 4, with Chapter

5 presenting the research findings, conclusions, limitations, and implications for

future research.

7



Chapter 2

Literature Review

Time series forecasting plays a crucial role in numerous real-world applications,

financial market predictions [9], energy demand forecasting [10], and environmen-

tal monitoring [11] are such applications. As the volume and complexity of time

series data continue to grow, there is an increasing demand for accurate and effi-

cient forecasting as it has become an essential tool for decision-making in various

domains.

Time series forecasting can be categorized as univariate and multivariate. In

univariate, only a single time series attribute is used, and in multivariate more

than one time series attribute is used for the forecasting. Due to more attributes

being available in multivariate forecasting, more information is available but in the

same way, it is more complex. This review, provides a comprehensive overview

of the current landscape of multivariate time series forecasting, highlighting re-

cent developments, challenges, and opportunities in the field. The review begins

by discussing traditional approaches to time series forecasting, including Recur-

rent Neural Network (RNN), and Convolutional Neural Networks (CNN). These

foundational techniques have laid the groundwork for more advanced methodolo-

gies and continue to serve as building blocks for ensemble methods and hybrid

models although these foundational models are inefficient in capturing long-range

dependencies.

In terms of an advanced model, the review delves into Transformer-based archi-

tectures, initially designed for natural language processing tasks, which have been

adapted to handle sequential data, offering improved performance in capturing
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long-range dependencies and spatial relationships. Attention mechanisms, a key

component of transformer models, enable models to focus on relevant information

within the input sequences, enhancing both accuracy and interoperability. Single

models have strengths and limitations and different models have different strengths

and limitations. This fact can be exploited.

Thus the review explores the emergence of hybrid and ensemble methods as a

powerful strategy for improving forecast accuracy and robustness. By combining

multiple models, hybrid and ensemble methods mitigate the limitations of individ-

ual models and offer more reliable forecasts. Hybrid models combine elements of

different architectures whereas ensemble models use techniques like bagging and

boosting to combine weak learners.

This review is structured as follows. Section 2.1 presents time series forecasting

and the various aspects of the subject matter. Section 2.2 presents the Multivari-

ate Time Series Forecasting and its aspects. Section 2.3 discusses the traditional

deep-learning architectures of time series forecasting. Section 2.4 summarizes and

analyses the current literature on Multi/ Ensemble Architectures. Section 2.5 dis-

cusses the evaluation metrics used in multivariate time series forecasting. Section

2.6 and 2.7 analyze the current works and discuss potential future work that can

be done in the field and conclude the review.

2.1 Time Series Forecasting

This section covers time series and forecasting, which are used in various fields like

finance and weather forecasting to aid in decision making. Time series are sequences

of data collected over time, by analyzing time series patterns and trends can be

identified. Forecasting entails predicting future values based on past data using

methods based on statistics and machine learning. Understanding these concepts

is important for making decisions and predictions in many areas.

2.1.1 Time Series

A time series is a sequence of data observed over time and ordered chronologically.

Typically data in a time series is gathered in constant intervals so most time series
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(a) Seasonality (b) Trend (c) Residuals (d) Time Series

Figure 2.1: Seasonality, Trend, and Residuals of a Time Series

data has a fixed sampling frequency. In some instances, however, due to how the

data is being gathered and missing values, there can be time series with irregular

sampling frequencies.

The discussion of time series necessitates the introduction of inherent compo-

nents of a time series. They are Trend, Seasonality, and Residuals [1]. The trend is

the long-term movement of a time series, this can be either increasing or decreasing

over time. Although the trend is talked about in rather large time scales, it does

not always either increase or decrease, they switch between the two and it can even

plateau for extended periods. Seasonality is the presence of similar behaviors in

the time series data at specific regular intervals. For example the rise of demand

for winter wear during the winter season of the year. These types of behaviors can

be highly useful when it comes to predicting the future. Residuals are what is left

when Trend and Seasonality are processed out of the time series. Ideally, these

residuals shall not be correlated with each other, if not that suggests that there is

some information left in the data that has not been removed in the preprocessing

[2]. These residuals make forecasting difficult. Figure 2.1 illustrates the three com-

ponents seasonality, trend, and residuals. The time series depicted in 2.1d is made

up of the Seasonality, Trend, and Residuals shown in figures 2.1a, 2.1b, and 2.1c.

2.1.2 Time series forecasting

Forecasting is the act of predicting the future with as few errors as possible given

information about historical data and domain knowledge that may be useful. Time

series forecasting is the same however when forecasting time series the next possible

value for the next sampling interval is forecasted. When forecasting time series,

a fundamental categorization affects what data is used in the forecasting effort.
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They are univariate and multivariate time series forecasting.

Univariate time series is where the forecasting is done only with the use of a

single variable’s time-ordered sequence data and this variable itself shall be fore-

casted. No other data shall be integrated into this forecasting. Let’s take an

example, let’s say the price of fuel needs to be forecasted and for that forecasting

effort only the historical pricing data of fuel shall be utilized, this is univariate time

series forecasting.

Multivariate time series forecasting is where the forecasting effort takes into

account multiple related variables which themselves are time series. As an example

let’s again consider the fuel price forecasting as before, in the multivariate scenario

not only the historical pricing data of fuel but also other related variables such as

price data of crude oil, inflation rate, dollar rate and such shall be considered. This

provides the forecaster with more information to base the final forecast which can

lead to better accuracy in the forecasted value.

2.1.3 Methods of Time Series Forecasting

In time series forecasting, there are two main ways to make predictions: statisti-

cal based methods and machine learning. Statistical methods use historical data

patterns and math models, while machine learning methods use Artificial Neural

Networks (ANN) that learn from data to make predictions.

Statistical based methods of time series forecasting are characterized by the use

of mathematical representations of time series behavior to forecast the future. In

Statistical based methods, a model will produce the same output for the same input

every time. There are many Statistical based methods of time series forecasting

including Auto Regressive (AR), MA, Exponential Smoothing (ES), and Auto

Regressive Integrated Moving Average (ARIMA).

In machine learning methods ANNs are used for the forecasting effort. ANNs

consist of neurons and weights that connect neurons to each other. These weights

are capable of capturing information for the task it is trained on. By tuning these

weights information about the behavior of the time series can be captured and can

be later retrieved to be used in forecasting [12]. There are many machine learning

methods in time series forecasting including recurrence-based, convolution-based,
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attention-based, and boosting-based techniques. Then there are multi/ ensem-

ble methods that combine multiple machine learning models or machine learning

models and Statistical based models to achieve more accurate forecasts [4], [5].

Over the years it has been shown that machine-learning methods have better

performance than Statistical based methods. The potential of the machine learning

methods was first demonstrated in[5], where the highest accuracy method was based

on a hybrid approach utilizing Exponential Smoothing a Statistical based method,

and RNNs a machine learning method for the forecasting effort[3]. The second

highest accuracy method used a machine learning method called gradient boosting

for the forecasting effort[13]. Even though these are based on machine learning

methods they are built upon Statistical based techniques. Hence the authors of

[5] have concluded that there are possibilities for improvements of pure machine

learning methods in forecasting.

Indeed performance improvements of pure machine learning methods can be

seen in [4] where top-performing techniques were all pure machine learning methods

and they performed better than all the statistical benchmarks used in the study.

The main machine learning technique used is the gradient boosting technique im-

plemented in the LightGBM framework. Four out of five of the top performers used

the LightGBM for their forecasting effort, the top performer is also in this group

of four. Machine learning based techniques have shown potential in the last few

years and this review aims to focus on machine learning methods of multivariate

time series forecasting.

2.2 Multivariate Time Series Forecasting

Compared to univariate time series forecasting there are additional aspects to con-

sider when it comes to multivariate time series forecasting due to the introduction

of multiple related variables. Some of these are how to select the most suitable vari-

ables for the forecasting effort, how to effectively cross learn to capture relationships

between variables, and how interpretability can be useful for decision making in

the context of multiple variables. Such aspects and more shall be discussed in this

section.
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2.2.1 Variable Selection

Multivariate time series forecasting, as the name suggests, deals with more than

one time-ordered variable. Hence during the forecasting effort, the correlations

between these time series are exploited to aid and increase the accuracy of the

forecasts. The correlations discussed here represent the dependencies of time series

and how they are influenced by each other [14]. These time series are influenced

by each other at different scales hence some time series may or may not aid in the

forecasting effort. The choice of variables used in the time series is key to achieving

accurate forecasts while maintaining efficiency. This selection is mainly based on

the domain knowledge of the forecaster. Automatic variable selection based on the

effectiveness of that variable in the forecast is a useful area of research.

2.2.2 Forecasting Horizon

The forecasting horizon refers to the span of time into the future a prediction is

made, it varies depending on the specific problem, but it is typically chosen based on

the useful period of the forecast. It is important to note that the forecasting horizon

influences the reliability and accuracy of the forecasts. Generally, the farther into

the future the forecast, the greater the error in the predictions. The forecast horizon

should be taken into consideration when choosing the model. There are two types

of forecasting horizons when it comes to time series forecasting. They are point

forecasting and multi-horizon forecasting.

Point Forecasting

Point forecasting is a method used in time series forecasting to make a single pre-

diction of a future value using past observations or patterns in data. One limitation

of point forecasting is that it assumes a constant and unchanging underlying pro-

cess generating the time series data. This may not be the case in many real-world

situations. Point forecasting can be used to forecast multi-horizon forecasts by

utilizing the already forecasted values as inputs. This type of multi-horizon fore-

casting introduces error propagation through the forecasted sequence due to error

stacking [1].
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Multi-Horizon Forecasting

Instead of predicting a single future value at a specific point in time, multi-horizon

forecasting forecasts the future values at multiple points in time over a specified

forecasting horizon of a time series. Within multi-horizon forecasting, it’s common

to observe a decline in forecast accuracy with the expansion of the forecasting

horizon [15], [16].

2.2.3 Interpretability

Interpretability in time series forecasting refers to the capacity to comprehend

and explain the underlying factors and mechanisms that are driving the forecasts

produced by a model. Interpretability allows decision-makers to understand the

influences that contributed to the forecast which will be useful in assessing the re-

liability of the forecast [17]. The importance of interpretability is further increased

in multivariate time series forecasting because of the multiple variables, as under-

standing how variables affect each other can assist in decision-making. There are

several techniques to increase the interpretability of time series forecasting models.

Model selection, feature engineering, and visualization relating to pre-model inter-

pretability. Error and sensitivity analysis concerned with the model interpretability.

With these techniques, factors influencing the forecast and model behavior can be

identified allowing for improving model accuracy as well as decision-making [17].

Interpretability with Attention

The attention mechanism keeps track of the significance of each time step to the

forecasting in the input time series. The weights assigned by the attention mech-

anism can be analyzed to understand the contribution of each feature and the

importance of each time step in the input sequence for the forecast. This helps

to recognize patterns and relationships in the data influencing the forecast. This

mechanism is one of the predominant techniques used to achieve interpretability

[18]–[21].
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2.2.4 Cross Learning

When it comes to multivariate time series forecasting, it is important to consider

dependencies between the different time series as they aid in forecasting. Depen-

dencies can arise between time series due to many factors such as cause-and-effect

relationships, common underlying trends, and interactions between time series.

When it comes to dependencies there are two main perspectives to consider, one

the Local perspective and the other Global perspective [14]. Figure 2.2 depicts the

difference between the local and global perspectives of dependency consideration.

Figure 2.2: Time Series Correlations

Methods like ES [22], Gaussian processes [14], Convolutional attention mecha-

nisms [23], and Graph Neural Networks (GNN) [24] have been used for these depen-

dency considerations where they focussed on both perspectives to aid in achieving

accurate forecasts.

Local Perspective

Local dependency in multivariate time series forecasting refers to the dependency

between the current value of a time series and its most recent past values as well as

the most recent past values of other related time series within a certain window of

time [14]. This concept is related to the idea of short-term memory in forecasting

and is important to consider to accurately model the complex relationships between

multiple time series.
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Global Perspective

Global dependency in multivariate time series forecasting refers to the long-term

dependencies between multiple time series [14]. This type of dependency is con-

cerned with the overall behavior of the time series and the common factors that

influence it.

2.2.5 Linearity

In multivariate time series forecasting, the relationship between the response vari-

able and the predictor variables over time can be linear, where the response vari-

able is assumed to be a linear combination of the predictor variables and can be

expressed as a system of linear equations, or non-linear, where the model allows

for a more complex relationship between the response variable and the predictor

variables [2].

The choice between linear and non-linear multivariate time series models de-

pends on the nature of the data and the problem being analyzed. An example of a

linear multivariate time series model is the Vector Autoregression (VAR) model [2]

and examples of non-linear multivariate time series models include neural network

models like the RNN model, Long Short-Term Memory (LSTM) model, and GNN

model.

2.3 Traditional Deep Learning Architectures for

Time Series Forecasting

This section discusses traditional time series forecasting architectures. Current

literature is largely outgrown from using these traditional architectures alone in

time series forecasting. These models have now become the building blocks of

multi/ ensemble methods which are currently the state of the art [4], [5].

2.3.1 Recurrence Based Architectures

Recurrence based architectures have an internal hidden state that is a representa-

tion of history that the model has seen so far. How this internal state is updated
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gives rise to three different models.

Recurrent Neural Network

As the name suggests RNN is a subclass of neural networks and one of its main

abilities is that it can handle sequential data by leveraging its internal memory. It

is composed of a set of interconnected processing units which are called neurons

that are arranged in a temporal sequence. Each neuron in an RNN receives inputs

from the previous neuron in the sequence, as well as from the current input, and

produces an output that is fed into the next neuron in the sequence.

The key feature of RNNs is their ability to maintain a hidden state vector that

represents the network’s internal memory. This memory contains the summary of

information that was introduced to the model in prior steps. The hidden state vec-

tor is updated recursively based on the current input and the previous hidden state,

using a set of learnable parameters that are optimized during training. The up-

dated hidden state is then used to make predictions or classifications for the current

time step. This hidden state solves the problem of feed-forward Neural Network

(NN), which is that feed-forward NNs cannot keep track of past dependencies[1],

[25].

