

Game-based
E-Learning Platform

T. N. DODANGODA
2023

Page 2 of 133

Game-based E-Learning
Platform

A dissertation submitted for the Degree of Master of

Information Technology

T. N. DODANGODA
University of Colombo School of Computing

2023

Page 3 of 133

Declaration
The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge, it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: T. N. Dodangoda

Registration Number: 2018/MIT/016

Index Number: 18550166

Signature

Date

This is to certify that this thesis is based on the work of Mr. T. N. Dodangoda under my

supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by: Dr. M. I. E. Wickramasinghe

Supervisor Name: Dr. M. I. E. Wickramasinghe

Signature

Date

Thisura Dodangoda
2023-02-12

Page 4 of 133

Abstract
The game-based e-learning platform (codenamed, EDGE) is a system to build and manage

game-based learning experiences. It is a web-based system employing the client-server

architecture and uses technologies from the JavaScript stack. The system can be used by game

creators, school academic staff, students and their parents. It provides a flexible template-based

game development environment, ability to host and join game play sessions, user management

and performance reporting capabilities.

Through the use of modern Agile methodologies and tools such as Feature Driven

Development and Jira, the EDGE system was developed iteratively to address a critical

problem prevailing in the current Sri Lankan education system: not incorporating modern

teaching techniques in school education systems.

Existing systems in game-based and online learning were studied to build a solid understanding

of requirements for this project. Several technical and architectural design approaches were

evaluated by weighing their pros and cons. Afterwards, the candidate designs were

implemented using modern technologies such as Angular, Node & Express, Socket.IO, HTML

canvas and Docker containers. Finally, the system was extensively tested using a variety of

methods such as exploratory testing, validation & verification and unit testing with the Jasmine

and Karma frameworks.

The final solution is a system that has all the basic tools for building, managing and

experiencing game-based learning right from a user’s web browser. Whilst there were many

hurdles to overcome due to the system’s scale and complexity, the EDGE system proves that a

platform of this nature can address present-day issues in delivering education content.

Page 5 of 133

Acknowledgements
My heartiest gratitude to everyone who supported to achieve the completion of this Master’s

Thesis project. I would like to thank my supervisor, Dr. M. I. E. Wickramasinghe for his

continuous guidance and feedback to shape the project into its current standing. I would also

extend my gratitude to Dr. (Ms.) K. H. E. L. W. Hettiarachchi who supervised my initial

attempt and provided invaluable feedback.

I would also like to thank the academic staff of University of Colombo School of Computing

for their support, specially throughout the days of the 2020 / 2021 Coronavirus pandemic. I

would also like to acknowledge the global community of developers who work passionately to

create many of the open-source projects used by web systems such as EDGE.

Finally, my gratitude extends to my friends and family who supported me throughout hardships

of the past two years to achieve the completion of this project.

Page 6 of 133

Table of Contents

Declaration .. 3
Abstract .. 4
Acknowledgements .. 5
Table of Contents ... 6
List of Figures .. 9
List of Tables .. 12
List of Abbreviations ... 13
Chapter 1 - Introduction .. 14

1.1. Background and Motivation .. 14
1.2. Objectives .. 15
1.3. Dissertation Structure... 16

Chapter 2 - Background .. 17
2.1. Similar Systems Review .. 17

2.1.1. Game-based Learning Software ... 18
2.1.2. E-Learning Software .. 29
2.1.3. Two-dimensional Game Development Systems .. 34
2.1.4. Related Technologies ... 38
2.1.5. Related Design Strategies .. 40

2.2. Use-case Diagram .. 42
2.2.1. Key Concepts ... 43

2.3. Requirement Specification ... 44
2.3.1. Functional Requirement Specification ... 44
2.3.2. Non-functional Requirements .. 48

Chapter 3 - Design .. 49
3.1. System Architecture ... 50
3.2. Designing the Game Editor .. 51
3.3. Dual Storage Engine Approach ... 52
3.4. Main Classes of the System ... 53

3.4.1. User Class Cluster .. 53
3.4.2. Game Sessions Class Cluster ... 54

3.5. Main Flows of the System ... 55
3.5.1. User Login and Registration .. 55
3.5.2. Game and Game Template Creation .. 56

3.6. Main Interfaces .. 58
3.6.1. Landing Page ... 58
3.6.2. Teacher Dashboard .. 59

Page 7 of 133

3.6.3. Gameplay Window .. 60
Chapter 4 - Implementation .. 61

4.1. Development Process ... 61
4.2. Technology Stack... 62
4.3. Development Setup .. 63
4.4. Relational Schema ... 65
4.5. Interfaces and Code Structures .. 66

4.5.1. Group Invite System .. 66
4.5.2. Game Editor ... 68
4.5.3. Performance Reports .. 74

Chapter 5 - Testing and Evaluation .. 77
5.1. Test Documentation ... 78

5.1.1. ‘Test’ Issue Types .. 78
5.1.2. ‘Bug’ Issue Types .. 79
5.1.3. Jira Workflows ... 80
5.1.4. Jira Workflow Scheme ... 81

5.2. Testing Strategy ... 82
5.2.1. Requirements Verification ... 82
5.2.2. Development Testing ... 83
5.2.3. User Testing ... 84
5.2.4. Automated Testing Tools ... 85
5.2.5. Manual Testing Methods ... 86

5.3. Test Cases .. 88
5.3.1. Exploratory Testing ... 88
5.3.2. Backend Unit Testing .. 91
5.3.3. Angular UI Testing .. 96

5.4. Test Result Summary ... 98
5.5. Requirements Verification ... 99

5.5.1. Requirements Verification Summary .. 99
5.5.2. Requirement Verification Breakdown ... 100

5.6. User Testing ... 102
5.6.1. Finalized User Roles .. 103
5.6.2. Informal User Feedback ... 103
5.6.3. Online Survey .. 106
5.6.4. Survey Results ... 107

Chapter 6 - Conclusion ... 112
6.1. Retrospective.. 112
6.2. Future Work ... 113

References .. 114

Page 8 of 133

Appendix A – Prodigy System Teacher Reports .. 118
Appendix B – Oodlu Platform Student Analytics .. 119
Appendix C – System Requirement Specification ... 120

C.1. Game Editor Requirements .. 120
C.2. Game Play Requirements ... 121
C.3. Game Sessions Requirements .. 122
C.4. Groups Requirements ... 123
C.5. Performance Reports Requirements ... 124
C.6. Dashboard Requirements ... 125
C.7. User Requirements ... 126

Appendix D – Group Members Test Script .. 127
Appendix E – Online Survey Results... 131

Page 9 of 133

List of Figures
Figure 2.1 - Prodigy mathematics game battle screen ... 18

Figure 2.2 - Prodigy mathematics popup question screen ... 19

Figure 2.3 - Prodigy mathematics skills upgrade screen ... 19

Figure 2.4 - Oodlu platform teacher dashboard ... 21

Figure 2.5 - Oodlu platform game screen .. 21

Figure 2.6 - Oodlu platform question screen ... 21

Figure 2.7 - Jumpstart math blaster game play .. 23

Figure 2.8 - Jumpstart math blaster boss fight screen .. 23

Figure 2.9 - Educandy word search activity game ... 24

Figure 2.10 - Educandy dashboard my activities section .. 24

Figure 2.11 - Four types of blocks in Kahoot .. 26

Figure 2.12 - Kahoot classroom gameplay .. 26

Figure 2.13 - Kahoot game editor .. 27

Figure 2.14 - PhET projectile motion simulation startup screen ... 30

Figure 2.15 - PhET projectile motion simulation game play ... 30

Figure 2.16 - BuildBox main user interface... 34

Figure 2.17 - BuildBox node editor ... 35

Figure 2.18 - CT.JS visual game editor interface .. 36

Figure 2.19 – Conceptual layered architecture of the backend components 41

Figure 2.20 - Conceptual layered architecture of the frontend components 41

Figure 2.21 - Top-level UML use case diagram .. 42

Figure 2.22 - UML component diagram for high-level features ... 44

Figure 3.1 - High-level system architecture diagram... 50

Figure 3.2 - Main activities of the game editor component ... 51

Figure 3.3 - Prototype game project object .. 52

Figure 3.4 - User class cluster diagram .. 53

Figure 3.5 - Game session class cluster diagram ... 54

Figure 3.6 - User invite link join processes activity diagram .. 55

Figure 3.7 - Game and game template creation sequence diagram ... 57

Figure 3.8 - Game-based e-learning platform landing page design ... 58

Figure 3.9 - EDGE system teacher dashboard page design ... 59

Figure 3.10 - Game play window design ... 60

Page 10 of 133

Figure 4.1 - Customized FDD development process ... 61

Figure 4.2 - Implementation technology stack .. 62

Figure 4.3 - Development setup folder structure ... 63

Figure 4.4 - Docker Desktop managing the MySQL and Mongo containers for the system .. 64

Figure 4.5 - Designer view of the EDGE system's relational database 65

Figure 4.6 - Copy invitation link option in the group overview page..................................... 66

Figure 4.7 - Code structure for creating the group invite link ... 67

Figure 4.8 - Join group from invite link page .. 67

Figure 4.9 - Game editor page overview section ... 68

Figure 4.10 - Game editor page resources section ... 69

Figure 4.11 - Multer library file upload configuration .. 70

Figure 4.12 - Game editor page levels section ... 70

Figure 4.13 - Game editor level scene editor page .. 71

Figure 4.14 - Game editor level properties editor page ... 72

Figure 4.15 - Game editor level script editor page .. 73

Figure 4.16 - JavaScript interop library code... 73

Figure 4.17 - Available report types in the group page's reports section 74

Figure 4.18 - Database schema for tracking game objective progress data 75

Figure 4.19 - User objective report with graph and tabular presentation 75

Figure 4.20 - Backend code for processing user objective progress graph data 76

Figure 5.1 - Jira issue types used to document tests .. 78

Figure 5.2 - Jira workflow for Test issue types ... 80

Figure 5.3 - Jira workflow for Bug issue types .. 81

Figure 5.4 - Jira project workflow scheme .. 81

Figure 5.5 - Requirements verification process diagram ... 82

Figure 5.6 - Development testing process.. 83

Figure 5.7 - Jasmine test scripts in the Angular sub project .. 85

Figure 5.8 - Game editor page of the EDGE system ... 88

Figure 5.9 - Jira ticket documenting a game canvas exploratory test 89

Figure 5.10 - Jira bug ticket related to the game canvas camera bounding box 90

Figure 5.11 - Backend unit test helper code .. 91

Figure 5.12 - Overview of the group members DAO test.. 92

Figure 5.13 - Group members page showing user associations ... 93

Figure 5.14 - Jira ticket related to the group members unit test .. 94

Page 11 of 133

Figure 5.15 - Group members DAO response highlighting incorrect fields............................ 95

Figure 5.16 - Final state of the Jira ticket for the group members test 95

Figure 5.17 - Terminal output of the group members unit test after correction 95

Figure 5.18 - Code snippet for setting up the Angular UI test for the game resources page ... 96

Figure 5.19 - Jira ticket for the game resources UI test ... 97

Figure 5.20 - Karma UI test results for the UI tests ... 97

Figure 5.21 - post evaluation survey form preview ... 107

Figure A.1 - Prodigy mathematics game teacher reports ... 118

Figure B.1 - Oodlu platform analytics screen .. 119

Figure E.1 - Online survey responses for system impression .. 131

Figure E.2 - Online survey responses for system usability .. 131

Figure E.3 - Online survey responses for system performance ... 132

Figure E.4 - Online survey response for future expansion .. 132

Figure E.5 - Online survey responses for feature set ... 133

Page 12 of 133

List of Tables
Table 2.1 - JavaScript frameworks summary .. 39

Table 5.1 - Automated testing tools ... 86

Table 5.2 - Manual testing software .. 87

Table 5.3 - Test result summary table .. 98

Table 5.4 - Requirements verification summary table ... 99

Table 5.5 - Unfulfilled game editor requirements ... 100

Table 5.6 - Unfulfilled game play requirements .. 100

Table 5.7 - Unfulfilled game session requirements ... 100

Table 5.8 - Unfulfilled groups feature requirements ... 101

Table 5.9 - Unfulfilled performance report requirements .. 101

Table 5.10 - Unfulfilled dashboard feature requirements .. 101

Table 5.11 - User testing action plan ... 102

Table 5.12 - User testing volunteer user roles ... 103

Table 5.13 - Informal feedback collected during user testing ... 105

Table 5.14 - User testing online survey questions ... 106

Table 5.15 - Survey responses for system impression ... 108

Table 5.16 - Survey responses for system usability ... 109

Table 5.17 - Survey responses for system performance .. 109

Table 5.18 - Survey responses for system feature set .. 110

Table 5.19 - Survey responses for future expansion .. 111

Table C.1 - Project game editor requirements ... 120

Table C.2 - Project game play requirements .. 121

Table C.3 - Project game sessions requirements ... 122

Table C.4 - Project groups requirements ... 123

Table C.5 - Project performance reports requirements .. 124

Table C.6 - Project dashboard requirements .. 125

Table C.7 - Project user requirements.. 126

Page 13 of 133

List of Abbreviations

MEAN - Mongo, Express, Angular, & Node (technology stack)

FDD - Feature Driven Development

STEM - Science, Technology, Engineering & Mathematics (areas of study)

LMS - Learning Management Software

PhET - Physics Education Technology

UI - User Interface

DOM - Document Object Model

MVC - Model-View-Controller architecture

MVVM - Model-View-View model architecture

MVP - Model-View-Presenter architecture

UML - Unified Modeling Language

AES - Advanced Encryption Standard

CBC - Cipher Block Chaining

PII - Personally Identifiable Information

JSON - JavaScript Object Notation

DAO - Data Access Object

Page 14 of 133

Chapter 1 - Introduction

1.1. Background and Motivation
‘Game based learning’ describes the act of conducting pedagogical work with a game or game

mechanic as the core educational tool (BERG, 2015). With the widespread adoption of web

and mobile technologies in recent years many products have emerged catering game-based

learning experiences to the global market (Kapuler, 2020). However, it is yet to be introduced

into the Sri Lankan education system.

The Sri Lankan school curriculum focus on general science and mathematics during early

secondary school grades (eduLanka, n.d.). Fundamental understanding of these subjects helps

students pursue careers in STEM fields later in life.

Even with a clearcut requirement for game-based teaching/learning methods within the Sri

Lankan school curriculum, students are still forced to follow traditional methods. The effective

evaluation of students’ knowledge is further hindered due to political, economic and social

factors. The absence of suitable tools as well as incompatibility, cost and complexity of existing

tools contribute to the delayed adoption of new learning methods.

Education providers have not identified the severity of this problem, and as a result does not

attempt to restructure their teaching methods to address the learning needs of young students.

