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ABSTRACT

Revolution of physical infrastructure, increasing population, and advancement in technology

contributed to rapid increase in published information. This rapid growth of published

information will give potential users problems such as how to find specific information from

a large document corpus.The researcher focused on circular corpus and identified the absence

of a well functioning circular retrieval system will lead to significant problems such as need

to put a lot of effort and time to search for a specific circular which interested in. This

dissertation will address these issues by implementing a circular storage and retrieval system

that will enable users to quickly and easily retrieve the circulars what they are looking

for.Along with circular management system a personalized circular recommendation system

will also be built which recommends circulars based on previously viewed circulars.

Circular storage and retrieval system will be implemented on top of circular document

collection maintained by a government ministry. To enable users to quickly and easily

retrieve circulars, the system 1) Allows users to enter tags specific to circulars when

uploading circulars. 2) Allows users to narrow down the searched results by advanced filter

criteria such as words to include, words to exclude, matching phrase, year of circular and tags.

3) Query match happens using an inverted index and circulars will be ranked using BM25

algorithm before passing the results to front end.

Also for the ease of the user there will be a personalized circular recommendation system to

recommend circulars based on previously viewed circulars and that is implemented using

TF-IDF matrix and cosine-similarity matrix.

iii



TABLE OF CONTENT

DECLARATION i

ABSTRACT iii

TABLE OF CONTENT iv

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ABBREVIATIONS viii

CHAPTER 1 - INTRODUCTION 1
1.1. Motivation 1
1.2. Statement of the Problem 1
1.3. Research Aims and Objectives 2

1.3.1. Aim 2
1.3.2. Objectives 3

1.4. Research Questions 3
1.5. Scope 4

CHAPTER 2 - LITERATURE REVIEW 6
2.1. Information Retrieval 6
2.2. Background Study 7

2.2.1. Current Information Storage and Retrieval Systems 7
2.2.2. Document Categorization 8
2.3. Basic Components in an Information Retrieval System 13
2.3.1. Inverted Index 13
2.3.2. User Query Types 16
2.3.3. Document Retrieval and Ranking 18

● Boolean Model 18
● Vector-Space Model (VSM) 18
● Bag of Words Assumption 19
● Term Frequency–Inverse Document Frequency (TF-IDF) 21
● Best Match 25 (BM25) 22

2.4. Recommender System 23
2.4.1. Content Based Recommenders 23
2.4.2. Collaborative Filtering 25
2.4.3. Knowledge-based Recommender Systems 26
2.4.4. Hybrid Recommender Systems 26

2.5. Document similarity measures 27
● Cosine Similarity 27

iv



CHAPTER 3 - METHODOLOGY 29
3.1. Data Retrieving and Pre-processing 29

3.1.1. Data Retrieving 29
3.1.2. Bulk Uploading 30
3.1.3. Adding Tags, Filter with Tags Which PDF belongs to 30
3.1.4. Pre-processing 31

● Removal of punctuations and white spaces 32
● Tokenization 32
● Conversion to lower cases 32
● Removal of stopwords 32
● Stemming 33

3.1.5. Crawling and Indexing 33
3.1.6. Searching and Ranking 35
3.1.7. Recommendation System 38
3.1.8. Presentation of Circulars 40

CHAPTER 4 - EVALUATION AND RESULTS 42
4.1. Introduction 42
4.2. Features to be Tested 43

4.2.1. Admin Side Tests 43
4.2.2. User Side Tests 43
4.2.3. System Side Tests 47

4.3. Test Scenarios 47
4.4. Testing Approach 48

4.4.1. Upload Test 48
4.4.2. Recommendations Test 53
4.4.3. PDFs That We Have Used To Test 56

4.5. The Resources Allocated to Test The App 57
4.6. Test Results 57

CHAPTER 5 - CONCLUSION AND FUTURE WORK 62
5.1. Conclusions 62
5.2. Limitations 62
5.3. Future Work 62

REFERENCES I

v



LIST OF FIGURES

■ CHAPTER 1 - INTRODUCTION

○ Figure 1.1 -  Structure of a Circular

■ CHAPTER 2 - LITERATURE REVIEW

○ Figure 2.1 - Inverted Index Example

○ Figure 2.2 -Example of Boolean Queries

○ Figure 2.3 - Graphical Representation of Term Frequency-Inverse
Document frequency

○ Figure 2.4 -  Personalized Example of Recommandations

○ Figure 2.5 - Major Functionalities of a Knowledge-based
Recommender System

○ Figure 2.6 -  Graphical Representation of Cosine Similarity
Calculation

■ CHAPTER 3 - METHODOLOGY

○ Figure 3.1 - Architecture of the Proposed circular management
and recommendation system

02

15

17

22

25

27

28

30

vi



LIST OF TABLES

■ CHAPTER 2 - LITERATURE REVIEW

○ Table 2.1 - Document-Term Matrix (DTM)

■ CHAPTER 4 - EVALUATION AND RESULTS

○ Table 4.1 - Expected Outcomes of Normal Search at Every
Possibilities

○ Table 4.2 - Expected Outcomes of Advance Search at Every
Possibilities

○ Table 4.3 - PDFs to Upload Under “Efficiency Bar Examination”

○ Table 4.4 - PDFs to Upload Under”Agrahara Insurance Scheme”

○ Table 4.5 - Normal Search Test Cases

○ Table 4.6 - Advance Search test Cases

○ Table 4.7 - Scores that were calculated in the recommendation
system when the PDF "EBE01" was first opened

○ Table 4.8 - Scores that were calculated in the recommendation
system when the PDF "AIS01" was first opened

○ Table 4.9 - Scores Calculated in Recommendation System when
PDF “EBE01” and PDF “AIS01” was Opened Before

○ Table 4.10 - Results of the Test are shown below

21

44

45

49

50

50

51

55

56

57

58

vii



LIST OF ABBREVIATIONS

● IR - Information Retrieval

● IT - Information Technology

● TF-IDF - Term Frequency–Inverse Document Frequency

● EM algorithm -  Expectation - Maximum algorithm

● AHC - Agglomerative Hierarchical Clustering

● LSA - Latent Semantic Analysis

● LDA - Latent Dirichlet Allocation

● VSM - Vector Space Model

● CBOW - Common Bag of Words

● BM25 - Best Match 25

● NLP - Natural Language Processing

● BoW  - Bag of Words

● DTM - Document-Term Matrix

● AI - Artificial Intelligence

viii



CHAPTER 1

INTRODUCTION

In this chapter we are going to discuss about the motivation, statement of the problem,

research aims and objectives, research questions and the scope of this research.

1.1. Motivation

Revolution of physical infrastructure, increasing population, and advancement in

technology contributed to rapid increase in published information. This rapid increase of

published information made life difficult for information managers, who are facing

problems such as how to store the information for quick and easy retrieval. Also this

rapid growth of information will give potential users problems such as how to find

specific information from a large document corpus.

1.2. Statement of the Problem

The researcher's goal for this project is to implement a simple method for managing

circulars. The system will be based on circulars published by, Ministry of Provincial

Councils, Public Administration, Home Affairs and Local Government of Sri Lanka

(www.pubad.gov.lk). This Ministry circulars corpus is also accessible to the public on

their website (https://goo.by/jTYmv).

A circular is essentially a letter that is sent to a large number of people with important

information (Toppr-guides, 2018). If, for instance, you need to invite every department

to a meeting or update the office's dress code, a circular will be the most effective

method of communication.

Some of the unique features of Circulars from other documents are as below (Example

Figure 1.1).

● A circular no for each document

● These will contain new policies
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Figure 1.1 - Structure of a Circular

The absence of a well-functioning circular storage and retrieval system has led the

researcher to build an Information Retrieval (IR) system for circulars.

As there is no proper circular retrieval system, users will find difficulty when searching

for a circular that they are interested in.

1.3. Research Aims and Objectives

1.3.1. Aim

This dissertation's research objective is to create an IR system for circulars that

will enable users to efficiently search through circulars. This will help users to

discover relevant information from a storehouse containing a collection of

circulars.
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1.3.2. Objectives

● Identify how an authorized person can upload circulars which will allow

users  of the system for quick and easy  retrieval of circulars.

● Identify what are the optimal filtering criteria that will enable users to

quickly and easily retrieve the circulars that they are looking for.

● Identify what is the best way to search the matching results for the user

entered query.

● Identify how to build a recommendation system to recommend circulars to

users by analyzing their previous searches

1.4. Research Questions

1. How can an authorized person upload circulars which will allow users of the

system for quick and easy retrieval of circulars?

Along with the uploaded circular document to the system, by capturing more

information relevant to a circular will help to quickly and easily retrieve

information which they are looking for.

2. Identify what are the optimal filtering criteria that will enable users to quickly

and easily retrieve the circulars that they are looking for.

Here we have to identify the query types which the user will be allowed to

enter for easy retrieval of circulars. Also along with the option to enter a

query we will identify what other filterings that will be available to users

which will increase the performance of circular retrieval.

3. What is the best way to search the matching results for the user entered query?

Searching for the matching results for the query which the user entered can

be done in many ways. The easiest way is to loop through every document

in the corpus and check the user entered query exists. This process will take

a long time to process. Therefore, we have to identify the optimal way of

searching user entered query through a large document corpus.
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4. How to build a recommendation system for circulars?

Many recommendation systems are built by analyzing the previous search

history of users. Therefore, we also have to build a recommendation system

based on the circulars which users are most interested in.

5. How to evaluate the system which was built?

The system which will be built mainly consists of three sub components.

They are,

● Document upload component

● User query component

● Recommendation component

To test this we will be using a selected set of circulars. We will upload those

circulars and write test cases which will cover all the components which

mentioned above.

1.5. Scope

The study mainly focused on implementing an IR system and recommendation system

for circulars. Therefore, this research will primarily be focused on implementing the

following characteristics.

1. Upload documents to the system

This research will focus on circulars. Therefore, there will be a feature to add

circulars to the system. Also, circulars uploading can be done only by

authorized users and for those users there will be a separate login. After

login, when uploading circulars users can specify the tags which circular

mainly refers to.

2. Filter circulars by submitting user queries, year and tags

Posed in query language, this specifies what the user wants to know. This

can be a simple search or advanced search. In simple search users can enter

either a list of keywords or a phrase. In advanced search users can enter a

combination of keywords, a phrase and exclude words to filter out
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documents more specifically. Also for simple and advanced search users are

allowed to filter by using circular year and tags too.

3. Process the user query and return the matching circulars

This step will return circulars which the IRS considers relevant to the user

query. Relevance implies that the results in the outcome are likely to be

useful to the person who submitted the request.

4. Presentation of result

Circulars which match the user query are shown as hyperlinks. User can

click on these hyperlinks and navigate to detailed content which he is

interested in.