Even though RNNs solve some problems of feed-forward NNs it introduces new

ones. The main challenges of training RNNs are the vanishing and exploding gra-

dient problem, which can occur when the gradients used to update the parameters

become very small or very large. This problem makes it difficult for the network

to handle long-term dependencies in the data. Several variants of RNNs have been

developed, including the LSTM and Gated Recurrent Unit (GRU) architectures,

which use more sophisticated mechanisms for the gates in the architectures to bet-

ter handle long-term dependencies and avoid the problems mentioned above.

Long Short-Term Memory

To handle the vanishing gradient and exploding gradient problems LSTM was

introduced. LSTM also has the ability to better handle long-range dependencies.

These improvements are achieved by introducing a cell state. This cell state keeps

track of long-standing information. This memory state is governed by a set of

17



gates. Which are the update gate, forget gate, and output gate. Forget controls

which information shall be preserved or forgotten in the cell state. Update gate

controls the new information from which the cell state is updated. Some authors

refer to this gate as the input gate as well. Output gate controls the output of a cell

state which shall be used in the next cell state. One of the key features of LSTMs

is their ability to selectively remember or forget information over long periods of

time. This is achieved by the regulation of the flow of information by the gates.

This allows the cell to maintain important information over long periods of time

[1], [25].

Gated Recurrent Unit

GRU is a simplification of LSTM. This simplification came about to decrease the

computational cost of LSTM. This simplification reduced the number of gates

from three in LSTM to two in GRU. The gates of the GRU are the update gate

and the relevance gate. The candidate state is computed by the GRU to be used

by the gates to update the current cell/ memory state. Update gate considers

the candidate state and decides whether to update the cell state or not with the

candidate state. The prior cell state is required to compute the candidate state

for the current cell state updates. The relevance gate decides the relevancy of

the prior state in this computation. Compared to LSTMs, the GRU has fewer

parameters and is, therefore, faster to train and more computationally efficient.

However, LSTMs are generally considered more powerful and flexible, especially

for tasks involving long-term dependencies [1].

2.3.2 Convolution Based Architectures

Convolution based architectures have been mainly used in classification problems,

the same is true in time series classification[26]. Convolutional layers which are

arranged sequentially make up the structure of the CNN. A sliding filter and dot

product are used to obtain the output of layers used in this architecture. This is

called a convolution of the input and the filter. One of the main features of the

CNN is its ability to identify patterns in the input data [6].

Temporal Convolutional Networks (TCN) [27] are a notable example of convo-
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lutional based architectures. TCNs use causal convolutions to prevent information

from the future from affecting the past. Furthermore, like RNNs TCNs can use

an input sequence of any length to generate an output of the same length. It is

infeasible to consider a large receptive field with simple convolutions as it requires

deep networks or large filters. Dilated convolutions were introduced to address

this issue. Dilated convolutions allow for an exponentially large receptive field [28].

Fig.2.3 illustrates causal convolution with dilation.

Figure 2.3: A dilated causal convolution with dilation factors d = 1, 2, 4 and filter

size k = 3.

2.3.3 Attention Based Architectures

Attention was first introduced by Bahdanau et al. 2016 [29]. The attention mech-

anism allows a network to focus on specific events in the past which increases the

effective look-back window size of the models[25]. Furthermore, with the atten-

tion mechanism, models can be relieved of the burden of encoding input sequences

to fixed-size vectors because it uses the whole input sequence as a look-up space.

Transformer is a notable model that uses a variation of attention.
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The Transformer is a neural network architecture for sequence-to-sequence

learning that was introduced in a paper by Vaswani et al. 2017 [30]. Transformer

is a model that outperforms the RNN regarding long-term history preservation.

One of the main factors for this is the fact that RNNs are not parallelizable due

to their inherent sequential nature. Transformer overcomes this issue by relying

exclusively on an attention mechanism for history preservation[30].

The self-attention mechanism is the core of the Transformer, which allows the

model to compute representations of each component in the input sequence by

attending to other elements in the sequence. Self-attention is calculated by com-

puting the dot product between a query vector and key vectors for each element in

the input sequence. The scores obtained are normalized using a softmax function

and utilized to weight a value vector for each element. Self-attention mechanism

outputs the weighted sum of the value vectors, which represents the attended rep-

resentation for each element. This self-attention mechanism allows the transformer

to avoid the recurrent structure of the RNN and reduce the signal travel lengths

within the NN to the theoretical limit of O(1) [31]. The transformer aids in tem-

poral dependency tracking as it focuses on both global and local contexts of time

series [23].

The Transformer also introduces positional encoding, which allows the model

to incorporate the position of each element in the input sequence into its computa-

tion. This involves adding a set of sinusoidal functions to the input sequence, with

different frequencies and offsets for each position in the sequence.

There are models like the Informer which focuses on reducing the time and

memory complexity of the vanilla transformer’s self-attention mechanism and im-

proving the efficiency of the forecasts [31]. Then there are models like the Tem-

poral Fusion Transformer that utilize recurrent layers for local dependencies and

self-attention for long-term dependencies utilizing the strengths of both [15].

2.4 Multi/ Ensemble Architectures

Ensemble models in multivariate time series forecasting involve the amalgamation

of forecasts generated by multiple models. The fundamental idea underlying en-

semble models are the accounting of individual models’ strengths and weaknesses
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in way of combining, resulting in a more accurate and reliable forecast [32]. In

multivariate time series forecasting, considering the multitude of variables, this

approach is particularly valuable.

Ensemble models involve using various algorithms, such as ARIMA, regression,

and machine learning approaches, to produce a set of forecasts, which then are

combined using techniques such as weighted averaging or stacking to produce a

final ensemble forecast. Another approach is to train multiple models on different

data subsets, such as different time periods or subsets of input variables. These

models can then be combined using techniques such as bagging or boosting to

generate an ensemble forecast. Some examples are the AdaBoost algorithm [33]

and the utilization of stacking as their ensembling method [34].

Ensemble models provide several benefits over individual models, including

enhanced accuracy, reduced overfitting, and improved robustness to changes in the

underlying data. However, implementing ensemble models can be more complicated

than using individual models, and it may require more computational resources for

training and running the models [32].

2.5 Evaluation Metrics

Multivariate time series forecasting involves predicting multiple time series vari-

ables simultaneously. Here are some common evaluation metrics for multivariate

time series forecasting:

1. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE): MAE

and RMSE can be calculated for each of the individual variables separately.

These metrics measure the average absolute and squared differences between

the actual and predicted values for each variable.

2. Mean Absolute Percentage Error (MAPE) and Symmetric Mean Absolute

Percentage Error (SMAPE): MAPE and SMAPE can be calculated for each

variable. These metrics measure the average percentage difference between

the actual and predicted values for each variable.

3. Mean Absolute Scaled Error (MASE): Can be calculated for each variable.

MASE scales the error based on the in-sample MAE from the naive forecast

method, making it independent of the data scale. A scaled error less than
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one indicates a better forecast than the average one-step naive forecast, while

a value greater than one suggests a worse forecast [35].

4. Mean Square Error (MSE) and R-squared (R2): MSE is the average of the

squared errors between the actual and predicted values across all variables.

R2 measures the proportion of the total variance in all the variables that are

explained by the model.

5. Mean Directional Accuracy (MDA): MDA can be used for time series fore-

casting to measure the percentage of correct directional predictions across all

variables.

2.6 Discussion

Multivariate time series forecasting is a complex and crucial task with applications

ranging from finance to environmental science. Insights into the various approaches

and methodologies used in forecasting help in decision-making.

Traditional deep learning architectures, such as RNNs, LSTMs, and GRUs,

have been fundamental in time series forecasting with their ability to maintain

internal memory which allows them to capture complex patterns and dependencies

[1], [25]. However, these models face challenges in capturing long-term dependencies

and efficiently processing temporal information due to vanishing and exploding

gradient problems.

Attention-based architectures, particularly transformers, have emerged as al-

ternatives to RNNs for capturing global temporal dependencies and spatial rela-

tionships [30], [31]. Substituting recurrent connections in favor of self-attention

mechanisms, transformers alleviate the vanishing and exploding gradient problem

and offer more parallelizable training, leading to faster convergence and improved

scalability. However, their reliance on large-scale pretraining and extensive com-

putational resources may limit their applicability in resource-constrained environ-

ments. Due to the heavy resource needs of transformers models like the Informer

were introduced. Informer optimizes the transformer architecture for time series

forecasting by reducing computational complexity with a technique called sparse

attention [31]. Furthermore, transformers have positional encodings which are not

ideal for time series data. Temporal Fusion Transformer replaces these encodings
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with a sequence-to-sequence layer as this layer is more suitable for time series data

[15]. A potential area of research here is introducing sparse attention found in

the Informer to the Temporal Fusion Transformer to ascertain how efficiency and

accuracy are affected.

Single models like RNNs and transformers have limitations and when these

limitations are better mitigated more robust forecasts are produced. Hybrid/ En-

semble methods, which combine multiple models, have gained traction for their

ability to enhance accuracy and robustness in multivariate time series forecasting

[32]–[34]. These enhancements are gained by leveraging the diversity of individual

models, hybrid/ ensemble methods can mitigate the limitations of a single model

with a combination of one or more other models and offer more reliable forecasts.

However, the effectiveness of hybrid/ensemble methods depends on the diversity

and quality of constituent models, as well as the choice of aggregation technique,

which may introduce additional complexity and computational overhead. As ex-

emplified by the Hybrid ES-RNN [22] model which performs well in forecasting by

extracting contextual information from related time series, utilizing separate tracks

for context and forecasting. Although ES-RNN faces challenges in scalability and

interpretability with a large number of time series.

Moving forward, future research could focus on continued efforts in developing

hybrid and ensemble methods that strike a balance between accuracy and compu-

tational efficiency. Which will prove crucial for advancing the field of multivariate

time series forecasting.

2.7 Conclusion and Future Work

This review has explored various methodologies and approaches for multivariate

time series forecasting, highlighting the strengths, limitations, and advancements

in the field. Multivariate time series forecasting plays a pivotal role in diverse do-

mains, including finance, healthcare, climate modeling, and more. Leveraging deep

learning architectures, ensemble methods, and innovative modeling techniques, re-

searchers have made significant strides in improving forecast accuracy and robust-

ness.

Traditional deep learning architectures such as RNNs and CNNs have laid
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the groundwork for modeling sequential data [1], [26]. However, challenges in

capturing long-term dependencies and processing spatial relationships have led to

the development of more sophisticated architectures like transformers [30].

Ensemble methods have emerged as effective strategies for combining forecasts

from multiple models to mitigate individual weaknesses and enhance overall per-

formance [32].

Recent advancements in hybrid models, transformer-based architectures, and

GNNs have pushed the boundaries of multivariate time series forecasting [15], [22],

[23], [31]. By incorporating contextual information, handling spatial dependen-

cies, and improving scalability and interpretability, these models offer promising

solutions to complex forecasting challenges.

In current literature, while multivariate time series forecasting models do cap-

ture the historical behavior of time series data for forecasting, there is a notable

absence of explicit consideration of significant historical events. These events, de-

spite their potential to profoundly impact the environment, are not integrated into

forecasting efforts to gain insights and enhance accuracy. This represents a gap in

the existing methodologies, as leveraging significant historical events could provide

valuable opportunities for exploitation in forecasting tasks.

Multivariate time series forecasting continues to evolve rapidly, driven by ad-

vancements in deep learning, ensemble methods, and innovative modeling tech-

niques. Through interdisciplinary collaboration and methodological innovation,

researchers can uncover new opportunities and address complex forecasting prob-

lems, to further advance the field.
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Chapter 3

Research Design

3.1 Research Approach

The research methodology adheres to the Scientific Method in developing a tech-

nique for history preservation through anomaly detection, intended for application

in multivariate time series forecasting. This technique seeks to retain and leverage

historical data, with the goal of enhancing the accuracy and efficiency of forecast-

ing.

3.1.1 Datasets

During the study, two datasets were used for experimentation. One of these

datasets named Primary Economic Dataset [36] was created for this study. The

other was a dataset that was already available named Beijing Multi-Site Air-Quality

Data Dataset [37].

The main motivation that prompted the creation of the Primary Economic

Dataset was that obtaining multivariate time series data is difficult. There are

quality univariate datasets but such multivariate data are not present. This dataset

covers five decades’ worth of data depicting the behavior of key economic indicators

outlined by the Federal Reserve Bank of St. Louise. Furthermore, this dataset also

includes global surface temperature and atmospheric CO2 concentration to cover

the relationship between economy and nature.

The second dataset is the Beijing Multi-Site Air-Quality Data Dataset which

tracks six air pollutants alongside six other meteorological variables [38] over four
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years. This dataset will allow exploration into how natural chaotic systems [39]

evolve.

Both datasets were utilized for both training the models and making forecasts

within the scope of this study. These forecasts served as the basis for assessing the

efficacy of the History Preservation method proposed by this study in multivariate

time series forecasting.

3.1.2 Models

Three models that were identified to perform well during the literature review phase

were used in the study. These models were used in assessing the efficacy of the

History Preservation method outlined below.

Light Gradient-Boosting Machine

LightGBM utilizes gradient boosting, a methodology that amalgamates multiple

weak learners, often represented by decision trees, to formulate a predictive model.

These decision trees are generally shallow and are incrementally developed to min-

imize a predefined loss function. The selection of LightGBM for this study was

motivated by its prominence as one of the leading models for multivariate time

series forecasting within the current research landscape [4].