Attempting to solve this problem I propose combining game-based learning and e-learning

concepts to create a tailor-made solution, for students in early secondary school grades and

their education providers; a ‘Game-based E-Learning Platform’ to create, play and manage

game-based learning experiences.

Page 15 of 133

The proposed platform is a web application that contains pre-made, customizable game

templates. Education providers choose a game template, customize it and host game-sessions

in their virtual classrooms managed inside the platform. Students join these sessions and

engage in game-based learning experiences. Game progress is automatically tracked and used

to generate detailed reports to all parties in the classroom, including parents.

1.2. Objectives
The main goal of this project is to develop a hosted web application that is able to create, play

and manage game-based e-learning experiences. Additionally, the project should further

achieve the following objectives.

• Develop (at least) five game templates.

• Develop a fully playable game-based learning experience using the developed system.

• Host the final version of the system on a public server.

• Host a gaming session with real users and a game developed using the system.

• Generate reports from a real gaming session.

Page 16 of 133

1.3. Dissertation Structure
• Abstract

Concise abstract of the entire project.

• Acknowledgements

Acknowledging people and factors which contributed to the project’s success.

• Introduction

Establishes the foundation for the project and its requirements. The overview of the

project, its objectives and dissertation structure are discussed.

• Background

A detailed review about existing systems, design principles and alternative approaches

are documented. Further, the system requirement is specified.

• Design documents

Important design decisions are discussed and interface prototypes of the system are

attached in this chapter.

• Implementation details

Documents the implementation process, technologies used and code examples of the

system are presented in this chapter.

• Testing & evaluation

The evaluation processes used are documented in this chapter along with test result

reports.

• Conclusion

A retrospective on the planning, key decisions and final outcome of the project is

reported in this final chapter.

Page 17 of 133

Chapter 2 - Background
This chapter discusses in-depth the state-of-the-art in game-based learning and e-learning

systems. It later provides an overview of the new system’s main entities by using both formal

diagrams and text descriptions. Finally, the high-level requirements of the system are defined.

2.1. Similar Systems Review
In order to understand the functionalities, shortcomings and notable aspects of the vast array

of different existing systems, the similar systems review was carried out in three main

categories:

1. Game-based learning software

2. E-learning software

3. 2-D game development software

Page 18 of 133

2.1.1. Game-based Learning Software

2.1.1.1. Prodigy Mathematics Games

Prodigy (Prodigy Education Inc, n.d.) is a comprehensive suite of turn-based mathematics and

English games. Initially, teachers must define a set of learning objectives and the subject topic.

The system will then select challenges from a pool of template questions best suited for each

learning outcome and present them as games to the user.

The turn-based game mechanic is shown in Figure 2.1 below. The left and right characters are

controlled by the student and computer respectively. In each round, the student is presented

with a question as shown in Figure 2.2. Incorrect answers are not accepted, and instead a hint

is displayed. Upon entering the correct answer, the student gets to inflict damage to the

opponent. Afterwards the computer-controlled character gets a turn, and then the round repeats

until one player loses.

Figure 2.1 - Prodigy mathematics game battle screen

Page 19 of 133

Figure 2.2 - Prodigy mathematics popup question screen

The main progression mechanic of the game is to spend ‘skill points’. Skill points are acquired

after completing tasks or special move combinations. Spending points increase a player’s

abilities. The interface related to this section is shown in Figure 2.3

Figure 2.3 - Prodigy mathematics skills upgrade screen

Page 20 of 133

Notable features of the Prodigy system are listed below.

• Supports only mathematics curriculums from grades 1 through 8.

• Primary game mechanic is ‘magic spells’ acquired by the user by winning challenges.

• Teachers are provided with a dashboard to inspect student progress.

• Teachers have access to comprehensive reports (Appendix A).

• Students can be manually added via a ‘class code’.

• Teachers can configure student placement tests. This allows the Prodigy system to cater

challenge difficulty according to the student’s skill level.

Limitations of the Prodigy system are as follows.

• Game worlds allow students to interact with each other in real time. However, the

combat system only allows two players at once.

• Game content is not customizable.

• External party is responsible for the randomly picked pool of questions.

• Does not facilitate any form of communication within the platform.

Page 21 of 133

2.1.1.2. Oodlu Educational Games

Oodlu is a platform which lets teachers create game-based learning sessions where questions

are interspersed with mini games. Oodlu is recognized as having a proven approach to game-

based learning (Oodlü Ltd., n.d.).

With the Oodlu platform, teachers can create games, manage groups of students and view

student progress (as seen in Figure 2.4). Teachers are able to select several types of games, and

an example type of game is shown in Figure 2.5. Educational questions are shown in an

intermittent manner during gameplay. An example multiple choice question is shown in Figure

2.6.

Figure 2.4 - Oodlu platform teacher dashboard

Figure 2.5 - Oodlu platform game screen Figure 2.6 - Oodlu platform question screen

Page 22 of 133

Notable aspects of the Oodlu platform are mentioned below.

• Students are given a small window of time to play a game as a reward for correctly

answering a question. The game is pre-defined for a quiz session by the teacher.

• Number of hints displayed when incorrect answers are given can be configured.

• Provides in-depth analytics about student performance (refer Appendix B).

Shortcomings of the platform are mentioned below.

• The games are not customizable, only the questions displayed between game play

sessions can be changed.

• Games are not related to any educational content. Instead, they are stimuli to engage

the student into answering more questions. The two approaches seem contradictory.

• No communications channels built into the platform.

Page 23 of 133

2.1.1.3. Jumpstart Math Blaster HyperBlast 2

Jumpstart Math Blaster (JumpStart, n.d.) is a modern 3D game designed to be played on mobile

devices and targeted for users older than six years. The game incorporates mathematics

challenges in between gameplay sessions similar to Oodlu. However, unlike Oodlu the

challenges and gameplay occur in tandem, and not jarringly different screens.

Math blaster is a three-dimensional ‘space shooter’ game (Figure 2.7). At the end of each level

a character appears, presenting questions for the user as shown in Figure 2.8. The user must

correctly answer in a separate prompt within the given time limit, in order to progress.

Figure 2.7 - Jumpstart math blaster game play Figure 2.8 - Jumpstart math blaster boss fight screen

The notable difference of this software in comparison to others, is the use of three-dimensional

graphics and touch-based input. It is an example of blending the learning and game-play aspects

harmoniously, rather than having the two different types of screens.

One of the main disadvantages of this system is that it’s focused entirely around casual game

play. While it still tries to provide educational content, the content cannot be controlled by an

education provider. Further, the game play is slightly addictive. The sudden change of pace at

the end of the level may be perceived as a disturbance by the user.

Page 24 of 133

2.1.1.4. Educandy

Educandy (Educandy, n.d.) is a website allowing teachers to create interactive learning

activities. Similar to Prodigy and Oodlu, users are presented with a set of game templates. The

questions for each template must be filled in by the user – typically an education provider.

Afterwards, the platform shuffles the questions for each game.

Each game template belongs to one of the three activity types; word search, picture match up

or quizzes. An example of a word search game is shown in Figure 2.9. The dashboard provided

for managing games is shown in Figure 2.10.

Figure 2.9 - Educandy word search activity game

Figure 2.10 - Educandy dashboard my activities section

Page 25 of 133

Notable features of the Educandy platform are mentioned below.

• Ability to play the games as a classroom activity or individual student activity.

• Export and import question data across games of the same activity type.

• Sharing games using 4-digit codes or links.

• Certain games can be played in two-player mode or against the computer.

In contrast to other systems, the Educandy platform has the following limitations.

• Does not facilitate performance reports.

• Number of game activities are limited and non-extensible by the teacher.

• Games are much more suited for testing associative knowledge rather than critical

thinking. This is limited by the degree of interaction permitted.

Page 26 of 133

2.1.1.5. Kahoot

Kahoot (Kahoot! Corporation, n.d.) is a quiz-based game platform that can be used in school

or work environments, as well as in casual settings. Within the Kahoot platform, ‘a Kahoot’ is

a term used to describe a single game. For example, a math Kahoot.

Similar to Oodlu and Educandy, users can input the questions for the type of game they wish

to make. The system shuffles the questions, and presents them to the user. A notable distinction

here is that users are never allowed to provide answers as raw input (such as via keyboard).

Answering is done by selecting or re-ordering four types of blocks shown in Figure 2.11.

Figure 2.11 - Four types of blocks in Kahoot

Kahoot both encourages and supports multi-player interactions. For example, Kahoot allows

its users to publish the created games to be used by others. If a teacher wants to use an existing

game but need to customize the content to suit their students better, Kahoot allows the teacher

to “clone” the existing games.

Game play in Kahoot differ from other systems. Students and teachers play Kahoots in

classrooms (hosted sessions). As shown in Figure 2.12 the teacher’s screen (right) displays the

questions and answers and the student’s personal device (left) shows only the answers.

Figure 2.12 - Kahoot classroom gameplay

Page 27 of 133

If a student wants to play a game in a self-paced manner, the system will display both the

question and the answers on their device. Multiplayer aspects do not apply in this scenario.

Kahoot questions have a time limit. After the timer runs out, the teacher’s screen shows the

overall answers for the question. The student’s screen shows the correct answer as well as their

score. Kahoot also provides well integrated multiplayer gaming and seamless synchronization.

The editor (shown in Figure 2.13) allows users to create new games. It also lets users to

duplicate existing Kahoots.

Figure 2.13 - Kahoot game editor

Since Kahoot games can be easily shared and discovered through the platform itself, education

providers can re-use content. This provides much freedom for education providers to create

and share game-based learning content without investing significant effort. However, there are

a few limitations of the Kahoot system as mentioned below.

• Many of the advanced Kahoot features are only available in the paid version.

• The paid version does not have a wide range of game templates (limited to seven at the

time of writing).

• Complex teacher training is required be used effectively in classroom environments, in

contrast to platforms such as Oodlu and JumpStart games which have a clear user flow.

• The platform design assumes schools (as well as users) have access to the necessary

infrastructure (networking, devices, uninterrupted power).

Page 28 of 133

2.1.1.6. Conclusion

The study of existing game-based learning systems has provided great insight into the previous

accomplishments in a global context. These systems can be categorized based on their mode

of teaching as follows.

• Autonomous (self-directed) learning

• Supervised (teacher-directed) learning systems

Autonomous learning systems does not involve the role of a ‘supervisor’ in the learning

process. Prompts and natural organization of the system’s interface guides the user. Further, all

the educational content required for the learning process is bundled with the system.

In contrast, supervised learning software require a supervisor (in many cases, a teacher) to host

the learning session. They would setup the necessary questions, rewards and constraints for

each session. They might also be responsible for setting up the user accounts for students.

Students interact with supervisors fulfil the learning objectives of the session.

The EDGE system can be categorized as a supervised learning system, since it bears similarity

to existing systems such as Kahoot.

Page 29 of 133

2.1.2. E-Learning Software
Learning software not involving gamification can be considered e-learning software. For

example, Learning Management Systems (LMSs). However, personal tools and social software

such as grade tracking, and classroom chat/video conferencing systems can also be considered

as e-learning systems (Dalsgaard, n.d.).

Studying existing e-learning software helps to understand the common baseline features, what

areas can be improved and how non-gamified e-learning systems achieve their goals.

2.1.2.1. PhET Interactive Simulations

Physics Education Technology (PhET) provides interactive simulations for physics

experiments. A notable aspect is that the system was created by Nobel laureate Carl Wieman

and supported by the University of Colorado. PhET simulations are proven to be practical and

effective (Astutik & Prahani, 2018).

Even though the initial goal of the project website (University of Colorado, n.d.) was to create

physics simulations, at present users can access content for chemistry, mathematics, earth

science, biology and many more subjects. The simulations can be accessed through any modern

web browser. They can also be downloaded or embedded as raw HTML code in a third party’s

website.

Figure 2.14 shows the startup screen for a projectile motion simulation. Figure 2.15 shows the

simulation in action. There are no obvious text blocks or message prompts. Users can

experiment and learn through observing the outcomes of the simulation parameters.

Page 30 of 133

Figure 2.14 - PhET projectile motion simulation startup

screen
Figure 2.15 - PhET projectile motion simulation game play

Notable aspects of this system are as follows.

• Learning content is peer reviewed and published by a reputable institute.

• Content is not distributed as-is, and assumes user is capable of setting up the simulation.

• Content can be freely distributed by users and other education providers.

• Physics simulations are performed with real mathematical models.

Limitations of this system are as follows.

• Content cannot be customized. Even though the simulation is distributed as a simple

web page, the logic is obfuscated in JavaScript code.

• Promotes self-directed learning or learning through demonstration. Does not contribute

a guided interactive game-based learning approach.

Page 31 of 133

2.1.2.2. Google Classrooms

Google Classrooms is a suite of tools designed to promote collaboration between students and

teachers. It is a learning management system, and allows education providers to share course

material as well as conduct assignments (Martínez-Monés, et al., 2017).

Google Classrooms is one of the few solutions that provide real-time communications out of

the box. This is in part due to Google G-Suite services such as Google Hangouts and Google

Meet being integrated into Google Classroom.

Notable features of this system are mentioned below.

• Streamlined user interface.

• Strong privacy protection settings.

• Presence of a class updates dashboard (named ‘Class Stream’) where students and

teachers can see and share casual information.

• Students can obtain ‘originality reports’ on their coursework before handing over to

teachers. Google Classrooms will automatically compare the content uploaded by the

student to identify uncited content and unintentional plagiarism (Google, n.d.).

A few disadvantages of Google Classrooms (in terms of an LMS) are listed below.

• Parents are not considered a first party within Google Classrooms. They are not allowed

to engage or see the interactions between their children and teachers. Parents are only

allowed to receive announcements and notification about specific activities.

• The platform only supports manual grading of students’ pedagogical work. For

example, student reports must be graded by teachers manually after student submission.

• Not suited for organization-wide usage (for example, throughout a school). Even

though it is argued previously that this type of software is used primarily for

administrative purposes, users who wish to invest in Google Classrooms may expect it

to replace their existing LMS system.

Page 32 of 133

2.1.2.3. Moodle Learning Management System

Moodle is a popular learning management system choice due to its open-source nature, easy

implementation and extensive customizability. It is reported that Moodle was being used

frequently even as early as 2013 (Cavus & Zabadi, 2014). Notable features implemented in the

Moodle LMS are as follows.

• Real-time chat within a Moodle course.

• Internal organization hosted e-mail support exists in Moodle since it implements its

own mail service without the need for setting up mail servers.

• Video conferencing support is built in. Moodle itself does not support video

conferencing as a feature but supports third party integrations with services such as

Zoom, Skype, BlindSideNetworks, etc.

