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Abstract

Steganography emerges as a powerful method for secure data transfer in the digital
age when information security is becoming increasingly important. Advances
in this sector have opened the way for image steganography—a technique that
involves embedding complete images within another, in a manner imperceptible
to unsuspecting observers, assuring the communication’s invisibility.

Despite breakthroughs, existing multi-image steganography models have lim-
its that require the creation of more advanced solutions. These solutions must not
only improve image quality but also improve security measures. Comprehensive
research into cutting-edge techniques has revealed that Generative Adversarial
Networks (GANs) significantly improve the performance of image steganography
systems by increasing their embedding capacity, improving recovery accuracy,
and fortifying their security protocols. As a result, the primary goal of this re-
search is to investigate the potential of GAN-based image steganography models
for advancing the multi-image steganography area, especially using a coverless
technique with RGB secrete images.

The study concludes by proposing a novel coverless multi-image steganogra-
phy model that leverages GANs to seamlessly embed and extract multiple secret
images with minimal loss. The model’s performance was rigorously evaluated us-
ing industry-standard metrics, focusing on image reproduction accuracy as mea-
sured by RMSE, MSE, PSNR, and SSIM, which were 22.50, 546.25, 21.39, and
0.66, respectively. Additionally, the model demonstrated a hiding capacity of 48
bits per pixel. Compared to traditional image steganography methods, the pro-
posed approach not only achieves notable improvements in concealment and ac-
curacy but also significantly enhances embedding capacity. This study advances
the field of image steganography by exploring the potential of coverless multi-
image steganography through the use of GANs.
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Preface

This document has been produced for the partial fulfilment of the requirements of
the B.Sc. in Computer Science (Hons) Final Year Project in Computer Science
(SCS4124).

This dissertation introduces a novel technique that is built on Generative Ad-
versarial Networks to address the challenges of coverless multi-image steganog-
raphy with RGB secret images.

The dissertation is organized as follows: Chapter 1 presents the introduction
to and background of the study, alongside a concise overview of the entire disser-
tation. Chapter 2 expands on this foundation, engaging in a detailed exploration
of the techniques and related work within the field. Chapter 3 outlines the design
of the proposed approach, while Chapter 4 details the complete implementation.
A comprehensive evaluation of the proposed approach is presented in Chapter 5.
Chapter 6, which provides the conclusion and future work of the research.

This dissertation represents the original work that I, along with my supervisor
and co-supervisor, have conducted and hereby claim everything else mentioned in
this dissertation without a specific reference to any third-party work as our own.
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Chapter 1

Introduction

1.1 Background to the Research
Steganography is an information hiding technique that has gained significant at-
tention recently due to its ability to conceal secret information within seemingly
harmless media such as images, audio, video, or text files. Unlike cryptography
which involves transforming the information to make it unreadable, steganogra-
phy seeks to hide the existence of the information itself. The goal of steganogra-
phy is to ensure that the hidden message is not only concealed from unintended
recipients but also that its existence is not detectable to anyone else.

There are various methods of steganography, including cover modification,
cover selection, and cover synthesis. The cover modification involves embedding
the secret information directly into the cover media, typically by modifying the
least significant bits of the cover. Cover selection, on the other hand, involves
selecting a cover media that is most suitable for hiding the secret message. The
cover media is chosen based on its ability to accommodate the secret information
without significantly altering its visual or auditory quality. Finally, cover synthesis
involves creating a new cover media specifically to hide secret information.

The most commonly used steganography techniques involve image files, as
they are the most easily accessible and widely used media type. Earlier steganog-
raphy in image files is accomplished by modifying the least significant bits of the
pixels in the image. By changing the values of the least significant bits, the color
of the pixel is changed slightly, which is often imperceptible to the human eye.
Changing these values in a particular pattern can encode the hidden message into
the image.

While steganography can be an effective means of hiding sensitive informa-
tion, it is not foolproof. There are techniques that can be used to detect the
presence of hidden information, such as statistical analysis of the cover media.
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Figure 1.1: Basic Process of Traditional Image Steganography

Additionally, steganography can be vulnerable to attacks such as steganalysis,
which involves analyzing the cover media to detect signs of hidden information.
Therefore, steganography should always be used in conjunction with other secu-
rity measures such as encryption to provide a more robust level of protection for
sensitive data.

Steganography by cover modification is a commonly used technique in tradi-
tional image steganography, which involves embedding a secret message within
a cover image using a modification algorithm. The modified image, known as a
stego-image or carrier image, is intended to appear visually identical to the origi-
nal cover image to the naked eye, while simultaneously concealing the embedded
information in a way that cannot be easily detected by statistical analysis as in
Figure 1.1.

The process of steganography by cover modification typically involves select-
ing a cover image that has certain characteristics, such as a high resolution or a
complex pattern, that make it suitable for hiding the embedded information with-
out significantly altering the visual appearance of the image. The message to
be hidden is then encoded in a way that is designed to minimize any detectable
changes to the cover image. The Modification to the least significant bits of the
pixels in the image can be done in a variety of ways, such as using a predetermined
pattern or randomly selecting pixels to modify.

Several techniques can be used to detect the presence of hidden information in
a stego-image, including visual inspection, statistical analysis of the image, and
the use of specialized software designed to detect steganography.

Cover modifications based image steganography methods are commonly clas-
sified into two main categories: spatial domain steganography and transform domain-
based steganography (M. Liu et al. 2017). Spatial domain-based methods involve
encoding the secret message at the least significant bits of the cover image while
transforming domain-based methods modify the statistical features of the host im-
age data.

However, these methods can subject the cover image to modification during in-
formation embedding, which can make them detectable by steganalysis tools. To
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overcome this, researchers have proposed Coverless Image Steganography (CIS),
which does not use a designated cover image. CIS includes methods such as
steganography by cover selection and cover generation.

Steganography by cover selection involves selecting an appropriate cover im-
age that has specific characteristics suitable for hiding the secret message. This
method can be more challenging than traditional steganography as it requires se-
lecting a cover image that can accommodate the hidden message without signif-
icantly altering the visual quality of the image. The process of selecting a cover
image involves analyzing the image to determine its characteristics and then se-
lecting an appropriate image that meets the requirements for hiding the secret
message. Once an appropriate cover image has been selected, the secret message
is then embedded into the image using a steganographic algorithm. The resulting
stego-image appears identical to the original cover image and can be transmitted
without arousing suspicion.

However, cover selection based on CIS has some major drawbacks such as
the difficulty in finding a suitable cover object, a significant increase in the image
database size, and limitations in its embedding capacity (Q. Li et al. 2021).

On the other hand, steganography by cover generation involves generating a
cover image specifically for the purpose of hiding the secret message. This method
offers more control over the cover image and the ability to create a cover image
that is optimized for the hidden message.

Steganography by cover generation has some limitations. One of the most sig-
nificant drawbacks is the increased computational complexity and time required
to generate the cover image compared to other steganographic techniques. This
is because creating a new image as a cover involves various computational steps,
such as image synthesis or manipulation, which demand additional resources and
time. This increased computational overhead can pose challenges in scenarios
where real-time or near-real-time steganographic operations are required, poten-
tially impacting the practicality or efficiency of the technique.

In conclusion, cover modifications based image steganography is a widely
used technique for concealing secret information within an image. While these
methods can be effective, they are not foolproof and can be vulnerable to detec-
tion by steganalysis tools. Coverless image steganography methods offer alter-
native approaches to hiding secret information that can be more robust and less
vulnerable to detection.

1.2 Motivation
The common limitations of traditional image steganographic methods include
achieving high hiding capacity and ensuring security against steganalysis tools.
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However, the utilization of Generative Adversarial Networks(GANs) in stegano-
graphic models has been shown to improve upon these limitations, resulting in
higher rates of hiding capacity and improved security. Dharmawimala (2023) has
extended the model of X. Liu et al. (2020) to input two gray scale images as secret
images using GANs. The motivation of this research is to extend the model of
Dharmawimala (2023) to address the problem of RGB colour secret multi-image
steganography while improving the shortcomings of recovery accuracy and pro-
duce quality stego images, limitations found within existing multi-image stegano-
graphic models.

1.3 Project Aims & Objectives
This project aims to design a new coverless steganography method capable of
successfully encoding multiple RGB colour images within one carrier image with
the ability to resist steganalysis tools. To do so, we intend to achieve the following
objectives:

• Identify and analyze existing image steganography methods and their
architectures. An in-depth analysis of the existing image steganographic
methods and their architectures is beneficial in understanding how vari-
ous components are put together to build effective steganographic models,
which pave the way to design the architecture of the proposed model.

• Design and implement a GAN-based model that is capable of the encod-
ing and decoding process in multi-image steganography. We design and
implement a coverless multi-image steganography model using the knowl-
edge gained from the investigations into existing steganography models.

• Evaluate the proposed model to determine its performance in achieving
multi-image steganography. The performance of the proposed model will
then be evaluated according to the evaluation plan described in section 3.7.
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1.4 Research Gap
Coverless multi-image steganography enables encoding multiple secret images
within a carrier image. The model proposed by Dharmawimala (2023) achieves
the task of coverless multi-image steganography, however, a major shortcoming
of this steganographic model is the ability to produce the carrier image with no
visual information of the secret images. As depicted in Figure 1.2.