Long Short-Term Memory (LSTM)

Recurrence-based architectures represent the prevailing methods in time series fore-

casting. Techniques such as RNN, LSTM, and GRU are NN models designed to re-

tain historical information internally for forecasting purposes. Among these, LSTM

stands out as the most accurate [1], benefiting from its inherent compatibility with

time series data and demonstrated performance in prior research [3], [40]. Hence, it

was selected for this study due to its well-established efficacy. While hybrid models

incorporating LSTM alongside other methods are common, this study opted for a

straightforward LSTM implementation to distinctly evaluate the effectiveness of

the History Preservation method detailed below.

The study utilized two variants of LSTM: one focusing on a single lag, where

only the data point immediately preceding the forecast is considered, as described
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here; and the other, detailed in the subsequent Multi Lag LSTM section.

Multi Lag LSTM

The Multi Lag LSTM shares similarities with the LSTM model discussed in the

preceding section. However, a key distinction lies in the Multi Lag LSTM approach,

where multiple data points preceding the forecast can be incorporated. This inclu-

sion of additional historical data provides the model with a richer information set

for forecasting purposes.

3.1.3 Anomaly Detection

An anomaly, as defined by Hawkins, refers to an observation that deviates signifi-

cantly from other observations to the extent that it raises suspicions about whether

it was generated by a different mechanism [41]. These anomalies can arise from

various factors, including but not limited to, financial fraud, security breaches, and

terrorist activities [42]. Therefore, identifying these anomalies is crucial as it can

provide insights and aid in addressing future scenarios where similar events may

occur.

While some anomalies may be attributed to noise, errors, or undesired data,

which are typically not useful, it’s often advisable to remove such anomalies to

improve data quality and create a cleaner dataset for anomaly detection. However,

certain anomalies carry valuable information about their occurrence. In recent

years, especially in time series analysis, researchers have increasingly focused on

identifying and studying anomalies themselves to gain insight into the underlying

mechanisms behind their occurrence [43]. Before looking into detecting anomalies,

it’s important to consider three different types of anomalies.

Anomaly Types

Point anomalies are characterized by one data point being anomalous than the

rest of the data. Whereas contextual anomalies are defined when an anomaly is

considered to be anomalous in a specific context. The last of the anomaly types

are collective anomalies where a set of data points are anomalous compared to the

rest of the data [42]. Figure 3.1 illustrates these anomalies in terms of time series.
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Figure 3.1: Three anomaly types [44].

Anomaly Detection Methods

Understanding the underlying mechanisms of anomalies relies on effectively iden-

tifying and analyzing anomalies. Insights gained from the analysis of anomalies

can inform decision-making processes in many domains, enabling better handling

of similar events in the future [42]. There are many ways of anomaly detection

ranging from statistical methods to deep learning methods [45].

Time series decomposition has proven to be effective in anomaly detection in

numerous studies [46], [47]. This technique involves breaking down a time series into

three main components: seasonal, trend, and residual components [2]. Anomalies,

by their very nature, deviate from the normal behaviour exhibited by the data,

making them less likely to be captured in the seasonal or trend components of

time series decomposition. Consequently, residue-based anomaly detection becomes

feasible [48].

Seasonal and Trend decomposition using Loess (STL), or Seasonal and Trend

decomposition using Loess, is a straightforward statistical method used for time se-

ries decomposition [49]. STL breaks down time series data into seasonal, trend, and

residual components as depicted in Figure 3.2. In this context, particular atten-

tion is directed towards the residual component, as it serves to pinpoint anomalies

within the time series data. Anomalies are identified as data points that exhibit de-

viations exceeding a multiple of the standard deviation. The focus on the residual

component stems from the effectiveness of the models, described in the previous

section, in adequately capturing the seasonality and trend within the time series

data. Additionally, anomalies typically manifest as deviations from the established

norms, rather than conforming to seasonal or trend patterns.
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Figure 3.2: Decomposed Trend, Seasonality, and Residual components of HOUST

variable of Primary Economic Dataset.

Isolation Forest is an anomaly detection method known for its linear time

complexity [50]. Isolation trees exploit the inherent characteristic of anomalies,

which is their rarity and distinctiveness, making them relatively easy to separate.

Due to its linear time complexity, Isolation Forest serves as the foundation for many

anomaly detection methods in the literature [51], [52]. It employs a contamination

factor to specify the proportion of data points considered as anomalies within the

dataset. This contamination factor serves as a configurable parameter. Notably, the

anomalies detected by the Isolation Forest method are distinct from those detected

by the STL method, as described in Section ??. This distinction is depicted in

figure 3.3.

Anomaly detection serves as the tool in this study for identifying significant

events within time series data. Subsequently, these identified events are incorpo-

rated into the History Preservation method outlined later. The study utilized the

mentioned statistical point anomaly detection techniques known for their simplicity

and efficiency.
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(a) Anomalies detected from STL method.

(b) Anomalies detected from Isolation Foreset method.

Figure 3.3: Anomaly detection of HOUST variable of the Primary Economic

Dataset using STL (above) and Isolation Forest (below) methods.
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3.2 History Preservation with Anomaly Detec-

tion

In this study, History Preservation is delineated as the process of capturing signif-

icant historical events and leveraging insights derived from them to enhance fore-

casting accuracy. However, to implement this approach, a method for identifying

these significant historical events must be established.

During historically significant events, notable changes occur within the environ-

ment, often reflected as anomalous occurrences in time series data. Such anomalous

events induce drastic shifts in the behavior and movement of related time series,

thereby presenting an opportunity for beneficial insights. Consequently, in this

study, anomalous events are defined as historically significant events. To identify

these anomalous events, established anomaly detection methods in time series anal-

ysis are employed. Subsequently, the detected anomalies are incorporated into the

forecasting process to facilitate learning to gain insights.

In this study, a data augmentation technique is employed to incorporate de-

tected anomalies into the forecasting process. Anomalies are identified for each

time series within the dataset based on various criteria utilizing the previously men-

tioned anomaly detection methods in section 3.1.3. Subsequently, each detected

anomaly is assigned a score, thereby generating an anomaly score time series for

each variable in the dataset. These individual anomaly score time series are then

amalgamated into a single anomaly time series based on time. This aggregated

anomaly time series is thereafter integrated into the original dataset as a new time

series variable.

This data augmentation and scoring methodology serves to emphasize signifi-

cant historical events that exert an impact across all time series variables. More-

over, it ensures that even events with relatively lesser impact are captured, albeit

to a lesser extent. This approach enables the learning and forecasting of events

based on their significance, rather than solely categorizing them as anomalies.

These augmented datasets are then utilized in the modeling process to facilitate

learning and forecasting. The learning and forecasting tasks are executed using the

three models outlined in Section 3.1.2. The evaluation plan is detailed in Section
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3.3 to gauge the effectiveness of the proposed History Preservation method. Figure

3.4 depicts a high-level design of Forecasting with History Preservation.

Figure 3.4: High-level design of Forecasting with History Preservation.

3.3 Evaluation Plan

An experiment suit was designed to evaluate the effectiveness of the proposed His-

tory Preservation method of this study. This experiment suit covers the impact of

the proposed History Preservation method across models and datasets considering

different anomaly methods used.

Experiment Name Format

[model] [dataset] [anomaly method]

Models

• LightGBM

• LSTM

• Multi Lag LSTM

32



Datasets

• Primary - Primary Economic Dataset

• Beijing - Beijing Multi-Site Air-Quality Data Dataset

Anomaly Methods

• No data augmentation - anom 0

• Three anomaly detection methods derived from STL (anom 1, anom 2, anom 3)

• Three anomaly detection methods derived from Isolation Forests (iso trs 0.1,

iso trs 0.2, iso trs 0.3)

3.3.1 Metrics

Multivariate time series forecasting involves predicting multiple time series vari-

ables simultaneously. SMAPE is used as the evaluation metric for this study to

evaluate the efficacy of the proposed history preservation method. SMAPE can

be calculated for each individual variable and it measure the average percentage

difference between the actual and predicted values for each variable.

Average of SMAPE are used to get a global understanding of the effectiveness

of the proposed method of history preservation. Furthermore SMAPE is used

to create the Weighted Symmetric Mean Absolute Percentage Error (WSMAPE)

which allows another single evaluation score to be obtained.

SMAPE and WSMAPE

SMAPE is defined as follows. Where n is the number of data points, At is the

actual value and Ft is the forecast value.

SMAPE =
100

n

n∑
t=1

|Ft − At|
(|At| + |Ft|) /2

(3.1)

With the above SMAPE, WSMAPE shall be produced by introducing a weight-

ing mechanism.

WSMAPE =
m∑
i=1

wi ∗ SMAPEi (3.2)
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The m above denotes the number of variables forecast in the multivariate

time series forecast. Further wi denotes the weight given for the ith variable and

SMAPEi denotes the SMAPE of the ith variable.

The weighting mechanism used in this study is based on the variance of vari-

ables. Where wi is proportional to the variance of the ith variable considered.

The WSMAPE defined here was inspired by the Weighted Root Mean Squared

Scaled Error (WRMSSE) used in the M5 competition [4].

3.3.2 Environment

All experiments are conducted on Google Collaboratory with the following specifi-

cations.

• CPU: Intel Xeon CPU @2.20 GHz

• RAM: 13GB

• GPU: NVIDIA Tesla K80

• VRAM: 12GB DDR5

The language of implementation is Python in Collaboratory notebooks. As the file

storage, Google Drive is used.

3.4 Research Tools

• LATEX with overleaf for writing.

• SemanticScholar for tracking papers.

• Google Scholar and Semantic Scholar to search for papers.

• Google Drive, Docs, and Sheets for taking notes and compiling papers.

• Grammarly as a writing aid.

• TurnitIn as the plagiarism checker.
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Chapter 4

Implementation and Results

4.1 Dataset Analysis

4.1.1 Primary Economic Dataset

As mentioned in section 3.1.1 due to the unavailability of quality multivariate

time series data a new dataset was created for the purposes of this study. This

dataset includes monthly data from 1976 to the end of 2023. Data in this dataset

contains key economic indicators, global surface temperature, and atmospheric

CO2 concentration [36].

Data Sources

• Federal Reserve Bank of St.Louise [53] (Variables 1 - 13)

• International Monetary Fund [54] (Variable 14)

• London Bullion Market Association [55] (Variables 15 - 16)

• National Centers for Environmental Information [56] (Variable 17)

Variables

1. Unemployment Rate (UNRATE)

2. Personal Consumption Expenditures: Chain-type Price Index (PCEPI)

3. Personal Consumption Expenditures Excluding Food and Energy (Chain-

Type Price Index) (PCEPILFE)

4. Real Personal Income (RPI)
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5. Personal Saving (PMSAVE)

6. Light Weight Vehicle Sales: Autos and Light Trucks (ALTSALES)

7. Industrial Production: Total Index (INDPRO)

8. Capacity Utilization: Total Index (TCU)

9. New Privately-Owned Housing Units Authorized in Permit-Issuing Places:

Total Units (PERMIT)

10. New Privately-Owned Housing Units Started: Total Units (HOUST)

11. Labor Force Participation Rate (CIVPART)

12. Consumer Price Index for All Urban Consumers: All Items in U.S. City

Average (CPIAUCSL)

13. Consumer Price Index for All Urban Consumers: All Items Less Food and

Energy in U.S. City Average (CPILFESL)

14. Atmospheric CO2 Concentrations (AtmCO2)

15. Gold Price (goldMP)

16. Silver Price (silverMP)

17. Global Surface Temperature (globalTemp)

4.1.2 Beijing Multi-Site Air-Quality Data Dataset

This dataset contains the hourly readings of six air pollutants and six other relevant

meteorological variables. The data is collected from twelve national air quality

monitoring centers in Beijing, China [37]. There are around 35000 datapoints per

monitoring center. Data is gathered from March 1st, 2013 to February 28th, 2017.

Variables are as follows.

Air pollutant concentrations

• PM2.5 - Particulate Matter with diameter less than 2.5 µm

• PM10 - Particulate Matter with diameter less than 10 µm

• SO2 - Sulfur Dioxide

• NO2 - Nitrogen Dioxide

• CO - Carbon Monoxide

• O3 - Ozone
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Meteorological variables

• TEMP - Air Temperature

• PRES - Pressure

• DEWP - Dew Point

• RAIN - Precipitation

• WD - Wind Direction

• WSPM - Wind Speed

4.1.3 Preprocessing

Before conducting experiments, it is crucial to preprocess the data into a format

that the model can accept. This preprocessing entails various tasks such as han-

dling missing values, removing duplicates, scaling numerical features, and encoding

categorical data. Effective data preprocessing is critical for ensuring the quality

and reliability of results, as well as optimizing model performance.

Primary Economic Dataset

The creation of the dataset draws from the four data sources outlined in Section

4.1.1. Python, Pandas, and NodeJS are utilized for this task. The resulting dataset

comprises monthly data spanning from 1976 to 2023.

For sourcing key economic indicators, the Federal Reserve Bank of St.Louise

serves as the data repository. Federal Reserve Bank of St.Louise offers an Appli-

cation Programming Interface (API) for data retrieval, and the fred-py-api library

[57] is employed to interface with this API. Utilizing the API, data spanning from

1976 to 2023 for the variables(1-13) mentioned in Section 4.1.1 is obtained. Subse-

quently, the retrieved data is merged into a single Comma Separated Values (CSV)

file based on the date attribute. This process results in the creation of a CSV file

with data on economic indicators.

For the Atmospheric CO2 Concentrations, the IMF provides a downloadable

CSV file containing this data. Initially, the original dataset contained numerous

variables that were irrelevant to the scope of this study. Therefore, all such extrane-

ous variables were discarded, retaining only the ’Date’, ’Unit’, and ’Value’ columns.
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Given that the dataset included values from various units for a single date, filter-

ing was performed to isolate data with the parts per million unit. Thereafter, the

’Unit’ column was dropped from the dataset. Finally, data spanning from 1976 to

2023 was filtered and saved into a CSV file.