• Extensive community support is present.

Along with a great feature set, implementing Moodle still presents a few drawbacks.

• Moodle’s extensive feature set means that it is useful only when paired with a technical

team that understands how to use the system to its full potential.

• The Moodle LMS is open-source software. If an organization chooses to host it

themselves the organization has to bear its risks.

• Minor usability issues exist. As per a discussion on the Moodle user forum (Anon.,

n.d.), Moodle has minor usability issues since it is developed as an open-source project.

This is in comparison with services such as Google Classrooms which are considered

more ‘polished’.

Page 33 of 133

2.1.2.4. Conclusion

Software other than LMS solutions may be limited to simulation and demonstration software.

This is due the integration of gamification in to an e-learning platform, categorizes it under

game-based learning software instead.

Besides simulation software, LMSs do not provide varying functionalities or product offerings.

Instead, many existing solutions provide overlapping features with varying degrees of

usefulness. Concluding the study, it is now possible to answer the following questions.

• What features do e-learning software have in common?

The ability to manage and administer learning activities is common to most LMS software. For

example, features such as managing students in an organization, providing online course

material and assignments, creating performance reports, organizing video conferences,

conducting discussion forums, etc. With regards to simulation type software, the ability to

change parameters and re-test outcomes is present.

• What areas can be improved in e-learning software?

In LMS software, the approach to implementing the solution can be improved. Instead of

providing user-hosted solutions, the solutions can be provided as a cloud-hosted solution.

Maintaining access to low-level modifications in the instance can also be provided, even

though it is managed by the cloud provider. With regards to simulation software, it would be

beneficial for students to persist their experiments and outcomes instead of performing them in

a one-off manner. For example, a platform where students are able to examine and compare

their history of different experiments would be valuable.

Page 34 of 133

2.1.3. Two-dimensional Game Development Systems
The EDGE system requires the implementation of game-development components. Under the

similar game-based learning software systems study, it was concluded that currently existing

solutions provide little to no support for comprehensive editing of gaming content. Therefore,

this section expands on features of comprehensive two-dimensional game editors.

2.1.3.1. BuildBox

BuildBox is a prototype-oriented game development software package. It provides a set of tools

to define game logic, create sound & graphic assets, add animations and edit levels. BuildBox

runs as a standalone application. Games created with BuildBox can be published on mobile

and desktop platforms. This is because the underlying technology uses a proprietary JavaScript

game engine. The platform also allows creators to monetize their games. Figure 2.16 shows

the main interface of the BuildBox application.

Figure 2.16 - BuildBox main user interface

Page 35 of 133

Adding logic to the game world entities is done through a separate screen named, ‘Asset

Nodes’. Similar to other node systems (such as the one found in Blender (Blender Foundation,

n.d.)), inputs and outputs are connected between different nodes. The nodes define aspects such

as movement constraints, collisions, logic and animation triggers. A screenshot of this node

editor is shown in Figure 2.17 below.

Figure 2.17 - BuildBox node editor

Node editors cause complex workflows according to my own personal experience. However,

since BuildBox only shows the nodes that apply to a specific asset, sufficient simplicity can be

maintained. Other notable aspects of BuildBox are mentioned below.

• The node-based editor covers almost all combinations of actions that can be performed

by hand-written code.

• 2D and 3D editing capabilities are present.

• BuildBox bundles pre-made game assets so users can get started quickly.

• Monetization through ad platforms (BuildBox, n.d.) and in-app purchasing is made

simple.

• Allows non-coders or small teams to iteratively create well designed games.

Page 36 of 133

There are a few limitations of the BuildBox platform. These are listed below.

• Even though BuildBox is a complete package for non-coders, it is not a replacement

for complex game development systems. It is targeted at an audience who are beginners

wanting to create games, fast.

• The tool requires a high-performance host machine to be responsive.

• Stability issues when running the BuildBox application for long periods of time (Anon.,

n.d.) (Anon., n.d.).

• BuildBox lacks support for custom plugins and addons.

2.1.3.2. CT.JS

CT.JS is an open source 2D game editor built to be used in web browsers (Gorynych, n.d.). It

is extendable, well documented and contains common features that are used in two-dimensional

games. A screenshot of its interface is shown in Figure 2.18 below.

Figure 2.18 - CT.JS visual game editor interface

Page 37 of 133

Unlike BuildBox, it is not a complete solution that aims to be used as a standalone software.

Instead, it is an extensible component for creating games. It contains a visual editor, script

editor and several other useful features. Whereas in no-code solutions all logic-based

programming happens through nodes, CT.JS encourages the use of code to create the game. A

few of the notable aspects of CT.JS are mentioned below.

• Highly customizable through third party plugins.

• Fully open-source project code.

• Sprite editor supports tiled sprites to create landscapes.

• Games built with CT.JS are standalone JavaScript applications.

The following are limitations of the CT.JS system.

• Has a learning curve as it uses its own game editor user interface conventions.

• Feature set is fairly limited (but extensible).

• Since it is an open-source project, the system does not guarantee any continued support

or bug-free feature updates.

• It may be a risk for a user to invest in this type of open-source projects (Giera, 2014)

2.1.3.3. Conclusion

Through the study of the aforementioned existing systems, I was able to understand the

complexity involved in designing a game development system. While it is possible to invent

new methods to design games, it is important to understand the constructs already in place by

leading projects in the industry of two-dimensional game development. I believe the

appropriate contextual information was obtained through this study.

Page 38 of 133

2.1.4. Related Technologies

2.1.4.1. Data Persistence

This project has two implicit requirements for types of data persistence:

• High-performance storage for real-time data processing (fast access rate)

• Reliable storage for on-demand data (at a slower access rate)

The two most popular database paradigms were considered for addressing these requirements.

They are relational databases and NoSQL databases. While relational databases ensure proper

organization of data at the cost of noticeable performance overhead (Davoudian, et al., 2018),

NoSQL databases offer the opposite value proposition.

While most NoSQL databases store data in volatile memory, some products store data in non-

volatile (disk) storage. For example, popular key-value storage technologies such as Redis and

LevelDB store in memory while being accessed (Redis.IO, n.d.) (LevelDB, n.d.). In

comparison, technologies such as, RocksDB and LMDB store data mostly in secondary

storage. They flush in-memory data to persistent disk storage frequently (RocksDB, n.d.)

(LMDB, n.d.).

2.1.4.2. JavaScript Frameworks

JavaScript is one of the most commonly used languages in the Asia and United States regions

(StackOverflow, 2020). For this project, it plays a vital role as the entire system was developed

using the TypeScript language, the successor to the existing JavaScript language. The

following frameworks were reviewed with the goal of understanding potential application in

this project.

• Phaser game development framework

• Node JavaScript runtime

• React.JS frontend framework

• Angular frontend framework

Page 39 of 133

The aforementioned frameworks have flourished into complex, mature development

components since their inception. It is not feasible to provide in-depth reviews of each, and

thus a summary with categorical information is shown in Table 2.1 below.

Framework Applicable Labels Summary

Phaser Game

development,

Graphics

Phaser is a fully featured JavaScript game development framework

capable of creating HTML5 games. It provides features such as

physics simulation, path finding AI, WebGL shaders, audio handling,

animation and much more. Phaser works best in web browsers that

support WebGL, the standard JavaScript API for rendering graphics

(Khronos, n.d.).

Node JS Runtime, Server

environment

JavaScript requires a language runtime to execute. In web browsers the

runtime is built-in by its vendor. For example, in the case of Google

Chrome, it uses a system known as V8 (Google LLC, n.d.).

Node is a re-write of this system to allow JS to be used outside of the

browser. It is a strong candidate to be used in this project as it integrates

well with existing JavaScript tools, projects & frameworks.

React.JS Frontend React.JS extends the browser Document Object Model (DOM)

manipulation capabilities of JavaScript by providing a ‘Virtual Dom’

(Aggarwal, 2018). The idea behind the framework (developed by

social network giant – Facebook), is a coding paradigm for plain

JavaScript, that makes it easy for developers to handle interactions

between logical UI components.

Angular Frontend Angular is a web application framework that uses the TypeScript

programming language to build single-page mobile and web apps. This

type of application framework is similar to the React.JS framework but

provides much more built-in functionality.

Table 2.1 - JavaScript frameworks summary

Page 40 of 133

2.1.5. Related Design Strategies
Design strategies that best suit the type and scope of the proposed project are discussed in this

section. The term ‘design strategies’ refer to the design of the system architecture, deployment

architecture and general design of the flow and interfaces of the system.

2.1.5.1. Design Patterns

Organized things are easier to understand and explain (LeFever, n.d.). The applicability of

MVC, MVVM and Model-View-Presenter (MVP) patterns to this project was evaluated, based

on their compatibility with design technologies.

In frameworks such as Node and React, there is no enforcement to select a design pattern.

However, in the case of technologies such as .NET or Angular, MVC is strictly enforced. For

the purposes of this project, I have chosen to adopt MVVM as the design pattern based on the

following rationale.

• MVVM prevents application logic from being interleaved with business logic.

• Views are light weight representations of the interface and does not contain heavy logic.

• The application is free to use any organization of components, but aspects related to

business logic can be organized using the MVVM approach.

Page 41 of 133

2.1.5.2. Logical Structuring of Components

The project is developed using a layered architecture. It allows for changing parts of the system,

without affecting unrelated areas. This is useful since the project has many different

components. A drawback of employing such a system is that well designed interfaces need to

be maintained between components. This adds extra development overhead, but is beneficial

in the case of adopting un-planned changes. A conceptual overview of the frontend and

backend components using the layered architecture are shown in Figure 2.19 and Figure 2.20

respectively.

Figure 2.19 – Conceptual layered architecture of the backend components

Figure 2.20 - Conceptual layered architecture of the frontend components

Page 42 of 133

2.2. Use-case Diagram

Figure 2.21 - Top-level UML use case diagram

Figure 2.21 above shows the top-level UML use case diagram for this project. The four main

actors are administrators (also known as game creators), teachers, students and parents. The

key concepts for terms mentioned in the use case diagram are explained below.

Page 43 of 133

2.2.1. Key Concepts

2.2.1.1. Game Templates

Game templates are customizable starter projects for games. They are created by

administrators. When a teacher selects a game template, its resources are cloned into a fully

independent version of itself. This cloned version is the project file for the actual game.

2.2.1.2. Game Sessions

A game session is analogous to a pre-scheduled online video conference. It is an allocated time

slot where students and teachers can play a pre-selected game (or test a game template). Game

sessions are scheduled for entire collections of members called, Groups.

2.2.1.3. Groups

Groups help organize teachers, students and parents. For example, “Grade 9F” could be

considered a group. A game session’s lifetime is managed by its parent group. Sessions in a

group are scheduled for all the members in the group.

2.2.1.4. Guidance and Objectives

Guidance and objectives are two metrics for tracking user progress during a game session. The

number of guidance hints required to complete a game, as well as number of objectives to

complete are set by the teacher during the creation of the game. The system uses these metrics

later for generating reports.

Page 44 of 133

2.3. Requirement Specification
Due to the complexity of this system, it is impractical to include a detailed specification in this

chapter. Instead, requirements are grouped by feature and documented as simplified bullet-

points. The full requirement specification can be found in Appendix C.

2.3.1. Functional Requirement Specification
Requirements are captured according to these six areas; game editor, game play &

communications, game sessions, users & groups, performance reports and overall dashboards.

The relationships between these areas (excluding dashboards) are shown in the UML

component diagram below (Figure 2.22).

Figure 2.22 - UML component diagram for high-level features

Page 45 of 133

2.3.1.1. Game Editor Requirements

1. Add, manipulate and program objects in a level scene.

2. Customize a level using a friendly UI without coding.

3. Have the option to add behavior to objects via code, but should not be required.

4. Create, duplicate and delete game levels.

5. Set game/template metadata (e.g., title, description, etc.)

6. Select a game template when creating a game.

7. Set objectives and guidance trigger points for game.

8. Specify supported report types for a game.

2.3.1.2. Gameplay and Communications Requirements

1. Students and teachers can participate in game play sessions.

2. Get notified about network errors as soon as they occur.

3. View and interact with the game.

4. Games should accept keyboard and mouse input from the host device.

5. Pause game if user backgrounds the session.

6. Track user game progress and events for reports.

7. Prompt user with hints to progress in the game, if they are struggling.

8. Provide indicator about the progress of each objective in the game.

9. Facilitate a group chat for each game play session.

10. Group chat must persist across play sessions for each session.

Page 46 of 133

2.3.1.3. Game Session Requirements

1. Teachers should be able to schedule sessions for a group.

2. When scheduling a session, specify the game, time and users.

3. Add and remove users to/from a session that is already scheduled.

4. Users should get an email notification when a game is scheduled.

5. Users in a group (except parents) should be able to participate in a game session.

2.3.1.4. Users and Groups Requirements

1. Users should be able to login with a unique email and password.

2. Users must able to logout of the system at any time.

3. New users must be able to register in the system.

4. Users cannot enter emails of existing user accounts

5. Registered users should be able to join a group using an invite link.

6. Unregistered or logged out users should be able to register / login before joining a group

via an invite link.

7. Users must be able to leave a group they joined.

8. Only users of the group must have access to its access it.

9. Through the groups page, users should be able to see its details, members, scheduled

sessions and reports.

10. Teachers must be able to delete groups they created.

11. Teachers must be able to create new groups.

12. Teachers must be able to associate students and parents.

13. Teachers must be able to schedule new sessions for the group.

Page 47 of 133

2.3.1.5. Performance Report Requirements

1. Teachers, students and parents must be able to view performance reports.

2. The system must collect performance metrics of users in game sessions.

3. The system must not collection unwanted information such as PII.

4. Reports should be visualized as graphs and detailed using a tabular presentation.

2.3.1.6. Dashboard Requirements

1. A ‘summary’ dashboard should be available for all users.

2. The summary dashboard should display session updates and chat updates.

3. When a user clicks on a list item in the summary dashboard (e.g., a chat message) they

should be navigated to the correct group the chat is made in.

4. Administrators and teachers should have access to a ‘templates / games’ dashboard.

5. From the templates / games dashboard they should be able to view existing entries and

create new entries.

6. Clicking on a template / game entry should navigate them to the respective editing

screen.

7. All users must have access to a ‘groups’ dashboard.

8. From the groups dashboard, users should be able to see a list of groups they are part of.

9. Clicking a list item in the groups dashboard should navigate the user to the correct

groups page.

10. Administrators and teachers should be able to create new groups from the groups

dashboard.

11. A search functionality must be present in both templates / games and groups

dashboards.

Page 48 of 133

2.3.2. Non-functional Requirements
Qualitative non-functional requirements of system are documented in this section.

• Real-time communication should be established reliably between users. Text messages

should arrive in the same order as they are sent.