5. Recommend circulars by analyzing user search history

Circulars will be recommended for future reference by analyzing user search

history. As the input for the recommendation system, circulars are passed in

descending order by time the user spent on reading circulars.

5



CHAPTER 2

LITERATURE REVIEW

This chapter talks about the IR system existing right now, similar document

categorization mechanisms, indexing techniques, user query types, document retrieval

ranking techniques, recommender systems and document similarity measurement

methods. Here, the advantages and disadvantages of those components are identified,

and insights are obtained to address the research problem.

2.1. Information Retrieval

Searching on the Web is the same as searching for a telephone number in an unsorted

directory. It will be really hard to find something for a user who doesn't know where

to start? This is the work of search engines to facilitate things.

Search engine provides three main facilities to users:

● It brings together a collection of documents into a corpus from which a user can

retrieve information. This process is referred to as crawling. (Castillo, C., 2005)

● It organizes information in a manner that can be readily and quickly retrieved.

That is what is known as indexing. We're going to discuss it here later.

● It allows users to make requests and find corresponding results from the corpus

without any difficulty. It is called search and is discussed later in more detail.

Information is gathered by search engines in two primary ways. A person or business

first creates a new page and then submits it to the search engine. According to

Michael Gordon and Praveen Pathak (1999), the second method involves search

engine companies developing crawlers, or spiders, that collect link-by-link web pages

for new corpus material. However, in order to make the system more useful, some

businesses employ both methods of information collection (Like Google Inc.). The

strategies that website owners employ for Search Engine Optimization, or SEO, make

search engine tasks significantly simpler.

Internet users frequently search for information and have no idea where to find it due

to the complexity of the Internet architecture. Researchers have facilitated this

problem through the development of search engines. How do users look for
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information? Users type a query and perform a search. Then it gets sent to the backed

(Search engine). Next, the search engine will search for the query for this information

in the indexes that are already indexed. Finally returns the output and displays it for

the user. Search engines are a good example of mass-scale information search

systems. (Alexandros Ntoulas, Junghoo Cho, and Christopher Olston. 2004)

2.2. Background Study

2.2.1. Current Information Storage and Retrieval Systems

The current Web search engines are specialized information search systems,

designed to be able to search the very large collection of documents called the

World Wide Web. One of the main characteristics of Web search engines is their

usability, which is one of the main reasons for their popularity among users. Most

sites like Google (https://www.google.com) provide users with a simple interface

that is also very powerful to retrieve data.

Google Scholar (http://scholar.google.com): its design and manipulation are

similar to those used by the popular search engine provided by Google Inc. It is a

simple means of doing a general search in scholarly literature. In a particular

place, you can search through a number of disciplines and sources such as articles,

theses, books, abstracts etc. Google Scholar search results can be limited to a

couple of filters like title, author, publication source and publishing date

In 1997, PubMed (http://www.ncbi.nlm.nih.gov/PubMed) was made available

through the National Medical Library on the Internet. It is one of the most popular

and responsible World Wide Web resources for medical practitioners and

academics (Falagas ME, Pitsouni EI, Malietzis GA, Pappas G, 2008). PubMed

is a free search engine that carries out research on the medicine and literature of

biomedical journals. It searches a number of Medline databases and interfaces

directly. This search engine combines the search terms of the user with the header

of the medical topic (mesh) and the text words in the Med-line records, then with

the search (Anders ME, Evans DP, 2010). PubMed provides users with multiple

powerful search filters to limit their searches and provide them with desirable

search information. (https://pubmed.ncbi.nlm.nih.gov/help/)

7



Science Direct (http://www.science direct.com) is a full-text scientific database

that forms part of the scientific verse and is provided by the 1997 Elsevier

publication. The Science Direct web portal opens with features that invite users to

simply scroll through the word scientific publications (Tober, Markus, 2011). The

search engine is one of the world's largest electronic bibliographic and full-text

collections on science, technology and medicine.

Library users have not been sufficiently trained in the art of taking full advantage

of the library. As a result, users of the library were known to leave the library

frustrated. A research project was conducted to develop a reliable, effective and

efficient library document retrieval system to satisfy library users (Chimah and

Unagha, 2010).

Many users are interested in gathering useful information about Twitter for future

use. In this respect, the user needs a system that makes it easier for users to restore

tweets and regain them with a higher degree of relevancy with the user's request.

A research project has been conducted that acquires information from Twitter

using the Twitter Research API. It develops a corpus of user content by removing

noisy and ambiguous elements from a carefulley selected set of tweets. As well, it

allows users to ask questions in order to obtain system results (W. Ahmad and R.

Ali 2016).

2.2.2. Document Categorization

Document categorization can be done using classification or clustering

approaches. Some of the research that has been carried out with various clustering

algorithms are mentioned below.

Research was conducted on the categorization of rules-based issues in the

management of Information Technology (IT) services for support tickets . The

problem of classification of tickets is one category of problems of classification of

documents in information science. Since problems can occur at any level of the

software and hardware stack, an important activity to help proactively manage

problems is the creation of leading indicators (a.k.a., signatures or failure codes).

Then it can be used to classify incidents into groups for analyzing the root cause

and monitoring of failure trends. (Diao, Y., Jamjoom, H. and Loewenstern, D.,

2009)
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Here are a few examples of incident categories:

● Unavailability of the application,

● Exceeded disk usage limit,

● System unavailability,

● Printing error

● Password change.

Above categories are typically identified through the analysis of incident files (i.e.

problem tickets). After analysis, it records incident information, including

customer name, platform, problem details, severity code, resolution methods, and

various time stamps. In this paper, they proposed a rules-based approach to

provide a scalable yet effective methodology to support proactive identification of

issues in a global service delivery environment. The primary means by which this

method of categorization is applied to the classification of tickets is through the

utilization of straightforward IF-THEN rules (The IF-THEN rule is when a

hypothesis is followed by a conclusion. For instance: On the off chance that the

page that client mentions isn't found, show the client the blunder message "Page

you're searching for is right now inaccessible."). These rules are checked to see

how good the statistics are, and if they're bad, the rules are changed to get better

results. The disadvantage of such an approach is that it is a supervised learning

approach. Therefore, knowing about the domain is important.

Research conducted on document grouping based on K-Means text mining

algorithm (When there is unlabeled data, a type of unsupervised learning

technique called K-Means clustering is used.) using Euclidean distance Similarity

(A method for measuring similarity that uses the distance between two things to

determine how similar they are.) on 20 Newsgroup data sets (Lydia, L. et al. (04

2018)). It is carried out on the basis of the terms Term Frequency–Inverse

Document Frequency (TF-IDF) (A technique for collecting the occurrences of a

word in a collection of documents is TF-IDF.) weights, where similar documents

are grouped into a single group using the K-Means and the Euclidean distance.

The disadvantage of such an approach is that it only does figure out if a document

is in a cluster or not. However a document is supposed to cover several topics.

Therefore, the output should not be  a boolean but a percentage.
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Research carried out on the grouping of texts with the help of mixture models on

the corpus kannada of CIIL, Mysore. It is composed of texts from various books in

various fields such as business, social sciences, aesthetics, natural sciences, etc. A

mixture model is a special type of statistical model that views the data as a set of

observations from a mixture of different probability distributions (Saritha, R. C.

and Kulkarni, A. (2013)). Expectation - Maximum algorithm (EM algorithm - In

statistical models, the EM model uses looping to estimate the parameters of an

assumed probability distribution. These models are based on latent variables that

aren't observed.) used to parameter estimation process of the blended model using

the maximum probability. This article shows that the mixing patterns are broader

and find groups of different sizes and shapes than K-Means. K-Means tells you

whether a document is in a cluster or not, whereas mixture models work on the

odds that a document is in a cluster. The EM algorithm has the disadvantage that it

is slow and may not be a good tracer for large datasets.

Research carried out on “A Novel Indexing Technique for Web Documents using

Hierarchical Clustering” (Gupta, D. Bhatia, K. and Sharma, A. (01 2009)). The

approach used here is that all words from the entire set of documents are

identified, each word is assigned a word id and for each document assign the

corresponding word ids according to the word it contains. Then Euclidean distance

(determining the distance between two things to determine their similarity) and

levenshtein distance (fuzzy string-matching algorithm) is calculated and use this

value to create the base clusters. By use of the average linkage method the base

clusters are merged into a higher-level cluster. So, this approach uses

Agglomerative Hierarchical Clustering (AHC) to cluster documents and create

indexes. At the outset, the AHC views each object as a singleton cluster. After

that, cluster pairs are merged one at a time until all clusters are combined into a

single, massive cluster that contains all objects. (Murtagh, F. and Contreras, P.,

2012)

When it comes to documents, one of the most useful ways to understand the text is

to analyze its subjects. The process of learning, recognizing and retrieving these

topics from a collection of papers is called topic modeling. The following are the

two topic modeling techniques that are used the most. (Cvitanic, T., Lee, B.,

Song, H.I., Fu, K. and Rosen, D., 2016)
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● Latent Semantic Analysis (LSA): By analyzing representative corpora of

natural text, this mathematical approach allows the modeling and

simulation method using computer, where it extracts the meaning or the

core of the given set of words or even sentences and passages.

● Latent Dirichlet Allocation (LDA): It is a Dirichlet distribution-based

statistical generative model.

All topic models are based on the same basic hypothesis where,

● Each paper consists of a mixture of topics and

● Each topic consists of a set of words.

Modeling methods for topics are based on the distribution hypothesis, suggesting

that similar words happen in similar contexts. However, clustering methods are

designed to partition data into coherent groups. Therefore, per-document topic

distributions learned by topic models can be used to cluster documents.

Research carried out on document Clustering Using Latent Semantic Indexing

(LSI) to Determine Subject Area (Antai, Roseline. (2011)). In a documentary

collection, noise may be caused by synonyms and polysemy. LSA uses Singular

Value Decomposition (SVD) to reduce the document's spatial size (Baker, K.,

2005). Primarily by mapping a smaller conceptual space that does not have this

noise and facilitating the grouping of similar documents. LSA also serves as a

Vector Space Model (VSM), however it improves on conventional "Vector Space

Modeling". (VSM involves and algebraic model which involves vectors of

identifiers as a strategy of text document representation. We'll get into more detail

about this later.) by the way it reduces dimensions. Afterwards, the grouping can

be made. The absence of a probabilistic approach is one drawback of this strategy.