The utilization of GANs to build image steganography has proved to be ef-
fective in increasing the hiding capacity as opposed to state-of-the-art models.
Coverless image steganography models based on GANs have achieved the added
advantage of better security performance in addition to high hiding capacity.

Encoding multiple secret images in one carrier image implies that the model
developed to do so must entail the ability to achieve high rates of hiding capacity
as each secret image contains a lot of information. Due to the high hiding ca-
pacity offered by GAN-based image steganography models, we intend to develop
a multi-image steganography model by extending GAN-based image steganogra-
phy. To ensure further security, we explore the applicability of coverless GAN-
based image steganography for RGB color multi-image steganography.

1.5 Problem Statement
Since existing coverless multi-image steganography methods, as mentioned by
Dharmawimala (ibid.), are unable to generate stego images with RGB colour se-
cret images that maintain a satisfactory level of accuracy and concealment to the
human eye, there is a clear requirement for the development of a more efficient
model to address this challenge. Considering the enhanced hiding capacity and
imperceptibility achieved through the application of Generative Adversarial Net-
works (GANs) in steganographic models, we aim to explore the potential for en-
hancing coverless multi-image steganography specifically for RGB secret images
by leveraging GAN technology.
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Figure 1.2: Visual results of the proposed model of Dharmawimala 2023
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1.6 Research Question
To address the requirements of designing an effective coverless multi-image steganog-
raphy method, as elaborated above, we intend to answer the following research
question through the proposed study.

• How can GAN-based coverless image steganography methods be ex-
tended to implement a model capable of multi-image steganography
for RGB colour images?
When looking at the literature, it becomes evident that Generative Adversar-
ial Networks (GANs) have been extensively employed to construct distinc-
tive frameworks for the encoding and decoding phases of steganography
techniques, as demonstrated in the works of H. Shi (2017), Volkhonskiy
(2017), and Ruohan et al. (2019). Thus, our objective is to explore the fea-
sibility and potential adaptations of GAN-based architectures to develop a
coverless multi-image steganography model specifically designed for RGB
colour images.

1.7 Significance Of The Project
Currently, there exist several effective steganographic models capable of suc-
cessfully concealing information. However, despite recent advancements, multi-
image steganography has not yet reached its full potential in terms of accuracy.
Furthermore, to the best of our knowledge, no progress has been made in creat-
ing a coverless multi-image steganography model specifically designed for RGB
colour images.

Hence, the focus of this research is to identify the limitations of current multi-
image steganography methods and explore alternative approaches by leveraging
GANs to develop a coverless multi-image steganography model for RGB color
images. The development of such a model would make a significant contribution
to the scientific community and find applications in various fields where infor-
mation hiding is essential. Additionally, this model could serve as a foundation
for the advancement of more sophisticated coverless multi-image steganography
models for RGB colour images.
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1.8 Research Methodology
This research project aims to explore the feasibility of applying advanced GAN-
based image steganography techniques in the development of a coverless multi-
image steganography model that offers enhanced recovery accuracy and security.
The project will adopt a deductive approach to achieve its objectives. To be-
gin with, an extensive literature review will be conducted to analyze the existing
architectures of image steganography models. This review will be extended to
examine the capabilities and applicability of current GAN-based image steganog-
raphy models. By the end of this phase, a viable approach will be identified to
extend GAN-based techniques for multi-image steganography, and an architec-
ture will be designed to facilitate both the encoding and decoding processes of the
coverless multi-image steganography model.

Once the architecture is established based on the findings of the initial liter-
ature review, the project will move on to the implementation phase. During this
phase, the coverless multi-image steganography model will be developed, and an
appropriate evaluation plan will be formulated to assess its capabilities. Publicly
available datasets will be used to train the model, and test results will be obtained
upon completion of the training phase. Finally, a comprehensive evaluation of
the model will be conducted, drawing conclusions based on its performance and
effectiveness.

1.9 Project Scope
This study will investigate the applicability of different Generative Adversarial
Networks models in multi-image steganography for RGB colour images, Further-
more, during this study we will be designing and implementing a model capable
of coverless multi-image steganography with the RGB secrete images. In ad-
dition, we will be training the proposed model and evaluating the model. This
project will not investigate the applicability of other deep-learning models during
the implementation. However, we will limit our study to designing a GAN based
coverless multi-image steganography model for only two secret images.

1.9.1 Outline of the Dissertation
The subsequent sections of this dissertation are divided into seven chapters. This
portion provides a summary of each chapter: Chapter 1 presents the introduction
to and background of the study, alongside a concise overview of the entire disser-
tation. Chapter 2 expands on this foundation, engaging in a detailed exploration
of the techniques and related work within the field. Chapter 3 presents the design
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of the proposed methodology, leading into Chapter 4, which thoroughly describes
the implementation of the proposed technique. Chapter 5 conducts a comprehen-
sive evaluation of the approach, assessing its effectiveness and potential applica-
tions. The dissertation concludes with Chapter 6, summarizing the findings and
suggesting avenues for future research.
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Chapter 2

Literature Review

2.1 Steganography
Steganography is the practice of hiding secret information within seemingly in-
nocuous communication. It has become a popular research topic due to the in-
crease in multimedia content. The concept of steganography can be traced back
to ancient times Johnson and Jajodia (1998), but its study within scientific litera-
ture began with the ”Prisoners’ Problem” (Simmons 1984), which illustrates the
fundamental concept behind steganography and steganalysis.

Alice and Bob are two prisoners who want to come up with a plan to es-
cape from jail. Unfortunately, all of their communications are monitored by a
jail warden named Eve, who will punish them if she suspects they’re exchanging
information. Despite this obstacle, Alice and Bob are determined to hide their se-
cret message in a seemingly innocent conversation, while Eve tries to detect any
signs of suspicious communication. This scenario demonstrates the core idea of
steganography and steganalysis. Alice and Bob’s exchange of secret information
represents steganography, while Eve’s efforts to detect the hidden message is an
example of steganalysis. This problem, modeled for steganography, is illustrated
in Figure 2.1. In addition to uncovering secret information, steganalysis tools
can also be used to determine the location and contents of the discovered secret
information.

Steganography techniques have spread across different forms of communica-
tion, resulting in text steganography, audio steganography, image steganography,
video steganography, and network steganography. However, in this context, we
will narrow our attention to image steganography.

Image steganography involves using a cover image to conceal secret data, such
as text or images, through various manipulations in order to remain undetected by
steganalysis. Conversely, steganalysis is employed to inspect images and deter-
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Figure 2.1: Steganography and Steganalysis modeled in the Prisoner’s Problem
Simmons 1984

mine whether they are normal images or stego-images that have been manipulated
to hide secret data.

2.2 Image Steganography
In image steganography, a cover image is used to conceal the secret media in
the form of text data or images by some form of manipulation with the aim of
being undetectable by steganalysis. Moreover, steganographic schemes can be
categorized further based on the construction of the cover image. The following
section will delve into the three primary categorizations of steganography models.

2.2.1 Steganographic Methods
Image Steganography can be further classified into three categories based on the
principles of constructing the carrier image as proposed by Fridrich (2010);

• Steganography by cover modification

• Steganography by cover selection

• Steganography by cover generation.

Subsequently, sections 2.2.1.1, 2.2.1.2, and 2.2.1.3 will provide an overview
of the research conducted in each of these categories, respectively, while empha-
sizing their strengths and/or limitations.

2.2.1.1 Steganography by Cover Modification

Steganography by cover modification techniques involves manipulating an image
to hide confidential information, and one common approach is to alter the least
significant bit of each pixel to reflect a single bit of the secret message Hao Wu
et al. (2005) and Mielikainen (2006). However, these methods have certain limi-
tations, such as being sensitive to image manipulation and leaving behind visible
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traces that could be detected by steganalysis algorithms. Adaptive steganography
techniques aim to address these challenges by considering the statistical global
features of the cover image, such as edge detection and texture analysis, to de-
termine the optimal hiding locations for the secret data. By doing so, these tech-
niques can enhance the security and robustness of image steganography, making
it harder for attackers to detect and extract hidden information.

2.2.1.2 Steganography by Cover Selection

Coverless image steganography is a technique that does not modify a designated
cover image, providing additional security. One approach to achieving coverless
image steganography is steganography by cover selection, where a cover object
is chosen based on a mapping between the image and the secret message. Sev-
eral methods have been proposed, such as constructing an image database and
selecting images with identical hash sequences to the secret message (Zhou, Sun,
et al. 2015; Zhou, Q. Wu, et al. 2017), or using distortions to select the cover im-
age with minimum total distortion (Y. Wang et al. 2020). However, these methods
have limitations, such as low hiding capacity and the risk of deducing the mapping
relationship between the hidden information and carrier image.

2.2.1.3 Steganography by Cover Synthesis

The third approach to steganography involves creating a cover image from the
secret information itself. In the past, these methods produced unrealistic images.
However, newer techniques utilize texture-based synthesis models (Wei 1999) or
statistical feature models to generate more natural-looking cover images. Addi-
tionally, recent developments in Generative Adversarial Models have been used to
create cover images that are well-suited for steganography. These methods offer
the advantage of producing cover images that appear normal, making it difficult
for steganalysis algorithms to detect the presence of hidden information.