• Privacy of users should be maintained. Secure protocols must be implemented to

prevent unauthorized parties from accessing user data.

• Interfaces should be readable, clear and easy to comprehend without overwhelming the

user. Further, interfaces such as reports must be properly responsive on all screen

dimensions.

• The application should not be device resource intensive.

Page 49 of 133

Chapter 3 - Design
This chapter documents the design aspects of the system. The overall architecture of the system

as well as the states, action sequences, object-oriented classes and data flow are discussed. The

initial architecture builds on the scope of the system. Informal notations are used to describe

the system architecture. The subsequent sections provide UML 2.5 diagrams.

Page 50 of 133

3.1. System Architecture
The components between a single client and server instance are documented in this section. A

diagram with informal notation of the components is shown below in Figure 3.1 below.

Figure 3.1 - High-level system architecture diagram

Connection between clients and users are authenticated where necessary. Communication via

the HTTP protocol is handled by the default HTTP port 80, and Socket.IO protocol traffic is

handled at port 100.

Docker containers are used to orchestrate database servers. This allows to replicate the

development environment perfectly on the remote application server when deploying.

Page 51 of 133

3.2. Designing the Game Editor
After several design iterations the template system was conceived. A dedicated group of users

create general game templates, that are adapted into games by teachers. This lifts the technical

burden of having to use coding to design a game from teachers.

Games and game templates are similar entities. They share attributes and logical connections

with all parts of the system. As a result, the same processes used for creating the game template

is used for customizing the game.

The game editor has many complex functionalities that made it a challenge to design in an

approachable manner. The editor was designed from a top-down approach. Figure 3.2 shows

the high-level activities the user is allowed to navigate to within the game editor. This activity-

based structure helped align other actions into well-defined screens, making the game editor

design (which sounds complicated) be approachable for even laymen users.

Figure 3.2 - Main activities of the game editor component

Page 52 of 133

3.3. Dual Storage Engine Approach
Most of the system’s data can be modeled using relational databases. This includes entities

such as users, user associations, game entries, game progress, etc. However, during the process

of modeling the game project and chat messages two requirements emerged.

1. Game projects are hierarchical. There are many nested objects which if stored in

relational schema, require unnecessary table joins to store & retrieve data.

2. Chat messages are simple objects, but are created at a higher velocity than other entities.

It would be better to store messages in a separate storage method.

To address this, two database types are employed within the system; MySQL (using InnoDB)

and MongoDB. Using this method, object prototypes such as the one shown in Figure 3.3 of a

complex game project can be easily stored and updated using NoSQL.

Figure 3.3 - Prototype game project object

Page 53 of 133

3.4. Main Classes of the System
There are several class-clusters within the system. These classes are associated with each other,

and their models provide understanding on how the rest of the system must process them.

3.4.1. User Class Cluster

Figure 3.4 - User class cluster diagram

The ‘users and groups’ component manages user records, their access rights within the system,

their relationships as well as their associations with groups. Groups are the largest unit of user

organization within the system. It is logically equivalent to a traditional classroom members

record. User relationships are used to identify associations between users.

If two users have for example, a student-parent relationship the parent is allowed to view

progress reports of their child. The UML class diagram notation documenting the above

associations is shown in Figure 3.4 above.

Page 54 of 133

3.4.2. Game Sessions Class Cluster
A game session links users, games and reports together. Teachers create games that can be

incorporated into pedagogical processes. Games played by students generate performance

metrics that can be analyzed by all users. The design of classes associated with game sessions

are shown in Figure 3.5 below.

Figure 3.5 - Game session class cluster diagram

Page 55 of 133

3.5. Main Flows of the System
There are four different user types in the system and they each have specific user journeys.

Some are shared, such as the login process. However, flows such as creating games are unique

to administrators and teachers. This section models a few main user flows in the system using

UML activity and sequence diagrams.

3.5.1. User Login and Registration

Figure 3.6 - User invite link join processes activity diagram

Figure 3.6 above shows several key activities involving onboarding users and the login process.

The home page of the system allows new users to register and existing users to login, which is

designed in a standard manner.

Page 56 of 133

The system also allows creating invite links for new users. Invite links can be generated for a

group. When a user navigates to an invite link, the system checks whether they are logged in.

If so, prompts the ‘join group’ screen. The user can join the group immediately.

For users who are not logged in or aren’t registered yet, the system will allow them to perform

that action and afterwards, confirm whether to join a group. The redirection from the login page

back to the join group page, is handled via a query parameter. It is set when redirecting the user

to login or sign up initially.

3.5.2. Game and Game Template Creation
Since games and game templates are logically similar entities within the system, the process of

creating them is also common. The transition from a template to a game, happens via a cloning

process as shown in 6.1.1. of the Figure 3.7 sequence diagram.

Initially, the template selected by the user is cloned along with any assets (so they can be

modified without affecting the template). The template’s details are superimposed with that of

the values set for the game. Finally, the new records and files are persisted and the editor

acknowledges the same.

Page 57 of 133

Figure 3.7 - Game and game template creation sequence diagram

Page 58 of 133

3.6. Main Interfaces
User interface designs of the system were first made on pen & paper as wireframes. Once the

details were fleshed out, they were prototyped using Figma (Figma Inc., n.d.). This includes

the landing page, all interfaces and iconography.

3.6.1. Landing Page

Figure 3.8 - Game-based e-learning platform landing page design

The system is nicknamed, ‘EDGE’s and is displayed in the homepage branding Figure 3.8. The

blue and white color scheme is used throughout the system.

Page 59 of 133

3.6.2. Teacher Dashboard

Figure 3.9 - EDGE system teacher dashboard page design

Figure 3.9 above shows the interface design of the Teacher dashboard. As mentioned on the

top-left, the current page is for the overview screen. The term ‘overview’ dashboard technically

refers to the ‘summary’ dashboard mentioned in the informal version of the requirements.

Page 60 of 133

3.6.3. Gameplay Window

Figure 3.10 - Game play window design

Figure 3.10 above shows the planned design of the game play screen. All iconography was

made as part of the project. The placeholder game is of Mario Brothers (Nintendo Co., Ltd.,

n.d.).

Page 61 of 133

Chapter 4 - Implementation
In this chapter the implementation strategies used to develop the project are discussed. The

development process, technology stack, development setup and relevant code fragments are

some of the topics included. The system has not yet been fully implemented, and is in a partially

developed (but functional) state.

4.1. Development Process
This project is developed using the Feature Driven Development (FDD) agile process. The

rationale for its selection is that it offers the most logical organization of work items of the

system. Since this is a solo project, formulating models of complex system features assisted

tremendously. The customized version of the formal FDD process employed for this project is

shown below in Figure 4.1 below.

Figure 4.1 - Customized FDD development process

Page 62 of 133

4.2. Technology Stack
The project uses a JavaScript technology stack for frontend and backend components. The

rationale for this decision is my personal familiarity with vanilla JavaScript. Using a familiar

stack reduced technical uncertainties during planning of features. Further, it reduced schedule

costs of learning new technologies. The technology stack is as shown in Figure 4.2 below.

Figure 4.2 - Implementation technology stack

The formal names of the frameworks and their uses are as are,

1. Angular JS – frontend framework.

2. Socket.IO – client-side library for two-way communication.

3. Node – JavaScript runtime environment for the backend.

4. Express JS – application server framework for Node.

5. Socket.IO – server-side library for two-way communication.

6. MySQL – relational database management system.

7. MongoDB – document-oriented NoSQL database system.

8. Docker – virtualization platform used for managing storage container images.

Page 63 of 133

4.3. Development Setup
The Visual Studio Code IDE was used to code the system’s frontend and backend. The project

directory is organized as shown in Figure 4.3 below.

Figure 4.3 - Development setup folder structure

4.3.1.1. Project Structure

The ‘angular’ and ‘node’ folders contain the frontend and backend code respectively. The ‘db’

folder contains SQL backups of the MySQL databases. The ‘commons’ folder contains code

that is shared by both frontend and backend code.

Both frontend and backend sub-projects are configured to use TypeScript. This prevents any

potential bugs caused by mismatched types or unexpected null values, since the TypeScript

compiler checks this at compile time.

4.3.1.2. Code Sharing

The system architecture for this project is, client-server. Due to this reason, it is important that

the client and server exchange data in a common accepted format. While using a notation such

as JSON partially solves the issue, the problem of incompatible objects still remains.

A common way to address this is issue is to duplicate the classes for the object in both client

and server code in exactly the same manner. However, this means any change to one of the

notations must be duplicated manually in the other.

To avoid this problem and save both time and energy, the ‘commons’ folder was created. It

simply contains business logic and entity class definitions. Since both frontend and backend

Page 64 of 133

code is written in TypeScript, the same entity definitions can be imported into both projects.

Through this method, changes in one project are automatically reflected in the other.

4.3.1.3. Docker and Docker Compose

Docker Compose creates a virtual network of a predefined set of Docker containers, and allows

them to act as though hosted in one logical computer. It further handles the synchronization of

data to non-volatile storage. Docker was used since it minimizes the setup effort required.

Further it prevented the developer’s local machine from being cluttered by MongoDB and

MySQL configurations and executables. A screenshot of the Docker Containers running on the

local development machine is shown in Figure 4.4 below.

Figure 4.4 - Docker Desktop managing the MySQL and Mongo containers for the system

Page 65 of 133

4.4. Relational Schema
The final MySQL database schema can be visualized through the phpMyAdmin console since

it was installed at the time of setting up Docker containers. Figure 4.5 shows the relational

schema of the project through its ‘Designer View’.

Figure 4.5 - Designer view of the EDGE system's relational database

Page 66 of 133

4.5. Interfaces and Code Structures

4.5.1. Group Invite System
Once a group has been created, any member of the group can share an invite link requesting

more users to join. Users can copy this link from the ‘Copy Invitation’ option in the groups

page as shown in Figure 4.6.

Figure 4.6 - Copy invitation link option in the group overview page

A sample group invite link is shown below.

• http://localhost:4200/groups/join/94c18e03a1061b80e491b383cbc8c80d

The random string of characters at the end of the link is an encrypted value representing the

invited group. It is encrypted to prevent users from guessing internal group IDs and joining

groups they were not invited to. The encryption uses the AES-256 cryptographic algorithm

with the CBC mode of operation. The code managing cryptographic operations is shown in

Figure 4.7 below.

Page 67 of 133

import crypto from 'crypto';
import * as l from './logger';

const algo = 'aes-256-cbc';
const key = Buffer.from('***'); // 32 char key
const iv = Buffer.from('mit_3201_edge_iv');

/**
 * @param plaintext utf8 string to encrypt
 */
export function encrypt(plaintext: string): string{
 try{
 let cipher = crypto.createCipheriv(algo, key, iv);
 let encrypted = cipher.update(plaintext);
 encrypted = Buffer.concat([encrypted, cipher.final()]);
 return encrypted.toString('hex');
 }
 catch(error){
 l.logc(JSON.stringify(error), 'crypto.ts-encrypt');
 return '';
 }
}

Figure 4.7 - Code structure for creating the group invite link

When a user navigates to the invite link, they will see a page showing the group title and a

message of the pending actions if they confirm the invite (Figure 4.8). If the user is not currently

logged in, the option to login or register will be shown.

Figure 4.8 - Join group from invite link page

Page 68 of 133

4.5.2. Game Editor
One of the most difficult parts to implement in the system was the game editor pages. This

component is responsible for all aspects related to game template / game design. There are four

main sections of the editor: overview, resources, levels and scene editor. The scene editor is

further separated as, scene, properties and scripts sections.

4.5.2.1. Game Editor Overview Section

The overview section defines the metadata of the game (or game template) that’s currently

being edited. It also allows the user to define the main objectives and guidance trigger points

for the entire game. Figure 4.9 shows the overview section of the game editor component.

Figure 4.9 - Game editor page overview section

Page 69 of 133

4.5.2.2. Game Editor Resources Section

The game resources page allows users to upload image or sound assets to the game project

(Figure 4.10). These assets are automatically assigned the current timestamp, and its reference

is added to the project file. The operations for saving incoming files are handled by a library

integrated on the backend code, named ‘Multer’ (OpenJS Foundation, n.d.). The configuration

for file uploading is shown in Figure 4.11.

Figure 4.10 - Game editor page resources section

Page 70 of 133

import * as pc from '../../util/parseconfig';
import multer from 'multer';
import * as path from 'path';

const config = pc.parseConfig('config.json');
const multerDiskWriteConfig = multer.diskStorage({
 destination: (req, file, callback) => {
 const mimetype = file.mimetype;
 if (mimetype.includes('audio') || mimetype.includes('sound'))
 callback(null, config.fs_res_path_sound);
 else
 callback(null, config.fs_res_path_image);
 },
 filename: (req, file, callback) => {
 const filename = Date.now() + path.extname(file.originalname);
 callback(null, filename);
 }
})

Figure 4.11 - Multer library file upload configuration

4.5.2.3. Game Editor Levels Section

The levels section allows the user to manage existing levels and add new levels. It also allows

the user to edit the title and end game screens. The page is shown in Figure 4.12.

Figure 4.12 - Game editor page levels section

Page 71 of 133

4.5.2.4. Game Editor Level Scene Editor Section

Figure 4.13 shows the most complex and difficult to implement section of the entire system,

the level editor screen. On the left, the level editor tab expands into the scene, resources and

script sections. From the top section, the user can save the current project or ‘run’ it directly in

a new tab.

The ‘Hierarchy’ section provides a list of all the objects in the current scene. The center ‘Scene

Map’ is an HTML canvas element built using the Fabric JS component (Zaytsev, et al., n.d.).

The right section allows users to add new items from the ‘Library’ section, and change

properties of existing objects from the ‘Options’ section.

Figure 4.13 - Game editor level scene editor page

Page 72 of 133

4.5.2.5. Game Editor Level Properties Editor Section

The properties editor provides property list for teachers to easily customize a level without

fiddling with the level scripts. When creating game templates, this page shows two panels: the

left panel shows an editor for defining the property list, and the right panel shows the actual

property list generated from its definition on the left. This is demonstrated in Figure 4.14 below.

Figure 4.14 - Game editor level properties editor page

4.5.2.6. Game Editor Level Scripts Editor Section

The script editor section is intended for game creator users and not teachers. This section

provides an editor interface for writing actual JavaScript code. Additionally, a custom library

is loaded to interop between the user code and the system. The interface for the script editor

page is shown in Figure 4.15. The interop library code is shown in Figure 4.16.

