

A Study on the Cognitive Complexity

Metric of a Software

A thesis submitted for the Degree of Doctor of

Philosophy

D. R. Wijendra

University of Colombo School of Computing

2023

i

Declaration

Name of the student: Dinuka Rukshani Wijendra

Registration number: PhD/PT/2021/020

Name of the Degree Programme: Doctor of Philosophy

Project/Thesis title: A Study on the Cognitive Complexity Metric of a Software

1. The project/thesis is my original work and has not been submitted previously for a

degree at this or any other University/Institute. To the best of my knowledge, it does

not contain any material published or written by another person, except as

acknowledged in the text.

2. I understand what plagiarism is, the various types of plagiarism, how to avoid it, what

my resources are, who can help me if I am unsure about a research or plagiarism issue,

as well as what the consequences are at University of Colombo School of Computing

(UCSC) for plagiarism.

3. I understand that ignorance is not an excuse for plagiarism and that I am responsible

for clarifying, asking questions and utilizing all available resources in order to educate

myself and prevent myself from plagiarizing.

4. I am also aware of the dangers of using online plagiarism checkers and sites that offer

essays for sale. I understand that if I use these resources, I am solely responsible for

the consequences of my actions.

5. I assure that any work I submit with my name on it will reflect my own ideas and effort.

I will properly cite all material that is not my own.

6. I understand that there is no acceptable excuse for committing plagiarism and that

doing so is a violation of the Student Code of Conduct.

Signature of the Student
Date

(DD/MM/YYYY)

04/10/2023

Certified by Supervisor(s)

This is to certify that this project/thesis is based on the work of the above-mentioned

student under my/our supervision. The thesis has been prepared according to the format

stipulated and is of an acceptable standard.

Supervisor 1 Supervisor 2 Supervisor 3

Name Prof. K.P. Hewagamage

Signature

Date

04/10/2023

ii

Plagiarism Policy Compliance Statement

I certify that,

(1) I have read and understood University of Colombo School of Computing Student

Plagiarism: Coursework Policy and Procedure

(2) I understand that failure to comply with Student Plagiarism: Coursework Policy and

Procedure can lead to academic actions against me

(3) This work is substantially my own, and to the extent that any part of this work is not my

own I have indicated that by acknowledging its sources

Name: Dinuka Rukshani Wijendra

Signature:

Date: 04/10/2023

iii

Abbreviations

IDE – Integrated Development Environment

BCS – Basic Control Structures

LOC – Lines of Codes

BPM – Business Process Modelling

UML- Unified Modeling Language

SDLC – Software Development Life Cycle

POS – Part Of Speech

ER – Entity Relationship

GloVe – Global Vectors for word representation

PNG – Portable Network Graphics

HTTP – Hypertext Transfer Protocol Secure

SPSS – Statistical Package for Social Sciences

iv

Abstract

The cognitive complexity of a software determines the effort required to understand its source

code logic. It can be used to indicate understandability and maintainability, which are

predominant quality attributes in software development process. Further, personal profile and

source code factors can be stated as major factors associated with cognitive complexity. The

inclusion of personal profile results cognitive complexity to be a subjective measurement.

However, traditional methods of expressing cognitive complexity are limited only to source code

factors to express it as an objective measurement. Moreover, a methodology of relating cognitive

complexity to indicate understandability and maintainability cannot be observed. As such, this

work has studied the mechanisms of applying cognitive complexity in software development and

maintenance processes effectively. Accordingly, the procedures of reducing cognitive complexity

to improve understandability and maintainability have been introduced. Expression of cognitive

complexity by giving more impact in personal profile is a significant achievement of this research

work. The usage of software requirements, its logical diagrams, defects tracing, code quality

optimization and refactoring have been introduced as cognitive complexity reduction

mechanisms. Those mechanisms have been designed using a computational aid. A meaningful

cognitive complexity metric has also been introduced to quantitatively indicate cognitive

complexity by considering both personal profile and source code factors. The personal factor

involvement of the metric has been introduced using a subjective cognitive weight. The

components of reducing cognitive complexity have been evaluated with the duration taken to

understand a source code. Accordingly, significant duration reduction has been obtained from

proposed components comparing to the current practices to process same scenarios. Therefore,

the possibility of proposed mechanisms to gain a less comprehension effort and to achieve a less

cognitive complexity can be verified. The proposed cognitive complexity metric has been

practically and empirically verified through standard software metric frameworks to prove its

stability in real applications. Hence, together with the design to attain a lesser cognitive

complexity and the metric to quantitatively indicate the subjective user comprehension effort can

be used as significant appliances in software engineering.

Keywords: cognitive complexity, cognitive complexity metric, cognitive load, cognitive weight,

maintainability, subjectivity, understandability

v

Table of Contents

1.0 INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Significance of the Study .. 4

1.3 Research Gap ... 5

1.4 Novelty of the Research .. 6

1.5 Research Problem .. 7

1.6 Research Questions ... 8

1.7 Research Objectives .. 9

1.8 Resource Requirements ... 10

1.9 Structure of the Thesis ... 10

1.10 Summary ... 10

2.0 LITERATURE REVIEW .. 12

2.1 Introduction ... 12

2.2 Earlier Developments to Measure the Cognitive Complexity ... 13

2.3 Challenges in Cognitive Complexity Quantifications ... 37

2.4 Cognitive Complexity Expression with Software Attributes .. 38

2.5 Applicability of Cognitive Complexity in Other Domains ... 41

2.6 Standardization of Cognitive Complexity Metrics .. 44

2.7 Summary ... 45

3.0 METHODOLOGY .. 47

3.1 Introduction to Methodology ... 47

3.2 Analysis of the Factors and Sub Factors Effecting for Cognitive Complexity 47

3.3 Procedures of Reducing the Cognitive Complexity of Software .. 55

3.4 Methodology of the Design for Reducing the Cognitive Complexity of a Software 59

3.4.1 Assisting for Necessary Cognitive Load: Requirements Analysis Component 60

3.4.2 Assisting for Necessary Cognitive Load: Logical Diagram Generating Component 64

3.4.3 Reducing Unnecessary Cognitive Load: Defects Tracing Component 77

3.4.4 Reducing Unnecessary Cognitive Load: Code Quality Optimization Component 79

3.4.5 Reducing Unnecessary Cognitive Load: Refactoring Component 83

3.5 Introducing a Meaningful Cognitive Complexity Metric .. 86

3.5.1 Cognitive Weightage Assignment for Preliminary BCS through a Valid Framework 87

3.5.2 A New Cognitive Weightage Assignment Emphasized on Personal Profile 88

vi

3.5.3 A New Cognitive Complexity Metric Based on Personal Profile and Source Code Aspects

 96

3.5.4 Complexity Calculation through Standard Complexity Metrics 100

3.6 Summary ... 105

4.0 RESULTS AND DISCUSSION ... 109

4.1 Introduction ... 109

4.2 Evaluation of Requirements Analysis Component.. 110

4.3 Evaluation of Visualization Component ... 114

4.4 Evaluation of Defects Tracing Component ... 119

4.5 Evaluation of Code Quality Optimization and Refactoring Components 122

4.6 Evaluation of Cognitive Weightage Assignment for BCS .. 126

4.7 Evaluation of Cognitive Weightage Assignment Emphasized on Personal Profile (Cw) 140

4.8 Evaluation of the Proposed Cognitive Complexity Metric (CgC) .. 148

4.8.1 Empirical Validation of the Proposed Cognitive Complexity Metric (CgC) 149

4.8.2 Theoretical Validation of the Proposed Cognitive Complexity Metric (CgC) 158

4.9 Evaluation of Proposed Cognitive Complexity Metric with Software Complexity Metrics 165

4.10 Summary ... 168

5.0 CONCLUSIONS ... 172

5.1 Introduction ... 172

5.2 Achievement of Objective 1: Cognitive Complexity Factors Identification 175

5.3 Achievement of Objective 2: Identify the Procedures of Reducing Cognitive Complexity 177

5.4 Achievement of Objective 3: Design a Methodology of Demonstrating Cognitive Complexity

Reduction Procedures .. 178

5.5 Achievement of Objective 4: Introduce a Meaningful Cognitive Complexity Metric 182

5.6 Achievement of Objective 5: Evaluate the Methodology used in the Design and the Metric ... 184

5.7 Scope of the Study ... 188

5.8 Contribution of the Study .. 189

References ……………………………………………………………………………………………….. I

Appendices ……………………………………………………………………………………………… X

vii

List of Tables

Table 1. Cognitive Weights Defined for CFS Calculation [25] .. 14

Table 2. Cognitive Weights Defined for CCC Calculation [19] ... 18

Table 3. Cognitive Weights Defined under [30] ... 21

Table 4. Types of Coupling Introduced under [34] ... 26

Table 5. Proposed Cognitive Weights for Coupling Category [34] .. 27

Table 6. Cognitive Weights Defined under [22] ... 28

Table 7. Cognitive Weights Defined under [35] ... 31

Table 8. Cognitive Weights Defined under [36] ... 32

Table 9. Cosine Similarity Values with Relationship Types .. 66

Table 10. Proposed Symbols for Relationship Types ... 67

Table 11. Relationship Types and ER Multiplicity .. 69

Table 12. Proposed Notations for Relationship Types .. 69

Table 13. Coding Defects Handled by Defects Tracing Component .. 78

Table 14. Code Smells Detected by Code Quality Optimization Component .. 82

Table 15. Refactoring Techniques Supported by Refactoring Component ... 85

Table 16. Existing Software Complexity Metrics Handled by Complexity Computation Component 102

Table 17. Output of Paired Samples T Test conducted for Requirements Analyzer 112

Table 18. Output of Paired Samples T Test conducted for Visualization Component 116

Table 19. Output of Paired Samples T Test conducted for Visualization Component with EasyUML 117

Table 20. Output of Paired Samples T Test conducted for Defects Tracing Component 121

Table 21. Output of Paired Samples T Test conducted for Code Quality Optimizer and Refactoring

Components ... 124

Table 22. Statistical Values Obtained from BCS Questionnaire ... 127

Table 23. Proposed Cognitive Weights for BCS ... 128

Table 24. Comparison of Proposed Cognitive Weights with Previous Cognitive Weights 129

Table 25. Output of Paired Samples T Test conducted for if-else and switch-case statements based on

Time .. 131

Table 26. Output of Paired Samples T Test conducted for if-else and switch-case statements based on

Marks ... 131

Table 27. Output of Paired Samples T Test conducted for for and while loops based on Time 134

Table 28. Output of Paired Samples T Test conducted for for and while loops based on Marks 134

Table 29. Output of Paired Samples T Test conducted for nested for and nested while loops based on

Time .. 137

Table 30. Output of Paired Samples T Test conducted for nested for and nested while loops based on

Marks ... 137

Table 31. Cognitive Weights generated for Sample GitLab Projects ... 145

Table 32. Frequency Distribution Table for sila_java Source Code ... 145

Table 33. Frequency Distribution Table for lox-java Source Code .. 146

Table 34. DC and BCSC Calculation for sample java source code - 1 ... 152

Table 35. DC and BCSC Calculation for sample java source code - 2 ... 154

Table 36. DC and BCSC Calculation for sample java source code - 3 ... 156

Table 37. Statistics for Complexities Obtained for sila_java source code .. 165

Table 38. Complexities Obtained for Sample GitLab Projects ... 167

viii

List of Figures

Figure 1. Necessity of Cognitive Complexity inside Software Development and Maintenance Processes .. 3

Figure 2. Categorization of Cognitive Complexity in Literature .. 12

Figure 3. Example of SSCC Calculation [12] ... 35

Figure 4. Factors Effecting with Cognitive Complexity ... 49

Figure 5. Procedures to Achieve a Less Cognitive Complexity by Handling the Cognitive Load of a User

 ... 56

Figure 6. Overview of Proposed System to Reduce Cognitive Complexity ... 59

Figure 7. Overview of Requirements Analyzer Component ... 61

Figure 8. Proposed Project Proposal Document .. 61

Figure 9. Overview of Visualization Component without using the Source Code 65

Figure 10. Overview of Visualization Component using the Source Code... 73

Figure 11. Overview of Defects Tracing Component ... 77

Figure 12. Overview of Code Quality Optimization Component ... 81

Figure 13. Overview of Refactoring Component .. 84

Figure 14. Overview of Cognitive Weightage Assignment Component ... 89

Figure 15. Factors Considered for Cognitive Weight (Cw) .. 93

Figure 16. Overview of Cognitive Complexly Metric (CgC) ... 96

Figure 17. Overview of Complexity Calculation using CgC Metric and Existing Software Complexity

Metrics ... 101

Figure 18. Overview of Complexity Calculation using Existing Software Complexity Metrics 101

Figure 19. Average Duration with Requirements Analyzer .. 111

Figure 20. Average Duration with Visualization Component ... 115

Figure 21. Average Duration with Defects Tracing Component .. 120

Figure 22. Average Duration with Code Quality Optimizer and Refactoring Component 123

Figure 23. Heatmap Generated for the Parameters Considered for Proposed Cognitive Weight 140

Figure 24. Confusion Matrix Generated for Linear Regression Algorithm .. 141

Figure 25. Confusion Matrix and Accuracy Generated for Logistic Regression Algorithm 141

Figure 26. Overfitting Issue Caused by Logistic Regression Algorithm .. 142

Figure 27. Underfitting Caused by Linear Regression Algorithm .. 142

Figure 28. Confusion Matrix and Accuracy Generated for Decision Tree Algorithm 143

Figure 29. Confusion Matrix and Accuracy Generated for Gaussian Naïve Bayes Algorithm 143

Figure 30. Frequency Distribution bar Graph for sila_java Source Code ... 146

Figure 31. Frequency Distribution bar Graph for lox-java Source Code .. 147

file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388830
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388831
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388833
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388834
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388834
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388835
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388836
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388837
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388838
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388839
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388841
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388842
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388843
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388845
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388846
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388846
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388847
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388849
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388850
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388851
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388852
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388853
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388854
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388856
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388857
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388858
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388859
file:///C:/Dinuka/Thesis/final%20thesis/review%20comments/Merged%20%20latest%20with%20page%20numbers%20-%20with%20bullet%20points%20-%20merged%20ref.docx%23_Toc142388860

ix

List of Algorithms

Algorithm 1. classIdentification.py to Generate Class Names .. 63

Algorithm 2. generateClassDiagram() to Generate Class Diagram .. 68

Algorithm 3. generateERDiagram() to Generate ER Diagram ... 70

Algorithm 4. generateObjectDiagram() to Generate Object Diagram .. 71

Algorithm 5. SequenceAspect.aj to Generate Sequence Diagram .. 74

Algorithm 6. UMLGenerator.java to generate the class diagram ... 75

x

List of Publications by the Candidate

D. R. Wijendra, K. P. Hewagamage, “Cognitive Complexity Applied to Software Development:

An automated Procedure to Reduce the Comprehension Effort”, Journal of ICT Research and

Applications, vol. 16, No. 3, 2022 DOI: https://doi.org/10.5614/itbj.ict.res.appl.2022.16.3.6

D. R. Wijendra, K. P. Hewagamage, “Cognitive Complexity Beyond Generalization: A

Subjective Rating for the Human Comprehension”, Fourth International Conference on Advances

in Electrical and Computer Technologies 2022 (ICAECT 2022)

DOI: https://doi.org/10.1051/itmconf/20225001003

D. R. Wijendra, K. P. Hewagamage, “Cognitive Complexity Reduction through Control Flow

Graph Generation”, International Conference for Convergence in Technology (I2CT 2022)

DOI: 10.1109/I2CT54291.2022.9824923

D. R. Wijendra, K. P. Hewagamage, “Application of the Refactoring to the Understandability

and the Cognitive Complexity of a Software”, International Conference for Convergence in

Technology (I2CT 2022) DOI: 10.1109/I2CT54291.2022.9824082

D. R. Wijendra, K. P. Hewagamage , “Software Complexity Reduction through the Process

Automation in Software Development Life Cycle”, Fourth IEEE International Conference on

Electrical, Computer and Communication Technologies (ICECCT 2021)

DOI: 10.1109/ICECCT52121.2021.9616781

D. R. Wijendra, K. P. Hewagamage, “A Standard Methodology to Assign Cognitive Weights to

Compute the Cognitive Complexity of a Software”, International Journal on Recent Trends in

Computer Science and Electronics (RTCSE), 2018 ISBN: 978-81-938900-7-3

D. R. Wijendra, K. P. Hewagamage, “Cognitive Weightage Assignment with Ubiquitous

Computing to Compute the Cognitive Complexity”, 11th IEEE International Conference on Ubi-

Media Computing, 2018

D. R. Wijendra, K. P. Hewagamage, “Automated Tool for the Calculation of Cognitive

Complexity of Software”, 2nd International Conference on Science in Information Technology

(ICSITech), 2016 DOI: 10.1109/ICSITech.2016.7852627

https://doi.org/10.5614/itbj.ict.res.appl.2022.16.3.6
https://doi.org/10.1109/I2CT54291.2022.9824923
https://doi.org/10.1109/I2CT54291.2022.9824082
https://doi.org/10.1109/ICECCT52121.2021.9616781
https://doi.org/10.1109/ICSITech.2016.7852627

1

1.0 INTRODUCTION

1.1 Introduction

The cognitive complexity of a software defines the amount of effort required to understand the

underlying logic behind its source code [1], [2]. A source code can be considered as a set of

instructions which assists to process a certain number of inputs into expected output [3]. Hence,

understanding its logic can be defined as the ability to interpret the process followed to convert

these inputs to output through set of instructions. Therefore, the concept of cognitive complexity

can be applied to the extent that a particular party can understand a source code, so that it can be

used as an indicator of source code understandability [4] - [7]. To explain it furthermore, high

cognitive complexity implies a high effort utilized on understanding a source code logic, which

tends to have less understandability. Similarly, a less cognitive complexity indicates a high

understandability due to the less amount of effort applied on understanding the source code logic.

Understandability of a source code is an important quality factor inside the software development

process because a source code is developed by one person, and it is going to understand and

modify by another person in majority of scenarios. Therefore, the ability of accommodating

modifications or new changes depends on the ability of understanding a given source code, which

can be referred to software maintenance. Software maintenance can be described as the process

of applying the modifications to adapt to a another new functionality, correct faults or improve

performance or other software attribute [8]. Moreover, a software without maintenance is

impractical and uneconomical [9]. Hence, considering the impact of understandability to software

maintenance cannot be ignored. Since the emphasis of cognitive complexity is to express the

understandability, it can be stated that the cognitive complexity plays a determinant role of

software maintenance process as well [10].

The ultimate goal of any software implementation is to have a simple software with a less

complexity [11]. A simple software is easy to use and understand, so that the effort utilized to

understand its source code should also be less. Hence, a software should be implemented to

achieve a lesser cognitive complexity, which in turns to achieve a higher understandability

through its source code [12]. The understandability level of each person for a given source code

2

varies so that their effort applied for its comprehension is different. It is because of the

differences associated with personal and source code factors along with logical comprehension

process [4]. Hence, the cognitive complexity can be stated as varying from one person to another,

which tends to be a subjective measurement [2]. Therefore, quantifying it to represent with a

numerical value is a challenging task. Further, it can be believed that the comprehension effort

utilized for an individual for a source code becomes lower along with the duration as

understandability of the same source code develops gradually. However, there can be certain

instances the same source code can be expanded due to the addition of new requirements.

Consequently, the understandability of the same source code can become less along with the

duration due to the high effort utilized for the comprehension. Therefore, it can be stated that the

cognitive complexity of a source code changes along with the duration, which can be defined as a

dynamic indicator to impress understandability.

The relationship among cognitive complexity and software complexity should be analyzed as

both are used as the measurements to define the complexity of a software in different

perspectives. As it has already mentioned, the cognitive complexity refers to the comprehension

effort associate with understanding a particular source code [13]. The software complexity refers

to the degree of a system or a component has a design or an implementation which is difficult to

understand and verify [14]. By analyzing both definitions, it can be stated that they attempt to

express the understandability of a software. Currently, several standardized software complexity

metrics are used to measure the complexity of software. Each of the complexity metric has been

introduced by considering varied software attributes, and it is the rationale behind having a

variety of complexity metrics without limiting it to a single complexity metric. Among those,

McCabe’s cyclomatic complexity is being used widely to derive the software complexity [15]. It

considers about the number of linear independent paths of a source code, which can be obtained

from the control flow graph generated for its source code. The concept of Basic Control

Structures (BCS) controls the number of linear independent paths has been considered through

this metric. Hence, it is stated to have high complexity from a high number of independent paths

and low complexity from a less number of independent paths in the execution flow of a source

code. Then, the aspect of relating the cyclomatic complexity into the comprehension level should

be explored. It can be observed that the relationship between the number of liner independent

paths and the program comprehension is proportional. Thereby, a source code with high

cyclomatic complexity can derive high cognitive complexity, while a source code with less

3

cyclomatic complexity can result with less cognitive complexity. However, there can be certain

practical situations that a source code with high number of execution paths is easy to

comprehend, while a source code with a less number of execution paths is difficult to understand.

Therefore, deriving a proper relationship of cyclomatic complexity with cognitive complexity is

difficult. As another exemplification, Lines Of Code (LOC) metric is also used to evaluate the

software complexity [16]. It is believed that a higher LOC tends to reduce the understandability

due to the lengthy structure, while a lesser LOC can achieve a higher understandability.

Accordingly, a higher LOC source code can result with high cognitive complexity, while a lesser

LOC source code outputs a lesser cognitive complexity. However, as it is discussed in cyclomatic

complexity, there can be certain situations that a source code with high LOC can have high

understandability and a source code with less LOC can have less understandability. Hence,

deriving a direct relationship among LOC and cognitive complexity has also become difficult.

The reason behind these situations is the objective aspects that the current software complexity

metrics are implemented of. Even though software complexity is defined to assess the difficulty

level associated with user comprehension, these quantitative and objective metrics have failed to

address the actual user comprehension level. Therefore, the term of cognitive complexity should

be modelled to evaluate the actual user understandability of a source code, which can be used as a

vital indicator inside the software development and maintenance processes as concluded in

Figure 1.

Figure 1. Necessity of Cognitive Complexity inside Software Development and Maintenance Processes

4

Based on Figure 1, the necessity of applying the concept of cognitive complexity in the field of

software engineering can be ensured with respective to its’ subjectivity and the possibility of

deviating along with the duration.

1.2 Significance of the Study

The cognitive complexity is a direct indicator of expressing the code understandability, while

code understandability is a significant and essential factor in code maintenance. Therefore,

cognitive complexity can be used to express the maintainability as well. Understandability and

maintainability are very important quality attributes which cannot be ignored inside software

development process, so that addressing these attributes is a mandatory process to ensure its

quality and complexity. Therefore, the significance of applying the cognitive complexity to

indicate understandability and maintainability of a source code has been analyzed through this

study.

Handling and maintaining a software through its source code is a teamwork inside the software

development. Each of its task is performed by a different set of users who have different

comprehension capabilities. Moreover, success of the software development process depends on

the success of its teamwork, which can be determined through their understandability levels. In

other words, the success of teamwork cannot be achieved, if their understandability levels are

poor. Consequently, it effects for the progress of software development process. If the

comprehension levels of team members have not been considered, unnecessary failures can be

happened inside the software development. Therefore, to avoid these failures, cognitive

complexity of a software should be addressed properly to increase the understandability.

Moreover, the selection process of team members to different phases inside the software

development process by aligning with cognitive complexity of software is another alternative to

reduce these failures. Since cognitive complexity is varied from each user, it can be used to

obtain an opinion about the understandability of each team members in a software project. Hence,

the opportunity of categorizing team members according to their comprehension capabilities and

assigning them into different stages inside the software development process can also be

achieved through cognitive complexity concept to solve unnecessary failures in software

development process. As such, cognitive complexity assists to smoothen the development

5

process, which makes the software team decision process easy. Therefore, the significance of

applying cognitive complexity concept inside software project management has also been

analyzed with this work.

1.3 Research Gap

The applications of cognitive complexity can be widely observed in a form of metric, which

denotes the human comprehension effort for a given source code as a quantitative measurement

[17], [18]. Nevertheless, it contradicts with the definition of cognitive complexity as it should be

a subjective measurement, which differs from each user. As such, introducing a single

quantifiable and objective value to demonstrate the comprehension level of entire user population

cannot be accepted as a valid mechanism of expressing the cognitive complexity. This is because

the cognitive complexity is modelled by considering only one aspect, which is the source code

factor. The amount of information scattered inside the source code referred as the architectural

aspect of the source code [1] and the spatial capacity of the source code [19] are main two factors

that source code properties have been quantified with. Each research work is based on the sub

properties of these two main source code aspects and has expressed with different computations

to quantify the cognitive complexity. Consequently, the problem of deriving a single cognitive

complexity metric can be signified, and it results with the problem of obtaining a standardized

cognitive complexity metric to be used in real software applications. Nevertheless, source code

factor is not the only factor that cognitive complexity should be expressed with. The personal

profile should also be considered for cognitive complexity determination, which has not been

addressed properly. The involvement of personal profile has been indicated by introducing

cognitive weights which is a number to represent the comprehension effort for varied code

segments which in turns emphasizes the source code aspect [20]. In other words, the proposed

cognitive weights denote the source code attributes, which do not highlight the personal profile

factors. Basic Control Structures (BCS), variables, functions, recursive components, object-

oriented concepts are some of source code segments which have been considered to assign with

cognitive weights [2], [21], [22]. These weightage assignment procedures cannot be granted as

they are based on experimental outcomes for a selected user group and using several assumptions

to quantify the difficulty level of those users. Therefore, these cognitive weights cannot be

6

validated, and they are limited only for a particular user group which cannot denote entire user

population. Even though the recent set of research have been based on describing the influence of

cognitive load to the user understandability, a proper mechanism of expressing it with cognitive

complexity has not been initiated. The reason is the gap identified between the relationship of

user comprehensibility and cognitive complexity which has not been evaluated properly.

Moreover, there are certain number of aspects inside the personal profile to consider for the

comprehension effort determination. Therefore, confining personal profile only to cognitive

weights cannot be accepted as a valid procedure to express cognitive complexity. Therefore,

cognitive complexity should be modelled in a proper way, which can emphasize on both source

code factor and personal profile.

As it has been already described, understandability is an important quality factor inside the

software development process, and it requires to address the maintainability as well [23].

Moreover, the relationship of cognitive complexity with understandability and maintainability

can be clearly observed, so that the concept of cognitive complexity should be linked with

software development and maintenance processes. Nevertheless, there is no proper guideline

which describes the applicability of utilizing cognitive complexity in both of these processes.

Therefore, a proper mechanism should be found to observe the relationship of cognitive

complexity with understandability and maintainability.

1.4 Novelty of the Research

According to the definition of cognitive complexity, the comprehension effort of an individual

for a given source code should be explored to express the complexity of a software. Thereby,

consideration of source code aspects should be there as the source code is a main aspect of

determining the logic of a software. Even though the source code is available, the comprehension

effort depends on the person who deals with it. Therefore, the personal profile should also be

considered as another vital factor for cognitive complexity determination. The consideration of

different source code aspects can be detected in current cognitive complexity metrics however,

the involvement of personal profile cannot be observed in most of the metrics. Even though the

human comprehension level has been introduced as cognitive weights, they are consisted with

user limitation and validation issues. Therefore, this research work has given more emphasis on

7

personal profile involvement, as the comprehension effort associated with each individual is the

core concept behind cognitive complexity. Along with that, the aspects of the source code have

also been followed to express the cognitive complexity. Consequently, a cognitive complexity

metric has been proposed by considering both personal profile and source code factors. The

inclusion of human comprehension level through cognitive weights has been presented as a

predictive factor inside the proposed metric, which mostly analyzes the individual personal

profile and the spatial capacity of a source code. Hence, the subjectivity of personal profile has

been maintained which solves the problems of cognitive weights used by current cognitive

metrics. The architectural aspect has also been included for the metric computation, so that

inclusion of source code aspect combined with architectural and spatial aspects can be verified.

Thereby, the proposed metric can be stated as a better and meaningful approach to indicate the

cognitive complexity than existing cognitive metrics.

The current works of cognitive complexity are limited only to a form of metric due to ease of use

and to compare with other complexity metrics. But in this research work, the applicability of

cognitive complexity inside the software development has been analyzed thoroughly. The

expectation of any software development is to obtain a less complex software while arranging the

development and maintenance phases easier to handle by the development team members. In

other words, the cognitive complexity of software supposed to be less to make the software

handling process easier. Therefore, apart from the metric computation, this work is aimed to

analyze the procedures of reducing the cognitive complexity. The reduction of cognitive

complexity has been performed by considering the personal profile. The mechanism of handling

the human cognitive load to reduce the cognition effort is the basic scenario that has been

followed to reduce the cognitive complexity, and that has been implemented in a computational

environment to verify the reduction of cognitive complexity.

1.5 Research Problem

A software development is not a single process as it goes with several phases throughout its life

cycle [24], and the success of each phases’ completion depends on the level of understanding the

logic of that software. Similarly, maintenance of the software cannot be performed without

understanding its software logic. Moreover, the logic of a software is usually obtained from its

source code, as it is the major component which is used for its implementation process.

8

Therefore, the ability to understand the logic behind the source code plays a vital role to achieve

a smooth functioning of software development and maintenance processes. The understandability

level can be indicated with the effort taken for the comprehension, as high understandability

occurs with less effort utilized for comprehension and less understandability occurs with high

effort utilized for comprehension. Therefore, cognitive complexity can be taken as a direct

indicator to represent the understandability of a particular software, and it should be capable of

handling the maintainability as well. Therefore, under this research work, the possibility of

applying the cognitive complexity concept effectively to enhance the software development and

maintenance processes has been studied.

1.6 Research Questions

The factors associated with cognitive complexity should be thoroughly analyzed in order to

model its applicability in software development and maintenance processes. Since cognitive

complexity indicates the comprehension effort for a given source code, the main factors aligned

with the source codes’ comprehension effort should be studied. Consequently, it can assist with

producing different viewpoints of expressing cognitive complexity. Moreover, sub factors

belonging to these main factors should be explored to express the cognitive complexity in more

meaningful way. Accordingly, the variation of cognitive complexity along with these main and

sub factors can be observed in a clear manner.

The expectation of any software development and maintenance processes is to produce a

software with a lower complexity which is easier to use and manage. To achieve it, its source

code should be implemented with high understandability, as the source code is the leading factor

behind these processes. In other words, the source code should be achieved with low cognitive

complexity to attain high understandability. Therefore, the procedures of deriving a less cognitive

complexity should be analyzed along with the factors related with cognitive complexity to

smoothen the software development and maintenance processes.

The cognitive complexity is quantitatively indicated using a cognitive complexity metric. It

further assists to use this concept in the complexity determination as a quantifiable value is easy

use and compare with other existing complexity metrics. Therefore, a procedure of introducing a

9

meaningful cognitive complexity metrics should be analyzed, which in terms of demonstrating

the factors associated with it and to facilitate the software development process.

To conclude, three research questions formed to assist the main research problem mentioned in

section 1.5 have been listed as follows.

Research Question 1: What are the main factors that cognitive complexity can be modelled?

Research Question 2: What are the procedures to be followed to reduce the cognitive complexity?

Research Question 3: How to introduce a meaningful cognitive complexity metric to facilitate the

software developing process?

1.7 Research Objectives

The following research objectives have been formed to achieve the research questions mentioned

in section 1.6.

Research Objective 1: Identify the factors of expressing the cognitive complexity

Research objective 1 is aligned with research question 1.

Research Objective 2: Identify the procedures of reducing the cognitive complexity

Research objective 2 is aligned with research question 2.

Research Objective 3: Design a methodology to demonstrate the procedures of reducing the

cognitive complexity

Research objective 3 is aligned with research questions 1 and 2.

Research Objective 4: Propose a meaningful cognitive complexity metric

Research objective 4 is aligned with research questions 1 and 3.

Research Objective 5: Evaluate the design and the cognitive complexity metric

Research objective 5 is aligned with research questions 2 and 3.

10

1.8 Resource Requirements

The computation design has been implemented by using NetBeans Integrated Development

Environment (IDE) version 8.2. Along with the IDE, Visual Studio Code, Jupyter Notebook with

Python, PlantUML, EasyUML, FindBugs bug tracker, FlaskAPI, Javafx and JavaSwing, ReactJS

and NodeJS should be installed to execute main components of the design. Furthermore, Multer,

Putout, Axios libraries should be installed in ReactJS and NodeJS. Under machine learning

techniques, Numpy and Pandas Python packages, pickle tool and matplotlib and Seaborn libraries

have bene used.

1.9 Structure of the Thesis

The first chapter of the thesis indicates the introduction of research work, which includes the

significance, research gap, novelty, research problem, research questions and research objectives.

The literature review has been described under second chapter. The third chapter outlines the

methodology followed to address research objectives which can solve research questions

mentioned earlier. The detailed discussion of results gained through the implemented system and

proposed metric has been included in fourth chapter. Finally, conclusions have been described

under fifth chapter along with the scope and the contribution of the research work.

1.10 Summary

The cognitive complexity of a software determines the amount of effort required to understand

the underlying logic behind a source code of a software. The cognitive complexity can be

denoted as a direct indicator of user understandability as the understandability of a user depends

on the comprehension effort. Further, understandability is an important factor to express the

maintainability so that cognitive complexity can be used to express both of these quality

attributes. However, the human comprehension effort varies with each user, since the ability of

handling a source code varies among them. Hence, the cognitive complexity is a subjective

measurement, which is difficult to quantify. The definitions of both software complexity and

cognitive complexity assess the difficulty level associated with comprehension, so that there has

11

to be a direct relationship with each other. However, it is difficult to observe a proper relationship

among them as current software complexity metrics assess the complexity only in terms of

quantifiable source code aspects, which confine the complexity expression into an objective

measurement. Moreover, current findings of cognitive complexity have been only limited with

source code consideration, which do not exactly impress the idea behind cognitive complexity. In

addition to that, reluctance of a proper mechanism of relating the cognitive complexity concept

with understandability and maintainability should be emphasized. Accordingly, the necessity of

deriving a proper mechanism to express the cognitive complexity with the aid of these quality

attributes has been arrived. Hence, this work attempts to fill the gap of associating cognitive

complexity effectively with understandability and maintainability. Accordingly, the problem of

applying the cognitive complexity inside the software development and maintenance processes is

expected to be addressed inside this research work. It includes analyzing the factors effecting for

cognitive complexity, exploring the procedures of handling and reducing cognitive complexity

inside software development and maintenance processes through a computational aid, proposing

a meaningful cognition metric with personal and source code aspects and verifying both design

and the metric for real usage. The ability of deriving an opinion about the understandability and

the impact of cognitive complexity with software project management are the significances of

conducting this work. The inclusion of overall expression of cognitive complexity as a

combination of both personal profile and source code factors and analyzing its applicability

throughout the software development process without limiting it for a metric computation are the

originalities of this work.

12

2.0 LITERATURE REVIEW

2.1 Introduction

The cognitive complexity of a given source code plays a determinant role of expressing its

understandability. There have been numerous research works performed to find a suitable way of

presenting it, so that the understandability of a source code can be analyzed through it [14].

According to literature, the applicability of cognitive complexity has been determined in form of

quantitative and qualitative expressions as shown in Figure 2.

The quantitative representation of cognitive complexity is regarded as cognitive complexity

metric, which is an indicator to express the human comprehension effort through a numerical

measurement. The cognitive complexity is a non-quantifiable indicator as it implies a subjective

measurement. Therefore, to form a metric, a certain set of factors have been selected and

presented it quantifiably. Therefore, cognitive complexity metric artificially quantifies the

human comprehension effort which is not exactly equivalent to actual cognitive complexity. The

usage of cognitive complexity metric should be accepted due to ease of use and compare with

other complexity metrics. Each traditional cognition metric computation is comprised with

quantifiable source code aspects and the concept of cognitive weight which addresses the human

comprehension level through a numerical value [21]. The quantifiable source code aspect has

been derived with respect to the amount of information inside the source code which refers to the

architectural aspect of the source code [1] and the spatial capacity of a source code [19]. It is

evident that the amount of information inside a source code is proportional to the amount of

Figure 2. Categorization of Cognitive Complexity in Literature

13

effort acquired for its logical comprehension, and the size of a software also a factor of

determining the status of the understandability. The architectural aspect has been indicated by

considering numerous information categories inside the source code, and the spatial capacity has

been attained in terms of LOC. The cognitive weights have been proposed based on a selected

user group and by using assumptions to derive their comprehension levels. Based on these

categories, a set of equations have been formed to compute the cognitive complexity

quantitatively. However, variation of categories of the architectural aspect and the cognitive

weights results different computations for the cognitive complexity, which computes different

complexity values for the same source code.

Apart from the cognitive metric, the representation of cognitive complexity as qualitative

measurements can also be observed. In one direction, cognitive complexity is described using a

set of selected software attributes. On the other hand, usage of cognitive complexity as a

predictive factor to determine another set of software attributes can be observed. Hence, the

traditional attempts to express the concept of cognitive complexity inside the software

development can be preliminary categorized into quantitative and qualitative representations.

2.2 Earlier Developments to Measure the Cognitive Complexity

Majority of earlier works regarding the cognitive complexity are based on the quantification of

cognitive complexity as a metric. The cognitive complexity metric has been introduced with the

concept of Cognitive Functional Size (CFS) of a given software by Shao and Wang [25]. It has

been stated that the functionality of the source code can determine the level of understandability

so that the content of each function has been considered for the human cognition. The functional

size of the source code was found to be depended on its input, output and its internal flow and

expressed using Equation (1). The amount of input output parameters has indicated the

comprehended capacity by an individual as there is a considerable amount of information

covered through high number of parameters comparing to a lesser number of parameters. Further,

the internal flow has been presented through cognitive weights assigned for BCS. According to

Equation (1), CFS is computed where Ni is the number of program inputs, No is the number of

program outputs and Wc is the sum of cognitive weights assigned for each BCS.

14

 𝐶𝐹𝑆 = (𝑁𝑖 + 𝑁𝑜) ∗ 𝑊𝑐 (1)

The cognitive weights assigned for BCS are listed in Table 1.

Table 1. Cognitive Weights Defined for CFS Calculation [25]

Category BCS Wi (cognitive weight)

Sequence Sequence 1

Branch If – Then – Else 2

Case 3

Iteration For – do 3

Repeat – until 3

While – do 3

Embedded Component Function Call 2

Recursion 3

Concurrency Parallel 4

Interrupt 4

According to Table 1, the cognitive weightages assignment has been increased from sequence to

concurrent categories inside a given source code. It indicates that a source code with sequential

logic is easy to comprehend than a source code with other controlling categories. This can be

verified as the least comprehension effort is required for a code segment without any controllers.

The cognitive weight of branch has been considered as the next category of comprehensibility. If-

else conditions shows high understandability over switch-case statements. Generally, most users

prefer if-else statements to handle the conditional checking than switch-case statements so that

maintaining if-else statements inside a source code would lessen the comprehension effort.

Accordingly, the weightage assignment of if-else statements should be lower than switch-case

statements. Then, the looping category has been evaluated to observe more comprehension effort

than branch category. It can be mentioned that looping criteria contains number of executions

occurred within defined number of times, which cannot not be observed in branch category.

Thereby, it can be stated that the looping category acquires a considerable amount of effort than

branch category. Although for, repeat and while loops are occupied with this looping category,

the same weightage (3) has been allocated for all types of loops. It is practically apparent that

15

users’ cognition effort for all the types of loops are not same due to their preference and the

analytical skill of each looping criteria. Hence, the same cognitive weight allocation for all three

types of loops cannot be granted in this work. Moreover, the procedure of allocating same weight

(3) for switch-case in branch category and for all types of loops is questionable and unacceptable

as a proper reason for that assignment is not mentioned. As the next component, the embedded

components have been considered. In there, non-recursive and recursive functions have been

assigned with different weightages. Non-recursive functions have been considered to be more

comprehensive than recursive functions. The reason for that assignment can be stated as the

ability to identify the logic of a non-recursive function than a recursive function, since recursive

function executes the same function repeatedly until the base condition occurs. Hence, unless the

user has analytical skill of recursion, it is difficult to comprehend the logic behind a recursive

component. Therefore, higher weightage allocated for recursive component can be granted. At

last, the concurrent components have been selected as the least comprehensive components inside

a source code, which requires higher cognition effort. The parallel and concurrent executions

have been utilized under this category, and the same weightage (4) has been assigned for those

categories. It is unacceptable to generalize the same cognition effort for both of these categories

and a valid reason for this weightage allocation has not been highlighted. Therefore, the cognitive

weight allocation and the cognitive complexity computation of this research work tends to be

ambiguous and cannot be approved for the usage of real applications to denote the user

understandability.

Kushwaha and Misra have proposed the dependency of cognitive complexity through the amount

of information inside a given software, which information can be represented as a function of

identifiers and operators [26]. As a result, Cognitive Information Complexity Measure (CICM)

was proposed using the product of Weighted Information Count of Software (WICS) and the

cognitive weight (Wc) of BCS in software as in Equation (2).

 𝐶𝐼𝐶𝑀 = 𝑊𝐼𝐶𝑆 ∗ 𝑊𝑐 (2)

In this metric, WICS is the sum of the weighted information count (WICL) of every LOC of a

given software, which can be denoted in Equation (2.1).

 𝑊𝐼𝐶𝑆 = ∑ 𝑊𝐼𝐶𝐿𝑘𝐿𝑂𝐶𝑆
𝑘=1 (2.1)

16

Furthermore, WICL is a function of the identifiers and the operands per line of code, which can

be computed as in Equation (2.2). LOCs is the number of lines in the source code and ICSk is the

information contained in a software program for the kth line.

 𝑊𝐼𝐶𝐿𝑘 =
𝐼𝐶𝑆𝑘

[𝐿𝑂𝐶𝑠−𝑘]
 (2.2)

In here, they have found the relativity of human cognition according to the architectural aspect of

the source code. It has been calculated by identifying the identifiers and operators in each LOC.

That has been calculated as a division of the number of identifiers and operators per LOC with

the subtraction received with the remaining LOC as it can be observed in Equation (2.2). In other

words, when the LOC count is gradually increasing, the remaining LOC count becomes

decreasing, thereby the cognitive effort becomes higher than the earlier LOC. This situation

implies the possibility of applying the spatial capacity of a source code, since the user has to

remind a considerable amount of information along with incremented LOC. Herein, this can be

considered as a vital achievement of demonstrating the cognitive complexity mainly through the

architectural aspect and the spatial aspect. Further, the cognitive weights of BCS have been

considered for this computation due to the control flow maintenance accomplished by them.

However, these weightages were obtained through Table 1, and the drawbacks mentioned earlier

are applied in this computation as well. Thereby, this computation cannot be accepted as a valid

methodology of expressing the human comprehension.

Another concept of human cognition metric namely, Modified Cognitive Complexity Measure

(MCCM) is proposed by considering all the operators and the operands in a given software by

Misra [27]. The equation proposed to determine the cognitive complexity has used Ni1 for total

number of operators, Ni2 for aggregate number of operands and Wc is the summation of cognitive

weights assigned for BCS. With those parameters, MCCM was computed through Equation (3).

 𝑀𝐶𝐶𝑀 = (𝑁 𝑖1 + 𝑁 𝑖2) ∗ 𝑊𝑐 (3)

The same concept followed in [26] can be clearly observed in [27], such that both works are

based on the architectural aspects inside the source code with respect to the number of operators

and operands. But, in [27], the consideration of spatial capacity cannot be identified, which can

be stated as a drawback. Moreover, the same weightage assignment for BCS mentioned in Table

1 has been performed continuously, which results the complexity computation into a non-

standardized state.

17

The same work has been extended with the concept by introducing the effectiveness of cognitive

complexity by total number of occurrences of input and output variables [28]. Therefore, the

metric has been re-introduced as Cognitive Program Complexity Measure (CPCM), which can be

observed in Equation (4) as the addition of input output parameters (SIO) of the program and the

cognitive weights assigned for BCS (Wc).

 𝐶𝑃𝐶𝑀 = 𝑆𝐼𝑂 + 𝑊𝑐 (4)

This highlights the significance of considering the input output parameters for the user

comprehension as in [25]. Along with that, the usage of cognitive weights for the BCS based on

Table 1 can be seen, which has not been derived through a valid methodology.

The introduction of New Cognitive Complexity of Program (NCCoP) by Jakhar and Rajnish has

been proposed with respect to the data objects consisting with input and output parameters,

internal behavior of the software, operands and the cognitive weight of BCS of each line of code

[1]. Hence, the computation is done through the number of variables in a particular line of code

(Nv) and the cognitive weights assigned for of BCS (Wc) as in Equation (5).

 𝑁𝐶𝐶𝑜𝑃 = ∑ ∑ 𝑁𝑣 ∗ 𝑊𝑐(𝑘)𝐿𝑂𝐶𝑆
𝑣=1

𝐿𝑂𝐶𝑆
𝑘=1 (5)

In this approach, the consideration of the architectural aspect has been performed through the

number of variables in each LOC. The human comprehension level is denoted with the cognitive

weights in Table 1. The invalid procedure of obtaining the cognitive weights through Table 1

prompts this research work to be impractical.

A new approach of evaluating the cognitive complexity was introduced by Chhabra with the

concept of spatial complexity of each function in the module and the input output parameters of

the module [19]. It is defined as the Code Cognitive Complexity (CCC). The spatial complexity

has been calculated as the distance in terms of LOC between the module call to its definition

since the greater distance from module definition to its usage requires more comprehension effort

to understand its internal logic due to the higher distance of navigating inside the source code.

Similarly, a lesser distance between a module call to its actual implementation tends the user to

easily comprehend its logic as the navigation becomes lesser. So that, CCC has been defined as a

combination of the cognitive weight of control statement which the module call has been made

(Wc), count of all module calls in the software (m), the spatial distance of the module call from its

18

definition (Distance), number of input output parameters (Nip + Nop), cognitive weight of each

parameter pi (Wpi) of jth call in the module (MCj). The proposed equation can be observed in

Equation (6).

 𝐶𝐶𝐶 = ∑ (𝑊𝑐 ∗𝑚
𝑗=1 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑀𝐶𝑗)) + ∑ 𝑊𝑝𝑖(𝑀𝐶𝑗)𝑁𝑖𝑝+𝑁𝑜𝑝

𝑖=1 (6)

 The cognitive weights used for above computation have been demonstrated in Table 2.

Table 2. Cognitive Weights Defined for CCC Calculation [19]

Category BCS Cognitive Weight

Sequence Sequence 1

Branch If – Then – Else 2

Case 3

Iteration For – do, while, while – do 3

Nested control statements 4

Constant data Constant values 1

Enumerations & defined constants 1

Variables Atomic & elementary 1

Array (1D) & structure 2

Multi-dimensional array & pointer-

based indirection (single)

3

Multiple indirections, pointer to

structure, etc.

4

In [19], the usage of both architectural and spatial aspects of a source code can be viewed in a

wider context. The architectural aspect has not been limited to the number of input output

parameters, operators and operands, but with the concept of module calls as well. Modules are

implemented to perform a certain number of activities inside the source code, so that the

consideration of them to analyze the comprehension effort is essential. In here, the complexity

has been derived as the addition of the complexities computed through the spatial and the

architectural aspects. In the first component, the spatial complexity has been determined through

19

the cognitive weight of the control statement which has performed the module call and the spatial

distance from its call to its implementation. Secondly, the architectural complexity has been

computed through the cognitive weight determination of input output parameters in each module.