2.2.2 Hiding Images Within Images
This section discusses how secret information can be hidden within images using
steganography. Baluja (2017) proposed a model that uses an encoder-decoder
network to hide an entire image within another image with minimal loss to both
images. Later, Das (2021) introduced a multi-image steganography method that
uses deep neural networks to encode multiple secret images within one carrier
image, but this model results in a significant loss in the retrieved secret images.

Although the Karras, Laine, and Aila (2018), proposed architecture known as
StyleGAN, is not a steganography model, it has achieved multi-image-to-image
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synthesis to some extent. StyleGAN separates the image synthesis process into
two stages: the generation of a latent vector that controls the overall image con-
tent and the transformation of this vector into an image with a specific style. The
authors introduce a new technique called style mixing, which allows the manip-
ulation of multiple style vectors to create a diverse set of images with different
styles. While training StyleGAN is computationally intensive and requires a large
amount of GPU memory, it provides greater control over image style.

However, StyleGAN is not designed to control the semantic content of the
generated images, which means that the model may not always produce images
that are consistent with a given input text or semantic description.

2.3 Steganalysis
Steganalysis is a critical tool for detecting and preventing the malicious use of
steganography, which can be used for illegal activities like espionage and terror-
ism. The detection of steganographic content in images is a challenging task, as
the hidden data is designed to be undetectable to the human eye and traditional
security methods.

Deep learning models like GNCNN (Qian et al. 2015), Xu-Net (Xu, Hanzhou
Wu, and Y. Q. Shi 2016), and Ye-Net (Ye, Ni, and Yi 2017) have been devel-
oped to enhance the accuracy of steganalysis by detecting steganographic content
using convolutional neural networks. These models are trained on large datasets
of images to recognize statistical patterns and irregularities that may indicate the
presence of hidden information.

Grayscale images are commonly used in steganalysis as they provide a more
straightforward representation of image data, and the absence of colour channels
reduces the complexity of the models. These deep learning models generate prob-
ability vectors that indicate the likelihood of the image being a stego image or a
normal image, allowing for the detection of steganography in digital media.

Modern steganography models such as Fu, F. Wang, and Cheng (2020), X. Liu
et al. (2020), and Cao et al. (2020) use one or more of the steganalysis tools such
as StegExpose, GNCNN and Xu-Net to test the security of the developed method.

2.4 Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GANs) proposed in (Goodfellow et al. 2017)
are a type of artificial intelligence that can create new, realistic images that resem-
ble real-world images within a specific domain . GANs consist of two sub-models,
the generator and discriminator, which work together during the training phase to
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Figure 2.2: The overall framework of Cam-GAN (X. Liu et al. 2020)

create new image samples that closely resemble the training data. The generator
produces an output image that is similar to the input image, while the discrimina-
tor classifies the generated image as real or fake.

2.4.1 Utilization of GANs in Steganography
Generative Adversarial Networks (GANs) have inspired new steganographic mod-
els that improve upon the limitations of traditional models. Traditional models
face challenges in achieving high hiding capacity while ensuring high security, but
GAN-based models have shown promise in addressing these limitations. Let’s ex-
plore steganographic models that use GANs for information hiding and how they
have improved upon the existing limitations.

2.4.1.1 Coverless Image Steganography using GANs

Duan (2018) introduced a novel CIS approach that employs a generative model.
The method involves inputting a secret image into a database, which generates an
independent image using a Wasserstein Generative Adversarial Network (WGAN)
that differs from the original image. Another CIS method based on a DCGAN was
proposed by Hu et al. (2018). This technique involves generating a stego image
by feeding the relationship between the secret message and noise vector as input
to the DCGAN.
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K. A. Zhang (2019) proposed STEGANOGAN, which uses an encoder, de-
coder, and auxiliary critic network to hide information in carrier images. Cheddad
et al. (2010) proposed a coverless steganography method based on the generation
of anime characters using GANs. Mielikainen (2006) developed HIGAN, which
hides an image within another image using an encoder, decoder, and discrimina-
tor network. Q. Li et al. (2021) presented a content-consistency CIS method to
address the loss of detail in generated images. CycleGAN is an effective model
for image translation that can be utilized in information hiding, according to Cui
et al. (2019). Zheng (2019) proposed EncryptGAN, which is a steganographic
model implemented as a Constrained-CycleGAN. Cam-GAN proposed by X. Liu
et al. (2020) is the first coverless GAN-based image hiding model that achieves
full-image size hidden capacity. In this model, a secret image undergoes a scram-
bling process. Subsequently, the scrambled image is passed through a generator
to generate the carrier image. Upon receiving the carrier image, it is processed by
another generator to unscramble the image, which is then fed into an additional
generator to reconstruct the secret image. The complete structure of Cam-GAN is
depicted in Figure 2.2. Remarkably, this model achieves a hiding capacity of 256
* 256 * 3 * 8 bits per image, demonstrating its ability to surpass the limitations of
current steganographic models.

The model proposed in Dharmawimala (2023) is the first one to achieve cov-
erless GAN-based image steganography for multi-image steganography for two
grayscale images using GANs. In this model, secret images are sent through gen-
erator G1 to create an intermediate image. Then, the intermediate image is scram-
bled and sent through generator G2 to create the carrier image. At the receiver’s
end, the carrier image is sent through generator G3 to recover the scrambled im-
age and reproduce the intermediate image. Then, it is sent through generator G4
to recover the secret images. The overall framework of the model is illustrated
in Figure 2.3. This model achieves a hiding capacity of 256 * 256 * 8 * 2 bits
per image, proving to overcome limitations within state-of-the-art steganographic
models.
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Figure 2.3: The overall architecture of the proposed method Dharmawimala 2023
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Chapter 3

Design of The Proposing Model

The research design followed in this research consists of 7 main phases; Defining
of Research Questions, Literature review, Data collection, Model design, Model
implementation, Evaluation and Conclusion will be elaborated further within this
section. Figure 3.1 illustrates the high level flow of these research phases along
with their respective outcomes.

3.1 Define Research Questions
During this phase, we identified the research gap as stated in section 1.4 and the
relevant research questions formulated are stated in section 1.6.

3.2 Literature Review
At the beginning of this project, We conducted a comprehensive literature review
to find new methods that researchers have used for image steganography. This
helped us understand the benefits and drawbacks of each approach. Based on our
findings, We were able to create the model’s architecture and develop an evalua-
tion plan.

3.3 Data Collection
To test and train the proposed multi-image steganography we require two datasets:

• Secret Image Dataset

• Carrier Image Dataset
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Figure 3.1: Research Design

We use the ImageNet 1 dataset(Russakovsky et al. 2015), provided by Prince-
ton University and Stanford University, as the source of the secret images. This
publicly available dataset was utilized by selecting 9,200 images for training and
1,000 images for testing. To generate abstract art as the carrier images for the
proposed coverless multi-image steganography model, we used the Delaunay 2

dataset (Gontier, Jordan, and Petrovici 2022), which contains abstract and non-
figurative art images. This dataset is also publicly available, and we use 2,500
images for training and 1,000 images for testing.

1https://imagenet.org/
2https://github.com/camillegontier/DELAUNAY_dataset
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Figure 3.2: The overall architecture of the proposed method

3.4 Architecture Design
This section will discuss the initial architecture design of the novel approach pro-
posed for coverless multi-image steganography based on GAN. Inspired by the
framework ‘Cam-GAN’ proposed by X. Liu et al. (2020) and the work done by
Dharmawimala (2023), we propose the model architecture illustrated in Figure
3.2.

In the process of encoding, the initial step involves passing two confidential
images through the generator G1. This generator creates a combined representa-
tion of both images. Subsequently, an image scrambling technique is implemented
on this intermediary image to conceal the overall specifics of the confidential con-
tent. The resultant scrambled image undergoes processing by generator G2, result-
ing in the creation of a carrier image, also known as a stego image. Furthermore,
the integration of a discriminator, D1, comes into play to enhance the difficulty
of distinguishing the carrier image from the general abstract art dataset, aligning
with the typical architecture of Generative Adversarial Networks (GANs).
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Figure 3.3: The overall architecture for two input modalities of In2I (Perera,
Abavisani, and Patel 2017)

For the decoding process, the carrier image is transformed by generator G3,
which in turn generates the restored scrambled image. An inverse transformation
is then employed on this restored scrambled image to retrieve the intermediary
image. Subsequently, this intermediary image is channelled through generator
G4, which accurately reproduces the initial two confidential images. To add an
extra layer of complexity and make it demanding to differentiate between the
restored confidential images and the training dataset of confidential images, two
discriminators, namely D2 and D3, are brought into operation.

3.4.1 Component Design
This section describes the network architecture of each component introduced in
the overall model architecture.