Research conducted on exploring documents using the LDA subject model for

wikipedia articles (Tong, Zhou & Zhang, Haiyi. (2016)). Run the data

preprocessing, LDA algorithm on the data set and for the output, topic set and

proportion of subjects per document will be returned. The method of grouping

documents with the LDA Subject Model is to find the highest proportion of

subjects and assign the document to that subject. Also to point out documents

similar to another document that is interesting, Jensen-Shannon divergence is used

(Menéndez, M.L., Pardo, J.A., Pardo, L. and Pardo, M.C., 1997).
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To capture the context of a word within a document, a semantic and syntactic

similarity, embedding of words is useful. Embedding of words is the most

common document vocabulary representations methods. Vaguely speaking, they

are vectorial representations of a specific word. Word2Vec is one of the most

common techniques for learning how to integrate words using shallow neural

networks. The model was developed in 2013 by Tomas Mikolov. It can be

obtained through two methods (the two involving neural networks): Skip Gram

and Common Bag Of Words (CBOW) (Dhruvil Karani (2018)).

A language model is fundamentally a probability distribution about words or

sequences of words. Practically speaking, a language model gives the probability

that a certain sequence of words is "valid". Validity in this context makes no

mention of grammatical validity. This indicates that the language model learns to

look like how people talk (or, more specifically, write). That is a significant point.

There is no magic in a language model (as do other machine learning models,

especially deep neural networks). It is "just" a tool for incorporating abundant

information in a concise way that can be reused in a non-sampled context. It is

possible to use an abstract understanding of natural language for a variety of

purposes, including the ability to derive word probabilities from context.

Lemmatization (a.k.a. Stemming - The process of stemming or removing the last

few characters from a word is known as stemming.) aims to reduce a word to its

most basic shape, thus drastically reducing the number of tokens. These

algorithms work best if the word is known to play a role. The postfixes of a verb

may differ completely from the postfixes of a noun. Hence the justification for

marking a part of the word (or POS-tagging), a common task for a language model

(Kapronczay, M. (2021)).

Researchers decided to go with an improved version of the TF-IDF approach

which is Okapi Best Match 25 (Search engines use a ranking function called Okapi

BM25 to estimate how relevant documents are to a given search query.) to get

similar documents. It may seem a bit strange that here in 2022, I have based on

TF-IDF for my thesis which was first formulated long back ago. Key reasons to

choose TD-IDF are outlined below.

1) After looking at the corpus, which is in a circular domain, the researcher

identified most of the circular documents containing one specific topic. Also,

most circulars contain one page which is directly talking about the specific
12



topic. So the researcher decided not to go with topic modeling however use

only an improved version of the TF-IDF approach. Here the researcher did a

K-Means clustering on the corpus and identified the clustering happens very

well when k=1 where k is the number of clusters. Which proves the circulars

talking only about a specific topic.

2) Natural language processing (NLP) has seen many exciting advancements

since the 2013 and 2018 breakthroughs of word integration and language

models.. In 2018, Google published a text classification framework based on

450K experiences on a couple of different text sets. According to the

experiments of 450K, Google found that when the “number of words per

document or number of samples” < 1500, TF-IDF was the best way to

represent the text. When you have a small sample size for a fairly common

issue, it is helpful to try TF-IDF (Ann Sebastian (2020)). Therefore, the

researcher decided not to go with word embedding and language models but

use only an improved version of the TF-IDF approach.

2.3. Basic Components in an Information Retrieval System

The main aim or the purpose of the IR system is to retrieve documents by indexing

them. This will represent the documents that the system will provide users with access

to. When a user inputs a request, the system associates the indexed documents with

the request and displays the corresponding documents.

2.3.1. Inverted Index

Indexing is an important concept. Creating an index allows you to more quickly

find records; without them, you need to go through hundreds or thousands of

documents to locate an individual record.

There are two types of indexes. They are forward index and inverted index. For

efficient search an inverted Index is preferred over forward Index.

The data structure which is called the forward index stores mappings between

documents and words. It directs you to Word from the document. The index data

structure which is called the inverted index stores a map of a document's content,

such as words or numbers, at its locations in a set of documents. To put it another

13



way, it is a key-value pair similar to a data structure that takes you from a word

document to a webpage or document.

Inverted indexes comes in two different types: (Baeza-Yates, B. Ribeiro-Neto, et

al., 1999)

1) A record-level inverted index contains a list of document references for each

word. For example if we take the term “hello” and if that term appears in

documents with docIDs 3, 5, 10, 23 and 27, the posting list will contain

document frequency of 5 along with docIDs as below.

{ "hello" :
[5,

[3, 5, 10, 23, 27]
]

}

2) The inverted index method examines the document word for word and

generates an index that includes the word's position. The latter form offers

more features, however requires more processing power. In that case, the

positions where the term appears in a specific document are also stored at the

same time as the docID. For example, if “hello” appears in document 3 at

three positions: 120, 125, and 278, we can represent it with the positions and

the frequency of the term for each document as below.

{ "hello" :
[5,

[
{3 : [3, [120, 125, 278]]},
{5 : [1, [28] ] },
{10 : [2, [132, 182]]},
{23 : [3, [0, 12, 28]]},
{27 : [1, [2]]}

]
]

}

We can clearly represent it as fiqure 2.1.
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Figure 2.1 - Inverted Index Example

(Source: https://www.geeksforgeeks.org/python-positional-index

A Bag of Words (BoW) array representation needs to be created from raw

documents in order to create the index. Document representatives is a

common name for these terms. Text is preprocessed in order to produce these

representatives for each document.

Pre-processing of text is necessary to transfer human language text to

machine-readable format for further processing.

Pretreatment of the document includes:

● Tokenization - tokenization is a process whereby text is taken and

broken down into individual words, called tokens. Tokens are used as

input to other assignments. The following example illustrates the

process. (Kaur, H. and Gupta, V., 2016, August).

The input is: [Blueberries, Raspberries and Moulberries are rich in

antioxidants];

The output after tokenization will be: [‘Blueberries’ ,

‘Raspberries’ , ‘ and’ ,  ‘Moulberries’ ,  ‘are’ ,  ‘rich’ ,  ‘in’ ,

‘antioxidants’]

● case folding ignores the case of the query terms and would generally

convert them to lower case before comparison.

● Removal of  punctuations

● Removal of white spaces
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● Removal of stop words

● Stemming - chop a portion of each word so that it might get the "root

word". Standard tools are available to do this like "Porter Stemmer".

After that, we count every word's frequency. The word with a frequency

greater than a threshold (based on a formula consisting in file size) is chosen

as the index term. Collecting all of these words creates our index table

(representative document) for this document.

2.3.2. User Query Types

The document set, which includes sentences (a collection of words), the date it

was created, the name or names of the author(s), and the type of the document, is

paired with a number of keywords during the indexing process. When a user

makes a request, the IR system uses these pairings to create an inverted index that

is then used to generate results. These indexes are compared to that request in the

back-end when a user makes a request. Operators like boolean, conditional

statements, and logical statements can be used to narrow down and construct

complex requests in IR systems, allowing users to express their search's purpose or

requirement in a more stable manner.

From a large data set that has already been created, IR systems provide users with

documents that are related to the request they have made. In 2008, Manning, C.D.

stated that search engines can receive user requests—essentially,

requirements—that may or may not have a meaning or may even change over

time. Most of the time the request says the user requirement in a nut shell. An IR

system's querying methods can look like the following.

1) Keyword Queries:

To retrieve documents, the user only needs to enter keyword combinations.

The logical AND operators connect these keywords. Keyword searches are

supported by all retrieval models. This is the simplest querying metod.

2) Boolean Queries:

The following operators can be used to deal with when the system allows

boolean queries.
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● The "+" operator is used to individually include required content.

● The "-" operator is used to individually exclude required content.

● The AND operator is used to create requirements queries, which state

that the search result must contain the keywords that are combined with

this operator.

● The OR operator is used to create queries of requirement, which state

that the search result must contain either of the keywords combined with

this operator.

● similar to the "-" operator is the NOT operator.

Because a document meets or fails to meet a request like this, there is no

matching score involved. An example is provided in Figure 2.2.

Figure 2.2 -Example of Boolean Queries

(Source: https://sru.libguides.com/history/librarybasics/booleanoperators)

When an exact match is found in a document that follows the logic that was

used, the document extraction process takes place (Salton, G., Fox, E.A. and

Wu, H., 1983). The boolean system is relatively simple to implement,

however several disadvantages exist. Not all users may be familiar with

Boolean queries, and it might be difficult to formulate and optimize the query.

3) Phase Queries:

The relative order of the documents' contents is lost when an inverted keyword

index is used to represent them for searching. These phases are either

implemented differently or encoded in an inverted index so that precise phase

retrieval can be carried out. A phase is the word sequence that makes up this
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query. Typically, it is contained within double quotes. (Gudivada, V.N.,

Raghavan, V.V., Grosky, W.I. and Kasanagottu, R., 1997)

4) Proximity Queries:

The search technique known as proximity takes into account how close

multiple items in a record ought to be to one another. Phase searches, which

require terms to be arranged precisely, are the most frequently used proximity

search option. Terms proximity to one another can be specified by other

proximity operators. Some will specify the search terms order.

The names of various operators, such as NEAR, ADJ (adjacent), or AFTER,

are used by search engines. These operators are used in proximity queries by

search engines.

● NEAR operator - The NEAR operator looks for occurrences of the given

word or words within a predetermined number of words of one another,

regardless of their order.

● ADJ operator - On real Euclidean space, the ADJ (adjacent) operator

mimics the behavior of the flipped version of the given matrix.

● AFTE operator - The AFTER operator is used to compare two keywords.

However, it is more cost-effective for significantly smaller collections of

documents than for the web due to the time-consuming document

pre-processing required to enable these operators.

5) Wildcard Queries:

Regular expressions and text-based pattern matching searches are supported

(Vechtomova, O., 2009). Wild card queries are not supported directly by

search engines.. Wildcard search support can be implemented in some IR

systems. Any of the following scenarios call for the use of wildcard queries:

I. The user is unsure of how to spell a query term (such as Tokyo vs

Tokiyo, which results in the wildcard query Tok*yo)

II. The user is conscious of the fact that there are multiple spelling

variations of a word and searches for documents with any of the spelling

variations (for instance, defence vs. defense)
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III. The user is looking for documents that contain variants of a term that

would be caught by stemming but is unsure if the search engine uses

stemming (for instance, juwelry vs. juwellery, which leads to the

wildcard query juwel*)

IV. The user is unsure of how to spell a foreign word or phrase (such as

"Universit* Stuttgart").

6) Natural Language Queries:

Without any special syntax or format, a natural language query only contains

normal terms in the user's native language. Only a small number of search

engines providing natural language processing attempt to comprehend the

structure and meaning of queries written in natural language text, typically in

the form of questions or narratives. (Cafarella, M.J. and Etzioni, O., 2005,

May)

From the results it retrieves, the system tries to come up with answers to these

questions. This kind of query can be supported by semantic models.

(Strzalkowski, T. ed., 1999)

2.3.3. Document Retrieval and Ranking

● Boolean Model

One of the earliest and simplest IR models is the Boolean model. A document

is either relevant to a query in the Boolean model or not; there is no ranking or

degree of relevance. Classical set theory and Boolean logic are the foundations

of the model. When a term is present in a document, its value is either true or

one; terms are regarded as Boolean variables, either false or zero, in any case.