Moreover, cognitive weights listed in Table 2 have been considered for the computation process.

As in Table 1, the sequence statements have been considered with least cognitive weight (1)

which implies the simplicity among other source code categories. As in Table 1, if-else has been

considered as more complex than sequence statements, while switch-case statements are complex

than if-else statements. It can be accepted as the preference of if-else is higher than switch-case

statements in current practical scenarios, so that if-else should be assigned with a lesser cognitive

weight. Along with that, same weightage (3) allocation can be observed in for and while loops,

which cannot be granted as in Table 1 due to the user preference for one looping criteria.

Additionally, the introduction of nested looping can be emphasized with a higher complexity.

Generally, the understandability level of nested control structures is much higher than the single

controllers so that assigning a higher weight for the nested loops can be accepted. However, all

the nested loops cannot be granted as the same weightage as the comprehension level deviated

with the preference and the analytical skill of each individual. Hence, a variation of nested loops

should be addressed in this work.

Later, the implementation of the coding has been moved with the concept of object-orientation

apart from function-oriented coding. Then, the necessity of computing the cognitive complexity

for object-oriented source codes has initiated. Consequently, Misra et al. proposed that the

cognitive complexity of an object-oriented code can be represented using the corresponding

cognitive weights of each method of the class [29]. It was calculated using the cognitive weights

assigned for individual BCS in q linear blocks as listed in Table 1, which may consist of m layers

of BCS with n BCS in each layer as in Equation (7). Furthermore, each recursive call has been

considered as another call within the same method.

 𝑀𝐶 = ∑ [∏ ∑ 𝑊𝑐(𝑗, 𝑘, 𝑖)]𝑛
𝑖=1

𝑚
𝑘=1

𝑞
𝑗=1 (7)

This achievement cannot be considered as a new approach of computing the human cognition due

the BCS consideration, which has been repeated in previous computations as well. Even though

the source code has been divided into q number of linear blocks with m number of layers, and

with n number of BCS in each layer, it merely considers only the BCS appearance inside the

20

source code. Moreover, the consideration of cognitive weights in Table 1 highlights the

drawbacks appearing repeatedly which have to be handled.

A methodology of computing the Software Metric for Python (SMPy) was introduced by Misra

and Cafer, which can be applicable for any other object-oriented programming language [30].

According to that study, they have found that the cognitive complexity of an object-oriented

software depends on the Inheritance Complexity (CI class), Complexity of Distant classes (CD

class), Global Complexity (C global) and the Complexity due to Coupling (C coupling) and

computed the complexity as in Equation (7.1).

 𝑆𝑀𝑃𝑦 = 𝐶𝐼 𝑐𝑙𝑎𝑠𝑠 + 𝐶𝐷 𝑐𝑙𝑎𝑠𝑠 + 𝐶 𝑔𝑙𝑜𝑏𝑎𝑙 + 𝐶 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 (7.1)

The concepts taken for this computation can be regarded as a vital achievement as these concepts

have not been considered before. Noteworthy, they have estimated the complexity of a simple

class before computing the values for CI class and CD class as it becomes a part of inheritance of

distinct class complexities. Therefore, the complexity of a simple class (C Class) has been

computed as in Equation (7.2).

 𝐶𝑐𝑙𝑎𝑠𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠) + 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) + 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠) +

 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑜𝑏𝑗𝑒𝑐𝑡𝑠) – 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛) (7.2)

Here, weight(attributes) has been determined through Arbitrary Named Distinct attributes/

variables (AND) and Meaningfully Named Distinct attributes/ variables (MND) as shown in

Equation (7.3).

𝑊 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠/𝑣𝑎𝑟𝑎𝑖𝑏𝑙𝑒𝑠) = 4 ∗ 𝐴𝑁𝐷 + 𝑀𝑁𝐷 (7.3)

They have found that the arbitrary and meaningfully named attributes and variables are one of the

major rationales behind the source code complexity. Further, if a program consists with arbitrary

named attributes and variables, its comprehensibility becomes lower, which will increase the

cognitive complexity. It has been mentioned that the difficulty level of understanding the

arbitrary named attributes and variables is four times more than the meaningful naming [31],

which creates the path for the multiplication of AND by 4 to derive the attributes weightage.

Similarly, the W(variables) has been computed through Equation (7.3). Then, W(structures) has

21

been computed through the weights of BCS inside the source code, and those weights have been

listed in Table 3.

According to Table 3, a source code without any control structure has been assigned with weight

1, which implies the least human cognition effort. Then, the conditional statements have been

assigned with weight 2 as they make the program behavior dynamic and created a combination of

sequences built up in different possible situations. Hence, that weight has to be more than the

weight allocated for sequence. Loops have been considered as the next level of difficulty

associated with cognition due to the same repetition. Although nested loops are more complex

than single looping, the same weightage allocation (3) can be observed, which cannot be accepted

as a valid scenario. However, the same weightage allocation for all categories of conditional

statements, loops and nested loops as 2, 3 and 3 can be observed respectively. Since the

preference and the comprehension level of each individual over the multiple controllers within

the same controlling category are varying, all categories cannot be assigned with a same value as

described earlier as well. Functions increase the efficiency of a source code, although function

calls disturb readability of a source code, so that the cognitive complexity of functions should be

higher than the sequence. That might be the reason behind allocating the weightage as 2 for

functions. The concept of recursion is much complex than non-recursive functionalities, so that

weight of 3 has been allocated for recursion. Finally, exceptions have been assigned with weight

2, but the reason behind its allocation has not been mentioned. Surprisingly, the reason behind

gaining the same cognitive effort for conditional statements, functions and exceptions has not

been mentioned. Therefore, this weightage allocation also cannot be accepted as a validated

procedure of expressing the human cognition. Then, the next parameter inside Equation (7.2)

 Table 3. Cognitive Weights Defined under [30]

Category Cognitive Value

Sequence 1

Condition 2

Loop 3

Nested Loop 3

Function 2

Recursion 3

Exception 2

22

weight(objects) has been always allocated for 2. It has been revealed that the creation of the

object is the calling of its constructor, which works like a function. Thereby, the weight of an

object has been assigned with the same weight of a function. Nevertheless, functions and

constructors have differences, and the comprehension levels of both categories can be different.

From that point, that difference should be elaborated in the weightage allocation, which cannot be

observed in this achievement. Then, weight(cohesion) in Equation (7.2) has been computed as in

Equation (7.4) with number of Methods with Attribute usage (MA) and number of Attributes

inside the Method (AM).

 𝑊 (𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛) = 𝑀𝐴/𝐴𝑀 (7.4)

The last variable of Equation (7.2) indicates the weight of cohesion. Cohesion implies the

interaction within a module, and it is expected to have a higher cohesion within a module

implementation [32]. If the internal segments are tightly interconnected within a module, the

internal logic of that module can be obtained without referring to the other external modules.

Hence, a higher cohesion implies a lesser cognitive complexity. This situation might be the

rationale behind the weight of cohesion being subtracted to calculate the complexity of a class.

After these estimations, they have proposed the calculation process each parameter in Equation

(7.1). Firstly, the Complexity due to Inheritance (CI class) has been obtained by considering the

Estimated Complexities (Cclass) of the classes in each level. Thereby, CI class of an object-

oriented source code with m number of levels in which its jth level has n number of classes is

obtained by getting the summation of Cclass of all n classes, which is then multiplied by the

number of levels as shown in Equation (7.5).

𝐶𝐼 𝑐𝑙𝑎𝑠𝑠 = ∏ [∑ 𝐶𝑐𝑙𝑎𝑠𝑠 𝑗𝑘]𝑛
𝑘=1

𝑚
𝑗=1 (7.5)

This consideration can be stated as valid as the concept of inheritance is applied to a number of

levels, so that the complexities of each class in each layer has to be computed first. As the same

behavior applies with the inheritance, it has to be multiplied by the complexities of the total

number of layers. Along with that, Distant class complexity (CD class) can be obtained as the

summation of each class estimated complexities. The Complexity of Global variables (C global)

has been determined as the summation of the weight of variables, structures and objects, where

the weight of variables has to be computed according to Equation (7.3). At last, coupling

Complexity (C coupling) has been denoted in Equation (7.6), where c is the number of

connections.

23

 𝐶 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 2^𝑐 (7.6)

As coupling creates the method calling of another class, it behaves like a method calling, which

its cognitive weight is 2. Further, these connections should be implemented in between 2 entities,

so that the base has been taken as 2. When the number of connections is increased, there would

be a significant increment of the comprehension effort, so that the number of connections (c) has

been taken as the concept of power. Accordingly, summation of the complexities derived through

inheritance, distinct classes, global variables and coupling has been determined as the cognitive

effort of the source code. Although the concepts inside this work are unique and methodological,

the problems regarding with cognitive weights in Table 3 have to be verified.

As another approach, the object-oriented cognitive complexity by Misra et al. was further

proposed through a suite of five metrices namely Attribute Complexity (AC), Method Complexity

(MC), Class Complexity (CLC), Message Complexity also referred to as Coupling Weight for a

Class (CWC) and Code Complexity (CC) [20]. The overall complexity is denoted with CC, which

has been derived through other four metrics. Thereby, CC is proposed as shown in Equation (8).

𝐶𝐶 = ∏ [∑ 𝑊𝐶𝐶 𝑗𝑘]𝑛
𝑘=1

𝑚
𝑗=1 (8)

Firstly, they have computed the MC through the BCS in each method according to the values

introduced in Table 3. They have further illustrated the whole source code as a combination of q

linear blocks with m layers in each block and with n linear BCS in each layer. Therefore, the

cognitive weight of all methods has been computed as the summation weight of n linear BCS

expanded within m layers, which is computed through other q linear blocks as presented in

Equation (8.1).

 𝑀𝐶 = ∑ [∏ ∑ 𝑊𝑐 (𝑗, 𝑘, 𝑖)]𝑛
𝑖=1

𝑚
𝑘=1

𝑞
𝑗=1 (8.1)

Through this equation, they have highlighted the behavior of BCS as they control the method

execution. Nevertheless, considering only BCS is not sufficient for the architectural aspect of the

source code. Consequently, the connectivity of each method inside the source code has been

considered. The comprehension effort should be increased with the increment of the message

callings. Therefore, it has been considered as another factor of expressing cognitive complexity

and proposed as Message Complexity/Coupling Weight for a Class (CWC) through the

summation of weights of calls and weight of called methods as represented in Equation (8.2).

24

𝐶𝑊𝐶 = ∑ (2 + 𝑀𝐶 𝑤𝑖)𝑛
𝑖=1 (8.2)

According to Equation (8.2), MCwi represents the method complexity of the called method, which

can be computed according to Equation (8.1). The weight of 2 is introduced to represent the

weight of the message sent for the external method. But, the reason of obtaining that weight as 2

and allocating the same weight for any type of external messages creates a problematic scenario.

Further, if there are n number of external calls inside the source code, the total message

complexity has been determined as the summation of the weights of all message calls. Apart from

the BCS and message callings, significance of the attributes inside the methods has been deemed

for the human cognition. As repeated in majority of previous research works, the appearance of

attributes in terms of inputs, outputs, operators and operands has been observed. Moreover, it is

feasible to gain more comprehension effort on more attributes than a smaller number of

attributes. Therefore, the AC should be computed within the cognitive complexity and its

weightage has been assigned to 1. Due to the locality of an attribute to all the objects and the

accessibility of it by the other procedures, it has been always assigned to 1. Then, the complexity

of a class namely Weighted Class Complexity (WCC) is computed through the summation of AC

and MC as displayed in Equation (8.3).

 𝑊𝐶𝐶 = 𝐴𝐶 + ∑ 𝑀𝐶 𝑝𝑛
𝑝=1 (8.3)

According to Equation (8.3), the class complexity can be stated as the complexity derived from

its attributes and the BCS inside the methods. However, the connectivity of the methods among

message callings, which has been calculated in Equation (8.2) is not considered for the class

complexity determination. Hence, it can be declared as a drawback of above computation.

Finally, the complexity of whole system has been proposed by considering the all the classes and

their relationships. As the relationship, they mainly focused about inheritance. The summation of

the class complexities in one layer has been computed first and then obtained the complexities

according to the level of source code depth through the production. Herein, a source code with m

levels of depth and jth level has n classes, CC is given by Equation (8.4).

𝐶𝐶 = ∏ [∑ 𝑊𝐶𝐶 𝑗𝑘]𝑛
𝑘=1

𝑚
𝑗=1 (8.4)

As WCC is comprised with attributes and method complexities, the same problem of message

complexity non-consideration has been repeated again. Along with that, the concept of coupling

25

is ignored in this computation. Moreover, the possibility of addressing the cohesion is not

mentioned. Therefore, this computation is not justifiable due to the drawbacks mentioned earlier.

A survey to investigate the applicability of the cognitive complexity for object-oriented

programming was carried out by Aloysius and Arockiam [33]. They have classified the cognitive

complexity object-oriented metrices as Class Complexity (CC), Weighted Class Complexity

(WCC) and Extended Weighted Class Complexity (EWCC). Noteworthy, the computation WCC

and CC are as same as Equation (8.3) and (8.4) respectively. It is significant that they have

discussed the advantages and disadvantages of WCC and CC as well. It is mentioned that the

unavailability of applying the object-oriented concepts such as inheritance, encapsulation,

polymorphism and overloading in WCC computation, and internal structure of methods in CC

computation. Although CC computation is involved with MC with the availability of BCS, the

impossibility of handling the internal structure inside methods arises with a complication. As a

new concept, they have extended the concept of WCC as Extended WCC (EWCC) with the

concept of inheritance, since it has been mentioned as a drawback. Therefore, EWCC has been

introduced as in Equation (8.5).

𝐸𝑊𝐶𝐶 = 𝐴𝐶 + ∑ 𝑀𝐶 𝑝𝑛
𝑝=1 + ∑ 𝐼𝐶𝐶 𝑗𝑚

𝑗=1 (8.5)

ICC implies the Complexity due to Inheritance, which can be computed as in Equation (8.6).

𝐼𝐶𝐶 = (𝐷𝐼𝑇 ∗ 𝐶𝐿) ∗ ∑ 𝑅𝑀𝐶𝑘 + 𝑅𝑁𝑠
𝑘=1 (8.6)

The concept of method and attribute usage has been introduced with respect to the inheritance

under this work. Hence, RMC is defined to gain Complexity of Reused Methods through MC as in

Equation (8.1). RN indicates the number of reused attributes and DIT is the Depth of Inheritance

Tree. CL stands for the cognitive load of Lth level, which has been introduced to solve the internal

structure of the methods. Although the cognitive level is varying on each individual, they have

assumed that CL level is always 1, which is a major drawback of creating the objectivity over the

subjectivity. Moreover, they claim to have a success on EWCC over WCC with regard to the

inheritance and internal architecture through cognitive load, the assumption has led to its lack of

success. Remarkably, they have observed that cognitive complexity is an imperative field in

terms of software complexity calculation. However, they have concluded that most of the object-

oriented cognitive complexity metrices have not been evaluated or validated under available

software complexity metrics validation frameworks and, also do not encounter the features such

26

as polymorphism, cohesion and coupling in order to complete the calculation process. As an

extension and a solution for these, they have expressed that the cognitive complexity of an

object-oriented code can be derived through the concept of coupling. The usage of coupling

indicates the connectivity between other external modules, and it is recommended to have the

coupling in a lower state. This can be verified as a higher number of external connections

between modules can increase the difficulty of understanding, so that its cognitive complexity

becomes high. Subsequently, they have introduced Cognitive Weighted Coupling Between Object

(CWCBO) [34] as in Equation (9).

𝐶𝑊𝐶𝐵𝑂 = ((𝐶𝐶 ∗ 𝑊𝐹𝐶𝐶) + (𝐺𝐷𝐶 ∗ 𝑊𝐹𝐺𝐷𝐶) + (𝐼𝐷𝐶 ∗ 𝑊𝐹𝐼𝐷𝐶) + (𝐷𝐶 ∗ 𝑊𝐹𝐷𝐶) + (𝐿𝐶𝐶 ∗

𝑊𝐹𝐿𝐶𝐶) (9)

CWCBO includes various types of coupling as listed in Table 4.

Table 4. Types of Coupling Introduced under [34]

Coupling Type Description

Control Coupling (CC) One module controls the sequence flow of the other module

Global Data coupling (GDC) Two or more modules share the same global data structures

Internal Data Coupling (IDC) One module directly modifies the local data of another

module

Data Coupling (DC) Output of one module is the input to another module.

Parameter lists are used for the data passing

Lexical Content Coupling

(LCC)

A part or all the contents of one module is included in

another module

According to Equation (9), each type of coupling in Table 4 has been multiplied with a

corresponding rate. That rating has been defined as the corresponding cognitive weight for each

type of coupling. The result obtained from the multiplication of one category in Equation (9),

prompts the understandability effort of that coupling type. A detailed analysis has been

performed to obtain these cognitive weights by conducting a comprehensive test for a selected

number of bachelors and master’s students. Students who have scored 65% or more for another

general examination have been selected as the targeted users, and 30 students were selected

through that scenario. All the users were given 2 object-oriented source codes regarding each

coupling type and measured the average time taken to understand both of them. The duration

27

taken to understand a given program indicates its comprehension effort. In other words, higher

duration taken to understand a source code implies a higher complexity, while a simple program

can be understood within a shorter time period. Accordingly, the mean time taken for each

coupling category and the proposed cognitive weights are listed in Table 5.

Table 5. Proposed Cognitive Weights for Coupling Category [34]

Program Comprehension

Time

Coupling Category Mean Comprehension

Time

Weighting

Factor (WF)

1 40.7 LCC 40.18333 WFLCC = 4

2 39.66667

3 30.76667 DC 30.88333 WFDC = 3

4 31

5 21.43333 IDC 22.21667 WFIDC = 2

6 23

7 10.8 GDC 11.13333 WFGDC = 1

8 11.46667

9 10.16667 CC 10.11667 WFCC = 1

10 10.06667

According to Table 5, the weighting factor of each coupling type has been obtained by comparing

each of mean comprehension time with minimum mean comprehension time. In other words, the

least average duration tends to be about 10, and its weightage has been taken as 1. As mean

duration of IDC is 2 times larger than the minimum mean, its weight has been considered as 2.

Similarly, other weightages have also been obtained under the same criteria. Since the mean

duration of GDC is closer to the minimum mean, its weight has also been proposed as 1.

Although these cognitive weights have been proposed through a valid methodology, these

weights are specified only to that user group, which cannot be generalized to entire users.

Accordingly, applying this metric as a standardized metric have become problematic.

A methodology of assigning cognitive weights for BCS for cognitive complexity for java-based

object-oriented source codes has been proposed by Crasso et al. [22]. Preliminary, variety of BCS

have been limited to sequence, branch (if then else, case), iteration (for-do, while-do, repeat-

until), embedded component (function call, recursion) and concurrency (parallel, interrupt), and

28

they have used the same cognitive weights in Table 1 for this purpose. As their new approach,

they have extended the cognitive weightages assignment within embedded component such as

call to a local (including super) method, call to a non-local method, call to a method of an

external library and call to an abstract method which can be overridden. Sequence category has

been extended to try-finally without catch block and catch block has been included to the branch

category. The weights allocated to their approach have been shown in Table 6.

Table 6. Cognitive Weights Defined under [22]

As in Table 1, the cognitive weight for a function call has been determined as 2. It also includes

the methods in the calling class or its parent class. The weight of call to a non-local method is

computed as the weight of the function calling itself (2), and the weight calculated for the non-

local methods according to Table 1. A method calling to an external library has been introduced

as 3, due to the functional call weight (2) and 1 weight added to understand the method signature

which is being called. The computation of Wm is not applicable in this scenario as the external

libraries are closed. The cognitive weight allocated for an abstract method is defined in terms of

overridden methods. They have mentioned that it can be obtained either by computing the sum of

all overriding methods (SUM(Wax)), their average (AVG(Wax)), maximum weight (MAX(Wax)) or

the minimum weight (MIN(Wax)). Noteworthy, the software engineer should select the option

with regard to abstract methods. In that way, the possibility of making a wrong option can be

stated, so that it would create a wrong computation. Then, try-finally block has been introduced

Category BCS Cognitive Weight

Embedded Component Call to a local (including super)

method

2

Call to a non-local method m 2 + Wm

Call to a method m of an external

library

3

Call to an abstract method a, for

which

a0, …… , an override a

I + f(Wax)

Sequence Try-finally (no catch block) 2

Branch catch*[catch] 3

29

and assigned the weight as 2 without considering the potential catch blocks. They have

emphasized the similarity between the behavior of if-else and try-finally blocks in sequence

category. The try block execution of the code moves to the finally block in case of exceptions,

which is the same behavior of if-else statements. Therefore, try-finally block has been assigned

with weight 2. But, the set of catch block is represented with weight 3, which is the same weight

of switch-case statements. Because, it executes a block of a source code depending on the

condition as in switch-case statements. Repeatedly, the reason behind the same weightage

allocation with all looping criteria has not been mentioned in this work as well. Later, they have

defined the Cognitive complexity for a single Method (MC) as shown in Equation (10.1).

𝑀𝐶 = 𝑙𝑜𝑔2 (1 + [1 + 𝑀𝐶1 (𝑚𝑒𝑡ℎ𝑜𝑑𝐵𝐶𝑆)]) (10.1)

They have identified that each method represents a sequential BCS to emphasize the entire

method body, in which its weight is 1. Moreover, there can be another linear BCS (weight = 1)

inside the sequence BCS, which is denoted as methodBCS. Then, MC is going to be calculated as

the summation of both these weights (2) and the weight of arbitrary BCS recursively, as each

BCS might contain nested BCS. However, the complexity computation derived through

logarithmic base 2 has not been described properly. In addition to that, cognitive load calculated

only by using BCS is another drawback in this computation. Accordingly, following equations

have been used to compute the Weighted Class Complexity (WCC) of a class with m methods.

𝑊𝐶𝐶1 = 𝐴𝐶 + ∑ 𝑀𝐶𝑖
1𝑚

𝑖=1 (10.2)

𝑊𝐶𝐶 = 𝑙𝑜𝑔2(2 + 𝑊𝐶𝐶1) (10.3)

Equation (10.2) and (10.3) assist to compute the complexity of a class as WCC, which considers

the sum of all method complexities in a class (WCC1). The summation of weight 2 in Equation

(10.3) has been derived with the same explanation of adding weight 2 in Equation (10.1). WCC1

is computed by considering Attribute Complexity (AC) in all methods and the complexities due to

BCS (MC1). Attributes are local to every instance of a class and can be accessed by several

methods. Therefore, AC is assigned to a, where a is the total number of attributes inside the class.

Similarly in Equation (10.1) and (10.3), the rationale of considering the logarithm of base 2 has

not been mentioned. Finally, they have expressed the complexity of the entire system as Code

Complexity (CC) as follows.

30

For the calculation of CC, the complexities of all classes and their relationships have been

deemed. Inheritance relation has been used for the relationship mapping since any class may be a

parent or a child class of other classes. It is noted that the summation of individual WCC is

performed if the classes with disjoint hierarchies or classes in same hierarchical level of a class

hierarchy are observed. The weights of the classes are multiplied if the classes are in same class

hierarchy. Accordingly, the CC of an object-oriented source code with d levels of hierarchical

depth and level j with c classes is denoted as,

𝐶𝐶 = 𝑙𝑜𝑔2(1 + ∏ [∑ 𝑊𝐶𝐶𝑗𝑘
1𝑐

𝑘=1]𝑑
𝑗=1) (10.4)

According to this work, the cognitive complexity of an object-oriented source code has been

evolved with BCS, attributes, methods and inheritance concept. The limitation of considering

only the inheritance under relationship types can be highlighted. Moreover, the process of

assigning the cognitive weightages has not been mentioned, which results the above computation

as invalid.

Another cognitive complexity metric was proposed by Chhillar and Bhasin [35] indicating that

inheritance level of statements in classes, types of control structures, nesting of control structures

and the size to determine the cognitive complexity. They have calculated the cognitive

complexity of an object-oriented source code using Equation (11), where Cw(P) is the weighted

complexity measure of program P, Sj is the size of jth executable statement in terms of token

count (operators + operands + methods/functions + strings) and Wt is the total weight of jth

executable statement, which can be obtained as the addition of the weight due to inheritance level

of statements, types of control structures and nesting level of control structures as listed in Table

7.

 𝐶𝑤(𝑃) = ∑ (𝑆𝑗) ∗ (𝑊𝑡)𝑗𝑛
𝑗=1 (11)

31

Table 7. Cognitive Weights Defined under [35]

The architectural aspect of the source code has been computed through Sj. The control flow and

the relationships of the object-oriented source code has been obtained through Wt. According to

Table 7, the cognitive weight is incremented along with the inheritance level incrementation,

which verifies the cognitive effort addition in each layer. But, the limitation of inheritance being

the relationship type is repeated in this work as well. In control structures, all types of branch and

looping criteria have been assigned with same weights without specifying the complexity

variation among multiple controllers in same category. The weightage assignment of switch-case

statements can be stated as valid as it tends to be increased with respect to the number of case

statements used. Further, the nested control statements have been handled by assigning another

cognitive weight based on the nested level, which tends to be increased along with the nested

hierarchy. Since the logic gets more complex with the nested levels, the mechanism of assigning

the cognitive weights for nested structures can be mentioned as valid.

Category Description Cognitive Weight

Inheritance level Base class 0

First derived class 1

Second derived class 2

Control structures Sequential statements 0

Branch statements (if – then –

else)

1

Loops (while, for, do-while) 2

Switch-case statements with n

cases

n

Nesting control structures Sequential statements 0

Statements inside outer most

level of control structures

1

Statements inside next inner

level of control structures

2

32

Furthermore, Wang and Chiew [36] mentioned the cognitive complexity of a product in terms of

functional complexity through seven definitions. Definition one indicates that software functional

complexity should be measured with a two-dimensional metric as a product of operational and

architectural complexities. Subsequently, following subsections have been assigned with

cognitive weightages as listed in Table 8.

Table 8. Cognitive Weights Defined under [36]

The weightages in Table 8 have been quantitatively determined based on a series of empirical

experiments. It is significant that they have emphasized the variation of the absolute value of

BCS cognitive weights for each individual in program design and comprehension. However, they

have claimed that relative cognitive weights between the ratio of w1(BCSi)/w(BCS1) where

2<=i<=10 remains unchanged. Accordingly, they have eliminated the subjectivity among the

comprehension level of each individual and determined the objective cognitive weights of ten

BCS categories. This procedure can be considered as one way of expressing the subjective

measurements in a quantitative manner. However, removing the subjectivity along with the

concept of ratio cannot be stated as a better way of handling subjective measurements, and hence,

it creates an ambiguity with the definition of cognitive complexity. They have specified two ways

of structural BCS patterns inside a software system such as sequential and embedded BCS. In

earlier systems, sequential BCS were seen such that the source code layout has become linear.

Therefore, the operational complexity has been calculated as the sum of all linear BCS. However,

BCS Calibrated Cognitive Weights (Wi)

Sequence 1

Branch 2

switch 3

for-loop 7

repeat-loop 7

while-loop 8

Function call 7

Recursion 11

Parallel 15

Interrupt 22

33

modern logical implementations have been coded with embedded BCS, so that the operational

complexity has to be computed with the sum of sums of cognitive weights of inner BCS. Since

there may be several variations of both BCS configurations, a general method of deriving the

operational complexity has been defined in definition 2. According to definition 2, the

Operational Complexity of a software system S, Cop(S) is computed as the sum of its n linear

blocks enclosed with individual BCS, which has been denoted by Equation (12.1).

𝐶𝑜𝑝(𝑆) = ∑ 𝐶𝑜𝑝(𝐶𝑘) = ∑ ∑ 𝑤(𝑘, 𝑖)
𝑚𝑘
𝑖=1

𝑛𝑐
𝑘=1

𝑛𝑐
𝑘=1 (12.1)

The cognitive weights for each liner BCS can be taken through Table 8. The logic behind

Equation (12.1) tends to be valid as the BCS determine the operational behavior of source codes.

Hence, computing the operational complexity by obtaining the summation of cognitive weights

assigned for each BCS in each liner block can be acceptable. Since they have maintained relative

cognitive weight by w1(BCSi)/w(BCS1) as stable to reduce the comprehension effort subjectivity,

definition 3 implies its calculation process as follows.

𝑤(𝐵𝐶𝑆𝑖) =
𝑤1(𝐵𝐶𝑆𝑖|2<=𝑖<=10)

𝑤1(𝐵𝐶𝑆1|𝑤1(𝐵𝐶𝑆1) = 𝑤1(𝑆𝐸𝑄) = 1)
 (12.2)

As implies in Equation (12.2), the relative cognitive weight of a BCS is computed as a relative

ratio between the tested comprehension effort w1(BCSi) and the reference comprehension effort

of the sequential BCS1, which is equivalent to 1. Even though the ratio between the tested and

reference comprehension efforts maintains as unchanged, they have to be varied among each

individual. Therefore, the computation of the relative BCS weight can be stated as unrealistic.

Through definition 4, the explanation of operational complexity unit has been introduced. The

operational complexity unit has been denoted as a single sequential operation called a unit

function, which is equivalent to 1. They have further elaborated the operational complexity of a

code with only sequential statements equivalent to 1, where the operational complexity is going

to be reduced to the symbolic complexity LOC. As the next complexity, they have emphasized

the functional complexity of a software. The functional complexity is denoted with the

architectural complexity, which is proportional to the number of local and global data objects

such as inputs, outputs, data structures and internal variables used in the program. As such, the

architectural complexity of a system S, (Ca(S)) has been defined using the number of data objects

and the component levels and mentioned in definition 5 as follows.

34

𝐶𝑎(𝑆) = 𝑂𝐵𝐽 (𝑆) = ∑ 𝑂𝐵𝐽(𝑈𝐷𝑀𝑗) + ∑ 𝑂𝐵𝐽(𝐶𝑘)
𝑛𝑐
𝑘=1

𝑛
𝑗=1 (12.3)

According to Equation (12.3), OBJ is a function that counts the number of data objects in a given

data structure. The summation of the count of global variables known as Unified Data Model

(UDM) and the count of all local variables in nc components have been considered through the

second component. Thereby, it can be claimed that this equation quantifies the complexity related

to the architectural flow inside a given source code with respect to all possible data categories.

Moreover, they have initiated the definition 6 with the concept called unit of architectural

complexity, which is the complexity of a single data object modelled either globally or locally,

and it has been assigned to 1. By elaborating the software architectural and operational

complexities, the cognitive complexity of a software system has been introduced by its functional

complexity and the size. Accordingly, the Cognitive Complexity of a software system S, Cc(S) is

computed as a product of Cop(S) and the Ca(S).

𝐶𝑐(𝑆) = 𝐶𝑜𝑝(𝑆) ∗ 𝐶𝑎(𝑆) (12.4)

Equation (12.4) highlights the necessity of expressing the cognitive complexity in terms of

functional complexity as the functional complexity determines a collection of operations applied

to a set of data objects inside the software. Moreover, the functional complexity is directed with

the architectural and operational complexities as an operational functionality can be increased

with respect to higher number of data objects, which increments the functional complexity as

well. A higher functional complexity implies a higher level of processing inside the software, so

that a considerable amount of human effort is acquired for its comprehension comparing to a less

processing. Hence, Equation (12.4) validates the practicability of considering the functional

complexity to denote the cognitive complexity. Further, they have initialized the concept called

unit of cognitive complexity through definition 7, which a single sequence operation is applied to

a single data object. Consequently, they have defined the physical aspect of the functional

complexity by the number of functional objects modeled inside the given software system.

Additionally, they have emphasized the necessity of computing the functional complexity

quantitatively and expressing it as the cognition level of the software. Therefore, this

achievement can be introduced as a mechanism of quantifying the cognitive complexity through

a reasonable number of factor consideration.

35

Surprisingly, a methodology of computing the cognitive complexity can be widely seen in

SonarSource software projects integrated with SonarCloud and SonarQube1[12]. This is

considered as the recent mechanism of computing the cognitive complexity. It introduces the

cognitive complexity as referred to as SonarSource Cognitive Complexity (SSCC), which

indicates the measure of difficulty level to understand and maintain the control flow of a method

[2]. Significantly, it has avoided the usage of objective mathematical models to assess the

software complexity, which have used in all the previous works. The concept of control flow

suggested in cyclomatic complexity [37] has been considered for the computation of SSCC but,

in addition, it considers the difficulty level of each BCS irrespective to the computation in

cyclomatic complexity. In other words, although the cyclomatic complexity becomes same for

two different codes, the user cognition related with these codes can be different. That difference

is represented by SSCC metric with respect to the general users. One of the exemplifications to

illustrate that work can be observed in Figure 3.

Figure 3. Example of SSCC Calculation [12]

1 https://www.sonarsource.com/products/sonarqube/

//Cognitive complexity 7

 int sumOfPrimes (int m)

 {

 int total = 0;

 // +1

 B: for (int i = 1; i <= m; ++ i)

 {

 // +2 (1 by nesting)

 for (int j = 2; j < i; ++ j)

 {

 // +3 (2 by nesting)

 if (i % j == 0)

 {

 continue B; //+1

 }

 }

 total += i;

 }

 return total;

}

//Cognitive complexity 1

 String getWords (int n)

 {

 // +1

 switch (n)

 {

 case 1:

 return “one”;

 case 2:

 return “two”;

case 3:

 return “three”;

 default:

 return “< three”;

 }

}

36

By referring to Figure 3, it can be observed that sumOfPrimes() has 2 for loops and 1 if

conditional statement, so that the cyclomatic complexity is 4 due to the number of decision

statements are being 3 and adding of 1 according to the complexity computation. Similarly,

getWords() consists with a switch-case statement with 3 cases, so that its cyclomatic complexity

is also equivalent to 4. However, the control flow of sumOfPrimes() is can be observed as

complex than getWords() due to the nested BCS and the usage of continue statement. On the

contrary, the control flow of getWords() is more understandable with the regular usage and

syntax of switch-case statements. Although this complexity variation is not achieved by

cyclomatic complexity metric, SSCC is capable of illustrating such that SSCC of sumOfPrimes()

is assigned to 7 and getWords() is 1. It is noted that the higher value of SSCC demonstrates a

higher user comprehension effort with high cognitive complexity. Furthermore, the facility of

changing the maximum value of SSCC has also been introduced, although SonarQube suggests

having it to 15 as the maximum cognitive complexity. The calculation of SSCC has been

performed as follows. The first BCS is assigned with weight 1, and each inner BCS is assigned

with the nested level accordingly. In sumOfPrimes() outer for loop is assigned to 1 and the inner

for loop and if condition has been assigned with 2 and 3 respectively based on their nested levels.

Then, the continue statement inside if statement is assigned with 1. Then, its total cognitive

complexity is made into 7. Similarly, getWords() complexity is assigned to 1 as it contains only a

single switch-case statement. Accordingly, a source code with more inner BCS will obtain a

higher SSCC than a source code without nested BCS, which clearly describes the human

capability of understanding a source code with nested and sequential BCS. Even though SSCC

shows a slight variation among the objective computations of current software complexity

metrics, the limitations of considering the human cognition with respect to BCS and the

exclusion of real personal profile has not been resolved.

In addition to that, Dissem et al. introduced a software metric called Asymptotic Path Complexity

(APC) which computes the mental effort required to comprehend a source code based on

subjective programmer experience, time to complete the program comprehension tasks, task

performance and functional magnetic resonance imaging measurements of human brain [38].

APC has been computed with the number of steps (n) executed by the Program P and the number

of steps of execution with length l. As such, APC of a program P has been denoted as a function

f(n) such that the number of different executions of P with l <= n is given as in Equation (13).

 𝐴𝑃𝐶 = 𝑂(𝑓(𝑛)) ; 𝑙 <= 𝑛 (13)

37

Along with theoretical and empirical validation, they have concluded that APC is more refined

and meaningful metric than the available control flow metrics like cyclomatic complexity metric.

Further, APC has correlated with several measurements directed with code comprehension

resulting it as another achievement to indicate as cognitive complexity.

2.3 Challenges in Cognitive Complexity Quantifications

Although the cognitive complexity has been quantified as a metric and for ease of use, there are

numerous drawbacks with the usage of these cognitive complexity metrics in real applications.

Basically, the parameters considered through source code aspect in each computation are

different, so that the computations proposed from each work are varied with each other. The

categories considered under source code aspect to determine the cognitive complexity can be

preliminarily divided into architectural and spatial aspects. The spatial aspect expresses the size

of the source code or the distance from a module call from its calling to the implementation in

terms of LOC, so that a significant difference of the categories under it cannot be observed. The

architectural aspect has been expressed in numerous ways, as it defines the amount of

information inside a source code. Accordingly, the possibility of getting varied complexity

values for a same source code can be attained, which derives the problem of attaining a single

measurement as the cognition effort. Nevertheless, the number of parameters that can be

considered through source code aspect to define the human comprehension cannot be limited as

the contexts that the source code complexity can be viewed are unlimited. Hence, the possibility

of having a computation which demonstrates the entire source code aspect with respect to the

human comprehension is unachievable.

Secondly, the inclusion of personal profile can be observed as comparatively lesser than source

code aspect involvement in these metrics. The involvement of personal profile has been

introduced using cognitive weights which indicates the difficulty level of understanding for

selected source code categories. However, there are significant number of drawbacks consisted

within these weightages. The assignment procedure of cognitive weights has not been clearly

mentioned in majority of the works. Expressing the difficulty levels using quantified weights can

be explained as a vital achievement, and it has to be performed through a standard procedure. The

experimental background used in [34] to express the weights can be accepted, while the other

distributions are merely the assumptions. Nonetheless, the problem of using these weights for

38

entire user population is still remaining as their applicability is limited only for that user group.

The assumption based cognitive weight allocation cannot be validated, as assumptions cannot be

applicable for most of the real scenarios. Furthermore, the user preference should be considered

for the comprehension effort as the effort utilized for an easily understandable category is less,

and the comprehension effort taken to a non-preferable category is high. Therefore, the

inconsistency of assigning different source code categories which perform the same functionality

with same weightage can be raised.

To conclude, non-limitation of the source code properties taken for the human cognition,

inconsistencies observed in cognitive weights are the major drawbacks of the current cognitive

complexity metrics, which should be addressed to standardize the cognitive complexity

calculation process in the form of metric.

2.4 Cognitive Complexity Expression with Software Attributes

As per the definition of cognitive complexity, the subjectivity associated with the human

comprehension level has built the path of not confining it to a metric calculation. Consequently,

the usage of cognitive complexity concept has been used to define the other software attributes.

On the other hand, the usage of other software attributes has been considered to define the

cognitive complexity. As such, the cognitive complexity being a predictive factor can be

observed in several previous works.

Hansen et al. have found that there is a strong relationship between the cognitive complexity and

the source code, expertise and correctness using Python source codes [39]. The source code of

software is a possible milestone to demonstrate its underlying logic. Hence, the comprehension of

a software can be determined through the understandability of its source code. The correctness of

a source code is another essential parameter for the understandability. A source code with a

smaller number of errors can lead to its logic directly so that the comprehension effort can be

reduced to lessen its cognitive complexity. If a source code consumes a high number of errors, a

considerable amount of effort has to be utilized to avoid the errors, and then the effort has to be

given for the comprehension. Therefore, an erroneous source code would lead to a high cognitive

complexity. Accordingly, they have identified that the errors of a source code as a direct

parameter to determine the cognitive complexity. On the other hand, they have introduced the

39

expertise of analyzing a source code can express its cognitive complexity. If an individual’s skill

level of comprehending the logic of software is high, the effort that has to be utilized for the

comprehension process is low, which results a lesser cognitive complexity. The cognitive

complexity becomes higher for a user, whose skill level is lower for the comprehensibility so that

understanding requires a considerable amount of effort. Therefore, the analysis of the cognitive

complexity in terms of user expertise can be mentioned as valid. Noteworthy, they have extended

the same analysis for other programming languages using more realistic programs to observe the

parameters effecting for the cognitive complexity. Consequently, they have observed that the

same parameters can be applied for the user comprehension regardless of the programming

languages used. That can be evaluated through the variation among the comprehension efforts

associated with different programming languages. In other words, although the expertise level

and the number of errors can be varied with respect to the programming language used, these

parameters can still be considered to determine the cognitive complexity of a given source code.

Several research works have introduced that the cognitive complexity can be used to identify the

locations of the software with high frequency of errors and to evaluate the quality of the software

[40], [41]. As it has been mentioned earlier, errors of a source code can control the cognitive

complexity. Subsequently, a code segment with high frequency of errors can result a high

cognitive complexity, since the understandability level of the erroneous code is evidently high.

Similarly, a code with less errors can imply a less cognitive complexity. The cognitive

complexity of a simple software is relatively low as it can be easily comprehended. Furthermore,

the applicability of cognitive complexity to assist programmers to detect code defects effectively

using a novel approach called Human-Machine Pair Inspection has been carried in [42].

Moreover, the ability of a software to be functioned as per the user requirements is known as

software quality [43]. As errors violate the possibility of proper functioning, the necessity of

having an erroneous source code should be maintained in order to derive a quality software and

to achieve a lesser cognitive complexity.

The significance of evaluating the relationship among understandability and cognitive complexity

has been performed in [4], [5], [10], [13], [44]. They have clearly outlined that a software with

lesser understandability denotes high cognitive complexity. Similarly, a software which can be

easily understood derives a less cognitive complexity. Recent research conducted by Lenarduzzi

et al. highlights the importance of having cognitive complexity as an indicator of expressing user

understandability [45]. Their case study involved with the manual inspection of a set of Java

40

classes that exhibit different code complexity levels such as cognitive complexity and cyclomatic

complexity measured by SonarQube. Based on the users’ rating levels, they have interpreted that

cognitive complexity being a vital determinant to measure user comprehension comparing to the

other metrics like cyclomatic complexity. Moreover, Wyrich et al. have found the subjective

comprehension level of users are cognitive biased and depend on the factors like anchoring effect

[7].

A determination of predicting the success of software projects using cognitive complexity has

been proposed by [2]. A successful project is referred to its functionalities are being processed

according to the customer requirements, which its quality becomes high. According to [40] and

[41], a quality project is found to have less comprehension effort so that its cognitive complexity

should be low. Therefore, the concept of cognitive complexity is taken as a selective factor to

determine the success rate of a project can be stated as valid.

Akman et al. have initiated that the simplicity is the best way to deal with the software

complexity, and it is crucial to apply the concept of simplicity inside the software development to

measure error prone, time consuming and complex activities [46]. This can be verified through

the cognition efforts that error prone, time consuming and complex activities consume. As it is

already verified in [39] - [41], there is a proportional relationship of the errors of a source code

and its cognitive complexity. An activity is known to be complex, if it is difficult to understand.

Hence, a complex activity consumes a considerable amount of time to comprehend, so that it

becomes a time-consuming task. Accordingly, a complex and time-consuming task can reach to a

high cognitive complexity due to the high effort allocated for its logical comprehension.

Furthermore, they have identified that cognitive complexity plays a leading role of developing

software projects. The reason behind that is the consideration of the varied cognition abilities

among the development team through different task allocations. Each member of the

development team has different capabilities of handling software. Therefore, it is essential to

categorize the team members according to their cognitive capabilities and assign the processes

accordingly. This describes the necessity of assigning the complex tasks to the team members

with high expertise and high cognitive load balancing, where the simple tasks have to be

allocated to the other members in the development team.

Another different approach of exploring the relationship between current source code metrics

with cognitive load has been described in [47], which can be treated as a major milestone in

41

cognitive complexity concept as well. It has been found that the difficulty of the software

development can be indicated as the difficulty level associated with its source code. Therefore,

reason behind its complexity computation by considering certain aspects of the source code has

been verified as true. However, it has been introduced that this difficulty is associated with the

increment of users’ cognitive load which can be estimated using psycho-physiological measures,

so that the complexity can be denoted with respect to the cognitive load. Accordingly, the

existence of the impact of cognitive load with cognitive complexity can be analyzed as follows.

The difficulty level associated with a source code or the user understandability of a source code

can be expressed with its cognitive complexity. Therefore, the possibility of indicating cognitive

complexity through users’ cognitive load can be emphasized as a significant approach.

Numerous research works on the applicability of cognitive load with user comprehension has

been assessed in [48]. In there, the accuracy of current software metrics to determine the user

understandability has been questioned. Consequently, it has proposed to use wearable body

sensors to provide cognitive perspective on code comprehension and software metrics.

Furthermore, Hao et al. have conducted an experiment to observe the accuracy of code

complexity metrics which include cyclomatic complexity, Halstead complexity and cognitive

complexity provided by SonarQube [49]. Accordingly, they have experienced the failure of

above-mentioned metrics to capture the complexity perceived by the programmers in terms of

their cognitive loads. These situations imply the necessity of introducing a proper metric which

indicates the cognitive load effecting with user comprehension. As the user comprehension is

related with cognitive complexity concept, expressing cognitive complexity in terms of cognitive

load can be verified over again.

2.5 Applicability of Cognitive Complexity in Other Domains

The comprehension effort of a person should not be limited only for the software development

process, as its applicability can be expanded into wider domains. Therefore, the applications of

other domains have been considered to observe how the concept of cognitive complexity has

been used within them. Gruhn and Laue have introduced a mechanism to implement the

modelling elements to reduce the cognitive complexity in Business Process Models (BPM) [50].

The underlying logic behind that concept is to reduce the unnecessary misunderstandings that

42

user might have with the manual comprehension process. Therefore, by implementing the

modelling elements they have expected to reduce the cognitive load effected to the unrequired

misunderstandings and to gain a less cognitive complexity. Moreover, they have proposed an

automatic search and pattern finding algorithm for the patterns to improve the comprehensibility,

which in terms found to reduce the cognitive load. Furthermore, they have searched to implement

more modelling elements to reduce the cognitive complexity in terms of cancellation of processes

and exceptions in the control flow. Hence, reducing the opportunities that might occur with

misunderstandings can be treated as one procedure to achieve a lesser cognitive complexity.

Moreover, they have analyzed the applicability of visualizing BPM using Unified Modelling

Language (UML) diagrams in order to communicate with stakeholders inside the software

development process, and to use them to make the understanding and maintaining processes

easier [51]. They have found that the visualization process can indicate the logic clearly and in a

consistent manner, so that users can recognize it easily. The reduction of the cognitive effort with

their visualization has been verified using the cognitive complexity metric proposed by Shao and

Wang [25]. Thereby, the logic representation using visualization techniques can be granted as a

way of simplifying the human cognition effort.

An attempt to verify the human cognition the air traffic have been discussed in [52]. In there, a

model to simulate the air traffic has been developed and applied for a comparison using different

complexity factors. Consequently, it has been found that the effectiveness of cognitive

complexity in terms of attention, decision making, memory and perception can control the level

of air traffic. It has been described as the cognitive load related to the attention, decision making,

related memory and the perception can make the air traffic controlling process easy, so that they

can assist to reduce the cognitive complexity. Moreover, another approach was achieved by

initiating the Brahms Generalized Uberlingen Model (Brahms-GUM), which simulates the

cognitive behavior of aviation work practices [53]. It was developed by analyzing and

generalizing the roles, systems and events, which leads to an aircraft collision. It also simulates

the asynchronous behavior of distributed processes in which the sequence of temporal

interactions can be mutually unpredictable and constrained with each other. The logic of these

simulations has been stated as the processes of assisting the cognitive load, which can reduce the

cognitive complexity of aviation practices by reducing the comprehension effort related with

each user.