Page 73 of 133

Figure 4.15 - Game editor level script editor page

require('../game_compiler/phaser/phaser');
require('./edgeinternals');

/**
 * Communicate with the EDGE system.
 */
const EdgeProxy = {
 /**
 * Increase progress points for an objective
 * @param {string} name The 'name' of the objective. Case insensitive.
 * @param {number} points Number of points to add to the objective.
 */
 increaseObjectiveProgress: function(name, points){
 if (window.EdgeInternals._on_updateObjective != null)
 window.EdgeInternals._on_updateObjective(name, points);
 else
 console.log("Edge Internal implementation for _on_updateObjective missing");
 },
 /**
 * Increase hitpoints for a guidance tracker
 * @param {string} name The 'name' of the guidance tracker. Case insensitive.
 * @param {number} points Number of points to add to the objective.
 */
 increaseGuidanceProgress: function(name, points){
 if (window.EdgeInternals._on_updateGuidance != null)
 window.EdgeInternals._on_updateGuidance(name, points);
 else
 console.log("Edge Internal implementation for _on_updateGuidance missing");
 }
}

Figure 4.16 - JavaScript interop library code

Page 74 of 133

4.5.3. Performance Reports
Performance reports are generated by data collected during user play sessions. For example, if

a user progresses in a certain objective for a game this change is recorded in the system.

Performance reports are available in the group’s reports page. Available report types are listed

in the initial page (Figure 4.17). Clicking on any one of the reports will first display the report

for the entire group.

Figure 4.17 - Available report types in the group page's reports section

The process of separating performance data by each time a user plays any specific game was a

challenge. This is because at the time, every user ‘play session’ had the same scheduled session

ID. There wasn’t a clear method to map which attempt the performance data of the user

belonged. To resolve this issue, a ‘play nonce’ field was introduced. An example of objective

progress data tracked by play nonce can be seen in Figure 4.18 below.

Page 75 of 133

Figure 4.18 - Database schema for tracking game objective progress data

Using the recorded progress data chart visualization are generated and displayed to the user on-

demand. The charts are interactive, so users can zoom or adjust the viewport to view more or

less details. In addition to the graph visualizations, relevant breakdown of the data is also shown

in tabular form below the graphs. An example from the objective progress report type is shown

in Figure 4.19 below.

Figure 4.19 - User objective report with graph and tabular presentation

Page 76 of 133

Every report type requires a different type of processing to generate the graph and tabular

presentations. Some reports need to process a data using database queries prior to being

retrieved. For example, the graph data for the user objective progress report processes data on

the server code. An (altered) version of the code for the aforementioned example is shown in

Figure 4.20 below.

export function processObjectivesByTime(input: GameSessionUserObjective[]){
 const yAxes = 'Objective Points';
 const xAxes = 'Seconds';
 const options = { zone: 'UTC', setZone: true }; // luxon: our timestamps are already in +0530
 let data = new ReportGraphDataUserObjectiveProgressByTime([], [], xAxes, yAxes);

 if (input.length == 0)
 return Promise.resolve(data);

 const firstSessionTime = DateTime.fromISO(isofy(input[0].last_updated), options).toMillis();
 let lastSessionTime = firstSessionTime;
 let interval = 0;
 let lastProgress: { [key: string]: number } = {};
 let totals: Map<number, number> = new Map();

 if (input.length > 1){
 lastSessionTime = DateTime.fromISO(
 isofy(input[input.length - 1].last_updated), options).toMillis();
 }

 // Determine interval
 const quantization = determineTimeQuantizationInterval(firstSessionTime, lastSessionTime)
 interval = quantization.interval;
 data.xAxesLabel = quantization.intervalName;

 for (let entry of input){
 const key = `${entry.user_id}-${entry.objective_id}`;
 const time = DateTime.fromISO(isofy(entry.last_updated), options).toMillis();;
 const qt = roundedDateToIntervalMS(time, interval);
 const lp = lastProgress[key];

 let newProgress = (lp == null) ? entry.progress : (entry.progress - lp);
 newProgress = round(newProgress);

 const t = totals.get(qt);
 totals.set(qt, t == undefined ? newProgress : (t! + newProgress));
 lastProgress[key] = entry.progress;
 }

 // Convert the totalMap into readable format
 let lastTotalForQuantizedTime = 0;
 for (const [qTime, total] of totals){
 const roundedTotal = round(total);
 const targetTotal = round(total + lastTotalForQuantizedTime);
 data.labels.push(qTime);
 data.data.push(targetTotal);
 lastTotalForQuantizedTime = data.data[data.data.length - 1];
 }

 return Promise.resolve(data);
}

Figure 4.20 - Backend code for processing user objective progress graph data

Page 77 of 133

Chapter 5 - Testing and Evaluation
The Game-based E-Learning (EDGE) system is a complex application consisting of a broad

set of requirements and functionalities. Adequately testing the system was a challenge due to

this complexity.

This chapter explains the strategies followed to effectively test the system from different

perspectives. Some of the important test cases are document as well. In addition, the system is

critically evaluated against the list of promised features form the project proposal. Finally, the

chapter documents the results of the user testing process.

Page 78 of 133

5.1. Test Documentation
All tests are documented using the Atlassian Jira issue tracking software (Atlassian Corporation

Plc, n.d.). A custom Jira scheme was created with three issue types shown in Figure 5.1 below.

Figure 5.1 - Jira issue types used to document tests

‘Epic’ issue types define goals for different types of testing (e.g., exploratory testing, API

testing, etc.). Epics allow for easy management of ‘Test’ issues, which are the actual test

documents.

5.1.1. ‘Test’ Issue Types
A ‘Test’ issue can have the following fields; title, body, link to the Jira epic and links to the

bug tickets. The field descriptions are provided below.

1. Test title

o This is a required field.

o Directly reference a requirement (e.g., ‘EFR-1 Home page screen’) or,

o Have a general name (e.g., ‘Game List: API response is valid’).

2. Test body

o This is a required field.

o Describe what needs to be tested and expected results. This may be in a format

appropriate for each test type.

Page 79 of 133

3. Link to the test ‘Epic’

o This is a required field.

4. Linked issues for any bugs discovered.

o This is an optional field (because bugs may not be discovered during testing).

5.1.2. ‘Bug’ Issue Types
The ‘Bug’ issue types are managed independently of the tests so their progress can be tracked

properly. Bug issues have the following fields; title, description, link to the Jira test issue and

optional attachments. Descriptions of these fields are provided below.

1. Bug Title

o This is a required field.

o The title should describe the defect clearly.

2. Bug Description

o This is a required field.

o Pre-requisites, steps to recreate and/or notes can be mentioned.

3. Link to original Test

o This is a required field.

o All bugs must be referenced to the test which helped discover it.

4. Attachments

o This is an optional field.

o Screenshots and/or screen recordings showing the error.

Page 80 of 133

5.1.3. Jira Workflows
‘Test’ and ‘Bug’ issue types each have their own Jira workflows associated with them. This

prevents Jira issues from being moved to irrational states (especially if there was a large team

managing the project). Figure 5.2 shows the workflow for the ‘Test’ issue type.

Figure 5.2 - Jira workflow for Test issue types

Bug issues are managed independently of the test document and thus have their own Jira

workflow. Figure 5.3 below shows the Jira workflow for ‘Bug’ type issues.

Page 81 of 133

Figure 5.3 - Jira workflow for Bug issue types

5.1.4. Jira Workflow Scheme
Both test and bug issue workflows are grouped in a Jira workflow scheme as shown below in

Figure 5.4 . Workflow schemes can be extended in the future to support more issue types.

Figure 5.4 - Jira project workflow scheme

Page 82 of 133

5.2. Testing Strategy
The testing strategy contains a mix of automated and manual testing. This approach was used

since provides a balance between the cost of automation, and test coverage of the system

5.2.1. Requirements Verification
The requirements of the system are captured according to the main areas of the EDGE system.

The verification process will assess the delivery of requirements using the process shown in

Figure 5.5

Figure 5.5 - Requirements verification process diagram

Page 83 of 133

5.2.2. Development Testing
Since the system was developed using the FDD agile methodology there was always a logical

feature that can be tested at each development increment. Each feature contains frontend and

backend code that must be tested separately. Figure 5.6 summarizes the approach used for

testing each feature increment.

Figure 5.6 - Development testing process

Details of the process summarized above (Figure 5.6) are as follows.

1. Testable Feature – A feature with testable functionality is developed.

2. NodeJS Tests – Server logic eligible for testing is identified (for example, calculation

logic for the performance reports). Test plans are created, executed and identified

defects are fixed. Finally, manual inspection of the API may take place using Postman.

3. Angular Tests – The Angular JS code is examined and the user flows that must be

tested (as well as any dependencies that must be mocked) are identified. Unit tests are

written to exercise the UI and any other Angular code related to the feature. The tests

are executed and identified defects are fixed.

4. Feature Integration – After a final inspection the feature is considered integrated.

Page 84 of 133

5.2.3. User Testing
Initially, user testing was to be carried out at key development milestones with real users.

However, due to development tasks rising in priority user testing was scheduled for much later

in the development life cycle.

A group of five volunteers were rounded up. All users were assigned roles in the system (which

represents an imaginary school classroom use case). Each user received a chance to evaluate

the system during a scheduled online video conference. Feedback during the online session

was collected, followed by a post-evaluation online survey.

5.2.3.1. Limitations in Volunteer Selection

The final list of volunteers does not reflect the actual target user base of the system. For

example, it was not possible to round up students studying between school grades four and six.

Further, the system was not yet available as a hosted web application. Therefore, volunteers

were provided with a remote desktop session into the local development environment for

evaluation. Presenting the system for real users with a hosted version of the system was planned

for a beta-testing phase, but this did not materialize due to various reasons.

5.2.3.2. Volunteer Selection Criteria

The five volunteers were round up according to the following criterion.

I. A volunteer must,

1. Be able to communicate in English.

2. Have general IT literacy.

3. Have access to a computer with an internet connection.

4. Have a suitable computer setup for video conferencing.

5. Be able to attend the video conference scheduled for system evaluation on a pre-

determined date.

6. Consent to having the entire testing session recorded.

Page 85 of 133

II. A volunteer must be able to commit,

1. 2 hours per week for the pre-planning session.

2. 4 hours per week for the evaluation session.

3. 1 hour per week for the post evaluation survey.

5.2.4. Automated Testing Tools
The Jasmine Framework (Jasmine Project, n.d.) was used for writing automation test scripts.

These scripts were written in the same language as the rest of the system. Technical issues of

automated testing were greatly minimized due to the use of a common programming language

throughout.

The test scripts are placed in the same directory structure as the sub-project it belongs to. For

example, Figure 5.7 highlights two such scripts which test the service classes in the Angular

sub-project.

Figure 5.7 - Jasmine test scripts in the Angular sub project

Page 86 of 133

The complete list of tools / software used for automated testing is list below in Table 5.1.

Category Software

Test Framework Jasmine Test Framework

(Jasmine Project, n.d.)

Test Scripting IDE Visual Studio Code
(Microsoft Corporation, n.d.)

UI Test Execution Google Chrome
(Google LLC, n.d.)

Unit & Integration Test Execution System Console

Table 5.1 - Automated testing tools

5.2.5. Manual Testing Methods
Manual testing was carried out in forms the forms of user acceptance testing, API testing and

exploratory testing. These tests were performed at different points in the project life cycle as

explained below.

• User testing – Performed after the system had most of its functionality implemented.

• API testing – Performed at the last stage of every NodeJS unit test.

• Exploratory testing – Performed at random intervals during the project life cycle.

It should be noted that the goal of exploratory testing was to ensure continuous development

hasn’t introduced regression issues. These tests also ensured that features were observed from

a fresh perspective, rather than just after they were developed (during developer testing). Table

5.2 lists the software used for the above manual testing methods.

Page 87 of 133

Category Software

Volunteer test administration Google Calendar
(Google LLC, n.d.)

Google Meet Video Conferencing
(Google LLC, n.d.)

AnyDesk Remote Desktop Application
(AnyDesk Software GmbH, n.d.)

API testing Postman API Platform
(Postman, Inc., n.d.)

Exploratory testing Google Chrome Browser
(Google LLC, n.d.)

Table 5.2 - Manual testing software

Page 88 of 133

5.3. Test Cases
This section lists a few of the test cases from this project. The test cases were selected to

represent different types of manual and automated tests carried out, on both frontend and

backend components. Relevant screenshots are attached to showcase the test documents and

test results.

5.3.1. Exploratory Testing

5.3.1.1. Testing the Game Canvas

The game canvas is the area of the game editor in which teachers and game creators design

levels (Figure 5.8). There are several requirements for the game canvas, and the first is to ensure

that the user can manipulate objects in the game canvas (EFR-1, Table C.1).

Figure 5.8 - Game editor page of the EDGE system

Page 89 of 133

The exploratory test plan for this requirement interacted with the game canvas as a typical user

with three key behavior expectations. These behaviors are: uninterrupted usage, window

resizing and retaining performance. The test partially passed, with only one expectation being

met properly.

Three defects were identified during the exploratory test. First, the game editor UI is not

responsive to window resizing events. A browser refresh is required if the user needs to resize

page. Secondly, repeated changes to the camera bounding box will eventually result in it being

unresponsive. Finally, a defect exists in the selected item highlighting of the game editor scene

hierarchy. The second and third issues does not occur instantly, but only after continuous use

of the game editor. The Jira tickets for the test case and logged bugs are shown in Figure 5.9.

Figure 5.9 - Jira ticket documenting a game canvas exploratory test

Page 90 of 133

Problems discovered during the exploratory tests are recorded as ‘bug’ issues in the Jira project.

As an example, Figure 5.10 shows the bug related to the camera bounding box. It is linked to

the ‘exploratory testing’ epic and original test case. It states the pre-conditions required for the

defect to occur, as well as the exact steps that can be used to reproduce the issue. The defect is

reproduced seemingly at random and is clearly stated in the defect description.

Figure 5.10 - Jira bug ticket related to the game canvas camera bounding box

Page 91 of 133

5.3.2. Backend Unit Testing
NodeJS unit tests were written in the TypeScript language for the Jasmine test framework.

They exercise logic contained in the code unit without the requirement for a frontend

connection or other dependencies (such as a database connection or libraries). Since a

significant portion of the backend code deals with data access, I have elaborated below a

complex unit test dealing with group member data.

5.3.2.1. Testing Data Access

Unit testing backend data access proposed a unique challenge: it is not possible to test with

user data. Jasmine test scripts can mock dependencies in order to test a particular code unit.

However, in the case of DAO classes, providing mock database connections defeats the

purpose. To resolve this problem, DAO tests needed to be run in isolation. The database

initialization logic was built to respect a ‘test mode’ flag in support this requirement.

If the test mode is enabled, the system would connect to a test database instead of the production

database. The test mode is turned off by default, but can be switched on by invoking the

‘setTestMode’ method at code level. The unit test helper code written to perform this action is

shown in Figure 5.11 below. The test method call can be seen in line number eight.