● Vector-Space Model (VSM)

A term vector is used to represent each document in the VSM. The model does

not include a definition for a term; however, terms are typically short phrases,

single words, or keywords. The dimension of the vector is the number of

words in the vocabulary if words are selected as the terms. In a relatively

high-dimensional space, a vector can be used to represent any document as
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equation 2.1 below. A query can then be transformed into a vector as well

because it is text as equation 2.2 below.The following is a representation for

queries and documents.

𝑑
𝑗
 =  𝑤

1𝑗
 , 𝑤

2𝑗
 ,  ...  ,  𝑤

𝑖𝑗( )   →   𝐸𝑞.  2. 1

𝑞 =  𝑤
1,𝑞

 ,  𝑤
2,𝑞

 ,  ...  ,  𝑤
𝑖,𝑞( )   →   𝐸𝑞.  2. 2

Where;

- value of the ith term in the vector of the jth document𝑤
𝑖𝑗

-value of the ith term in the query vector q.𝑤
𝑖𝑞

The cosine value of the angle between the document vectors and the query

vector is used to rank the documents during the data retrieval time. The terms

may be weighted according to their frequency, TF-IDF score, etc. The +cosine

of the angle is calculated as the ratio of the inner product of the document and

query vectors and the product of the norm of the document vector and the

norm of the query vector for each document and query. The system then

returns the documents by decreasing the cosine (Melucci, 2009).

● Bag of Words Assumption

The "bag of words assumption" (also known as the "bag of words model") is a

crucial assumption that is essential to not only topic models but also many

other text mining models. The assumption known as the "bag of words" (BoW)

views each document as a collection of words, ignoring grammar and even

word order in favor of multiplicity. Tokenization is another name for this

process, which converts the documents into words. The document is

represented by a set of words that are extracted. The word order and grammar

are ignored by this method. A sorted list of words that best describe the

document is what we get. In document classification, the BoW assumption is

frequently utilized. (Zhao, R. and Mao, K., 2017)

What kind of document does the assumption of the BoW represent? How does

it work? Let’s use a very simple example to get a better understanding about

this. Here are two very brief documents that this model represents. We use two

extremely brief documents with only one sentence to simplify the issue.
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● Document 1: I like Python programming language.

● Document 2: My friends prefer Java programming language over Python

programming language.

The extraction of vocabulary for the documents is the first step. A vocabulary

is a collection of distinct words from the documents. A vocabulary list can be

made as follows:

[“I” , “like” , “Python” , “programming” , “language” , “My” , “friends” ,

“prefer” , “Java” , “over”]

All documents are based on vocabulary, which is a vector. To determine

whether a word is present in the vocabulary, we must denote 0 or the frequency

of the word next to it in order to interpret each document. In the BoW

assumption, the following is how we represent these two documents:

● Document 1: [1,1,1,1,1,0,0,0,0,0]

● Document 2: [0,0,1,2,2,1,1,1,1,1]

Both Document 1 and Document 2 shows the frequency of the words in the

vocabulary list prepared. Here 0 (Zero) denotes the unavailability of the

specific word in that specific document. If the value shown here is greater than

0, that means the word is available in that document. From this value we can

tell the frequency of that word in the document. Each word in the vocabulary is

represented using this model in the same way as a histogram. However, this

model does not preserve the word order of the original document which means

we cannot get the original content from the BoW assumption. The frequency

of the words in each document is used to weight them. It is also known as a

Document-Term Matrix (DTM). If we transform the collection of documents

into a matrix, it can be represented as in table 2.1.

Table 2.1 - Document-Term Matrix (DTM)

I like Python programming language My friends prefer Java over

Document
1

1 1 1 1 1 0 0 0 0 0

Document
2

0 0 1 2 2 1 1 1 1 1
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● Term Frequency–Inverse Document Frequency (TF-IDF)

Figure 2.3 - Graphical Representation of Term Frequency-Inverse Document

frequency

(Source:

https://medium.com/codex/document-indexing-using-tf-idf-189afd04a9fc)

A numerical statistic called TF-IDF is used to show how important a word is to

the document. Term frequency is the ratio of the total number of words in a

document to the number of times a word appears in the document. The

calculation is shown in equation 2.3 below.

𝑡𝑓
𝑖, 𝑗

 =  
𝑛

𝑖, 𝑗

Σ
𝑘
𝑛

𝑖, 𝑗
   →   𝐸𝑞.  2. 3

The weight of unique words across all documents is determined by utilizing

inverse document frequency. The calculation is shown in equation 2.4. Rare

words have a high IDF score.

𝑖𝑑𝑓 𝑤( ) =  𝑙𝑜𝑔 𝑁
𝑑𝑓

𝑖
( )   →   𝐸𝑞.  2. 4

The two equations above must be combined in order to calculate the TF-IDF

score. This combining is shown in Equation 2.5 below.

𝑤
𝑖, 𝑗

 =  𝑡𝑓
𝑖, 𝑗

 ×  𝑙𝑜𝑔 𝑁
𝑑𝑓

𝑖
( )   →   𝐸𝑞.  2. 5
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number of occurrences of i in j𝑡𝑓
𝑖, 𝑗

 =

number of documents containing i𝑑𝑓
𝑖
 =

total number of documents𝑁 =

● Best Match 25 (BM25)

Search engines use a ranking function called BM25, to estimate how relevant

documents are to a given search query. The BM25 function is thought to be

superior to TF-IDF. The structure of BM25 is identical to that of the TF * IDF

formula (As in equation 2.6 and equation 2.7); however, the values of the TF

and IDF components will be substituted with improvements to those values. In

conclusion, simple TF-IDF rewards frequency of terms and penalizes

frequency of documents. To account for document length and term frequency

saturation, BM25 goes above and beyond (Seitz, 2020).

𝐵𝑀25 𝐷, 𝑄( ) =  
𝑖=1

𝑛

∑  𝐼𝐷𝐹(𝑞𝑖, 𝐷)
𝑓(𝑞

𝑖
, 𝐷)·(𝑘1+1)

𝑓(𝑞
𝑖
, 𝐷)+𝑘1· 1−𝑏+𝑏· 𝐷| |

𝑑
𝑎𝑣𝑔

( )( )    →   𝐸𝑞.  2. 6

𝐼𝐷𝐹 𝑞
𝑖( ) =  𝑙𝑜𝑔 𝑁

𝑛    →   𝐸𝑞.  2. 7

Where:

● is the number of times term occurs in document D𝑓 𝑞
𝑖
 , 𝐷( ) 𝑞

𝑖

● is the number of words in document D𝐷| |

● is the average of words per document𝑑
𝑎𝑣𝑔

● and k1 are hyperparameters for BM25𝑏

2.4. Recommender System

One of the most rapidly expanding subfields of Artificial Intelligence (AI),

recommendation systems are now a regular part of our lives. Every aspect of our lives

is being affected in some way by recommender systems, whether it's personalized ads,

search query results, or product bundle recommendations. (Zhang, Q., Lu, J. and Jin,

Y., 2021)
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A Recommender Systems objective is to make useful recommendations to a group of

users for items or products that might be of interest to them. Real-world examples of

the recommender systems that are in use in the industry include recommendations for

movies on Netflix (Amatriain, X. and Basilico, J., 2015) and books on Amazon

(Smith, B. and Linden, G., 2017.).

There are two main types of recommender systems, according to the methods used to

prepare suggestions. (Khatwani, S. and Chandak, M.B., 2016).

● Non-personalized recommender system - a general recommender system that

uses the opinions and feedback of other users to make recommendations.

● Personalized recommender system - maintains a user profile and makes an effort

to match products to a user's preferences before recommending them to the user.

The recommender system's most intriguing component is the generation of

suggestions based on user ratings and behavior. The following is a summary of some

of the most prevalent strategies.

2.4.1. Content Based Recommenders

This family of recommenders, as the name suggests, constructs a recommender

system by incorporating the user profile and some form of content, such as

reviews or descriptions (Lops, P., Gemmis, M.D. and Semeraro, G., 2011).

The most important concepts are as follows:

● Model items based on relevant content-derived attributes,

● Create a user profile using either these implicit actions (clicks, video time

spent, etc.) (Claypool, M., Le, P., Wased, M. and Brown, D., 2001), explicit

actions (like rating, purchase, etc.) or by combining explicit and implicit

methods, and finally,

● Utilize these profiles to make suggestions.

One example of content-based recommendations is personalized recommenders. A

personalized recommendation system examines user data, including their ratings,

purchases, and relationships with other users. That way, individual recommendations

will be provided to each user.
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Let's try to comprehend this with the figure 2.4 (Nigam, 2022).

Figure 2.4 - Personalized Example of Recommandations

(Source:

https://medium.com/analytics-vidhya/understanding-recommender-systems-introduction

-3be54e937625)

The columns in the preceding example represent attributes (the topic of the article, such

as politics, sports, etc.). And the article is represented by the rows. A weighted value for

that article's topic can be found in each cell. The user's opinion of a particular article can

be found in the two columns user1 and user2.

As a dot product of the user vector and the attribute matrix, user profiles are projections

of the user's taste in attribute space. For instance, the dot product of the user vector

(O2:O21) and the baseball vector (B2:B21) yields the value in cell B27, which indicates

the overall significance of baseball to user1.

After that, a dot product is calculated between the user profile and the document profile

to determine the prediction values (pred1 and pred2). For example, a dot product

between user1 (B27:K27)  and doc1 (B2:K2) yields the value in R2.

The likelihood that the user will like that particular document increases with the

prediction value. It's like the more the user shows a likeness towards the attribute, the

more he/she can reach to the required content via the suggestions of the

recommendation.
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2.4.2. Collaborative Filtering

Collaborative filtering can be approached in one of two ways:

1. Memory-based (a.k.a. neighborhood-based) methods (Yu, K., Schwaighofer,

A., Tresp, V., Xu, X. and Kriegel, H.P., 2004). They themselves come in

two varieties:

a. User-based collaborative filtering - This filtering identifies customers

with similar preferences and makes recommendations to one customer

based on a set of new items that are also preferred by other customers

with a similar profile.

User-based collaborative filtering strategy is based on the idea that

people who watch the same kinds of movies also like the same things. It

identifies movies that similar users have watched, however the first user

has not, then it identifies movies that similar users have not watched.

Based on that, it makes recommendations.