43

The necessity of handling the gaming levels through cognitive complexity concept has been

explored in [54]. It is found that the competitions designed by analyzing the participants’

comprehension ability have improved the performance and anxiety of low-achieving students,

while achieving smoother tasks. It is therefore ensured the possibility of designing the games by

analyzing the cognitive levels of each participant without maintaining a static gaming

environment for all users. Hence, the possibility of increase the interaction and the performance

of gaming participants has been verified through this work.

As another approach, Presbitero has explored the influence of cognitive complexity in career

paths. Accordingly, he has indicated the influence of proactive personality and cognitive

complexity between proactive career planning and proactive career enacting [55]. Consequently,

he has verified that the employee’s proactive personality and the cognitive complexity assist to

strengthen the relationship between proactive career planning and proactive career enacting,

which can be used for the development of organizations as well. Therefore, the comprehension

effort utilized by an individual with regard to the career along with the personality can be

believed as predominant factors beneath the success of the persons’ career path and the

organization.

The impact of socio-cognitive complexity in the domain of theater applications is found by Silva

et al. [56]. Their study has involved a construction of an instrument which can explore the

complexity of thoughts among actors, directors and other practitioners in theaters. Consequently,

they have verified lower cognitive complexities regarding the theater applications among

individuals with high experience in acting and directing. Thereby, they have verified the

possibility of analyzing the psychological impact of theaters based on socio-cognitive

complexity. Further, the assistance of the experience of a person regarding a particular domain to

reduce the cognition effort can be stated through this study. Therefore, the concept of cognitive

complexity has been verified as a practicable factor inside wider domains, which ensures its

applicability expanded beyond the software and its complexity computation.

44

2.6 Standardization of Cognitive Complexity Metrics

Each complexity metric should be empirically and theoretically verified with its accuracy,

stability and the practicability in real processes for its wider usage, to avoid the variety of metric

introductions to compute the same complexity. For that purpose, standardized software properties

and frameworks have been introduced, and proposed complexity metrics must be verified

through them. The theoretical validation of the proposed metrics has been conducted through

Weyuker properties [57] and Briands’ framework [58]. Weyuker has defined nine properties to

be satisfied by a newly proposed metric to ensure its practical usage, while Briands’ framework

consists with five modular complexity properties to be satisfied. The satisfaction of majority of

the properties inside these frameworks has proven the applicability of the proposed metric in real

applications. Noteworthy, several cognitive complexity metrics have been validated through

Weyuker properties and Briands’ framework to verify their usages.

The cognitive metric proposed by Misra [59] has been validated through Weyuker properties.

The metric has successfully proven upon seven properties through its evaluation process.

Furthermore, the extended Cognitive Information Complexity measure (CIC) introduced by

Kushwaha and Misra [60], [61] have evaluated their metric under Weyuker properties to validate

its stability of usage. Another major approach of determining the cognitive complexity through

spatial complexity of an object-oriented source code by Gupta and Chhabra [62] have also used

Weyuker properties as their validation framework. An inheritance cognitive complexity metric

proposed by Misra et al. [29] was validated through the properties defined under Brainds’

framework for its stability. The object-oriented cognitive complexity metric proposed by Misra

[59] has been successfully evaluated through Briands’ framework by satisfying all the properties

listed. Furthermore, the cognitive metric proposed for object-oriented codes with respect to the

spatial capacity by Chhabra and Gupta [63] has been verified through Briands’ framework.

Another metric introduced for object-oriented codes by Misra and Akman [64] has also been

validated through both frameworks in order to prove its usage in real applications.

Although the stability of the proposed cognitive complexity metrics has been theoretically proved

in terms of Weyuker properties and Briands’ framework, the empirical validations to validate

their practicality has not been performed. Moreover, the validations of the computational

processes introduced by these metrics has also not been indicated. The complexity values

computed through proposed cognitive complexity metrics are validated for a selected set of users,

45

since the cognitive weights used are based on them. Nevertheless, those cognitive weights are

assumptions-based values which are based on selected users’ experience. Although these

weightages are assumptions, their validation has to be processed to be applicable within that user

group, which has not been performed. Subsequently, the computational process of these metrics

over the selected user group cannot be observed. Apart from that, the applicability of these

computations over the entire user population must be proved statistically to ensure the

standardization. However, none of these metrics are able to standardize their metrics over

statistical and hypothetical procedures, which raise the problem of generalizing their

computational processes. This situation leads to observe a significant number of drawbacks with

their computational processes which cannot be granted to be denoted as the cognitive complexity.

Hence, a cognitive complexity metric should be theoretically and empirically validated, and

statistically capable of proving its usage in real applications to demonstrate the user

comprehension effort of a given source code.

2.7 Summary

There has been a considerable number of efforts proceeded to express the cognitive complexity

of a given software by analyzing its source code and presented it quantitatively by defining

cognitive complexity metrics. Most of the computations are based on the source code properties

which have been expressed through the architectural and spatial aspects. The architectural aspect

is considered to be the amount of information inside a source code, which can be expressed in

numerous ways. The spatial aspect is denoted through LOC. Hence, introduction of different

cognitive complexity metrics can be stated due to the varied ways of expressing the architectural

aspect. The consideration of variables, attributes, input output parameters, operators, operands,

BCS, functional complexity, operational complexity and object-oriented concepts like

inheritance, coupling and cohesion are some of the categories that the architectural aspect has

been expressed in different research works. The effectiveness of the human comprehension is

included as a form of a weightage in these metrics. It is a numerical value denoted as cognitive

weight, which has been assigned based on assumptions taken regarding the experience levels of a

target user group. Assumptions cannot be considered as valid procedure of introducing cognitive

weights, thereby the problem of validating the cognitive complexity metrics has arisen. Even

46

though these weights have been assigned through an experimental background, the limitation of

those weights only to the experimental user group exists. Non-consideration of the personal

preference of using the source code controllers can also be observed, as multiple controllers with

same functionality have been assigned with the same weight. Moreover, the inclusion of personal

profile cannot be accepted in these metrics as they emphasize more on source code aspects.

Rather than limiting the cognitive complexity into a quantifiable value, the applicability of it as

an analytical and predictive factor based on other software attributes has been explored by several

works. Consequently, the user understandability, user expertise, error prone source codes, time

consuming and complex tasks and success rates of software projects and products have been

presented as the parameters of controlling the cognitive complexity. This accomplishment can be

considered as a vital achievement to assess the qualitative aspects effected for the human

understandability effort apart from the mathematical quantifications.

The applications of the concept of cognitive complexity in other domains can be treated as

predominant instances to describe cognitive complexity. As such, the possibilities of using the

cognitive complexity in BPM, aviation work and air traffic practices, career organizations and

theater applications have been observed. Accordingly, the concept of process automations,

simulations and the experience effected in a particular domain have been highlighted to reduce

the cognitive load, and thereby to achieve a reduced cognitive complexity.

To conclude, the expression of cognitive complexity can be observed as a form of metric and as

an analytical and predictive factor within the context of software. Moreover, its applicability can

be observed widely in other contexts as well. However, the problem of expressing a standardized

mechanism to apply and use the cognitive complexity in software development process is still

existed.

47

3.0 METHODOLOGY

3.1 Introduction to Methodology

The main purpose of this research project is to analyze the procedures of applying the cognitive

complexity through software development and maintenance processes. The main rationale for

this scenario is the non-existence of a standard mechanism of using the cognitive complexity

concept inside the software development process, although it has been used as a form of

numerous metrics and as a factor of qualitatively determining the other software attributes.

Therefore, using this concept inside the software development results inconsistence situations.

Hence, this research works attempts to solve this scenario as follows. The main factors that can

be used to express the cognitive complexity and the sub factors associated with each main factor

have to be explored to create the path of describing it in detail. Subsequently, procedures of

handling the human cognition have to be explored by considering the main and sub factors

related with human comprehension. A software with lesser cognitive complexity is one of the

main expectations inside its development process [12], so that mechanisms of reducing the

cognitive complexity should be attained by analyzing the procedures which can control the

human cognition. Accordingly, a computational design of the procedures that can be used to

reduce the cognitive complexity is implemented. Additionally, an introduction of a cognitive

complexity metric has been performed, which can solve the drawbacks mentioned in literature.

At last, the evaluation of the computational design and the metric has been accomplished to

verify their usage in real applications.

3.2 Analysis of the Factors and Sub Factors Effecting for Cognitive

Complexity

The comprehension effort related with a software is referred to its cognitive complexity, and it is

expressed by analyzing the source code implemented for it. Even though the comprehension

effort is analyzed for a software, it is derived through its source code. The same practice has been

followed by existing software complexity metrics, as the source code is the major evidence of

detecting the logic of a software [65]. Therefore, the usage of source code to determine the

comprehension effort can be accepted to define the cognitive complexity of its software. Since

48

the cognitive complexity is directed to the understandability, the responsible party of

understanding the software logic should be analyzed. Understanding the logic of a source code is

performed by two parties. The logical identification of a software should be performed by the

software team members engaged within the software development process, as they cannot

implement the software without comprehending its logic. Furthermore, the source code logic is

essential in maintenance process, since they should acquire new changes and modify the current

functionalities by identifying the logic of the source code. On the other hand, the computer is the

other party that requires source logic of the source code. Once the source code is implemented, it

should debug, execute and run to produce the outputs. These operations are performed once the

source code is transformed into a computer readable format. The expected outputs are produced

after the comprehension process of the source code is completed by the computer. Therefore, the

comprehension of a source code logic is performed by software development team members and

the computer. It should be noted that this research work analyzes the comprehension effort

utilized by development team members as the cognitive complexity, and it has been denoted as

the human comprehension effort. Therefore, as the preliminary task, the factors related with the

human cognition effort has been explored.

Based on the concept of analyzing the human comprehension effort of a source code, the

cognitive complexity can be viewed by two main aspects. The effort utilized for the

comprehension is gained from humans, which is referred to the team members in the software

development process. Hence, one major factor of expressing the cognitive complexity can be

stated as personal profile. The comprehension effort is measured from the source code

representing a particular software. Therefore, consideration of the source code for the cognitive

complexity cannot be ignored. Herein, the cognitive complexity is presented using two major

factors namely personal profile and source code. Then, the sub factors of these two main aspects

have to be explored to imply the relationship to the cognitive complexity. The possible sub

factors identified under personal profile and source code factors can be observed in Figure 4.

49

F
ig

u
re

 4
.
F

ac
to

rs
 E

ff
ec

ti
n
g
 w

it
h
 C

o
g
n
it

iv
e

C
o

m
p

le
x

it
y

50

According to Figure 4, personal profile related to cognitive complexity has been categorized as

follows. Capacity of memory of an individual is a vital factor of determining the cognition effort

[47]. A person with high capacity of program related memory requires a less effort for the logical

comprehension, and a person with less capacity of program related memory requires a high effort

for the logical comprehension. Accordingly, a high capacity of program related memory leads to

a less cognitive complexity, while a less capacity of program related memory can lead to a high

cognitive complexity [48]. Further, memory of a human is categorized into long-term, short-term

and working memories. Long-term memory refers to vast storage of knowledge and information

about previous events, which remains for a longer duration and difficult to deny by an individual.

The short-term memory holds for a limited amount of temporary information, which can be

accessed very easily, while working memory refers to the memory used to plan and carry out a

given task and it is not completely distinct from short-term memory [66]. Then, the applicability

of the types of memory for a source code comprehension should be analyzed. The long-term

memory applies for the programming language, tools and technologies that the user is aware for a

longer duration. The usage of the information such as variables, BCS, input output parameters,

and functions inside a given source code can be considered under the short-term memory. The

working memory is applicable at the time of dealing with a particular source code, which

attempts to find a pattern of the logical flow of the source code by connecting with long-term and

short-term memories. Therefore, the capacities of these three types of memory should be

acquired for the logical comprehension of a source code. The reluctance of these memories can

result to require more effort on understanding the source code, which outcomes a high cognitive

complexity. However, working memory is the determinant factor of understanding the logic

behind a software at a given time, as it is the type of memory applied with that duration along

with the assistance of long-term and short-term memories. Hence, more emphasis has to be given

for the working memory when analyzing the comprehension effort taken by a user within a given

time period. Accordingly, the capacity of working memory has been taken to consider the amount

of comprehension effort for a given source code. The amount of information that the working

memory can hold for a given time period is called as the cognitive load [67]. An individual who

is capable of maintaining high amount of program related information inside the working

memory can easily understand that code without more effort, while an individual with less

cognitive load should have more effort for understanding. As such, a high program related

cognitive load directs to a less cognitive complexity, and a less program related cognitive load

51

directs to a high cognitive complexity. Furthermore, the cognitive load can be categorized into

three types namely intrinsic, extraneous and germane [68]. Intrinsic cognitive load determines the

amount of information that should be processed to comprehend a given logic. It depends on the

complexity of software and the number of elements that have to be kept in the mind at the same

time. Therefore, intrinsic cognitive load can be referred to as the memory required for necessary

processing, and it should be maintained in a higher state to increase the understandability and

achieve a less cognitive complexity. Similarly, a lack of intrinsic cognitive load reduces the

required memory for the comprehension, which reduces the understandability with high cognitive

complexity. Extraneous cognitive load refers to the cognitive engagement with excessive

distractions, which does not support for actual understanding. As an exemplification, this type of

cognitive load is utilized for navigating the code segments in an unstructured source code, so that

it can be considered as an unnecessary effort utilized for the comprehension. Therefore, the

extraneous cognitive load should be maintained in a lower state to lower the unnecessary

cognitive load spent on the comprehension process, thereby ensuring a lesser cognitive

complexity. A high amount of unnecessary cognitive load reduces the possibility of

comprehending the actual logic, so that it results with a high cognitive complexity. Germane

processing includes a deep cognitive load which is directed with the prior knowledge of the user.

This includes organizing the contents mentally and combine them with the prior knowledge,

which assists for the long-term memory of an individual. A higher capability of germane

processing creates the logical understanding process easier, which can reduce the cognitive effort.

On the other hand, a lack of germane cognitive load reduces the connectivity associated with the

prior knowledge and long-term memory, thereby resulting with high cognitive complexity.

Therefore, the ability of managing the types of cognitive load along with the memory capacity of

each individual through the comprehension processing is essential to determine the amount of

cognition effort to imply the cognitive complexity.

Another factor of determining the comprehension effort is the skill level regarding the

programming concepts. The skill level of a user and the extent that memory capacity and

cognitive load can be handled are directly connected. In other words, the lack of a proper

knowledge to comprehend a source code directs the inability of managing the memory and the

cognitive load required for its comprehension. The aptitude level on programming concepts can

be observed using two ways. Firstly, the user should aware about the programming language that

the source code has been written. The programming language consists with a set of symbolic

52

representations and instructions, which is different from the users’ native language [69].

Therefore, the user should have an aptitude of the programming language to comprehend the

content inside the source code. It is evident that the skill level of each programming language is

different for each user based on their preferences, and the expertise of a particular programming

language has been found to be a factor of determining the cognitive complexity [39]. Moreover,

along with the awareness of the programming language, analytical skill of a problem should be

required to understand the logic of a source code. In other words, although a user knows a

particular programming language, if it cannot be applied to analyze the problem addressed by the

source code, the comprehension of the source code cannot be achieved as expected. Therefore,

awareness of the programming language together with the problem analytical skill are mandatory

to handle the memory and the cognitive load in terms of cognitive complexity.

It has been found that the experience on a particular background plays a vital role of determining

the comprehension effort of the same background [56]. The same concept can be applied for the

cognitive complexity of a software, so that experience regarding the programming background

can be considered as a determinant factor of the cognitive effort. As such, a user with high

experience of the programming concepts can easily understand a source code with less effort,

which results a less cognitive complexity. On the other hand, a user with less programming

experience requires a considerable effort for the comprehension and results a high cognitive

complexity. Furthermore, the experience can be related to the concepts of the expertise level,

memory capacity and the cognitive load. The experience gradually grows in a particular

background along with the duration. Similarly, if a user deals with programming concepts for a

considerable duration, the experience of the user can be mentioned as high. It happens due to the

development of aptitude level of programming languages and problem analytical skills along

with the time. Consequently, a source code which is difficult to understand at the beginning can

be easily understood with the duration pass. Hence, it can be concluded that the cognitive

complexity is a dynamic factor as well. Through those, the experience can be considered as a

controlling mechanism of memory capacity along with the cognitive load. Therefore, the

experience of a user should be considered to determine the comprehension effort related to a

given source code, thereby to state the level of cognitive complexity.

As the next factor of personal profile to determine the cognitive complexity, age of the user has

been considered. It has been found that the age of a user is an indirect parameter for the

comprehension effort [70]. In other words, age cannot be considered as a direct parameter to

53

denote the cognitive effort of a user. On one direction, age of a person is gradually increased with

the experience, so it can be stated to achieve a less cognitive complexity based on the experience

that the user has gained. But, there can be several situations, where a aged and non-experienced

user can understand a source code logic easily. On the other hand, there is a possibility that a

novel user with less aged can also comprehend a source code logic easily. Therefore, age cannot

be considered as a direct factor of detecting the cognitive complexity. However, age along with

the programming-based experience can sometimes use as a merged factor of determining the

cognitive complexity.

The other main factor to express the cognitive complexity is the source code. Under the source

code factor, the architectural aspect is found to be a direct parameter to determine the cognitive

complexity [17], [21], [31]. The architectural aspect refers to the amount of information inside

the source code, and it is evident that it effects to the users’ cognitive complexity, since a higher

amount of information directs to have a high cognitive load to be handled. Therefore, the effort

that a user should take for the understanding process goes high, which results in high cognitive

complexity. Similarly, a lesser amount of information leads to a less cognitive load to be handled,

thereby ensuring a less comprehension effort with a less cognitive complexity. The ways that the

architectural aspect can be presented are innumerable, and the best exemplification can be given

with the considerable number of research works mentioned in literature. Some of the aspects that

the architectural aspect can be expressed are the form of input output parameters [1], [25], BCS

[1], [25], [28], variables/attributes [30], operators and operands [27]. Moreover, several research

works have emphasized the object-oriented concepts such as inheritance, coupling and cohesion

[20], [34], [35] under the architectural aspect. Therefore, the effect of considering the

architectural aspect of a source code for the cognitive complexity cannot be ignored.

The spatial capacity of the source code is another parameter of a source code to represent the user

cognition effort. It can be defined in two ways as the size and the distance from module call to its

implementation [19], [26]. Both are expressed with LOC. A source code with higher LOC tends

to complex than a source code with less LOC. Hence, high LOC source code can be difficult to

understand which takes high comprehension effort with high cognitive complexity. Also, a less

LOC source code tends to be easier to understand, so that it gets a lesser amount of

comprehension effort with less cognitive complexity. Nonetheless, there can be certain situations

where a high LOC source code directs to an easier comprehension to achieve a less cognitive

complexity, while a less LOC source code is difficult to understand with high cognitive

54

complexity. As such, the size in terms of LOC cannot be taken as a direct parameter of

expressing the cognitive complexity. The distance between a module call to its implementation is

the other parameter inside the spatial capacity of a source code. This concept is based on the

memory capacity and the cognitive load with respect to the distance that a user should navigate

when there is a module call. If there is a module call, the source code should refer to its

implementation to execute it. The greater the distance between a module call to its

implementation implies that the user should acquire a much effort to memorize the logic, whereas

the less distance of the same scenario requires a lesser comprehension effort. Along with those

situations, there is a possibility of getting a high cognitive complexity for a higher distance, while

a less cognitive complexity occurs for a less distance navigation. Therefore, the size and the

distance can be considered as the factors effecting for the cognitive complexity of a user under

the spatial aspect of a source code.

Furthermore, the programming environment that the source code is generated supports for the

amount of cognition effort of an individual. Generally, the source codes for software are

implemented with the usage of an IDE, and they are capable of handling the source code more

conveniently than a source code without an IDE. IDE is capable of providing the facilities such

as proper indentation mechanism, usage of different colors to identify data types over

variables/attributes to make the comprehension process much easier. For an instance, a source

code written in a notepad is difficult to understand due to the lack of facilities provided by it.

Therefore, the selected IDE guides the user to increase the understandability of a source code,

which can control the cognitive complexity. Furthermore, the comments are included within the

source code to increase the user understandability. The comments are independent from the

programming language and the IDE used, which describes the logic of a select code segment in a

form that any user can comprehend [71]. The comments further ensure the usability and the

maintainability of a source code without restricting its usage only for its developers. On the other

hand, a commented source code is considered to achieve a quality source code [49]. Hence,

inclusion of the comments inside the source code is essential to assess and control the cognitive

complexity. Herein, the supportive programming environment that a source code has been

implemented provides an aspect of the source code to express the cognitive complexity.

Although Figure 3 demonstrates the major factors and their sub factors to determine the user

comprehension effort of a source code, sub factors listed under the personal and source code

aspects cannot be limited. Therefore, it should be noted that the considerable number of sub

55

factors have been considered for the cognitive complexity determination to explore it using those

terms. However, personal profile and source code factors must be considered as the major factors

behind the cognitive complexity, since its definition, the comprehension effort of a person

acquired for a given source code implies these two factors.

3.3 Procedures of Reducing the Cognitive Complexity of Software

Firstly, the purpose of reducing the cognitive complexity should be discussed. Generally, a

source code is said to be complex, if it cannot be understood easily, so that a high amount of

effort is required to comprehend its logic, which increases its cognitive complexity. Hence,

reducing the cognitive complexity should be performed for a source code to make it as non-

complex. Furthermore, reducing the cognitive complexity assists to ensure a high

understandability [13]. A high cognitive complexity is occurred due to the inconsistencies

associated with personal and source code factors, as they are the major two factors behind the

cognitive complexity which have been descried under section 3.2. Further, the inconsistencies

occurred due to the misunderstandings of an inaccurately implemented logic also makes the

understanding process difficult and effect to the comprehension effort to increase the cognitive

complexity [72]. Therefore, high effort utilized with comprehending process of a source code can

be defined as the comprehension effort of a source code with correct logic implementation and

the comprehension effort of a source code with incorrect logic implementation. It should be noted

that this research work is focused to analyze comprehension effort reduction mechanisms for a

source code with correct logic implementation, by assuming the source code with correct logic is

already available. Accordingly, the inconsistencies of personal and source code factors of a

source code with correct logic has to be solved to gain a less comprehension effort, thereby to

ensure a less cognitive complexity. It is noteworthy that this work is mainly highlighted personal

profile over the source code factor as the literature of the cognitive complexity lacks personal

profile consideration. The lack of personal profile of the comprehension process can be indicated

as the inconsistencies involving with the persons’ working memory and the cognitive load [67].

If the necessary information consists with a persons’ cognitive load, comprehension process

becomes easy so that the effort utilized for understanding becomes less and achieve a less

cognitive complexity. Further, the lack of cognitive load of a user tends the comprehension

process difficult, so that a considerable amount of effort has to be taken to understand the logic

56

behind a source code, which outcomes a high cognitive complexity. As it is already described,

the other personal factors such as aptitude level on programming and experience are directed with

this cognitive load. Along with the experience growth related to the programming background,

the aptitude level on programming is increased. It is because of the cognitive load that a user can

handle increases along with the duration. Therefore, cognitive load is the core component that has

to be considered with effect to the human comprehension effort under personal profile, as the

other personal profiles also direct with the cognitive load. Thereby, reducing the cognitive

complexity should be performed in a way that it can handle the cognitive load of a user to gain a

less comprehension effort. The procedures that can handle the cognitive load of a user can be

viewed in Figure 5.

Based on Figure 5, handling the cognitive load for a less comprehension effort with respect to a

source code can be achieved in two ways. The first procedure can be described as reducing

unnecessary cognitive load. The memory load dedicated to process unnecessary information is

called as extraneous cognitive load, and it has been found that it creates unnecessary complexity

over the required processing [68]. Since extraneous memory is not directed with the source code

Figure 5. Procedures to Achieve a Less Cognitive Complexity by Handling the Cognitive Load of a User

57

logic, increment of that type of memory leads to reduce the possibilities of processing the

required information which are known as intrinsic and germane cognitive loads. Hence, the

possibilities of reducing extraneous cognitive load should be explored. The defects inside the

source code negatively influences to the smooth functioning of a source code, which does not

relate to the source code logic [73], [74]. Further, a source code with defects has found to be

reached to a high cognitive complexity [39] - [41], so that reducing the coding defects should be

considered as one procedure to mitigate the extraneous load. Moreover, an unstructured source

code consumes a considerable amount of comprehension effort which decreases the code quality

and consumes unnecessary cognitive effort [40], [41]. Hence, developing a structured source

code can reduce the extraneous cognitive load effecting to the comprehension. These two

situations can be further explained as a structured and error free source code is easy to

comprehend, and no extra effort is manipulated to solve the issues regarding the errors or the

code quality. Furthermore, handling coding defects and code quality issues are some of the

processes arrives with the software maintenance [75], [76]. As such, the reduction of cognitive

complexity of a source code can be further described as the reduction of extraneous cognitive

load associated with handling defects and code quality issues inside the maintenance process in

one dimension, apart from the effort utilized for code modifications. Therefore, the reduction of

unnecessary cognitive effort by reducing the coding defects and quality issues can create the

opportunity to increase the necessary cognitive load, thereby ensuring a high understandability by

achieving a less cognitive complexity.

The other way of reducing the comprehension effort is to create certain mechanisms of assisting

with necessary cognitive load. Even though the reduction of extraneous cognitive load can be

achieved by reducing coding defects and quality issues, the possibilities that a user cannot

understand a source code logic still exists due to the reluctance of required information contains

with the cognitive load. Therefore, a supportive mechanism has to be supplied to the intrinsic and

germane cognitive loads. Accordingly, inclusion of programming independent factors has been

studied as the guidance mechanism as the user comprehension effort varies with programming

dependent factors, so that defining supportive mechanisms for each type of source code becomes

problematic. Therefore, as the first type of assistive mechanism, the visualization of source code

logic has been introduced. The visualization of a logic is recognized to increase the

understandability as the comprehension level of any user is found to be higher in the

diagrammatical representation than it originally appears [51]. The reason behind that situation is

58

the visualization is being considered as a common way of illustrating the logic of a complex

process by numerous applications and it is being independent from any technique [77].

Therefore, the same concept has been taken as an assistive procedure to expose the logic of a

source code, so that the user gets an opportunity to refer to the visual representation along with it.

Furthermore, this can be taken as the guidance to provide the necessary details of the source code

logic, if its logic is found to be complex for a user. Therefore, the visualization of a source code

logic can be considered as a guidance mechanism for the cognitive load of users to make the

understanding process easier by reducing the cognitive effort.

As the other procedure of assisting with the necessary cognitive load, the simulation of processes

can be considered. It has been found that unnecessary misunderstandings cause to increase the

cognitive complexity, thereby introducing the simulation techniques can assist the user with the

actual processing of a given application [50], [52], [53]. Therefore, simulation techniques can

also be applied to a source code to emphasize its actual logic as a method of guidance. As an

exemplification, simulation functionalities to expose the source code behavior and the expected

outputs can be considered to guide the users’ cognitive load with a correct identification, thereby

to make the understanding process easier with a less cognitive complexity.

Another type of assisting the cognitive load is to provide the guidelines and recommendations

regarding a processing. This can be related with the simulation technique of a process but, being

process independent is the determinant aspect behind the guidelines and the recommendations.

Providing the guidelines can help the user to smoothly understand the flow of logic in a complex

code segment, while the recommendations assist the user to manage a certain process with

unnecessary misunderstandings. Therefore, providing both of guidelines and recommendations

can be taken as an assistive mechanism of guiding the user in a correct and a smoother way of

logical comprehension to achieve a less cognitive effort and a less cognitive complexity.

To conclude, the cognitive complexity should be handled in a way that it effects with the user

understandability. A lower understandability directs with a high cognitive complexity, which

goes beyond the expectation of any software development process. The lack of the cognitive load

is the preliminary reason behind this scenario. Hence, the cognitive load has to be handled to

lower the cognition effort and to achieve a less cognitive complexity. It can be performed by

reducing unnecessary/extraneous cognitive load and by assisting with intrinsic and germane

cognitive loads. Maintaining a defects free and structured source code have been identified as the

59

procedures that can be followed under the unnecessary cognitive load reduction, while the

visualization, simulation and providing recommendations and guidelines have been introduced as

the processes of assisting intrinsic and germane cognitive load.

3.4 Methodology of the Design for Reducing the Cognitive Complexity of a

Software

The applicability of the cognitive complexity inside the software development and maintenance

processes has been highlighted by exploring the procedures of reducing the cognitive complexity

as discussed in section 3.3. Then, the methodology of designing these procedures using a

computational aid has been analyzed for ease of use. The overview of the proposed system can be

viewed in Figure 6.

As per Figure 6, these components are responsible to represent the procedures under the

cognitive complexity reduction. Cognitive complexity reduction components are comprised with

the procedures of assisting necessary cognitive load and reducing unnecessary cognitive load.

These procedures have been included as the subcomponents of above two main components and

Figure 6. Overview of Proposed System to Reduce Cognitive Complexity

60

described as follows. It should be noted that the proposed system is implemented using NetBeans

IDE2.

3.4.1 Assisting for Necessary Cognitive Load: Requirements Analysis

Component

A source code of a software is implemented by referring to its requirements. Understanding user

requirements for a software is a significant factor to determine its success and its complexity

[38]. Therefore, if a source code of a software tends to be complex, the problems related with its

logical comprehension can be solved by referring to its requirements, which can reduce the

comprehension effort. This can be further explained by the dependency of the comprehension

effort with the first piece of information offered to an individual [7]. Therefore, it can be

considered as an assistive mechanism for the necessary cognitive load to increase the

understandability, and to achieve a less cognitive complexity. Since this research work is

emphasized a source code with correct logic implementation for the cognitive complexity

determination, the requirements have to be stated as correct, because there is no opportunity that

incorrect requirements can lead to a correct logical implementation inside a source code.

However, it can be generally experienced that handling the requirements of a software is not easy

as expected [78]. Therefore, a new methodology of representing the requirements of a software as

an assistive mechanism to comprehend the source code logic has been proposed.

The expectation of this component is to present the requirements in more convenient way that

can be used to comprehend the source code logic and for the usage of other phases inside the

software development process. The overview of the requirements analysis component is

demonstrated through Figure 7.

2 https://netbeans.apache.org/

61

Usually, requirements of any software are documented in the project proposal document. Hence,

the proposal document is taken as the input source of obtaining the requirements. However,

reluctance of a standard format of the proposal document has created the problem of locating the

exact requirements in a computational background. Therefore, a common format of generating

the project proposal document has been suggested as shown in Figure 8.

Figure 7. Overview of Requirements Analyzer Component

Figure 8. Proposed Project Proposal Document

62

The content of the proposal document has been divided into five categories namely the

Introduction, Problem Definition, Solution, Functionality and Team Profile. The section of

Introduction implies the preface of the problem to be addressed by the software which is going to

be implemented. A detailed description of the problem is indicated inside the Problem Definition

section. The Solution section implies the flow and the mechanism of implementing the solution.

The Functionality section indicates the requirements intended by the system to be implemented.

Finally, the Team Profile section maintains the information about the software development team

which addresses the solution. Therefore, the expectation is to locate the exact requirements

through the Functionality section of the proposal document. However, detecting the same content

inside the Functionality section as the requirements through proposed component is impractical,

and the expectation of using them to comprehend the source code logic and for the development

of other software development phases cannot be accomplished. Hence, the necessity of

representing the requirements inside the Functionality section as another form has been analyzed.

According to the phases followed in Software Development Life Cycle (SDLC), the logical

diagram generation is performed once the requirements analysis have been finalized [79]. The

source code implementation is performed by referring to the logical diagrams which have been

generated earlier. Therefore, the concept of presenting the requirements in a form that they can be

used for the diagram generation has been followed. For that scenario, requirement identification

as sentences or part of sentences cannot be used. Therefore, identification of system requirements

as class names have been explored with the possibility of applying them for the diagram

generation process as well. It has been found that the existence of class names as nouns in

majority of the scenarios, so that identifying the nouns inside the Functionality section has been

studied [80] . To achieve it, Part Of Speech (POS) tagging has been used, which converts each

sentence in a document to a list of words and allocates a corresponding tag [81]. The words

captured with the tag of “NN” have been identified as the nouns inside the Functionality section.

Identifying all the nouns inside the specified section would be another problem as it would create

unnecessary complexions through the diagram generation process. It is therefore, decided to

control the number of class names through the number of times that it has been repeated inside

the specification. In other words, the highest frequency class names were suggested to be

identified, where the frequency level can be controlled through Python script running inside the

class names identifier. The internal logic of class names identifier is addressed through

classIdentification.py file. The logic of classIdentification.py is written in Algorithm 1.

63

Algorithm 1. classIdentification.py to Generate Class Names

The output of Algorithm 1 is the class names identified through the Functionality section inside

the proposal document, which have been repeated more than given frequency level (x).

Therefore, those class names are known to be the requirements of the software, which can be

inputted to the diagram degeneration phase. Hence, obtaining the requirements in a way that they

can be useful for the other phases can be verified through this component. Moreover, the

effectiveness of these class names as requirements to reduce the cognitive complexity should be

then analyzed. Even though, the logical flow of an implemented source code cannot be

understood by merely referring to these class names as requirements, the idea of having a high

possibility of appearing these class names inside the source code logic can be given to the user

through this component. Then, along with these class names as requirements, the logical

diagrams have to be generated to assist the user to comprehend the logical flow reduce the

cognitive effort. Therefore, class names together with visualization technique can then be

Algorithm 1: classIdentification.py to generate class names

Input: The text file contains the functionality specification

Output: Class names (mostly recurrent nouns with the threshold value given)

1: Let file objects are f and file

2: f = open(“//include the path of functionality.txt”)

3: Let lines represents the content read by functionality.txt

4: lines =f.read()

5:

6: Let tokenized represents each word inside the lines

7: tokenized = nltk.word_tokenize(lines)

8: foreach word ϵ lines && if is_noun(pos == ‘NN’)

9: Let counter is the frequency of each noun

10: counter = collections.Counter(nouns)

11: end foreach

12: Let x is the threshold counter for mostly available nouns

13: counter.most_common(x) //gain the most common x nouns

14: Let listToStr is the combination of all the class names

15: foreach elm ϵ counter.most_common(x)

16: listToStr =' '.join(str(elm)) //convert elm into a string and join each class name

with a white space

17: end foreach

18: file=open(“//include the path of the file to be written”, “w”)

19: file.write(listToStr) //write the content to the file object

20: file.close() //close the file object

64

considered as an assistive mechanism to make the comprehension process easy, thereby reducing

the cognitive complexity.

3.4.2 Assisting for Necessary Cognitive Load: Logical Diagram Generating

Component

The visualization of a source code logic has already been described as a way of supporting to the

users’ cognitive load to increase the understandability and to ensure a less cognitive complexity.

The visualization component of the proposed system (Figure 6) is capable to generate the

diagrams of demonstrating the source code logic in two ways. One type of visualization is

performed without the source code referring, while the other type of visualization is performed

by referring the source code. Generally, UML diagrams are used to demonstrate the internal logic

of a source code [82]. Although there is a variety of UML diagrams, class diagram, Entity-

Relationship (ER) diagram, sequence diagram, object diagram and component diagram are

widely used for the visualization [83]. As the preliminary step, the visualization of logical

diagrams without referring the source code has been explored. The reason behind this

visualization technique is to automate the order of SDLC, where the diagram generation process

is performed by inputting the requirements that have been found. That process is basically

achieved manually by using the specifications and project proposal documents. The accuracy of

manually drawn diagrams tend to be frequently lesser due to the human errors involving with the

transformation process from requirements to visualization and the comprehension issues

regarding with diagram logic [84]. Hence, it can cause to generate the diagrams with inaccurate

logic, which can create unnecessary misunderstandings. Further, the logical comparison issues

between inaccurate diagrams and source code with correct logic can increase the cognitive

complexity, which goes beyond the expectation. Therefore, the necessity of deriving a

methodology to generate the logical diagrams using the requirements as per the SDLC performs

has been implemented as shown in Figure 9.

65

As discussed in requirements analysis component, the diagram generation of this component has

also been stated as accurate, due to the impossibility of attaining a source code with correct logic

using incorrect logical diagrams. This component can generate the logical diagrams based on the

class names outputted by the requirements analysis component as requirements. Further, this

component is capable of generating class diagram, ER diagram and object diagram for a

software. It is essential to analyze the relationship of class names prior to diagram generation as

the logic of diagram modelling is based on the relationships of each entity used inside the

diagrams. Therefore, as the first step, Global Vectors for Word Representation (GloVe) [85]

techniques has been used to convert each class names into a mathematical representation through

a vector. It includes large datasets consisting with large number of tokens and represents with

multi-dimensional spaces. The dataset used for the proposed component is glove.6b.100d, which

is stored in a text file. It consists of six-billion-word tokens and each token is represented with a

vector with hundred dimensions. It is crucial to use high dimensions as it can compare the vectors

using multiple parameters and extract the most appropriate relationship between the input class

names. TorchText library provided by the Deep Learning library PyTorch3 has been used to

embed with GloVe technology. Each words’ vector representation is then compared

mathematically using cosine similarity [86]. It represents the cosine angle between each of two

vector representations. Two closer vectors denote a higher cosine similarity, and the distant

vectors can be represented with a less cosine similarity value. Therefore, class names which are

related with each other can be identified through higher cosine similarity, and the class names

3 https://pytorch.org/

Figure 9. Overview of Visualization Component without using the Source Code

66

with less logical relations can be identified with less cosine similarity. A logical diagram should

consist with different types of relationships which demonstrates the logical flow of its

corresponding source code. Therefore, the necessity of finding the correct relationship of each

class name pair has raised. To demonstrate the different types of relationships within the diagram

generation, following threshold values have been proposed with respect to cosine similarity

values as listed in Table 9.

Table 9. Cosine Similarity Values with Relationship Types

Cosine Similarity Level (CS) Mapped Relationship Type

80 <= CS <= 100

(100 similarity implies the same word is compared)

Inheritance

70 <= CS <= 80 Composition

60 <= CS <= 70 Aggregation

25 <= CS <= 60 Association

CS < 25 No relationship

The class names with high similarity levels imply more common behavior, which can be

considered as parent-child relationship [87]. Hence, the relationships with highest cosine

similarity values are considered under the inheritance category. The composite relationship

indicates a parent entity, which owns the child entity with a stronger association. Nevertheless, its

behavior is not stronger than inheritance [88]. The aggregation indicates a parent, which

maintains a relation with its child with a weaker association level, so that the similarity value

scale has to be lesser than the similarity range used for composition [89]. Association relation

maintains a weaker connectivity among the classes, thereby the similarity range has to be lesser

than inheritance, composition and aggregation [90]. The class names lesser than 25 similarity

level have been considered as unnecessary relationships, which do not imply a stronger

connection to be applied in the diagrams. PlantUML syntaxes are implemented based on the

relationship types to generate each diagram, and inputted to PlantUML library [83]. The different

methodologies to construct each of the diagram have been indicated as follows.

67

3.4.2.1 Class Diagram Generation

The class diagram is generated through this component is capable of demonstrating the possible

class names with their relationship types. The attributes and the methods inside each class have

not been included in this class diagram generation as this is generated without referring to the

corresponding source code. Moreover, the possibilities of having mismatch issues of attributes

and methods in both diagram and source code have been analyzed, so that the class diagram

generation has been implemented using the class names only. The relationship types use in the

class diagram have been uniquely presented using the symbols listed in Table 10.

 Table 10. Proposed Symbols for Relationship Types

Each of the relationships identified through Table 9 are then mapped into the corresponding

notation using Table 10. Then, they have been initiated as relationship objects and constructed

relevant PlantUML statements. Finally, output class diagram has been generated by executing

these PlantUML statements. The internal logic used to construct the class diagram through

generateClassDiagram() can be found in Algorithm 2.

Relationship Notation

Inheritance <|--

Composition *--

Aggregation o--

Association --

68

Algorithm 2. generateClassDiagram() to Generate Class Diagram

Algorithm 2: generateClassDiagram() to generate class diagram

Input: The list of class names obtained through requirements automation

Output: Class diagram

1: Let Relationship is a separate class created to handle pair of class names with their similarity

values

2: Let reList is the list created from Relationship class

3: Call function assignRelationshipType(reList) //refer Table 9 for relationship types

4: Let classA and classB represent the class names in reList

5: Let plantUmlSource be the object created from StringBuilder class

6: plantUmlSource.append("@startuml\n") //start writing the plantUML syntax

7: foreach r ϵ reList

8: Append classB, relevant notation, classA and ”/n” to plantUmlSource // refer Table 10

for notations

9: end foreach

10: Convert the diagram structure to a string to generate the diagram

11: Store the diagram inside the path specified as a PNG file

Based on Algorithm 2, class names identified through the requirements analyzer have been stored

inside the Relationship class and the corresponding relation for each pair of class names has been

discovered by referring to Table 9. The class name pairs with relationship are then stored inside

classA and classB and appended with the related relationship notation through PlantUML

statements by referring to the Table 10. Generated PlantUML statements have been converted

into a string to generate the class diagram and saved as a Portable Network Graphics (PNG) file

in a specified location for later reference.

3.4.2.2 ER Diagram Generation

In order to generate ER diagram, the type of the relationships and the respective multiplicity

levels of each entity should be known. Table 11 summarizes the selected relationship type and

the corresponding multiplicity mapped in ER diagram.

69

Table 11. Relationship Types and ER Multiplicity

Based on the identified relationship and the multiplicity levels, following notations have been

used for the visualization process in ER diagram as shown in Table 12.

Table 12. Proposed Notations for Relationship Types

Relationship Notation

Association, Direct Association, Dependency | o—o|

Composition |o—|{

Aggregation |o—o{

The Algorithm 3 specifies the logic used to construct ER diagram for a given software

specification using generateERDiagram().

Relationship ER Multiplicity

Entity A (whole) aggregation Entity B (part) A – one or zero B – zero or many

(Zero to many)

Entity A (whole) composition Entity B

(part)

A – only one B – one or many

(One to many)

Entity A (whole) association Entity B (part) Many to many

70

Algorithm 3. generateERDiagram() to Generate ER Diagram

Algorithm 3: generateERDiagram() to generate ER diagram

Input: The list of class names obtained through requirements automation

Output: ER diagram

1: Let Relationship is a separate class created to handle pair of class names with their similarity

values

2: Let reList is the list created from Relationship class

3: Call function assignRelationshipType(reList) //refer Table 11 for relations

4: Let classA and classB represent the class names in relist

5: Let classes is an object of <String> arraylist

6: foreach r ϵ relist

7: if inheritance and implement in each relation in classes are not existed

8: if r in classA or classB are not existed and the similarity level < 40

9: Add the classes into classA and classB

10: end if

11: end if

12: end foreach

13: Let plantUmlSource be the object created from StringBuilder class

14: plantUmlSource.append("@startuml\n") //start writing the plantUML syntax

15: for c ϵ classes

16: plantUmlSource.append("entitiy").append(c).append(“{}\n”) //draw entities

17: end for

18: foreach r ϵ reList

19: append classB, relevant notation, classA and ”/n” to plantUmlSource // refer Table 12

for ER notations

20: end foreach

21: Convert the diagram structure to a string to generate the diagram

22: Store the diagram inside the path specified as a PNG file

Apart from the procedure followed in Algorithm 2 to generate class diagram, following

conditions have been used in Algorithm 3. Firstly, the class name pairs with inheritance and

implement, and the relationships lesser than 40 with the similarity level have been removed. The

rest of the class names have been added to classA and classB and then appended with the related

notation in Table 12. The ER diagram is constructed by executing PlantUML statements, which

have been generated by appending classA, identified notation and with classB, and the possibility

of saving it to a PNG file is also provided.

71

3.4.2.3 Object Diagram Generation

The object diagram generated by this component illustrates the objects of the classes which have

been identified through the requirements analyzer. Nevertheless, the inheritance relationship has

not been considered, since this diagram displays only the view of the objects of the source code.

The logical behavior of visualizing the object diagram by generateObjectDiagram() can be

viewed in Algorithm 4.

Algorithm 4. generateObjectDiagram() to Generate Object Diagram

Algorithm 4: generateObjectDiagram() to generate object diagram

Input: The list of class names obtained through requirements automation

Output: Object diagram

1: Let Relationship is a separate class created to handle pair of class names with their

similarity values

2: Let reList is the list created from Relationship class

3: call function assignRelationshipType(reList) //refer Table 9 for relations

4: Let classA and classB represent the class names in relist

5: Let classes is an object of <String> arraylist

6: Let inheriClasses be a String hash to gain inherited class pair names

7: foreach r ϵ relist

8: if r in classA and/or classB

9: check the existence of inheritance and implements in r

10: Add the classes into classA and classB

11: end if

12: end foreach

13: for s in classes

14: if inheriClasses contains a class pair

15: Remove the super class

16: end if

17: end for

18: Let plantUmlSource be the object created from StringBuilder class

19: plantUmlSource.append("@startuml\n") //start writing the plantUML syntax

20: for c ϵ classes

14: plantUmlSource.append("object").append(c).append(“{}\n”) //draw entities

15: end for

16: foreach r ϵ reList

17: append classB, “- -“, classA and ”/n” to plantUmlSource

18: end foreach

19: Convert the diagram structure to a string to generate the diagram

20: Store the diagram inside the path specified as a PNG file

72

To generate the object diagram, class names of each pair is added to two different classes called

as classA and classB. The object name identification is commenced while identifying the

relationship types of each class pair. The class pairs identified with inheritance and implements

have been inserted to another class called inheriClasses, while removing their super class names.

Then, all the other relationships have been encoded with PlantUML statements to be visualized

with “- -“ from one object to another object.

Therefore, the user is given the opportunity to refer to the class diagrams, ER diagrams and

object diagrams generated by this component in a problematic scenario of understanding the

logic of a source code. Thereby, the diagrams are expected to provide the details of the classes

and their relationship types, so that users can compare the connectivity among those inside the

source code. Therefore, they can be stated to assist for user comprehension which cause to reduce

the cognitive complexity. Nevertheless, the exact flow of the source code cannot be attained

through these diagrams as they are unable to illustrate the logical flow as in control flow

diagrams, activity diagrams or sequence diagrams. Even though comprehending the logic of a

source code includes identifying the major components like classes and their relationship types,

the cognitive complexity is mainly focus for the comprehension of the source codes’ logical flow.

Herein, the necessity of having UML diagrams which are generated by referring to the source

code has been arrived as another assistive mechanism for users’ cognitive load to achieve a less

cognitive complexity. As a solution, the visualization component of the proposed component has

been included with another sub visualization component which can generate UML diagrams by

using the source code with correct logic.