Figure 5.11 - Backend unit test helper code

Page 92 of 133

5.3.2.2. Testing Group Member Data Access

This unit test ensures that the associations between members of a group are correctly returned

by the backend server. Figure 5.12 shows the frontend screen related to this backend test and

the setup between databases.

Figure 5.12 - Overview of the group members DAO test

Page 93 of 133

Testing group member data access is complex since the system tracks user relationships1. For

example, a student member of a group can be associated with their parent. In the list displaying

group members, the association between these two users must be correctly shown. An example

of this is shown in Figure 5.13 below, where the row for Nithika shows relationship to their

parents, and the parent Tissa shows their relationship to the student.

Figure 5.13 - Group members page showing user associations

User relationship tracking gets complicated when the number of users increase, and there are

many relationships among users. Since its infeasible to test this manually, the group member

test sets up two scenarios of group member combinations.

• Scenario 1 – A group consisting of three users; a teacher, student and parent.

• Scenario 2 – A group consisting of four users; a teacher, 2 students and a parent.

1 The term ‘relationship’ is used interchangeably with ‘association’. The meaning of these terms are exactly the
same within the context of this project.

Page 94 of 133

Note that in scenario 2, additionally, the two students have the same parent (i.e., the students

are siblings). The test script pre-calculates the number of associations for each association type,

per each user. These values are asserted with the data returned from the group members DAO.

Further, it also performs cross validation of user IDs returned for each relationship. For

example, in the case of a parent-child relationship, it is possible to assert that the student’s

relationship returns the parent ID, and the parents relationship returns the student ID. The

complete code for this unit test script can be found in Appendix D. The Jira ticket created for

this unit test is shown below in Figure 5.14.

Figure 5.14 - Jira ticket related to the group members unit test

Page 95 of 133

The initial round of testing the group members DAO did not succeed. A bug was discovered

where the backend was returning user ID and email in the wrong fields, as shown in Figure

5.15 below. This was rectified, and the second round of unit testing was successful as shown

in the updated Jira ticket shown in Figure 5.16 and unit test terminal output shown in Figure

5.17.

Figure 5.15 - Group members DAO response highlighting incorrect fields

Figure 5.16 - Final state of the Jira ticket for the group members test

Figure 5.17 - Terminal output of the group members unit test after correction

Page 96 of 133

5.3.3. Angular UI Testing
All Angular projects come pre-configured with the Jasmine and Karma frameworks out of the

box. Tests can be written using these frameworks to exercise logic in the project files or run

automated tests. UI tests run in a special browser window and therefore can be used to simulate

real user behavior.

5.3.3.1. Testing the Game Resources View

This page allows users to upload image and sound assets to the game project. Assets are

organized into a grid with a preview icon. The UI test for this page presents three expectations:

the page must load without issues for a project with no assets, existing assets must appear

correctly and the upload process must work as expected.

Spy objects provided by the Jasmine framework were used to mock server responses with both

empty and existing game resources, as well as other dependencies of the page. A snippet of the

test setup code can be found in Figure 5.18 below.

await TestBed.configureTestingModule({

 declarations: [ResourceUrlTransformPipe, GameEditResourcesComponent],

 providers: [

 ResourceUrlTransformPipe,

 { provide: ActivatedRoute, useValue: activatedRoute },

 { provide: Router, useValue: jasmine.createSpyObj('Router', ['navigate']) },

 { provide: ApiService, useClass: MockAPIService },

 { provide: DialogService, dialogServiceSpy },

 { provide: MatDialog, useValue: jasmine.createSpyObj('MatDialog', ['open']) },

 { provide: ToastrService, useValue: toastrServiceSpy }

],

})

.compileComponents();

Figure 5.18 - Code snippet for setting up the Angular UI test for the game resources page

Page 97 of 133

The Jira ticket for the game resources UI test was set up with the three expectations, and

mapped to requirement ID EFR-7 (Table C.1) as shown in Figure 5.19. The Karma framework

carries out test execution and the results are displayed in a separate browser tab. As shown in

Figure 5.20, the UI test for this page has passed without errors.

Figure 5.19 - Jira ticket for the game resources UI test

Figure 5.20 - Karma UI test results for the UI tests

Page 98 of 133

5.4. Test Result Summary
Continuous testing was done throughout the development process in various methods. While

most tests passed successfully, there were instances where some issues were not fixed due to

schedule constraints.

Due to the complexity of the system, it is not feasible to document all test cases and their

outcomes in this document. However, by factoring in all types of tests as well as their current

statuses I have created a test summary figure. This figure is shown in Table 5.3 below. The

overall pass rate is 75%. The pass rate for each test epic is also documented.

Test Epic No. of

tests

Passed

test count

No. of

bugs

Fixed bug

count

Pass rate

Exploratory Testing 12 2 15 4 17%

Manual Testing 10 10 0 0 100%

Node JS Unit Tests 15 12 20 16 80%

Angular Unit Tests 12 10 18 12 84%

Angular UI Tests 15 14 8 7 94%

Total 64 48 61 49 75%

Table 5.3 - Test result summary table

Page 99 of 133

5.5. Requirements Verification
All requirements are verified against the requirement specification documentation according

to the process mentioned under the ‘Testing Strategy’ section.

5.5.1. Requirements Verification Summary
Table 5.4 shows the high-level summary of requirements verification. A total of 76

requirements were planned to be developed in the system. The final percentage of the system

completion (in terms of requirement implementation) is 80%.

Feature Partial

Requirements

Failed

Requirements

Fully

Implemented

Requirements

Total

Requirements

Game Editor 1 0 16 17

Game Play 1 1 10 12

Game Session 1 3 1 5

Groups 3 1 8 12

Performance 2 0 9 11

Home Page 0 0 4 4

Dashboard 1 2 12 15

Total 9 7 60 76

% 11.8 % 9.2 % 80 %

Table 5.4 - Requirements verification summary table

Page 100 of 133

5.5.2. Requirement Verification Breakdown
Table 5.5 – Table 5.10 document the requirements which have not been fully implemented

across different system features. Their completion is measured on a scale of 1 through 5, where

a measure of 1 represents ‘poorly implemented’ and 5 represents ‘implemented to

specification’. Any deviations or comments are documented.

5.5.2.1. Game Editor Requirements

Requirement Verdict Completion Deviations / Comments

2 Add behavior to objects Partial 3 Behavior can only be added through
code

Table 5.5 - Unfulfilled game editor requirements

5.5.2.2. Gameplay Requirements

Requirement Verdict Completion Deviations / Comments

19 Get notified about network errors as
soon as they occur

Fail 0 Network error not handled properly

25 Prompt user with hints to progress in the
game, if they are struggling

Partial 2 Guidance triggers are tracked, but UI
for showing hints is not fully

implemented

Table 5.6 - Unfulfilled game play requirements

5.5.2.3. Game session Requirements

Requirement Verdict Completion Deviations / Comments

30 Schedule sessions for a group Partial 2 The page is present in the frontend, but
the rest of its UI is not implemented.

Backend support is available.

31 When scheduling a session, specify the
game, time and users

Fail 0 -

32 Add and remove users to/from a session
that is already scheduled

Fail 0 -

33 Get an email notification when a game is
scheduled

Fail 0 SMTP Email service is not
implemented

Table 5.7 - Unfulfilled game session requirements

Page 101 of 133

5.5.2.4. Groups Requirements

Requirement Verdict Completion Deviations / Comments

40 Only users of the group must have access
to its views & sessions

Partial 3 Some views do not validate user
membership.

45 Delete groups they are members of Partial 2 APIs are available to delete a group,
but the consequence of deleting a

group is not handled properly (e.g.,
removing user sessions).

46 Associate student and parents Fail 0 The backend support for this
requirement is present, but it is not

implemented in the frontend.

47 Remove users in a group Partial 1 Frontend implements the necessary
controls, but the functionality is not

present.

Table 5.8 - Unfulfilled groups feature requirements

5.5.2.5. Performance Reports Requirements

Requirement Verdict Completion Deviations / Comments

52 If a game was time based, view report on
how well the user faired against the
clock

Partial 1 UI is partially implemented, but report
is not implemented.

53 If a game was score based, view report
on the overall user scores

Partial 1 UI is partially implemented, but report
is not implemented.

Table 5.9 - Unfulfilled performance report requirements

5.5.2.6. Dashboard Requirements

Requirement Verdict Completion Deviations / Comments

62 View the latest 5 new chat notifications

across all groups where user is member

of

Fail 0 Chat notification schema is not present,

but the UI is implemented

68 Preview an existing game Fail 0 Preview icon is present but its action is

not implemented

72 Know the number of members in each

group at a glance

Partial 3 UI is present. Backend simply needs to

return the member count.

Table 5.10 - Unfulfilled dashboard feature requirements

Page 102 of 133

5.6. User Testing
Since the system was still only available through the development computer, the only feasible

method to provide users with a version of the system was through a remote desktop software.

With this limitation in mind and a list of volunteers finalized, the plan for volunteer evaluation

was as shown below in

Stage Action Items

Setup • Create and configure new databases in the EDGE system for testing.

• Clear any test project / resource files from the EDGE file system.

• Setup a mobile device for video conferencing.

• Setup development environment with remote desktop software.

Pre-planning • Finalize a date and time for hosting a three-hour evaluation session.

• Assist all volunteers set up the remote desktop client software.

• Host a pre-planning meeting to summarize the evaluation process and pre-assign roles

in the system.

Evaluation • Host online video conference and start remote desktop session.

• Let each volunteer evaluate the system while providing support for any queries by the

volunteer. Document any important points.

• After all volunteers have evaluated the system discuss findings.

• Wrap up session.

Survey • Send out the online link to re-watch the recording of the user evaluation process.

• Send out an online survey form to collect feedback.

Feedback

compiling

• Send out a ‘contribution acknowledgement’ mail to volunteers.

• Collect responses of the online surveys and combine with documentation from the

evaluation session itself, to produce a compiled list of findings.

Table 5.11 - User testing action plan

Page 103 of 133

5.6.1. Finalized User Roles
The five volunteers selected were assigned five different roles in the EDGE system to represent

a hypothetical school classroom setup. The volunteer’s names will remain anonymous and

instead be referred to as volunteers A through E. The roles are assigned as shown in Table 5.12

below.

Volunteer Role Association

A Teacher -

B Student 1 Child of Parent 1

C Student 2 Child of Parent 2

D Parent 1 Parent of Student 1

E Parent 2 Parent of Student 2

Table 5.12 - User testing volunteer user roles

5.6.2. Informal User Feedback
After users evaluated the system for the first time, a discussion was initiated to understand their

impression and collect feedback regarding the EDGE system. This discussion was informal

and precedes the online survey that would take place afterwards. The collected user feedback

is documented below in Table 5.13.

Page 104 of 133

User Impression Informal Feedback

Volunteer A Refreshing “I like the interface of the system. It is user friendly and neatly organized.

After registration I was taken to a blank screen so it took a few seconds to

realize what I should do next. After that however the system became intuitive

to use.

I am impressed by the ability to literally edit a game inside of my web

browser. There was only one template to try out but I believe more can be

added in the future.

Since it wasn’t possible to schedule a session, I used the session automatically

created by the system for my game and created a group around it.

Adding users was as simple as sharing a Zoom meeting link. It’s really nice.

It was a little confusing that in order to access the session chat, I needed to

play a game but didn’t need to actually do any actions in the game. Maybe

these can be separated.

Finally, the reports were not extremely detailed but I can imagine how it can

be improved further. I’m not sure if a non-techy teacher can feel at home with

this system, but it’s a really refreshing attempt at teaching in schools.”

Volunteer B Interesting “Students should definitely get an email or some form of notification when a

session is scheduled. Not having this is a major drawback.

Once I started the game it just feels like any generic mini game. The system’s

full potential is not realized because the demo game is not very fun to play.

The objectives and guidance systems were interesting to see. I noticed it

updated when I made progress in the game. It also reflected on the overall

session report.”

Volunteer C Needs

improvement

“The concept is very novel. I was excited to see what this new system was

like, especially since I enjoy computer games. While progress tracking, chats

and reports are nice I feel the actual gameplay aspect needs improvement. I

also didn’t feel like I learned anything.”

Page 105 of 133

Volunteer D Good “If I were a real parent and I could get insights into my child’s school work

using online reports – I could take informed decisions on how I can help them.

Today’s education systems really cut parents out of the equation. I feel like

the EDGE project has a lot of potential.”

Volunteer E Okay “Parents don’t have a lot to do in this system other than view reports. I wish

they could observe their child’s performance in-game. But other than that it

looks like the system works as described”

Table 5.13 - Informal feedback collected during user testing

Page 106 of 133

5.6.3. Online Survey
The pool of users was not large enough to conduct a comprehensive online survey about the

system. However, a survey was still used to quantify user feedback after the evaluation process.

The questions contained in the online survey are shown in Table 5.14 below. All questions

have a linear scale, where low and high values represent negative and positive responses

respectively.

Category # Question

Impression and

usability

1 Are you satisfied about the current methods of delivering knowledge in Sri

Lankan Schools?

 2 Do you agree that an E-Learning system like 'EDGE' can address issues in

learning in Sri Lanka?

 3 Do you think 'EDGE' is too complicated for the Sri Lankan education system?

 4 Do you think the current set of features address the needs of you, as a user?

Performance 5 Was the user interface of the system responsive?

 6 Are you satisfied with how the game window is displayed?

Features 7 Do you like how game progress is tracked during games?

 8 Do you like how the system guides users when they get stuck?

 9 Do you agree the generated reports convey useful information?

Future work 10 Finally, do you think the 'EDGE' system has room to improve?

Table 5.14 - User testing online survey questions

Page 107 of 133

Figure 5.21 shows a preview of the Google Form created containing the online survey questions

mentioned in Table 5.14 above. They survey can be accessed using the web link (Dodangoda,

2022)

Figure 5.21 - post evaluation survey form preview

5.6.4. Survey Results

Page 108 of 133

5.6.4.1. Impression in Context

Question 1 and 2 in the survey measure whether users believe the system’s use case is justified

in the context of the Sri Lankan education system. The user’s responses to the survey are

documented in Table 5.15 and graphically shown in Figure E.1. Users seem to agree that there

indeed is a problem the method of learning at Sri Lankan schools, and that a system such as

EDGE could address those problems.