For gold and silver prices, data from the London Bullion Market Association

was utilized. Although LBMA did not provide downloadable files or an API, the

data was publicly accessible. To extract this data from the website, a JavaScript

script was developed within NodeJS. This script scraped the data from the London

Bullion Market Association website and stored it in two separate CSV files, one for

gold prices and another for silver prices. The data extracted consisted of daily prices

spanning from 1969 to 2023. Following this extraction, the next phase involved

transforming the daily data into monthly data using Python and Pandas. This

transformation entailed selecting the first data point of each month to represent

that month’s data. Then, the dataset was filtered to include data from 1976 to

2023. This process resulted in the creation of two CSV files with gold and silver

price data.

For global temperature data, the National Centers for Environmental Informa-

tion has a downloadable CSV file. This file was obtained from the National Centers

for Environmental Information and filtered to extract data spanning from 1976 to

2023. The resulting dataset was saved into a CSV file.

Upon creation of the individual files for gold and silver prices, atmospheric CO2

concentrations, global temperature, and key economic indicators, they were merged

based on their date attributes to form the final Primary Economic Dataset for this

study. This dataset did not contain any missing values and was normalized during

use. This dataset covers the last five decades of economic data and other factors

that impact the economy, allowing us to gain insights into historically significant

events that happened during that time.

Beijing Multi-Site Air-Quality Data Dataset

The preprocessing of this dataset was partly inspired by the paper by Li et al [58].

First, a station was chosen at random out of the 12 available. Then some of

the unnecessary columns shall be dropped like the column with the station name.
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Since wind direction is categorical it is dropped as well.

There are missing values in the dataset that need to be handled, for this the

K-Nearest Neighbors imputation is used. The number of neighbors considered here

is five and the weights of neighbors are uniform.

Numerical values are on different scales. This is not ideal as it can lead to

variables having different levels of influence on the model during training. Hence

these numeric data are normalized.

4.1.4 Data Augmentation

Data augmentation via anomaly detection serves as a crucial component of the

proposed History Preservation method. This process hinges on the detection and

scoring of anomalies, leading to the creation of individual anomaly time series

for each variable within the dataset. Afterward, these anomaly time series are

aggregated to form an additional variable in the dataset. For anomaly detection

two methods used are the STL and Isolation Forest methods.

Seasonal and Trend decomposition using Loess (STL)

Seasonal and Trend decomposition using Loess is a methodology designed to de-

compose time series data into three distinct components: seasonal, trend, and

residual. As detailed in Section ??, the residual component is specifically lever-

aged for anomaly detection in this study. Within the context of this research,

a data point is classified as anomalous if its corresponding residual component

exceeds twice the standard deviation of the overall residual component.

Upon detection of an anomaly, it is scored using three distinct methods tailored

for STL, as outlined in Section 3.3.

• anom 1

– Anomaly val = av : (currently av = 5)

– Non anomaly val = an : (currently an = -5)

– No augmentation hence if an anomaly is detected that data point gets

the value of av else the value is an.

• anom 2

– Anomaly val = av : (currently av = 5)
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– Non anomaly val = an : (currently an = -5)

– stdresid = standard deviation of residual values (from stl decomposition)

– Anomaly score augmentation = (|yi − stdresid|/stdresid) ∗ av
• anom 3

– Anomaly val = av : (currently av = 5)

– Non anomaly val = an : (currently an = -5)

– stdresid = standard deviation of residual values (from stl decomposition)

– Anomaly score augmentation = (|yi − stdresid|) ∗ av

Isolation Forests

Isolation Forests represent an anomaly detection technique that identifies anoma-

lies based on a contamination factor. This factor delineates the proportion of the

dataset expected to be anomalous. It’s important to note that Isolation Forests

detect anomalies distinct from those identified by the STL method. In this study,

three contamination factors were employed to enable three levels of anomaly de-

tection.

• iso trs 0.1

– Contamination factor = 0.1

– Anomaly val = av : (currently av = 5)

– Non anomaly val = an : (currently an = -5)

– If an anomaly is detected that data point gets the value of av else the

value is an.

• iso trs 0.2

– Contamination factor = 0.2

– Anomaly val = av : (currently av = 5)

– Non anomaly val = an : (currently an = -5)

– If an anomaly is detected that data point gets the value of av else the

value is an.

• iso trs 0.3

– Contamination factor = 0.3

– Anomaly val = av : (currently av = 5)

– Non anomaly val = an : (currently an = -5)
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– If an anomaly is detected that data point gets the value of av else the

value is an.

Anomaly Time Series Aggregation

In both of these methods, after scoring anomalies for each time series variable

in the dataset, a collection of anomaly time series is generated, corresponding to

each variable. These anomaly time series are subsequently aggregated. The chosen

aggregation method in this study is summation. Therefore, all time series are

aligned based on date and summed accordingly. This process yields the aggregated

anomaly time series, which is then integrated into the original dataset.

The aggregation method is represented by Equation 4.1. In this equation,

AgreTSd denotes the value at date d of the aggregated anomaly time series, while

AnomTSd
i represents the value at date d of the ith anomaly time series. And n

denotes the number of time series variables in the original dataset.

AgreTSd =
n∑

i=0

AnomTSd
i (4.1)

4.2 Models

The following models were implemented according to the descriptions provided

below, and the experiments outlined in Section 3.3 were executed using these mod-

els. It’s worth noting that once these models are defined, they remain unchanged

throughout the study. This approach is adopted because the study primarily fo-

cuses on evaluating the effects of History Preservation through data augmentation,

necessitating consistency in the models utilized.

4.2.1 LightGBM

The model definition for LightGBM draws inspiration from the winning model of

the M5 competition [4]. However, certain parameters have been adjusted to better

suit the requirements of this study. The parameters are as follows:

lgb_params = {’boosting_type’: ’gbdt’,
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’objective’: ’regression’,

’tweedie_variance_power’: 1.1,

’metric’: ’rmse’,

’subsample’: 0.5,

’subsample_freq’: 1,

’learning_rate’: 0.015,

’num_leaves’: 3,

’min_data_in_leaf’: 10,

’feature_fraction’: 0.5,

’max_bin’: 100,

’n_estimators’: 3000,

’boost_from_average’: False,

’verbose’: -1,

’seed’ : 1995}

4.2.2 LSTM

The LSTM utilized in this study is defined as follows: it comprises a single LSTM

layer with 50 neurons, followed by a dense layer serving as the output layer. The

model is then trained for 50 epochs, with a batch size of 72, utilizing the MAE loss

function and employing the Adam optimizer. The lag of this LSTM model is set

to one.

4.2.3 Multi Lag LSTM

The Multi Lag LSTM model bears significant similarity to the LSTM model defined

in Section 4.2.2, with the primary distinction lying in the lag parameter. In this

variant, the lag is defined to be 3, indicating that the model considers the previous

three data points for each forecast.
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4.3 Experiments: Primary Economic Dataset

4.3.1 LightGBM

Baseline Experiments

Experiment name : LightGBM primary anom 0

Anomaly Method : anom 0 (No data augmentation)

Metric Value

avg SMAPE 12.50059

WSMAPE 12.64186

Table 4.1: Metrics for LightGBM with no data augmentation for Primary Economic

dataset

Experiments with History Preservation

It’s notable that both anomaly detection methods, STL and Isolation Forest,

yielded improvements over the baseline performance when applied to the primary

economic dataset. Specifically, in terms of accuracy enhancement measured by

WSMAPE, STL demonstrated an improvement of 10.36%, while Isolation Forest

exhibited an improvement of 5.75%.

Anomaly Method: STL

Metric Baseline anom 1 anom 2 anom 3

avg SMAPE 12.50059 12.19176 12.1 13.31529

WSMAPE 12.64186 11.33156 11.76063 15.82842

Table 4.2: Metrics for LightGBM with STL data augmentation for Primary Eco-

nomic dataset

Anomaly Method: Isolation Forests
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Metric Baseline iso trs 0.1 iso trs 0.2 iso trs 0.3

avg SMAPE 12.50059 12.38706 12.32352 12.38118

WSMAPE 12.64186 12.73511 11.96875 11.91537

Table 4.3: Metrics for LightGBM with Isolation Forest data augmentation for

Primary Economic dataset

4.3.2 LSTM

Baseline Experiments

Experiment name : LSTM primary anom 0

Anomaly Method : anom 0 (No data augmentation)

Metric Value

avg SMAPE 12.36765

WSMAPE 10.52907

Table 4.4: Metrics for LSTM with no data augmentation for Primary Economic

dataset

Experiments with History Preservation

History preservation through STL did not result in an improvement over the base-

line accuracy for the LSTM model when applied to the primary economic dataset.

However, in contrast, when utilizing Isolation Forest for history preservation, there

was a significant improvement in accuracy, with an enhancement of 17.71% mea-

sured by WSMAPE.

Anomaly Method: STL

Metric Baseline anom 1 anom 2 anom 3

avg SMAPE 12.36765 13.01647 13.42 13.19765

WSMAPE 10.52907 10.99233 11.12231 11.99993

Table 4.5: Metrics for LSTM with STL data augmentation for Primary Economic

dataset

Anomaly Method: Isolation Forests
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Metric Baseline iso trs 0.1 iso trs 0.2 iso trs 0.3

avg SMAPE 12.36765 13.02412 11.61824 11.86882

WSMAPE 10.52907 11.8469 10.06988 8.66456

Table 4.6: Metrics for LSTM with Isolation Forest data augmentation for Primary

Economic dataset

4.3.3 Multi Lag LSTM

Baseline Experiments

Experiment name : multilagLSTM primary anom 0

Anomaly Method : anom 0 (No data augmentation)

Metric Value

avg SMAPE 3.17412

WSMAPE 3.60416

Table 4.7: Metrics for multilagLSTM with no data augmentation for Primary Eco-

nomic dataset

Experiments with History Preservation

It’s evident that the Multi Lag LSTM model already exhibits notable performance

compared to both LightGBM and single lag LSTM. Additionally, with the incor-

poration of history preservation through both STL and Isolation Forest methods,

the Multi Lag LSTM model demonstrates further improvements over the baseline

accuracy measured by WSMAPE. Specifically, STL resulted in an accuracy en-

hancement of 17.22%, while Isolation Forest yielded an improvement of 16.53%.

Anomaly Method: STL

Metric Baseline anom 1 anom 2 anom 3

avg SMAPE 3.17412 3.07647 2.85588 3.62882

WSMAPE 3.60416 3.15175 2.9834 3.72916

Table 4.8: Metrics for multilagLSTM with STL data augmentation for Primary

Economic dataset
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Anomaly Method: Isolation Forests

Metric Baseline iso trs 0.1 iso trs 0.2 iso trs 0.3

avg SMAPE 3.17412 2.64 3.55059 3.01529

WSMAPE 3.60416 3.00847 4.42669 3.45007

Table 4.9: Metrics for multilagLSTM with Isolation Forest data augmentation for

Primary Economic dataset

4.4 Experiments: Beijing Multi-Site Air-Quality

Data Dataset

4.4.1 LightGBM

Baseline Experiments

Experiment name : LightGBM beijing anom 0

Anomaly Method : anom 0 (No data augmentation)

Metric Value

avg SMAPE 23.48182

WSMAPE 1.36373

Table 4.10: Metrics for LightGBM with no data augmentation for Beijing dataset

Experiments with History Preservation

History Preservation with both STL and Isolation Forest did not yield any accuracy

improvement over baseline with the Beijing Dataset using LightGBM.

Anomaly Method: STL

Metric Baseline anom 1 anom 2 anom 3

avg SMAPE 23.48182 24.02727 24.04273 24.69182

WSMAPE 1.36373 1.53443 1.52986 2.24453

Table 4.11: Metrics for LightGBM with STL data augmentation for Beijing dataset

Anomaly Method: Isolation Forests
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Metric Baseline iso trs 0.1 iso trs 0.2 iso trs 0.3

avg SMAPE 23.48182 24.24 24.16364 24.11636

WSMAPE 1.36373 1.67819 1.59637 1.61633

Table 4.12: Metrics for LightGBM with Isolation Forest data augmentation for

Beijing dataset

4.4.2 LSTM

Baseline Experiments

Experiment name : LSTM beijing anom 0

Anomaly Method : anom 0 (No data augmentation)

Metric Value

avg SMAPE 19.74182

WSMAPE 16.90485

Table 4.13: Metrics for LSTM with no data augmentation for Beijing dataset

Experiments with History Preservation

For the Beijing Dataset, employing history preservation with STL using LSTM did

not result in any accuracy improvement over the baseline. However, when utilizing

history preservation with Isolation Forest, there was an improvement in accuracy,

with an enhancement of 4.63% measured by WSMAPE.

Anomaly Method: STL

Metric Baseline anom 1 anom 2 anom 3

avg SMAPE 19.74182 21.19818 21.22909 22.09818

WSMAPE 16.90485 17.41566 16.95142 17.61226

Table 4.14: Metrics for LSTM with STL data augmentation for Beijing dataset

Anomaly Method: Isolation Forests
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Metric Baseline iso trs 0.1 iso trs 0.2 iso trs 0.3

avg SMAPE 19.74182 20.19 20.52545 21.38636

WSMAPE 16.90485 16.88637 17.27897 16.12286

Table 4.15: Metrics for LSTM with Isolation Forest data augmentation for Beijing

dataset

4.4.3 Multi Lag LSTM

Baseline Experiments

Experiment name : multilagLSTM beijing anom 0

Anomaly Method : anom 0 (No data augmentation)

Metric Value

avg SMAPE 4.88091

WSMAPE 4.00758

Table 4.16: Metrics for multilagLSTM with no data augmentation for Beijing

dataset

Experiments with History Preservation

It’s evident that with Multi Lag LSTM, both history preservation methods, STL

and Isolation Forest, led to improvements in accuracy measured by WSMAPE.

Specifically, STL resulted in an enhancement of 39.71%, while Isolation Forest

yielded an improvement of 31.37%.