The component of visualizing UML diagrams is capable of modelling the sequence diagram and

the class diagram to demonstrate the logical behavior of a source code. Surprisingly, some recent

automated tools can be found to generate the UML diagrams, but majority of them have to be

drawn by user after comprehending the logic [84]. However, the possibility of generating

sequence and class diagrams without user intervention is the major significance and the

advantage of the proposed component. The overview of the diagram generator by using the

source code can be observed in Figure 10.

73

According to Figure 10, Java source code/s in which the diagrams have to be modelled is the

input for this component. The user is given the opportunity to select the appropriate diagram to

be generated by the component. Once the diagram selection has been done, the appropriate code

segments related to each diagram visualization are going to be selected by the code analyzer. It

uses two source files, where SequenceAspect.aj is used for the sequence diagram generation and

UMLGenerator.java is used for class diagram generation. After necessary information has been

processed by the corresponding source file, PlantUML statements are generated according to the

syntax required by each diagram. Then, the execution of these statements outputs the required

diagram and possibility of saving it as a PNG image file has also been provided.

In the scenario of generating the sequence diagram, the inputted java source files should be

configured and converted to an AspectJ project since SequenceAspect.aj file is responsible for

sequence diagram generation. The logic inside SequenceAspect.aj has been denoted in Algorithm

5.

Figure 10. Overview of Visualization Component using the Source Code

74

 Algorithm 5. SequenceAspect.aj to Generate Sequence Diagram

Algorithm 5: SequenceAspect.aj to generate sequence diagram

Input: Java source codes implemented for a software

Output: Sequence diagram

1: Execute all java files in the current directory

2: Obtain the project location using current join point

3: Let source and target represent the source class name and the target class name respectively

4: if the class name in current join point == null

5: set source into current class name

6: else

7: set source into main

8: Let methodSign, returnType, parameters, methodName and message represent the element of

a message structure

9: Set methodSign by getting the signature of current join point

10: Set returnType by splitting methodSign with (“ “) [0]

11: Set parameters by getting substrings of methodSign enclosed with “(“ and “)”

12: Set methodName by getting the name of methodSign

13: if parameters != null

14: Set message using “(“ + parameters + “)” + “:” + returnType

15: Let messages represents the whole message structure

15: Set messages by appending source, target and message

16: end if

17: Let source, target, messageString represents the sections of messages

18: for message in messages

19: Set source to message[0]

20: Set target to message[1]

21: Set messageString to message[2]

21: Let messageStr be the message string passed as UML string

23: Set messageStr with source + “->” + target + “:” + messageString

24: end for

25: Create builder object from StringBuilder class with “@startuml\n”

26: foreach umlmessage in messageStr

27: Append umlmessage with “\n” to builder

28: end foreach

29: Convert the diagram into PNG image and save it inside the current project folder

75

The sequence diagram requires necessary class file names and message callings passed invoked

them. Those contents have been categorized by calling SequenceAspect.aj, which has been

implemented through Algorithm 5 and execute relative PlantUML statements to generate the

corresponding sequence diagram.

On the other hand, the class diagram generation has been performed by UMLGenerator.java in

which its logic has been implemented through Algorithm 6.

 Algorithm 6. UMLGenerator.java to generate the class diagram

It is noteworthy that Algorithm 6 presents the abstract form of logic followed by

UMLGenerator.java to generate the class diagram. To describe it furthermore, this algorithm is

capable of obtaining the class names and interface names and to return PlantUML notations for

them in which their fields are public and private. It can return relationships of classes while

checking for duplicates of relationships and associations. It has the capability of getting the class

and interface by name, and to check one to many relationship (1 → M) existence for a given

class. The class diagram generation is also comprised with avoiding the method duplication in

child classes if the method is already available in its parent class or interface. Further, checking

whether a method is either a setter or a getter method, existence of getter or setter methods for a

given field can also be performed prior to class diagram generation.

Algorithm 6: UMLGenerator.java to generate the class diagram

Input: Java source codes implemented for a software

Output: Class diagram

1: Let umlRelations, umlAssociations, umlClasses are arraylist objects to represent

relationships, association types and class names

2: Create builder object from StringBuilder class with “@startuml\n”

3: Let umlClasses in an arraylist type object to represent all the class names provided

4: Add all the class names into umlClasses

5: foreach umlclass in umlClasses

6: Gain all class names and interface names into builder

7: Gain all constructor declarations into builder

8: Gain all field names into builder

9: Gain all the method names into builder

10: Remove duplicate associations in umlclass

11: Remove duplicate relationships in umlclass

12: Add relationship types and association types to builder

13: end foreach

14: Close builder by appending “\n\n”

15: Convert the diagram into PNG image and save it inside the current project folder

76

Thereby, the assurance of visualizing the source code logic can be stated through sequence and

class diagrams, as both of diagrams have been implemented by analyzing the logical flow inside

them. Along with those, class diagram, ER diagram and object diagram generated by other

visualization component can provide an overview of the source code logic as they are generated

without the source code. Therefore, by giving the opportunity for users to refer UML diagrams

generated in two ways, their ability to understand the logic of a source code can be developed.

Accordingly, the visualization component can be considered as an aid to expand the necessary

cognitive load of a user, which tends to reduce the effort allocated for understanding process.

However, current tools supported for UML diagrams generation within NetBeans IDE cannot be

ignored. The Visual Paradigm4and EasyUML [91] are commonly used as UML diagram

generation techniques which can be integrated with NetBeans IDE. Visual Paradigm tool

supports for a platform for user to model the relative UML diagram by comprehending the source

code logic, which is not the exact requirement to reduce the cognitive complexity. Because it

does not act as an assistive mechanism for the comprehension process, as it should be generated

by users after the logical comprehension. Surprisingly, EasyUML supports for diagram

generation based on the source code without the user intervention as the proposed component

does. However, it can be achieved with a proper integration and installation of EasyUML inside

NetBeans IDE. The proposed component solves the integration and installation issues inside

NetBeans IDE as it has already been implemented through NetBeans. However, the limitation of

the types of UML diagrams supported by the component to class diagram, ER diagram, object

diagram and sequence diagram exists over the types supported by current visualization

techniques. Therefore, the expectation is to achieve a considerable comprehension level by the

proposed component over the current visualization mechanisms with respect to the supporting

UML diagrams and to achieve a less cognitive complexity.

4 https://www.visual-paradigm.com/

77

3.4.3 Reducing Unnecessary Cognitive Load: Defects Tracing Component

A bug or a coding defect is an unusual or unexpected event, which occurs the entire system in a

non-functional state [92], [93], and it has been found that the defects can cause to increase the

cognitive effort of users by utilizing unnecessary cognitive load which have been assigned for the

actual source code logic comprehension [40], [41], [94]. Therefore, detection of coding defects

has been introduced as a component of the proposed system under the expectation of reducing the

comprehension effort of users. It is evident that the human comprehension is essential for

handling the coding defects. It includes identifying the type of the bug and verifying the

necessary correction to be applied. If the coding defect is not understood by a user, the effort

utilized to solve that issue will be high, which demands for a higher cognitive complexity. There

are numerous bug trackers available to trace the coding defects inside a given source code, but

the success is limited with the number of bugs that each bug tracker is capable of identifying

[95]. Also, some bugs are runtime defects which the bugs trackers cannot identify in the

debugging time. The expectation is to trace the bugs which are not supported to the bug tracing

plugins available in NetBeans IDE. In the proposed system, the plugin of FindBugs bug tracker

has been installed [96], so that the bugs which are not identified by it are suggested to be handled

by the proposed component. The overview of the bug tracker component can be viewed in Figure

11.

Figure 11. Overview of Defects Tracing Component

78

The source code is the main input for defects tracing component. Since the proposed system is a

java-based system, it should be noted that the defects tracing component capable of handling only

java source codes. In order to gain the source code for defects detection, the option of file

browsing has been implemented as the first functionality. Then, the uploaded source code is

displayed with the corresponding LOC value to track the source code segments easily by its

location. Tracing the possible defects is the next functionality of the component. The types of

coding defects that the component is capable to handle are listed in Table 13.

Table 13. Coding Defects Handled by Defects Tracing Component

Identified Coding Defect Description

Division by zero The denominator of any mathematical division is zero, which

derives infinity as the answer

Multiple return statements Multiple return statements in a single method

Array storing error Store incompatible values inside an array (the data types of the array

and the values do not match)

Unsupported operations Add new values to a list, which is already assigned with values

Illegal states error .next(), .set() and .remove() methods are called in incorrect order as

follows

next(), remove(), set()

set(), next(), remove()

set(), remove(), next()

remove(), next(), set()

remove(), set(), next()

set(), next()

remove(), next()

remove(), set()

set(), remove()

Number formatting errors Incompatible values are passed to the parse methods

Illegal arguments Null parameter is passed as a parameter in any method

Illegal thread states Attempt to start or try to call sleep method to the same thread

multiple times

Illegal monitor state Call thread.wait() method many times for the same method

Unsupported cloning .clone() method is used without implementing the Cloneable

interface

Class casting error Create an instance of the parent class

Illegal thread run method thread.run() method is called to the same thread multiple times

79

Once a possible match detected, it will be prompted as a defect. It includes displaying the

identified defect type, its location and the recommendations to fix it. Each recommendation also

includes the error description, the location to track the defect and the procedure to correct it, so

that the users’ unawareness of the defect will not be an issue. Since the recommendation

procedure is provided in a more convenient and understandable way, comprehension issues of the

error messages generated by existing bug trackers have been solved [95], [97]. Finally, the

summary of the coding defects can be received, which includes the error count, LOC value,

percentage of error occurrence based on LOC and a description on errors.

The significance of this component lies with the recommendation procedure of fixing a coding

defect. It has been already discussed that providing recommendations and guidelines cause to

assist the user with related logic, so that it can assist to reduce the cognitive complexity. The

recommendation procedure of this component is comprised with a detailed description which can

be understood by the users. Therefore, the effort required by the user to handle a coding defect

will be minimized not be fallen into the extraneous cognitive effort, as the necessary information

is supplied by the component. Thereby, the assurance of having a proper defects tracing and

guidance component under software development and maintenance phases of software can be

validated to achieve a lesser cognitive complexity.

3.4.4 Reducing Unnecessary Cognitive Load: Code Quality Optimization

Component

The next component introduced under extraneous cognitive load reduction and to increase the

necessary cognitive load is the optimization of code quality issues. The quality of a source code

is found to be a parameter of determining its complexity as a high-quality source code directs to a

less complexity and a less quality source code directs to a high complexity [98]. The source code

quality is measured with multiple dimensions, and the ease of understanding is one factor among

them. The understandability of a source code can be expressed through cognitive complexity

[99]. Hence, the source code quality can be considered as a parameter to control the cognitive

complexity. Moreover, maintaining the quality of source code is another determinant process

behind any software development process, as it assists to increase the usability and the

maintainability [75], [100], [101]. Accordingly, the applicability of cognitive complexity inside

80

the software maintenance to verify the source code quality can be stated again. By considering all

these scenarios, a quality source code can be denoted as easily comprehensive than a less quality

source code. Furthermore, source code quality is reduced with respective to its improper

structure. The reason to have an improper structure inside a source code is the appearance of code

quality smells, which creates the source code difficult to understand. In other words, a source

code with bad designs is difficult to focus and comprehend, so that users should have high effort

on the comprehension process. Hence, it is essential to eliminate the code quality smells inside

the source code, which in turns output a source code with lesser cognitive complexity.

Eliminating a code quality smell includes identifying the issue and recognizing the steps of

correcting it, which is not related with the source code logic. Therefore, code quality optimization

takes a considerable amount of unnecessary cognitive load which reduces the capacity of

necessary cognitive load required for the understanding process of source code logic. As a

solution, the proposed component has been introduced to assist the user with optimizing the code

quality smells, so that it helps to reduce the unnecessary cognitive load that user should utilize

without a quality optimizer. Thereby, it helps to give more priority for the necessary cognitive

load along with the comprehension process of the source code, so that the source code would be

easier to understand, which can gain a less cognitive complexity.

There are numerous applications built to detect the code quality smells and fix them to ensure the

source code quality. SonarQube and SonarLint are some of the recent services provided to

validate the source code quality by detecting code smells and defects, and to compute the

complexity using existing software complexity metrics. However, the necessity of hosting the

source codes of these services is existed. Hence, it is expected to achieve code smells detection

without hosting the source codes through the proposed component. The component is constructed

to distinguish Java code smells5 and to provide recommendations to fix them. Therefore, it can be

treated as an assistant mechanism to fix unknown quality issues and to reduce the users’

unnecessary cognitive load and effort. As in the defects tracing component, the recommendations

have been supplied in detail to easily understand by each user as an assistance procedure to

reduce the unnecessary cognitive load. Moreover, the feature of auto fixing of several quality

issues has been introduced within the component to assist the user, which is reflected as another

assistance mechanism to reduce the extraneous cognitive load. Therefore, it can be specified that

the code quality optimization component is capable to assists with the users’ necessary cognitive

5 https://rules.sonarsource.com/java/type/Code%20Smell/

81

load while reducing the unnecessary cognitive load to reduce the cognitive complexity of source

code. The methodology of processing the code quality issues optimization can be viewed in

Figure 12.

The java source code that required to be analyzed to detect the code quality smells is the input for

this component. A copy of the source code is maintained by the component to navigate to each

line and remove comments and excessive white spaces. Then, the component refers to each line

again and identify the required syntaxes and elements. Java keywords (reserved key words),

identifiers, numbers, operators, escape characters, variables, classes and methods are denoted as

the code elements inside a source code. By analyzing the how Java key words have been used

inside the source code, the rest of identifiers, numbers, operators, escape characters, variables,

classes and methods are stored inside different collections for future reference. Through those,

the source code is verified against the code smells handled by the component. The code quality

smells handled by the proposed component have been listed in Table 14.

Figure 12. Overview of Code Quality Optimization Component

82

Table 14. Code Smells Detected by Code Quality Optimization Component

Based on the above code smells, the component is coded to identify the matching patterns by

analyzing the syntax and the code elements of the inputted source code. If a particular source

code segment is observed to be aligned with a quality issue handled by the component, it will be

emphasized by providing recommendations to fix it correctly. Further, the auto fixing features are

also be activated for a certain number of quality issues, so that the user should not have any

processing with the extraneous cognitive load, which can be considered as the best scenario of

demonstrating the cognitive complexity reduction. A fixed file after correcting code quality

issues either by following the recommendations given by the component or by automated feature

is saved inside the same project directory. It consists of the modified source code after applying

the modifications by user. Moreover, a log file containing the changes which have been applied

can also be observed inside the same directory. Therefore, this component can also be stated as a

Code Smell Description

Unused import

detection

Import statements which have not been used inside the

source code. Can automatically fix by the component.

Redundant modifiers

usage in interfaces

detection

Interface access modifier is used again for the declarations

inside the interface. Can automatically fix by the component.

Invalid usage of

generics in

constructor detection

Generics are declared in constructors when the declaration

also expressed as generic. To address this, the diamond

operator can be used. Can automatically fix by the

component.

Ternary operator

detection

Usage of ternary operators can be replaced with if-else

conditions

Nested ternary

operator detection

Usage of nested ternary operators has to be minimized

Invalid modifier

declaration order

detection

Modifier declaration has to be performed in the following

order.

public, protected, private, abstract, static, final, transient,

volatile, synchronized, native, strictfp

83

mechanism of reducing the cognitive complexity concept inside the software development and

maintenance processes, and to assist to reduce unnecessary cognitive load of users

3.4.5 Reducing Unnecessary Cognitive Load: Refactoring Component

As it is already described in the code quality optimization component, it is evident that a

structured source code can attain a less cognitive complexity while an unstructured source code

leads to a high cognitive complexity. Currently, the refactoring techniques are being used to

make an unstructured source code into a structured source code. Therefore, a component of

handling the certain number of refactoring techniques has been introduced in the expectation of

reducing the cognitive complexity. This component is aligned with the code quality optimization

component as detecting code smells and refactoring are related concepts. Code quality smells are

the situations of implying the bad design of a source code and refactoring techniques can be

applied to enhance the design of a source code by altering the behavior of it without effecting to

its outputs [102]. Since the source code is altered into a structured source code after applying the

refactoring techniques, the users’ unnecessary cognitive load utilize with the unstructured source

code will be mitigated, so that the reduction of the cognitive effort and the cognitive complexity

can be mentioned. Therefore, the assistance of the refactoring techniques to increase the source

code structure and its quality can be considered to optimize the cognitive complexity associated

with it. The procedure of the refactoring automation can be observed in Figure 13.

84

According to the Figure 13, the functionality of the refactoring process has been implemented as

a client process and a backend process, and the purpose of implementing it is to provide the

accessibility from outside through a public locator. The client and backend processes are

communicated with Hypertext Transfer Protocol (HTTP) requests, and all the HTTP requests are

handled by Axios library. The client and the backend processes have been implemented through

ReactJS and NodeJS respectively in terms of the of performance and synchronization made

through several client queries. The user is supposed to act as the client process. The user should

upload the unstructured source code as a JavaScript file to be refactored by the component.

Therefore, the unstructured source code is acting as the input for this component. Multer library

is used for the file uploading process due to its high flexibility and the efficiency with

multipart/form data. Accordingly, the uploaded source file is sent as a multipart/form data to the

backend by the client process. The Multer middleware converts multipart/form data and attaches

it to the HTTP request for easy access. Then, the structure of the uploaded source code is verified

against the refactoring techniques handled by the component. The refactoring techniques

supported by the component are listed in Table 15.

Figure 13. Overview of Refactoring Component

85

Table 15. Refactoring Techniques Supported by Refactoring Component

Refactoring Technique Description

Unused variables refactoring

variables that have been declared and initialized, but

not used inside the processing should be avoided

Unused methods refactoring

methods which have not been called or used for the

processing should be avoided

Empty methods refactoring

methods in which their method body is empty should

be avoided

Unreachable code blocks refactoring

code blocks which cannot be accessed (code

segments appeared after return statement) should be

avoided

Empty lines refactoring

unnecessary empty lines should be avoided

Unnecessary comments refactoring unnecessary comments, which are not relevant to

source code logic should be avoided

In order to validate the refactoring techniques listed in Table 15, Pure JavaScript-built methods

and Putout opensource libraries are used. Firstly, the file upload controller saves the file into the

disk space. In order to detect the possible refactoring technique, a validation controller has been

designed for each refactoring technique, which returns a boolean value to the client process. If the

boolean value returned from the validation controller is true, the detection of that corresponding

refactoring technique can be stated. Therefore, boolean values obtained from the validation

process are responsible for displaying all the related refactoring techniques. Then, the user is

given the opportunity to select the appropriate techniques to be applied. Once the user has

selected the refactoring techniques, another set of controllers have been defined to apply those

refactoring techniques. Moreover, the opportunity to view the difference between the

unstructured and the corresponding refactored and structured source code has been implemented

through a split view. After the refactoring process is completed, the ability of downloading the

structured source code has also been provided.

Although the refactoring mechanism is automated in most of the IDEs, the facility of

recommending which refactoring technique is used inside a particular code segment cannot be

observed. However, the proposed system component is capable of demonstrating the possible

refactoring techniques along with the possibility of applying them computationally without a user

intervention. This can be treated as a vital achievement, since the user’s comprehension effort for

the refactoring technique identification and application is reduced by this component to lessen the

86

unnecessary cognitive load of users and their cognitive efforts, thereby ensuring a reduction of

the cognitive complexity of source code.

3.5 Introducing a Meaningful Cognitive Complexity Metric

One section of the proposed system has addressed the applicability of using the cognitive

complexity concept inside the processes involving with software development and maintenance

processes and to achieve a less cognitive complexity. However, the usage of the cognitive

complexity concept should be performed in more convenient way. An expression in a form of

metric is easy to use and compare, so that presenting the expression of cognitive complexity in a

form of metric has been raised. Although there are numerous cognitive complexity metrics

introduced by previous research works, the problems of their standardization and validity are

existed [53]. Therefore, the possibility of introducing a new cognitive complexity metric has been

analyzed, which can solve the drawbacks of previous research works. As the preliminary step, the

drawbacks of cognitive weights in previous works were thought to be addressed. The major

drawback of previous cognitive weights is the assumption-based weightage assignment, which

has not been performed through a validated framework [33], [35]. Accordingly, the problem of

using them for the cognitive complexity computation in real applications has been raised.

Therefore, assigning cognitive weights through a valid framework has been performed. Since

previous cognitive weights have been allocated for different source code categories under the

architectural aspect of a source code, selecting a proper source code category was the next task. It

has been observed that the usage of BCS in majority of research works for the cognitive weight

allocation [1], [25], [28]. Furthermore, BCS define the fundamental and essential flow

mechanisms, which builds the logical architecture of a given source code [4]. They are basically

categorized into sequence, selection and iteration, in which the sequence structure has simple

statements with no control statements execution, selection has one or more decision statements

execution and iteration statements with the combination of both sequence and selection

statements. Therefore, a methodology was designed to assign valid cognitive weightages for

preliminary BCS categories.

87

3.5.1 Cognitive Weightage Assignment for Preliminary BCS through a Valid

Framework

The expectation of this weightage allocation mechanism is to assign valid cognitive weights for

if-else, switch-case statements under section criteria and for loops, while loops under iteration

criteria. Furthermore, the cognitive weights for nested control structures have also been

considered, since the nested control structures are found to increase the cognitive complexity of a

source code [31]. Hence, the cognitive weights for nested for and nested while loops have also

been considered for the weightage assignment through the same methodology. The procedure of

assigning the cognitive weights for these BCS performed through an experimental background as

followed in [34]. As the experimental background, a questionnaire has been arranged to analyze

the comprehension level taken for above mentioned BCS categories among a selected user group.

The problem of confining the cognitive weights generated through this questionnaire to the

selected user group is still existed but, it is expected to analyze their applicability for entire user

population using the statistical operations. The entire research work is aimed for the

comprehension of a source code in which its logic is correctly implemented. Therefore, the

comprehension effort allocated to gain the correct logic has to be considered for the cognitive

complexity determination. The same concept has been mapped into the scenario of

questionnaire, so that the comprehension effort of the correct logic can be implied using the

marks that has been obtained. Further, the duration to comprehend a given logic can imply the

level of the comprehension as a higher duration taken to understand a logic expresses a high

cognitive complexity while a lesser duration taken to understand a logic implies a less cognitive

complexity [34]. Accordingly, marks obtained from the questionnaire and duration taken to

complete the questionnaire have been used as the parameters to assess the comprehensibility.

The questionnaire is consisted with five questions representing each BCS category. The questions

under similar categories have been selected as same to make the comparison process easier with

other controllers, and it has been included in Appendix D. As the target user group, a computing

related BSc final year university student group was considered based on higher expertise and

aptitude level in computing field than the other students. The students were tested against their

coding expertise levels through another questionnaire as an aptitude test, and the students who

scored more than 60% have been selected to the user group. The aptitude test given to selects

users has been attached in Appendix E. As such, 500 students were selected as the target user

88

group, and the BCS questionnaire was conducted among them through a Moodle framework. The

purpose of using a Moodle environment is to gain the marks and the duration efficiently, so that

the inconveniences occurred with respective to manual monitoring will be minimized. It should

be noted that each of BCS category has been tested by keeping one week duration gap to avoid

the experience of dealing with the same question again, as experience effects to duration and

marks when dealing with the same question. The recorded data has been statistically analyzed

through Statistical Package for the Social Sciences (SPSS) software [103]. Mean of the recorded

data was used to perform the statistical analysis as it can represent the entire dataset. Hence,

mean time and mean marks were compared to observe the understandability of BCS.

Accordingly, the assignment of cognitive weightages has been performed based on the mean

values obtained for marks and duration. Then, the applicability of using the same weightages for

generic users has been tested statistically.

Although the validity issue of cognitive weights has been solved using this mechanism, the

problem of not addressing the entire architectural aspect is existed as BCS is only a single

parameter of it. As it has already explained, factors of the architectural aspect are unlimited so

that expressing the comprehension level associated with them to represent it is unachievable.

Therefore, the necessity of expressing the cognitive weights in more convenient manner has been

studied. Since this research work is emphasized the involvement of personal profile over the

source code factor of the cognitive complexity determination, the inclusion of personal profile

along with the cognitive weightage concept has been explored. Therefore, a cognitive weightage

mechanism which highlights personal profile associated with the logical comprehension has been

introduced.

3.5.2 A New Cognitive Weightage Assignment Emphasized on Personal

Profile

It is expected to introduce a cognitive weight which highlights personal profile to denote the

comprehension level of each user for a given source code using a numerical value. Since the

comprehension levels of each individual are varying, the effectiveness of the parameters of

personal profile should be varied as well. Therefore, the proposed cognitive weight should be

varied from each user, which can emphasize the subjectivity of the cognitive complexity. As

89

such, the proposed cognitive weight has been generated as a predictive measurement by

considering several personal and source code base factors which are interconnected with each

other in terms of user comprehension level. It is noteworthy that the number of factors of taken

from personal profile for validation are significantly higher than source code factors due to the

emphasis given to the personal base throughout this work. The procedure followed to generate

the person based cognitive weight can be observed in Figure 14.

Based on Figure 14, the validation of the factors selected for the cognitive weight determination

is preliminary performed from the user end. The factors selected for the validation purpose have

been obtained from [104] and they have been listed as follows.

• The developer age – The age of the developer is associated with the individuals’ experience of

the computing environment [105]. It is particularly believed that a higher aged user can have

more experience in coding environment than a less aged user. Nevertheless, the age cannot be

considered as a direct parameter for the human comprehension as there can be several

circumstances of gaining a high comprehension by less aged users.

• Familiarity of Java programming language (1-5) – The programming language is a symbolic

representation of addressing a problem in a coding environment [69]. It is predominantly

Figure 14. Overview of Cognitive Weightage Assignment Component

90

different from the way that a native language is used, so that the awareness of a programming

language is a vital factor behind the software development. The familiarity of a particular

coding language deviates with the understandability level of a source code. The

comprehensibility of a given source code becomes low when a users’ analytical level of its

programming language is high. On the other hand, if the problem is addressed using an

unfamiliar programming language, it results with a low comprehensibility. Understanding an

unfamiliar programming language consumes a considerable amount of extraneous cognitive

load which does not relate with the program logic. Then, the lack of intrinsic and germane

cognitive load applies to the understanding process of its actual logic, which outcomes a

higher cognitive complexity. Since the experience cannot be expressed as a numerical value, a

scale of 1-5 has been taken to denote it. The highest familiarity on Java language has been

considered as rate 1 and rate 5 is dedicated for the least familiarity on the same. Noteworthy,

the aptitude level of Java programming language has been considered, because the proposed

system has been implemented through NetBeans IDE.

• Familiarity of Java coding standards and design patterns (1-5) – The quality of a source code is

found to be a determinant factor of determining the users’ cognitive complexity [106]. The

quality of a source code can be attained by maintaining a proper coding structure inside the

source code, so that each user can adhere to a common and a standard structure and refer to its

internal logic easily. The structure of a source code can be maintained with respect to the way

that its logic and coding have been arranged. The ways of arranging the logic can be

performed by adhering to the design patterns [107] and its coding can be done with respect to

coding patterns [108]. Thereby, source codes are tended to be aligned with standard designs

and coding patterns to maintain the consistency of coding. Even though the expectation of

maintaining proper coding standards and design patterns is to lessen the cognitive complexity,

the status of the user experience on these factors has to be analysed. A user with high

familiarity on the coding standards and design patterns can easily understand a given source

code which results a lesser cognitive complexity. On the other hand, a user who does not have

enough knowledge regarding these standards and patterns should consume a high cognitive

effort, which tends to achieve a high cognitive complexity. Therefore, the user familiarity on

coding standards and design patterns has been considered as a factor of determining the

cognition level in this component. The rate 1 and 5 have been applied for the highest and

lowest familiarity ratings regarding these factors respectively.

91

• Familiarity of software architecture and frameworks (1-5) – The background that a software is

implemented and supported functionalities assist to understand a source code logic easily

comparing to a source code implemented without a proper supportive background. The

facilities supported by the computational environment consists with the software architecture

and related frameworks. The expectation of these supporting services is to implement the

software logic in more consistent manner. Nevertheless, the users’ familiarity regarding these

services cannot be neglected, since it effects for the comprehension level of source code logic.

A user who has a better experience and aptitude level on these factors can comprehend the

source code with less effort, and a high comprehension effort should be taken for the same for

a user who does not have required aptitude and familiarity levels. Similarly in other ratings,

rate 1 directs to the highest familiarity to on these parameters and rate 5 implies the least

familiarity on same.

• Developer experience rate (1-5) – The experience on a computational background directs to

the familiarity of the same context so that the comprehension effort of well experienced

individual is lesser comparing to a less experienced user [56]. In other words, a developer with

high experience in the coding background is more likely to understand a given source code

than a developer with a less experience on the same background. As in other ratings, rate 1

indicates the highest experience and rate 5 denotes the least experience.

• Number of long project activities – A project with higher duration for its completion indicates

its high number of functionalities as well as its complexity. This indicates the effort that each

individual has to utilize is high, and it tends to gain a higher cognitive complexity. On the

other hand, a project with a less completion duration indicates a lesser number of

functionalities, which can be understood using less effort comparing toa high duration project.

Therefore, the number of long project activities has been considered as a proportional indicator

to determine the user comprehension level.

• Number of project activities – Generally, a developer in a software team has not been assigned

for a single software processing. Further, the number of projects determine the workload that

an individual should process, thereby it directs for the duration and attention utilized for the

comprehension. As an exemplification, a lesser number of projects that each individual deals

creates an opportunity to comprehend a particular source code accurately with more attention

than dealing with high number of projects. Thereby, a lesser number of projects could create a

92

lesser cognition effort utilized for the logical comprehension, while a higher cognition effort is

gained with high number of projects assigned for a particular individual.

• Number of parallel project activities – Regardless of the numerous project activities, the

number of parallel project activities that a user has been assigned lays a huge impact on the

cognitive effort. The number of activities that a user deals simultaneously may lower the

attention level due to the lower duration and cognitive load applied for each task, so that the

understandability becomes low. Therefore, the cognitive complexity becomes high due to the

high effort that the user should acquire. On the other hand, a smaller number of parallel project

activities can allocate more duration and attention with a higher cognitive load for the

comprehension, so that the cognition effort becomes lower. Further, it is noteworthy that

attaining a lower duration and a low cognitive complexity is based on the experience that the

user has gained. Therefore, the number of parallel project activities has been taken as another

factor of determining the comprehension level.

• Size of software – It has been found that the spatial capacity of a source code is a direct

indicator of cognitive complexity [19]. The size of a software is generally denoted using LOC

[109]. A source code with higher LOC tends to be more complex than a source code with a

lesser LOC value. Nevertheless, there can be a certain number of circumstances where a

higher LOC source code addresses a simple logic, and a lesser LOC source code indicates a

complex logic. Accordingly, a direct relationship among the LOC and cognitive complexity

cannot be stated. Moreover, the spatial capacity can be referred to the distance between a

module/method call to its actual implementation, and the connectivity of the it to the cognitive

complexity has been built in terms of cognitive load. If the distance of a module/method call

to its implementation is less, the user requires a less effort for its memorization, since the

cognitive load utilized for the memorization process is low. Further, a higher distance between

a module/method call to its definition implies a high comprehension effort that the user should

acquire due to the higher amount of cognitive load utilization. Subsequently, the distance

between a module/method call to its implementation also indicates a vital role of determining

the cognitive complexity under spatial capacity.

• The developer status (Undergraduate/Employee) – It is evident that the experience is a vital

determinant behind the cognitive complexity, and it can be attained by the status of each

individual [110]. Hence, current status of the user has been added as a personal factor of

determining the cognitive level based on the experience gained. The status of each user has

93

been included with respect to the undergraduate and employee. A person who employs within

a computing environment is known to be more experienced and comprehensive than an

undergraduate. However, there are certain situations where this scenario does not exist, as an

undergraduate is more experienced and comprehensive than an employee who works in a

computing field.

The overview of the factors considered for cognitive weight determination from personal profile

and source code factors can be observed in Figure 15.

Figure 15. Factors Considered for Cognitive Weight (Cw)

It has been already described (section 3.2) that personal profile and source code factors are the

main two factors that cognitive complexity can be described. Therefore, the effectiveness of the

factors considered for the cognitive weight determination from these two factors should be

studied. Even though the cognitive weight of this research work is emphasized with personal

profile comparing to the source code factor, the avoidance of the source code cannot be accepted

as the comprehension effort of users are monitored through the source code. As in Figure 15,

users’ experience of the computing background and the age have been included as the parameters

to evaluate the cognitive weight. The users’ aptitude level is included with respect to the

familiarity of Java programming language, coding standards and design patterns, software

94

architecture and framework. Although the familiarity expresses the experience, the direct

relationship of the aptitude level and the experience cannot be neglected, as a users’ improved

experience implies the growth of aptitude level. Hence, the aptitude level can be measured using

the familiarity of the above parameters. The other subfactor of personal profile is the memory

capacity of a user. The section 3.2 outlines the effectiveness of a persons’ memory capacity and

the cognitive load, and the overall system of reducing the cognitive complexity has been

implemented on that basis. However, it is difficult to include the users’ memory capacity as a

factor of determining the cognitive weight due to the incapability of indicating it numerically.

Since the procedure of handling the memory capacity and cognitive load has been discussed with

the proposed system, the inclusion of the memory capacity has been deducted for the cognitive

weightage allocation.

Then, the involvement of the source code factor for the cognitive weight allocation should be

analysed. The architectural aspect has not been included for the cognitive weight allocation, since

it is supposed to include as a major parameter inside the metric computation. The size of source

code in terms of LOC has been included for the cognitive weightage allocation to demonstrate

the inclusion of spatial capacity. The programming environment is already included along with

the parameters used to determine the users’ aptitude level as coding standards, design patterns,

software architecture and frameworks are several features of a programming environment. Along

with these parameters, the inclusion of the effectiveness of both personal profile and source code

factor for the cognitive weightage assignment process can be verified although a higher impact is

allocated for personal profile. Furthermore, the involvement of the project activities along with

the parallel execution projects and long duration projects should be highlighted as the parameters

considered through personal profile. Therefore, the combination of all these factors can be used

to obtain an accurate cognitive weight assignment.

In the validation process, the user is given the opportunity to rate the qualitative factors within 1-

5 range and to provide applicable values for the other factors as necessary. For each user rating

for the qualitative factors, the component raises a related question to validate it to reduce the

possibility of attaining an inaccurate cognitive weight by inaccurate user responses. The

verification questions are based on Java programming language, Java coding standards, design

patterns, software architecture and Java frameworks. The user rating validation is accepted for

80% thresholding marks obtained through the questionnaire. The validated user ratings are

gathered as a .csv file and stored in MySQL database for later usage. Then, the dataset is trained

95

and tested to predict the future cognitive weight for each user. The data pre-processing has been

performed to remove unused columns, noisy data and duplicate rows and labelling un-labelled

columns have also been performed. Along with that, the correlations between the cognitive

weight factors have been validated through Spearman method [111]. Then, 70% of data has been

used for the training dataset and remaining 30% has been used as the testing data. The component

has been designed to predict the cognitive weight in both qualitative and quantitative manners.

The qualitative cognitive weight presents with high and low cognition labelling, while the

quantitative cognitive weight uses 1-5 scale to impress the user comprehension level. The rating

of 1-3 is considered as low cognitive weights, while 4-5 is considered as high cognitive weights.

Consequently, weight 1 is denoted with the least cognitive level, which leads to a lesser cognitive

complexity, and weight 5 is expressed with the highest cognitive level to be directed with higher

cognitive complexity. The expectation of this bi-directional prediction is to avoid the challenging

confirmations through the qualitative ratings. The ability to compare the predictions obtained

through both qualitative and quantitative manners is another ultimate advantage of this bi-

directional approach. Since the dataset consists with multiple data variables, the algorithms

supported for multivariate classification have been used to train the dataset [112]. As such,

Decision Tree and Gaussian Naïve Bayes algorithms have been used for qualitative cognitive

weight prediction as they are classification algorithms [113], [114]. Both of Linear Regression

and Logistic Regression algorithms have been used to predict the cognitive weights in a

numerical range, as they can output a quantitative measurement [115]. Herein, the proposed

cognitive weight mechanism can be stated as a way of emphasizing the effectiveness of personal

profile regarding the comprehensibility of a source code logic. Furthermore, the capability of

using it to demonstrate the subjectivity associated with the comprehension level can also be

observed due to the variation of the user responses obtained for the validation factors. Therefore,

the drawbacks of current cognitive weights namely the lack of personal profile involvement,

limited applicability and the invalid mechanism followed to assign the weights can be verified as

solved through the proposed cognitive weightage allocation mechanism.

96

3.5.3 A New Cognitive Complexity Metric Based on Personal Profile and

Source Code Aspects

Majority of previous research works have been conducted to express the cognitive complexity as

a metric, which expresses the human comprehension effort as an objective and quantitative value.

Nevertheless, the lack of subjectivity signified from these metrics has created the problem of

their validity in real applications [21]. Furthermore, usage of cognitive weightages along with

these metrics can be observed to assist the cognitive complexity quantification by addressing the

user comprehension level. Hence, the drawbacks associated with cognitive weights also existed

within these metrics. As such, the necessity of deriving a proper cognitive complexity metric has

been arrived. Therefore, as the solution, following mechanism has been followed to propose a

new cognitive complexity metric which can be observed in Figure 16.

As described in section 3.2, the cognitive complexity has been divided into two major aspects

namely personal profile and source code factor. Therefore, that involvement should be considered

for the cognitive complexity metric as well. The involvement of personal profile has already been

performed by initiating a subjective cognitive weight which has been described in section 3.5.2.

Therefore, the consideration of source code factor for the metric introduction should be analysed.

According to Figure 16, the quantitative effectiveness of the source code factor has been denoted

Figure 16. Overview of Cognitive Complexly Metric (CgC)

97

through spatial capacity and architectural aspect. Although the involvement of the programming

environment comes under the source code factor as per Figure 4, it has not been considered for

the metric, as it has been already considered for the cognitive weight determination. Similarly,

the involvement of the spatial capacity has also been addressed in cognitive weight determination

by considering the size of the source code. Hence, the inclusion of the size in terms of LOC has

not been included as a parameter in the metric computation process. Generally, a real source code

contains a high LOC, so including it as a parameter of computing the cognitive complexity would

unnecessarily increase the complexity value, which cannot be granted as a better practise of

obtaining the complexity value. The remaining sub factor inside the source code factor which is

the architectural aspect has not been included in cognitive weight prediction process, so that it

should be included inside the cognitive complexity metric computational process.

The architectural aspect of a source code defines the amount of information inside the source

code generated for a software, and it has proven to be a major factor of determining the cognitive

complexity [2]. This can be further elaborated based on the capacity of memory and the cognitive

load that each user should process with the amount of information scattered within the source

code. The variables in functional programming, attributes in object-oriented programming, input

output parameters, operators and operands are some of the information/data items included inside

a source code [22], [25], [30], [34]. One reason behind multiple introductions for cognitive

complexity computation by previous research works is the observation of these data categories

using different contexts. To describe it furthermore, the data is presented as number of variables

while another work is aimed for input output parameters as data inside the source code.

Moreover, the evaluation of cognitive complexity along with inheritance, coupling, cohesion

under object-oriented programming concepts can also be observed [20], [30]. Along with these

possibilities, it can be stated that the aspects of data that is applied inside a source code cannot be

confined into a limited context, and if is attempted to express data by considering different

categories, obtaining a single and proper cognitive complexity quantification cannot be achieved.

Therefore, consideration of data scattered inside the source code has been obtained into a single

context regardless of their subcategories. To explain it further, the incrementation of user

comprehension effort of a source code with the increased amount of data items has been

considered without navigating into its subcategories, because the concept of subcategories of data

can be found within the whole data items when considering it as a single context. Therefore, all

the data items have been considered as a common factor of determining the architectural aspect

98

without deeming their subcategories. Accordingly, each data item has been referred to a single

unit of representing the architectural aspect and assigned the complexity weightage to one (1)

[20], [36]. Hence, the complexity occurred due to the data items inside a source code is expressed

by considering the number of data items that can be found inside the same source code. As such,

the complexity of data items referred to Data Complexity (DC) obtained for n number of data

items in a source code can be presented as in Equation (14.1).

𝐷𝐶 = ∑ 1𝑛
𝑖=1 (14.1)

Additionally, BCS are another type of information which controls the other type of information

to determine the logical flow [15], [16], [37]. The consideration of the BCS has been performed

by majority of research works by involving them into the cognitive weight assignment [19], [25],

[30], [36]. However, the limitations of these weightages into a specific user group, the

assumptions which have been made in the assignment process confines their usage in real

applications. This issue has been attempted to solve in this research work by assigning the

cognitive weights for BCS through a BCS related questionnaire among selected user group by

analyzing their marks and durations. The methodology of that process has already been described

in section 3.5.1, but its inability to represent the entire architectural aspect only by using BCS is

still existed. Hence, the impossibility of using BCS with cognitive weightage assignment can be

highlighted. However, consideration of BCS to determine the cognitive complexity is a

mandatory factor with respect to the source codes’ architectural aspect as their feature of

controlling the flow of logic cannot be ignored for the user comprehension. As a solution, a

process of including BCS concept to the metric computation procedure without analyzing the

comprehension effort them through cognitive weights has been introduced. Subsequently, the

concept of including the number of BCS inside a source code has been considered. Through that,

the proportional relationship of the number of BCS and the user comprehension effort can be

stated, as the comprehension effort of a user increments along with the number of BCS

incrementation due to the expansion of the control flow by BCS. Additionally, the influence of

nested BCS for the cognitive complexity has also been considered, since the involvement of

nested BCS makes the source code understanding process more complex than having a single

BCS [19]. Therefore, the concept of having a single and nested BCS inside a source code has

been addressed by considering the level associated with them. To explain it furthermore, if a

source code consists with two nested for loops, the outer for loop is set to be in level 1 and the

inner for loop is set to be in level 2. Moreover, if a source code contains only a single for loop, its

99

level is assigned with level 1. Through that, the effectiveness of single and nested BCS for the

BCS complexity can be determined, and thereby the variation of the user comprehension effort

can be expressed. Therefore, the levels assigned for each BCS has been added for the metric

computation. As such, the complexity derived by using BCS is denoted as BCS Complexity

(BCSC) and computed as in Equation (14.2), where m is the total number of BCS appeared in a

source code and ki represents the BCS level assigned for ith BCS.

𝐵𝐶𝑆𝐶 = 𝑚 + ∑ 𝑘𝑖
𝑚
𝑖=1 (14.2)

As such, architectural aspect of a given source code has been defines as the combination of

variables/attributes and BCS inside a given source code. Therefore, Architectural Complexity

(AC) of a given source code can be considered as the complexities generated through DC and

BCSC, which can be denoted as in Equation (14.3).

𝐴𝐶 = 𝐷𝐶 + 𝐵𝐶𝑆𝐶 (14.3)

Along with Equation (13.1) and (13.2), the possibility of stating the architectural complexity of a

source code with respect to its data items and BCS can be claimed. Furthermore, the cognitive

weight represents the involvement of personal profile, spatial capacity and factors of

programming environment under source code factors. Therefore, all the factors associated with

the cognitive complexity has been included in the metric computation as well. As such, the

Cognitive Complexity metric (CgC) can be expressed as summation of the personal cognitive

weight (Cw), AC as shown in Equation (14.4).

𝐶𝑔𝐶 = 𝐶𝑤 + 𝐴𝐶 (14.4)

The reason of expressing CgC by getting the addition of Cw and AC should be clearly defined.

One reason behind getting the addition of these two components is the consideration of cognitive

complexity as a combination of personal profile indicated with the cognitive weight (Cw) and

source code aspect indicated with architectural aspect (AC). It should be noted that the

combination of Cw and AC cannot be considered as a form of multiplication. To describe it

furthermore, in case of Cw and AC get multiplied, CgC value gets equal to the value of AC, if Cw

is obtained as 1 for a particular person. Accordingly, effectiveness of complexity associated with

Cw for cognitive complexity determination cannot be demonstrated properly. On the other hand,

if Cw and AC get added, the effectiveness of complexity related with Cw can be demonstrated

properly for the same example scenario, since the weight of 1 is added to existing AC as the value

100

obtained for CgC. Thereby, the necessity of getting the addition of Cw and AC should be

maintained for CgC computation process.

Furthermore, Equation (13.4) can be further described by using Equation (14.1), (14.2) and

(14.3), where number of variables/ attributes inside the source code is n, m is the number of BCS

and ki is the BCS level associated with ith BCS and shown in Equation (14.5).

𝐶𝑔𝐶 = 𝐶𝑤 + 𝐷𝐶 + 𝐵𝐶𝑆𝐶

𝐶𝑔𝐶 = 𝐶𝑤 + ∑ 1𝑛
𝑖=1 + 𝑚 + ∑ 𝑘𝑖

𝑚
𝑖=1 (14.5)

This equation of quantifying the cognitive complexity can be considered as a vital achievement

due to the inclusion of both person and source code factors involving with human

comprehension. More significantly, the subjectivity of the human comprehension effort has also

been included inside the equation as the form of cognitive weight (Cw) with more emphasis on

personal profile, which cannot be seen in previous works. Thereby, this achievement can be

stated as more practical to express the user cognition effort in real applications.

3.5.4 Complexity Calculation through Standard Complexity Metrics

As an additional feature, a component of calculating the software complexity of a given source

code with respect to a certain number of metrics has been introduced. The software complexity is

defined as the extent of the difficulty level associated with a component, design or its source code

[49], and to assess this property numerous software complexity metrics are being used in real

applications. Similarly in current cognitive complexity metrics, the aspects considered for each

software complexity metric computation are also different, so that different quantifications to

expose the complexity of a given source code can be observed. Therefore, each of software

complexity metrics can be considered as different types of indicators to define the software

complexity. However, the definition of cognitive complexity can be related with software

complexity, as both metrics attempt to evaluate the understandability level associated with a

software using its source code in different aspects. As such, a component of calculating the

software complexity using a certain number of complexity metrics has been included to the

proposed system. Therefore, the system represents two types of complexity computations as

shown in Figure 17.

101

Based on the Figure 17, the system is capable of computing the cognitive complexity using the

proposed cognitive complexity metric, while its software complexity is measured using the

supported complexity metrics by the software complexity calculation component. Through that, it

is expected to observe an existence of a relationship among two complexity measurements as per

their definitions. The overview of the software complexity computation component can be

viewed in Figure 18.

Figure 17. Overview of Complexity Calculation using CgC Metric and Existing Software Complexity Metrics

Figure 18. Overview of Complexity Calculation using Existing Software Complexity Metrics

102

According to Figure 18, java source code is the input for the complexity computation component.

It is significant that the same procedure followed in code quality optimization component is

directed to this component as well. As such, a copy of the inputted source code is maintained by

the component to remove the comments and unnecessary white spaces. The purpose is to identify

Java keywords (reserved key words), identifiers, numbers, operators, escape characters, variables,

classes and methods in each line of code. All the identifiers, numbers, operators, escape

characters, variables, classes and methods in each line of code is identified based on how Java

key words are used inside the source code, and they are stored in different collections for future

usage. Based on the users’ selection of the complexity metric, the component is able to use the

record of related code elements for the calculation process. Once user selects a particular

complexity metric, its underlying logic is displayed for user to acknowledge about the calculation

procedure. The software complexity metric supported for this component are listed in Table 16.

