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ABSTRACT 

The emergence of COVID-19 in early December 2019 has caused enormous damage to health and global 

well-being. It is still spreading worldwide, with some countries/ areas under lockdown. Although 

vaccinations for emergency use are available, no proven and tested vaccination is available in the market 

today to make a person entirely immune to COVID-19. Hence, continuous testing and monitoring are 

vital to hinder the spread of COVID-19. Today, PCR with reverse transcription (RT–PCR) is the choice 

test for diagnosing COVID-19. As an alternative, Rapid antigen test kits are also used. However, 

hospitals, especially in rural areas in countries like Sri Lanka, are deprived of these test kits. Also, except 

for a few countries, most people now tend to refrain from testing since they are more accustomed to 

COVID-19, and their fear of it has gradually decreased. Therefore, it is imperative to design an 

automated decision support system through different means, which can assist in providing fast decision-

making with a low diagnosis error. 

Chest X-ray images and Deep Learning algorithms have recently become a worthy choice for COVID-

19 screening. This thesis proposes a model-based decision support system to diagnose COVID-19. It is 

a multi-class classification system that can classify an X-Ray DICOM (Digital Imaging and 

Communications in Medicine) object into one of the four COVID-19 Pneumonia classes: ‘Negative for 

Pneumonia’, ‘Typical Appearance’, ‘Indeterminate Appearance’ and ‘Atypical Appearance’. 

Furthermore, this decision support system can interpret using a heat map why a specific classification or 

a decision has been made.  

This thesis further discusses the three main modules, or the building blocks used to develop this decision 

support system: Data Pre-Processing Module, Model Training Module and Model Inference Module. 

The Data Pre-Processing Module describes the pre-processing steps that must be applied to a DICOM 

object. The Model Training Module focuses on developing the best-performing model. Here the 

effectiveness of five pre-trained Convolutional Neural Network (CNN) models, namely Densenet121, 

VGG-16, ResNet-50, Inception-V3 and CheXNet, have been evaluated. The evaluation is done through 

comparative analysis considering several important factors such as batch size, learning rate, number of 

epochs, types of loss functions and optimizers. A publicly available DICOM chest X-ray dataset from 

Kaggle is used to validate the models, and CheXNet obtains the best performance. Finally, the Model 

Inference Module focuses on the Web Application developed to make inferences from Chest X-Ray 

images. 
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1. CHAPTER 1 INTRODUCTION 

 

1.1  The Project Overview 

The pandemic associated with coronavirus is now considered one of the deadliest epidemics creating 

havoc on the health and financial systems of the world. The numbers of COVID-19 cases exponentially 

increase with no specific treatment. Although vaccines are now available for emergency use, more is 

needed to guarantee protection against COVID-19 fully. 

Far deadlier than the flu, COVID-19 causes significant morbidity and mortality. The Figure 1.1 shows 

that the fatality rate in Sri Lanka and the daily number of reported cases of COVID-19 show an increasing 

trend from October 2020 until August 2021 and then a decreasing trend. However, recorded numbers 

only partially justify the current situation since people are generally reluctant to test. 

 

 

 

 

 

 

 

Figure 1.1 Number of cases reported from June 2020 to March 2022 in Sri-Lanka 

In Sri Lanka, many people die in their own houses, and the post-mortem reports suggest that many people 

die of COVID-19. This would have been a different story had the patients been identified earlier and 

proper medical treatment was provided before the condition worsened. Therefore, continuous testing and 

monitoring are vital to hinder the spreading of COVID-19 and a need for a cheap, feasible, and, more 

importantly, fast diagnosis mechanism arises. 

1.2  Motivation 

Today, PCR with reverse transcription (RT–PCR) is the choice test for diagnosing COVID-19. However, 

it can take a few hours and sometimes days before the molecular test results arrive. By the time we 
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identify some patients to be COVID-19 positive, it might be too late for them. As an alternative solution, 

rapid antigen test kits to detect COVID-19 are available on the market today. The rapid antigen test 

yields the test result in minutes. However, they tend to have a high false-positive rate (Gans et al., 2022). 

Furthermore, these conventional diagnosis processes cause an increased risk for medical staff due to 

direct exposure. Moreover, these tests are costly, and the limited availability of diagnostic test kits has 

become a problem, especially in rural areas in Sri Lanka. Despite the drawbacks, these two methods are 

the widely used techniques to diagnose COVID-19. 