If all travelers could share data in a common location like a website or

even social media, this strategy could also be utilized for global tourism

industry promotion. (Jia, Z., Yang, Y., Gao, W. and Chen, X., 2015,

February)

b. Item-based filtering - This filtering makes recommendations based on a

domain-specific knowledge of the content of an item that is similar to

those a customer has already purchased. (Sarwar, B., Karypis, G.,

Konstan, J. and Riedl, J., 2001, April)

A movie recommender system would suggest movies with similar

characteristics if a user liked movie A with item-based collaborative

filtering. These characteristics might include the genre, producer, leading

actors, run time, and release date, among other things. (Kumar, M.,

Yadav, D.K., Singh, A. and Gupta, V.K., 2015)

2. Model-based methods - Methods based on models go one step further than

collaborative filtering and make use of probabilistic models and machine

learning. (Aggarwal, C.C., 2016)
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2.4.3. Knowledge-based Recommender Systems

Similar to content-based recommender systems, knowledge-based recommender

systems use a customized model to identify relevant products for each user.

However, rather than constructing that model from the user's rating history, they

ask the user to explicitly state their preferences—perhaps through keywords or a

series of requirements—in order to build that model. When a user may not

immediately know what they want, they are useful in a cold start scenario or in a

complex item domain with many attributes (Burke, R., 2000).

For items that are rarely purchased, knowledge-based recommenders are utilized.

It is simply impossible to recommend such products based on a user's profile or

previous purchases. The acquisition of real estate is an excellent illustration of

how these kinds of recommender systems can be used.

2.4.4. Hybrid Recommender Systems

Figure 2.5 - Major Functionalities of a Knowledge-based Recommender System

(Source: https://goo.by/mcGdy)

Rarely, if ever, are these fundamental types of recommender systems utilized on

their own (As in figure 2.5). The majority of practical recommender systems are

hybrid models or combinations of models. These hybrid models can be as simple

as taking the weighted average of several models or as complicated as enormous

monolithic systems that blur model boundaries. Due to the fact that many of the

best recommender systems derive their edge from the way they utilize models

collectively, this is an especially rich and useful subject to investigate. (Burke, R.,

2002).
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2.5. Document similarity measures

In a dataset, the term "similarity measure" refers to the distance with dimensions that

represent the features of the data object. When this similarity goes lower and lower it

provides similarities of higher degrees, however there will be a low degree of

similarity if it is large. (Huang, A., 2008, April)

Popular similarity measures include:

1) Cosine Similarity,

2) Euclidean Distance,

3) Jaccard Similarity,

4) Manhattan Distance,

5) Minkowski Distance and many more.

● Cosine Similarity

Cosine similarity can be used in the recommendation system to determine how

similar two documents are. Cosine angle between two vectors can be used to

identify whether two vectors are closer to each. Since the cosine value is between

-1 and 1, if two vectors make an angle of 0, their cosine value would be 1,

indicating that the documents are closely related. The sentences would be almost

unrelated if the two vectors were orthogonal, or cos 900 (Xia, P., Zhang, L. and

Li, F., 2015). So, by comparing the documents with the user profile, we can

recommend users with the circulars that scores are closer to 1. The similarities

between two documents which are translated as vectors X and Y using TF-IDF

can be calculated by using cosine-similarity formula (Eq. 2.8):

𝐶𝑜𝑠𝑖𝑛𝑒 (𝑋,  𝑌) = 𝑋.𝑌
𝑋| || |.| 𝑌| ||    →   𝐸𝑞.  2. 8

Figure 2.6 - Graphical Representation of Cosine Similarity Calculation
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Cosine can be used to identify text document similarities using BoW

representations, word vector representations, or TF-IDF values. (Buck, C. and

Koehn, P., 2016, August)
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CHAPTER 3

METHODOLOGY
Architecture of the Proposed System

Figure 3.1 - Architecture of the Proposed circular management and recommendation system

3.1. Data Retrieving and Pre-processing

3.1.1. Data Retrieving

The dataset which is going to be used for this research project is downloaded from the

Uniform Resource Locator (URL) which is mentioned in the “Introduction” chapter.

Even the circulars are in Sinhala, Tamil and English languages this project is

implemented only for circulars which are in English language.

The circulars are stored in Portable Document Format (PDF). To process the PDF the

first step is to extract text from it. There are many libraries available freely for working

with PDFs. They are, PDFMiner, PDFQuery, Tabula.py, Xpdf, pdflib, Slate, PyPDF2,
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etc. For this research, to extract text from PDF PDFMiner library

(https://pypi.org/project/pdfminer/) is used as it gives more accuracy. Uploading

circulars to the system is done by admin. There is a separate login for admin users. Once

he is logged in he can upload circulars by specifying the tags which that circular refers

to. In the system when a user uploads a circular it will be stored in a folder called

“incoming_data”.

3.1.2. Bulk Uploading

When there are many circulars to upload it is very difficult to upload one by one from

the user interface. To overcome this researcher has implemented a bulk upload facility.

The steps in bulk uploading are specified below.

1. Add circulars to the “massUpload” folder.

2. Run the “massUploader.py” script.

3. Foreach file in the ‘massUpload’ folder, it will show the filename and prompt to

enter tags which circular refers to.

3.1.3. Adding Tags, Filter with Tags Which PDF belongs to

Tags which PDF belongs to can be added when uploading circulars to the system. When

a user is trying to add tags, a drop-down will pop up and suggest previously added tags.

This suggested tags list will refresh with every keystroke user enters. Tags which are not

there can be added by simply typing the tag name and pressing the”tab” key.

Those tags user added are stored as a simple JavaScript Object Notation (JSON) file.

Create and search operations on this JSON file are handled by a python library called

“tinyDB”. TinyDB provides a simple way to perform record level transactions with a

JSON file. TinyDB acts as a document-oriented database and it is a very powerful

library.

Assume two categories start with the same first 3 characters, it will be stored in the same

object.

For example, if we take two tags as salary and salary increment, see the first three

characters are common for both tags. Therefore, under ‘sal’, both categories are saved.
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{“sal” : {

“salary”,”salary increment”

}}

By doing so it is very easy to provide tags suggestions to the drop-down. All we have to

do is to provide the typed letters to the server via Application Programming Interface

(API) and retrieve data using JavaScript. Whenever tags are added by admin by

uploading a circular, or by bulk uploading method the application will check if a text

document named “documentcategory.txt” exists. If that text file does not exist, the app

will create a text file named “documentcategory.txt” and insert a record. The inserted

record will contain the pdf name, tags which were added for that pdf and pdf size as

shown below.

Computer Test Relevant to the Efficiency bar Examination for
Officers-1666172634.5892184.txt    "computer test,efficiency bar examination,officers"
217.5

Computer Test Relevant to the Efficiency bar Examination for Officers -
2017-1666172670.1330814.txt    "computer test,efficiency bar examination,officers"    152.4

Deferment of Salary Increments on non-completion of Efficiency Bar
Examination-1666172799.0288794.txt    "deferment,salary
increments,non-completion,efficiency bar examination,officers"    241.4

Deferment of salary increments on not completing the efficiency bar-1666172822.5231614.txt
"deferment,salary increments,non-completion,efficiency bar examination,officers"    190.0

Reference the course related to the exemption of the officers from the Efficiency Bar
Examination-1666172908.0028272.txt    "exemption of officers,efficiency bar
examination,course related"    209.3

Agrahara Insurance Scheme for Public Officers-1666172934.8670797.txt    "agrahara
insurance,insurance schemes,public officers"    12.7

Extending the benefits under Agrahara Insurance Scheme-1666172969.822767.txt
"benefits,extension of benefits,agrahara insurance,insurance schemes"    66.5

3.1.4. Pre-processing

One of the most significant aspects of this investigation is text pre-processing, also

known as text cleaning. For human comprehension, circulars are written in natural

language. That data, on the other hand, isn't always simple for computers to process in

text mining. We always reduce the size of the text data by removing redundant data like

stop words or numbers to speed up the computation. Although careful, laborious, and

time-consuming, pre-processing will ultimately yield high-quality data that will fit the
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model and produce better results. The steps in preprocessing that might be necessary for

any kind of text mining algorithm are as follows:

● Removal of punctuations and white spaces

Since computers can't actually read, punctuation and white space are helpful for

humans to understand when it comes to grammar. However, computers see them as

identical to other characters. Therefore, in order to simplify the document, we can

actually eliminate the white spaces and punctuation.

● Tokenization

After removing all punctuation, a document is divided into a list of tokens and

treated as a string. The documents will become unreadable if punctuation and

white space are removed. However, the main ideas or topics are still present, so

you can tell what they're trying to say. It is predicated on the supposition that the

document is a jumble of words. A word from the topics serves as the basic unit.

● Conversion to lower cases

The probabilistic model can benefit from knowing the frequencies of each word,

so this step is necessary. Because it is the first word in the sentence, some letters in

the documents will be in uppercase. The computer will interpret "data" and "Data"

(See the distinction in first letter in quite a while. One is written in uppercase and

one in lowercase.) as distinct terms as a result. We can simply change all of the

letters to lowercase to avoid this situation.

● Removal of stopwords

Stopwords are words that are used to make the sentence easier to read but have no

real meaning. For instance, the words "the," "and," and "if" are required in the

sentence, but their meaning does not change if they are removed. The majority of

English documents use stop words fairly frequently. Although the meaning will

not be altered by the removal of the stopwords, it may significantly reduce the

document's size and improve the quality of text mining. Stopwords have been

pre-defined in Python's libraries.If necessary, we can always examine the situation

and decide whether to add or remove some of the stopwords.
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● Stemming

Although they are expressed in different participles or plurals, some of the words

convey the same meaning. For instance, "learned" and "learning," "cat" and "cats,"

and "joy" and "joyfulness" are all synonyms. Humans can recognize it more easily,

but computers need us to stem the words. Stemming is the process of getting a

word back to its original form. Additionally, this procedure may improve the

quality of text mining while also reducing the amount of time required for

computation. To get circulars ready for indexing, the above mentioned steps are

applied to the circular data set.

3.1.5. Crawling and Indexing

Search engines work on the concept of Crawling and Indexing.

● Crawling - looks for pages that are new or updated.

User uploaded circulars need to be crawled first before creating an inverted index.

In the app all uploaded PDFs are stored in the “incoming_data” folder. Whenever

the crawler method runs it will pick all pdf which has not crawled before. The

PDFs to be indexed are identified by using the “doclist.txt” file which gets created

after indexing. “doclist.txt” file contains all PDFs which were indexed before with

their last modified time. So the crawler method can identify what are newly

uploaded documents or modified documents by going through “doclist.txt”.

● Indexing - circulars captured from crawling are indexed and stored to be returned

later for a search query.

Indexing will happen after the above mentioned pre-processing steps. After

preprocessing, the stemmed word list will be returned for the PDF which is given

as an input. By using this stemmed list three dictionaries are maintained for the

ease of data retrieval. They are,

○ doclist : This dictionary stores the number of words, tags, year, size and last

modified time of the circular corresponding to its name.