Table 16. Existing Software Complexity Metrics Handled by Complexity Computation Component

Software Complexity Metric Description

Line of code and Comment percentage

metric

Lines only with curly braces, single and multiple

line comments are not considered as a line of

code [116]

Comment percentage is calculated by

considering the single and multiple line

comments and dividing it by the actual line of

code value [117]

Recommended to maintain the actual line of

code value in 4-400 range in which the function

length is for 4-40 program lines and file length

is 4-400 program lines

Comment percentage is maintained to have more

than or equal to 30%.

Complexity due to code element size metric Java reserved key words, identifiers, operators

and operands are considered as code elements

Access modifiers used as Java key words are not

considered

Table 16 continued

103

 All the identified code elements are assigned

with weight 1 and the key words “new”,

“throw”, “throws” are assigned with weight 2

due to their usage in handling objects and

exceptions

Complexity due to recursive methods metric Lines applied with the recursion are assigned

with weight 2 to observe the recursive

components clearly [118] (size complexity of

the same source code is also displayed through

this metric selection)

Cyclomatic Complexity (CC) metric Determines the number of linear independent

paths inside a given source code, which is

preliminary based on the number of BCS [37]

using two equations

𝐶𝐶 = 𝑑 + 1 d – number of decision statements

in the control flow graph

𝐶𝐶 = 𝑒 − 𝑛 + 2 e – number of edges in the

control flow graph

 n - number of nodes in the

control flow graph

Methods, conditional statements, looping

structures are assigned with weight 1

Boolean operators such as conditional AND

(&&) and conditional OR (||) are assigned to 1

Recommended to maintain the CC value less

than 20 [119]

Cognitive Complexity metric by G. Ann

Campbell [2]

Ignore structures that allow multiple statements

to be readably shorthanded into one

Increment weight by 1 for each break in the

linear flow of the code

Increment the weight when flow-breaking

structures are nested

 Table 16 continued

104

Halstead metric Computes the software complexity in terms of

the operators and operands inside the source

code given [120]

Reserved key words that specify the type, all

identifiers which are not reserved words and

constants are considered as operands

Reserved key words that specify storage class,

qualify types and reserved key words which do

not identified as operands and conditional

operators are considered as operators

Use nine formulas for the calculation

Further, the user is given the opportunity to observe the procedure of the calculation process

applied for each line of code, and the total complexity is displayed at the last. The report of the

complexity computation process can be converted into a format of report with the aid of

JasperReports for the download purpose.

Therefore, the opportunity of computing the cognitive complexity using proposed cognitive

complexity metric and the software complexity using the metrics listed under Table 16 for a same

source code has been created by the system. Thereby, the possibility of obtaining the variation

and relationship of cognitive complexity and the software complexity can be gained.

Table 16 concluded

105

3.6 Summary

Throughout this chapter, the applicability of cognitive complexity inside software development

and maintenance processes has been analysed in terms of reducing the cognitive complexity and

computing the cognitive complexity by proposing a new cognition metric. Firstly, the main

factors effect for the cognitive complexity has been analysed, and the subfactors associated with

these main factors have been presented to describe the term cognitive complexity in numerous

directions. Accordingly, cognitive complexity has been described using two main factors namely

personal profile and source code factor. The reason behind these two factors selection is the

definition of cognitive complexity which determines the comprehension effort of users for a

given source code. The comprehensibility of a given source code is essential for two parties.

Users who deal with software development and maintenance processes should be aware of its

source code logic, since the success of these phases depends on how they can understand the

logic behind it. Further, the comprehension of a source code by computer happens when the

source code is debug and executed to produce the output. However, it has been mentioned that

this research work focuses about the users involving in software development and maintenance

phases such as developer, software engineer and quality assurance engineer. As the next step,

subfactors associated with these users’ personal profiles and source codes have been analysed.

The comprehension process is considered as a process involved with the memory capacity of a

particular individual, so that capacity of memory of a person has been considered as one factor

inside personal profile. Further, memory capacity has been found to be categorized into long

term, short term and working memory, where long term memory refers to the long-lasting

memory, short term memory is for the information kept for a shorter duration, while working

memory is associated with the duration that the user deals with comprehending the given source

code. Thereby, the significance of handling the working memory at the time of dealing with a

source code with the aid of long term and short-term memories has been highlighted. Managing

the working memory has been described using cognitive load which has been categorized into

intrinsic, extraneous and germane. Intrinsic cognitive load determines the amount of memory

required to identify the exact logic of a source code, which refers to the actual complexity at the

end. Extraneous cognitive load refers to the memory allocated for excessive distractions while

germane cognitive load refers to the capacity of linking with new ideas along with the

information of long-term memory. Furthermore, aptitude level on programming has been

106

considered under personal profile for cognitive complexity determination. Under that, preference

on a particular programming language and the problem analytical skill have been taken. Further,

the users’ experience and age have also been added as the subfactors under personal profile. The

other main factor to express the cognitive complexity is the source code. The first subfactor taken

under source code is the architectural aspect which expresses the amount of information inside a

source code. This is the factor considered by majority of previous research works to represent the

cognitive complexity with different dimensions. Based on the previous works, the consideration

of architectural aspect has been commonly categorized into variables/attributes, BCS, operators

and operands, input output parameters and object-oriented concepts. Then, the spatial capacity

has been introduced as another subfactor inside source code factor. It is also used by previous

research works such that it refers to the size in terms of LOC, and the distance in LOC from a

module call to its implementation. As the other subfactor of the source code, programming

environment has been considered which includes the source code structure and the availability of

comments. Therefore, cognitive complexity has been described with respect to memory capacity,

aptitude level on programming, experience and age under personal profile, while architectural

aspect, spatial capacity and the programming environment have been considered through source

code aspect.

Then, the association of these parameters to handle the cognitive complexity inside software

development and maintenance processes has been discussed. It has been stated that the

understandability of a source code is the direct co concept behind cognitive complexity, so that

the expectation has been described to have a high understandable source code which can utilize a

less comprehension effort to achieve less cognitive complexity. Therefore, the procedures of

reducing the cognitive complexity have been explored. It has been highlighted that the

consideration of personal profile over the source code factor to express cognitive complexity in

this research, so that the reduction of cognitive complexity has been analysed in terms of

handling the factors inside personal profile. Hence, the effectiveness of cognitive complexity has

been described as a human comprehension process, in which the cognitive load plays a vital role

inside it. Therefore, the procedures of handling the cognitive load to achieve a less

comprehension effort have been studied. It has been found that reducing unnecessary

(extraneous) cognitive load and assisting for necessary (intrinsic and germane) cognitive load can

reduce the human comprehension effort. Accordingly, the mechanisms of reducing unnecessary

cognitive load and assisting for necessary cognitive load have been explored. As such, using an

107

error free and structured source code have been found to reduce unnecessary cognitive load,

while providing visualization, simulation, recommendations and guidelines for a source code

logic have been supported for necessary cognitive load.

Demonstrating the procedures of reducing unnecessary cognitive load and assisting necessary

cognitive load in a computational background has been implemented using the proposed system.

Consequently, referring to the requirements of software and visualizing its logic have been added

as the components under assistive cognitive load mechanism. The process of the visualization

component has been categorized into two visualization procedures, where the logical diagrams

are constructed with and without the source code. The visualization without the source code

happens by referring to its requirements. Therefore, the user is given the opportunity to refer both

types of diagrams of same source code though the comprehension process. As for the

components under cognitive load reduction, defects tracing, code quality optimization and

refactoring components have been included. The ultimate goal of these components is to reduce

the effort utilized in the comprehension process and to make the functionality of software

development and maintenance processes in a smooth way.

The introduction of a new cognitive complexity metric is the other significant outcome of this

research, which has been already included as another component inside the proposed system. As

the preliminary step, the concept of cognitive weight has been studied, which expresses the

understandability level using a numerical value. Based on previous research works, this has been

introduced based on the architectural aspect of a source code, and the consideration of BCS can

be widely observed in majority of works. But, the limitations of the applicability these weights

into a specific user group and the assumption considered for the weightage allocation has

emphasized their invalidity. As a solution, a mechanism of assigning cognitive weights for BCS

through a validated framework has been considered, in which the weightage assignment is

conducted based on the results achieved through a questionnaire. However, involvement of

personal profile to cognitive weights assignment process cannot be seen in this procedure due to

the emphasis given to BCS through this research work. Hence, a new cognitive weight has been

proposed as a predictive factor by analysing the factors of personal profile and source code which

have been verified by both user and the system. The developer age, familiarity of Java

programming language, familiarity of Java coding standards and design patterns, familiarity of

software architecture and frameworks, developer experience, number of project activities,

number of long project and parallel project activities, size of software in LOC and the developer

108

status have been considered for the cognitive weight allocation, which includes both of personal

profile and source code factors. The inclusion architectural aspect under source code aspect has

not been included as it has been already considered in the metric computation process. Also, a

high effectiveness of personal profile involvement can be observed with respect to a high number

of personal profile factors consideration over source code factors. Moreover, the capability of

obtaining a cognitive weight which varies with each user is the significant achievement of this

scenario, as it can demonstrate the subjectivity associated with the users’ comprehension levels.

Along with this, the process of initiating a subjective and quantifiable cognitive weight for the

new cognitive complexity metric has been attained.

The proposed cognitive complexity metric also includes the association of personal profile and

source code factor as it has already described as two major aspects of cognitive complexity. Since

the involvement of personal profile is presented in proposed cognitive weight, it has been taken

as the representation of personal profile inside the metric, while source code aspect has been

added through a calculation process. The spatial capacity of source code in terms of size in LOC

has already been considered with cognitive weight, so that it has been removed from the

calculation. The effectiveness of architectural aspect has been initiated with respect to the

variables/attributes and BCS in more abstract form to avoid inconsistences occurred with its

expression with multiple dimensions, which has been observed as the reason behind numerous

outcomes to express the cognitive complexity in literature. Consequently, the architectural aspect

complexity is obtained as the addition of the complexities due to variables/attributes and the

complexity due to BCS. Along with that, the addition of proposed cognitive weight, which

includes personal profile together with source codes’ spatial capacity included to the new

cognitive complexity metric, which is capable of presenting the human comprehension effort as a

quantitative measurement. It is significant that the inclusion of subjective cognitive weight

effects to demonstrate the subjectivity of human comprehension effort through the proposed

metric, which can be considered as a vital achievement over the previous cognitive complexity

metrics.

Therefore, the initiation of procedures to lessen the cognitive complexity in software

development and maintenance processes in a computational background and the introduction of a

subjective cognitive weight allocation mechanism with a new cognitive complexity metric are the

major achievements of this research project.

109

4.0 RESULTS AND DISCUSSION

4.1 Introduction

The first outcome of this research work is the introduction of several computational procedures,

which can demonstrate cognitive complexity reduction inside software development and

maintenance processes. The other outcome is the introduction of a new cognitive complexity

metric based on person and source code aspects, which is capable of emphasizing the subjectivity

associated with human comprehension levels using the proposed subjective cognitive weight.

Even though the purpose of introducing the cognitive complexity reduction components can be

validated logically and theoretically, they should be empirically validated as well to confirm their

stability in real usage. The same condition should be applied to the introduction of a new

cognitive complexity metric as well. It should also be validated theoretically and empirically to

promote its applicability in real applications, while demonstrating its relativity to the definition of

cognitive complexity through a numerical representation. Therefore, the evaluation procedures of

both of these outputs have been discussed in this chapter.

The components implemented to address the cognitive complexity reduction should be verified to

achieve a less comprehension effort on a given process. It has been found that the duration taken

to process a given task implies the effort taken to understand its underlying logic [121], [122].

This can be further explained as a higher effort utilized to comprehend a given source code

involves a considerable number of processing involved, which takes a higher duration. The

understandability of a source code tends to be easy, when the comprehension effort is lower.

Consequently, it involves with less processing which utilizes a less duration. Therefore, the

duration applied to comprehend a source code can be considered to verify the comprehension

effort, thereby the effectiveness of cognitive complexity as well [34]. As such, the duration has

been considered as a major parameter to analyze the cognitive complexity reduction of the

proposed system components. The procedure described in [34] has been followed to analyze the

duration attained for a task completion by a set of users. Accordingly, the duration taken to

perform a certain task inside a given source code without system components and by using

system components along with the source code have been monitored and analyzed. Nevertheless,

the familiarity obtained through repeating the same task in the same source code also effects to

the cognitive complexity, as it changes with the duration. Therefore, a time gap of one week has

110

been maintained to repeat the same task with system components in order to measure the

duration. Thereby, it has been assumed that users are novel to the source code so that their

cognitive loads have not been filled with the previous event information, which they have

referred one week prior. The same set of users considered for cognitive weightage assignment

for BCS described in section 3.5.1 has been used for this evaluation criteria as well. Moreover,

those users have been categorized into subgroups to lower down the users in a particular group

and to create the facility to analyze the results more conveniently. As such, four different user

groups, in which each user group consists with 100 users were selected for the study. The

students were selected based on four different score levels obtained through the selection

questionnaire such that 60%-70% scored students belongs to the first group (G1), 70%-80%

scored students belongs to the second group (G2), 80%-90% scored students belongs to the third

group (G3) and 90%-100% scored students belongs to the fourth group (G4). For the analysis

process, thirty different software have been considered.

It should be noted that this research work analyzes the comprehension effort utilized for a source

code which is implemented with a correct logic. Hence, the requirement of validating the

accuracy of these components have been ignored as incorrect functionalities of these components

cannot lead to a correct logic implemented inside the source code. On the other hand, the

proposed metric should be undergone with a validation procedure to verify its applicability in

software domain. The validation has to be performed theoretically with standard software

complexity metrics frameworks. Further, it should be evaluated against the drawbacks of current

cognitive complexity metrics.

4.2 Evaluation of Requirements Analysis Component

The purpose of the requirements analysis component is to gain the class names as requirements

by analyzing the formatted project proposal document. The possibility of using these class names

for the visualization process can also be highlighted as the logical diagram generation is

performed after finalizing the requirements inside SDLC. The possibility of referring to the

requirements of a software to make the source code understanding process easier is the core

concept behind the implementation of this component. As it has been already described, the

duration taken to accomplish a certain task is used to practically analyze the comprehension

111

effort of this component. Accordingly, the effectiveness of requirements analysis component to

reduce the users’ comprehension effort has been measured in terms of duration. The users were

given the source codes implemented for thirty software along with their requirements generated

by requirement analysis component. They were asked to perform a modification for each source

code by referring only to the given source code. The same task has been repeated by providing

the generated requirements as well. The modification includes implementing a new method by

comprehending the logic of the whole source code, so that the time taken to implement the

method can imply the comprehension effort utilized for it. This procedure has been monitored

through a Moodle environment to gain the duration accurately. As such, the duration taken to

accomplish this task by referring only to its source code and with its requirements have been

recorded with respect to each subgroup maintaining one week time gap among both processing.

However, there can be certain situations that users complete the modification inaccurately. In that

scenario, users were asked to repeat the same process until the correct modification is outputted,

so that the average duration is obtained as the duration taken to apply the modification. As such,

each source code modification has been performed by four subgroups, so that the average

duration taken by four subgroups for each source code has been computed to make it easy for use

and analyze. Accordingly, the average duration taken by each of subgroup to apply a

modification inside thirty different source code of software have been shown in Figure 19.

Figure 19. Average Duration with Requirements Analyzer

112

Based on Figure 19, average duration utilized to implement a new method inside given source

code can be observed as less with the reference of requirements generated by requirements

analysis component. To describe it furthermore, the average duration to implement a new method

can be reduced by comprehending the logic of its source code and along with its requirements, as

referring only the source code to perform the same process takes more time. Based on the

recordings, it can be noticed that total average duration taken for this study by referring only to

the source code has obtained 71.75 minutes, while the total average duration for same processing

with additional usage of requirements has led to 61.9 minutes. Therefore, proposed requirements

analysis component has gained 13.83% duration reduction comparing to comprehension process

followed only with the source code. A lesser duration implies the reduction of the cognitive

effort, thereby the reduction of cognitive complexity can be stated. Therefore, usage of above

requirements analysis component can be stated as reducing the cognitive complexity of a given

source code.

Furthermore, the assistance of requirements analysis component with respect to the duration

reduction has been verified statistically. Since the experiment has been conducted through same

user group for multiple scenarios, paired samples T test in SPSS has been performed for the

comparison process. The expectation is to verify a reduction in cognitive effort in terms of lesser

duration taken with source code and the requirements usage. The output of T test can be observed

in Table 17.

Table 17. Output of Paired Samples T Test conducted for Requirements Analyzer

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval of

the Difference

Lower Upper

Pair 1 Duration_Only_With

_Source_Code –

Duration_With_Sour

ce_Code_And_Requi

rements

9.86000 6.73151 .61450 8.64323 11.07677 16.046 119 .000

113

Based on this result, it is 95% confident that the true mean difference of durations is in between

8.64323 and 11.07677. It should be noted that all these analyses have been done with 5%

significance level (α), so that confidence level has been taken as 95%. In order to analyze the

results generated by paired sample T test, the hypothesis test has been performed as follows.

Along with the statistical analysis of paired samples T test, the duration taken to understand a

source code logic is lesser with the assistance of it is requirements. It implies that the duration

taken to understand a source code logic is higher without any assistance. A lesser duration

implies the reduction of comprehension effort taken by users, so that it can be verified that the

requirements analysis component can reduce the cognitive complexity as an assistive mechanism

to users’ necessary cognitive load. Moreover, the concept of referring to the software

requirements in a situation where the source code is difficult to understand can also be verified

again to make the comprehension process simpler.

Let µ1 be the total mean time taken for source code comprehension only by referring the

source code

Let µ2 be the total mean time taken for source code comprehension by using the

requirements along with the source code

The null hypothesis (H0) is defined as, H0: µ1 <= µ2

The alternative (H1) is defined as, H1: µ2 < µ1

Rejection region (p value approach) of H0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.000/2 < 0.05

0.000 < 0.05 → condition is true

Therefore, null hypothesis (H0) is rejected, which in turns accepts the alternative (H1).

Hence, it can be verified that the mean time taken to comprehend a source code with

requirements can reduce the duration.

114

4.3 Evaluation of Visualization Component

According to Figure 6, the visualization component is consisted with two visualization

mechanisms, in which one subcomponent is responsible to generate UML diagrams without the

source code and the other component generates diagrams by using the source code. A sample of

class diagram, ER diagram and object diagram generations without using the source code and a

sample of sequence diagram and class diagram generation by using the source code have been

included in Appendix A and Appendix B respectively. The combination of both subcomponents

has been used as a mechanism for assisting the necessary cognitive load of users’ to reduce the

cognitive effort and complexity. Accordingly, another thirty different source codes have been

given to the same set of users to implement a new function by comprehending its logic. The

duration taken to implement a new function correctly by using only the source code and by using

their visualized UML diagrams along with the source code have been recorded separately.

Supporting to the logical comprehension using visualization has been performed in two ways.

The logical diagrams generated by an existing visualization technique EasyUML, which is

supported for NetBeans have been given for the user along with source codes. The diagrams

generated by Visual Paradigm have not been considered, as it provides user to generate the

diagrams. Hence, the duration to process the same functionality with the diagrams of proposed

component has also been recorded after. It should be noted that all these three processes have

been performed by keeping one week duration gap to omit the familiarity related with logical

comprehension. As it is performed in requirements analysis component, the durations taken for

incorrect modifications have been recorded by computing the average duration of obtaining the

correct modification. As such, the mean duration acquired for each group of users for three

different scenarios are presented in Figure 20.

115

Based on Figure 20, total average duration of applying the modification by comprehending the

source code without any assistance results in 65.73 minutes. The total average duration for same

processing with their logical diagrams using EasyUML and with proposed component have

outputted 55.37 and 52.71 minutes respectively. Therefore, a significant duration reduction of

19.81% can be observed in the proposed visualization component comparing to the

comprehension with no visualization, which implies the development of users’ comprehension

level with generated UML diagrams. Further, 4.81% duration reduction can also be observed in

proposed visualization component comparing to the visualizations generated by EasyUML. As

such, usage of the proposed component over EasyUML can be stated as a better way of

illustrating the diagram logic, which tends to increase the user comprehension level comparing to

the current visualization techniques. The comprehension level development of users tends to

lessen the comprehension effort. Hence, the proposed visualization component can be stated as a

way of reducing cognitive complexity effected with users.

The assistance of this component in terms of reducing the duration has been verified statistically

using paired samples T test. The output of T test can be observed in Table 18.

Figure 20. Average Duration with Visualization Component

116

Table 18. Output of Paired Samples T Test conducted for Visualization Component

Table 18 shows that the existence of true mean difference of the durations taken with source code

and with component visualization is in between 11.69073 and 14.34627 along with 95%

confidence. The hypothesis testing to check the reduction of comprehension duration with

visualization component has been shown below.

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviatio

n

Std. Error

Mean

95% Confidence Interval of

the Difference

Lower Upper

Pair 1 Duration_Only_With_Sour

ce_Code -

Duration_With_Proposed_

Visualization

13.01850 7.34558 .67056 11.69073 14.34627 19.414 119 .000

Let β1 be the total mean time taken for source code comprehension only by referring the

source code

Let β2 be the total mean time taken for source code comprehension of a source code by

using the logical diagrams generated by proposed component

The null hypothesis (A0) is defined as, A0: β1 <= β2

The alternative (A1) is defined as, A1: β2 < β1

Rejection region (p value approach) of A0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.000/2 < 0.05

0.000 < 0.05 → condition is true

Therefore, null hypothesis (A0) is rejected, which in turns accepts the alternative (A1).

Hence, it can be verified that the mean time taken to comprehend a source code with

visualization can reduce the duration.

117

Therefore, the verification of the proposed visualization component can be introduced as a

mechanism to reduce the comprehension duration of users for a given source code. Accordingly,

the reduction of the users’ comprehension effort can be emphasized with the support of UML

diagrams, which in turns can assist to reduce the cognitive complexity. Hence, the guidance

given by visualizing the source code logic in terms of UML diagrams can be concluded as a

mechanism of reducing the cognitive complexity of a source code.

Furthermore, the possibility of using the proposed component for UML diagrams visualization

over the existing visualization EasyUML has been determined statistically. However, it is

noteworthy that verification of this component over other available visualizations is not

applicable for all types of UML diagrams, as it does not support for all types of UML diagram

generations. The paired samples T test has been conducted for the comparison process and its

result is shown in Table 19.

Table 19. Output of Paired Samples T Test conducted for Visualization Component with EasyUML

Based on Table 19, it is 95% confident that the true mean difference of the durations taken by the

proposed component and EasyUML lies in between 1.95475 to 3.37558 minutes. Further, the

procedure of hypothesis testing to imply the duration reduction of the proposed component has

been shown below.

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed)

Mean

Std.

Deviatio

n

Std. Error

Mean

95% Confidence Interval of

the Difference

 Lower Upper

Pair

1

Duration_With_Source_Cod

e_And_EasyUML -

Duration_With_Proposed_Vi

sualization

2.66517 3.93022 .35878 1.95475 3.37558 7.428 119 .000

118

Therefore, the reduction of duration through proposed visualization can be statistically verified

over one of the current UML diagram generators namely EasyUML, such that users’

comprehension level becomes easy with reference to the proposed visualizer. Hence, the usage of

proposed visualizer to comprehend the source code logic can result a significant reduction of the

comprehension effort comparing to the usage of source code without any diagrams and the usage

of current UML diagram generators. Therefore, using a proper visualization technique is proven

to assist with users’ comprehension level to mitigate the difficulties occurred in the

comprehension process and to achieve a less cognitive complexity. Furthermore, the concept of

referring to the logical diagrams to understand the source code logic in an easy manner can be

verified similarly with referring to requirements as well. As such, the issues related with

understanding a source code can be lessened by navigating to their requirements and visual

representations, which assists to reduce the cognitive effort and thereby to ensure a less cognitive

complexity.

Let θ1 be the total mean time taken for source code comprehension of a source code using

the diagrams generated by EasyUML

Let θ2 be the total mean time taken for source code comprehension of a source code by

using the logical diagrams generated by proposed component

The null hypothesis (X0) is defined as, X0: θ1 <= θ2

The alternative (X1) is defined as, X1: θ2 < θ1

Rejection region (p value approach) of X0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.000/2 < 0.05

0.000 < 0.05 → condition is true

Therefore, null hypothesis (X0) is rejected, which in turns accepts the alternative (X1).

Hence, it can be verified that the mean time taken to comprehend a source code with

proposed visualization can reduce the duration comparing to the existing visualization

EasyUML

119

4.4 Evaluation of Defects Tracing Component

The verification of cognitive complexity reduction through defects tracing component has been

introduced to reduce the cognitive load dedicated for defects handling, which assists to reduce

unnecessary cognitive load with respect to source code logic. Accordingly, it is expected to

expand the capacity dedicated for necessary cognitive load, which can assist with the actual

program understanding. Hence, the reduction of the cognitive effort can be observed to achieve a

less cognitive complexity. In order to check the variation of duration associated with this

component, an experiment of maintaining a source code according to a new requirement has been

performed. The same user groups were given source codes implemented for another thirty

different software and requested to apply a modification for an existing method. It is evident that

applying a modification to an existing functionality requires the logical comprehension entire

source code. The source codes were inputted with coding defects listed under Table 13 and given

them to users to apply the modification. The users have not been informed about the possibility

of having coding defects inside given source codes, so that handling defects has to be performed

along with the logical comprehension to apply the said modifications. The durations acquired by

each user group to handle the identified defects through FindBugs plugin and to apply the correct

modification have been recorded. The same procedure has been performed after another week

through the assistance of defects tracing component and recorded the relevant duration.

Moreover, the duration taken to apply the modifications without any bug tracker has not been

recorded, since there is no possibility of checking the success of modifications and the expected

outputs without realizing and handling the coding defects. It should be noted that the mean

duration of applying correct modification has been taken in the scenarios of incorrect

modifications, as it has been already followed in previous components’ duration recording. Along

with these, the average duration taken by each user group for both scenarios can be viewed in

Figure 21.

120

The Figure 21 illustrates that the total average duration required to apply the correct modification

with FindBugs defects tracer is 16.65 minutes, while the total average duration for same

processing with the proposed defects tracing component is 10.68 minutes. As such, 35.84%

duration reduction can be observed comparing to the processing through proposed component

over the current bug trackers. The reason for attaining a significant declination of duration can be

stated as the background created by the proposed component to handle coding defects which are

not detected by FindBugs tracking tool and the guidance provided to fix the defects, so that users’

comprehension effort of handling those defects reduces.

Further, the possibility of gaining a duration reduction through this component has been analyzed

statistically with respect to FindBugs bug tracker using paired samples T test. Its output can be

observed in Table 20.

Figure 21. Average Duration with Defects Tracing Component

121

Table 20. Output of Paired Samples T Test conducted for Defects Tracing Component

According to the outcome of Table 20, 95% confidence status can be applied for the existence of

true mean difference with defects tracing component which lies in between 5.39044 and 6.54173

minutes. The hypothesis testing performed to observe the duration variation is as follows.

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviatio

n

Std. Error

Mean

95% Confidence Interval of

the Difference

Lower Upper

Pair 1 Duration_Of_Source_Co

de_With_FindBugs -

Duration_of_Source_Cod

e_With_Defects_Tracing

_Component

5.96608 3.18463 .29072 5.39044 6.54173 20.522 119 .000

Let γ1 be the total mean time taken for source code comprehension with FindBugs bug

tracker

Let γ2 be the total mean time taken for source code comprehension by using the proposed

defects tracing component

The null hypothesis (B0) is defined as, B0: γ1 <= γ2

The alternative (B1) is defined as, B1: γ2 < γ1

Rejection region (p value approach) of B0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.000/2 < 0.05

0.000 < 0.05 → condition is true

Therefore, B0 is rejected, which in turns accepts B1.

Hence, it can be verified that the mean time taken to comprehend a source code with

proposed defects tracing component can reduce the duration comparing to the existing bug

tracker FindBugs

122

Based on both types of analysis, it can be significantly observed that the logical comprehension

of a source code effects with the coding defects inside it. Therefore, it influences with

comprehension duration such that the reduction of comprehension duration can be achieved by

having a proper defects tracing mechanism. To describe it further, the number of defects that a

bug tracker can identify can changes the cognitive load, effort and the time. Consequently, the

usage of proposed component can be verified to achieve a less comprehension effort comparing

to the existing bug trackers such as FindBugs. Therefore, the reduction of cognitive complexity

can be achieved through this component by creating the possibility to reduce unnecessary

cognitive load effected with defects handling so that the source code logical understanding

process becomes easier.

4.5 Evaluation of Code Quality Optimization and Refactoring Components

The other components introduced to reduce unnecessary cognitive load to achieve a lesser

cognitive complexity are code quality optimization and refactoring components. As it has been

already described, code quality issues are the symptoms of bad design of the source code, while

refactoring techniques assist to improve the design of a source code. Hence, identifying code

quality issues and applying refactoring techniques support to build a proper structure of a source

code. The proposed system has two components to handle code quality optimization and

refactoring, and their assistance to build a source code in a structured manner to reduce the

cognitive complexity has been explored. The sample source codes generated for thirty different

software have been tested with users in four groups to apply a modification to an existing

function by understanding the source code logic. Firstly, they were given the source code

implemented through NetBeans, so that they can use existing facilities available in the IDE to

restructure the source code and continue the comprehension to apply the required modifications.

Then, they have been asked to repeat the same process after one week duration with the aid of

system components. The duration taken by users to correctly modify the source code have been

recorded for both scenarios. Although a source code can be understood and modified without

applying any refactoring technique, the feature of highlighting the possible code smells through

the IDE cannot be ignored in the process of modifying the source code and execute. Therefore,

the duration taken to understand the source code logic without any code smell identifier and

refactoring component have not been considered for the analysis. Similarly in other components,

123

the average duration to obtain the correct outcome has been considered in the situations of

incorrect results obtaining. Consequently, the average durations obtained by each user group for

each source code have been plotted in Figure 22.

According to Figure 22, the average total duration to comprehend the source code with available

code quality solutions and refactoring techniques shows 18.05 minutes, while the same source

code comprehension with proposed code quality optimizer and refactoring component outputs

12.22 minutes as the total average duration. Accordingly, a duration reduction of 32.29% can be

observed in the proposed component over to the exiting features of handling code issues and

refactoring techniques. As such, the declination towards the comprehension effort from the

proposed component can be highlighted for the quality issues and refactoring techniques that the

proposed components are capable of handling. The reason behind the duration reduction of

proposed components is the procedure of giving suitable guidelines to fix the issues in a way that

users can understand them easily, so that cognitive load and effort allocated with fixing quality

issues and applying refactoring techniques are reduced comparing to the existing techniques of

handling the same. Moreover, auto fixing feature introduced by code quality optimizer to fix

some of the code quality issues results to lessen the cognitive load effected with fixing those,

thereby to attain a high cognitive load capacity for the source code logic comprehension, which

can reduce the cognitive effort. Therefore, the necessity of maintaining a proper structure of a

Figure 22. Average Duration with Code Quality Optimizer and Refactoring Component

124

source code can be verified to make the logical understanding of a source code in an easy manner

to reduce the cognitive complexity effected with it. Moreover, the applicability of a proper code

quality optimizer and refactoring components has been indicated to further reduce the cognitive

complexity with respect to the way that they have been handled. The statistical verification of the

duration reduction of proposed components comparing to the available code quality and

refactoring techniques using paired samples T test has been shown in Table 21.

Table 21. Output of Paired Samples T Test conducted for Code Quality Optimizer and Refactoring Components

Table 21 summarizes of having 95% confidence interval of true mean differences of durations

taken for source code comprehension with current quality and refactoring techniques and with

proposed component between 5.15352 and 6.50282. Moreover, the hypothesis testing to observe

the duration declination of proposed component is as follows.

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval of

the Difference

Lower Upper

Pair 1 Source_Code_With_Curr

ent_Code_Quality_And_

Refactoring_Techniques

-

Source_Code_With_Prop

osed_Quality_Optimizati

on_And_Refactoring

5.82817 3.73234 .34071 5.15352 6.50282 17.106 119 .000

125

Through the statistical analysis also, the duration reduction of the proposed component has been

mentioned as true over the currently available techniques of solving code quality issues and

refactoring techniques. In addition to that, the necessity of maintaining a proper structure of a

source code is proven to have a less comprehension duration, which tends to make the

comprehension process easier. Herein, including the features to solve code quality issues and to

apply refactoring techniques can be stated to lessen the cognitive complexity effected with it.

After analyzing the durations obtained through all the components of proposed system, a

significant reduction of the time taken to understand a given source code logic to process a

certain task can be observed comparing to the current practices. As the duration has been

expressed and verified as a direct parameter of determining the comprehension effort, a lesser

duration has implied a lesser comprehension effort taken by a particular individual. So that, the

Let η1 be the total mean time taken for source code comprehension with current code

quality and refactoring techniques

Let η2 be the total mean time taken for source code comprehension by using the proposed

code quality optimizer and refactoring component

The null hypothesis (Y0) is defined as, Y0: η1 <= η2

The alternative (Y1) is defined as, B1: η2 < η1

Rejection region (p value approach) of B0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.000/2 < 0.05

0.000 < 0.05 → condition is true

Therefore, Y0 is rejected, which in turns accepts Y1.

Hence, it can be verified that the mean time taken to comprehend a source code with

proposed quality structuring and refactoring components can reduce the duration comparing

to the existing quality and refactoring techniques

126

system components have been evaluated to obtain a cognitive complexity reduction, which are

associated with software development and maintenance processes.

4.6 Evaluation of Cognitive Weightage Assignment for BCS

This has been conducted to overcome the issues related with current cognitive weights’ validity,

as majority of weightage assignments are based on experience related assumptions. Therefore,

the weightage assignment process for BCS has been carried out through an experimental

background. The expectation is to analyze the comprehension level associated with users in terms

of marks and duration taken for the questionnaire. Since the cognitive weights are determined for

BCS, the questions of the questionnaire have been categorized based on the type of BCS. As

such, questions based on if-else and switch-case under selection category, for loop and while loop

under looping category and nested for and nested while in nested looping category were included

into the questionnaire. The same question was assessed through different BCS under same

category, to compare the comprehension levels associated with different BCS under same

category. The questionnaire was conducted in Moodle environment to accurately monitor the

marks and the duration taken. The statistical data of the questionnaire has been obtained through

SPSS. The statistical outcomes derived for all BCS categories have been included in Appendix C.

Then, each category has been analytically studied based on mean and standard deviation of marks

(out of 5) and durations (minutes) and compared to obtain the BCS which is easy to understand in

each category. The data which has been obtained for each BCS are listed in Table 22.

127

Table 22. Statistical Values Obtained from BCS Questionnaire

If a BCS can be easily understood, the duration taken for it becomes less and there is a high

possibility that user can reach to the correct answer. Therefore, the BCS which obtain

comparatively less durations and high marks reflect for high comprehension level, so that they

should be assigned with less cognitive weights. Similarly, higher durations and less marks tend to

obtain BCS with less comprehension level, which should be assigned with high cognitive

weights.

By applying this concept along with Table 22 results, it can be clearly observed that high mean

marks have been obtained with less mean duration in switch-case statements, which implies

switch-case statement has high understandability comparing to if-else conditional statements

under selection category. However, this situation may contradict with real scenarios as if-else

statement can be seen in majority of applications than switch-case statements for conditional

checking. For looping category, while loops tend to be more understandable, since it scores more

mean marks within less mean duration with respect to mean values obtained for for loop.

Similarly, nested while loops result with lesser comprehension effort with high means marks and

less mean duration. Therefore, switch-case statement, while loop and nested while loop tend to be

more comprehensive BCS with respect to selection, looping and nested looping categories

BCS Category BCS Evaluation criteria Mean

conditional if time(minutes) 6.8377

marks (out of 5) 4.63

switch-case time(minutes) 3.4622

marks (out of 5) 4.71

looping/iteration for time(minutes) 6.3616

marks (out of 5) 4.2960

while time(minutes) 4.0950

marks (out of 5) 4.3640

nested

looping/iteration

nested for time(minutes) 8.1471

marks (out of 5) 3.6920

nested while time(minutes) 5.8110

marks (out of 5) 3.9260

128

respectively, which their cognitive weights should be assigned as lesser than the other BCS in

same category. Then, the necessity of denoting the comprehension level of each BCS through one

value has been raised to make the comparison and assignment processes conveniently. As there

are two parameters considered for the comprehension level determination, the multiplication of

mean duration and mean marks has been considered as the parameter to evaluate each BCS with

weightage assignment. The resulted mean values for both duration and marks, mean

multiplication values and proposed cognitive weights are listed in Table 23.

Table 23. Proposed Cognitive Weights for BCS

BCS Mean (Total

Time – minutes)

Mean (Total

Marks – out of 5)

Mean (Time) *

Mean (Marks)

Proposed

Cognitive

Weight

if – else 6.8377 4.63 31.67 1.94

switch - case 3.4622 4.71 16.31 1

for 6.3616 4.2960 27.33 1.68

while 4.0950 4.3640 17.87 1.1

nested for 8.1471 3.6920 30.08 1.84

nested while 5.8110 3.9260 22.81 1.4

To assign the cognitive weights, the multiplicated mean values have been compared with respect

to the minimum multiplicated mean value. The minimum multiplicated mean value is 16.31,

which has been computed from switch-case statements. Accordingly, switch -case statement has

been assigned to 1 as its cognitive weightage, considering 1 as the lowest cognitive weight. The

other categories have been assigned by comparing with the lowest multiplicated mean (16.31)

obtained for switch-case statement. Consequently, the ratio of other BCS multiplicated mean

values in terms of switch-case multiplicated mean has been introduced as the cognitive weights

each BCS. The resulted cognitive weights computed for each BCS have also been listed in the

last column of Table 23.

129

As the next process, an existence of a relationship between the new cognitive weights and

previous research works has been checked, even though they have been assigned through

assumptions. Accordingly, the cognitive weights obtained through the questionnaire and past

research works have been used as listed in Table 24.

Table 24. Comparison of Proposed Cognitive Weights with Previous Cognitive Weights

BCS Research

[35]

Research

[19]

Research

[25]

Research

[30]

Computed

Weights from

the

Questionnaire

if - else 1 2 2 2 1.94

switch -

case

n (n cases) 3 3 2 1

for loop 2 3 3 3 1.68

while loop 2 3 3 3 1.1

nested for

loop

n (n levels) 4 not discussed 3 1.84

nested while

loop

n (n levels) 4 not discussed 3 1.4

It can be clearly observed that the previous cognitive weightages are bounded with whole

numbers, while cognitive weights obtained from questionnaire dataset lies within 1-2 region with

decimal values as well. The previous works has not introduced the decimal values on a basis of

easy usage, comparison and computation, but it has led to unnecessary large quantifications for

the complexity. Both of [19] and [25] has assigned 2 and 3 as the cognitive weightages for if –

else and switch – case statements respectively, which if – else statement tend to be more

comprehensive than switch-case statement. Hence, it has verified the practical situation of typical

users to prefer more on if-else statements. Further, the weightage assignment of [35] can also be

acceptable due to the higher weightage allocation for switch-case statement based on the number

of cases associated with it. Nonetheless, the weightage allocation in [30] tends to be more

problematic due to consideration of same cognitive weight allocation for both if-else and switch-

case statements, which indicates the same comprehension level for both BCS. According to the

130

questionnaire dataset, switch–case statement tends to be more comprehensive than if–else

statement, which is a complimentary observation with respect to other research works. The

cognitive weights assigned for both for and while loops tend to be equal in literature, while

weight of 2 has been assigned in [35] and others with weight 3. However, the comprehension

level of a for loop and a while loop cannot be equal, so that both loops have to be assigned with

different cognitive weights. Furthermore, any user is preferred to use one of the looping

controllers as the preferred looping structure, which demonstrates the level of understandability

and the comprehension effort of both loops have to be varied. Therefore, the cognitive weightage

assignment in previous research works seem to be erroneous. The weightages assigned for both

types of loops with questionnaire analysis seems to be quantitatively different such that while

loops seem to be more cognitive than for loop. Therefore, it is a significant achievement to

demonstrate the user cognition level and preference variations in a quantitative manner. The

comprehension effort of nested looping categories has not been discussed in [25]. The same

cognitive weightage, which is equivalent to 4 in [19] and n in [35] have been assigned to both

nested for and nested while loops, which concludes the level of understandability of both has to

be unchanged. It is practically unaccepted since different users has different comprehension

efforts for different looping criteria, which has been discussed under the single looping criteria as

well. Therefore, same weightage assignment for nested looping structure in [35] and [19] cannot

be validated. The analysis of the questionnaire dataset introduces different cognitive weights for

both nested looping structures such that nested while loop makes more understandable than

nested for loop. Further, while loop and nested while loop have obtained a high level of

understandability among single and nested looping criteria respectively, which signifies the

accuracy of the test results as the low comprehension level associated with while loop should be

continued to its nested while loop.

Accordingly, the applicability of majority of proposed cognitive weights can be stated as valid in

terms of weightage assignment procedure and user preference in practical scenarios. However,

these weightages have been generated based on a specific user group, so that their applicability is

limited only for that user group. Thereby, the usage of proposed cognitive weights for general

usage has to be performed, which is applicable for entire user population. As such, the mean

values obtained for duration and marks of the questionnaire have been statistically analyzed to

check the possibility of applying the same weights to general users. Since each BCS in same

category has been tested using same user group, the paired samples T test has been performed for

131

both mean duration and mean marks obtained through each BCS. It should be noted that the

confidence interval has been taken as 95% for the test. Through the test analysis, the applicability

of the variations of mean duration and mean marks have been observed for entire group. If the

same variation of a particular BCS can be verified to be applicable for the entire user group, the

proposed cognitive weight can be stated as valid. Hence, paired samples T test has been

conducted to verify the cognitive weights of if-else and switch-case statements in terms of mean

duration and mean marks and the outputs can be viewed in Table 25 and Table 26 respectively.

Table 25. Output of Paired Samples T Test conducted for if-else and switch-case statements based on Time

Table 26. Output of Paired Samples T Test conducted for if-else and switch-case statements based on Marks

Based on Table 25, the hypothesis testing for mean duration variation of if-else and switch-case

statements for general users has been performed as follows. Although the questionnaire results

imply more comprehension on switch-case statements, the impossibility of it with the current

user preferences and previous cognitive weightage assignments has already been highlighted.

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval

of the Difference

Lower Upper

Pair 1 If_Total_Time -

Switch_Total_Time
3.37557 6.56862 .29376 2.79841 3.95272 11.491 499 .000

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval of

the Difference

Lower Upper

Pair 1 If_Mark -

Switch_Mark
-.082 1.155 .052 -.183 .019 -1.588 499 .113

132

Therefore, the general expectation of deriving if-else statement as more comprehensive BCS has

been analyzed through the test.

Similarly, the existence of high mean marks for if-else statements for general users has been

analyzed by a hypothesis testing with the usage of statistical results listed in Table 26 as follows.

Let a1 be the total mean time taken to comprehend if-else statements

Let a2 be the total mean time taken to comprehend switch-case statements

The null hypothesis (T0) is defined as, T0: a1 >= a2

The alternative (T1) is defined as, T1: a1 < a2

Rejection region (p value approach) of T0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.000/2 < 0.05

0.000 < 0.05 → condition is true

Therefore, T0 is rejected, which in turns accepts T1.

Hence, it can be verified that the mean time taken to comprehend a source code with if-else

statements is lesser than the same source code with switch-case statements as per general

users.

133

Based on the hypothesis testing performed for comprehension level analysis of if-else and switch-

case statements, a less mean duration has been observed with if-else, while a high mean mark has

been observed with switch-case statements. However, the evaluation scenario of the

questionnaire is to obtain the BCS which can obtain high marks within less duration to verify its

comprehensibility over the other BCS, since the comprehensibility should be associated with

correct logic identification. Surprisingly, the results of hypothesis testing do not imply that

situation, as these two conditions are mapped with two BCS. Thereby, the impossibility of

generalizing a cognitive weight for a BCS in selection category can be highlighted.

Then, the process of generalizing cognitive weights for looping criteria has been performed.

Accordingly, outcomes of the paired samples T test for for loop and while loop with respect to

mean time and mean marks have been listed in Table 27 and Table 28 respectively.

Let b1 be the total mean marks taken to comprehend if-else statements

Let b2 be the total mean marks taken to comprehend switch-case statements

The null hypothesis (R0) is defined as, R0: b1 <= b2

The alternative (R1) is defined as, R1: b1 > b2

Rejection region (p value approach) of R0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.113/2 < 0.05

0.0565 < 0.05 → condition is false

Therefore, R0 cannot be rejected.

Hence, the possibility of gaining less marks for if-else statements can be emphasized in

terms of general usage.

134

Table 27. Output of Paired Samples T Test conducted for for and while loops based on Time

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed)

Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval of

the Difference

 Lower Upper

Pair 1 For_Total_Time -

While_Total_Time
2.26657 5.46020 .24419 1.78680 2.74633 9.282 499 .000

Table 28. Output of Paired Samples T Test conducted for for and while loops based on Marks

The hypothesis testing conducted to observe the mean duration variation of looping criteria using

Table 27 outcomes can be observed below. As per the questionnaire results, the influence of

while loop over for loop has been considered as more comprehensive in hypothesis testing.

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval

of the Difference

Lower Upper

Pair 1 For_Marks -

While_Marks
-.06800 1.41824 .06343 -.19261 .05661 -1.072 499 .284

135

Consequently, the analysis from the questionnaire results can be stated as true in terms of general

users such that the comprehension duration for while loop is lesser than for loop. Similarly, same

scenario applied for mean marks has been considered through another hypothesis testing referred

to Table 28, since the comprehension effort should be allocated to identify the logic correctly.

Therefore, the possibility of maintaining high mean marks for while loop for general users has

been considered in hypothesis testing as follows.

Let c1 be the total mean time taken to comprehend for loop

Let c2 be the total mean time taken to comprehend while loop

The null hypothesis (Q0) is defined as, Q0: c1 <= c2

The alternative (Q1) is defined as, Q1: c2 < c1

Rejection region (p value approach) of Q0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.000/2 < 0.05

0.000 < 0.05 → condition is true

Therefore, Q0 is rejected, which in turns accepts Q1.

Hence, it can be verified that the mean time taken to comprehend a source code with while

loops is lesser than the same source code with for loops as per general users.

136

Similarly in conditional statements, looping criteria has also derived that the comprehension

duration allocated for while loop is lesser with less marks, which is not the exact requirement for

an accurate logical comprehension. Thereby, it is impossible to define the proposed cognitive

weights for looping criteria to be used in terms of general users.

As the next process, the possibility of applying the proposed cognitive weights for nested looping

criteria to use be used generally has been tested in terms of mean duration and mean marks. The

outputs of T test for nested for and nested while loops are shown in Table 29 and Table 30

respectively.

Let d1 be the total mean marks taken to comprehend for loop

Let d2 be the total mean marks taken to comprehend while loop

The null hypothesis (S0) is defined as, S0: d1 >= d2

The alternative (S1) is defined as, S1: d2 > d1

Rejection region (p value approach) of S0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.284/2 < 0.05

0.142 < 0.05 → condition is false

Therefore, S0 cannot be rejected.