3.4.1.1 Generator - G1

The generator G1 takes in two images and produces a fused representation of
both images, which is referred to as the intermediate image. For this purpose, we
adopt the forward transformation generator implemented in the In2I - Multi-image
to image translation model (Perera, Abavisani, and Patel 2017). This generator
can combine two images from different modalities into one image in a specified
domain. The overall generator architecture for the In2I model is illustrated in
Figure 3.3. This generator uses two feature extractors for each image and fuses
the extracted features, which are, in turn, fed to the encoder. Then the encoder
transforms it into a latent space. Lastly, the decoder generates a single image on
this latent space.

The network architecture details of the two input modality forward transfor-
mation generators are shown in Figure 3.4.
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Figure 3.4: Network architecture of G1
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3.4.1.2 Image Scrambling Transformation - A, A’

The encoder applies a transformation A to the intermediate image to obscure the
global structure of the secret image, before passing it through the generator G2.
In the decoder, the scrambled image is restored by applying the inverse transfor-
mation A’ to produce the recovered intermediate image.

3.4.1.3 Generator - G2, G3

To create a carrier image for steganography, we use Generator G2 to convert a
scrambled image into abstract art. To transform the carrier image back into the
scrambled image, we use Generator G3. For this, we use the generator architecture
from Cycle-GAN (K. A. Zhang 2019). The network architecture for both G2 and
G3 can be found in Figure 3.5.

Figure 3.5: Network architecture of G2 and G3
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Figure 3.6: Network Architecture of D1, D2 and D3

3.4.1.4 Discriminator - D1, D2, D3

In order to seamlessly integrate the carrier image into an abstract art dataset, we
utilize Discriminator D1. Additionally, we leverage Discriminators D2 and D3
to ensure that the recovered secret images align with the secret image dataset.
To achieve our goals, we adopt the PatchGAN network architecture (Isola et al.
2016), which is also employed in the In2I model. For a visual representation of
the network architecture of D1, D2, and D3, please refer to Figure 3.6.

3.4.1.5 Generator - G4

The G4 generator employs the recovered intermediate image to produce the covert
images. This is accomplished through the utilization of the In2I - Multi-image
to image translation model’s reverse transformation generator(Perera, Abavisani,
and Patel 2017). This generator can transform a single image into multiple im-
ages across diverse modalities. Refer to Figure 3.7 for a detailed overview of the
network specifications for the reverse transformation generator’s two input modal-
ities.
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Figure 3.7: Network architecture of G4
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S Secret Image Domain
T Carrier Image Domain
R Intermediate Image Domain
Z Latent Space
x A data sample from an arbitrary domain X
fX−→Y Transformation from domain X to Y
hX−→Z Transformation between domain X and latent space Z
gX−→R Transformation between domain X and intermediate domain R
kR−→X Transformation between intermediate domain R and domain X
Pdata(x) Data distributions of domain X

Table 3.1: Notations defined for the proposed model

Figure 3.8: Encoder Transformation of the proposed model

3.5 Problem Formulation
The loss functions of the proposed model are formulated using the notations de-
fined in Table 3.1. To make it easier to understand, a graphical representation of
these notations is provided in Figures 3.8 and 3.9. Please note that the scramble
transformation has been excluded from this illustration as it does not play a role
in the formulation of the loss equation.

The objective of this model is to learn a transformation fS−→T (.). Two images
are fed as input to the encoder, and a single image is given as output. In a sim-
ilar manner, the decoder fT−→S(.) takes in one image as input and produces two
images as output. Thereby, the objective of the proposed model can be depicted
using the loss equations detailed below,

3.5.1 Adversarial Loss
We use the generator-discriminator pair:fS−→T (.), D1(.) to learn the transforma-
tion fS−→T (Perera, Abavisani, and Patel 2017). The data distributions of domain
S and T are denoted Pdata(s) and Pdata(t) respectively. Here the generator attempts
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Figure 3.9: Decoder Transformation of the proposed model

to learn the fS−→T transformation while the discriminator (D1) is trained to dis-
criminate images from the generated images fS−→T (s) from the target domain T.
This process can be mathematically modelled by the adversarial loss as shown in
Equation 3.1.

LGAN,S−→T = Et∼Pdata(t)
[logD1(t)] + Es∼Pdata(s)

[1− logD1(fS−→T (s))] (3.1)

Similarly, we use a single generator to learn the transformation fT−→S and two
discriminators (D2 and D3), one for each secret image. Thereby, the adversarial
loss for the decoder generator is depicted in Equation 3.2.

LGAN,T−→S = Es1∼Pdata(s1)
[logD1(s1)]

+ Es2∼Pdata(s2)
[logD2(s2)]

+ Es1∼Pdata(s1)
[1− logD2(fT−→s1(t))]

+ Es2∼Pdata(s2)
[1− logD3(fT−→s2(t))]

(3.2)

3.5.2 Latent Consistency Loss
This loss was introduced in (Perera, Abavisani, and Patel 2017), and it was pro-
posed that the adversarial loss alone is not enough to preserve the semantic in-
formation of the input images. The adversarial loss is only capable of ensuring
that the generated image belongs to a certain target domain. Thereby, the latent
consistency loss was introduced. This loss forces the equalization of the latent
representation produced during the encoder transformation and the latent repre-
sentation produced during the decoder transformation with respect to the same
input. That is, for a given input image s, its corresponding latent representations
hS−→Z(s) are compared with the latent representations obtained from the decoder
transformation hR−→Z(kT−→R(fS−→T (S))) Thereby, the latent consistency loss
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defined for the encoder transformation is presented in Equation 3.3.

LLatent,S−→R = Es∼Pdata(s)
||hS−→Z(s)− hR−→Z(kT−→Z(fS−→T (S)))||1 (3.3)

Similarly, the latent consistency loss defined for the decoder transformation can
be formulated as shown in Equation 3.4.

LLatent,R−→S = Et∼Pdata(t)
||kT−→R(hR−→Z(t))− hS−→Z(fT−→S(t))||1 (3.4)

3.5.3 Cycle Consistency Loss
By the cycle consistency loss, we force the transformation to have an accurate
inverse transformation. The cycle consistency loss was initially introduced in
CycleGAN (Chu, Zhmoginov, and Sandler 2017) and was also adopted in the
In2I model (Perera, Abavisani, and Patel 2017). By the utilization of this loss in
the proposed model we ensure that the reproduced secret images are similar to the
secret images. The forward cycle consistency loss reflects the distance between
the two input images and the two reconstructed images. Thereby, the forward
cycle consistency loss can be modelled as depicted in Equation 3.5.

Lcyc,S−→T = Es∼Pdata(s)
[||fT−→s(fs−→T (s))− s||1] (3.5)

Similarly, the reverse cycle consistency loss is modelled as shown in Equation
3.6.

Lcyc,T−→S = Et∼Pdata(t)
[||fS−→T (fT−→S(t))− t||1] (3.6)

3.5.4 Intermediate Consistency Loss
The adversarial loss guarantees that the synthesized images belong to their respec-
tive domains. The latency loss ensures that the latent representation generated in
the encoder transformation is similar to the latent representation generated in the
decoder transformation. The cycle consistency loss assures that the reproduced
secret images are similar to the original secret images. However, we have not
explicitly given instructions to the model to ensure that the intermediate image in
the encoder transformation is similar to the reproduced intermediate image in the
decoder transformation. Thereby, we introduce an intermediate consistency loss
to enforce the similarity of the intermediate image and the recovered intermediate
image. This intermediate consistency loss defined for the forward transformation
is described in Equation 3.7.

Lint,S−→T = Es∼Pdata(s)
||hS−→Z(gZ−→R(s))− kT−→R(fS−→T (s))||1 (3.7)

The intermediate consistency loss defined for the backward transformation is pre-
sented in Equation 3.8.

Lint,T−→S = Et∼Pdata(t)
||kT−→R(t)− (gZ−→R(hS−→Z(fT−→S(t)))||1 (3.8)
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Figure 3.10: Model Architecture of Experiment 01

3.5.5 Cumulative Loss
The total of these four losses defined can be summed to obtain the final objective
function. Thereby, the total loss/ cumulative loss formulated for the proposed
model is presented in Equation 3.9.

Ltotal = LGAN,S−→T + LGAN,T−→S

+ λ1(Lcyc,S−→T + Lcyc,T−→S)

+ λ2(LLatent,S−→R + LLatent,R−→S)

+ λ3(Lint,S−→T + Lint,T−→S)

(3.9)

3.6 Experimental Approach
This section describes a series of experiments undertaken for the evolution of the
proposed model design.

3.6.1 Experiment 01
As explained in section 3.4, we built upon the existing ’Cam-GAN’ model devel-
oped by X. Liu et al. (2020) and the research carried out by Dharmawimala (2023)
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Figure 3.11: Model Architecture of Experiment 02

to create our proposed model. Our extension to the work of Dharmawimala (2023)
allows it to accommodate Coverless RGB Multi-Image Steganography. To test the
feasibility of this enhancement for multi-image steganography, we conducted ex-
periment 01. As a first step, we implemented the architecture depicted in Figure
3.10.

In this experiment, two generators, G1 and G4, are used to process pairs
of RGB images and produce corresponding RGB outputs. However, the image
scrambling component necessary for image steganography is not included in this
design, as the main objective is to explore the potential of extending Dharmaw-
imala (ibid.) model towards RGB multi-image steganography. As a result, the
global structure of the secret images will be preserved in the stego image dur-
ing the initial experiments. This architecture served as the baseline design of the
proposed model.