Question Low Scale High
Scale

Responses to each
scale

1 2 3 4 5

1 Are you satisfied about the current
methods of delivering knowledge in Sri
Lankan Schools?

Not Satisified Highly
Satisfied

4 1

2 Do you agree that an E-Learning system
like 'EDGE' can address issues in learning
in Sri Lanka?

Highly Disagree Highly
Agree

 2 3

Table 5.15 - Survey responses for system impression

5.6.4.2. Usability

Questions 3 & 4 address the user’s opinion about the system usability. While complexity is

subjective, the purpose of the user testing process is to understand the user’s perspective and

thus I believe it is a suitable question for this survey.

The responses shown in Table 5.16 and Figure E.2 are spread throughout the scale and don’t

show a clear pattern with regards to system usability. It can be concluded that users feel

conflicted regarding the systems usability – which may be reflecting of the unfinished nature

of the project.

Page 109 of 133

Question Low Scale High Scale Responses to each
scale

1 2 3 4 5

3 Do you think 'EDGE' is too complicated
for the Sri Lankan education system?

Very
Complicated

Very Intuitive 1 2 1 1

4 Do you think the current set of features
address the needs of you, as a user?

Not at all Yes, it does! 1 1 1 2

Table 5.16 - Survey responses for system usability

5.6.4.3. Performance

Questions 5 and 6 represent the user’s perception regarding the system performance in two

unrelated questions. They are documented in Table 5.17 and Figure E.3. While users believe

the system is highly responsive (even when evaluated through a remote desktop connection),

they have reserved opinions regarding how the game window is presented.

The game player component uses a HTML canvas that may not render the game at smooth

frame rate. Further, it could be that this was an effect perceived when viewed through the

remote connection. As a conclusion regarding performance, while other parts of the system can

be left as is, the game window’s performance needs a tune up.

Question Low Scale High Scale Responses to each

scale

1 2 3 4 5

5 Was the user interface of the system

responsive?

Very Sluggish

Very

Responsive

 5

6 Are you satisfied with how the game

window is displayed?

Not Satisfied Highly

Satisfied

 1 2 2

Table 5.17 - Survey responses for system performance

Page 110 of 133

5.6.4.4. Feature Set

Questions 7, 8 and 9 evaluate the user’s opinion regarding the features offered in the EDGE

system. They are documented in Table 5.18 and Figure E.5. According to the responses users

are generally satisfied with the objectives tracking system rather than the guiding system. This

could be due to how its worded throughout the system.

Specifically, the term ‘guidance trigger’ is less understandable than the term ‘objective’. The

performance reports feature has been perceived as very useful by some users and moderately

useful by one user.

Question Low Scale High Scale Responses to each

scale

1 2 3 4 5

7 Do you like how game progress is

tracked during games?

Not Satisfied Highly

Satisfied

 4 1

8 Do you like how the system guides

users when they get stuck?

Not Satisfied Highly

Satisfied

 4 1

9 Do you agree the generated reports

convey useful information

Highly

Disagree

Highly Agree 1 3 1

Table 5.18 - Survey responses for system feature set

Page 111 of 133

5.6.4.5. Feature Expansion

The final question asks users whether they believe the system can be improved in the future

(i.e., whether the system has potential to grow). This question is documented in Table 5.19 and

Figure E.4. All users unanimously agree that the system can be improved. This could be due to

various reasons but it is reassuring to know that users feel the project is deserving of future

improvement.

Question Low Scale High Scale Responses to each

scale

1 2 3 4 5

10 Finally, do you think the 'EDGE'

system has room to improve?

Highly

Disagree

Highly Agree 5

Table 5.19 - Survey responses for future expansion

Page 112 of 133

Chapter 6 - Conclusion
Referring back to the original objectives of the system, the goal was to create a hosted version

of the system and demonstrate its applicability with real users. Whilst these objectives were

not completely met, the resulting implementation of the system provides a sufficient solution

to address the original problem: making game-based e-learning more accessible to the Sri

Lankan education system.

6.1. Retrospective
The main driving factor and its most critical weakness is the scale of the project. Some of the

problems encountered during development are:

• Initial difficulties in adopting agile methodologies to a one-person project.

• Underestimating the nuance complexity of the initially planned features.

• Poorly planned user testing sessions.

• Focusing effort on both planning ahead and development simultaneously.

However, it was possible to address some of these problems creatively and continue developing

the system to its current state. Some of the lessons learnt are:

• Agile development allows new constraints to be discovered as the project is developed.

It is important to incorporate these constraints into future planning instead of trying to

push against them.

• Organizing code bugs with systems such as Jira improves developer productivity.

• Real volunteer test users should have been finalized at the start of the project instead of

very late into development.

• Prototyping user interfaces and code with pen & paper puts problems into perspective.

It is easier to think with the problem in front of you, rather than in your mind.

• Systems incorporating many different technologies is exciting to propose and start

working on. However, it is important to always put the problem at the center of thinking

and not the number of technologies used.

Page 113 of 133

6.2. Future Work
Stating that this project was a challenge to develop is a severe understatement. After two years

in development, it is still not complete. After the conclusion of the MIT individual thesis, I will

continue to fix defects and work towards releasing a hosted version for testing with real users.

Page 114 of 133

References
BERG, B. M., 2015. UNPACKING DIGITAL GAME- BASED LEARNING The complexities

of developing and using educational games, Skövde: University of Skövde.

Kapuler, D., 2020. 50 Sites & Apps for K-12 Education Games. [Online]

Available at: https://www.techlearning.com/tl-advisor-blog/4684

[Accessed 23 August 2020].

eduLanka, n.d. Grade 6 School syllabus and Teacher Instruction Meterials. [Online]

Available at: https://www.edulanka.lk/syllabus/grade6

Prodigy Education Inc, n.d. Prodigy Education. [Online]

Available at: https://www.prodigygame.com/main-en/

[Accessed 10 November 2020].

JumpStart, n.d. Hyper Blast 2 HD – Math App for iPhone, iPad, iPod Touch, & Nook.

[Online]

Available at: https://www.jumpstart.com/mathblaster/mobile-apps/math-blaster-hyperblast-2

Oodlü Ltd., n.d. The science behind Oodlu. [Online]

Available at: https://oodlu.org/the-science-behind-oodlu

Educandy, n.d. Educandy – Making learning sweeter!. [Online]

Available at: https://www.educandy.com/

[Accessed 10 November 2020].

Kahoot! Corporation, n.d. What is Kahoot! | How to play Kahoot!. [Online]

Available at: https://kahoot.com/what-is-kahoot/

Kahoot! Corporation, n.d. Business pricing - Kahoot!. [Online]

Available at: https://kahoot.com/business/pricing/

Dalsgaard, C., n.d. Social software: E-learning beyond learning management systems.

European Journal of Open, Distance and E-Learning.

Page 115 of 133

Astutik, S. & Prahani, B. K., 2018. The Practicality and Effectiveness of Collaborative

Creativity Learning (CCL) Model by Using PhET Simulation to Increase Students’ Scientific

Creativity. International Journal of Instruction, 11(4), pp. 409-424.

University of Colorado, n.d. Interactive Simulations for Science and Math. [Online]

Available at: https://phet.colorado.edu/

[Accessed 10 November 2020].

Anon., n.d. Can I use... Support tables for HTML5, CSS3, etc. [Online]

Available at: https://caniuse.com/?search=HTML5

Martínez-Monés, A., Reffay, C., Hoyos-Torío, J. E. & Muñoz-Cristóbal, J. A., 2017.

Learning Analytics with Google Classroom: Exploring the possibilities. s.l., s.n.

Google, n.d. Run an originality report on your work - Classroom Help. [Online]

Available at: https://bit.ly/2N5dmgv

Cavus, N. & Zabadi, T., 2014. A Comparison of Open Source Learning Management

Systems. Procedia - Social and Behavioral Sciences.

Anon., n.d. Moodle in English: Disadvantages to using Moodle?. [Online]

Available at: https://moodle.org/mod/forum/discuss.php?d=231989

Blender Foundation, n.d. Node Editor Introduction — Blender Manual. [Online]

Available at: https://bit.ly/3aHaK0I

[Accessed 10 November 2020].

BuildBox, n.d. BuildBox. [Online]

Available at: https://www.buildbox.com/help/buildbox-3-manual/ad-monetization/

[Accessed 10 November 2020].

Anon., n.d. BuildBox Review. [Online]

Available at: https://www.slant.co/options/1098/~buildbox-review

Anon., n.d. An Honest Comparative Review Of BuildBix & Unity From A Complete Novice.

[Online]

Available at: https://www.buildbox.com/forum/index.php?threads/an-honest-comparative-

review-of-bb-unity-from-a-complete-novice.17162/

Page 116 of 133

Gorynych, M., n.d. Meet ct.js - your new 2D game editor. [Online]

Available at: https://ctjs.rocks/

Giera, J., 2014. The Costs And Risks Of Open Source, s.l.: FORRESTER.

Davoudian, A., Chen, L. & Liu, M., 2018. A survey on NoSQL stores. ACM Computing

Surveys, Volume 51, pp. 1-43.

Redis.IO, n.d. Redis FAQ. https://redis.io/topics/faq.

LevelDB, n.d. LevelDB Wiki. [Online]

Available at: https://en.wikipedia.org/wiki/LevelDB

[Accessed 10 January 2021].

RocksDB, n.d. RocksDB FAQ. [Online]

Available at: https://rocksdb.org/docs/support/faq

[Accessed 10 January 2021].

LMDB, n.d. LMDB Release Notes. [Online]

Available at: https://lmdb.readthedocs.io/en/release/

[Accessed 10 January 2021].

StackOverflow, 2020. Stack Overflow Developer Survey 2020. [Online]

Available at: https://bit.ly/3cND5F7

[Accessed 10 January 2021].

LeFever, L., n.d. The Art of Explanation. s.l.:s.n.

Griss, M., 2000. Implementing Product-Line Features with Component Reuse. Vienna, s.n.

Figma Inc., n.d. Figma user interface design tool. [Online]

Available at: https://www.figma.com/

Nintendo Co., Ltd., n.d. Super Mario Bros. [Online]

Available at: https://www.nintendo.co.uk/Games/NES/Super-Mario-Bros-803853.html

Atlassian Corporation Plc, n.d. Jira | Issue & Project Tracking Software. [Online]

Available at: https://www.atlassian.com/software/jira

Page 117 of 133

Jasmine Project, n.d. Jasmine Test Framework. [Online]

Available at: https://jasmine.github.io/

Microsoft Corporation, n.d. Visual Studio Code Product Page. [Online]

Available at: https://code.visualstudio.com/

Google LLC, n.d. Google Chrome Browser. [Online]

Available at: https://www.google.com/chrome/

Google LLC, n.d. Google Calendar. [Online]

Available at: https://www.google.com/calendar/about/

Google LLC, n.d. Google Meet. [Online]

Available at: https://apps.google.com/meet/

AnyDesk Software GmbH, n.d. AnyDesk Remote Desktop Software. [Online]

Available at: https://anydesk.com/en/solutions/remote-desktop

Postman, Inc., n.d. Postman API Platform. [Online]

Available at: https://www.postman.com/

Dodangoda, T., 2022. EDGE System Post Evaluation Survey. [Online]

Available at: https://forms.gle/ZztjBwhRw8FRAEup7

OpenJS Foundation, n.d. GitHub page for the Multer file-handling middleware for Node JS.

[Online]

Available at: https://github.com/expressjs/multer

[Accessed 2021].

Zaytsev, J., Kienzle, S. & Bogazzi, A., n.d. Fabric JS Home Page. [Online]

Available at: http://fabricjs.com/

[Accessed 2021].

Page 118 of 133

Appendix A – Prodigy System Teacher Reports

Figure A.1 - Prodigy mathematics game teacher reports

Page 119 of 133

Appendix B – Oodlu Platform Student Analytics

Figure B.1 - Oodlu platform analytics screen

Page 120 of 133

Appendix C – System Requirement Specification

C.1. Game Editor Requirements
Area User Requirement Req. ID

Level

Editor

Game creator,

Teacher

Manipulate objects in a level scene EFR-1

Add behavior to objects EFR-2

Customize a level using a friendly UI without

coding

EFR-3

Game creator Define UI for customizing level behavior EFR-4

Set default values for level customizations EFR-5

Add behavior to objects via code EFR-6

Asset

Manager

Game creator,

Teacher

Add image and sound assets to the game from user's

device

EFR-7

Replace existing assets in game templates EFR-8

Level

Mgmt.

Game creator,

Teacher

Create levels EFR-9

Duplicate existing levels EFR-10

Delete levels EFR-11

Game

meta-data

mgmt..

Game creator,

Teacher

Set game title and description EFR-12

Select a template for a game EFR-13

Template must not be modifiable after creating

games

EFR-14

Set objectives for game EFR-15

Set guidance trigger points for the game EFR-16

Specify report types for a game EFR-17

Table C.1 - Project game editor requirements

Page 121 of 133

C.2. Game Play Requirements
Area User Requirement Req. ID

Entire

module

All except

parents

Participate in game play sessions EFR-18

Get notified about network errors as soon as they occur EFR-19

Game

canvas

All except

parents

View the game scene in acceptable visual fidelity EFR-20

Interact with game using a Keyboard and Mouse

connected to the host device

EFR-21

Pause game if user backgrounds the session EFR-22

Track user game progress and events for reports EFR-23

Guidance

system

All except

parents

Record user's progress in the game for each session EFR-24

Prompt user with hints to progress in the game, if they

are struggling

EFR-25

Objectives

system

All except

parents

Record user's objective completion in the game for

each session

EFR-26

Provide indicator about the progress of each objective

in the game

EFR-27

Communi

-cation

All except

parents

Facilitate a group chat for each game play session EFR-28

Group chat must persist across play sessions for each

session

EFR-29

Table C.2 - Project game play requirements

Page 122 of 133

C.3. Game Sessions Requirements
Area User Requirement Req. ID

Entire

Module

Game creator,

Teacher

Schedule sessions for a group EFR-30

When scheduling a session, specify the game, time

and users

EFR-31

Add and remove users to/from a session that is

already scheduled

EFR-32

Get an email notification when a game is scheduled EFR-33

Participate in a game session EFR-34

Student Participate in a game session EFR-35

Get an email notification when a game is scheduled EFR-36

Table C.3 - Project game sessions requirements

Page 123 of 133

C.4. Groups Requirements
Area User Requirement Req. ID

Membership All users Join a group using an invite link EFR-37

When a logged out user joins via a group invite link,

require them to login / registration first. Afterwards,

they must be redirected to the group page.

EFR-38

Leave a group the user was added to EFR-39

Only users of the group must have access to its views

& sessions

EFR-40

Views All users View group summary EFR-41

View sessions in the group EFR-42

View users in the group EFR-43

View reports in a group EFR-44

Management Game creator,

Teacher

Delete groups they are members of EFR-45

Create new groups EFR-79

Associate student and parents EFR-46

Remove users in a group EFR-47

Edit sessions in a group EFR-48

Table C.4 - Project groups requirements

Page 124 of 133

C.5. Performance Reports Requirements
Area User Requirement Req. ID

Report

Types
All

Users

View report on how often a user interacted with the

system.