Computer Test Relevant to the Efficiency bar Examination for
Officers-1666172634.5892184.txt    "computer test,efficiency bar
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examination,officers"    217.5

Computer Test Relevant to the Efficiency bar Examination for Officers -
2017-1666172670.1330814.txt    "computer test,efficiency bar
examination,officers"    152.4

Deferment of Salary Increments on non-completion of Efficiency Bar
Examination-1666172799.0288794.txt    "deferment,salary
increments,non-completion,efficiency bar examination,officers"    241.4

○ wordfile : This dictionary stores how many documents containing the

stemmed word. And also it contains the number of occurrences of a

stemmed word with its circular name foreach file the stemmed word

contains.

"common": {
"predoc": 1,
"ScrapedPDFs/Deferment of Salary Increments on non-completion of
Efficiency Bar Examination-1666172799.0288794.txt": 1

},
"law": {

"predoc": 1,
"ScrapedPDFs/Deferment of Salary Increments on non-completion of
Efficiency Bar Examination-1666172799.0288794.txt": 1

},
"order": {

"predoc": 1,
"ScrapedPDFs/Deferment of Salary Increments on non-completion of
Efficiency Bar Examination-1666172799.0288794.txt": 1

},

○ wordloclist : This dictionary stores all the locations of a stemmed word in a

file. The location includes the line number and position of the word in that

line. This will help to show a small description to the user where the search

query exists in the document for matching search results.

"combin": {
"ScrapedPDFs/Computer Test Relevant to the Efficiency bar

Examination for Officers-1666172634.5892184.txt": [

[ 1, 34 ],
[ 61, 56 ],

}
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Whenever a user query is submitted scanning is happening only through

those dictionaries but not the whole circular documents. This will increase

the speed of user search because user search does not need to scan through

large text which are in circular PDFs.

3.1.6. Searching and Ranking

System will allow the following user query types.

● keyword queries - For finding keywords, a wordlist dictionary file created earlier

is useful.

keyword-Matcher(userquery, year, tag):
words = preprocess(userquery):
for word in words:

// check if user entered word exists in wordlist dictionary
// which created earlier in indexing step

if word in self.wordlist:

// if exists, from wordloclist dictionary get the circular names with their positions

pos = self.wordloclist[word]

// add each document word position in doclist variable

for docs in pos:

// check if document exist in doclist variable,
// if document exists append word and its position for that document

if docs in doclist:
if word in doclist[docs]:
continue

else:
doclist[docs][word] = pos[docs]

else:

// if document not exists in doclist according to the filtering criteria
// add document to doclist variable with word and its position for that document

if year and category:

// if matches both year and category

doclist[docs] = {}
doclist[docs][word] = pos[docs]

elif year:
// if matches only year
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doclist[docs] = {}
doclist[docs][word] = pos[docs]

elif category:

// if matches for category

doclist[docs] = {}
doclist[docs][word] = pos[docs]

else:

// if filtering criteria not added add document

doclist[docs] = {}
doclist[docs][word] = pos[docs]

● phrase queries - For finding phrases, wordloclist dictionary files created earlier

are used. As this file stores the locations of the words this scenario implementation

became possible.

Phrasequery-Matcher(userquery, year, tag):
words = preprocess(userquery)

// to add documents which matches filter criteria for every keyword in phrase

wordll=[]
for word in words:

// check if user entered word exists in wordlist dictionary which created earlier in
// indexing step

if word in self.wordlist:

// to store documents which matches filter criteria for only keyword

filteredDoc = []

// store each document which contains that word into variable app

app = [x for x in self.wordlist[word]]

// for each document which contains the keyword

for doc in app:
if year and category:

// if matches both year and category add to filteredDoc

filteredDoc.append(doc)
elif year:
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// if matches both year

filteredDoc.append(doc)
elif category:

// if matches category

filteredDoc.append(doc)
else:

// if filtering criteria not added add document

filteredDoc.append(doc)
wordll.append(filteredDoc)

// finaldocs is derived by intersecting lists in wordll. only if phrase exists in all the
lists that

// document will be added to finaldoc

finaldocs = self.intersectlists(wordll)

// store each word positions of each document in doclist variable

for word in words:
pos = self.wordloclist[word]
for docs in finaldocs:

doclist[docs][word] = pos[docs]
for docs in doclist:

// the below code is used to check foreach document, the words occurs
// in the way user entered
// counter variable is used to deduct counter value from current word
// position and identify the keywords occur nearby

counter = 0
dummy = []
for word in words:

for z in doclist[docs][word]:
locationdict[z[0]] = z[1]
z[0] = z[0] - counter

// in a dummy variable the current word position stores. because we have
deducted

// counter value if the order of document words matches for user phrase,

// z[0] value has same value

dummy.append([z[0] for z in doclist[docs][word]])
counter += 1

// resultant is derived by intersecting lists in dummy. only if word position
matches

// in all the lists that word position will be added to resultant

resultant = self.intersectlists(dummy)
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For ranking the matched documents, the Okapi BM25 formula is used. PDF

documents can be retrieved efficiently using algorithms like BM25 over TF-IDF.

The implementation of Okapi BM25 algorithm to rank phrase query matching

documents are as follows.

OKAPI-BM25(doclist, k=1.2, b=0.75, delta=1.0):

// get the no of document in corpus and average no of words for a document

avgdl, n = self.total_length()

// create a counts dictionary with size doclist length

counts = dict([(docid, 0) for docid in doclist])

// no of documents which contains the matching phrase

val = len(doclist)

for docs in doclist:

// get the document length from doclist dictionary which created in indexing step

doc_length = int(self.doclist[docs]['wordcount'])

// variable initialize which needs for OKAPI-BM25

numerator = (k + 1) * doclist[docs]
denominator = doclist[docs] + k * (1 - b + b * (doc_length / avgdl))

idf = log2(n/val)

// calculate the score value

score = idf * (delta + numerator / denominator)
counts[docs] = score

// keep the score between 0-1 range by dividing the max score value

ncounts = self.normalizescores(counts)
return ncounts

3.1.7. Recommendation System

Since the data set contains only item data (in our context it is circulars), we would focus

on creating a prediction system which is content - based. The system which is built

predicts a circular considering the time the user spent on reading (which is calculated by

the time the user focuses on the browser page) a particular circular. Therefore, when
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recommending circulars, a high recommendation score will be given to the similar

circulars which the user has spent a long time reading in the past.

To create the recommendation system TF-IDF matrix and cosine similarity matrix were

used. To create a TF-IDF matrix, TfidfVectorizer function is used from sklearn

feature_extraction text package. This function accepts several parameters and those are

needed when customizing the output. To get more information on this function go to

(https://goo.by/vgyXh)

It is used to represent a document corpus as its TF-IDF matrix. When calling the

TfidfVectorizer function we can pass several parameters to customize the TF-IDF matrix

output (Chaudhary, 2020). Cosine similarity matrix is used to get the document

similarity. To create this matrix, “cosine_similarity” function is used from the sklearn

metrics pairwise package (https://goo.by/oVnSG  ). To create a cosine similarity matrix

we have passed our TF-IDF  matrix as the input for the cosine_similarity function.

The algorithm for recommendation generation is below.

GET-RECOMMENDATIONS(viewedDoclist, int matchingMinPercnt, int
matchingMaxPercnt):

// get all documents name, document texts as lists in corpus

documents, train_texts = load_data(crawlPath)

// get the tf-idf matrix by passing train texts

tfidf_mtx = tfid_vector(train_texts)

// create cos_sim matrix

cos_sim = cosine_similarity(tfidf_mtx , tfidf_mtx )

// store the viewed document ids

idx = [document.id for document in documents]

// loop through each viewed document id and get the cosine similarity list for that
// document and store in sim_scores_lst

for i in range(len(idx)):
simi_scores = list ( enumerate (cos_sim [idx[i]]))
for i in rng ( len (simi_scores)):
sim_scores_lst.append(simi_scores [i])

# the articles are sorted  by the sim scores in desc
sim_scores = sim_scores_lst sort in desc
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# store scores for  very simi articles, giving start index as length of viewed
# documents because no need to show viewed documents in recommendation list
sim_scores = sim_scores_lst[len(documents):len(sim_scores_lst)]
# get only the similarity score between matchingMinPercnt and matchingMaxPercnt
# which user entered
sim_scores = [sim_score for sim_score in sim_scores if minVal <= sim_score[1] <= maxVal

// return the top 5 most similar documents to front end

lstRecommendations= []
for element in sim_scores:

if(i==5):
break

lstRecommendations.Add(element)
return lstRecommendations

3.1.8. Presentation of Circulars

Presentation of the results is done by a web app which is built using python Jinja

templates. List of circulars which are relevant to the search terms are generated by the

algorithms in the back-end. The results returned from the backend can be mainly

divided into two sections. They are,

1. Query result content – user query result data directly served here. Result is

generated to the browser by parsing searched query parameters to the backend. Jinja

templates handle the creation of custom web pages.

2. Personalized content – circulars are recommended based on user past activities

served here. Once the web page is loaded, a JavaScript fetch request is made to the

server endpoint (acting as an API) with user past activity (time spent by user on

reading PDF). Back-end server returns matching circulars by considering past user

activity in JSON format and JavaScript rendering them as HyperText Markup

Language (HTML) in the web page.

Users can view the matching PDFs by clicking on them. If the circular is viewed

directly as a PDF there is no way to track time users are actively engaged in reading the

PDF. This issue is addressed by opening the PDF as an embedded object in a HTML

page so the time spent on the page can be tracked. Simple and lightweight JavaScript

library called TimeMe.js is used in the front-end to capture the time that the user spent

actively on the PDF. The PDF can be shared via email, instant messaging (such as
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WhatsApp), social media (such as Facebook and Instagram), or instant messaging (such

as WhatsApp).
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CHAPTER 4

EVALUATION AND RESULTS
4.1. Introduction

Current curricula repository allows the user to search the required curricular by,

1. keywords (required)

2. curricular number (optional)

3. year (optional)

4. curricular type (optional)

Curricula repository contains a large number of documents. There is no way to omit

unnecessary results which contain the same keywords but related to other curricular types. So

the system made by me serves as an advanced searching tool that allows the user to get

specific curricular/curricula required by searching for occurrences of the searched keyword in

PDF files. The magic is made to happen with an information retrieval process called Okapi

BM25 method. The system provides a simple yet powerful interface for the user to get what

they want with less effort.

This system has to interact with two kinds of people. They are,

01. the system admin who is in charge of the file uploads and system maintenance

&

02. the users that search for curricula.

The admin of the system needs a reliable way to add PDF files to the system while users need

a reliable way to get what they are looking for. So the testing should be done by keeping in

mind the point of view of these people.