3.6.2 Experiment 02
In experiment 01, we managed to demonstrate that our model could reproduce im-
ages effectively. However, the outcome was a steganographic image that merged
two secret images, signalling room for improvement. To address this, we launched
a follow-up experiment to integrate an image scrambling mechanism. This step
was crucial for investigating the potential of steganography that doesn’t rely on a
traditional cover image but can conceal multiple images. We chose to use an ad-
vanced version of the Arnold Transformation as our scrambling technique. Due to
time constraints, we reduced the number of images in the dataset to train for more
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epochs. The structure of the model we employed for this subsequent experiment
is presented in Figure 3.11.

3.6.3 Experiment 03
Following the unsuccessful outcome of Experiment 02, we proceeded to Exper-
iment 03, adopting the Arnold scrambler as detailed by M. Li, Liang, and He
(2013). This method employs a straightforward coordinate transformation for a
pixel’s coordinates, as outlined in Equation 3.10.

[
x̄ ȳ

]
=

[
1 1
1 2

] [
x
y

]
(mod m) (3.10)

In this context, (x, y) represents the current coordinates of a pixel within the
image, while (x̄, ȳ) denotes the transformed coordinates. Given the RGB color
model’s usage, the maximum intensity value, m, is set to 256. Utilizing the inverse
of this transformation, we can accurately restore the original pixel coordinates,
ensuring that the process is reversible.

3.6.4 Experiment 04
During our analysis of the training process, we identified that, due to an oversight,
computations were being performed on the CPU instead of the GPU. This was a
significant bottleneck, given that tensor operations are substantially more efficient
on GPUs. Acknowledging the opportunity for substantial enhancements in per-
formance, we embarked on Experiment 04. The goal was to refine our model to
fully exploit the computational prowess of GPUs. To evaluate the impact of this
adjustment, we mirrored the setup of Experiment 01 with a dataset of 5000 im-
ages as the secret images. These were to be trained for 100 epochs, allowing us to
directly compare the performance and efficiency improvements achieved through
GPU optimization.

3.6.5 Experiment 05
With the adjusted model successfully producing the anticipated outcomes, we pro-
ceeded to incorporate a scrambling technique into our experiment. In this phase,
we implemented a method where the fused image was segmented into predeter-
mined sizes of blocks. These segments were then shuffled using a random permu-
tation approach. Crucially, the permutation sequence was secured as a secret key,
ensuring that only recipients in possession of this key could accurately reassemble
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and retrieve the secret images. This added layer of security emphasizes the neces-
sity for the receiver to have the specific permutation string, thereby enhancing the
steganographic integrity of our method.

3.7 Evaluation Plan
The proposed model will be evaluated in terms of the image quality of the gen-
erated images, the security of the carrier images and the hiding capacity of the
overall model.

3.7.1 Image Quality Evaluation
Image quality is crucial in evaluating steganography methods. The goal is to
preserve the original secret images in the recovered images. Evaluation is done
subjectively and objectively. The metrics used are Mean Squared Error (MSE),
RMSE (Root Mean Squared Error), peak signal-to-noise ratio (PSNR), and Struc-
tural Similarity Index (SSIM). These measures have been widely utilized in the
evaluation of steganography models, as evidenced by the literature ofQ. Li et al.
(2021), X. Liu et al. (2020), and Cao et al. (2020).

3.7.1.1 Mean Squared Error & Root Mean Squared Error

MSE is a measure of the average squared difference between two images, the
original and the reconstructed. On the other hand, RMSE is the square root of
the average of the squared differences between the original and the reconstructed
image. A lower value of MSE/RMSE indicates higher image fidelity, which means
that the reconstructed images are closer to the original images. Equations 3.11 and
3.12 present the mathematical formulas to calculate MSE and RMSE, respectively.

MSE =
1

HW
∗

H−1∑
i=0

W−1∑
j=0

[I(i, j)− I ′(i, j))]2 (3.11)

RMSE =

√√√√ 1

HW
∗

H−1∑
i=0

W−1∑
j=0

[I(i, j)− I ′(i, j))]2 (3.12)

Where I is the original secret image, I ′ is the recovered secret image, H and
W are the dimensions of the image and (i,j) represents pixel coordinates.
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3.7.1.2 Peak Signal-to-Noise Ratio

PSNR is a measure used to evaluate the ratio of signal to noise in an image. It
compares the maximum power of a signal to the power of noise that affects the
image’s accuracy. In image steganography, PSNR is used to measure the differ-
ence between the original secret image and the recovered secret image. A higher
PSNR value shows that the recovered secret image is more similar to the original
secret image. Conversely, lower PSNR values represent more significant distor-
tion or noise in the embedding process. Equation 3.13 provides the mathematical
formula used to calculate PSNR.

PSNR = 10 log10
2552HW∑H

i=1

∑W
j=1[I(i, j)− I ′(i, j))]2

(3.13)

3.7.1.3 Structural Similarity Index

SSIM is a metric that measures the structural similarity between original and re-
constructed secret images. Luminance, contrast, and structure are taken into ac-
count. Higher SSIM values indicate better image fidelity, meaning that the re-
constructed secret image is more similar to the original in terms of its structure
and appearance. The mathematical equation to calculate SSIM is presented in
Equation 3.14.

SSIM(x, y) =
(2µxµy + c1)(2αxy + c2)

(µ2
x + µ2

y + c1)(α2
x + α2

y + c2)
(3.14)

The variables µx and µy represent image patches x and y, respectively, while
αx and αy are the standard deviations of the image patches x and y, respectively.
αxy is the covariance of the image patches x and y, and c1 and c2 are constants
used for stability in the computation of the SSIM index. It is essential to use a
combination of objective and subjective measures to fully evaluate the quality of
image reproduction.

3.7.2 Steganalysis Evaluation
Initially, our research design incorporated the use of GNCNN (Boehm 2014) and
Xu-Net (J. Liu et al. 2020) for steganalysis, aiming to assess security performance
as described by (Dharmawimala 2023). However, subsequent detailed analysis of
both GNCNN and Xu-Net steganalysis mechanisms revealed their incompatibility
with our proposed methodology. This issue comes from the basic principle of our
method, which is based on coverless image steganography. Because of this, the
tools we mentioned before, GNCNN and Xu-Net, don’t fit our needs.
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3.7.3 Hiding Capacity
The term ”Hiding Capacity” in the context of image steganography models de-
notes the maximum amount of secret information that can be embedded into a
cover image without noticeably lowering its quality or drawing the attention of
potential intruders. This capacity is typically quantified in bits or bytes and stands
as a critical benchmark for gauging an image steganography model’s efficacy. Es-
sentially, a model with a substantial embedding capacity is adept at concealing
secret information within the cover image efficiently.

Although coverless image steganography models do not undergo direct em-
bedding, the hiding capacity of such models describes the amount of information
(number of bits) that the carrier(stego) image can represent Q. Li et al. (2021),X.
Liu et al. (2020),Cao et al. (2020). This measure is represented in terms of bits
per cover (bits ∗ cover−1). The obtained hiding capacity value will be compared
against other state-of-the-art steganography models.
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Chapter 4

Implementation of The Proposing
Model

During this phase, we will implement the model designed in the previous phase.
By the conclusion of this phase, we will obtain a fully implemented stegano-
graphic model.

4.1 Language and Implementation Tools
We chose Python 3 as the programming language for our project because of its
extensive collection of libraries designed for deep learning and computer vision
applications. Our study benefited from the use of popular open-source machine
learning libraries, including PyTorch for deep learning frameworks, OpenCV for
computer vision tasks, and NumPy for numerical calculations. Torch was also
added to provide more deep learning capabilities. To assist the model’s training
and testing operations, we used WinSCP, a program that allowed us to create a
secure SSH connection to the ’AntPC’ server. This set of tools and libraries laid
the foundation for the efficient development and implementation of our proposed
model.

4.2 Experimental Setup
We used Python version 3.6.9 for all of our experiments, including model creation
and assessment. These actions were performed on the ’AntPC’ server, which was
powered by four NVIDIA GeForce RTX 208 GPUs. This server runs Ubuntu
GNU 18.04.1 LTS, is powered by an Intel E5-2620 v4 CPU clocked at 2.10GHz,
and has 125.65GB of RAM. This system setup provides a reliable foundation for
our study, allowing for fast processing and analysis.
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4.3 Data Preprocessing
In this study, the secret images utilized were sourced from the ImageNet dataset,
as outlined by (Russakovsky et al. 2015). This dataset was bifurcated into two
subsets for the purposes of training and testing. Specifically, the training sub-
set was comprised of 5000 images, and the testing subset included 1000 images.
The carrier images, essential for the steganographic process, were procured from
the Delaunay dataset, as documented by (Gontier, Jordan, and Petrovici 2022).
Similar to the secret images, these were also segmented into training and testing
groups, with the former containing 2500 images and the latter 1000 images.

To standardize the input, all images were resized to a uniform dimension of
256 x 256 pixels. The process involved vertically concatenating two secret images
to create a singular input for the model under consideration. This methodological
approach facilitated a controlled environment for training and testing the proposed
steganographic model, ensuring that the input data was consistently formatted
across all experiments.