EFR-49

View report on how well the user completed the game

objectives.

EFR-50

View report on how and what guidance points (hints)

were triggered.

EFR-51

If a game was time based, view report on how well the

user faired against the clock

EFR-52

If a game was score based, view report on the overall user

scores

EFR-53

Data

Collection
All

except

parents

Collect performance metrics on users participating in

game sessions

EFR-54

Only collect metrics marked for collection in the game

metadata

EFR-55

Refrain from collecting or processing PII of users, other

than names

EFR-56

Report

Visualization
All

Users

Reports should be made available for each session in a

group

EFR-57

Overall reports calculated for all users must be visible to

all users

EFR-58

Reports be visualized as graphs and tabular data where

possible

EFR-59

Table C.5 - Project performance reports requirements

Page 125 of 133

C.6. Dashboard Requirements
Area User Requirement Req. ID

Summary All Users View list of scheduled ongoing sessions across all groups

for the logged user

EFR-60

View list of scheduled upcoming sessions across all

groups for the logged user

EFR-61

View the latest 5 new chat notifications across all groups

where user is member of

EFR-62

When clicked on any of the list items navigate to its

corresponding view in the correct group

EFR-63

Games &

templates

Game

creators,

Teacher

Ability to start creating a new game EFR-64

Search list of games EFR-65

Delete an existing game EFR-66

Edit an existing game EFR-67

Preview an existing game EFR-68

List games created by the user in a tabular form EFR-69

Groups Game

creator,

Teacher

Ability to start creating a new group EFR-70

All Users List groups the user is member of in a tabular form EFR-71

Know the number of members in each group at a glance EFR-72

Copy the invite link to each group EFR-73

View the group EFR-74

Table C.6 - Project dashboard requirements

Page 126 of 133

C.7. User Requirements
Area User Requirement Req. ID

Login All Users Login using user only email & password EFR-75

 Logout of the system once logged in EFR-76

Registration All Users Any user must be able to register in the system EFR-77

 Users cannot enter emails of existing user accounts EFR-78

Table C.7 - Project user requirements

Page 127 of 133

Appendix D – Group Members Test Script
import * as usersDAO from '../src/model/dao/users';

import * as userRelationshipsDAO from '../src/model/dao/users/relationships';

import * as groupUsersDAO from '../src/model/dao/group/users';

import * as groupsDAO from '../src/model/dao/group';

import { UserRelationshipType, UserType } from '../../commons/src/models/user';

import { initializeTestDB } from './utils/utils';

const kPrivileged = 'privileged';

const kTeachers = 'teachers';

const kStudents = 'students';

const kParents = 'parents';

const kRStudent = 'relStudent';

const kRParent = 'relParent';

let groupWithThreeUsers = '';

let groupWithOneParentTwoChildren = '';

function createUser(name: string, type: string): Promise<string>{

 return new Promise<string>((resolve, reject) => {

 usersDAO.createUser(name, name + '@test.lk', type, '', (status, msg, result) => {

 if (status){

 if (result == null)

 reject('Create user returned null response');

 else

 resolve(result.user_id);

 }

 else

 reject(msg);

 });

 })

}

function createGroup(tag: string, users: string[]): Promise<string>{

 return groupsDAO.createGroup(tag, 'Test Group', '', 'testkey', '10', users);

}

/**

 * @param parentId Parent

 * @param childId Child

 * @returns

 */

function createParentChildAssociation(parentId: string, childId: string): Promise<boolean>{

 return userRelationshipsDAO.createRelationship(

 parentId, childId, UserRelationshipType.guardianAndChild

);

}

async function setupData(){

 let t1 = await createUser('teacher', UserType.teacher);

Page 128 of 133

 let p1 = await createUser('parent1', UserType.parent);

 let s1 = await createUser('student1', UserType.student);

 let r1 = await createParentChildAssociation(p1, s1);

 let p2 = await createUser('parent2', UserType.parent);

 let s2 = await createUser('student2', UserType.student);

 let r2 = await createParentChildAssociation(p2, s2);

 let p3 = await createUser('parent3', UserType.parent);

 let s3 = await createUser('student3', UserType.student);

 let s4 = await createUser('student4', UserType.student);

 let r3 = await createParentChildAssociation(p3, s3);

 let r4 = await createParentChildAssociation(p3, s4);

 expect(r1).toBeTrue();

 expect(r2).toBeTrue();

 expect(r3).toBeTrue();

 expect(r4).toBeTrue();

 groupWithThreeUsers = await createGroup('Three Users', [t1, p1, s1]);

 groupWithOneParentTwoChildren = await createGroup('Single Parent', [t1, p3, s3, s4]);

}

describe('ES-18: Group Members DAO tests', () => {

 beforeAll(async () => {

 try{

 await initializeTestDB();

 await setupData();

 }

 catch(error){

 console.log("Database Error while setting up data...");

 fail(error);

 }

 });

 // MARK Test: Three Users

 it('ES-19 (1): Three Users - Composition', async () => {

 const result = await groupUsersDAO.getGroupUsers(groupWithThreeUsers);

 expect(result.privileged.length).withContext(kPrivileged).toBe(0);

 expect(result.teachers.length).withContext(kTeachers).toBe(1);

 expect(result.students.length).withContext(kStudents).toBe(1);

 expect(result.parents.length).withContext(kParents).toBe(1);

 });

 it('ES-19 (2): Three Users - Association Names', async () => {

 const result = await groupUsersDAO.getGroupUsers(groupWithThreeUsers);

 const relOfStudent = result.students[0].associations[0];

 const relOfParent = result.parents[0].associations[0];

Page 129 of 133

 expect(relOfStudent.relationshipName).withContext(kRStudent).toBe('Child of');

 expect(relOfParent.relationshipName).withContext(kRParent).toBe('Parent of');

 });

 it('ES-19 (3): Three Users - Association Composition', async () => {

 const result = await groupUsersDAO.getGroupUsers(groupWithThreeUsers);

 const relOfStudent = result.students[0].associations[0];

 const studentRelUsers = relOfStudent.users!;

 const relOfParent = result.parents[0].associations[0];

 const parentRelUsers = relOfParent.users!;

 expect(studentRelUsers.length).withContext('sRel1').toEqual(1);

 expect(studentRelUsers[0].user_id).withContext('sRel2').toBe(result.parents[0].user_id);

 expect(studentRelUsers[0].user_name).withContext('sRel3').toBe(result.parents[0].user_name);

 expect(parentRelUsers.length).withContext('pRel1').toEqual(1);

 expect(parentRelUsers[0].user_id).withContext('pRel2').toBe(result.students[0].user_id);

 expect(parentRelUsers[0].user_name).withContext('pRel3').toBe(result.students[0].user_name);

 });

 // MARK Test: Single Parent

 it('ES-20 (1): Single Parent - Composition', async () => {

 const result = await groupUsersDAO.getGroupUsers(groupWithOneParentTwoChildren);

 expect(result.privileged.length).withContext(kPrivileged).toBe(0);

 expect(result.teachers.length).withContext(kTeachers).toBe(1);

 expect(result.students.length).withContext(kStudents).toBe(2);

 expect(result.parents.length).withContext(kParents).toBe(1);

 });

 it('ES-20 (2): Single Parent - Association Count', async () => {

 const result = await groupUsersDAO.getGroupUsers(groupWithOneParentTwoChildren);

 const student1 = result.students[0];

 const student2 = result.students[1];

 const parent = result.parents[0];

 expect(student1.associations.length).withContext('s1Rels').toEqual(1);

 expect(student2.associations.length).withContext('s2Rels').toEqual(1);

 expect(parent.associations.length).withContext('pRels').toEqual(1);

 expect(parent.associations[0].users!.length).withContext('pRelUsers').toEqual(2);

 });

 it('ES-20 (3): Single Parent - Association Composition', async () => {

 const result = await groupUsersDAO.getGroupUsers(groupWithOneParentTwoChildren);

 const student1 = result.students[0];

 const student2 = result.students[1];

Page 130 of 133

 const parent = result.parents[0];

 const student1Rel = result.students[0].associations[0].users!;

 const student2Rel = result.students[1].associations[0].users!;

 const parentRel1 = result.parents[0].associations[0].users!;

 expect(student1Rel[0].user_id).withContext('s1ParentId').toBe(parent.user_id);

 expect(student2Rel[0].user_id).withContext('s2ParentId').toBe(parent.user_id);

 expect(student1Rel[0].user_name).withContext('s1ParentName').toBe(parent.user_name);

 expect(student2Rel[0].user_name).withContext('s2ParentName').toBe(parent.user_name);

 expect(parentRel1[0].user_id).withContext('pRel1Id').toBe(student1.user_id);

 expect(parentRel1[1].user_id).withContext('pRel2Id').toBe(student2.user_id);

 expect(parentRel1[0].user_name).withContext('pRel1Name').toBe(student1.user_name);

 expect(parentRel1[1].user_name).withContext('pRel2Name').toBe(student2.user_name);

 });

});

Page 131 of 133

Appendix E – Online Survey Results

Figure E.1 - Online survey responses for system impression

Figure E.2 - Online survey responses for system usability

Page 132 of 133

Figure E.3 - Online survey responses for system performance

Figure E.4 - Online survey response for future expansion

Page 133 of 133

Figure E.5 - Online survey responses for feature set

	Declaration
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 - Introduction
	1.1. Background and Motivation
	1.2. Objectives
	1.3. Dissertation Structure

	Chapter 2 - Background
	2.1. Similar Systems Review
	2.1.1. Game-based Learning Software
	2.1.1.1. Prodigy Mathematics Games
	2.1.1.2. Oodlu Educational Games
	2.1.1.3. Jumpstart Math Blaster HyperBlast 2
	2.1.1.4. Educandy
	2.1.1.5. Kahoot
	2.1.1.6. Conclusion

	2.1.2. E-Learning Software
	2.1.2.1. PhET Interactive Simulations
	2.1.2.2. Google Classrooms
	2.1.2.3. Moodle Learning Management System
	2.1.2.4. Conclusion

	2.1.3. Two-dimensional Game Development Systems
	2.1.3.1. BuildBox
	2.1.3.2. CT.JS
	2.1.3.3. Conclusion

	2.1.4. Related Technologies
	2.1.4.1. Data Persistence
	2.1.4.2. JavaScript Frameworks

	2.1.5. Related Design Strategies
	2.1.5.1. Design Patterns
	2.1.5.2. Logical Structuring of Components

	2.2. Use-case Diagram
	2.2.1. Key Concepts
	2.2.1.1. Game Templates
	2.2.1.2. Game Sessions
	2.2.1.3. Groups
	2.2.1.4. Guidance and Objectives

	2.3. Requirement Specification
	2.3.1. Functional Requirement Specification
	2.3.1.1. Game Editor Requirements
	2.3.1.2. Gameplay and Communications Requirements
	2.3.1.3. Game Session Requirements
	2.3.1.4. Users and Groups Requirements
	2.3.1.5. Performance Report Requirements
	2.3.1.6. Dashboard Requirements

	2.3.2. Non-functional Requirements

	Chapter 3 - Design
	3.1. System Architecture
	3.2. Designing the Game Editor
	3.3. Dual Storage Engine Approach
	3.4. Main Classes of the System
	3.4.1. User Class Cluster
	3.4.2. Game Sessions Class Cluster

	3.5. Main Flows of the System
	3.5.1. User Login and Registration
	3.5.2. Game and Game Template Creation

	3.6. Main Interfaces
	3.6.1. Landing Page
	3.6.2. Teacher Dashboard
	3.6.3. Gameplay Window

	Chapter 4 - Implementation
	4.1. Development Process
	4.2. Technology Stack
	4.3. Development Setup
	4.3.1.1. Project Structure
	4.3.1.2. Code Sharing
	4.3.1.3. Docker and Docker Compose

	4.4. Relational Schema
	4.5. Interfaces and Code Structures
	4.5.1. Group Invite System
	4.5.2. Game Editor
	4.5.2.1. Game Editor Overview Section
	4.5.2.2. Game Editor Resources Section
	4.5.2.3. Game Editor Levels Section
	4.5.2.4. Game Editor Level Scene Editor Section
	4.5.2.5. Game Editor Level Properties Editor Section
	4.5.2.6. Game Editor Level Scripts Editor Section

	4.5.3. Performance Reports

	Chapter 5 - Testing and Evaluation
	5.1. Test Documentation
	5.1.1. ‘Test’ Issue Types
	5.1.2. ‘Bug’ Issue Types
	5.1.3. Jira Workflows
	5.1.4. Jira Workflow Scheme

	5.2. Testing Strategy
	5.2.1. Requirements Verification
	5.2.2. Development Testing
	5.2.3. User Testing
	5.2.3.1. Limitations in Volunteer Selection
	5.2.3.2. Volunteer Selection Criteria

	5.2.4. Automated Testing Tools
	5.2.5. Manual Testing Methods

	5.3. Test Cases
	5.3.1. Exploratory Testing
	5.3.1.1. Testing the Game Canvas

	5.3.2. Backend Unit Testing
	5.3.2.1. Testing Data Access
	5.3.2.2. Testing Group Member Data Access

	5.3.3. Angular UI Testing
	5.3.3.1. Testing the Game Resources View

	5.4. Test Result Summary
	5.5. Requirements Verification
	5.5.1. Requirements Verification Summary
	5.5.2. Requirement Verification Breakdown
	5.5.2.1. Game Editor Requirements
	5.5.2.2. Gameplay Requirements
	5.5.2.3. Game session Requirements
	5.5.2.4. Groups Requirements
	5.5.2.5. Performance Reports Requirements
	5.5.2.6. Dashboard Requirements

	5.6. User Testing
	5.6.1. Finalized User Roles
	5.6.2. Informal User Feedback
	5.6.3. Online Survey
	5.6.4. Survey Results
	5.6.4.1. Impression in Context
	5.6.4.2. Usability
	5.6.4.3. Performance
	5.6.4.4. Feature Set
	5.6.4.5. Feature Expansion

	Chapter 6 - Conclusion
	6.1. Retrospective
	6.2. Future Work

	References
	Appendix A – Prodigy System Teacher Reports
	Appendix B – Oodlu Platform Student Analytics
	Appendix C – System Requirement Specification
	C.1. Game Editor Requirements
	C.2. Game Play Requirements
	C.3. Game Sessions Requirements
	C.4. Groups Requirements
	C.5. Performance Reports Requirements
	C.6. Dashboard Requirements
	C.7. User Requirements

	Appendix D – Group Members Test Script
	Appendix E – Online Survey Results