Anomaly Method: STL

Metric Baseline anom 1 anom 2 anom 3

avg SMAPE 4.88091 4.23273 4.33636 3.65636

WSMAPE 4.00758 4.53384 3.38652 2.41604

Table 4.17: Metrics for multilagLSTM with STL data augmentation for Beijing

dataset

Anomaly Method: Isolation Forests
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Metric Baseline iso trs 0.1 iso trs 0.2 iso trs 0.3

avg SMAPE 4.88091 4.25364 3.06727 5.39

WSMAPE 4.00758 7.3688 2.75048 6.96481

Table 4.18: Metrics for multilagLSTM with Isolation Forest data augmentation for

Beijing dataset
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Chapter 5

Analysis and Conclusions

5.1 Introduction

This study investigates the utility of history preservation to aid multivariate time

series forecasting in terms of accuracy and efficiency. Anomaly detection and data

augmentation are utilized as the history preservation method in the study. This

chapter covers the conclusions derived from the study and discusses the implications

for future research.

5.2 Discussion

When a model learns to forecast, it generally learns to predict based on common

patterns or the generalized scenario. However, when an event deviates from this

norm, the model often fails to perform accurately. These deviations typically cor-

respond to significant events with considerable impact, and if forecasted correctly,

they can offer substantial benefits. To address this issue, history preservation is

employed to capture these critical scenarios where notable changes occur.

Conventional models struggle to forecast significant events because they are

primarily trained to forecast generalized patterns. This study demonstrates that

history preservation methods based on anomaly detection can identify these signif-

icant events, leading to improved forecasting accuracy when this new information

is integrated. The proposed technique detects significant events through anomaly

detection and incorporates this information into the dataset via data augmenta-

tion, as outlined in section 4.1.4. As a result, during model training, the model
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becomes aware of significant events, gaining insight into these deviations from the

generalized scenario. This additional context allows the model to forecast based

not only on generalized scenarios but also on significant events.

The study employed two different anomaly detection methods to identify signif-

icant events, as described in section 3.1.3. By integrating this anomaly-based infor-

mation into the training process, the forecasting models achieved greater accuracy,

specifically in scenarios involving significant deviations from expected patterns.

Using STL-based history preservation, out of the six scenarios represented by

three models and two datasets, only three instances demonstrated improved ac-

curacy with history preservation. Among the three scenarios that did not show

improvement, the poor performance of LightGBM can be attributed to its inabil-

ity to effectively handle periodic time series. For instance, the ’RAIN’ attribute

in the Beijing dataset exhibits periodic behavior, and rain is known to influence

air quality dynamics [59], [60]. On the other hand, LSTM and Multi Lag LSTM

demonstrate proficiency in handling the ’RAIN’ attribute in their forecasting ef-

forts. However, LSTM fails to improve upon the baseline accuracy, mainly due

to its consideration of a single data point for forecasting. This limitation restricts

its ability to encounter anomalies and leverage anomaly information for forecast-

ing purposes. In contrast, Multi Lag LSTM considers multiple data points for

forecasting, enabling it to better utilize anomaly information, leading to improved

performance, as evidenced in Table 5.1.

Dataset LightGBM LSTM Multi Lag LSTM

Primary 10.36% Not improved 17.22%

Beijing Not improved Not improved 39.71%

Table 5.1: With anomaly detection using STL, accuracy improvement over baseline

of the three models used in this study.

Isolation Forest-based history preservation also encompasses six instances, com-

prising two datasets with three models. Out of these six instances, five exhibited

improvement over the baseline, as shown in Table 5.2. The single instance that

did not demonstrate improvement was LightGBM with the Beijing dataset, which

is due to the periodic ’RAIN’ attribute in the Beijing dataset. However, with Iso-
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lation Forest-based history preservation, LSTM improved over the baseline. This

improvement can be attributed to the fact that the Isolation Forest method detects

anomalies that are more closely grouped together compared to STL, which detects

anomalies that are more spaced apart. This distinction can be observed in Figure

3.3 in Section 3.1.3. The clustered nature of anomalies allows LSTM more oppor-

tunities to encounter anomalies, even with its consideration of only a single prior

data point for forecasting. Similarly, as seen before, Multi Lag LSTM improves

over the baseline by considering multiple data points. Just as forecasting benefits

from considering more prior data points, the history preservation method proposed

in this study also lends itself to improvement with increased consideration of prior

data points.

Dataset LightGBM LSTM Multi Lag LSTM

Primary 5.75%. 17.71% 16.53%

Beijing Not improved 4.63% 31.37%

Table 5.2: With anomaly detection using Isolation Forest, accuracy improvement

over baseline of the three models used in this study.

The proposed history preservation technique affects the efficiency of multivari-

ate time series forecasting. For evaluating the efficiency of multivariate time series

forecasting, it’s essential to consider both the time and memory complexity of the

specific model used for the forecast. This serves as the baseline. In this study, the

baseline involves forecasting with the three models: LightGBM, LSTM, and Multi

Lag LSTM, without employing the history preservation method proposed in this

study.

With the incorporation of history preservation, an additional process is intro-

duced. History preservation is achieved through anomaly detection and data aug-

mentation. For anomaly detection, STL and Isolation Forest methods are utilized.

Data augmentation involves integrating an additional time series attribute into the

dataset used for forecasting. Due to the anomaly detection and data augmentation

processes, there is an increase in time complexity, as well as memory complexity,

due to the introduction of more data into the dataset. Consequently, overall effi-

ciency in multivariate time series forecasting decreases with history preservation.
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This decrease in efficiency is primarily dependent on the anomaly detection and

data augmentation methods employed. However, in this study, the use of simple

anomaly detection methods and data augmentation techniques helps to minimize

the decrease in efficiency.

5.3 Conclusions About Research Questions

The first research question was to identify the techniques utilized in multivariate

time series forecasting. Through a comprehensive literature survey, various tech-

niques were identified, and three machine learning models were selected for further

investigation in the study.

The second research question sought to adapt identified techniques for his-

tory preservation. To achieve this, the study proposes a history preservation tech-

nique that uses anomaly detection to identify significant events and integrates this

anomaly information into datasets through data augmentation, as detailed in sec-

tion 4.1.4. By doing so, the model, during training, becomes aware of the significant

events in the data, gaining insights from these deviations. This approach allows

the model to forecast based not only on the generalized scenario but also on sig-

nificant events that deviate from typical patterns, leading to greater accuracy in

forecasting.

The third research question focused on evaluating the efficacy of the history

preservation technique, gauged in terms of accuracy and efficiency in multivari-

ate time series forecasting. To accomplish this, experiments were conducted using

two anomaly detection methods, three machine learning models, and two datasets.

Results indicated that although there was a slight decrease in efficiency, accuracy

notably improved over the baseline in eight out of a possible twelve instances. Fur-

thermore, five out of the eight improved instances exhibited accuracy improvements

exceeding 15% over the baseline.

5.4 Conclusions About Research Problem

This study explores significant historical events and how capturing information

from them can aid multivariate time series forecasting. The identification of these
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events was accomplished using anomaly detection methods in time series analysis.

By augmenting the data with insights derived from these historical events, the ac-

curacy of multivariate time series forecasting improved. However, this increase in

accuracy came at the expense of a slight decrease in forecasting efficiency. Thus,

history preservation based on anomaly detection enhances the accuracy of multi-

variate time series forecasting, but with a trade-off in efficiency. This approach

allows models to forecast based not only on generalized scenarios but also on sig-

nificant events that deviate from generalized scenarios, leading to more accurate

forecasts.

5.5 Limitations and Implications for Further Re-

search

The proposed history preservation technique demonstrates that when a model is

trained with information about significant historical events, it can forecast based

on not only generalized scenarios but also these significant events, leading to im-

proved forecasting accuracy. To identify these significant events, the study used

simple statistical anomaly detection methods. However, these methods do not fully

capture the complexity and diversity of significant historical events.

To enhance the proposed history preservation technique, more sophisticated

anomaly descriptors that can better represent the intricacies of these events should

be explored. Heuristic-based approaches that leverage autoencoders, variational

autoencoders, and generative adversarial networks could be promising areas for

further study. Moreover, additional research is required to determine how these

advanced anomaly descriptors can be seamlessly integrated into the forecasting

process to further boost accuracy and improve the overall performance of multi-

variate time series forecasting.

Another area for further exploration is the optimization of the forecasting mod-

els themselves. Throughout the study, the models remained unchanged, providing a

stable baseline for the research. However, there’s a considerable opportunity to re-

fine these models in combination with improving the history preservation technique.

This could involve exploring various model architectures, tuning hyperparameters,
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or experimenting with ensemble methods to achieve better predictive performance.
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Appendix A

Results

Results tables are on the next page onwards.
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Appendix B

Code Listings

B.1 Evaluation

Listing B.1: Main Evaluation� �
1 # %%

2 def smape ( actual , predicted ) -> float :
3

4 # Convert actual and predicted to numpy

5 # array data type if not already

6 if not all ( [ isinstance ( actual , np . ndarray ) ,
7 isinstance ( predicted , np . ndarray ) ] ) :
8 actual , predicted = np . array ( actual ) , np . array ( predicted )
9

10 return round (
11 np . mean (
12 np . abs ( predicted - actual ) /
13 ( ( np . abs ( predicted ) + np . abs ( actual ) ) /2)
14 ) ∗100 , 2
15 )
16

17 # %%

18 def evaluation_main ( evaluation_dict , predicted_attribute , y_test , y_pred_val ) :
19 evaluation_dict [ predicted_attribute ] = {}
20 evaluation_dict [ predicted_attribute ] [ ’MAE’ ] = mean_absolute_error ( y_test ,

y_pred_val )
21 evaluation_dict [ predicted_attribute ] [ ’MSE’ ] = mean_squared_error ( y_test ,

y_pred_val )
22 evaluation_dict [ predicted_attribute ] [ ’MAPE’ ] = mean_absolute_percentage_error (

y_test , y_pred_val )
23 evaluation_dict [ predicted_attribute ] [ ’SMAPE’ ] = smape ( y_pred_val , y_test )
24 return evaluation_dict

25

26 # %%

27 def avg_evals ( eval_type , evaluation_dict ) :
28 eval_type_avg = 0
29 for k , v in evaluation_dict . items ( ) :
30 eval_type_avg = eval_type_avg + v [ eval_type ]
31 return eval_type_avg / ( len ( evaluation_dict . items ( ) ) )� �

Listing B.2: WSMAPE� �
1 # %%

2 import pandas as pd

3 from collections import defaultdict

4 from sklearn . preprocessing import MinMaxScaler , normalize , StandardScaler

5 from sklearn . metrics import mean_absolute_error , mean_absolute_percentage_error ,\
6 mean_squared_error

7

8 # %%

9 datasets = [ ’primary ’ , ’beijing ’ ]
10 anoms = [ ’anom_0 ’ , ’anom_1 ’ , ’anom_2 ’ , ’anom_3 ’ , ’iso_trs_0 .1’ , ’iso_trs_0 .2’ , ’

iso_trs_0 .3’ ]
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11

12 #variables

13 DATASET = "beijing" # primary | beijing

14 ANOM_TYPE = "anom_0" # anom_0 | anom_1 | anom_2 | anom_3 | iso_trs_0 .1 | iso_trs_0

.2 | iso_trs_0 .3

15 MODEL = "multilagLSTM" # LightGBM | LSTM | multilagLSTM

16

17 datasets = {"primary" : "primary_" ,
18 "beijing" : "Beijing_data/beijing_"
19 }
20

21 anom_dict = {"anom_0" : "dataset_anom_0.csv" ,}
22

23 dataset_path = "/content/drive/MyDrive/Research/code/FINAL_DATASET/"

24

25 file_path = dataset_path + datasets [ DATASET ] + anom_dict [ ANOM_TYPE ]
26

27 SMAPE_path = ’/content/drive/MyDrive/Research/code/RESULTS/’+MODEL+’/’+MODEL+’_’+
DATASET+’_SMAPE.csv’

28

29 # %%

30 smape_df = pd . read_csv ( SMAPE_path )
31

32 # %%

33 df = pd . read_csv ( file_path )
34

35 # %%

36 df = df . iloc [ : , 1 : ]
37

38 df_normalized = normalize ( df )
39 df_processed_numeric = pd . DataFrame ( df_normalized , columns=df . columns )
40

41 # %%

42 variance_dict = defaultdict ( )
43 co = list ( df_processed_numeric . columns )
44 # co.remove(’date ’)

45 var_sum = 0
46 for i in co :
47 variance_dict [ i ] = df_processed_numeric [ i ] . var ( axis=0)
48 var_sum = var_sum + df_processed_numeric [ i ] . var ( axis=0)
49

50 # %%

51 li = [ ]
52 for j in range ( 0 , 7 ) :
53 WSMAPE = 0
54 exp_name = smape_df . iloc [ j ] [ "EXPERIMENT_NAME" ]
55 for i in co :
56 WSMAPE = WSMAPE + ( variance_dict [ i ] / var_sum ) ∗smape_df . iloc [ j ] [ i ]
57 li . append ( round ( WSMAPE , 5 ) )
58 print ( exp_name , round ( WSMAPE , 5 ) )� �

B.2 Anomaly Detection Methods

B.2.1 Seasonal and Trend decomposition using Loess

Listing B.3: STL based anomaly detecting� �
1 # %%

2 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/
imports_installs_prereq . ipynb

3 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/preprocessing .
ipynb

4 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/grapher . ipynb
5 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/evaluations . ipynb
6

7 installAll ( )
8

9 # %%
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10 from sklearn . model_selection import TimeSeriesSplit

11 from sktime . performance_metrics . forecasting import MeanAbsoluteScaledError

12

13 from sklearn . preprocessing import MinMaxScaler , normalize , StandardScaler

14 from sklearn . metrics import mean_absolute_error , mean_absolute_percentage_error ,\
15 mean_squared_error