4.4 Model Development and Training
This section thoroughly investigates the many aspects of our proposed model,
delving into both the structural components and the experimental journey that
created its final form.

4.4.1 Implementation Details of Model Components
The proposed architecture consists of two main parts: an encoder network and a
decoder network. The encoder network is composed of generator G1, an image
scrambler, and generator G2, and it is paired with discriminator D1. The decoder
network is composed of generator G3, an image scrambler, and generator G4, and
it is paired with discriminators D2 and D3. The details of each component are
explained in this section. The model has a total of 60,059,793 parameters.

4.4.1.1 Generator - G1

As shown in section 3.4.1.1, the generator G1 is a complex component of our pro-
posed model that combines two RGB images to create a single image that visually
depicts a combination of the two inputs. G1 is implemented using five unique sub-
components: model1, model2, model fusion, model pre, and model post. Below
is an overview of the role and architecture of each sub-component:
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• model1 & model2
These first sub-components are responsible for processing the incoming im-
ages individually. model1 is dedicated to secret image 1, while model2 is
responsible for secret image 2. Both models have a similar architecture,
with three convolutional layers extracting features from input images and
four ResNet blocks meant to enhance feature analysis without increasing
network complexity too much. The outputs of model1 and model2 are then
combined to generate a concatenated feature set including information from
both hidden images.

• model fusion
This sub-component serves as a link between the initial feature extraction
and the next processing phases. It consists of a single convolutional layer
that combines the concatenated outputs from model1 and model2, guaran-
teeing that the fusion of features is properly prepared for the next step of
transformation.

• model pre
Following model fusion, the merged characteristics enter the model pre net-
work. This network has three ResNet blocks that refine the features and
project them into a latent space. This latent space represents a compressed
and encoded version of the input data, which is ready for the final transfor-
mation.

• model post
The model post network handles the final phase in the generator G1 cycle.
It is in charge of transforming the encoded characteristics from the latent
space into a visible representation. The architecture of the model post com-
prises two ResNet blocks, which aid in the preservation of image features
during reconstruction. This is followed by two deconvolutional layers that
upscale the images back to their original dimensions, as well as a final con-
volutional layer that modifies the features to generate the intermediate fused
image.

Each of these sub-components is crucial to the complicated process of im-
age fusion, exhibiting the delicate balance of feature extraction, modification, and
reconstruction necessary to produce the desired result.

4.4.1.2 Image Scrambling Transformation - A, A’

The encoder applies a transformation A to the intermediate image to obscure the
global structure of the secret image, before passing it through the generator G2.
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In the decoder, the scrambled image is restored by applying the inverse transfor-
mation A’ to produce the recovered intermediate image.

4.4.1.3 Generator - G2

In section 3.4.1.3, the generator G2 is explained as a critical component of the
proposed steganography paradigm, meant to convert an intermediate image into an
abstract representation that acts as the stego image. This abstract image is critical
for concealing the encoded information inside the visual content, making it an
essential component of the steganographic method. The architecture of generator
G2 is precisely built to make this transition possible, ensuring that the resultant
stego-image strikes a balance between abstraction and the underlying encoded
information. Here is a breakdown of the generator G2’s architecture.

• Three convolutional layers
These early layers process the incoming intermediate image, extracting and
refining features required for the later transformation process. Convolu-
tional layers are excellent in detecting patterns and features in images, mak-
ing them a common feature in image processing models.

• Nine ResNet blocks
Following the convolutional layers, the model employs nine Residual Net-
work (ResNet) components. ResNet blocks are intended to enable deeper
networks by enabling gradients to flow through the architecture more effi-
ciently, hence avoiding the vanishing gradient problem. These blocks aid
in keeping the fundamental aspects of the intermediate image while making
the required changes to reach the abstract representation.

• Two deconvolutional layers
Deconvolutional layers, also known as transposed convolutional layers, are
used to upscale feature maps, hence expanding the spatial dimensions of the
processed image. This is critical for restoring the image to its target resolu-
tion following the extensive feature extraction and alteration procedure.

• One convolutional layer
The final layer in generator G2 is another convolutional layer. This layer
serves as a refining stage, fine-tuning the abstract image’s features and en-
suring that the resulting stego-image has the proper texture and look. It
changes the characteristics to create a final image that resembles an abstract
artwork while concealing the encoded information inside its patterns.

The carefully designed architecture of generator G2 is critical in attaining the
intended result of creating a stego-image that not only effectively conceals the
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secret information but also looks to the inexperienced eye as a harmless abstract
image. The steganographic model’s success depends on striking a balance be-
tween aesthetics and functionality.

4.4.1.4 Generator - G3

Generator G3 is crucial to the steganography model because it reverses the pro-
cess applied by Generator G2, taking the stego-image, which resembles abstract
art, and reconstructing the intermediate image from it. This feature is critical
for retrieving encoded information from the stego-image, making G3 a necessary
component for the decoding section of the steganography process. G3’s architec-
ture is identical to that of G2, allowing for the same efficiency and precision in
reverse operations.

4.4.1.5 Generator - G4

Section 3.4.1.5 describes how to extract the two secret images from the recovered
intermediate image using a generator made up of four critical sub-components:
model, model pre, model post1, and model post2. This structure is meant to han-
dle the intermediate image in a sequential manner, first encoding it into a latent
space representation and then decoding it back into the two original secret im-
ages. Below is a breakdown of each sub-component’s job and architecture inside
the generator:

• model
This initial stage analyzes the recovered intermediate image using three
convolutional layers to extract fundamental features. Following that, four
ResNet blocks are used to analyze these features further, improving the abil-
ity of the model to detect complicated patterns and relationships inside the
image. The result is a latent space representation, which is a compressed
and encoded version of the image’s key information.

• model pre
Using the latent space representation from the previous step, model pre em-
ploys three ResNet blocks to begin the process of decoding or translating the
encoded information back into a visual format. This stage seeks to recreate
a fused representation of the two original secret images in order to separate
them in the next phases.

• model post1 & model post2
These sub-components are responsible for the recovery process’s final phase,
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which is to break the fused representation into two independent hidden im-
ages. Models post1 and post2 have a similar architecture, with two ResNet
blocks to refine the features further, two deconvolutional layers to upscale
the image dimensions and a final convolutional layer to adjust the image fea-
tures to ensure accurate reconstruction of the original secret images. Model
post1 is devoted to creating secret picture 1, whereas model post2 is focused
on reconstructing secret image 2.

The sequential flow of these sub-components assures a thorough process of
feature extraction, encoding, and decoding, which results in the correct recovery
of the original secret images. This structure not only emphasizes the generator’s
complexity and efficiency but also the advanced methodology used to accomplish
exact image recovery in the steganography model.

4.4.1.6 Discriminator - D1, D2, D3

The discriminator components D1, D2, and D3 perform separate functions within
the steganography model, each focusing on a different part of the image gener-
ation and verification process, as described in section 3.4.1.4. The usage of the
PatchGAN network across these discriminators is a deliberate decision intended to
improve the model’s capacity to successfully distinguish between different types
of images. Let’s take a deeper look at the responsibilities of these discriminators
and the architecture of the PatchGAN network they use:

• Discriminator D1
Focuses on distinguishing between genuine abstract art and abstract images
created by the steganography model. Its fundamental purpose is to guaran-
tee that the created stego images closely resemble actual abstract art, hence
increasing the concealment of the steganographic process.

• Discriminator D2 & D3
These are responsible for discriminating between the generated images and
the original secret images. Their goal is to confirm the integrity of the secret
images reconstructed by the model, guaranteeing that the decoding process
successfully recovers the original material without significant loss or distor-
tion.

• PatchGAN Architecture
The PatchGAN network was chosen because it is more successful at evalu-
ating images at the patch level than at assessing the complete image. This
method enables more detailed and subtle discrimination by focusing on the
texture and style of local imagine patches. The architecture comprises of
five convolutional layers, which are briefly detailed below:
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– First Layer
Extracts basic features from the input image, such as edges and sim-
ple textures. This layer usually runs at a higher resolution to ensure
accurate feature extraction.

– Middle Layers
These layers gradually enhance the network’s depth, extracting in-
creasingly complicated and abstract features from images. With each
layer, the network explores deeper into the image’s content, detecting
patterns and traits that distinguish genuine from generated images.

– Last Layer
Combines the retrieved features into a collection of outputs that the
network utilizes to make discriminating decisions. During this stage,
the network evaluates the accumulated features to determine the legit-
imacy of the image patches.

The implementation of PatchGAN in D1, D2, and D3 emphasizes the model’s
emphasis on deep and exact image analysis, guaranteeing that the generated
images are not only visually appealing but also survive detailed study. This
level of selectivity is critical for the steganography model’s efficacy and se-
curity it has a direct impact on the model’s capacity to generate and retrieve
secret images that are indistinguishable from their authentic counterparts.