Hence, the possibility of gaining less marks for while loops can be emphasized in terms of

general usage.

137

Table 29. Output of Paired Samples T Test conducted for nested for and nested while loops based on Time

Paired Samples T Test

Paired Differences

t df Sig. (2-tailed) Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval

of the Difference

Lower Upper

Pair 1 NestedFor_Total_Time

-

NestedWhile_Total_Ti

me

2.336

10
8.45668 .37819 1.59305 3.07915 6.177 499 .000

Table 30. Output of Paired Samples T Test conducted for nested for and nested while loops based on Marks

Based on Table 29, a hypothesis testing has been performed to observe the mean duration

variation among nested looping criteria. Similarly in single looping criteria, the questionnaire

results of maintaining nested while loop as more comprehensive has been considered such that

nested while loop should have less comprehension duration over nested for loop for general

usage. Accordingly, the hypothesis testing performed in terms of duration can be observed below.

Paired Samples T Test

Paired Differences

t df

Sig. (2-

tailed)

Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval of

the Difference

 Lower Upper

Pair 1 NestedFor_Marks -

NestedWhile_Marks
-.23400 1.90118 .08502 -.40105 -.06695 -2.752 499 .006

138

Based on the outcome of the hypothesis test, nested while loop tends to be more comprehensive

than nested for loop in terms of comprehension duration for general usage. Further, another

hypothesis test has been performed to evaluate the accuracy level obtained for nested looping due

to the consideration of accurate comprehension. Since nested while loop implies high

comprehensibility, its accuracy over nested for loop has been tested through the hypothesis

testing using the values obtained from Table 30 as follows.

Let h1 be the total mean time taken to comprehend nested for loop

Let h2 be the total mean time taken to comprehend nested while loop

The null hypothesis (I0) is defined as, I0: h1 <= h2

The alternative (I1) is defined as, I1: h2 < h1

Rejection region (p value approach) of I0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.000/2 < 0.05

0.000 < 0.05 → condition is true

Therefore, I0 is rejected, which in turns accepts I1.

Hence, it can be verified that the mean time taken to comprehend a source code with nested

while loops is lesser than the same source code with nested for loops as per general users.

139

Hence, the usage of nested while loop has shown more understandability than nested for loop in

general applications, as it has been verified from both time and marks obtained to imply a correct

comprehension. Therefore, the applicability of the proposed cognitive weights for nested looping

category can be stated. Nevertheless, the outcomes of hypothesis testing conducted for selection

and single looping categories are valid only for duration variation. As the outcomes have not

been verified over the marks, the problem of maintaining an accurate understandability of these

BCS exists. Hence, the applicability of proposed cognitive weights to the selection and single

looping categories cannot be accepted.

A situation of applying a set of cognitive weights only to nested looping category through these

outcomes creates a problematic scenario as there is no cognitive weightage assignment provided

to represent other BCS categories. The user comprehension level should be associated with the

whole source code, which does not confine only to BCS. Therefore, the possibility of confining

the assignment of cognitive weights only to BCS creates another problem. With these problems,

Let j1 be the total mean marks taken to comprehend nested for loop

Let j2 be the total mean marks taken to comprehend nested while loop

The null hypothesis (K0) is defined as, K0: j1 >= j2

The alternative (K1) is defined as, K1: j2 > j1

Rejection region (p value approach) of K0

 p value < significance level (α)

p value is the value under Sig. (2-tailed) in generated output. This test is generated as 1

tailed due to the comparison process performed for different means, however the result is

generated for 2 tailed. Therefore, p value should be obtained as Sig. (2-tailed) /2.

 0.006/2 < 0.05

0.003 < 0.05 → condition is true

Therefore, K0 is rejected, which in turns accepts K1.

Hence, it can be verified that the mean marks taken to comprehend a source code with

nested while loops are higher than the same source code with nested for loops as per general

users

140

it can be stated that assigning cognitive weights to BCS is not the expected outcome to denote the

user comprehension level numerically. As such, a new procedure of assigning the values for

cognitive weights to imply the user comprehension level related with a given source code has

been followed.

4.7 Evaluation of Cognitive Weightage Assignment Emphasized on Personal

Profile (Cw)

The proposed cognitive weightage assignment solves the problem of restraining the user

comprehension level into a certain information type of source code as followed in previous

research works. Instead of it, the proposed cognitive weight is comprised with factors related to

personal profile and source code factor, as the cognitive complexity has been expressed using

these two main categories. This research work is described to emphasize more on personal

profile, so that personal profile factors considered for cognitive weight determination is

comparatively higher than source code factors. The correlation of each parameter used for

cognitive weight determination has been verified using Spearman method. The heatmap, which

demonstrates the correlation of each parameter of the dataset can be observed in Figure 23.

The opportunity of rating each of cognitive weight parameters with respective to each user has

been provided, and those values are verified through a questionnaire given for same user. The

users’ values are verified for 80% accuracy obtained through questionnaire. The verified data is

Figure 23. Heatmap Generated for the Parameters Considered for Proposed Cognitive Weight

141

modelled and process to predict the cognitive weight for each user. The cognitive weight is

predicted with quantitative approach to express it within (1-5) scale, and with qualitative

approach to express the user understandability level using high or low terms. To express the

cognitive weight quantitatively using (1-5) scale, Linear Regression and Logistic Regression

algorithms have been used. The confusion matrix which summarizes the performance of Linear

Regression algorithm can be observed in Figure 24.

According to Figure 24, the Linear Regression algorithm to predict the cognitive weight

quantitatively has achieved 94% accuracy. Since the same process has been performed with

Logistic Regression algorithm, its accuracy and average accuracy have also been computed by

generating its confusion matrix as shown in Figure 25.

Figure 24. Confusion Matrix Generated for Linear Regression Algorithm

Figure 25. Confusion Matrix and Accuracy Generated for Logistic Regression Algorithm

142

Based on Figure 25, Logistic Regression algorithm provides 99% high accuracy and 99.5% high

average accuracy on training data set which leads to a poor performance on testing data.

Therefore, Logistic Regression algorithm leads with overfitting data as shown in Figure 26.

Figure 26. Overfitting Issue Caused by Logistic Regression Algorithm

The reason for this situation can be the number of parameters that have been used for data

modelling. Since the majority of parameters of the data set is person biased, the reduction of

parameters has not been considered as the solution. Therefore, Linear Regression algorithm has

been selected to be used for cognitive weight quantification which does not show an overfitting

over the training data set. To verify that, underfitting data graph of Linear Regression algorithm

has been generated as shown in Figure 27.

.

Figure 27. Underfitting Caused by Linear Regression Algorithm

143

According to Figure 27, Linear Regression algorithm can be stated as a better approach to be

used to predict the cognitive weight using a numerical value. Then, selecting a suitable algorithm

to predict the cognitive weight in a qualitative manner has been performed. Accordingly,

Decision Tree and Gaussian Naïve Bayes algorithms have been used for that purpose. The

accuracy and average accuracy of Decision Tree algorithm has been obtained through its

confusion matrix as in Figure 28.

The accuracy and average accuracy obtained by Decision Tree algorithm is 88.5% and 89%

respectively. Then, the same accuracies have been computes through Gaussian Naïve Bayes

algorithm as shown in Figure 29.

Figure 28. Confusion Matrix and Accuracy Generated for Decision Tree Algorithm

Figure 29. Confusion Matrix and Accuracy Generated for Gaussian Naïve Bayes Algorithm

144

Hence, the accuracy and the average accuracy gained from Gaussian Naïve Bayes algorithm can

be stated as 91.5% and 91% respectively. Since a higher accuracy over test data is obtained

through Gaussian Naïve Bayes algorithm, it has been selected as the best algorithm to predict the

cognitive weight qualitatively.

It should be noted that the qualitative cognitive weightage assignment has been introduced to

build up a comparison and verification process between the quantitative cognitive weights

outputted by the component. Moreover, the quantitative cognitive weight is going to be

considered as one input for proposed cognitive complexity metric. Hence, more significance has

been given to quantitative cognitive weights as it is easy to use and handle within the complexity

computation process. As per the verification of proposed cognitive weights, they should be

evaluated against the subjectivity associated with user comprehension level. In other words, for a

given source code, generated cognitive weights for each user should be varied as the proposed

cognitive weight is more emphasized on personal profile. However, this outcome has a

significant variation with current cognitive weights as they have not been generated by

considering personal profile. For the verification purpose, two sample GitLab6 projects sila_java

(project ID 4205706) with 509 LOC and lox-java (project ID 23403357) with 5153 LOC have

been selected to be assigned with cognitive weights. The same group with 500 students, who

were selected for BCS questionnaire was taken for this weightage assignment as well. They were

requested to verify the parameters supplied from cognitive weightage component, and then the

corresponding cognitive weight for each user is predicted after the users’ responses have been

verified again. As such, 500 cognitive weights have been generated by the component and they

have been analyzed statistically to observe a variation. The statistical outcome generated by SPSS

can be viewed in Table 31.

6 https://about.gitlab.com/

145

Table 31. Cognitive Weights generated for Sample GitLab Projects

The status of changing the value of a variable can be identified by obtaining the variance of its

data series. A non-zero value obtained for a dataset implies the possibility of changing their

values along with the other parameter. If there is no change occurred in the data series, the

variance of them becomes zero. According to the statistical analysis in Table 31, the variances of

cognitive weights obtained for sila_java and lox-java by 500 users tend to be 1.473 and 1.318

respectively. Non-zero variances obtained for each source code imply the possibility of varying

the cognitive weights from one user to another. Hence, the capability of demonstrating the

subjectivity related with the understandability level can be verified by the proposed cognitive

weight assignment. Furthermore, non-similar variances of cognitive weights generated for each

source code imply the possibility of having different comprehension levels in different programs.

This can be further analyzed by the frequency distribution of cognitive weights obtained by users

for different source codes. The frequency distributions of cognitive weights generated by SPSS

for sila_java has been shown in Table 32 and Figure 30 respectively.

Table 32. Frequency Distribution Table for sila_java Source Code

Cognitive_Weight_sila_java

 Frequency Percent Valid Percent

Cumulative

Percent

Valid 1 120 24.0 24.0 24.0

2 152 30.4 30.4 54.4

3 111 22.2 22.2 76.6

4 83 16.6 16.6 93.2

5 34 6.8 6.8 100.0

Total 500 100.0 100.0

Descriptive Statistics

N Minimum Maximum Mean Std. Deviation Variance

Statistic Statistic Statistic Statistic Std. Error Statistic Statistic

Cognitive_Weight_sila_java 500 1 5 2.52 .054 1.214 1.473

Cogntiive_Weight_lox_java 500 1 5 3.68 .051 1.148 1.318

Valid N (listwise) 500

146

According to the above cognitive weight distribution, majority of users’ understandability level

for sila_java source code lies in weight scale of 2. The weight of 2 belongs to a lesser cognitive

weight category, which indicates a higher understandability level. Hence, the average

understandability level of this source code tends to be in a higher state, so that it can be stated as

a simple source code for majority of users. Similarly, the frequency distribution of the cognitive

weights for lox-java source code has also been obtained through SPSS, and the results are shown

in Table 33 and Figure 31.

Table 33. Frequency Distribution Table for lox-java Source Code

Cogntiive_Weight_lox_java

 Frequency Percent Valid Percent

Cumulative

Percent

Valid 1 19 3.8 3.8 3.8

2 61 12.2 12.2 16.0

3 139 27.8 27.8 43.8

4 125 25.0 25.0 68.8

5 156 31.2 31.2 100.0

Total 500 100.0 100.0

Figure 30. Frequency Distribution bar Graph for sila_java Source Code

147

Based on above results, the cognitive weight of 5 has been obtained by majority of users, which

indicates the comprehension level of lox-java source code in a low state, since weight 5 is

represented a higher cognitive weight category. Thereby, it can be stated as the average

understandability level of this source code tends to be low such that majority of users find this

source code logical comprehension process as complex. Moreover, the comprehension level

decrement over the size of a source code can also be stated by considering these two scenarios.

The size of sila_java in terms of LOC count is 509, while lox-java has 5153 LOC, in which lox-

java is ten time more than the size of sila_java. Further, sila_java has denoted to be simple and

lox-java tends to complex for most of users. Therefore, this situation can be taken to validate the

concept of comprehension level decrement over the size of a source code, unless there are certain

circumstances in which this concept cannot be applied.

Hence, the proposed cognitive weight can be specified as a way of demonstrating the

effectiveness of personal profile to the understandability level of a given source code. It is

capable to emphasize the factors of personal profile over source code factor to imply the

subjectivity of user understandability such that cognitive weights proposed for a same source

code varies with multiple users. This has not been addressed in current cognitive weightage

assignments due to the emphasis given to source code factors, so that a significant reluctance of

personal profile can be observed which outputs objective cognitive weights. Therefore, the

mechanism of proposed cognitive weightage can be concluded as a vital achievement to highlight

Figure 31. Frequency Distribution bar Graph for lox-java Source Code

148

the subjectivity associated with users’ comprehension level, so that the subjectivity of cognitive

complexity can also be validated through it.

4.8 Evaluation of the Proposed Cognitive Complexity Metric (CgC)

A cognitive complexity metric can be considered as an indicator of expressing the human

comprehension effort in a quantitative manner. As cognitive complexity has been expressed with

respect to personal profile and source code factors, the expression of its metric has also been

expressed using these two main factors. The inclusion of personal profile has been addressed

with proposed cognitive weight as it is mostly comprised with the factors inside personal profile.

The spatial capacity under source code factor has already been included for cognitive weight

determination, so that it has not been considered again for the metric computation process. The

significant parameter of source code factor is its architectural aspect, which has been considered

by all of current cognitive complexity metrics. As it defines the amount of information inside the

source code, it has been introduced as the complexity attained by variables/attributes and BCS

inside the source code. Subsequently, the new cognitive complexity metric (CgC) has been

proposed as the addition of the proposed cognitive weight (Cw), complexity of

variables/attributes (DC) and complexity of BCS (BCSC) as it is already derived through

Equation (13.5). Even though the proposed metric can be proved in terms of the details expressed

along with cognitive complexity definition, it has to be verified empirically and theoretically to

prove its usage in real applications as an indicator of expressing the human comprehension effort

associated with a given source code.

149

4.8.1 Empirical Validation of the Proposed Cognitive Complexity Metric

(CgC)

Firstly, the proposed CgC measure has been verified in term of its applicability in real software

applications using a practical framework. Kaner’s validation framework has been used for this

purpose, and it has been found that it is more practical and formal than the existing theoretical

standard frameworks available for metric validation [12]. As such, the validation procedure of

CgC measure through Kaner’s framework has been performed as follows.

4.8.1.1 Practical Validation with Kaner’s Framework

It consists with ten statements that the newly proposed metric should be capable of providing

answers. Herein, the process of answering to those statements has been shown below.

Statement 1: Purpose of the measure

Purpose of this CgC measure is to indicate the cognitive complexity of a source code in terms of

personal profile and source code aspects. The reason behind taking these two factors as the main

factors behind cognitive complexity is its definition. The definition of cognitive complexity

describes it as the amount of effort required for the source code logic comprehension. This

research work is conducted to analyze the comprehension effort of a user in software

development and maintenance processes, so that involvement of personal profile is mandatory

factor to determine the cognitive complexity. Additionally, the comprehension effort is measured

with respect to a source code implemented for a software, so that source code aspect should also

be included for the cognitive complexity determination. Accordingly, the combination of both of

personal profile and source code factors have been considered to express the cognitive

complexity as well as for the quantitative representation through the proposed metric. Further, the

metric is supposed to represent understandability and maintainability, as these two quality factors

are found to be direct indicators to express cognitive complexity.

Statement 2: Scope of the measure

The proposed metric is focused to quantitatively represent the comprehension effort associated

with the users involved in software development and maintenance processes. The emphasis of

personal profile effecting for cognitive complexity has been highlighted over the source code

aspects in this metric. Moreover, it is assumed that a source code with correct logical

150

implementation has been given to the user so that comprehension effort is allocated with

understanding the correct logic of a software.

Statement 3: Identified attribute to measure

CgC measure is an indicator to express the user comprehension effort associated with a given

source code. The user comprehension effort is mentioned as a direct indicator of expressing the

user understandability and maintainability. Therefore, CgC measure addresses the user

understandability and maintainability of a source code.

Statement 4: Natural scale of the attribute

It has been mentioned that the attribute expressed by proposed metric is user understandability

and maintainability. The capability of understanding a given source code depends on one user to

another resulting understandability as a subjective measurement. A scale of a subjective

measurement cannot be defined so that CgC method does not consist with a scale.

Statement 5: Natural variability of the attribute

The user understandability and maintainability have been taken as the attributes that can be

expressed from proposed cognitive complexity metric. These quality attributes are subjective

measurements in which their variability cannot be defined. Moreover, there are numerous factors

effected to determine understandability and maintainability over cognitive complexity so that

defining a variability of it cannot be performed.

Statement 6: Definition of Metric

The CgC metric is used to indicate the cognitive complexity of a software, and the term cognitive

complexity has already been defined as the amount of comprehension effort for a given source

code by [1] [2].

Statement 7: Measuring instrument to perform the measurement

This metric computation can be performed for Java source codes and its computations procedure

has been implemented in NetBeans IDE.

Statement 8: Natural scale of the metric

Since it indicates the user comprehension effort of a source code, it is difficult to express its scale

as it derives with subjective measurement. However, obtaining higher values for CgC indicates

151

that the users’ comprehension effort on that particular source code is high, which represents

lesser understandability and lesser maintainability. Similarly, a lesser value obtained for CgC

implies a less comprehension effort with high understandability and high maintainability.

Therefore, it is recommended to maintain a source code which can attain a lesser value under

CgC metric.

Statement 9: Relationship between the attribute and the metric value

The CgC metric determines the association of personal profile and source code aspects to indicate

the user comprehension effort quantitatively and to express its understandability and

maintainability. As it is already explained, a higher CgC value can direct to a lesser

understandability and maintainability, while a lesser CgC value directs to a high

understandability and maintainability.

Statement 10: Natural foreseeable side effects of using the instrument

This metric has been implemented in NetBeans IDE to facilitate the cognitive complexity of java

source codes. As the CgC value is computed automatically after inputting the source code, there

can be no side effects occurred in the background.

Accordingly, the proposed CgC metric is capable to describe all ten statements defined under

Kaner’s framework, which in turns verify its practicability. Apart from that, the process of

computing the metric value for a given source code should be analyzed. Accordingly, the

procedure of assigning the values for DC and BCSC for a sample source code has been illustrated

as in Table 34.

152

Table 34. DC and BCSC Calculation for sample java source code - 1

Lime

Number

Line DC BCSC

1 public class Class1 { 0 0

2 public static void main (String [] args) { 0 0

3 int n = 10, firstTerm = 0, secondTerm = 1; 3 0

4 System.out.println("Fibonacci Series till " + 5 + " terms:"); 0 0

5 for (int i = 1; i <= n; ++i) { 1 1

6 System.out.print(firstTerm + ", "); 0 0

7 int nextTerm = firstTerm + secondTerm; 1 0

8 firstTerm = secondTerm; 0 0

9 secondTerm = nextTerm; 0 0

10 } //end of for 0 0

11 } //end of main 0 0

12 } // end of Class1 0 0

Total 5 1

It should be noted that the information inside the class and main method declarations have not

been considered for DC computation, as they are common for any type of source code. As such,

the content of line 1 and 2 have been assigned as zero for both DC and BCSC. In line 3, 3

variables namely n, firstTerm and secondTerm have been declared and initialized, so that DC has

been assigned with 3. Since there is no BCS involved in line 3, BCSC has been assigned as zero.

Line 4 indicates a print statement which does not involve with any variable or BCS, so that both

of DC and BCSC is assigned with zero. Line 5 indicates a for loop, which involves with 2

variables namely i and n. The variable n has been considered for DC calculation in line 3, so that

it has been ignored for DC computation in line 5. Because, DC computes the number of

variables/attributes inside a source code, so the frequency of each variable/attribute appearing

inside the source code does not effect for DC. The variable i is new for the for loop, so that it has

been considered for DC computation. Further, BCSC of line 5 is assigned with 1 as there is one

for loop. Line 6 is a print statement, which has one variable firstTerm. Since it has been

considered for DC computation in line number 3, DC is assigned with zero, while BCSC is also

assigned with zero due to the unavailability of BCS in that line. Line 7 indicates 3 variables such

153

as nextTerm, firstTerm and secondTerm, in which nextTerm is declared for the first time.

Therefore, DC is assigned with 1 and BCSC as zero, since there is no BCS involved with it. Both

of line 8 and 9 have the variables which have been repeated before, so that DC is assigned to zero

and the unavailability of BCS has led to BCSC as zero. Finally, both of line 10-12 do not involve

with any variable/attribute or BCS, so that both of DC and BCSC have been assigned with zero.

Accordingly, CgC of the above source code can be computed as follows.

𝐶𝑔𝐶 = 𝐶𝑤 + ∑ 1𝑛
𝑖=1 + 𝑚 + ∑ 𝑘𝑖

𝑚
𝑖=1 as per Equation (13.5)

The value for Cw should be derived from cognitive weightage assignment process for a particular

individual. The total number of variables/attributes inside the source code is denoted as n, which

is equivalent to 4 in this scenario. Since the source code contains only one for loop, the number

of BCS is equivalent to 1, which is denoted using m. Further, its level is assigned with 1 as it

does not involve with any nested criteria. As an exemplification, if a person obtains Cw as 3,

CgC should be assigned as below.

𝐶𝑔𝐶 = 3 + 5 + 1 + 1

𝐶𝑔𝐶 = 10

Therefore, the quantitative indicator to express the comprehension effort of that particular

individual results with 9.

Then, the cognitive complexity calculation process for a source code with a method and nested

BCS has been computed. Firstly, the process of assigning the values for DC and BCSC has been

denoted in Table 35.

154

Table 35. DC and BCSC Calculation for sample java source code - 2

Lime

Number

Line DC BCSC

1 public class Class2 { 0 0

2 public static void main (String [] args) { 0 0

3 int mat[][] = { { 1, 2, 3, 4 },{ 5, 6, 7, 8 },{ 9, 10, 11, 12 } }; 1 0

4 print2D(mat); 0 0

5 } // end of main 0 0

6 public static void print2D(int mat[][]) { 0 0

7 for (int i = 0; i < mat.length; i++) { 1 1

8 for (int j = 0; j < mat[i].length; j++) 1 1

9 System.out.print(mat[i][j] + " "); 0 0

10 System.out.println(); 0 0

11 } // end of outer for 0 0

12 } // end of print2D method 0 0

13 }// end of Class2 0 0

Total 3 2

As it has already explained, both of lines 1 and 2 have been assigned with zeros for DC and

BCSC as they are class and main methods declarations. Line 3 indicates a two-dimensional array

named as mat, which can be taken as one data attribute so that DC is set to 1. Since it does not

contain any BCS, its BCSC is set to zero. Line 4 indicates print2D method calling in which its

parameter is mat. Since it has already been considered in line 3, DC of line 4 is assigned to zero.

Further, its BCSC is assigned with zero as it does not contain any BCS. Line 5 indicates the end

of main method, which does not contain any type of information and BCS, so that both of DC

and BCSC has been assigned with zero. Line 6 contains the method signature of print2D with mat

passed as the parameter. The variable mat has already been considered in line 3, so its

consideration in line 6 has been avoided. Line 7 has a for loop, in which its iterative variable is i.

Hence, DC and BCSC set to 1 with respect to variable i and for loop. Line 8 also consists with

another for loop, which is nested with the for loop in line 7. Its iterative variable is j, so that its

DC is set to 1, and with the second for loop, BCSC is also assigned to 1. Both of line 9 and 10

155

indicate two print statements in which line 9 consists of mat as the parameter. Since mat has been

considered earlier, its count is not included to DC in line 9. BCSC is line 9 is set to zero since

there is no BCS involve with it. DC and BCSC of line 10 have been assigned with zero as there is

no data and BCS involved with it. Line 11-13 indicate the end of for loop, print2D method and

Class2 respectively, in which its DC and BCSC are set to zero.

Consequently, assigning the values to the parameters of Equation (13.5) can be performed as

follows.

𝐶𝑔𝐶 = 𝐶𝑤 + ∑ 1𝑛
𝑖=1 + 𝑚 + ∑ 𝑘𝑖

𝑚
𝑖=1

In here, Cw is the cognitive weight introduced for an individual who refers this source code. The

total number of variables/attributes (n) can be assigned as 3 based on the output of Table 35. The

number of BCS inside the source code (m) can be assigned as 2 based on Table 35 outcomes. The

level of the outer for loop is assigned with 1, and the level of inner for loop is assigned with 2 as

it is nested with outer for loop. Thereby, the addition of levels generated by two for loops is

equivalent to (1 + 2) = 3. Assume that Cw is gained as 2 for an individual, the value for CgC can

be computed as follows.

 𝐶𝑔𝐶 = 2 + 3 + 2 + 3

𝐶𝑔𝐶 = 10

Therefore, the comprehension effort of that source code can be expressed as 10 as a quantitative

indicator to impress its cognitive complexity with respect to that individual.

As the next computation a sample source code with object-oriented concepts has been

considered. The procedure of assigning values for DC and BCSC can be seen in Table 36.

156

Table 36. DC and BCSC Calculation for sample java source code - 3

Lime

Number

Line DC BCSC

1 public class Main { 0 0

2 public void fullThrottle(){ 0 0

3 System.out.pritnln(“The car is going as fast as it can!”); 0 0

4 } // end of fullThrottle method 0 0

5 public void speed(int maxSpeed){ 1 0

6 System.out.pritnln(“Max speed is: “ + maxSpeed); 0 0

7 } // end of speed method

8 public static void main(String [] args){ 0 0

9 Main myCar = new Main (); 1 0

10 myCar. fullThrottle(); 0 0

11 myCar.speed(200); 1 0

12 } // end of main 0 0

13 }//end of Main 0 0

Total 3 0

According to Table 36, the sample source code does not involve with any BCS. Therefore, its

BCSC should be equivalent to zero. Both of lines 1 and 2 indicates the class and fullThrottle

method declaration, which does not contain any parameter. Hence, their DC has been assigned

with zero. Line 3 consists with a print statement without any parameter passing. So that its DC

has also been assigned with zero. The end of fullThrottle method is performed by line 4. Line 5 is

coded with speed method implementation with one parameter called maxSpeed, so that DC value

has been assigned to 1. Line 6 consists with another print statement which prints the value of

maxSpeed. Since it has already been considered in line 5, DC has been assigned with zero. Since

the mina methods declaration is common for any source code, DC of line 8 has been assigned

with zero. Line 9 performs the creation of an object called myCar from Main method, so that DC

is assigned with 1 by considering it as a data object. The fullThrottle method calling has been

coded in line 10. Since it a parameter less method, it does not involve with DC computation. But,

line 11 performs speed method calling by passing 200 as the parameter, so that DC has been

157

assigned with 1. Line 12 and 13 indicate the end of main method and Main class respectively, so

that they do not contribute the compute DC.

As such, assigning values for CgC has been computed by referring to Equation (13.5).

𝐶𝑔𝐶 = 𝐶𝑤 + ∑ 1𝑛
𝑖=1 + 𝑚 + ∑ 𝑘𝑖

𝑚
𝑖=1

The total number of data variables/attributes (n) can be obtained as 3 based on the output of

Table 36. Since there is no BCS involved with this source code, the number of BCS (m) and

nested level(k) of each BCS can be set to zero. Assume that a user has obtained the cognitive

weight (Cw) as 4, so that CgC can be computed as follows.

𝐶𝑔𝐶 = 4 + 3 + 0 + 0

𝐶𝑔𝐶 = 7

Therefore, cognitive complexity of this source code with respect to that user can be resulted as 7.

Along with these mechanisms, the possibility of computing the cognitive complexity for a given

java source code is supported by this metric. The inclusion of Cw as the parameter to assess the

personal profile is capable of demonstrating the subjectivity associated with human

understandability level, which can be considered as the predominant feature of the proposed

metric. As such, possibility of expressing the cognitive complexity as a dynamic value can be

highlighted, which have not been observed in previous computations. Therefore, the proposed

cognitive complexity metric can be stated as more effective and practicable form of quantifying

the human comprehension effort, which can be aligned with its definition as well.

158

4.8.2 Theoretical Validation of the Proposed Cognitive Complexity Metric

(CgC)

Although the cognitive complexity computation is validated empirically using a set of source

codes, its stability and practicability should be validated theoretically. A certain number of

theoretical validation procedures have been introduced to validate software metrics. Among

them, Weyuker properties, measurement theory introduced with Braind’s framework have been

used by majority of software complexity metrics [12], [123]. Therefore, it is expected to validate

the proposed cognitive complexity metric with respect to both of these procedures. Firstly, the

validation process under Weyuker properties has been performed. It has nine properties that the

newly proposed complexity metric should adhere to estimate the accuracy [61]. Therefore,

following these properties by a new complexity metric can lead to verify its usage to compute the

software complexity in real applications. Accordingly, the verification of each property by the

proposed cognitive complexity metrics has been performed as follows.

4.8.2.1 Theoretical validation with Weyuker Properties

In here, P, Q and R are stated as different source codes. |P| refers to CgC of source code P, while

(P;Q) refers to the composition of P and Q source codes.

Property 1: (∃ 𝑃) (∃ 𝑄) (|𝑃| ≠ |𝑄|) , where P and Q are two distinct source codes

The proposed CgC is composed with the parameters of personal profile and source code aspect.

Therefore, a significant variation can be observed within personal profile and source code aspects

with respect to two different source codes. To describe it furthermore, spatial capacity and

architectural aspect of two different source codes are different, even the personal factor remains

unchanged such that same person refers to two different source codes. Hence, CgC calculated for

two different source codes should be different. Along with that, this property can be stated as true

for CgC measure.

Property 2: Let c be a non-negative number, and then there are only finitely many source codes

of complexity c.

All the source code implementations have limited number of classes and methods. The

parameters under source code aspect for all source codes are limited such that their spatial

capacities and the amount of information which is referred to architectural aspect cannot be

159

infinite. Therefore, there can be only finitely many methods that their cognitive complexity is

equivalent to c. As such, this property is verified by CgC measure.

Property 3: There are distinct programs P and Q such that |𝑃| = |𝑄|

This property states that there can be multiple source codes with same CgC value. As CgC is

comprised with the addition of cognitive weight as the involvement of personal profile and

spatial capacity, and the complexities of variables/attributes and BCS as architectural aspect,

there can be certain situations that the addition of these parameters can end up with a same value.

Therefore, the circumstances where two source codes can result with a same cognitive

complexity cannot be ignored. Hence, the proposed CgC measure adheres with this property.

Property 4: (∃ 𝑃)(∃ 𝑄)(𝑃 ≡ 𝑄 & |𝑃| ≠ |𝑄|)

This indicates that two source codes of same functionality can result with different cognitive

complexity values. This property can be directly applied with proposed measure as the

parameters under source code aspects for two different programs are different although they

compute the same functionality. The best exemplification can be considered with two source

codes where a same functionality has been implemented using iterative and recursive

methodologies. Accordingly, the spatial capacity and architectural aspect of both source codes

end up with different values. Hence, CgC of both source codes get different. Therefore, CgC

measure satisfy this property.

Property 5: (∀ 𝑃)(∀ 𝑄)(|𝑃| ≤ |𝑃; 𝑄|& |𝑄| ≤ |𝑃; 𝑄|

This property specified that the cognitive complexities of two distinct source codes P and Q are

lesser than the source code which does both functionalities of P and Q. It is evident that the

composition of two different source codes increase the spatial capacity and architectural aspect

than the individual source codes, unless another structure is used to implement the combined

logic. Therefore, it effects to CgC measurement even though the personal profile has kept

unchanged. Hence, the possibility of gaining a higher CgC for a merged source code than its

individual source codes can be stated. Thereby, the proposed CgC measure can validate this

property.

160

Property 6:(∃ 𝑃)(∃ 𝑄)(∃ 𝑅)(|𝑃| = |𝑄|)& |𝑃; 𝑅| ≠ |𝑄; 𝑅|

This property describes that if there are two source codes with same cognitive complexity

composite with another distinct source code, the resultant cognitive complexities should be

different. Appending another source code does not imply that its coding can be merged according

to the way that it has been appeared earlier. In order to function it properly after merging, its

information should be arranged in a proper way such that it effects to change the architectural

aspect and spatial capacities. Therefore, two source codes with same cognitive complexity

merged after another distinct source code cannot be achieved for a same cognitive complexity

again. Consequently, the proposed CgC measurement satisfy this property.

Property 7: There are source codes P and Q such that Q is formed by permuting the order of the

statements of P, and (|𝑃| ≠ |𝑄|)

If a logic of a source code should be transposed, it cannot be performed merely by reversing the

order of statement executions of the original source code. It has to be performed in a way that it

can produce the expected results as it is. Hence, the possibility of modifying the current amount

of information and the spatial capacity can be existed. Therefore, a permutation of an order of

execution of a source code effects to deviate the cognitive complexity from original source code.

Thereby, proposed CgC measure helps to validate this property.

Property 8: If P is renaming of Q, then |𝑃| = |𝑄|

The name of a particular source code does not have an impact for its cognitive complexity, as it is

measured using personal profile and source code aspect. Therefore, the cognitive complexity can

be changed with respective to the changes applied to personal profile and source code aspects.

Herein, this property is also satisfied by the proposed metric.

Property9: (∃ 𝑃) (∃ 𝑄) (|𝑃| + |𝑄|) < (|𝑃; 𝑄|) OR (∃ 𝑃) (∃ 𝑄) (∃𝑅) (|𝑃| + |𝑄| + |𝑅|) <

(|𝑃; 𝑄; 𝑅|)

If a source code is created by appending another two distinct source codes, the cognitive

complexity of the composite source code tends to be higher than cognitive complexity addition of

individual source codes. It is evident that the appended source code has more information and

spatial capacity comparing to the individual source codes which have assisted to perform the

merging. Furthermore, the increased amount of information and spatial capacity represent the

combination of all information and spatial capacities of its individual source codes. However, a

161

certain amount of additional information and spatial capacity is required to arrange a proper

functioning inside the merged source code. Therefore, it is evident that architectural aspect and

spatial capacity of composite source code should be higher than the summation of those factors in

their individual source codes. As such, the cognitive complexity of a merged source code tends to

be higher than the cognitive complexity addition in corresponding individual source codes, which

in turns satisfy this property.

Therefore, it can be stated that the proposed CgC measure satisfies all nine properties defined

under Weyuker properties, which can be considered as a vital achievement to ensure its validity

and the usage. The other procedure that the proposed metric has been validated is the

measurement theory introduced through Braind’s framework. It provides the definitions of

representing a software system along with its modules and five properties to define the

complexity of a software [63]. Herein, the satisfaction of these five properties by a new metric

can imply the applicability of it to measure the complexity of a software. The same scenario has

been applied to CgC measure such that satisfaction of these properties can denote the

applicability of it to measure the cognitive complexity of a software. Accordingly, the process of

evaluating the proposed CgC measure with five properties defined under Braind’s framework is

performed as follows.

4.8.2.2 Theoretical validation with Briand’s Framework

The definition given by the framework to introduce a system with its modules as follows.

Definition (Representation of Systems and Modules): A system S is represented as a pair <E,

R>, where E represents the set of elements of S, and R is a binary relation on E (R ⊆ E x E)

representing the relationships between S’s elements.

For the proposed metric CgC, E can be defined as a method inside a given source code and R is

the control flow among one method to another. Hence, the combination of methods and their

control flows can signify the whole source code S. Along with that, the definition provided for

the complexity of a software is given below.

162

Definition (Complexity): The complexity of a system S is a function Complexity(S) that is

characterized by non-negativity, null value, symmetry, modular monotonic and disjoint module

additivity properties, which have been listed as follows.

Property complexity 1 (Nonnegative): The complexity of a system S = <E, R> is nonnegative if

Complexity (S) ≥0.

Any source code created for a system exists with a certain cognitive complexity which is not

equivalent to zero. It occurs with the existence of methods and their internal information flow.

Therefore, the cognitive complexity computed for a source code should be non-negative. Herein,

proposed CgC measure adheres with this complexity property.

Property complexity 2 (Null Value): The complexity of a system S = <E, R> is null if R is

empty. This can be formulated as: R = ∅ ⇒ Complexity (S) = 0.

This property indicates that a method with no control flow of information inside it does not

consist with a cognitive complexity. A method with no information processing is inappropriate as

methods are implemented to follow a certain set of instructions which process a set of

information. Therefore, if a method does not include a control flow of information processing,

there is no content that the user should understand inside it. However, the personal profile

included with CgC measure should be highlighted. Even though the source code has empty

methods, user should analyze the source code to comprehend it with existence of empty methods

which consumes a certain effort of personal profile. Thereby, the cognitive complexity of a

source code which does not have a control flow of information cannot be equivalent to zero. As

such, the proposed cognitive complexity metric does not adhere with this complexity property.

Furthermore, it is suggested that any source code should contain a certain cognitive complexity

although it lacks with the internal information.

Property complexity 3 (Symmetry): The complexity of a system S = <E, R> does not depend

on the convention chosen to represent the relationships between its elements. (S = <E, R> and S-1

= <E, R-1>) ⇒ Complexity(S) = Complexity(S-1).

This property indicates that the cognitive complexity of a source code does not change with the

alternations made for the execution order. This property contradicts with seventh Weyuker

property as it denotes unequal cognitive complexities resulted with the permutation of order of

execution of a source code. The proposed CgC is satisfied with that Weyuker property so that

163

satisfaction of this complexity property defined in Braind’s framework cannot be existed. This

can be further explained as permuting the order of execution has to be performed in a way that it

can generate the expected output. Therefore, addition of extra information and spatial capacity

cannot be ignored to ensure a proper functionality inside the permuted source code. Accordingly,

the cognitive complexity of a permuted source code and its original source code tends to be

different such that the proposed CgC measure does not adhere with this property.

Property complexity 4 (Module Monotonicity): The complexity of a system S = <E, R> is no

less than the sum of the complexities of any two of its modules with no relationships in common.

If m1 and m2 denote two different modules, it can be defined as Complexity(S) ≥ Complexity

(m1) + Complexity (m2)

This property describes that the summation of the cognitive complexities of any two distinct

methods is not lesser than the cognitive complexity of its overall source code. If a source code

consists with multiple methods, the cognitive complexities of all those methods are affected for

the cognitive complexity of overall source code. This can be verified that the involvement of

architectural aspect and spatial capacity to compute CgC measure, so that the involvement of

both these aspects in all methods influences to the overall complexity of the source code.

Therefore, the summation of cognitive complexities of a certain set of methods should be lesser

than the cognitive complexity of overall source code. As such, the proposed cognitive complexity

metric adheres with this property.

Property complexity. 5 (Disjoint Module Additivity): The complexity of a system S = <E, R>

composed of two disjoint modules m1, m2 is equal to the sum of the complexities of the two

modules such that Complexity(S) = Complexity (m1) +Complexity (m2).

This property highlights that the summation of cognitive complexities of two disjoint methods is

equivalent to the cognitive complexity of overall source code, if the overall source code contains

only with those two methods. Although the amount of information and the spatial capacity of

those two methods should be added to form the overall source code, the association of personal

profile to comprehend each of methods and the source code should be analyzed. In other words, it

is difficult to express that personal profile association of these two methods is equivalent to the

personal profile association of the overall source code. As an exemplification, a user can be able

to understand each of methods individually regardless of understanding both of them together in

the source code. In such a situation, it is difficult to express the effectiveness of personal profile

164

of whole source code as the addition of personal profiles in individual methods. Thereby, the

proposed cognitive complexity metric cannot be applied to satisfy this complexity property.

Based on the verification process conducted with the properties defined under Briand’s

framework, the proposed CgC measure is capable of adhering only for two complexity

properties, which can be stated as a poor satisfaction ratio. The rationale behind this situation is

the measurement and modularity theory considered in this framework, so that the overall

complexity of a source code is expressed as the summation of the complexities of its individual

components. However, the possibility of assessing the user understandability level and source

code factors effected with individual methods to whole source code have not been considered

through this framework. Moreover, contradictory properties defined under this framework with

Weyuker properties can be highlighted. As an exemplification, the symmetry property of

Briand’s framework contradicts with seventh Weyuker property. Further, disjoint module

additivity property of Briand’s framework contradicts with nineth Weyuker property. Since CgC

measure adheres with all nine Weyuker properties, the adherence of symmetry property and

disjoint module additivity property of Briand’s framework cannot be accepted which has been

already explained under their verification process. Thereby, a higher satisfaction ratio by

Briand’s framework for a new complexity metric cannot be expected if it has a higher satisfaction

ratio through Weyuker properties. The same scenario can be applied with proposed CgC measure

so that a lesser satisfaction ratio obtained by it through Briand’s framework can be validated.

Based on these situations, the proposed CgC measure to quantitatively imply the cognitive

complexity can be theoretically validated to be used as a complexity metric in real software

applications.

165

4.9 Evaluation of Proposed Cognitive Complexity Metric with Software

Complexity Metrics

Rather than computing the cognitive complexity of a source code using proposed metric,

proposed design is capable to compute the software complexity of the same source code using a

set of current software complexity metrics. The expectation is to observe an existence of a

relationship between both types of metrics as both of them attempt to define the user

understandability of a source code. Accordingly, the complexities obtained for a same source

code for both types of metrics among 500 users have been measured. As the software complexity

metrics, cyclomatic complexity metric and LOC have been considered as it is widely used in

practical scenarios to evaluate the software complexity [16]. Moreover, the cognitive complexity

metric introduced by G. Ann Campbell [2] has also been used to compute the cognitive

complexity to imply the usage of one of previous cognitive complexity metrics. Therefore, the

possibility of analyzing the complexity values obtained with proposed CgC metric over currently

available cognitive complexity and software complexity metrics can be stated. The users have

been selected from the same user group used for the other analysis processes. Consequently, a

source code of a sample GitLab project sila_java (project ID 4205706) has been used, which

have already been used as a sample source code for cognitive weight determination as well.

Then, the complexity values obtained for sila_java with respect to CgC metric, cognitive

complexity by Campbell, cyclomatic complexity and LOC have been analyzed statistically and

the results can be observed in Table 37.

Table 37. Statistics for Complexities Obtained for sila_java source code

Descriptive Statistics

N Minimum Maximum Mean Std. Deviation Variance Skewness

Stati

stic Statistic Statistic Statistic Statistic Statistic Statistic Std. Error

CgC_sila_java 500 83 87 84.52 1.214 1.473 .407 .109

Cog_Complexity_Campbell 500 25 25 25.00 .000 .000 . .

Cyclomatic_Complexity 500 23 23 23.00 .000 .000 . .

LOC 500 509 509 509.00 .000 .000 . .

Valid N (listwise) 500

166

According to Table 37, the variance of CgC measure has been obtained as 1.473, while other

complexity measures’ variance has become zero. The value obtained for variance implies the

possibility of changing the measurement so that the values obtained for CgC metric can be stated

as changing with respect to each user, while the other cognitive complexity metric, cyclomatic

complexity and LOC values kept as unchanged. Accordingly, proposed CgC measure can be

stated as subjective, while other complexity metrics tend to be objective. It should be noted that

the reason behind CgC to demonstrate a complexity variation among each user is the usage of

new cognitive weight into its calculation process. Further, by analyzing the complexity values

obtained for CgC and Campbell’s latest cognitive complexity metric, it can be clearly stated that

the proposed CgC measure is capable of indicating subjective and quantified comprehension

efforts, which cannot be observed in Campbell’s metric and other available cognitive complexity

metrics. Similarly, current software complexity values can also be indicated as the measurements

limited to one or more quantifiable and objective software attributes, which are not capable of

demonstrating users’ subjective difficulty levels. Consequently, current metrics can be described

as objective indicators to imply the complexity level associated with a given software in different

contexts. Hence, the proposed CgC metric can be considered as a vital achievement to

demonstrate the subjectivity related with users’ comprehension level in a form of metric, which

can be considered as a proper indicator of represent cognitive complexity. Since the above

complexity computation has been performed for a single source code, the complexity

computation using the same set of complexity metrics has been performed for another set of

source codes to observe the variation among all metric values. Accordingly, another ten GitLab

Java projects have been selected to be computed again these metrics. As such, the computed

complexity values from CgC, cognitive complexity by Campbell, cyclomatic complexity and

LOC can be observed in Table 38. It should be noted that the average complexity values have

been computed for all the metric values to make it easier to demonstrate the complexity of 500

users.

167

Table 38. Complexities Obtained for Sample GitLab Projects

GitLab Project Name

(Project ID)

Cyclomatic

Complexity LOC

Cognitive Complexity

by Campbell [2] Average CgC

sila_java

(4205706) 23 509 25 84.518

skytec-test-java

(38828805) 6 476 28 75.21

Java

(12958040) 1 19 12 62.08

Simple Java

(28693061) 1 29 59 75.23

gemseo-java

(31201354) 7 623 22 63.61

lox-java

(23403357) 65 5153 102 88.61

websitecarbon-java

(24783461) 23 642 36 58.79

Approvals Java

(25989825) 15 745 53 76.55

java-gradle

(8368700) 1 88 23 28.79

java-threads

(12257822) 8 546 11 58.96

Based on Table 38, the average complexity values obtained for cyclomatic complexity, LOC and

currently used Campbell’s cognitive complexity metric tend to be not varying, while the average

cognitive complexity values obtained from proposed CgC metric tend to be varying for each user.

As it has been already described, this situation is occurred due to subjective cognitive complexity

computation performed in proposed metric. Thereby, the introduction of proposed CgC measure

can be stated as meaningful in terms of indicating the subjective comprehension effort using a

certain set of personal profile and source code aspects.

168

4.10 Summary

The computational design proposed by this research work is responsible to demonstrate the

applicability of cognitive complexity concept inside software development and maintenance

processes by demonstrating the mechanisms to follow to reduce the cognitive complexity.

Accordingly, the processes of requirements analysis and visualization has been introduced as the

procedures of assisting with human cognitive load to make the source code comprehension

process easy. Moreover, handling bugs, code quality smells and introducing refactoring

techniques have been proposed as the procedures of reducing the unnecessary cognitive load

utilized with these processes when understanding a source code. Then, the assistance of these

procedures implemented in proposed design has been verified over cognitive complexity

reduction. As it has been already found, the duration taken to complete a process has been

considered as an indicator to imply the effort on it, so that the comprehension effort has also been

presented in terms of the duration taken to complete a task. All the components have been tested

with respect to the duration taken to apply a said modification correctly inside a given source

code by understanding its logic. If the modification has been done inaccurately, the users were

asked to perform it repeatedly until it is received with correct output and recorded the average

duration of it. The users to apply these modifications has been selected based on the marks

obtained from a computing-based aptitude test. Accordingly, 500 BSc final year computing

stream students who have scored over 60% from the above test has been selected as target user

group. Consequently, the duration of applying a modification with the support of its requirements

has been led to 13.83% duration reduction comparing to the same processing without using its

requirements. Hence, providing the requirements along with a source code can be stated to

reduce the comprehension duration, thereby ensuring a less comprehension effort to achieve a

less cognitive complexity. Since the modification is applied to the same source code by same set

of users in multiple times, the possibility of getting experienced with the same source code logic

has been considered, and a time gap of one week has been maintained to reduce the users’

awareness of the source code between two tests. It should be noted that the modification includes

adding a new method or modifying an existing method by understanding the source code logic.