16

17 from collections import defaultdict

18

19 from IPython . display import display

20

21 import numpy as np

22 import pandas as pd

23 pd . set_option ( ’display.max_rows ’ , 15)
24 pd . set_option ( ’display.max_columns ’ , 500)
25 pd . set_option ( ’display.width’ , 1000)
26

27 import matplotlib . pyplot as plt

28 from datetime import datetime

29 from datetime import timedelta

30 from pandas . plotting import register_matplotlib_converters

31 from mpl_toolkits . mplot3d import Axes3D

32

33 from statsmodels . tsa . stattools import acf , pacf

34 from statsmodels . tsa . statespace . sarimax import SARIMAX

35 register_matplotlib_converters ( )
36 from time import time

37 import seaborn as sns

38 sns . set ( style="whitegrid" )
39

40 from sklearn . preprocessing import StandardScaler

41 from sklearn . decomposition import PCA

42 from sklearn . cluster import KMeans

43 from sklearn . covariance import EllipticEnvelope

44

45 import warnings

46 warnings . filterwarnings ( ’ignore ’ )
47

48 from statsmodels . tsa . seasonal import seasonal_decompose

49 import matplotlib . dates as mdates

50

51 RANDOM_SEED = np . random . seed (0 )
52

53 # %%

54 def std_from_resid ( residVals ) :
55 std_arr = np . array ( residVals )
56 nan_indices = np . where ( np . isnan ( std_arr ) )
57 std_arr = np . delete ( std_arr , nan_indices )
58 return np . std ( std_arr )
59

60 # %%

61 def anomaly_detection_stl_decomp ( final_dataset , attribute , anomaly_dict ,
anomaly_val , non_anomaly_val , augment_anomalies_flag = False , decompose_model

=’additive ’ ) :
62

63 decompose_series = final_dataset [ [ attribute ] ]
64

65 result = seasonal_decompose ( decompose_series , model=decompose_model )
66

67 THRESHOLD = std_from_resid ( result . resid . values ) ∗2
68

69 x = result . resid . index
70 y = result . resid . values
71

72 datesX = [ ]
73 for i in range ( len ( x ) ) :
74 if y [ i ] > THRESHOLD or y [ i ] < - THRESHOLD :
75 if augment_anomalies_flag :
76 augmented_anomaly_val = int ( ( abs ( y [ i ] - std_from_resid ( result . resid . values

) ) /std_from_resid ( result . resid . values ) ) ∗anomaly_val )
77 # augmented_anomaly_val = int((abs(y[i] - std_from_resid(result.resid.

values)))*anomaly_val)

78 else :
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79 augmented_anomaly_val = anomaly_val

80 datesX . append ( augmented_anomaly_val )
81 else :
82 datesX . append ( non_anomaly_val )
83 anomaly_dict [ attribute ] = list ( datesX )
84

85 # %%

86 def multivariate_aligned_anomalies_sum ( anomaly_val , non_anomaly_val ,
augment_anomalies_flag = False ) :

87 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ , parse_dates=[0 ] , index_col=0)

88 anomaly_dict = defaultdict ( )
89 for i in final_dataset . columns :
90 anomaly_detection_stl_decomp ( final_dataset , i , anomaly_dict , anomaly_val ,

non_anomaly_val , augment_anomalies_flag , decompose_model=’additive ’ )
91

92 anomaly_df = pd . DataFrame . from_dict ( anomaly_dict )
93 anomaly_df_transposed = anomaly_df . T
94 alignments = anomaly_df_transposed . sum ( )
95 return np . array ( list ( alignments ) )
96

97 # %%

98 def multivariate_aligned_anomalies_inidividual ( anomaly_val , non_anomaly_val ,
augment_anomalies_flag = False ) :

99 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ , parse_dates=[0 ] , index_col=0)

100 anomaly_dict = defaultdict ( )
101 for i in final_dataset . columns :
102 anomaly_detection_stl_decomp ( final_dataset , i , anomaly_dict , anomaly_val ,

non_anomaly_val , augment_anomalies_flag , decompose_model=’additive ’ )
103

104 anomaly_df = pd . DataFrame . from_dict ( anomaly_dict )
105 return anomaly_df

106

107 # %%

108 def get_multivariate_aligned_anomalies_inidividual ( ) :
109 return multivariate_aligned_anomalies_inidividual ( anomaly_val , non_anomaly_val ,

augment_anomalies_flag )
110

111 def get_multivariate_aligned_anomalies_sum ( ) :
112 return multivariate_aligned_anomalies_sum ( anomaly_val , non_anomaly_val ,

augment_anomalies_flag )
113

114

115 # %%

116 def dataset_augmentaiton_with_anomalies ( final_dataset , anomaly_val ,
non_anomaly_val , anomaly_integration_flag = 1 , sum_anomaly_flag = 1 ,
both_anomalies_and_anomaly_sum = 0 , augment_anomalies_flag = True ) :

117 if anomaly_integration_flag :
118 if both_anomalies_and_anomaly_sum :
119 anomalies_inidividual = get_multivariate_aligned_anomalies_inidividual ( )
120 for i in final_dataset . columns [ 1 : ] :
121 # print(anomalies_inidividual[i])

122 column_name = i + ’_anomalies ’

123 # print(column_name)

124 final_dataset [ column_name ] = anomalies_inidividual [ i ]
125

126 events = get_multivariate_aligned_anomalies_sum ( )
127 final_dataset [ ’_events ’ ] = events

128

129 else :
130 if sum_anomaly_flag :
131 events = get_multivariate_aligned_anomalies_sum ( )
132 final_dataset [ ’_events ’ ] = events

133 else :
134 anomalies_inidividual = get_multivariate_aligned_anomalies_inidividual ( )
135 for i in final_dataset . columns [ 1 : ] :
136 # print(anomalies_inidividual[i])

137 column_name = i + ’_anomalies ’

138 # print(column_name)

139 final_dataset [ column_name ] = anomalies_inidividual [ i ]
140

141
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142 # %%

143 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ , parse_dates=[0 ] , index_col=0)

144

145 # %%

146 RAIN_TEST_RATIO = 0.7
147 anomaly_val = 5
148 non_anomaly_val = - 5
149

150 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ )

151

152 anomaly_integration_flag = 0
153 sum_anomaly_flag = 1
154 both_anomalies_and_anomaly_sum = 0
155 augment_anomalies_flag = False

156

157

158 dataset_augmentaiton_with_anomalies ( final_dataset , anomaly_val , non_anomaly_val ,
anomaly_integration_flag , sum_anomaly_flag , both_anomalies_and_anomaly_sum ,
augment_anomalies_flag )

159

160 # %%

161 # there are 4 definitions for anomaly score with the name format anom_x , x =

{1,2,3}

162

163 final_dataset . to_csv ( "/content/drive/MyDrive/Research/code/FINAL_DATASET/
primary_dataset_anom_0.csv" , index=False )� �

B.2.2 Isolation Forest

Listing B.4: Isolation Foreset based anomaly detecting� �
1 # %%

2 from sklearn . preprocessing import StandardScaler

3 from sklearn . decomposition import PCA

4 from sklearn . covariance import EllipticEnvelope

5 from sklearn . ensemble import IsolationForest

6 import matplotlib . pyplot as plt

7 import numpy as np

8 import pandas as pd

9 from collections import defaultdict

10

11

12 # %%

13 anomaly_dict = defaultdict ( )
14 anomaly_val = 5
15

16 outliers_fraction = float ( . 3 )
17

18 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ , parse_dates=[0 ] , index_col=0)

19

20 dataset = final_dataset [ [ variable ] ]
21

22 for i in final_dataset . columns :
23 dataset = final_dataset [ [ i ] ]
24

25 scaler = StandardScaler ( )
26 np_scaled = scaler . fit_transform ( dataset . values . reshape ( - 1 , 1) )
27 data = pd . DataFrame ( np_scaled )
28

29 model = IsolationForest ( contamination=outliers_fraction )
30 model . fit ( data )
31

32 anomaly_dict [ i ] = model . predict ( data )
33

34 # %%

35 anomaly_df = pd . DataFrame . from_dict ( anomaly_dict )
36
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37 # %%

38 anomaly_df = anomaly_df ∗ - 5
39

40 # %%

41 anomaly_df [ ’UNRATE ’ ] . value_counts ( )
42

43 # %%

44 anomaly_df_transposed = anomaly_df . T
45 alignments = anomaly_df_transposed . sum ( )
46 events = np . array ( list ( alignments ) )
47 final_dataset [ ’_events_isolation_trees ’ ] = events

48

49 # %%

50 final_dataset . to_csv ( "/content/drive/MyDrive/Research/code/FINAL_DATASET/
primary_dataset_isolation_trees_0 .3.csv" , index=True )� �

B.3 Models

B.3.1 LightGBM

Listing B.5: Automater for LightGBM� �
1 # %%

2 from google . colab import drive

3 drive . mount ( ’/content/drive’ )
4

5 # %%

6 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/
imports_installs_prereq . ipynb

7 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/preprocessing .
ipynb

8 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/grapher . ipynb
9 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/evaluations . ipynb

10 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/
anomaly_dectection_stl_decomposition . ipynb

11

12 installAll ( )
13

14 # %%

15 import numpy as np

16 import pandas as pd

17 import wandb

18 import matplotlib . pyplot as plt

19 from sklearn . model_selection import TimeSeriesSplit

20 from sktime . performance_metrics . forecasting import MeanAbsoluteScaledError

21

22 from sklearn . preprocessing import MinMaxScaler , normalize , StandardScaler

23 from sklearn . metrics import mean_absolute_error , mean_absolute_percentage_error ,\
24 mean_squared_error

25

26 from collections import defaultdict

27 import os

28

29 # %%

30 datasets = [ ’primary ’ , ’beijing ’ ]
31 anoms = [ ’anom_0 ’ , ’anom_1 ’ , ’anom_2 ’ , ’anom_3 ’ , ’iso_trs_0 .1’ , ’iso_trs_0 .2’ , ’

iso_trs_0 .3’ ]
32

33 #variables

34 TRAIN_TEST_RATIO = 0.7
35 # DATASET = "primary" # primary | beijing

36 # ANOM_TYPE = "anom_0" # anom_0 | anom_1 | anom_2 | anom_3 | iso_trs_0 .1 |

iso_trs_0 .2 | iso_trs_0 .3

37 MODEL = "LightGBM"

38

39 datasets = {"primary" : "primary_" ,
40 "beijing" : "Beijing_data/beijing_"
41 }
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42

43 anom_dict = {"anom_0" : "dataset_anom_0.csv" ,
44 "anom_1" : "dataset_anom_1.csv" ,
45 "anom_2" : "dataset_anom_2.csv" ,
46 "anom_3" : "dataset_anom_3.csv" ,
47 "iso_trs_0 .1" : "dataset_isolation_trees_0 .1. csv" ,
48 "iso_trs_0 .2" : "dataset_isolation_trees_0 .2. csv" ,
49 "iso_trs_0 .3" : "dataset_isolation_trees_0 .3. csv" ,
50 }
51

52 dataset_path = "/content/drive/MyDrive/Research/code/FINAL_DATASET/"

53

54 for DATASET in datasets :
55 for ANOM_TYPE in anoms :
56 EXPERIMENT_NAME = MODEL + ’_’ + DATASET + ’_’ + ANOM_TYPE

57

58 file_path = dataset_path + datasets [ DATASET ] + anom_dict [ ANOM_TYPE ]
59

60 final_dataset = pd . read_csv ( file_path )
61

62 final_dataset . drop ( columns=["RAIN" ] , inplace=True )
63

64 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/lightGBM . ipynb� �
Listing B.6: LightGBM� �

1 # %%

2 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/
imports_installs_prereq . ipynb

3 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/preprocessing .
ipynb

4 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/grapher . ipynb
5 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/evaluations . ipynb
6

7 installAll ( )
8

9 # %%

10 from sklearn . model_selection import TimeSeriesSplit

11 from sktime . performance_metrics . forecasting import MeanAbsoluteScaledError

12

13 from sklearn . preprocessing import MinMaxScaler , normalize , StandardScaler

14 from sklearn . metrics import mean_absolute_error , mean_absolute_percentage_error ,\
15 mean_squared_error

16

17 from collections import defaultdict

18

19 from IPython . display import display

20

21 import numpy as np

22 import pandas as pd

23 pd . set_option ( ’display.max_rows ’ , 15)
24 pd . set_option ( ’display.max_columns ’ , 500)
25 pd . set_option ( ’display.width’ , 1000)
26

27 import matplotlib . pyplot as plt

28 from datetime import datetime

29 from datetime import timedelta

30 from pandas . plotting import register_matplotlib_converters

31 from mpl_toolkits . mplot3d import Axes3D

32

33 from statsmodels . tsa . stattools import acf , pacf

34 from statsmodels . tsa . statespace . sarimax import SARIMAX

35 register_matplotlib_converters ( )
36 from time import time

37 import seaborn as sns

38 sns . set ( style="whitegrid" )
39

40 from sklearn . preprocessing import StandardScaler

41 from sklearn . decomposition import PCA

42 from sklearn . cluster import KMeans

43 from sklearn . covariance import EllipticEnvelope

44

45 import warnings

75



46 warnings . filterwarnings ( ’ignore ’ )
47

48 from statsmodels . tsa . seasonal import seasonal_decompose

49 import matplotlib . dates as mdates

50

51 RANDOM_SEED = np . random . seed (0 )
52

53 # %%

54 def std_from_resid ( residVals ) :
55 std_arr = np . array ( residVals )
56 nan_indices = np . where ( np . isnan ( std_arr ) )
57 std_arr = np . delete ( std_arr , nan_indices )
58 return np . std ( std_arr )
59

60 # %%

61 def anomaly_detection_stl_decomp ( final_dataset , attribute , anomaly_dict ,
anomaly_val , non_anomaly_val , augment_anomalies_flag = False , decompose_model