4.4.2 Implementation Details of Conducted Experiments

4.4.2.1 Experiment 01

As previously presented in section 3.6.1, experiment 01 implements the following
components as depicted in Figure 3.10,

• Encoder Generator - Generator G1 and G2

• Decoder Generator - Generator G3 and G4

• Discriminators - D1, D2, D3

The required time of training for this experiment was approximately 1 day
19 hours and 12 minutes, and the implementation details and parameter values
utilized for this experiment are depicted in Table 4.1.
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Parameter value

Size of the image 256*256
Number of images 9162
Number of channels 3
Learning rate 0.0002
Number of epochs 20
λ1 10
λ2 1
λ3 10
Image scrambler False

Table 4.1: Implementation details of the Experiment 01 training process

Figure 4.1: Reference image before and after the Improved Arnold transforma-
tion.

4.4.2.2 Experiment 02

An image scrambling component has been developed using the Improved Arnold
transformation. However, in experiment 02, the stego image generation process
failed to generate an abstract image. Furthermore, the recreated images did not
contain any information from the original secret images. Figure 4.1 depicts a
reference image before and after the Improved Arnold transformation.

The required time of training for this experiment was approximately 14 days
and 15 hours, and the implementation details and parameter values utilized for
this experiment are depicted in Table 4.2.

41



Parameter value

Size of the image 256*256
Number of images 5000
Number of channels 3
Learning rate 0.0002
Number of epochs 100
λ1 10
λ2 1
λ3 10
Image scrambler True

Table 4.2: Implementation details of the Experiment 02 training process

Figure 4.2: Reference image before and after the Arnold transformation.

4.4.2.3 Experiment 03

In Experiment 03, we implemented the Arnold transformation, as introduced by
M. Li, Liang, and He (2013), as our chosen method for data scrambling within
the scrambling component of our study. The implementation details for this ex-
periment were directly aligned with those outlined in Experiment 02, particularly
concerning the training process. Figure 4.2 depicts a reference image before and
after the Arnold transformation.

4.4.2.4 Experiment 04

As detailed in Section 3.6.4, we implemented structural modifications to the com-
plete model to leverage GPU capabilities for both processing and training phases.
The implementation details and parameter values utilized for this experiment are
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Parameter value

Size of the image 256*256
Number of images 5000
Number of channels 3
Learning rate 0.0002
Number of epochs 100
λ1 10
λ2 1
λ3 10
Image scrambler False

Table 4.3: Implementation details of the Experiment 04 training process

depicted in Table 4.3. This approach was taken to ensure that any observed dif-
ferences in performance or outcomes could be attributed directly to the utilization
of GPU processing capabilities, rather than variations in experimental setup or
parameter configurations.

4.4.2.5 Experiment 05

As detailed in Section 3.6.5 we have divided the fused image into 4 equal size
blocks and shuffled them using the random permutation. Figure 4.3 depicts a
reference image before and after the shuffling process. Then the same permutation
sequence is provided as an input to the receiver end parallel to the steg image as
a key to recover the secret images. The implementation details and parameter
values utilized for this experiment are depicted in Table 4.4.

Parameter value

Size of the image 256*256
Number of images 5000
Number of channels 3
Learning rate 0.0002
Number of epochs 100
λ1 10
λ2 1
λ3 10
Block shuffler True

Table 4.4: Implementation details of the Experiment 05 training process
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Figure 4.3: Reference image before and after the shuffling with 4 blocks
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Chapter 5

Result and Evaluation

5.1 Result

5.1.1 Experiment 01
The visual results of this experiment are presented in Figure 5.1. By analyzing
Figure 5.1, we can conclude that the desired outcome has been partially achieved.
The carrier images represent a fused representation of the two secret images (As
the image scrambling component has not been implemented), and this produced
image resembles abstract art. Only one recreated image retains the original colour
information, revealing the need for an image scrambler and model parameter im-
provement.
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Figure 5.1: Visual results of experiment 01

5.1.2 Experiment 02
The visual results of this experiment are presented in Figure 5.2. Unfortunately,
the steganography process was unsuccessful in generating an abstract image, and
the recreated images did not contain any information from the original secret im-
ages. Following experiment 02, the use of the Improved Arnold Transformation
scrambler resulted in intense scrambling, leading to the failure of stego image
generation. Therefore, in future experiments, we must aim to improve the image
scrambling model and enhance the accuracy of image recovery.
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Figure 5.2: Visual results of experiment 02

5.1.3 Experiment 03
The outcomes of Experiment 03 are visually documented in Figure 5.3. Although
the scrambled image in Figure 4.1 appears less scrambled compared to that in
Figure 4.2, the experiment did not succeed in generating an abstract art image.
Moreover, the reconstructed image failed to encapsulate any information from the
original secret images. This observation leads to the conclusion that the Gener-
ators G1 and G2, as explained in Section 4.4.1.3, lack the capability to process
such heavily distorted inputs and produce new abstract art. Consequently, future
experiments will pivot towards employing milder forms of distortion that do not
completely alter the original fused image information, unlike the approaches taken
in experiments 02 and 03. This strategic shift aims to refine the generative model’s
ability to manipulate and reinterpret image data without losing its inherent value.
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Figure 5.3: Visual results of experiment 03

5.1.4 Experiment 04
As explained in Section 3.6.4, we replicated the experimental setup detailed in
Section 3.6.1, with the outcomes presented in Figure 5.4. Remarkably, complet-
ing the experiment required only 2 days, 10 hours, and 11 minutes to reach 500k
iterations, signifying a substantial enhancement in efficiency compared to the ini-
tial experiments. Specifically, Experiment 01 necessitated approximately 1 day,
19 hours, and 12 minutes to reach just 183k iterations, illustrating the significant
time reduction achieved in the latest trial.

Upon comparing the results with those from Experiment 01, as showcased in
Figure 5.1, a notable improvement is observed. The generated stego images in this
experiment were more effective at concealing the features of the secret images.
Although the concealment wasn’t absolute, the degree of obfuscation represents
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Figure 5.4: Visual results of experiment 04

a marked progression. Furthermore, a notable limitation in Experiment 01 was
that only one of the recovered secret images retained colour information, with
the other reverting to grayscale. This issue has been successfully addressed in
the current experiment, as evidenced by both recovered secret images displaying
colour information. This development not only enhances the visual quality of the
recovered images but also signifies a critical advancement in our experimental
methodology and outcome.
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Figure 5.5: Visual results of experiment 05

5.1.5 Experiment 05
The results of Experiment 05 are depicted in Figure 5.5. Unfortunately, this exper-
iment did not meet our success criteria; it failed to generate the intended abstract
image. Additionally, it was unable to successfully recover any of the input secret
images. This outcome underscores the need for further investigation and potential
adjustments to our experimental approach to achieve the desired results in future
iterations.
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5.2 Evaluation
Given that Experiment 03 stands out as the most successful among the experi-
ments conducted, it will be the focus of our in-depth evaluation. This evaluation
will involve a comprehensive analysis sections 5.2.1, 5.2.2.

5.2.1 Image Quality Evaluation
The evaluation of the proposed model was conducted using a test dataset com-
posed of 1000 images. The images generated by the model were evaluated to as-
sess the quality of image reproduction. To provide a comprehensive evaluation of
the reproduced images’ performance, key metrics such as the Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Peak Signal-to-Noise Ratio (PSNR),
and Structural Similarity Index Measure (SSIM) were calculated for each input
image. These individual assessments were then averaged to yield a performance
metric for the entire dataset, as detailed in Section 3.7.1. The findings from this
thorough evaluation process are compiled and presented in Table 5.1, offering
insights into the model’s efficacy in image reproduction.

Evaluation Averaged Value

RMSE 22.5
MSE 546.25
PSNR 21.39
SSIM 0.66

Table 5.1: Evaluation under RMSE, MSE, PSNR, SSIM.

The values obtained from this evaluation can be subjected to a comparison
against existing image steganography methods. Table 5.2 shows the comparison
of the RMSE, MSE, PSNR, and SSIM values between the multi image steganog-
raphy model and 5.3 compared with other image steganography models widely
utilized.

For the comparison in Table 5.2 we specifically isolated the RED channel in
both the original and reconstructed secret images. This decision was informed by
the methodology of Dharmawimala (2023), which exclusively utilized the RED
channel in their steganographic process. Despite the absence of a scrambling com-
ponent in our model, it presents a competitive challenge to the work of Dharmaw-
imala (ibid.), particularly in terms of SSIM. SSIM is a crucial statistic metric as
it provides a more perception-oriented evaluation of error, giving insight into the
visual similarity between the original and stego images beyond mere pixel-based
errors.
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Evaluation Dharmawimala (2023) Proposed model(RED channel)

RMSE 8.74 20.02
MSE 77.87 435.84
PSNR 29.39 22.45
SSIM 0.71 0.69

Table 5.2: Comparison of RMSE, MSE, PSNR, and SSIM values between other
multi image steganography models and the proposed model

Evaluation Baluja (2017) Q. Li et al. (2021) X. Liu et al. (2020) Proposed model

RMSE - - - 22.50
MSE - 76.1271 - 546.25
PSNR 27.51 29.23 36.23 21.39
SSIM 0.89 0.73 0.97 0.66

Table 5.3: Comparison of MSE, PSNR, and SSIM values between other image
steganography models and the proposed model

Our proposed model, although not outperforming existing models in all quan-
titative metrics, brings forward innovative approaches that contribute to the field’s
understanding of GAN-based multi-image steganography. The model’s SSIM, a
measure of perceptual quality, is competitive and demonstrates the model’s ca-
pacity to produce visually convincing stego images that are crucial for practical
steganographic applications.