Then, the duration to apply a modification to another source code with the aid of its logical

visualization has been performed. Subsequently, a significant duration reduction of 19.81% has

been achieved with respect to same processing without the aid of visualization. In addition to

169

that, same modification has been performed with the aid of EasyUML which is an existing

visualization tool supported for java source codes. Surprisingly, the proposed visualization

technique still supports for 4.81% duration reduction comparing to the comprehension related

with EasyUML visualization. Based on both scenarios, a substantial duration reduction can be

observed by proposed visualization technique with respect to the comprehension without any

logical diagrams and the aid of EasyUML. Herein, the proposed visualization technique can be

stated to achieve a less comprehension effort, thereby assuring a less cognitive complexity.

Furthermore, it is noteworthy that the proposed visualization is comprised with logical diagrams

generation without its source code and with its source code, which cannot be observed in other

existing visualization techniques. As the next process, the verification of cognitive complexity

through bugs tracing component has been carried out. The proposed defects tracker is capable of

tracing the defects which are not supported by FindBugs bug tracker. Therefore, the users have

been requested to analyze a source code logic and apply a modification with the aid of FindBugs

and the proposed bug tracker and the duration has been recorded for both scenarios. A significant

duration reduction of 35.84% can be seen from the proposed defects tracker over the

comprehension with FindBugs tracker. Accordingly, the proposed bugs tracker can be indicated

as another procedure to mitigate the comprehension effort and cognitive complexity. The

components of detecting the code quality smells and applying refactoring techniques have also

been tested based on the duration to perform a modification inside a given source code. In that

situation also, 32.29% duration reduction can be observed by the proposed component over the

facilities supported by NetBeans to detect the code smells and to apply refactoring techniques,

which can verify a lesser amount of effort related with understanding a source code logic to gain

a less cognitive complexity. Further, all the components have been statistically verified with their

duration reduction using the hypothesis testing performed through paired samples T test along

with 95% confidence interval. Herein, all the proposed components have been ensured to achieve

a less comprehension duration over current practices and technologic, which can be used to

reduce cognitive complexity.

The other major expectation of this research work is to propose a meaningful cognitive

complexity metric which can be effectively used inside software development by adhering to its

definition as well. As the preliminary step, defining valid cognitive weights to express the

understandability level related with BCS has been carried out. The same user group has been

evaluated against a questionnaire related with preliminary BCS and their comprehension levels

170

were monitored according to the marks and duration taken. The reason behind considering marks

of the questionnaire is to observe the understandability level to identify its logic correctly. By

statistically analyzing both of marks and duration, cognitive weights for each BCS have been

introduced. Since these weights are confined for that user group, the applicability of using same

results for entire user group has been hypnotically tested using paired samples T test along with

95% confidence interval. However, T test results have indicated the impossibility of using the

same cognitive weights for entire user population. Therefore, the problem of verifying the

cognitive weights assigned for BCS was raised, and as the solution, a new procedure of defining

cognitive weights was analyzed. Consequently, a cognitive weight concept which emphasizes

more on personal profile was suggested to be introduced as this research work elaborates

personal profile than source code factors. The expectation was to predict and indicate users’

comprehension level using a numerical value which differs from one person to another. A data

set has been created based on the factors under personal profile and certain source code aspects

verified by each user and cognitive weight assignment component. Then, the cognitive weight is

supposed to be expressed in both quantitative and qualitative manners. To train and test the

dataset for quantitative indications of cognitive weight, Linear Regression and Logistic

Regression algorithms were used. Accordingly, Linear Regression algorithm has supported for

94% accuracy, while Logistic Regression algorithm have obtained 99.5% accuracy which derives

overfitting problem. Therefore, Linear Regression algorithm has been used for quantitative

cognitive weight prediction. On the other hand, Decision Tree algorithm and Gaussian Naïve

Bayes algorithm were used to model the data set for qualitative weight prediction. Along with

that, Decision Tree algorithm has shown 88.5% accuracy and Gaussian Naïve Bayes algorithm

has shown 91.5% accuracy. Hence, Gaussian Naïve Bayes algorithm has been used to predict the

cognitive weight qualitatively. It should be noted that more impact is given for quantitative

cognitive weight as it is considered to be inputted as a parameter for new metric. The subjectivity

associated with quantitative cognitive weights has been verified statistically by analyzing the

cognitive weights obtained for two Gitlab project codes by same 500 users. Accordingly, the

subjectivity of cognitive weights has been explained by exploring the variance obtained through

descriptive statistics, and the possibility of indicating the average level of user understandability

of a given source code has also been explained. Together with cognitive weight, a cognitive

complexity metric (CgC metric) has been proposed which includes source code factors that have

not been considered for cognitive weight determination. The calculation procedure of the metric

171

has been illustrated with several source codes, and it has been validated empirically and

theoretically to prove its usage and stability in real software applications. It has been validated

against Kaner’s Framework to verify its usage in practical environment. For theoretical

evaluation, Weyuker properties and Briand’s framework have been used. It has satisfied all nine

properties defined under Weyuker properties, while only two complexity properties have been

satisfied by it. The complementary guidelines mentioned in Braind’s framework with respect to

Weyuker properties is the major reason behind achieving a lesser success rate by the metric.

Therefore, the stability of CgC metric can be proven by considering 100% success rate with

Weyuker properties. Finally, the possibility of indicating the subjective comprehension effort by

CgC metric has been demonstrated using a set of Gitlab java project source codes. The

complexity values computed by proposed CgC metric, a currently using cognitive complexity

metric, cyclomatic complexity and LOC have been used for this purpose. By analyzing their

variance through descriptive statistics, it has been shown that only proposed CgC metric is

capable of existing with a variance, while all other complexity metrics produce objective

complexities with no variance. Thereby, the applicability of demonstrating a meaningful

calculation to quantitatively indicate the human comprehension level can be stated as achieved by

proposed CgC metric.

172

5.0 CONCLUSIONS

5.1 Introduction

The proposed research work emphasizes the applicability of cognitive complexity concept in the

field of software engineering. The cognitive complexity of a software determines the amount of

effort required to understand the logic of its source code. The amount of effort to comprehend the

source code logic can be defined as the understandability of a particular user with respect to a

given source code. Hence, cognitive complexity can be used to express the understandability of a

source code, which is a vital quality attribute in software developing. The understandability of a

source code is useful in software developing process as a source code is developed by a set of

people and it is modified by another set of people. The ability of applying a modification to a

source code is referred to its maintainability, and it depends on how a user can understand the

source code logic. Therefore, maintainability can be denoted using understandability and

cognitive complexity is being a direct indicator of understandability, it can be stated that the

concept of cognitive complexity can be used to describe both understandability and

maintainability. The ability of comprehending a source code varies from one user to another user,

as different users handle a same source code in different ways. Accordingly, cognitive

complexity can be stated as a subjective measurement which is harder to quantify. Furthermore,

the comprehension effort of an individual for a same source code gradually becomes lower with

the growth of experience gained along with the time by dealing with it. Thereby, cognitive

complexity is dynamically changed along with the time, so that it can be stated as a dynamic

indicator of understandability and maintainability. Moreover, any source code of a software is

expected to be easily comprehended so that it can be handled and maintained easily. Therefore,

the expectation is to maintain the cognitive complexity of a source code in a reduced state, so that

it will help to increase the understandability while assisting to maintain it without any failures.

Even though cognitive complexity is used to express the complexity of software in terms of

comprehension effort, there are numerous software complexity metrics currently being used to

evaluate software complexity according to numerous aspects. Among them, McCabe’s

cyclomatic complexity and LOC metrics are widely being used in industrial applications as well.

McCabe’s cyclomatic complexity computes the software complexity in terms of the number of

linear independent paths inside the source code, while LOC computes the complexity with

173

respect to the size of source code. Therefore, the relationship of cognitive complexity with other

complexity metrics has been explored. It is believed that a source code with higher cyclomatic

complexity is difficult to understand due to high number of execution paths and test cases

involved with it. Therefore, a high cyclomatic complexity source code can be stated as a source

code with high cognitive complexity. Similarly, a higher LOC source code also considered as

difficult to comprehend due to the length of its overall structure. Hence, a high LOC source code

tends to be high in cognitive complexity. However, there are certain situations where a high

cyclomatic complexity source code is easy to understand, and less cyclomatic complexity source

code is difficult to understand. Similarly, situations such as a high LOC source code is easy to

comprehend and a less LOC source code is difficult to comprehend also exists. Therefore,

establishing a proper relationship between cognitive complexity and the metrics available to

compute software complexity cannot be achieved. The reason for that scenario is the incapability

of implying the actual difficulty level of users by current software complexity metrics. Herein,

the problem of representing the actual user comprehension level by a proper mechanism can be

stated.

Since the relationship of cognitive complexity with understandability can be directly established,

addressing the understandability of a source code along with cognitive complexity has been taken

as one of the significances of conducting this research work. Any software implementation is a

teamwork, in which its team members have different comprehension levels. Further, the

neglection of the understandability of team members would lead to a poor teamwork, which

causes to have unnecessary failures. Therefore, a teamwork should be organized by identifying

their comprehension efforts utilized for a given source code, which in turns aligned with

cognitive complexity. Hence, the possibility of applying cognitive complexity in software project

management is the other significance of this research.

In literature, there are numerous applications that cognitive complexity has been used. Among

them, cognitive complexity metrics have played a vital role of quantifying the cognitive

complexity. But, cognitive complexity is a non-quantifiable indicator as it is a subjective

measurement. Nonetheless, numerous cognition metrics have been implemented by selecting

several quantifiable factors affected with comprehension effort. It should be noted that the

cognitive complexity metric is an indicator of cognitive complexity, which does not exactly

represent the comprehension effort. In other words, cognitive complexity is denoted using a

certain set of parameters through a form of metric. The consideration of source code factors for

174

all metric computations can be observed in literature, which the content of source code has been

expressed by different categories such as input output variables, operators and operands, BCS,

functions, spatial capacity, concepts with object orientation and many more. Accordingly, a

variety of cognitive complexity metrics have been introduced, which makes difficult to

standardize them into a single metric. Moreover, the concept of cognitive weight has been

introduced with cognitive metric, which indicates the user comprehension level of a particular

source code category with a numerical value in real usage. Even though the concept of cognitive

weight has been introduced to represent the user involvement, it has not been conducted in a

valid framework, since they have been assigned based on assumptions taken with respect to a

particular user group. Hence, the problems of using these weights to indicate entire user

population and the validity of these cognitive weights can be emphasized. As another significant

approach, the applicability of cognitive complexity has been explained in a qualitative manner

using a set of personal and software quality attributes. As such, the effectiveness of user expertise

level, defects ratio of a source code, time consuming and complex tasks in a project, success rate

of a project have been introduced to express cognitive complexity. Surprisingly, the usage of

cognitive complexity in BPM, air traffic and aviation control systems, gaming development,

career planning and theater-based applications emphasizes its applicability in other domains.

Therefore, the concept of cognitive complexity has been considered as a vital factor of

determining the progress of numerous contexts, so that its applicability should be a predominant

factor to be determined inside software development domain as well.

Based on the subjectivity associated with each person with regard to cognitive complexity and

the source code used to determine it, personal profile and source code factors must be considered

as the major factors effecting for it. Nonetheless, the limitation of current cognitive complexity

metrics being dependent only to source code factor can be highlighted. In other words, current

cognitive complexity metrics do not imply the influence of considering personal profile correctly

to express cognitive complexity. Moreover, the issues related with the relationship among

understandability and maintainability with cognitive complexity should be considered. Even

though cognitive complexity is said to be related with understandability and maintainability,

there is no clear guidance given to connect and apply them within software development process.

Therefore, to fill these gaps, the proposed research work has been carried out.

According to these considerations, the problem of this research work is mapped to observe the

applicability of cognitive complexity to enhance software development and maintenance

175

processes. Based on that, following research questions have been generated to address the main

research problem. The first research question is created to find the factors effecting for cognitive

complexity to model it. Then, the second research question is generated with exploring the

procedures to reducing the cognitive complexity. Finally, the last research question is comprised

with introducing a meaningful cognitive complexity metric which can be used to facilitate the

software development process. Accordingly, five research objectives have been defined to

achieve the solutions to the research questions as follows. The first research objective is to

identify the factors associated with cognitive complexity to model it properly, which addresses

the first research question. Identifying the procedures of reducing the cognitive complexity has

been considered as the second objective, which is aligned with second research question. The

third research objective focuses to design a computational methodology to demonstrate the

cognitive complexity reduction procedures, which addresses first and second research questions.

Introducing a meaningful cognitive complexity metric which overcomes the drawbacks of current

cognitive complexity metrics is the fourth research objective, and it also addresses first and third

research questions. The last objective is comprised with evaluating the methodology used for the

design and also the proposed metric, which addresses second and third research questions.

5.2 Achievement of Objective 1: Cognitive Complexity Factors Identification

The first objective of this research work is to identify the factors effected for cognitive

complexity of a software. Through this research, main two factors have been found to influence

with cognitive complexity namely personal profile and source code factors. It is evident that

majority of research works have focused on source code factor to determine cognitive

complexity, so that ignorance of it cannot be granted. As the cognitive complexity of a software

is expressed through its source code, it must be included as a main factor to determine cognitive

complexity. However, the definition of cognitive complexity indicates to consider the

comprehension effort of a particular user for a given source code. This research work aims at

users involved with software development and maintenance processes, so that the comprehension

effort related to them has been analyzed as cognitive complexity. Further, it is a subjective

measurement which depends on user who deals with a source code, thereby reluctance of

176

personal profile creates a considerable gap with modelling cognitive complexity. Hence, as the

other main factor, personal profile has been considered.

With the expectation of describing cognitive complexity in a wider context, sub factors of these

main factors have been analyzed. Accordingly, the capacity of memory has been considered as

one subfactor inside personal profile as a logical comprehension of a source code is a process

involved with the users’ memory. The memory capacity can be divided into three categories

based on the duration that each piece of information is working with the users’ brain such as long

term, short terms and working memories. Since the cognitive complexity is determined for a

given source code within a certain duration, the effectiveness of working memory is higher. As

such, this work has given more emphasis to the involvement of a users’ working memory with

cognitive complexity. Moreover, it has been found that the working memory has been

categorized intrinsic, extraneous and germane cognitive load. Therefore, the effectiveness of

these three types of cognitive loads under working memory has also been considered for

cognitive complexity. Apart from memory capacity, the aptitude level of a person also

determines the amount of effort required for a source code comprehension. The aptitude level has

been further described as the preference given to a programming language and skill level

associated with analyzing a problem. Then, as the next sub factor, the experience and age of an

individual has been considered. Although experience of a person develops with the age, age has

not been considered as a direct sub factor to express cognitive complexity as age has been found

as a dynamic indicator to express the cognitive complexity. Therefore, the involvement of

personal profile can be stated as the major reason behind resulting cognitive complexity as a

subjective measurement. Moreover, personal profile can be concluded as the major parameter to

specify the dynamic status of cognitive complexity. The other major factor to express cognitive

complexity is source code factor, which all other research works have focused on. The amount of

information which is referred to the architectural aspect of the source code has been considered as

one sub factor under source code factor. Further, it is expressed with respect to

variables/attributes, BCS, operator and operands, input output parameters inside a given source

code and the influence of object-oriented concepts. The spatial capacity of source code is another

sub factor, which refers to the size of source code and the distance between the module call to its

implementation in terms of LOC. Moreover, the support given by the programming environment

to implement the source code has also been considered as a sub factor of source code factor. It

has further categorized into the structure of source code and the availability of comments. Hence,

177

the combination of all main factors and sub factors belongs to main factors have been considered

as the indicators of expressing cognitive complexity, as all of these factors can be effectively

applied to change the user comprehension level as expected. However, it should be noted that the

factors associated with cognitive complexity cannot be limited, so that this research work has

targeted only a certain set of parameters to denote cognitive complexity as it has already been

mentioned above.

5.3 Achievement of Objective 2: Identify the Procedures of Reducing

Cognitive Complexity

As it has been already described, the utmost expectation of any software development is to

produce a simple source code which is easy to handle and maintain. To describe it further, a

source code of any software should be easily understood so that it effects to achieve a less

software complexity and high maintainability. A highly understandable source code directs with

less comprehension effort utilized with users, so that its cognitive complexity should be less.

Therefore, a source code should be implemented to achieve a less cognitive complexity. As such,

the steps to be followed to achieve a less cognitive complexity have been explored through this

objective.

A source code is said to be complex if it is difficult to understand. Similarly, a simple source

code is easy to understand. This research work has emphasized more on personal factor to

express the cognitive complexity, so that reasons of getting a source code to be complex are

analyzed in terms of personal profile. As discussed under first objective, one of the main reasons

to experience a high difficulty in understanding is that the user does not have enough memory

capacity to understand it. Especially, it is due to the problems of working memory of a user such

that working memory contributes more when comprehending a source code at a given time.

Therefore, handling working memory properly which is capable to understand a given source

code has been taken considered throughout this research. As such, the procedures of handling

working memory of a person with respect to a source code understandability has been explored.

The working memory is expressed using three types of cognitive loads, in which intrinsic and

germane cognitive loads assist with the capability of maintaining necessary information and

extraneous cognitive load is responsible to maintain unnecessary information that is not aligned

178

with source code logic. Therefore, reducing extraneous cognitive load and increasing intrinsic

and germane cognitive loads is the optimal solution to reduce the cognitive complexity in terms

of working memory. As such, the procedures of reducing extraneous cognitive load and

increasing intrinsic and germane cognitive load have been studied to indicate the procedures of

reducing cognitive complexity of a source code. Under extraneous cognitive load reduction,

maintaining an error free and structured source code have been introduced as an unstructured

source code with numerous coding defects is difficult to comprehend. Therefore, reducing coding

defects and maintaining a proper coding structure can reduce unnecessary information involved

with handling those, thereby the possibility of having more capacity to maintain necessary

information can be increased. Under intrinsic and germane cognitive load incrementation, the

procedures of assisting these cognitive loads have been analyzed. Consequently, the visualization

of source code logic, simulation of functionalities or logical flow of source code and providing

recommendations and guidelines to assist the user with handling maintaining the source code

have been found. Therefore, initiating these procedures can be considered as the alternatives of

assisting with source code logic, thereby they can guide the user to easily comprehend the source

code. To conclude, the reduction of cognitive complexity has been achieved by maintaining the

cognitive load effected with working memory. Through that, a certain set of procedures to reduce

unnecessary cognitive load and to assist with necessary cognitive loads have been introduced

with this research work.

5.4 Achievement of Objective 3: Design a Methodology of Demonstrating

Cognitive Complexity Reduction Procedures

Based on the outcomes accomplished from the previous objective, a computational design has

been implemented to assist with users to understand a given source code logic easily by

producing a source code with less cognitive complexity. It has been designed in NetBeans IDE.

Firstly, the possibility of assisting the cognitive load with necessary information processing has

been analyzed. It has been already discussed that the visualization of a source code logic can

assist the user to understand its logic easily. In addition to that, referring to the requirements of

software has also been introduced as a mechanism to understand a source code logic easily. To

describe it furthermore, a logic of a complex source code can be lessened by referring to its

visualization and requirements. Consequently, two components have been introduced to the

179

proposed design, which can indicate the requirements and to provide UML diagrams based on

source code logic.

Generally, the requirements specified for a software is documented in its project proposal

document. Therefore, the project proposal document should be inputted to the requirements

analyzer component to reiver the exact requirements. However, the lack of maintaining a

common structure of proposal document makes it difficult to gain the requirements

computationally. Accordingly, the proposal document has been converted into a common format

which consists with five sections namely Introduction, Problem Definition, Solution,

Functionality and Team Profile. The Functionality section consists with exact requirements that

should be addressed through software implementation. Nevertheless, extracting the same content

inside Functionality section is not the expected output of this component as it does not involve

with any processing. Therefore, obtaining requirements has been performed which can be

assisted to diagram generation process as well. Subsequently, it has been targeted to gain the

class names out of Functionality section which can then be used to generate UML diagrams as

well. The class names have been identified by recognizing the highest frequency nouns inside

Functionality section, and the possibility of controlling the highest frequency has been provided

through the component. To identify the nouns based on highest frequency, POS tagging has been

used. Therefore, requirements analyzer is capable of generating the possible class names as

requirements, which also helps to generate the diagrams to visually represent its logic.

As the other component to assist with the necessary cognitive load of user is to generate UML

diagrams to represent the source code logic. The significance of this component is to generate

UML diagrams based on requirements without referring to its source code as followed in SDLC.

Further, it is capable of generating UML diagram based on its source code as well. Visualization

of logical diagrams based on the requirements has been performed as follows. It is implemented

to generate class, ER and object diagrams. The requirements have been obtained from the output

generated by requirements analyzer, which are the possible class names that can be used to

generate diagrams. Each of class names have been mapped with GloVe embeddings and the

similarity of each pair of class names has been computed through cosine similarities. The

similarity values have been categorized into five relationship types such as inheritance,

composition, aggregation, association and no relation to be used to model class diagrams. In

addition to that, each relationship type has been introduced with a notation, so that identification

of them in the visualization process becomes easy. Accordingly, each pair of class name has

180

been verified through corresponding relationship type and assigned with related notation and

coded with the statements to generate the corresponding class diagram. It should be noted that all

diagrams have been generated as a result of constructing relevant PlantUML statements and

executing them. In order to generate ER diagram, three types of ER multiplicity levels have been

introduced based on the relationships identified earlier. Accordingly, the relevant notations have

been introduced and constructed PlantUML statements to generate ER diagram. The object

diagram represents a view of classes represented in class diagram, so that possible objects have

been demonstrated after recognizing their relationship between them. However, the lack of

information can be observed in these diagrams, as they have been generated without its source

code. Hence, these diagrams can only provide a predictive visualization of the control flow of

source code and the relationships between each information. As such, another sub visualization

component of generating class and sequence diagrams has been introduced. The class diagram is

generated through UMLGenrator.java file, which analyzes all class names, their relationship

types, constructors, methods and their parameters. Based on these information, corresponding

PlantUML statements have been generated and executed to obtain the expected class diagram.

The sequence diagram generation is achieved through SequenceAspect.aj file, which gains all

information through method signatures such as method name, return type, parameters and the

messages which are passed from one method calling to another. Then, the execution of

corresponding PlantUML statements have generated the sequence diagram. Especially, the

possibility of saving these diagrams as a PNG image file has also been provided for future

reference. Therefore, the mechanisms supported to generate logical diagrams of a source code

logic have targeted to make the understanding process easier than referring only to its source

code.

Along with necessary cognitive load assisting procedures, the proposed system consists with

several components which assists to reduce unnecessary cognitive load of user to assist with easy

comprehension of a source code. Tracing coding defects has been introduced as one option under

that circumstance. NetBeans IDE is capable of tracking coding defects and there are existing bug

trackers that can be installed as a plugin to detect bugs. However, there are certain bugs that

cannot be traced using existing bug trackers. This research considers FindBugs bug tracker tool

to be integrated as a plugin, and the bugs that is not handled by FindBugs bug tracker has been

handled through the proposed component. Once the source code is inputted, the component is

capable to list down all the identified bugs along with their line numbers by comparing the code

181

with the syntaxes of coding defects. If there is a defect, it recommends guidelines to fix it in more

understandable manner. Moreover, it is capable to provide a summary on the defects that has

been found and corrected. It should be noted that the component is capable to detect only twelve

defects that cannot be identified by FindBugs bug tracker. Thereby, it is supposed to lessen

unnecessary cognitive load by supporting to identify and fix coding defects. Consequently, the

component is capable to generate a source code with less coding defects, which can achieve a less

cognitive complexity.

The other component is responsible to maintain a proper structure of a source code. It has been

achieved by handling six java code smells. The source code is the input for this component, and it

is capable to identify the code elements of inputted source code and to compare them with

syntaxes of code smells that the component can detect. Once a code smell is found, the

component provides the guidelines to fix it in detail in a way that user can understand it properly.

The facilities such as saving the modified source code in same application directory and

providing a log file with the modifications applied can also be observed in this component. In

addition to that, some of code smells have been provided with auto fixing feature, in which the

user has no intervention on solving those. Hence, the reduction of unnecessary cognitive load by

assisting the user to identify and fix code smells is targeted to be achieved by proposed

component.

Along with code smells identifier, another component of applying refactoring techniques has

been introduced to the system, since refactoring is considered to be the current trend of

restructuring a source code to increase its understandability. It has been implemented as a hosting

component which can be accessible by any user, and users do not require to have the other

components of the design to function this refactoring component. The client and backend

processes have been implemented with ReactJS and NodeJS respectively. The component is

capable to prompt the possible refactoring techniques that can be applied, once the source code is

uploaded. Then, the refactoring techniques are applied based on the users’ selection on a

particular technique. The client process is responsible to obtain the source code and backend

process is capable to identify the possible refactoring techniques that can be applied. It should be

noted that the component is capable to handle six different refactoring techniques. Each

refactoring technique is handled with two controllers such that validation controller detects the

structuring issue and refactoring controller can apply refactoring techniques without user

intervention. The significance of this component over current refactoring tools is that it is

182

capable to list only the applicable techniques for a given source code rather than displaying the

same set of techniques for any source code. Moreover, the option of downloading the refactored

source code has also been provided in this component. Herein, the proposed component is

expected to assist the user with utilizing unnecessary cognitive load to restructure the source code

to make it easier to understand, thereby ensuring a lesser cognitive complexity.

5.5 Achievement of Objective 4: Introduce a Meaningful Cognitive

Complexity Metric

Throughout this objective, it is expected to introduce a cognitive complexity metric which

overcomes the problems of current cognitive complexity metrics. The traditional metrics to

compute the cognitive complexity have been limited only with source code factors consideration.

In other words, the involvement of personal profile cannot be observed in current metrics, so that

the subjectivity associated with user comprehension level could not be presented in a meaningful

way. Each metric has emphasized different source code aspects so that a variety of cognitive

complexity metrics can be observed, which raises to have a standard cognitive complexity metric

for usage. Moreover, a concept of cognitive weight which indicates the human comprehension

level of a selected source category can be deemed as the involvement of personal factor to

compute cognitive complexity. However, it represents only a specific user group and weightage

assignment has been performed merely based on assumptions. Consequently, the impossibility of

validating these metrics which are applicable for entire user population exists. Therefore, as the

preliminary step, introducing a set of valid cognitive weights for a selected source code category

has been performed. BCS have been selected as the source code category as they have been

considered in majority of previous cognitive complexity metrics due to the behavior of

controlling the logical flow. In order to avoid the assumptions taken for weightage assignment by

previous metrics, the comprehension level of a selected user group was decided to be obtained

through a BCS questionnaire. As the user group, 500 BSc computing related final year students

have been selected after conducting another computing related aptitude test. The questionnaire

was conducted in Moodle environment, and it is consisted with questions related with if-else and

switch-case under conditional statements, for and while loop under looping criteria and nested for

and nested while loop under nested looping criteria. The expectation was to monitor duration and

marks obtained from each user and to assign cognitive weights statistically using mean of

183

duration and mean of marks. Although the weights have been assigned statistically, several

contradictions have been seen which does not align with users’ practices and preferences of using

BCS. Moreover, the hypothetical testing conducted through paired samples T test has shown the

impossibility of using majority of cognitive weights entitled for entire user population. Therefore,

the mechanism of assigning cognitive weights for BCS is inclined to be invalid. Nevertheless, the

concept of cognitive weights cannot be ignored as it can be used to represent the involvement of

personal profile. Furthermore, this research work has given high impact on personal profile,

thereby ignoring cognitive weights can create a lack of connectivity between its involvement

with cognitive complexity. Therefore, a new cognitive weight (Cw) has been introduced which

highlights more on factors associated with personal factor.

Cw has been introduced such that it can be derived as a predictive measurement based on each

users’ input to the factors associated with it. Also, cognitive weightage allocation component is

capable to express Cw in both quantitative (1-5) and qualitative (high and low) manners. The

quantitative weight 1 indicates a high comprehensibility and weight 5 indicates less

comprehensibility. The factors considered to predict Cw is aptitude level on Java, experience and

age, while spatial capacity is included as a parameter on behalf of source code factors. The

accuracy of users’ input and rating for these factors are verified from the component by

prompting a relative question. Then, the gathered data set with verified ratings have been trained

and tested to predict Cw quantitatively and qualitatively. Linear Regression algorithm was used

to predict Cw in quantitative form, while Gaussian Naïve Bayes algorithm was used to predict

Cw in qualitative manner. It should be noted that expressing Cw in qualitative manner is only to

compare it with the quantitative value obtained for Cw.

Along with person biased cognitive weight, a meaningful cognitive complexity metric (CgC) has

been introduced which involves both personal profile and source code factors as two main

categorizations of cognitive complexity. The inclusion of Cw under personal profile involvement

highlights the subjectivity of the metric, which can be considered as a significant achievement

that cannot be seen in traditional cognition metrics. Since the value obtained of Cw is comprised

with spatial capacity under source code factor, it has not been considered again for metric

computation. But, the architectural aspect under source code factor have not been considered

under Cw prediction, so that its complexity (AC) has been included for the metric computation

process. It has been computed as the addition of the complexities derived from data

variables/attributes and BCS. The complexity of variables/attributes (DC) have been computed

184

by obtaining the count of distinct variables/attributes by considering each of variables/attributes

as a unit of information. To compute the complexity of BCS (BCSC), the number of BCS and the

nested level of each BCS have been considered. Therefore, along with the addition of AC and

Cw, CgC metric has been proposed to quantitatively indicate the cognitive complexity of a given

source code. Based on the subjectivity associated with Cw and consideration of both personal

profile and source code factor can emphasize the significance of its applicability comparing to

existing cognitive complexity metrics.

In addition to that, the possibility of computing the software complexity using existing

complexity metrics has been provided. Accordingly, six complexity metrics have been introduced

to calculate the complexity. The user is given the opportunity to refer to the complexity

computation process in each line of the source code along with the finalized complexity value.

The expectation is to demonstrate the objectivity associated with current complexity metrics and

the subjectivity supported by the proposed cognitive complexity metric (CgC).

5.6 Achievement of Objective 5: Evaluate the Methodology used in the

Design and the Metric

The computational design of this research work has been implemented to demonstrate the

procedures of reducing the cognitive complexity. As such, the components of analyzing the

requirements and visualization have been introduced as assistive mechanisms for necessary

cognitive load and tracing defects, code quality optimization and refactoring components have

been introduced as the mechanisms of reducing unnecessary cognitive load of users. To evaluate

these components to verify the ability to reduce cognitive complexity, the level of progress has

been monitored with respect to a modification applied to thirty different software by a set of

users. The modification applied to a software is regarded as a modification applies to an existing

method or to implement a new method, in which both requires to comprehend the logic of

corresponding source code. As for the user group, 400 students were considered from same

student group who have been selected for BCS questionnaire under cognitive weight introduction

process. These students have been divided into another four groups based on their marks obtained

for the preliminary aptitude test, so that each group is entailed with 100 students. The duration

taken to complete the said modification has been monitored in each component, since the

185

duration has been found to express the comprehension effort or the understandability of source

code. It should be noted that the average duration to complete the task have been computed to

represent all users’ duration conveniently. All these evaluations have been performed in Moodle

environment, so that obtaining the duration can be performed precisely.

Firstly, evaluation of requirements analyzer has been performed. Users have been provided

source codes implemented for thirty different software and requested to apply a modification by

referring to its requirements. Then they have been asked to repeat the same task by using the

source code only. A time gap of one week has been maintained to ensure the unawareness of

using the same source code repeatedly. The time taken by each user group for both scenarios was

monitored and calculated mean duration. Based on mean durations, 13.83% duration reduction

has been observed for comprehension with requirements comparing to the comprehension with

only source code. The same procedure was followed to evaluate the visualization component

such that mean time taken to comprehend a source code to apply another modification with the

visualization component and without it were recorded. Consequently, 19.81% duration reduction

has been obtained to the source code comprehension between the proposed visualization aid and

the source code referring. Furthermore, mean time was computed to perform the same task by

using the logical diagrams generated by EasyUML. A significant reduction of 4.81% duration has

been observed in proposed visualization component over EasyUML, which concludes the

possibility of assisting user to understand a source code logic more conveniently than existing

diagram generation tools. Similarly, defects tracing component has also been evaluated against

the mean time taken to comprehend and apply modifications along with the usage of FindBugs

bug tracker. A significant 35.84% duration reduction has been observed in proposed defects

tracker comparing to FindBugs bug tracker, which highlights its ability to support user to

understand the source code logic. Finally, mean duration taken to process another modification

using both code quality optimization and refactoring components was monitored along with the

duration to process the same task without these proposed components. As in other components,

32.29% duration reduction has been observed from proposed components over the available tools

and techniques provided by NetBeans for code quality optimization and refactoring. Therefore,

all the proposed components can be stated to attain a considerable reduction in mean duration to

apply a modification by understanding the source code logic, which in turns reflect to maintain

the users’ cognitive load in a more consistent way that would utilize a lesser comprehension

effort. Moreover, all these scenarios have been hypothetically verified with paired samples T test,

186

such that all proposed components’ mean time taken to comprehend a given source code have

been observed as lesser than the duration acquired to comprehend the same source code without

those components for entire user population. Hence, the proposed design can be concluded as a

supportive mechanism which indicates possible mechanisms to reduce the cognitive complexity

of a software.

Before evaluating the proposed cognitive complexity metric, the proposed cognitive weight (Cw)

has been evaluated as it is the parameter of expressing personal profile involvement in the metric.

The involvement of personal factor should be subjective, thereby cognitive weightage should

demonstrate the subjectivity associated with user understandability. Even though cognitive

weight has been indicated as a numerical value to make it easy to quantify cognitive complexity,

the proposed cognitive weight has been predicted in both quantitative and qualitative manners to

verify them in both ways. In order to predict cognitive weight in quantitative manner, Linear

Regression algorithm has been used as it has shown an accuracy of 94.0%. The Logistic

Regression algorithm has also been tested against the accuracy and gained 99.5%, which can be

considered as overfitting to gain low performance of testing results. To predict the cognitive

weight in a qualitative manner, Gaussian Naive Bayes algorithm has been used due to its

accuracy of 91.5% over 88.5% accuracy gained by Decision Tree algorithm. Since the metric is

comprised with the quantitative cognitive weight, more priority has been given to evaluate it in

terms of its subjectivity. Accordingly, two Java source codes generated by two GitLab sample

projects have been tested among same user group to obtain cognitive weights as per their input

and ratings for Cw. Based on their descriptive statistics, a significant variation has been observed

in Cw generated for both source codes. Since a positive variation implies a changeability of the

weights gained by each user, the subjectivity associated with Cw can be highlighted, which

cannot be observed in current cognitive weights. Moreover, the ability to indicate the

comprehension level by analyzing the maximum cognitive weight frequency for a given source

code has been emphasized. Accordingly, if a maximum Cw frequency lies in a lower range, it can

be stated as more understandable for majority of users, while a higher range applied with Cw

frequency indicates that the source code is difficult to understand by majority of users. Therefore,

the practicability of proposed Cw to indicate the personal profile can be verified to be used in

cognitive complexity metric.

The proposed cognitive complexity metric (CgC) consists with Cw and quantified Architectural

Complexity (AC) with respect to the complexities derived by variables/attributes referred to as

187

Data Complexity (DC) and BCS Complexity (BCSC). Therefore, the addition of Cw and AC

together has been proposed as an indicator of expressing the cognitive complexity of a particular

source code. The applicability and the procedure of using and computing the value for the metric

has been illustrated using several Java source codes. Moreover, the metric has been assessed

against Kaner’s validation framework to verify its practicability in real applications by addressing

all ten guidelines mentioned in it. The theoretical validation of the metric has been performed

through Weyuker properties and Briand’s framework. The metric is capable of satisfying all nine

properties under Weyuker properties and two complexity properties have been satisfied under

Briand’s framework. The contradictive properties defined in both frameworks are the major

reason behind achieving a lesser satisfaction rate under Briand’s framework. Therefore, by

considering 100% satisfaction ratio through Weyuker properties, the stability of the proposed

CgC metric can be highlighted. As it has been observed in proposed cognitive weight, the

subjectivity associated with CgC metric has also been examined by calculating cognitive

complexity for ten different GitLab projects by the same user group. The complexity for same set

of source codes were calculated by using existing software complexity metrics and by using a

latest cognitive complexity metric. Based on the calculated complexity values, a considerable

variation has been obtained with average CgC value which indicates the possibility of

demonstrating the variation of the understandability of each user. However, the objective values

obtained from current software complexity metrics and cognition metric emphasizes the inability

to demonstrate that variation. Herein, the proposed CgC metric can be concluded as a meaningful

metric which can be used to indicate the user comprehension effort with respect to both personal

profile and source code factors. Furthermore, more emphasis given to the personal profile

through this metric has shown a significant achievement of demonstrating the subjectivity related

with user understandability, which have not been achieved from other complexity metrics.

188

5.7 Scope of the Study

The cognitive complexity discusses about the effort utilized to understand a given source code.

The comprehension of a source code is generally performed by two parties. The users engaged in

software development and maintenance processes are required to understand the logic of a given

source code in order to handle it as expected. On the other hand, the computer should understand

its logic by converting the logical flow of source code in a computer understandable format in

order to execute it and produce the output. In this research work, the cognitive complexity

associated with users involved in software development and maintenance has been discussed.

Even though the logic of a source code is implemented correctly or incorrectly, a considerable

amount of effort is required for the logical comprehension. Therefore, this research work is

emphasized on the cognitive complexity of a user with respect to a source code with correct

logical implementation. It has been found that the major factors to determine cognitive

complexity is personal profile and source code factors. Consequently, the sub factors associated

with each main factor have been described to facilitate the cognitive complexity. However, the

combination of all these main factors and sub factors do not represent the entire cognitive

complexity effected with a source code as the factors considered for cognitive complexity

determination under this research work is limited. Moreover, it should be noted that this work has

emphasized more on personal profile than source code factors, as majority of previous research

works have emphasized source code factor only. Hence, the design implemented to demonstrate

the procedures of reducing cognitive complexity and the proposed cognitive complexity metric

along with new cognitive weightage introduction have focused more on personal profile. This can

be further described as the procedures of reducing cognitive complexity have been found on the

basis of handling the cognitive load of a users’ working memory, which comes through personal

profile. Moreover, the majority of parameters considered to predict the new cognitive weight

(Cw) are from personal profile. Hence, the proposed cognitive complexity metric (CgC) can also

be considered as an indicator of cognitive complexity which emphasizes more on personal

profile. Furthermore, the procedures developed to lessen cognitive complexity through software

development and maintenance processes and the factors considered for Cw prediction can also be

stated as limited with respect to personal profile. To evaluate the system components, proposed

Cw and CgC metric, a group of students were selected based on the marks obtained from a

computer-based aptitude test. Therefore, it has been assumed that all selected students consist

189

with same comprehension level in order to maintain a stability of the measurement taken for

evaluation. It should be noted that, the BCS questionnaire has also been conducted along with the

same assumption. The procedures of reducing cognitive complexity have been evaluated by

considering mean time taken to apply a modification to a source code by understanding it. Even

though that duration indicates time taken to comprehend and perform modifications, it has been

assumed that total time is equivalent to the comprehension time, in which modification time has

been ignored. Also, a week gap has been maintained among same type of modifications assuming

that the users’ awareness of the same source code will not be existed after one week. Finally,

weightage assignment from 1-3 has been defined as high comprehension level region, and 4-5

has been defined as high comprehension level region, since a lesser cognitive weight implies high

understandability, and a higher cognitive weight implies low understandability.

5.8 Contribution of the Study

In this study, cognitive complexity has been expressed in terms of personal profile and source

code factors. This can be considered as a vital achievement and a contribution to the field of

software engineering, as most of the research works on cognitive complexity has been limited

only to source code factors. Along with the inclusion of personal profile to express cognitive

complexity and with more emphasis given to personal profile over source code factors, the

subjectivity associated with users’ comprehension effort has been demonstrated, which other

research works could not be capable of handling. Consequently, the proposed cognitive weight

(Cw) and cognitive complexity metric (CgC) are capable of illustrating the subjectivity associated

with user cognition, although they compute a quantitative value. However, proposed cognitive

weight is an indicator of personal profile, and the metric is an indicator of cognitive complexity,

which are not equivalent to the exact cognitive complexity. Therefore, with this research work,

the applicability of cognitive complexity concept inside software development and maintenance

processes has been introduced without restraining it to a quantifiable measurement through a

metric. In other words, the possibility of using cognitive complexity concept is studied beyond

indicating it through a metric. As such, the procedures of reducing the cognitive complexity of a

software through its source code have been introduced to achieve high understandability and

maintainability, thereby to ensure a less complex source code. Hence, the computational design

190

of this research work contributes to analyze the procedures of obtaining a source code with high

understandability and maintainability.

I

References

[1] A. K. Jakhar and K. Rajnish, “A New Cognitive Approach to Measure the Complexity of

Software,” Int. J. Softw. Eng. Its Appl., vol. 8, pp. 185–198, Jul. 2014.

[2] G. A. Campbell, “Cognitive complexity: an overview and evaluation,” in Proceedings of the 2018

International Conference on Technical Debt - TechDebt ’18, Gothenburg, Sweden: ACM Press, 2018, pp.

57–58. doi: 10.1145/3194164.3194186.

[3] J. Feigenspan, S. Apel, J. Liebig, and C. Kastner, “Exploring Software Measures to Assess

Program Comprehension,” in 2011 International Symposium on Empirical Software Engineering and

Measurement, Banff, AB, Canada: IEEE, Sep. 2011, pp. 127–136. doi: 10.1109/ESEM.2011.21.

[4] M. M. Barón, M. Wyrich, and S. Wagner, “An Empirical Validation of Cognitive Complexity as a

Measure of Source Code Understandability,” Proc. 14th ACM IEEE Int. Symp. Empir. Softw. Eng. Meas.

ESEM, pp. 1–12, Oct. 2020, doi: 10.1145/3382494.3410636.

[5] L. Lavazza, A. Z. Abualkishik, G. Liu, and S. Morasca, “An empirical evaluation of the

‘Cognitive Complexity’ measure as a predictor of code understandability,” J. Syst. Softw., vol. 197, p.

111561, Mar. 2023, doi: 10.1016/j.jss.2022.111561.

[6] A. Trockman, K. Cates, M. Mozina, T. Nguyen, C. Kästner, and B. Vasilescu, “‘Automatically

assessing code understandability’ reanalyzed: combined metrics matter,” in Proceedings of the 15th

International Conference on Mining Software Repositories, Gothenburg Sweden: ACM, May 2018, pp.

314–318. doi: 10.1145/3196398.3196441.

[7] M. Wyrich, L. Merz, and D. Graziotin, “Anchoring code understandability evaluations through

task descriptions,” in Proceedings of the 30th IEEE/ACM International Conference on Program

Comprehension, Virtual Event: ACM, May 2022, pp. 133–140. doi: 10.1145/3524610.3527904.

[8] L. Ardito, R. Coppola, L. Barbato, and D. Verga, “A Tool-Based Perspective on Software Code

Maintainability Metrics: A Systematic Literature Review,” Sci. Program., vol. 2020, pp. 1–26, Aug. 2020,

doi: 10.1155/2020/8840389.

[9] K. K. Aggarwal, Y. Singh, and J. K. Chhabra, “An integrated measure of software

maintainability,” in Annual Reliability and Maintainability Symposium. 2002 Proceedings (Cat.

No.02CH37318), Seattle, WA, USA: IEEE, 2002, pp. 235–241. doi: 10.1109/RAMS.2002.981648.

[10] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and R. Oliveto,

“Automatically Assessing Code Understandability,” IEEE Trans. Softw. Eng., vol. 47, no. 3, pp. 595–613,

Mar. 2021, doi: 10.1109/TSE.2019.2901468.

[11] S. Yu and S. Zhou, “A survey on metric of software complexity,” in 2010 2nd IEEE International

Conference on Information Management and Engineering, Chengdu, China: IEEE, 2010, pp. 352–356.

doi: 10.1109/ICIME.2010.5477581.

[12] R. Saborido, J. Ferrer, F. Chicano, and E. Alba, “Automatizing Software Cognitive Complexity

Reduction,” IEEE Access, vol. 10, pp. 11642–11656, 2022, doi: 10.1109/ACCESS.2022.3144743.

[13] G. A. Campbell, “A new way of measuring understandability,” vol. 1, no. 5, p. 21, Apr. 2021.

[14] N. Kasto and J. Whalley, “Measuring the difficulty of code comprehension tasks using software

metrics,” Fifteenth Australas. Comput. Educ. Conf., vol. 136, p. 7, 2013.

II

[15] A. Madi, O. K. Zein, and S. Kadry, “On the Improvement of Cyclomatic Complexity Metric,” Int.

J. Softw. Eng. Its Appl., vol. 7, no. 2, pp. 67–82, 2013.

[16] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward, “Cyclomatic Complexity and

Lines of Code: Empirical Evidence of a Stable Linear Relationship,” J. Softw. Eng. Appl., vol. 02, no. 03,

pp. 137–143, 2009, doi: 10.4236/jsea.2009.23020.

[17] L. Kaur and A. Mishra, “Cognitive complexity as a quantifier of version to version Java-based

source code change: An empirical probe,” Inf. Softw. Technol., vol. 106, pp. 31–48, Feb. 2019, doi:

10.1016/j.infsof.2018.09.002.

[18] O. Esther, O. Stephen, O. Elijah, A. Rafiu, T. Dimple, and Y. Olajide, “Development of an

Improved Cognitive Complexity Metrics for Object- Oriented Codes,” Br. J. Math. Comput. Sci., vol. 18,

no. 2, pp. 1–11, Jan. 2016, doi: 10.9734/BJMCS/2016/28515.

[19] J. K. Chhabra, “Code Cognitive Complexity: A New Measure,” Proc. World Congr. Eng. 2011,

vol. 3, p. 5, 2011.

[20] S. Misra, M. Koyuncu, M. Crasso, C. Mateos, and A. Zunino, “A Suite of Cognitive Complexity

Metrics,” in Computational Science and Its Applications – ICCSA 2012, B. Murgante, O. Gervasi, S.

Misra, N. Nedjah, A. M. A. C. Rocha, D. Taniar, and B. O. Apduhan, Eds., in Lecture Notes in Computer

Science, vol. 7336. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 234–247. doi: 10.1007/978-

3-642-31128-4_17.

[21] S. Misra, A. Adewumi, L. Fernandez-Sanz, and R. Damasevicius, “A Suite of Object Oriented

Cognitive Complexity Metrics,” IEEE Access, vol. 6, pp. 8782–8796, 2018, doi:

10.1109/ACCESS.2018.2791344.

[22] M. Crasso, C. Mateos, A. Zunino, S. Misra, and P. Polvor´ın, “ASSESSING COGNITIVE

COMPLEXITY IN JAVA-BASED OBJECT-ORIENTED SYSTEMS: METRICS AND TOOL

SUPPORT,” Comput. Inform., vol. 35, pp. 497–527, 2016.