There is another helpful feature in this system which suggests to the user about curricula

related to what the user checked in the past.
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4.2. Features to be Tested

4.2.1. Admin Side Tests

1. Capability to admin to add the documents to the system with tags (Test ID: 1AT1)

4.2.2. User Side Tests

1. Normal search

Table 4.1 - Expected Outcomes of Normal Search at Every Possibilities

Test
ID

Search
Keyword

Year Tags Expected outcome

2NS01 0 0 0 No keywords, no search

2NS02 0 0 1

2NS03 0 1 0

2NS04 0 1 1

2NS05 1 0 0 All related documents

2NS06 1 0 1 Results with documents matching the
keyword AND tags entered

2NS07 1 1 0 Results with documents matching the
keyword AND the year entered

2NS08 1 1 1 Results with documents matching the
keyword AND tags entered AND the year
entered

Sates,

● Search keyword (1) – search keyword entered

● Search keyword (0) – search keyword not entered

● Year (1) – year entered

● Year (0) – year not entered

● Tags (1) – tags entered

● Tags (0) – tags not entered
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2. Advance search

Table 4.2 - Expected Outcomes of Advance Search at Every Possibilities

Test
ID

Search
keyword

Words
to

include

Words
to

exclude

Year Tag Expected
outcome

2AS01 0 0 0 0 0 No keywords, no search

2AS02 0 0 0 0 1

2AS03 0 0 0 1 0

2AS04 0 0 0 1 1

2AS05 0 0 1 0 0

2AS06 0 0 1 0 1

2AS07 0 0 1 1 0

2AS08 0 0 1 1 1

2AS09 0 1 0 0 0

2AS10 0 1 0 0 1

2AS11 0 1 0 1 0

2AS12 0 1 0 1 1

2AS13 0 1 1 0 0

2AS14 0 1 1 0 1

2AS15 0 1 1 1 0

2AS16 0 1 1 1 1

2AS17 1 0 0 0 0 All related documents

2AS18 1 0 0 0 1 Documents matching the

keyword AND the tags entered

2AS19 1 0 0 1 0 Results with documents

matching the keyword AND

the year entered

2AS20 1 0 0 1 1 Results with documents

matching the keyword AND

year AND the tags entered

“Table 4.2. continued”
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2AS21 1 0 1 0 0 Documents matching the

keyword but which doesn’t

include the excluded words

2AS22 1 0 1 0 1 Documents matching the

keyword AND the tags entered

but which doesn’t include the

excluded words

2AS23 1 0 1 1 0 Documents matching the

keyword AND the year entered

but which doesn’t include the

excluded words

2AS24 1 0 1 1 1 Results with documents

matching the keyword AND

year entered AND the tags

entered but which doesn’t

include the excluded words

2AS25 1 1 0 0 0 Results with documents

matching the keyword AND

matching the exact words in the

words to include

2AS26 1 1 0 0 1 Results with documents

matching the keyword AND

the tags entered AND

matching the exact words in the

words to include

2AS27 1 1 0 1 0 Results with documents

matching the keyword AND

the year entered AND

matching the exact words in the

words to include

“Table 4.2. continued”
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2AS28 1 1 0 1 1 Results with documents

matching the keyword AND

year entered AND the tags

entered AND matching the

exact words in the words to

include

2AS29 1 1 1 0 0 Results with documents

matching the keyword AND

matching the exact words in the

words to include but which

doesn’t include the excluded

words

2AS30 1 1 1 0 1 Results with documents

matching the keyword AND

the tags entered AND

matching the exact words in the

words to include but which

doesn’t include the excluded

words

2AS31 1 1 1 1 0 Documents matching the

keyword AND the year entered

AND matching the exact

words in the words to include

but which doesn’t include the

excluded words

2AS32 1 1 1 1 1 Results with documents

matching the keyword AND

tags entered AND the year

entered AND matching the

exact words in the words to

include but which doesn’t

include the excluded words
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States,

● Search keyword (1) – search keyword entered

● Search keyword (0) – search keyword not entered

● Year (1) – year entered

● Year (0) – year not entered

● Tags (1) – tags entered

● Tags (0) – tags not entered

● Words to include (1) – words to include entered

● Words to include (0) – words to include not entered

● Words to exclude (1) – words to exclude entered

● Words to exclude (0) – words to exclude not entered

3. Recommendations (Test ID: 2REC01)

4. Share a document via social media, instant messenger, email (Test ID: 2SHR01)

4.2.3. System Side Tests

1. Okapi BM25 document data retrieval accuracy

a. Year (Test ID: 3SS01)

b. Words occurrences (Test ID: 3SS02)

2. Recommendations accuracy (Test ID: 3SSREC01)

4.3. Test Scenarios

Let's check a simple scenario. Say someone is looking for the curriculum of "Efficiency Bar

Examination" of officers in the current system. They receive some results containing the

required curricular plus deferments of salary increments of those officers who completed the

examination and deferments of salary increments of those officers who did not complete the

examination. The system made by me has given the facility to narrow the results by removing

the results matching keywords given by the user as not required.

There are two ways to search using this system. The user can eliminate undesirable results

from the result list using these two approaches, making it easier to use and requiring less

effort.
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I. A normal search where user can search by,

● keyword,

● year and

● related tags.

II. An advance search where a combination of normal search methods plus a way to

further narrow down the results by letting the user to enter,

● words required in the results and

● words which are not required to be in results.

Since the document's tags play a crucial role in search methods, only the administrator has the

ability to add tags, giving this system some real-world guidance for preparing search results.

Additionally, it assists in limiting the results.

4.4. Testing Approach

4.4.1. Upload Test

1. Uploading the sample “Efficiency Bar Examination” related PDFs with relevant

tags

Table 4.3 - PDFs to Upload Under “Efficiency Bar Examination”

PDF ID PDF
name

Tags Year in
document

EBE01 Computer Test Relevant to the
Efficiency bar Examination for
Officers.pdf

computer test,
efficiency bar
examination, officers

2017

EBE02 Computer Test Relevant to the
Efficiency bar Examination for
Officers – 2017.pdf

computer test,
efficiency bar
examination, officers

2017

EBE03 Deferment of Salary Increments
on non-completion of Efficiency
Bar Examination.pdf

deferment, salary
increments,
non-completion,
efficiency bar
examination, officers

2018

EBE04 Deferment of salary increments on
not completing the efficiency
bar.pdf

deferment, salary
increments,
non-completion,
efficiency bar
examination, officers

2019

“Table 4.3. continued”
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EBE05 EBE of class III officers.pdf efficiency bar
examination, officers,
class III, public
management, assistants
service

2014

EBE06 Reference the course related to the
exemption of the officers from the
Efficiency Bar Examination.pdf

exemption of officers,
efficiency bar
examination, course
related

2022

2. Uploading the sample “Agrahara Insurance Scheme” related PDFs with relevant

tags

Table 4.4 - PDFs to Upload Under”Agrahara Insurance Scheme”

PDF ID PDF name Tags Year in
document

AIS01 Agrahara Insurance

Scheme for Public

Officers.pdf

agrahara insurance, insurance

schemes, public officers

2003

AIS02 Extending the benefits

under Agrahara

Insurance Scheme.pdf

benefits, extension of benefits,

agrahara insurance, insurance

schemes

2005

AIS03 Claims under AIS for

COVID 19 positive

officers.pdf

payment of claims, agrahara

insurance, insurance scheme,

public officers, covid-19,

pandemic, covid-19 positive

officers

2021

3. Normal search test cases

Table 4.5 - Normal Search Test Cases

Test ID Search keyword Year Tags Expected result

2NS01 - - - Cannot proceed without a
search keyword

2NS02 - - agrahara insurance

“Table 4.5. continued”
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2NS03 - 2003 - Cannot proceed without a
search keyword

2NS04 - 2003 agrahara insurance

2NS05 agrahara - - Results with PDF IDs -
AIS01, AIS02, AIS03

2NS06 agrahara - benefits Results with PDF ID -
AIS02

2NS07 agrahara 2003 - Results with PDF ID -
AIS01

2NS08 agrahara 2021 covid-19 Results with PDF ID -
AIS03

4. Advance search test cases

Table 4.6 - Advance Search test Cases

Test
ID

Search
keyword

Words to
include

Words to
exclude

Year Tag Expected
result

2AS01 - - - - - Cannot

proceed

without a

search

keyword

2AS02 - - - - officers

2AS03 - - - 2019 -

2AS04 - - - 2019 officers

2AS05 - - agrahara - -

2AS06 - - agrahara - officers

2AS07 - - agrahara 2019 -

2AS08 - - agrahara 2019 officers

2AS09 - bar

examination

- - -

2AS10 - bar

examination

- - officers

“Table 4.6. continued”
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2AS11 - bar

examination

- 2019 - Cannot

proceed

without a

search

keyword

2AS12 - bar

examination

- 2019 officers

2AS13 - bar

examination

agrahara - -

2AS14 - bar

examination

agrahara - officers

2AS15 - bar

examination

agrahara 2019 -

2AS16 - bar

examination

agrahara 2019 officers

2AS17 bar

examination

- - - - Results with

PDF IDs -

EBE01,

EBE02,

EBE03,

EBE04,

EBE05,

EBE06

2AS18 bar

examination

- - - computer

test

Results with

PDF IDs -

EBE01,

EBE02

2AS19 bar

examination

- - 2017 - Results with

PDF IDs -

EBE01,

EBE02

“Table 4.6. continued”
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2AS20 bar

examination

- - 2014 class III EBE05

2AS21 bar

examination

- computer

test

- - Results with

PDF IDs -

EBE03,

EBE04,

EBE05,

EBE06

2AS22 bar

examination

- computer

test

- salary

increments

Results with

PDF IDs –

EBE03,

EBE04

2AS23 bar

examination

- computer

test

2014 - EBE05

2AS24 bar

examination

- computer

test

2019 salary

increments

EBE04

2AS25 bar

examination

computer

test

- - - Results with

PDF IDs -

EBE01,

EBE02

2AS26 bar

examination

class III - - deferment EBE05

2AS27 bar

examination

non -

completion

- 2018 - EBE03

2AS28 bar

examination

exemption

of officers

- 2022 exemption

of officers

EBE06

“Table 4.6. continued”
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2AS29 bar

examination

officers computer

test

- - Results with

PDF IDs –

EBE03,

EBE04,

EBE05,

EBE06

2AS30 bar

examination

officers computer

test

- efficiency

bar

examination

Results with

PDF IDs –

EBE03,

EBE04,

EBE05,

EBE06

2AS31 bar

examination

officers computer

test

2018 - EBE03

2AS32 bar

examination

officers computer

test

2014 efficiency

bar

examination

EBE05

4.4.2. Recommendations Test

1. Open a PDF related to “Efficiency Bar Examination” from search results and

check the recommendations when opened document history shows only that

file.

Procedure,

● Delete opened document history from “Recently opened documents”.