5.2.2 Hiding Capacity
As described in Section 3.7.3, the hiding capacity of coverless image steganog-
raphy models refers to the number of bits a carrier image can represent in terms
of bits per cover (bits ∗ cover−1). Table 5.4 presents the comparison of hiding
capacity between steganography models and the proposed model.

Notably, the proposed model achieves a significant enhancement in both ab-
solute and relative capacity metrics.

In absolute terms, the model exhibits the capability to embed a substantial
256x256x8x2x3 bits per image. This absolute capacity indicates the total num-
ber of bits that can be hidden within a stego image and is a critical metric for
evaluating steganographic efficiency.

When evaluating the relative capacity, which is expressed as the number of
bits per pixel that can be hidden, the proposed model demonstrates a remarkable
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Method
Absolute capacity

(bit/image) Image size
Relative capacity

(bit/pixel)

Hu et al. (2018) 300 64x64 0.073
Z. Zhang et al. (2019) 18.3-135.4 64x64 0.004-0.033
Zhou, Q. Wu, et al. (2017) 18 - -
Cao et al. (2020) 896 -
Dharmawimala (2023) 256×256×8×2 256x256 16
X. Liu et al. (2020) 256×256×8×3 256x256 24
Proposed model 256×256×8×2x3 256x256 48

Table 5.4: Comparison of the hiding capacity

capacity of 48 bits per pixel. This is a marked improvement over other meth-
ods listed, including the advanced model by X. Liu et al. (2020), which shows a
relative capacity of 24 bits per pixel.

The proposed model’s capacity stands out, particularly in the context of its im-
age size compatibility. It maintains this high embedding rate without a reduction
in image size. This superior capacity suggests that the model could be highly ef-
fective for scenarios that demand the secure and efficient hiding of large quantities
of secret images within an image.
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Chapter 6

Conclusion

6.1 Conclusions about Research Questions
Given the main objective is to produce stego images embedding RGB colour se-
cret images ensuring both a high degree of accuracy and concealment from the hu-
man eye, this dissertation explores the research question: ”How can GAN-based
coverless image steganography methods be extended to implement a model capa-
ble of multi-image steganography for RGB colour images”

To achieve this objective, a comprehensive review of the existing literature, as
outlined in Chapter 2, was conducted. This review illuminated the foundational
concepts underpinning the Cam-GAN model introduced by X. Liu et al. (2020),
alongside contributions from Dharmawimala (2023), serving as critical reference
points for this research. Drawing upon these key studies, the development of a
novel model capable of executing multi-image steganography with RGB secret
images was developed. The complexities of this development process, includ-
ing the conceptualization and operational realization of the proposed model, are
elaborated upon in Chapters 3 and 4.

This approach not only bridges the gap identified in the existing literature re-
garding the application of GAN-based techniques to RGB colour image steganog-
raphy but also contributes a practical solution to the nuanced challenge of main-
taining perceptual invisibility while ensuring data fidelity in the embedded images.

6.2 Conclusions about Research Problem
The research problem following this study was primarily focused on generating
stego images with RGB colour secret images that maintain a satisfactory level of
accuracy and concealment to the human eye. To achieve this, GANs were utilized,
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and to provide additional security, a coverless image steganography approach was
adopted.

This approach marks a significant advancement over existing methodologies,
such as the multi-image steganography model proposed by Das (2021), which
relies on cover modification steganography and thus offers lower security. It also
challenges the Dharmawimala (2023) model, which excludes the usage of RGB
secret images without even the scrambling component.

Compared to traditional image steganography methods, the proposed model
not only achieves commendable results in maintaining concealment and accuracy
but also demonstrates an improved embedding capacity. Thus, this study con-
tributed to the domain of image steganography by exploring coverless multi-image
steganography using GANs.

Furthermore, this model sets a groundwork for future research, particularly in
exploring GANs within this context. It’s also worth mentioning that the proposed
model lays the groundwork for optimization and refinement, presenting a solid
baseline from which subsequent models can be developed to enhance these met-
rics. Therefore, while the journey to refine these quantitative results continues, the
proposed model stands as a testament to the potential and adaptability of GANs
in the evolving domain of steganography.

6.3 Limitations
The scope of the study had to be shrunken to adhere to the timelines of the un-
dertaken study and resource constraints. As a result, the proposed model was im-
plemented to take two RGB images as input. This constraint prevents the model
from being extended to accept more than two images or RGB images as input.

Furthermore, the dataset utilized for training was downsized, and the number
of epochs in training was limited. It is reasonable to anticipate that extended
training, with a larger dataset and a higher number of epochs, could have resulted
in an increment in the model’s accuracy in terms of image reproduction quality.

The time limitation of this study also limited our capacity to investigate the
inclusion of new generator networks for generators G2 and G3, which may have
better capabilities for image-to-image translation and recovery than the networks
currently in use.

Furthermore, the complexity of the proposed model meant that exhaustive hy-
perparameter tuning was beyond the scope of this study. Such tuning has the
potential to significantly refine model performance.

In light of these limitations, the current iteration of the model serves as a
promising proof of concept. The study paves the way for subsequent research
that could overcome these limitations, thus advancing the field of steganography
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towards more robust, versatile, and higher-performing solutions.

6.4 Implications for further research
The exploration of advanced image-to-image translation models, such as pix2pix
by Isola et al. (2016), offers a promising avenue for enhancing the capabilities of
current systems. These models, which enable the better translation of fused im-
ages to more realistic abstract art images or any type of stego image, represent a
significant leap forward from existing technologies. Integrating advanced image-
to-image translation models into the proposed system holds promise for refining
its performance. The main problem is the model’s ability to accurately repro-
duce the original, fused image from the generated stego image. This capability is
not typically found in current state-of-the-art image-to-image translation models,
which often focus on the translation aspect without the necessity of reconstructing
the original images.

To address this gap, future research could explore developing or enhancing
translation models with a dual focus: ensuring high-fidelity translations while also
maintaining the ability to reverse the process. This would involve not only the
accurate rendering of visual content in the stego image but also the preservation
of all necessary information to recover the original, fused images without loss.

In addition to model architecture improvements, there is significant potential
in optimizing the model’s hyperparameters. Rigorous hyperparameter tuning has
the potential to fine-tune the model’s learning process, likely resulting in a notable
increase in steganographic performance.

Incorporating transform domain approaches, as suggested by Dharmawimala
(2023), could facilitate the merging of multiple secret images, a process that may
prove more efficient than current spatial domain methods. This shift could lead
to improvements in the fusion of images and enhance the overall quality of the
merged output.

The utilization of sophisticated feature extraction models like VGG16, as in-
troduced by (Simonyan and Zisserman 2014), could also be instrumental in ex-
tracting intricate content details from secret images. By encoding these details
into the generated image, one could significantly improve the robustness and fi-
delity of image reproduction.
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Appendix A

Code Listings

Figure A.1: Train data prepossessing
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Figure A.2: Test data prepossessing
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Figure A.3: Encoder network part 01
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Figure A.4: Encoder network part 02
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Figure A.5: Decoder network part 01
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Figure A.6: Decoder network part 02
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Figure A.7: PatchGAN network
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Figure A.8: Improved Arnold Transformation used in experiment 3.6.2

Figure A.9: Arnold Transformation used in experiment 3.6.3
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Figure A.10: Shuffling Algorithm used in experiment 3.6.5

69


	Introduction
	Background to the Research
	Motivation
	Project Aims & Objectives
	Research Gap
	Problem Statement
	Research Question
	Significance Of The Project
	Research Methodology
	Project Scope
	Outline of the Dissertation


	Literature Review
	Steganography
	Image Steganography
	Steganographic Methods
	Hiding Images Within Images

	Steganalysis
	Generative Adversarial Networks (GAN)
	Utilization of GANs in Steganography


	Design of The Proposing Model
	Define Research Questions
	Literature Review
	Data Collection
	Architecture Design
	Component Design

	Problem Formulation
	Adversarial Loss
	Latent Consistency Loss
	Cycle Consistency Loss
	Intermediate Consistency Loss
	Cumulative Loss

	Experimental Approach
	Experiment 01
	Experiment 02
	Experiment 03
	Experiment 04
	Experiment 05

	Evaluation Plan
	Image Quality Evaluation
	Steganalysis Evaluation
	Hiding Capacity


	Implementation of The Proposing Model
	Language and Implementation Tools
	Experimental Setup
	Data Preprocessing
	Model Development and Training
	Implementation Details of Model Components
	Implementation Details of Conducted Experiments


	Result and Evaluation
	Result
	Experiment 01
	Experiment 02
	Experiment 03
	Experiment 04
	Experiment 05

	Evaluation
	Image Quality Evaluation
	Hiding Capacity


	Conclusion
	Conclusions about Research Questions
	Conclusions about Research Problem
	Limitations
	Implications for further research

	Code Listings