[23] N. Setiani, R. Ferdiana, and R. Hartanto, “Test Case Understandability Model,” IEEE Access, vol.

8, pp. 169036–169046, 2020, doi: 10.1109/ACCESS.2020.3022876.

[24] A. Mishra and D. Dubey, “A comparative study of different software development life cycle

models in different scenarios,” Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no. 5, 2013.

[25] Jingqiu Shao and Yingxu Wang, “A new measure of software complexity based on cognitive

weights,” Can. J. Electr. Comput. Eng., vol. 28, no. 2, pp. 69–74, Apr. 2003, doi:

10.1109/CJECE.2003.1532511.

[26] D. S. Kushwaha and A. K. Misra, “Robustness analysis of cognitive information complexity

measure using Weyuker properties,” ACM SIGSOFT Softw. Eng. Notes, vol. 31, no. 1, pp. 1–6, Jan. 2006,

doi: 10.1145/1108768.1108775.

[27] S. Misra, “Modified Cognitive Complexity Measure,” in Computer and Information Sciences –

ISCIS 2006, A. Levi, E. Savaş, H. Yenigün, S. Balcısoy, and Y. Saygın, Eds., in Lecture Notes in

Computer Science, vol. 4263. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1050–1059. doi:

10.1007/11902140_109.

[28] S. Misra, “Cognitive Program Complexity Measure,” in 6th IEEE International Conference on

Cognitive Informatics, IEEE, Aug. 2007, pp. 120–125. doi: 10.1109/COGINF.2007.4341881.

III

[29] S. Misra, I. Akman, and M. Koyuncu, “An inheritance complexity metric for object-oriented code:

A cognitive approach,” Sadhana, vol. 36, no. 3, pp. 317–337, Jun. 2011, doi: 10.1007/s12046-011-0028-2.

[30] S. Misra and F. Cafer, “Estimating complexity of programs in Python language,” Teh. Vjesn., vol.

18, no. 1, pp. 23–32, 2011.

[31] D. S. Kushwaha and A. K. Misra, “Improved Cognitive Information Complexity Measure: A

Metric that Establishes Program Comprehension Effort,” ACM SIGSOFT Softw. Eng. Notes, vol. 31, no. 5,

p. 7, 2006, doi: 10.1145/1163514.1163533.

[32] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using cohesion and coupling for software

remodularization: Is it enough?,” ACM Trans. Softw. Eng. Methodol. TOSEM, vol. 25, no. 3, pp. 1–28,

2016.

[33] A. Aloysius and L. Arockiam, “A Survey on Metric of Software Cognitive Complexity for OO

design,” vol. 5, no. 10, p. 5, 2011.

[34] A. Aloysius and L. Arockiam, “Coupling Complexity Metric: A Cognitive Approach,” Int. J. Inf.

Technol. Comput. Sci., vol. 4, no. 9, pp. 29–35, Aug. 2012, doi: 10.5815/ijitcs.2012.09.04.

[35] U. Chhillar and S. Bhasin, “A New Weighted Composite Complexity Measure for Object-

Oriented Systems,” Int. J. Inf. Commun. Technol. Res., vol. 1, no. 3, p. 8, 2011.

[36] Y. Wang and V. Chiew, “Empirical Studies on the Functional Complexity of Software in Large-

Scale Software Systems,” p. 20, 2011.

[37] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. 2, no. 4, pp. 308–320,

1976, doi: 10.1109/TSE.1976.233837.

[38] S. Dissem, E. Pregerson, A. Bhargava, J. Cordova, and L. Bang, “Path Complexity Correlates

with Source Code Comprehension Effort Indicators,” in 2023 IEEE/ACM 31st International Conference

on Program Comprehension (ICPC), Melbourne, Australia: IEEE, May 2023, pp. 266–274. doi:

10.1109/ICPC58990.2023.00041.

[39] M. E. Hansen, A. Lumsdaine, and R. L. Goldstone, “An experiment on the cognitive complexity

of code,” in Proceedings of the Thirty-Fifth Annual Conference of the Cognitive Science Society, Berlin,

Germany, 2013.

[40] J. Rilling and T. Klemola, “Identifying comprehension bottlenecks using program slicing and

cognitive complexity metrics,” in 11th IEEE International Workshop on Program Comprehension, 2003.,

IEEE, 2003, pp. 115–124. doi: 10.1109/WPC.2003.1199195.

[41] B. S. Alqadi and J. I. Maletic, “Slice-Based Cognitive Complexity Metrics for Defect Prediction,”

in 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering

(SANER), London, ON, Canada: IEEE, Feb. 2020, pp. 411–422. doi:

10.1109/SANER48275.2020.9054836.

[42] Y. Dai and S. Liu, “Applying Cognitive Complexity to Checklist-Based Human-Machine Pair

Inspection,” in 2021 IEEE 21st International Conference on Software Quality, Reliability and Security

Companion (QRS-C), Hainan, China: IEEE, Dec. 2021, pp. 314–318. doi: 10.1109/QRS-

C55045.2021.00054.

[43] J. P. Miguel, D. Mauricio, and G. Rodríguez, “A Review of Software Quality Models for the

Evaluation of Software Products,” Int. J. Softw. Eng. Appl., vol. 5, no. 6, pp. 31–53, Nov. 2014, doi:

10.5121/ijsea.2014.5603.

IV

[44] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and R. Oliveto,

“Automatically assessing code understandability: How far are we?,” in 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE), Urbana, IL: IEEE, Oct. 2017, pp.

417–427. doi: 10.1109/ASE.2017.8115654.

[45] V. Lenarduzzi, T. Kilamo, and A. Janes, “Does Cyclomatic or Cognitive Complexity Better

Represents Code Understandability? An Empirical Investigation on the Developers Perception.” arXiv,

Mar. 14, 2023. Accessed: Jul. 26, 2023. [Online]. Available: http://arxiv.org/abs/2303.07722

[46] I. Akman, S. Misra, and F. Cafer, “The role of leadership cognitive complexity in software

development projects: An empirical assessment for simple thinking,” Hum. Factors Ergon. Manuf. Serv.

Ind., vol. 21, no. 5, pp. 516–525, Sep. 2011, doi: 10.1002/hfm.20256.

[47] A. Abbad-Andaloussi, “On the relationship between source-code metrics and cognitive load: A

systematic tertiary review,” J. Syst. Softw., vol. 198, p. 111619, Apr. 2023, doi:

10.1016/j.jss.2023.111619.

[48] F. Stolp, “Assessing Cognitive Load in Software Development with Wearable Sensors,” in 2023

IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-

Companion), Melbourne, Australia: IEEE, May 2023, pp. 227–229. doi: 10.1109/ICSE-

Companion58688.2023.00062.

[49] G. Hao et al., “On the accuracy of code complexity metrics: A neuroscience-based guideline for

improvement,” Front. Neurosci., vol. 16, p. 1065366, Feb. 2023, doi: 10.3389/fnins.2022.1065366.

[50] V. Gruhn and R. Laue, “Reducing the cognitive complexity of business process models,” in 2009

8th IEEE International Conference on Cognitive Informatics, Kowloon, Hong Kong: IEEE, Jun. 2009, pp.

339–345. doi: 10.1109/COGINF.2009.5250717.

[51] V. Gruhn and R. Laue, “Complexity Metrics for Business Process Models,” Bus. Inf. Syst., p. 12,

2006.

[52] B. Hilburn, “COGNITIVE COMPLEXITY IN AIR TRAFFIC CONTROL: A LITERATURE

REVIEW,” p. 81, 2004.

[53] G. Andrews and G. S. Halford, “A cognitive complexity metric applied to cognitive

development,” Cognit. Psychol., vol. 45, no. 2, pp. 153–219, Sep. 2002, doi: 10.1016/S0010-

0285(02)00002-6.

[54] Q.-F. Yang, S.-C. Chang, G.-J. Hwang, and D. Zou, “Balancing cognitive complexity and gaming

level: Effects of a cognitive complexity-based competition game on EFL students’ English vocabulary

learning performance, anxiety and behaviors,” Comput. Educ., vol. 148, p. 103808, Apr. 2020, doi:

10.1016/j.compedu.2020.103808.

[55] A. Presbitero, “Proactivity in career development of employees: The roles of proactive personality

and cognitive complexity,” Career Dev. Int., vol. 20, no. 5, pp. 525–538, Sep. 2015, doi: 10.1108/CDI-03-

2015-0043.

[56] J. E. Silva, P. Ferreira, J. L. Coimbra, and I. Menezes, “Theater and Psychological Development:

Assessing Socio-Cognitive Complexity in the Domain of Theater,” Creat. Res. J., vol. 29, no. 2, pp. 157–

166, Apr. 2017, doi: 10.1080/10400419.2017.1302778.

[57] S. Misra and I. Akman, “Applicability of Weyuker’s properties on OO metrics: Some

misunderstandings,” Comput. Sci. Inf. Syst., vol. 5, no. 1, pp. 17–23, 2008, doi: 10.2298/CSIS0801017M.

V

[58] L. C. Briand and S. Morasca, “Property Based Software Engineering Measurement,” IEEE Trans.

Softw. Eng., vol. 22, no. 1, pp. 68–86, Jan. 1996, doi: 10.1109/32.481535.

[59] S. Misra, “An Object Oriented Complexity Metric Based on Cognitive Weights,” in 6th IEEE

International Conference on Cognitive Informatics, IEEE, Aug. 2007, pp. 134–139. doi:

10.1109/COGINF.2007.4341883.

[60] D. S. Kushwaha and A. K. Misra, “A modified cognitive information complexity measure of

software,” ACM SIGSOFT Softw. Eng. Notes, vol. 31, no. 1, pp. 1–4, Jan. 2006, doi:

10.1145/1108768.1108776.

[61] A. K. Misra, “Evaluating cognitive complexity measure with Weyuker properties,” in

Proceedings of the Third IEEE International Conference on Cognitive Informatics, 2004., Victoria, BC,

Canada: IEEE, 2004, pp. 103–108. doi: 10.1109/COGINF.2004.1327464.

[62] V. Gupta and J. K. Chhabra, “Object-Oriented Cognitive-Spatial Complexity Measures,” World

Acad. Sci. Eng. Technol., vol. 3, no. 3, p. 8, 2009, doi: doi.org/10.5281/zenodo.1072347.

[63] J. K. Chhabra and V. Gupta, “Evaluation of object-oriented spatial complexity measures,” ACM

SIGSOFT Softw. Eng. Notes, vol. 34, no. 3, pp. 1–5, May 2009, doi: 10.1145/1527202.1527208.

[64] S. Misra and K. I. Akman, “Weighted Class Complexity: A Measure of Complexity for Object

Oriented System,” J. Inf. Sci. Eng., vol. 24, pp. 1689–1708, 2008.

[65] R. Damasevicius and V. Stuikys, “Metrics for evaluation of metaprogram complexity,” Comput.

Sci. Inf. Syst., vol. 7, no. 4, pp. 769–787, 2010, doi: 10.2298/CSIS090315004D.

[66] N. Cowan, “What are the differences between long-term, short-term, and working memory?,”

Prog. Brain Res., vol. 169, pp. 323–338, 2008, doi: 10.1016/S0079-6123(07)00020-9.

[67] M. Klepsch and T. Seufert, “Understanding instructional design effects by differentiated

measurement of intrinsic, extraneous, and germane cognitive load,” Instr. Sci., vol. 48, no. 1, pp. 45–77,

Feb. 2020, doi: 10.1007/s11251-020-09502-9.

[68] K. E. DeLeeuw and R. E. Mayer, “A comparison of three measures of cognitive load: Evidence

for separable measures of intrinsic, extraneous, and germane load.,” J. Educ. Psychol., vol. 100, no. 1, pp.

223–234, Feb. 2008, doi: 10.1037/0022-0663.100.1.223.

[69] F. Détienne, Software Design — Cognitive Aspects. in Practitioner Series. London: Springer

London, 2002. doi: 10.1007/978-1-4471-0111-6.

[70] I. Heitlager, T. Kuipers, and J. Visser, “A Practical Model for Measuring Maintainability,” in 6th

International Conference on the Quality of Information and Communications Technology (QUATIC

2007), Lisbon, Portugal: IEEE, Sep. 2007, pp. 30–39. doi: 10.1109/QUATIC.2007.8.

[71] L. Pascarella, M. Bruntink, and A. Bacchelli, “Classifying code comments in Java software

systems,” Empir. Softw. Eng., vol. 24, no. 3, pp. 1499–1537, Jun. 2019, doi: 10.1007/s10664-019-09694-

w.

[72] D. Gopstein et al., “Understanding misunderstandings in source code,” in Proceedings of the 2017

11th Joint Meeting on Foundations of Software Engineering, Paderborn Germany: ACM, Aug. 2017, pp.

129–139. doi: 10.1145/3106237.3106264.

VI

[73] A. Yamashita and S. Counsell, “Code smells as system-level indicators of maintainability: An

empirical study,” J. Syst. Softw., vol. 86, no. 10, pp. 2639–2653, Oct. 2013, doi:

10.1016/j.jss.2013.05.007.

[74] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and A. D. Lucia, “On the diffuseness

and the impact on maintainability of code smells: a large scale empirical investigation,” Empir. Softw.

Eng., vol. 23, no. 3, pp. 1188–1221, Jun. 2018, doi: 10.1007/s10664-017-9535-z.

[75] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality benchmarking for

improving software maintainability,” Softw. Qual. J., vol. 20, no. 2, pp. 287–307, Jun. 2012, doi:

10.1007/s11219-011-9144-9.

[76] H. Alsolai and M. Roper, “A systematic literature review of machine learning techniques for

software maintainability prediction,” Inf. Softw. Technol., vol. 119, p. 106214, Mar. 2020, doi:

10.1016/j.infsof.2019.106214.

[77] J. Lang and D. Spišák, “Activity Diagram as an Orientation Catalyst within Source Code,” Acta

Polytech. Hung., vol. 18, no. 3, pp. 127–146, 2021, doi: 10.12700/APH.18.3.2021.3.7.

[78] R. Bloem et al., “RATSY – A New Requirements Analysis Tool with Synthesis,” in Computer

Aided Verification, T. Touili, B. Cook, and P. Jackson, Eds., in Lecture Notes in Computer Science, vol.

6174. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 425–429. doi: 10.1007/978-3-642-14295-

6_37.

[79] P. K. Ragunath, S. Velmourougan, P. Davachelvan, S. Kayalvizhi, and R. Ravimohan, “Evolving

a new model (SDLC Model-2010) for software development life cycle (SDLC),” Int. J. Comput. Sci.

Netw. Secur., vol. 10, no. 1, pp. 112–119, 2010.

[80] L. Marquez, H. Rodriguez, J. Carmona, and J. Montolio, “Improving POS Tagging Using

Machine-Learning Techniques,” pp. 53–62, 2002.

[81] L. M. Rquez, L. Padro, and H. Rodriguez, “A Machine Learning Approach to POS Tagging,”

Mach. Learn., vol. 39, pp. 59–91, 2000, doi: https://doi.org/10.1023/A:1007673816718.

[82] B. Litvak, S. Tyszberowicz, and A. Yehudai, “Behavioral consistency validation of UML

diagrams,” in First International Conference onSoftware Engineering and Formal Methods, 2003.

Proceedings., IEEE, 2003, pp. 118–125.

[83] K. H. Heung, “A tool for generating UML diagram from source code,” Proc. 2009 IEEEACM Int.

Conf. Autom. Softw. Eng., pp. 680–682, Nov. 2009, doi: https://doi.org/10.1109/ASE.2009.48.

[84] D. K. Deeptimahanti and M. A. Babar, “An Automated Tool for Generating UML Models from

Natural Language Requirements,” in Proceedings of the 2009 IEEE/ACM International Conference on

Automated Software Engineering, in ASE ’09. USA: IEEE Computer Society, Nov. 2009, pp. 680–682.

doi: 10.1109/ASE.2009.48.

[85] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word Representation,” in

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),

Doha, Qatar: Association for Computational Linguistics, 2014, pp. 1532–1543. doi: 10.3115/v1/D14-

1162.

[86] B. Li and L. Han, “Distance Weighted Cosine Similarity Measure for Text Classification,” in

Intelligent Data Engineering and Automated Learning – IDEAL 2013, H. Yin, K. Tang, Y. Gao, F.

VII

Klawonn, M. Lee, T. Weise, B. Li, and X. Yao, Eds., in Lecture Notes in Computer Science, vol. 8206.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 611–618. doi: 10.1007/978-3-642-41278-3_74.

[87] M. J. Egenhofer and A. U. Frank, “Object-Oriented Modeling in CIS: Inheritance and

Propagation,” p. 11, 2008.

[88] D. Dey, V. C. Storey, and T. M. Barron, “Improving database design through the analysis of

relationships,” ACM Trans. Database Syst., vol. 24, no. 4, pp. 453–486, Dec. 1999, doi:

10.1145/331983.331984.

[89] X. Renguo, T. S. Dillon, W. Rahayu, E. Chang, and N. Gorla, “An Indexing Structure for

Aggregation Relationship in OODB,” in Database and Expert Systems Applications, M. Ibrahim, J. Küng,

and N. Revell, Eds., in Lecture Notes in Computer Science, vol. 1873. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2000, pp. 21–30. doi: 10.1007/3-540-44469-6_3.

[90] J. Han and Y. Fu, “Discovery of Multiple-Level Association Rules from Large Databases,”

Proceddings 21st VLDB Conf., p. 12, 1995.

[91] W. Ben Slama Souei, C. El Hog, L. Sliman, R. Ben Djemaa, and I. A. Ben Amor, “Towards a

Uniform Description Language for Smart Contract,” in 2021 IEEE 30th International Conference on

Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Bayonne, France: IEEE,

Oct. 2021, pp. 57–62. doi: 10.1109/WETICE53228.2021.00022.

[92] N. Rutar, C. B. Almazan, and J. S. Foster, “A Comparison of Bug Finding Tools for Java,” in 15th

International Symposium on Software Reliability Engineering, Saint-Malo, Bretagne, France: IEEE, 2004,

pp. 245–256. doi: 10.1109/ISSRE.2004.1.

[93] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How misclassification impacts bug

prediction,” in 2013 35th International Conference on Software Engineering (ICSE), San Francisco, CA,

USA: IEEE, May 2013, pp. 392–401. doi: 10.1109/ICSE.2013.6606585.

[94] A. Yamashita and L. Moonen, “Do code smells reflect important maintainability aspects?,” in

2012 28th IEEE International Conference on Software Maintenance (ICSM), Trento, Italy: IEEE, Sep.

2012, pp. 306–315. doi: 10.1109/ICSM.2012.6405287.

[95] T. Zimmermann and A. Casanueva Artis, “Impact of Switching Bug Trackers: A Case Study on a

Medium-Sized Open Source Project,” in 2019 IEEE International Conference on Software Maintenance

and Evolution (ICSME), Cleveland, OH, USA: IEEE, Sep. 2019, pp. 13–23. doi:

10.1109/ICSME.2019.00011.

[96] D. Hovemeyer and W. Pugh, “Finding Bugs is Easy,” Static Anal., p. 49, Oct. 2004.

[97] G. Bortis and A. van der Hoek, “PorchLight: A tag-based approach to bug triaging,” in 2013 35th

International Conference on Software Engineering (ICSE), San Francisco, CA, USA: IEEE, May 2013,

pp. 342–351. doi: 10.1109/ICSE.2013.6606580.

[98] H. Keuning, B. Heeren, and J. Jeuring, “Code Quality Issues in Student Programs,” in

Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science Education,

Bologna Italy: ACM, Jun. 2017, pp. 110–115. doi: 10.1145/3059009.3059061.

[99] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring Program Comprehension: A

Large-Scale Field Study with Professionals,” IEEE Trans. Softw. Eng., vol. 44, no. 10, pp. 951–976, Oct.

2018, doi: 10.1109/TSE.2017.2734091.

VIII

[100] B. Seref and O. Tanriover, “Software Code Maintainability : A Literature Review,” Int. J. Softw.

Eng. Appl., vol. 7, no. 3, pp. 69–87, May 2016, doi: 10.5121/ijsea.2016.7305.

[101] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. Shi, “Why Is It Important to Measure

Maintainability and What Are the Best Ways to Do It?,” in 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C), Buenos Aires, Argentina: IEEE, May 2017,

pp. 377–378. doi: 10.1109/ICSE-C.2017.75.

[102] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring challenges and

benefits,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering - FSE ’12, Cary, North Carolina: ACM Press, 2012, p. 1. doi:

10.1145/2393596.2393655.

[103] S. B. Green and N. J. Salkind, “Using SPSS for Windows and Macintosh : analyzing and

understanding data,” CERN Document Server, 2012. https://cds.cern.ch/record/1564874 (accessed Mar.

22, 2021).

[104] V. Damasiotis, P. Fitsilis, P. Considine, and J. O’Kane, “Analysis of software project complexity

factors,” in Proceedings of the 2017 International Conference on Management Engineering, Software

Engineering and Service Sciences - ICMSS ’17, Wuhan, China: ACM Press, 2017, pp. 54–58. doi:

10.1145/3034950.3034989.

[105] R. D. Banker, S. M. Datar, and D. Zweig, “Software complexity and maintainability,” in

Proceedings of the tenth international conference on Information Systems - ICIS ’89, Boston,

Massachusetts, United States: ACM Press, 1989, pp. 247–255. doi: 10.1145/75034.75056.

[106] J. García-Muñoz, M. García-Valls, and J. Escribano-Barreno, “Improved Metrics Handling in

SonarQube for Software Quality Monitoring,” 2016, pp. 463–470. doi: 10.1007/978-3-319-40162-1_50.

[107] N. Shi and R. Olsson, “Reverse Engineering of Design Patterns from Java Source Code,” in 21st

IEEE/ACM International Conference on Automated Software Engineering (ASE’06), Tokyo: IEEE, 2006,

pp. 123–134. doi: 10.1109/ASE.2006.57.

[108] T. Ishio, H. Date, T. Miyake, and K. Inoue, “Mining Coding Patterns to Detect Crosscutting

Concerns in Java Programs,” in 2008 15th Working Conference on Reverse Engineering, Antwerp,

Belgium: IEEE, Oct. 2008, pp. 123–132. doi: 10.1109/WCRE.2008.28.

[109] P. G. Armour, “Beware of counting LOC,” Commun. ACM, vol. 47, no. 3, pp. 21–24, Mar. 2004,

doi: 10.1145/971617.971635.

[110] D. Kelly, J. Arguello, A. Edwards, and W. Wu, “Development and Evaluation of Search Tasks for

IIR Experiments using a Cognitive Complexity Framework,” in Proceedings of the 2015 International

Conference on The Theory of Information Retrieval, Northampton Massachusetts USA: ACM, Sep. 2015,

pp. 101–110. doi: 10.1145/2808194.2809465.

[111] A. J. Bishara and J. B. Hittner, “Testing the significance of a correlation with nonnormal data:

Comparison of Pearson, Spearman, transformation, and resampling approaches.,” Psychol. Methods, vol.

17, no. 3, pp. 399–417, Sep. 2012, doi: 10.1037/a0028087.

[112] S. Gharsellaoui, M. Mansouri, S. S. Refaat, H. Abu-Rub, and H. Messaoud, “Multivariate

Features Extraction and Effective Decision Making Using Machine Learning Approaches,” Energies, vol.

13, no. 3, p. 609, Jan. 2020, doi: 10.3390/en13030609.

IX

[113] A. Ashari, I. Paryudi, and A. Min, “Performance Comparison between Naïve Bayes, Decision

Tree and k-Nearest Neighbor in Searching Alternative Design in an Energy Simulation Tool,” Int. J. Adv.

Comput. Sci. Appl., vol. 4, no. 11, 2013, doi: 10.14569/IJACSA.2013.041105.

[114] Ali Haghpanah Jahromi and M. Taheri, “A non-parametric mixture of Gaussian naive Bayes

classifiers based on local independent features,” presented at the 2017 Artificial Intelligence and Signal

Processing Conference (AISP), IEEE, pp. 209–212.

[115] G. A. F. Seber and A. J. Lee, Linear Regression Analysis. John Wiley & Sons, 2012.

[116] E. Morozoff, “Using a Line of Code Metric to Understand Software Rework,” IEEE Softw., vol.

27, no. 1, pp. 72–77, Jan. 2010, doi: 10.1109/MS.2009.160.

[117] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source code comments,” in 2013 21st

International Conference on Program Comprehension (ICPC), San Francisco, CA, USA: IEEE, May

2013, pp. 83–92. doi: 10.1109/ICPC.2013.6613836.

[118] G. Rakić, M. Tóth, and Z. Budimac, “Toward recursion aware complexity metrics,” Inf. Softw.

Technol., vol. 118, p. 106203, Feb. 2020, doi: 10.1016/j.infsof.2019.106203.

[119] M. M. Suleman Sarwar, S. Shahzad, and I. Ahmad, “Cyclomatic complexity: The nesting

problem,” in Eighth International Conference on Digital Information Management (ICDIM 2013),

Islamabad, Pakistan: IEEE, Sep. 2013, pp. 274–279. doi: 10.1109/ICDIM.2013.6693981.

[120] C. T. Bailey and W. L. Dingee, “A software study using Halstead metrics,” in Proceedings of the

1981 ACM workshop/symposium on Measurement and evaluation of software quality, 1981, pp. 189–197.

[121] P. Robinson, “Cognitive Complexity and Task Sequencing: Studies in a Componential

Framework for Second Language Task Design,” IRAL - Int. Rev. Appl. Linguist. Lang. Teach., vol. 43, no.

1, pp. 1–32, Jan. 2005, doi: 10.1515/iral.2005.43.1.1.

[122] A. Piolat, T. Olive, and R. T. Kellogg, “Cognitive effort during note taking,” Appl. Cogn.

Psychol., vol. 19, no. 3, pp. 291–312, Apr. 2005, doi: 10.1002/acp.1086.

[123] K. P. Srinivasan and T. Devi, “Software Metrics Validation Methodologies in Software

Engineering,” Int. J. Softw. Eng. Appl., vol. 5, no. 6, pp. 87–102, Nov. 2014, doi:

10.5121/ijsea.2014.5606.

X

Appendices

Appendix A – Logical Visualizations without the Source Code

Sample Class Diagram

XI

Sample ER Diagram

XII

Sample Object Diagram

XIII

Appendix B – Logical Visualizations using the Source Code

Sample Sequence Diagram

XIV

Sample Class Diagram

XV

Appendix C – SPSS Statistical Outcomes Derived from BCS Questionnaire

Statistics for if-else and switch-case statements based on Time

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 If_Total_Time 6.8377 500 5.64287 .25236

Switch_Total_Time 3.4622 500 3.35923 .15023

Statistics for if-else and switch-case statements based on Marks

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 If_Mark 4.63 500 .809 .036

Switch_Mark 4.71 500 .807 .036

Statistics for for and while loops based on Time

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 For_Total_Time 6.3616 500 4.82534 .21580

While_Total_Time 4.0950 500 2.94839 .13186

Statistics for for and while loops based on Marks

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 For_Marks 4.2960 500 1.03078 .04610

While_Marks 4.3640 500 1.03617 .04634

XVI

Statistics for nested for and nested while loops based on Time

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 NestedFor_Total_Time 8.1471 500 6.47033 .28936

NestedWhile_Total_Time 5.8110 500 5.09571 .22789

Statistics for nested for and nested while loops based on Marks

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 NestedFor_Marks 3.6920 500 1.39032 .06218

NestedWhile_Marks 3.9260 500 1.37561 .06152

Question 1 Not answered Marked out of 1.00

What is the output of the following program?

a. Value of X is 30

b. Value of X is 20

c. This is else statement

d. None of the mentioned

e. Value of X is 10

Questionnaire Given to Test if-else Statements under Conditional Statements Category

Appendix D - BCS Questionnaire

XVII

https://courseweb.sliit.lk/
https://courseweb.sliit.lk/user/view.php?id=151&course=605
javascript:void(0)
https://courseweb.sliit.lk/my/
https://courseweb.sliit.lk/course/index.php?categoryid=4
https://courseweb.sliit.lk/course/index.php?categoryid=27
https://courseweb.sliit.lk/course/index.php?categoryid=28
https://courseweb.sliit.lk/course/index.php?categoryid=31
https://courseweb.sliit.lk/course/index.php?categoryid=36
https://courseweb.sliit.lk/course/index.php?categoryid=38
https://courseweb.sliit.lk/course/index.php?categoryid=723
https://courseweb.sliit.lk/course/view.php?id=605
https://courseweb.sliit.lk/mod/quiz/view.php?id=127501
https://courseweb.sliit.lk/mod/quiz/startattempt.php?cmid=127501&sesskey=NSungLFzo8

Question 2 Not answered Marked out of 1.00

What is the output of the following program?

a. 0

b. None of the mentioned

c. 20

d. 10

e. 30

XVIII

Question 3 Not answered Marked out of 1.00

What is the output of the following program?

a. August

b. December

c. Invalid month

d. November

e. July

XIX

Question 4 Not answered Marked out of 1.00

What is the output of the following program?

a. Low grade

Final result: fail

b. None of the mentioned

c. Low grade

Unknown result

d. Invalid grade

e. Low grade

No result
XX

Question 5 Not answered Marked out of 1.00

What is the output of the following program?

a. Excellent!

Your grade is C

b. You passed

Your grade is C

c. Invalid grade

Your grade is C

d. None of the mentioned

e. Well done

Your grade is C

XXI

https://courseweb.sliit.lk/mod/resource/view.php?id=123169&forceview=1
https://courseweb.sliit.lk/mod/resource/view.php?id=92975&forceview=1

Question 1 Not answered Marked out of 1.00

What is the output of the following program?

a. July

b. November

c. Invalid month

d. August

e. December

Questionnaire Given to Test switch-case Statements under Conditional Statements Category

XXII

Question 2 Not answered Marked out of 1.00

What is the output of the following program?

a. Value of X is 30

b. Value of X is 10

c. Value of X is 0

d. This is else statement

e. Value of X is 20

XXIII

Question 3 Not answered Marked out of 1.00

 What is the output of the following program?

a. Low grade

Final result: fail

b. Invalid grade

c. Low grade

No result

d. Low grade
XXIV

Unknown result

e. None of the mentioned

Question 4 Not answered Marked out of 1.00

What is the output of the following program?

a. Excellent!

Your grade is C

b. You passed

Your grade is C

c. Well done

Your grade is C

d. Invalid grade

Your grade is C

e. None of the mentioned

XXV

Question 5 Not answered Marked out of 1.00

What is the output of the following program?

a. 10

b. 0

c. 20

d. 30

e. None of the mentioned

XXVI

https://courseweb.sliit.lk/mod/quiz/view.php?id=127501&forceview=1
https://courseweb.sliit.lk/mod/resource/view.php?id=92975&forceview=1

Question 1 Not answered Marked out of 1.00

What is the output of the following program?

a. The value of i is: 1

The value of i is: 2

The value of i is: 3

The value of i is: 4

The value of i is: 5

The value of i is: 6

The value of i is: 7

The value of i is: 8

The value of i is: 9

b. None of the mentioned

c. The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

d. The value of i is: 10

The value of i is: 9

The value of i is: 8

Questionnaire Given to Test for Loop under Looping Category

XXVII

The value of i is: 7

The value of i is: 6

The value of i is: 5

The value of i is: 4

The value of i is: 3

The value of i is: 2

e. The value of i is: 10

The value of i is: 9

The value of i is: 8

The value of i is: 7

The value of i is: 5

The value of i is: 4

The value of i is: 3

XXVIII

Question 2 Not answered Marked out of 1.00

What is the output of the following program?

a. None of the mentioned

b. 1

1

1

1

1

1

1

1

1

1

c. 1

d. 1

1

1

1

1

e. It will go on an infinite loop

XXIX

Question 3 Not answered Marked out of 1.00

What is the output of the following program?

a. 100

b. 100

100

100

100

c. No iteration happens

d. It will go on an infinite loop

e. None of the mentioned

XXX

Question 4 Not answered Marked out of 1.00

What is the output of the following program?

a. 2

3

11

9

b. 2

11

45

9

c. 9

45

11

2

d. 0

1

2

3

e. None of the mentioned

XXXI

Question 5 Not answered Marked out of 1.00

What is the output of the following program?

a. Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

b. Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

c. Count is: 1

Count is: 1

Count is: 1

Count is: 1

Count is: 1 XXXII

Count is: 1

Count is: 1

Count is: 1

Count is: 1

Count is: 1

d.

None of the mentioned

e. Count is: 10

Count is: 9

Count is: 8

Count is: 7

Count is: 6

Count is: 5

Count is: 4

Count is: 3

Count is: 2

Count is: 1

XXXIII

https://courseweb.sliit.lk/mod/url/view.php?id=76070&forceview=1
https://courseweb.sliit.lk/mod/resource/view.php?id=53052&forceview=1

 Question 1 Not answered Marked out of 1.00

What is the output of the following program?

a. Count is: 10

Count is: 9

Count is: 8

Count is: 7

Count is: 6

Count is: 5

Count is: 4

Count is: 3

Count is: 2

Count is: 1

b. None of the mentioned

c. Count is: 1

Count is: 3

Count is: 3

Count is: 5

Count is: 5

Count is: 7

Count is: 7

Count is: 9

Count is: 9

Count is: 11

Questionnaire Given to Test while Loop under Looping Category

XXXIV

d. Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

e. Count is: 1

Count is: 1

Count is: 1

Count is: 1

Count is: 1

Count is: 1

Count is: 1

Count is: 1

Count is: 1

Count is: 1

XXXV

Question 2 Not answered Marked out of 1.00

What is the output of the following program?

a. None of the mentioned

b. 9

45

11

2

c. 0

1

2

3

d. 2

11

45

9

e. 2

3

11

9

XXXVI

Question 3 Not answered Marked out of 1.00

What is the output of the following program?

a. It will go on an infinite loop

b. 1

1

1

1

1

1

1

1

1

1

c. 1

d. None of the mentioned

e. 1

1

1

1

1

XXXVII

Question 4 Not answered Marked out of 1.00

What is the output of the following program?

a. None of the mentioned

b. The value of i is: 10

The value of i is: 9

The value of i is: 8

The value of i is: 7

The value of i is: 6

The value of i is: 5

The value of i is: 4

The value of i is: 3

c. The value of i is: 1

The value of i is: 2

The value of i is: 3

The value of i is: 4

The value of i is: 5

The value of i is: 6

The value of i is: 7

The value of i is: 8

The value of i is: 9

d. The value of i is: 10

The value of i is: 10

The value of i is: 10

XXXVIII

The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

The value of i is: 10

e. The value of i is: 10

The value of i is: 9

The value of i is: 8

The value of i is: 7

The value of i is: 6

The value of i is: 5

The value of i is: 4

The value of i is: 3

The value of i is: 2

XXXIX

Question 5 Not answered Marked out of 1.00

What is the output of the following program?

a. 100

100

100

100

100

b. No iteration happens

c. 100

d. None of the mentioned

e. It will go on an infinite loop

XL

https://courseweb.sliit.lk/mod/quiz/view.php?id=127576&forceview=1
https://courseweb.sliit.lk/mod/resource/view.php?id=53052&forceview=1

 Question 1 Not answered Marked out of 1.00

What is the output of the following program?

a. *

 **

b. ******

 **

 *

c. None of the mentioned

d. ******

**

*

Questionnaire Given to Test nested-for Loop under Nested Looping Category

XLI

e. *

**

XLII

Question 2 Not answered Marked out of 1.00

What is the output of the following program?

a. 0,0

1,1

2,2

1,1

2,2

b. 0,0

0,1

0,2

1,0

1,1

1,2

c. 0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

d. None of the mentioned

e. 0,1

XLIII

Question 3 Not answered Marked out of 1.00

What is the output of the following program

a. six

six

b. six

six

six

six

six

six

c. six

six

six

d. None of the mentioned

e. six

six

six

six

XLIV

Question 4 Not answered Marked out of 1.00

What is the output of the following program?

a. 1

 22

 333

 4444

55555

b. 1

22

333

4444

55555

c. 55555

 4444

 333

 22

 1

d. 55555

4444

333

22

1
XLV

e. None of the mentioned

Question 5 Not answered Marked out of 1.00

What is the output of the following program?

a. 28

b. 30

c. 15

d. None of the mentioned

e. 10

XLVI

https://courseweb.sliit.lk/mod/quiz/view.php?id=127574&forceview=1
https://courseweb.sliit.lk/mod/resource/view.php?id=53052&forceview=1

Question 1 Not answered Marked out of 1.00

What is the output of the following program?

a. 30

b. 15

c. None of the mentioned

d. 28

e. 10

Questionnaire Given to Test nested-while Loop under Nested Looping Category

XLVII

https://courseweb.sliit.lk/
https://courseweb.sliit.lk/user/view.php?id=240&course=638
javascript:void(0)
https://courseweb.sliit.lk/my/
https://courseweb.sliit.lk/course/index.php?categoryid=4
https://courseweb.sliit.lk/course/index.php?categoryid=27
https://courseweb.sliit.lk/course/index.php?categoryid=33
https://courseweb.sliit.lk/course/index.php?categoryid=42
https://courseweb.sliit.lk/course/index.php?categoryid=46
https://courseweb.sliit.lk/course/index.php?categoryid=49
https://courseweb.sliit.lk/course/index.php?categoryid=726
https://courseweb.sliit.lk/course/view.php?id=638
https://courseweb.sliit.lk/mod/quiz/view.php?id=127576
https://courseweb.sliit.lk/mod/quiz/startattempt.php?cmid=127576&sesskey=cSKbqMsQYa

Question 2 Not answered Marked out of 1.00

What is the output of the following program?

a. *

**

b. ******

 **

 *

c. *

 **

XLVIII

d. ******

**

*

e. None of the mentioned

XLIX

Question 3 Not answered Marked out of 1.00

What is the output of the following program?

a. 0,1

b. 0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

c. 0,0

0,1

0,2

1,0

1,1

1,2

d. 0,0

1,1

2,2

1,1

2,2
L

e. None of the mentioned

Question 4 Not answered Marked out of 1.00

What is the output of the following program?

a. six

six

b. six

six

six

six

six

six

c. six

six

six

six

d. six

six

six

e. None of the mentioned

LI

Question 5 Not answered Marked out of 1.00

What is the output of the following program?

a. 55555

 4444

 333

 22

 1

b. 1

22

333

4444

55555

c. 1

 22

 333

 4444

55555

d. None of the mentioned

e. 55555
LII

4444

333

22

1

LIII

https://courseweb.sliit.lk/mod/quiz/view.php?id=127575&forceview=1
https://courseweb.sliit.lk/mod/resource/view.php?id=53052&forceview=1

Question 1
Not yet answered

Marked out of
1.00

All exception types are subclasses of the built-in class

Select one:
a. None of the mention

b. RuntimeException

c. Throwable

d. Error

e. Exception

Question 2
Not yet answered

Marked out of
1.00

What is the output of this program?

Select one:
a. ac

b. ca

c. ab

d. bc

e. cb

Appendix E - Aptitude Test Conducted to Select Users

LIV

Question 3
Not yet answered

Marked out of
1.00

What is the output of this program?
import java.util.*;

class Output {

public static void main(String args[])

{

ArrayList obj = new ArrayList();

obj.add("A");

obj.add(0, "B");

System.out.println(obj.size());

}

}

Select one:
a. None of the mentioned

b. 2

c. Any Garbage Value

d. 0

e. 1

Question 4
Not yet answered

Marked out of
1.00

Which
of the following statements is TRUE

Select one:
a.

A class can have multiple constructors

b.
The Java compiler always
adds a default constructor to a user defined class.

c.
Each instantiated object
will have its own copy of a class variable.

d.
When an object is passed
 to a method, a copy of each of the object’s data members are created and passed
 to the

method.

LV

Question 5
Not yet answered

Marked out of
1.00

What is the value num after executing the above code?

Select one:
a. None of them

b. 38

c. 44

d. 39

Question 6
Not yet answered

Marked out of
1.00

Question 7
Not yet answered

Marked out of
1.00

What is the string contained in s after following lines of code?

StringBuffer s = new StringBuffer(“Hello”);

s.deleteCharAt(0);

Select one:
a. Hell

b. llo

c. ello

d. null

e. Hel

Which of the following is a valid declaration of an object of class Box?

Select one:

a. obj = new Box();

b. new Box obj;

c. Box obj = new Box;

d. Box obj = new Box();

LVI

Question 8
Not yet answered

Marked out of
1.00

Given
the following:
int[][] items = {{0, 1, 3, 4},{4, 3, 99, 0, 7 },{3, 2}};

Which of the following replaces 99 with
77?

Select one:
a.

items[1][2] = 77;

b.

items[2][1] = 77;

c.

items[99] = 77;

d.

items[2][3] = 77;

Question 9
Not yet answered

Marked out of
1.00

Which of these access specifiers can
be used for a class so that it’s members can be accessed by a different class
in the

different package?

Select one:
a. protected

b. private

c. friendly

d. public

LVII

Question 10
Not yet answered

Marked out of
1.00

What is the output of this program?

class Test {

public static void main(String args[])

{

int x;

x = 10;

{

int y = x;

System.out.print(x +" ");

y++;

x = y;

}

System.out.println(x);

}

}

Select one:
a. 10 10

b. 10 11

c. 11

d. 10

e. 11 10

Question 11
Not yet answered

Marked out of
1.00

Question 12
Not yet answered

Marked out of
1.00

class output {

public static void main(String args[])

{

StringBuffer b1 = new StringBuffer("Hello World");

b1.insert(6, "Good");

System.out.println(b1);

}

}

What is the output of this program?

Select one:
a. Hello GoodWorld

b. Hello World

c. Hello Good

d. Hello World Good

Select the in correct variable declarations from given below.

Select one or more:
a. Distance@home

b. Studentmark

c. 3rdheight

d. Kilometers per hour

e. $name

LVIII

Question 13
Not yet answered

Marked out of
1.00

 Which
one of the following options provides the output of this when executed?

Select one:
a.

str1
and str2 equal

str1
and str3 not equal

b.

str1
and str2 equal

str1
and str3 equal

c.

Question 14
Not yet answered

Marked out of
1.00

str1
and str2 not equal

str1
and str3 equal

d.

str1
and str2 equal

str1
and str3 not equal

Which
function is used to perform some action when the object is to be destroyed?

Select one:
a. finalize()

b. none
of the mentioned

c. main()

d. new

e. delete()

LIX

Question 15
Not yet answered

Marked out of
1.00

Given the following:

double[][] arr = { {1.2, 9.0}, {9.2, 0.5, 0.0},{7.3, 7.9,1.2, 3.9} } ;

 What is the value of arr.length ?

Select one:
a. 2

b. 4

c. 3

d. 9

Question 16
Not yet answered

Marked out of
1.00

Question 17
Not yet answered

Marked out of
1.00

Which exception could be handled by the catch block for above?
public class Test{

public static void main(String args[]){

try {

int a = Integer.parseInt("four");

}

}

}

Select one:
a. IllegalStateException

b. ArrayIndexOutOfBoundsException

c. ClassCastException

d. TypeMismatchException

e. Program doesn't run because of a Compilation Error

Which of the following variable declaration would NOT
compile in a java program?

Select one:
a. int var_1;

b. int var1;

c. int VAR;

d. int 1_var;

e. int var;

LX

Question 18
Not yet answered

Marked out of
1.00

If
a class inheriting an abstract class and does not define all of its function
then it will be known as?

Select one:
a. Static
class

b. None of the mentioned

c. A
simple class

d. Abstract

e. Concrete class

Question 19
Not yet answered

Marked out of
1.00

Determine output of the following program code?
public class Test{

public static void main(String args[]){

int i;

try {

i = calculate();

System.out.println(i);

} catch(Exception e){

System.out.println("Error occured");

}

}

static int calculate(){

return (7/2);

}

}

Select one:
Program compiles and runs but no output generated

Compilation Error

3.5

3

Runtime Error

LXI

Question 20
Not yet answered

Marked out of
1.00

Question 21
Not yet answered

Marked out of
1.00

Which
of these keywords is used to make a constant in java?

Select one:
a. abstract
and final

b. struct

c.

implements

d. static
and final

e. static

Which of these statement is incorrect?

Select one:
a. it is possible to create a nested switch statements.

b. switch statement can only test for equality, whereas if statement can evaluate any type of boolean
expression.

c. switch statement is more efficient than a set of nested ifs

d. None of the given answers.

e. two case constants in the same switch can have identical values.

Question 22
Not yet answered

Marked out of
1.00

Question 23
Not yet answered

Marked out of
1.00

Which of these is necessary condition for automatic type conversion in Java?

Select one:
a. The destination type is smaller than source type

b. The destination type can be larger or smaller than source type

c. None of the mentioned

d. All of the mentioned

e. The destination type is larger than source type

Which
of these statement is incorrect?

Select one:
a. main()
method must be made public

b. All
object of a class are allocated memory for all the attributes defined in the
class

c. All
object of a class are allocated memory for the methods defined in the class

d. If
a method is defined public it can be accessed by object of other class

e. none of the mention

LXII

Question 24
Not yet answered

Marked out of
1.00

What is the output of
this program?
class Test {

public static void main(String args[]) {

int x;

x = 7;

{

int y = 3;

++x;

System.out.print(x + " " + y);

}

System.out.println(x + " " + y);

}

}

Select one:
a. 3 7 3

b. Runtime error

c. 7 3 7

d. Compilation error

e. 7 3 7 3

Question 25
Not yet answered

Marked out of
1.00

Which of these packages contain all the collection classes?

Select one:
a. java.lang

b. java.net

c. java.util

d. java.awt

e. java.io

LXIII

Question 26
Not yet answered

Marked out of
1.00

What will be the output?

public class TestException {

public static void main(String[] args) {

try {

int k = 7;

int a = 0;

int no = k/a;

} catch (NullPointerException e1) {

System.out.print("n");

} catch (RuntimeException e2) {

System.out.print("r");

} finally {

System.out.print("f");

}

 }

}

Select one:
fn

rf

nf

f

nrf

Question 27
Not yet answered

Marked out of
1.00

Question 28
Not yet answered

Marked out of
1.00

Platform independent code file created from Source file is
understandable by

Select one:
a. Java compiler

b. JVM

c. JDK

d. SDK

e. JRE

What is true about abstract classes

Select one or more:

a. There are no restrictions in the return type of abstract methods

b. Abstract classes can inherit from another abstract class

c. Abstract class can have variables which are static constant (final) variables

d. Abstract methods can be defined in a normal class

e. Abstract classes and interfaces are identical

LXIV

Question 29
Not yet answered

Marked out of
1.00

Question 30
Not yet answered

Marked out of
1.00

Which of the following are wrapper classes

Select one or more:
a. Object

b. String

c. Number

d. Integer

e. Double

Which one of these is NOT a wrapper class in Java

Select one:
a. Boolean

b. double

c. Integer

d. Float

e. Character

LXV

	title page
	PhD_PT_2021_020_Thesis-Modified after examiner comments-print
	delcarion - updated
	Merged latest with page numbers - with bullet points - merged ref
	Appendix 4 onwards
	IF_ Attempt review
	switch_ Attempt review
	For_ Attempt review
	while_ Attempt review
	nested for_ Attempt review
	nested while_ Attempt review
	aptitude test