=’additive ’ ) :
62

63 decompose_series = final_dataset [ [ attribute ] ]
64

65 result = seasonal_decompose ( decompose_series , model=decompose_model )
66

67 THRESHOLD = std_from_resid ( result . resid . values ) ∗2
68

69 x = result . resid . index
70 y = result . resid . values
71

72 datesX = [ ]
73 for i in range ( len ( x ) ) :
74 if y [ i ] > THRESHOLD or y [ i ] < - THRESHOLD :
75 if augment_anomalies_flag :
76 augmented_anomaly_val = int ( ( abs ( y [ i ] - std_from_resid ( result . resid . values

) ) /std_from_resid ( result . resid . values ) ) ∗anomaly_val )
77 # augmented_anomaly_val = int((abs(y[i] - std_from_resid(result.resid.

values)))*anomaly_val)

78 else :
79 augmented_anomaly_val = anomaly_val

80 datesX . append ( augmented_anomaly_val )
81 else :
82 datesX . append ( non_anomaly_val )
83 anomaly_dict [ attribute ] = list ( datesX )
84

85 # %%

86 def multivariate_aligned_anomalies_sum ( anomaly_val , non_anomaly_val ,
augment_anomalies_flag = False ) :

87 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ , parse_dates=[0 ] , index_col=0)

88 anomaly_dict = defaultdict ( )
89 for i in final_dataset . columns :
90 anomaly_detection_stl_decomp ( final_dataset , i , anomaly_dict , anomaly_val ,

non_anomaly_val , augment_anomalies_flag , decompose_model=’additive ’ )
91

92 anomaly_df = pd . DataFrame . from_dict ( anomaly_dict )
93 anomaly_df_transposed = anomaly_df . T
94 alignments = anomaly_df_transposed . sum ( )
95 return np . array ( list ( alignments ) )
96

97 # %%

98 def multivariate_aligned_anomalies_inidividual ( anomaly_val , non_anomaly_val ,
augment_anomalies_flag = False ) :

99 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ , parse_dates=[0 ] , index_col=0)

100 anomaly_dict = defaultdict ( )
101 for i in final_dataset . columns :
102 anomaly_detection_stl_decomp ( final_dataset , i , anomaly_dict , anomaly_val ,

non_anomaly_val , augment_anomalies_flag , decompose_model=’additive ’ )
103

104 anomaly_df = pd . DataFrame . from_dict ( anomaly_dict )
105 return anomaly_df

106

107 # %%

108 def get_multivariate_aligned_anomalies_inidividual ( ) :
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109 return multivariate_aligned_anomalies_inidividual ( anomaly_val , non_anomaly_val ,
augment_anomalies_flag )

110

111 def get_multivariate_aligned_anomalies_sum ( ) :
112 return multivariate_aligned_anomalies_sum ( anomaly_val , non_anomaly_val ,

augment_anomalies_flag )
113

114

115 # %%

116 def dataset_augmentaiton_with_anomalies ( final_dataset , anomaly_val ,
non_anomaly_val , anomaly_integration_flag = 1 , sum_anomaly_flag = 1 ,
both_anomalies_and_anomaly_sum = 0 , augment_anomalies_flag = True ) :

117 if anomaly_integration_flag :
118 if both_anomalies_and_anomaly_sum :
119 anomalies_inidividual = get_multivariate_aligned_anomalies_inidividual ( )
120 for i in final_dataset . columns [ 1 : ] :
121 # print(anomalies_inidividual[i])

122 column_name = i + ’_anomalies ’

123 # print(column_name)

124 final_dataset [ column_name ] = anomalies_inidividual [ i ]
125

126 events = get_multivariate_aligned_anomalies_sum ( )
127 final_dataset [ ’_events ’ ] = events

128

129 else :
130 if sum_anomaly_flag :
131 events = get_multivariate_aligned_anomalies_sum ( )
132 final_dataset [ ’_events ’ ] = events

133 else :
134 anomalies_inidividual = get_multivariate_aligned_anomalies_inidividual ( )
135 for i in final_dataset . columns [ 1 : ] :
136 # print(anomalies_inidividual[i])

137 column_name = i + ’_anomalies ’

138 # print(column_name)

139 final_dataset [ column_name ] = anomalies_inidividual [ i ]
140

141

142 # %%

143 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ , parse_dates=[0 ] , index_col=0)

144

145 # %%

146 RAIN_TEST_RATIO = 0.7
147 anomaly_val = 5
148 non_anomaly_val = - 5
149

150 final_dataset = pd . read_csv ( ’/content/drive/MyDrive/Research/code/FINAL_DATASET/
final_dataset.csv’ )

151

152 anomaly_integration_flag = 0
153 sum_anomaly_flag = 1
154 both_anomalies_and_anomaly_sum = 0
155 augment_anomalies_flag = False

156

157

158 dataset_augmentaiton_with_anomalies ( final_dataset , anomaly_val , non_anomaly_val ,
anomaly_integration_flag , sum_anomaly_flag , both_anomalies_and_anomaly_sum ,
augment_anomalies_flag )

159

160 # %%

161 # there are 4 definitions for anomaly score with the name format anom_x , x =

{1,2,3}

162

163 final_dataset . to_csv ( "/content/drive/MyDrive/Research/code/FINAL_DATASET/
primary_dataset_anom_0.csv" , index=False )� �

B.3.2 LSTM

Listing B.7: Automater for LSTM� �
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1 # %%

2 from pandas import read_csv

3

4 # %%

5 from google . colab import drive

6 drive . mount ( ’/content/drive’ )
7

8 # %%

9 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/
imports_installs_prereq . ipynb

10 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/preprocessing .
ipynb

11 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/grapher . ipynb
12 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/evaluations . ipynb
13 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/

anomaly_dectection_stl_decomposition . ipynb
14

15 installAll ( )
16

17 # %%

18 datasets = [ ’primary ’ , ’beijing ’ ]
19 anoms = [ ’anom_0 ’ , ’anom_1 ’ , ’anom_2 ’ , ’anom_3 ’ , ’iso_trs_0 .1’ , ’iso_trs_0 .2’ , ’

iso_trs_0 .3’ ]
20

21 #variables

22 TRAIN_TEST_RATIO = 0.7
23 # DATASET = "primary" # primary | beijing

24 # ANOM_TYPE = "anom_0" # anom_0 | anom_1 | anom_2 | anom_3 | iso_trs_0 .1 |

iso_trs_0 .2 | iso_trs_0 .3

25 MODEL = "LSTM"

26

27 datasets = {"primary" : "primary_" ,
28 "beijing" : "Beijing_data/beijing_"
29 }
30

31

32 anom_dict = {"anom_0" : "dataset_anom_0.csv" ,
33 "anom_1" : "dataset_anom_1.csv" ,
34 "anom_2" : "dataset_anom_2.csv" ,
35 "anom_3" : "dataset_anom_3.csv" ,
36 "iso_trs_0 .1" : "dataset_isolation_trees_0 .1. csv" ,
37 "iso_trs_0 .2" : "dataset_isolation_trees_0 .2. csv" ,
38 "iso_trs_0 .3" : "dataset_isolation_trees_0 .3. csv" ,
39 }
40

41 dataset_path = "/content/drive/MyDrive/Research/code/FINAL_DATASET/"

42

43 for DATASET in datasets :
44 for ANOM_TYPE in anoms :
45 EXPERIMENT_NAME = MODEL + ’_’ + DATASET + ’_’ + ANOM_TYPE

46

47 file_path = dataset_path + datasets [ DATASET ] + anom_dict [ ANOM_TYPE ]
48

49 dataset = read_csv ( file_path , header=0, index_col=0)
50

51 dataset . drop ( ’RAIN’ , axis=1, inplace=True )
52

53 %run /content/drive/MyDrive/Research/code/LSTM/multiVariableLSTM . ipynb� �
Listing B.8: LSTM� �

1 # %%

2 # prepare data for lstm

3 from pandas import read_csv

4 from pandas import DataFrame

5 from pandas import concat

6 from sklearn . preprocessing import LabelEncoder

7 from sklearn . preprocessing import MinMaxScaler

8 from math import sqrt

9 from numpy import concatenate

10 from matplotlib import pyplot

11 from pandas import read_csv

12 from pandas import DataFrame
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13 from pandas import concat

14 from sklearn . preprocessing import MinMaxScaler

15 from sklearn . preprocessing import LabelEncoder

16 from sklearn . metrics import mean_squared_error

17 from keras . models import Sequential

18 from keras . layers import Dense

19 from keras . layers import LSTM

20 from collections import defaultdict

21

22

23 def series_to_supervised ( data , n_in=1, n_out=1, dropnan=True ) :
24 n_vars = 1 if type ( data ) is list else data . shape [ 1 ]
25 df = DataFrame ( data )
26 cols , names = list ( ) , list ( )
27

28 for i in range ( n_in , 0 , - 1) :
29 cols . append ( df . shift ( i ) )
30 names += [ ( ’var%d(t-%d)’ % ( j+1, i ) ) for j in range ( n_vars ) ]
31 #

32 for i in range (0 , n_out ) :
33 cols . append ( df . shift ( - i ) )
34 if i == 0 :
35 names += [ ( ’var%d(t)’ % ( j+1) ) for j in range ( n_vars ) ]
36 else :
37 names += [ ( ’var%d(t+%d)’ % ( j+1, i ) ) for j in range ( n_vars

) ]
38

39 agg = concat ( cols , axis=1)
40 agg . columns = names

41

42 if dropnan :
43 agg . dropna ( inplace=True )
44 return agg

45

46 # %%

47 evaluation_dict = defaultdict ( )
48

49

50

51

52 for predicted_variable in dataset . columns :
53

54 if ’_’ in predicted_variable :
55 continue

56

57

58 values = dataset . values
59

60

61 values = values . astype ( ’float32 ’ )
62

63 scaler = MinMaxScaler ( feature_range=(0 , 1) )
64 scaled = scaler . fit_transform ( values )
65

66 reframed = series_to_supervised ( scaled , 1 , 1)
67

68

69 columns_to_drop = [∗ range ( dataset . shape [ 1 ] , dataset . shape [ 1 ] ∗ 2 , 1) ]
70

71

72

73 predicted_variable_location = dataset . shape [ 1 ] + dataset . columns . get_loc (
predicted_variable )

74 columns_to_drop . remove ( predicted_variable_location )
75

76 reframed . drop ( reframed . columns [ columns_to_drop ] , axis=1, inplace=True )
77 print ( reframed . head ( ) )
78

79 values = reframed . values
80

81 n_train_mask = int ( dataset . shape [ 0 ] ∗ TRAIN_TEST_RATIO )
82

83

79



84 train = values [ : n_train_mask , : ]
85 test = values [ n_train_mask : , : ]
86

87 train_X , train_y = train [ : , : - 1 ] , train [ : , - 1 ]
88 test_X , test_y = test [ : , : - 1 ] , test [ : , - 1 ]
89

90 train_X = train_X . reshape ( ( train_X . shape [ 0 ] , 1 , train_X . shape [ 1 ] ) )
91 test_X = test_X . reshape ( ( test_X . shape [ 0 ] , 1 , test_X . shape [ 1 ] ) )
92 print ( train_X . shape , train_y . shape , test_X . shape , test_y . shape )
93

94

95 model = Sequential ( )
96 model . add ( LSTM (50 , input_shape=(train_X . shape [ 1 ] , train_X . shape [ 2 ] ) ) )
97 model . add ( Dense (1 ) )
98 model . compile ( loss=’mae’ , optimizer=’adam’ )
99

100 history = model . fit ( train_X , train_y , epochs=50, batch_size=72, validation_data

=(test_X , test_y ) , verbose=2, shuffle=False )
101

102

103 yhat = model . predict ( test_X )
104 test_X = test_X . reshape ( ( test_X . shape [ 0 ] , test_X . shape [ 2 ] ) )
105

106 inv_yhat = concatenate ( ( yhat , test_X [ : , 1 : ] ) , axis=1)
107 inv_yhat = scaler . inverse_transform ( inv_yhat )
108 inv_yhat = inv_yhat [ : , 0 ]
109

110 test_y = test_y . reshape ( ( len ( test_y ) , 1) )
111 inv_y = concatenate ( ( test_y , test_X [ : , 1 : ] ) , axis=1)
112 inv_y = scaler . inverse_transform ( inv_y )
113 inv_y = inv_y [ : , 0 ]
114

115 evaluation_main ( evaluation_dict , predicted_variable , inv_y , inv_yhat )
116

117 # %%

118 avg_MAE = avg_evals ( ’MAE’ , evaluation_dict )
119

120 # %%

121 avg_MSE = avg_evals ( ’MSE’ , evaluation_dict )
122

123 # %%

124 avg_MAPE = avg_evals ( ’MAPE’ , evaluation_dict )
125

126 # %%

127 avg_SMAPE = avg_evals ( ’SMAPE’ , evaluation_dict )
128

129 # %%

130 def eval_dict_for_specific_evals ( evaluation_dict , eval_metric ) :
131 eval_dict = defaultdict ( )
132 eval_dict [ ’EXPERIMENT_NAME ’ ] = EXPERIMENT_NAME + "-" + eval_metric

133 for k , v in evaluation_dict . items ( ) :
134 # key = k + ’_’ + eval_metric

135 value = v [ eval_metric ]
136 eval_dict [ k ] = value

137 return eval_dict

138

139 # %%

140 import os

141

142 # %%

143 def put_evals_to_csv ( evaluation_dict_for_metric , column_names , csv_path ) :
144 if os . path . exists ( csv_path ) :
145 eval_csv = pd . read_csv ( csv_path )
146 new_data_df = pd . DataFrame . from_dict ( evaluation_dict_for_metric , orient=’index