● Open PDF ID – EBE01 and close it

● Search for any document

● Check the recommendations shown

● Expected recommendations,

○ Results with PDF IDs - EBE02, EBE03, EBE04, EBE05,

EBE06 (Not showing EBE01 since it is already shown.
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Table 4.7 - Scores that were calculated in the recommendation system when the PDF

"EBE01" was first opened

PDF Score

Computer Test Relevant to the Efficiency bar
Examination for Officers -
2017-1668945981.4800775.pdf

0.3434428381623789

Deferment of Salary Increments on
non-completion of Efficiency Bar
Examination-1668946003.0828907.pdf

0.06708065499397613

Deferment of salary increments on not
completing the efficiency
bar-1668946042.8416.pdf

0.06647273692493798

EBE of class III officers-1668946059.80287.pdf 0.059335227554227016

Reference the course related to the exemption
of the officers from the Efficiency Bar
Examination-1668946095.5181093.pdf

0.04305171344744481

2. Open a PDF related to “Agrahara Insurance Scheme” from search results and

checking the recommendations when opened document history shows only that

file.

Procedure,

● Delete opened document history from “Recently opened documents”.

● Open PDF ID – AIS01 and close it

● Search for any document

● Check the recommendations shown

● Expected recommendations,

○ Results with any PDF IDs - AIS02, AIS03 (Not showing

AIS01 since it is already shown.)

○ Results with any PDF IDs  - EBE01, EBE02, EBE03, EBE04
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Table 4.8 - Scores that were calculated in the recommendation system when the PDF

"AIS01" was first opened

PDF Score

Claims under AIS for COVID 19 positive
officers-1666172992.1150625.pdf

0.037536188926928296

Extending the benefits under Agrahara
Insurance Scheme-1666172969.822767.pdf

0.01931392960783257

Computer Test Relevant to the Efficiency bar
Examination for
Officers-1666172634.5892184.pdf

0.006783031266493108

Computer Test Relevant to the Efficiency bar
Examination for Officers -
2017-1668945981.4800775.pdf

0.006683940215877608

Deferment of Salary Increments on
non-completion of Efficiency Bar
Examination-1668946003.0828907.pdf

0.005714313002450784

3. Open a PDF related to “Agrahara Insurance Scheme” and a PDF related to

“Efficiency Bar Examination” from search results and checking the

recommendations when opened document history shows only those two files.

Procedure,

● Delete opened document history from “Recently opened documents”.

● Open PDF ID – EBE01 and close it

● Open PDF ID – AIS01 and close it

● Search for any document

● Check the recommendations shown

● Expected recommendations,

○ Results with any PDF IDs - AIS02, AIS03 (Not showing

AIS01 since it is already shown.)

○ Results with any PDF IDs - EBE02, EBE03, EBE04, EBE05,

EBE06 (Not showing EBE01 since it is already shown.)

○ Results can be of any 5 PDFs from above results
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Table 4.9 - Scores Calculated in Recommendation System when PDF “EBE01” and

PDF “AIS01” was Opened Before

PDF Score

Computer Test Relevant to the Efficiency bar
Examination for Officers -
2017-1668945981.4800775.pdf

0.3434428381623789

Deferment of Salary Increments on
non-completion of Efficiency Bar
Examination-1668946003.0828907.pdf

0.06708065499397613

Deferment of salary increments on not completing
the efficiency bar-1668946042.8416.pdf

0.06647273692493798

EBE of class III officers-1668946059.80287.pdf 0.059335227554227016

Reference the course related to the exemption of
the officers from the Efficiency Bar
Examination-1668946095.5181093.pdf

0.04305171344744481

4.4.3. PDFs That We Have Used To Test

1. Efficiency Bar Examination related

a. Computer Test Relevant to the Efficiency bar Examination for

Officers.pdf

b. Computer Test Relevant to the Efficiency bar Examination for Officers

– 2017.pdf

c. Deferment of Salary Increments on non-completion of Efficiency Bar

Examination.pdf

d. Deferment of salary increments on not completing the efficiency

bar.pdf

e. EBE of class III officers.pdf

f. Reference the course related to the exemption of the officers from the

Efficiency Bar Examination.pdf

2. Agrahara Insurance scheme related

a. Agrahara Insurance Scheme for Public Officers.pdf

b. Extending the benefits under Agrahara Insurance Scheme.pdf

c. Claims under AIS for COVID 19 positive officers.pdf
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4.5. The Resources Allocated to Test The App

● Local test – Local computer

4.6. Test Result

Table 4.10 - Results of the Test are shown below

Test ID Expected Result Actual Result

1AT1 Capability to admin to add the

documents to the system with tags

The admin was able to upload

documents with tags, so the result

was as expected.

2NS01 No keywords, no search No keywords, no search, so the
result was as expected.

2NS02

2NS03

2NS04

2NS05 Shows all related documents Showed all related documents, so

the results were as expected.

2NS06 Documents that match the

keywords and tags entered in the

search results

All documents matching the

keywords and tags entered

appeared in the search results, so

the results were as expected.

2NS07 Documents that match the

keywords and the year entered in

the search results

All documents matching the

keywords and the year entered

appeared in the search results, so

the results were as expected.

2NS08 Documents that match the

keywords, tags and the year

entered in the search results

All documents matching the

keywords, tags and the year entered

appeared in the search results, so

the results were as expected.

“Table 4.10 continued”
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“Table 4.10 concluded”

2AS01 No keywords, no search No keywords, no search, so the
result was as expected.

2AS02

2AS03

2AS04

2AS05

2AS06

2AS07

2AS08

2AS09

2AS10

2AS11

2AS12

2AS13

2AS14

2AS15

2AS16

2AS17 Shows all related documents Showed all related documents

2AS18 Documents that match the

keywords and tags entered in the

search results

All documents matching the

keywords and tags entered

appeared in the search results, so

the results were as expected.

2AS19 Documents that match the

keywords and the year entered in

the search results

All documents matching the

keywords and the year entered

appeared in the search results, so

the results were as expected.

2AS20 Documents that match the

keywords, year and the tags

entered in the search results

All documents matching the

keywords, year and the tags entered

appeared in the search results, so

the results were as expected.

“Table 4.10 continued”
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“Table 4.10. concluded”

2AS21 Results with documents matching

the keyword but which doesn’t

include the excluded words

Documents that matched the

keywords but did not contain the

excluded wordsin the result, so the

results were as expected.

2AS22 Results with documents matching

the keyword AND the tags

entered but which doesn’t include

the excluded words

Documents that matched the

keyword and the tags but did not

contain the words that were

excluded appeared in the result, so

the results were as expected.

2AS23 Results with documents matching

the keyword AND the year

entered but which doesn’t include

the excluded words

Documents that matched the

keyword and the year but did not

contain the words that were

excluded appeared in the result, so

the results were as expected.

2AS24 Results with documents matching

the keyword AND year entered

AND the tags entered but which

doesn’t include the excluded

words

Documents that matched the

keyword, year and tags but did not

contain the words that were

excluded appeared in the result, so

the results were as expected.

2AS25 Results with documents matching

the keyword AND matching the

exact words in the words to

include

Documents matching the keyword

and having words in exact words

were appearing in the result, so the

results were as expected.

2AS26 Results with documents matching

the keyword AND the tags

entered AND matching the exact

words in the words to include

Documents matching the keyword,

tags entered and having exact

words were appearing in the result,

so the results were as expected.

2AS27 Results with documents matching

the keyword AND the year

entered AND matching the exact

words in the words to include

Documents matching the keyword,

year and having words in exact

words were appearing in the result,

so the results were as expected.

“Table 4.10 continued”
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“Table 4.10 concluded”

2AS28 Results with documents matching

the keyword AND year entered

AND the tags entered AND

matching the exact words in the

words to include

Documents matching the keyword,

year and tags entered and having

words in exact words were

appearing in the result, so the

results were as expected.

2AS29 Results with documents matching

the keyword AND matching the

exact words in the words to

include but which doesn’t include

the excluded words

Documents that matched the

keyword and words in exact words,

but did not contain the excluded

words were appearing in the result,

so the results were as expected.

2AS30 Results with documents matching

the keyword AND the tags

entered AND matching the exact

words in the words to include but

which doesn’t include the

excluded words

Documents matching the keyword,

tags entered and having exact

words, but did not contain the

words that were excluded were

appearing in the result, so the

results were as expected.

2AS31 Results with documents matching

the keyword AND the year

entered AND matching the exact

words in the words to include but

which doesn’t include the

excluded words

Documents matching the keyword,

tags entered and having exact

words, but did not contain the

words that were excluded were

appearing in the result, so the

results were as expected.

2AS32 Results with documents matching

the keyword AND tags AND year

AND matching the exact words in

the words to include but which

doesn’t include the excluded

words

Documents matching the keyword,

tags, year entered and having exact

words, but did not contain the

words that were excluded were

appearing in the result, so the

results were as expected.

“Table 4.10 continued”
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“Table 4.10 concluded”

2REC01 Assuming the client has opened

any PDF previously, suggestion

ought to show related in the

proposal segment. A message

stating that there are currently no

recommendations should appear if

nothing has been viewed.

When no PDFs were opened, no

suggestions were displayed, while

when PDFs were opened,

suggestions were displayed, so the

results were as expected.

2SHR01 The opened document should

have a link that can be shared via

email, instant messaging, and

social media.

A link that can be shared via email,

instant messaging, and social media

is in the opened document, so the

results were as expected.

3SS01 The year listed in each document

should appear in the

documentcategory.txt file, as

shown in tables 1 and 2.

Tables 1 and 2 in the

documentcategory.txt file

correspond to the years listed, so

the results were as expected.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusions

Searching for a required circular over a circular repository becomes a very tedious and time

consuming task. Therefore, the absence of a well-functioning circular storage and retrieval

system has led the researcher to build such a system. Implementation of this system will

help users to quickly and easily retrieve the circulars that they are looking for.

In this thesis, we discussed the literature of IR and Recommendation Systems and its

working principles. We then explained in detail how to create an inverted index, apply the

Okapi BM25 document ranking model and implement a user based content based

recommendation model to the circular corpus after performing pre-processing steps on

circular documents. In the evaluation section the researcher demonstrated that the final

system worked effectively on circular documents. Therefore, as the final output of this

research, a circular retrieval and recommendation system is implemented which allows

users to search circulars easily and quickly.

5.2. Limitations

Though the researcher made considerable effort, the limitations that still exists in this thesis

can be explained as below,

1. Only supports the English language.

2. Some old circulars are uploaded as images. Those are not supported for search.

5.3. Future Work

Therefore, future work can be done on,

1. Making this system to support multi-language.

2. To read the text from circulars which are uploaded as images and enable to search by

circulars uploaded as images also.

3. Current recommendation system is built on the time the user spent on reading a

specific circular. The researcher identified when working with a large corpus of

circulars better accuracy can be obtained by using circular tags + the time the user
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spent on reading circulars. Therefore, this will allow supervised machine learning to

be used on this system.
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