’ ) . T
147 csvdf = pd . concat ( [ eval_csv , new_data_df ] , ignore_index=True )
148 csvdf . to_csv ( csv_path , index=False )
149 else :
150 df = pd . DataFrame . from_dict ( evaluation_dict_for_metric , orient=’index’ ) . T
151 df . to_csv ( csv_path , index=False )
152

153 # %%

154 EVALS = [ ’MAE’ , ’MSE’ , ’MAPE’ , ’SMAPE’ ]
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155 dataset_columns = list ( dataset . columns )
156

157 for EVAL_CONSIDERED in EVALS :
158 eval_dict_for_metric = eval_dict_for_specific_evals ( evaluation_dict ,

EVAL_CONSIDERED )
159 csv_path = ’/content/drive/MyDrive/Research/code/RESULTS/’ + MODEL + ’/’ + MODEL

+ ’_’ + DATASET + ’_’+ EVAL_CONSIDERED +’.csv’

160 put_evals_to_csv ( eval_dict_for_metric , dataset_columns , csv_path )
161

162 # %%

163 #average valus of evals

164

165 avg_evals_dict = {
166 "EXPERIMENT_NAME" : EXPERIMENT_NAME + "-aggregated" ,
167 "avg_MAE" : avg_MAE ,
168 "avg_MSE" : avg_MSE ,
169 "avg_RMSE" : avg_RMSE ,
170 "avg_MAPE" : avg_MAPE ,
171 "avg_SMAPE" : avg_SMAPE
172 }
173

174 average_eval_column_names = list ( avg_evals_dict . keys ( ) )
175 csv_path = ’/content/drive/MyDrive/Research/code/RESULTS/’ + MODEL + ’/’ + MODEL +

’_’ + DATASET +’_average.csv’

176

177 put_evals_to_csv ( avg_evals_dict , average_eval_column_names , csv_path )� �
B.3.3 Multi Lag LSTM

Listing B.9: Automater for Multi Lag LSTM� �
1 # %%

2 from pandas import read_csv

3

4 # %%

5 from google . colab import drive

6 drive . mount ( ’/content/drive’ )
7

8 # %%

9 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/
imports_installs_prereq . ipynb

10 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/preprocessing .
ipynb

11 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/grapher . ipynb
12 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/includes/evaluations . ipynb
13 %run /content/drive/MyDrive/Research/code/FINAL_DATASET/

anomaly_dectection_stl_decomposition . ipynb
14

15 installAll ( )
16

17 # %%

18 datasets = [ ’primary ’ , ’beijing ’ ]
19 anoms = [ ’anom_0 ’ , ’anom_1 ’ , ’anom_2 ’ , ’anom_3 ’ , ’iso_trs_0 .1’ , ’iso_trs_0 .2’ , ’

iso_trs_0 .3’ ]
20

21 #variables

22 TRAIN_TEST_RATIO = 0.7
23 # DATASET = "primary" # primary | beijing

24 # ANOM_TYPE = "anom_0" # anom_0 | anom_1 | anom_2 | anom_3 | iso_trs_0 .1 |

iso_trs_0 .2 | iso_trs_0 .3

25 MODEL = "multilagLSTM"

26

27 datasets = {"primary" : "primary_" ,
28 "beijing" : "Beijing_data/beijing_"
29 }
30

31 anom_dict = {"anom_0" : "dataset_anom_0.csv" ,
32 "anom_1" : "dataset_anom_1.csv" ,
33 "anom_2" : "dataset_anom_2.csv" ,
34 "anom_3" : "dataset_anom_3.csv" ,
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35 "iso_trs_0 .1" : "dataset_isolation_trees_0 .1. csv" ,
36 "iso_trs_0 .2" : "dataset_isolation_trees_0 .2. csv" ,
37 "iso_trs_0 .3" : "dataset_isolation_trees_0 .3. csv" ,
38 }
39

40 dataset_path = "/content/drive/MyDrive/Research/code/FINAL_DATASET/"

41

42 for DATASET in datasets :
43 for ANOM_TYPE in anoms :
44 EXPERIMENT_NAME = MODEL + ’_’ + DATASET + ’_’ + ANOM_TYPE

45

46 file_path = dataset_path + datasets [ DATASET ] + anom_dict [ ANOM_TYPE ]
47

48 dataset = read_csv ( file_path , header=0, index_col=0)
49 dataset . drop ( columns=["RAIN" ] , inplace=True )
50

51 %run /content/drive/MyDrive/Research/code/LSTM/multiVariableMultilagLSTM . ipynb� �
Listing B.10: Multi Lag LSTM� �

1 # %%

2 from math import sqrt

3 from numpy import concatenate

4 from matplotlib import pyplot

5 from pandas import read_csv

6 from pandas import DataFrame

7 from pandas import concat

8 from sklearn . preprocessing import MinMaxScaler

9 from sklearn . preprocessing import LabelEncoder

10 from sklearn . metrics import mean_squared_error

11 from keras . models import Sequential

12 from keras . layers import Dense

13 from keras . layers import LSTM

14

15

16 def series_to_supervised ( data , n_in=1, n_out=1, dropnan=True ) :
17 n_vars = 1 if type ( data ) is list else data . shape [ 1 ]
18 df = DataFrame ( data )
19 cols , names = list ( ) , list ( )
20

21 for i in range ( n_in , 0 , - 1) :
22 cols . append ( df . shift ( i ) )
23 names += [ ( ’var%d(t-%d)’ % ( j+1, i ) ) for j in range ( n_vars ) ]
24

25 for i in range (0 , n_out ) :
26 cols . append ( df . shift ( - i ) )
27 if i == 0 :
28 names += [ ( ’var%d(t)’ % ( j+1) ) for j in range ( n_vars ) ]
29 else :
30 names += [ ( ’var%d(t+%d)’ % ( j+1, i ) ) for j in range ( n_vars ) ]
31

32 agg = concat ( cols , axis=1)
33 agg . columns = names

34

35 if dropnan :
36 agg . dropna ( inplace=True )
37 return agg

38

39 # %%

40 evaluation_dict = defaultdict ( )
41

42

43 for predicted_variable in dataset . columns :
44

45 if ’_’ in predicted_variable :
46 continue

47

48 values = dataset . values
49

50

51 values = values . astype ( ’float32 ’ )
52

53 scaler = MinMaxScaler ( feature_range=(0 , 1) )
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54 scaled = scaler . fit_transform ( values )
55

56

57

58

59 n_months = 3
60 n_features = dataset . shape [ 1 ]
61

62 reframed = series_to_supervised ( scaled , n_months , 1)
63

64

65

66 columns_to_drop = [∗ range ( dataset . shape [ 1 ] ∗ n_months , dataset . shape [ 1 ] ∗ n_months +
dataset . shape [ 1 ] , 1) ]

67 predicted_variable_location = dataset . shape [ 1 ] ∗ n_months + dataset . columns .
get_loc ( predicted_variable )

68 columns_to_drop . remove ( predicted_variable_location )
69

70

71 reframed . drop ( reframed . columns [ columns_to_drop ] , axis=1, inplace=True )
72 print ( reframed . head ( ) )
73

74

75 values = reframed . values
76

77 TRAIN_TEST_RATIO = 0.7
78

79 n_train_mask = int ( dataset . shape [ 0 ] ∗ TRAIN_TEST_RATIO )
80

81

82 train = values [ : n_train_mask , : ]
83 test = values [ n_train_mask : , : ]
84

85 n_obs = n_months ∗ n_features

86 train_X , train_y = train [ : , : n_obs ] , train [ : , - n_features ]
87 test_X , test_y = test [ : , : n_obs ] , test [ : , - n_features ]
88 print ( train_X . shape , len ( train_X ) , train_y . shape )
89

90 train_X = train_X . reshape ( ( train_X . shape [ 0 ] , n_months , n_features ) )
91 test_X = test_X . reshape ( ( test_X . shape [ 0 ] , n_months , n_features ) )
92 print ( train_X . shape , train_y . shape , test_X . shape , test_y . shape )
93

94

95 model = Sequential ( )
96 model . add ( LSTM (50 , input_shape=(train_X . shape [ 1 ] , train_X . shape [ 2 ] ) ) )
97 model . add ( Dense (1 ) )
98 model . compile ( loss=’mae’ , optimizer=’adam’ )
99

100 history = model . fit ( train_X , train_y , epochs=50, batch_size=72, validation_data

=(test_X , test_y ) , verbose=2, shuffle=False )
101

102

103

104 yhat = model . predict ( test_X )
105 test_X = test_X . reshape ( ( test_X . shape [ 0 ] , n_months∗n_features ) )
106

107 inv_yhat = concatenate ( ( yhat , test_X [ : , - ( n_features - 1) : ] ) , axis=1)
108 inv_yhat = scaler . inverse_transform ( inv_yhat )
109 inv_yhat = inv_yhat [ : , 0 ]
110

111 test_y = test_y . reshape ( ( len ( test_y ) , 1) )
112 inv_y = concatenate ( ( test_y , test_X [ : , - ( n_features - 1) : ] ) , axis=1)
113 inv_y = scaler . inverse_transform ( inv_y )
114 inv_y = inv_y [ : , 0 ]
115

116

117

118 # evaluations

119 evaluation_main ( evaluation_dict , predicted_variable , inv_y , inv_yhat )
120

121 # %%

122 avg_MAE = avg_evals ( ’MAE’ , evaluation_dict )
123
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124 # %%

125 avg_MSE = avg_evals ( ’MSE’ , evaluation_dict )
126

127 # %%

128 avg_MAPE = avg_evals ( ’MAPE’ , evaluation_dict )
129

130 # %%

131 avg_SMAPE = avg_evals ( ’SMAPE’ , evaluation_dict )
132

133 # %%

134 def eval_dict_for_specific_evals ( evaluation_dict , eval_metric ) :
135 eval_dict = defaultdict ( )
136 eval_dict [ ’EXPERIMENT_NAME ’ ] = EXPERIMENT_NAME + "-" + eval_metric

137 for k , v in evaluation_dict . items ( ) :
138 # key = k + ’_’ + eval_metric

139 value = v [ eval_metric ]
140 eval_dict [ k ] = value

141 return eval_dict

142

143 # %%

144 import os

145

146 # %%

147 def put_evals_to_csv ( evaluation_dict_for_metric , column_names , csv_path ) :
148 if os . path . exists ( csv_path ) :
149 eval_csv = pd . read_csv ( csv_path )
150 new_data_df = pd . DataFrame . from_dict ( evaluation_dict_for_metric , orient=’index

’ ) . T
151 csvdf = pd . concat ( [ eval_csv , new_data_df ] , ignore_index=True )
152 csvdf . to_csv ( csv_path , index=False )
153 else :
154 df = pd . DataFrame . from_dict ( evaluation_dict_for_metric , orient=’index’ ) . T
155 df . to_csv ( csv_path , index=False )
156

157 # %%

158 EVALS = [ ’MAE’ , ’MSE’ , ’MAPE’ , ’SMAPE’ ]
159 dataset_columns = list ( dataset . columns )
160

161 for EVAL_CONSIDERED in EVALS :
162 eval_dict_for_metric = eval_dict_for_specific_evals ( evaluation_dict ,

EVAL_CONSIDERED )
163 csv_path = ’/content/drive/MyDrive/Research/code/RESULTS/’ + MODEL + ’/’ + MODEL

+ ’_’ + DATASET + ’_’+ EVAL_CONSIDERED +’.csv’

164 put_evals_to_csv ( eval_dict_for_metric , dataset_columns , csv_path )
165

166 # %%

167 #average valus of evals

168

169 avg_evals_dict = {
170 "EXPERIMENT_NAME" : EXPERIMENT_NAME + "-aggregated" ,
171 "avg_MAE" : avg_MAE ,
172 "avg_MSE" : avg_MSE ,
173 "avg_RMSE" : avg_RMSE ,
174 "avg_MAPE" : avg_MAPE ,
175 "avg_SMAPE" : avg_SMAPE
176 }
177

178 average_eval_column_names = list ( avg_evals_dict . keys ( ) )
179 csv_path = ’/content/drive/MyDrive/Research/code/RESULTS/’ + MODEL + ’/’ + MODEL +

’_’ + DATASET +’_average.csv’

180

181 put_evals_to_csv ( avg_evals_dict , average_eval_column_names , csv_path )� �

84


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Introduction & Background
	Problem Significance and Contribution
	Research Aim
	Research Questions
	Research Objectives
	Scope
	Methodology and Approach
	Summery

	Literature Review
	Time Series Forecasting
	Time Series
	Time series forecasting
	Methods of Time Series Forecasting

	Multivariate Time Series Forecasting
	Variable Selection
	Forecasting Horizon
	Interpretability
	Cross Learning
	Linearity

	Traditional Deep Learning Architectures for Time Series Forecasting
	Recurrence Based Architectures
	Convolution Based Architectures
	Attention Based Architectures

	Multi/ Ensemble Architectures
	Evaluation Metrics
	Discussion
	Conclusion and Future Work

	Research Design
	Research Approach
	Datasets
	Models
	Anomaly Detection

	History Preservation with Anomaly Detection
	Evaluation Plan
	Metrics
	Environment

	Research Tools

	Implementation and Results
	Dataset Analysis
	Primary Economic Dataset
	Beijing Multi-Site Air-Quality Data Dataset
	Preprocessing
	Data Augmentation

	Models
	LightGBM
	LSTM
	Multi Lag LSTM

	Experiments: Primary Economic Dataset
	LightGBM
	LSTM
	Multi Lag LSTM

	Experiments: Beijing Multi-Site Air-Quality Data Dataset
	LightGBM
	LSTM
	Multi Lag LSTM


	Analysis and Conclusions
	Introduction
	Discussion
	Conclusions About Research Questions
	Conclusions About Research Problem
	Limitations and Implications for Further Research

	Appendices
	Results
	Code Listings
	Evaluation
	Anomaly Detection Methods
	Seasonal and Trend decomposition using Loess
	Isolation Forest

	Models
	LightGBM
	LSTM
	Multi Lag LSTM