Also, except for a few countries, most people now tend to refrain from testing since they are more 

accustomed to COVID-19, and their fear of it has gradually decreased. Therefore, designing an 

automated decision support system through separate means is essential, which can assist in providing 

fast decisions and significantly reduce diagnosis errors. As a solution, imaging (chest radiograph (CXR), 

Chest CT Scans) can be used to achieve greater diagnostic certainty (Gans et al., 2022). These techniques 

are relatively safe, faster, and easily accessible. Therefore X-ray imaging has been used extensively for 

COVID-19 screening as it necessitates lower cost and less imaging time, and X-ray scanners are widely 

available even in rural areas (Nayak et al., 2021).  

However, it is a cumbersome and time-consuming task for radiologists to inspect X-ray images visually. 

Moreover, it may lead to erroneous diagnoses due to a lack of prior knowledge about the virus-infected 

regions. Thus, there is a robust requirement for the design of automated methods to enable a quick and 

accurate COVID-19 diagnosis.  

There have been many attempts to develop models to diagnose COVID-19 using imaging. Nevertheless, 

their readiness to deploy clinically is a question, mainly due to methodological flaws and underlying 

biases in data (AIX-COVNET et al., 2021). Furthermore, most research in this area does not contain a 

visualization component for interpretability. 

1.3   Objectives 

It is very convenient to get a chest radiograph in Sri Lanka, irrespective of the area a person lives. 

However, it is a complex task to diagnose COVID-19 using chest radiographs (CXR) visually. Like other 

cases of Pneumonia, inflammation and fluid in the lungs occur as a result of pulmonary infection with 

COVID-19. This appears very similar to other bacterial and viral types of Pneumonia on chest 
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radiographs (CXR) (Simpson et al., 2020), making it difficult to diagnose visually. The COVID-19 

Pneumonia imaging classification (Simpson et al., 2020) used in medicine is depicted in Table 1.1 below. 

Table 1.1 COVID-19 Pneumonia Classification 

 Class Label Rationale 

1 
‘Typical Appearance’ 

Commonly reported imaging features of greater 

specificity for COVID-19 Pneumonia. 

2 
‘Indeterminate Appearance’ 

Nonspecific imaging features of COVID-19 

Pneumonia. 

3 
‘Atypical Appearance’ 

Uncommonly or not reported features of COVID-

19 Pneumonia. 

4 ‘Negative for Pneumonia’ No features of Pneumonia 

 

This project aims to build a model-based decision support system based on a multi-class classification 

model using chest radiographs, which predicts the probabilities for each of the four classes mentioned 

above. This model will have enhanced interpretability with a heat map overlaying the image, highlighting 

why a specific decision has been made.  

If successful, this will be particularly useful to people who need to be more privileged to find COVID-

19 test kits at their convenience. Furthermore, many people obtain Chest X-Rays for different 

requirements. This decision support system can be used to gain insight into COVID-19 Pneumonia upon 

their consent. In any case, this would assist doctors in seeing the severity of the disease and making 

decisions regarding treatment, such as hospitalization, admission into an intensive care unit (ICU), or 

supportive therapies like mechanical ventilation. As a result, more patients will quickly receive the best 

care for their condition, which could mitigate the COVID-19 spread and fatality rate in Sri Lanka. 

Furthermore, this decision support system provides an opportunity to make inferences about the whole 

population and on what level COVID-19 is spread in society. 

1.4  Background of the Study 

Since the pandemic began in early 2020, researchers have put forward numerous machine-learning 

models for diagnosing COVID-19 using Chest X-Rays (CXR). A comprehensive study of the 

background and related work is presented in Chapter 2. 
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1.5   Scope of the Study 

The output of this project is a model-based decision support system based on a multi-class classification 

model using chest radiographs, which predicts the probabilities associated with each of the four classes: 

‘Typical Appearance’, ‘Indeterminate Appearance’, ‘Atypical Appearance’, and ‘Negative for 

Pneumonia’. This model will have an enhanced interpretability function through visualization using a 

heat map highlighting why a particular decision has been made. The front end of the decision support 

system is deployed as a web application. 

1.6  The Novelty of the Study 

This study aims at building a decision support system to assist in diagnosing COVID-19, using labelled 

training images verified by an experienced set of radiologists, compared to many unverified public 

datasets used in many of the studies, as stated in detail in Chapter 2.2. This decision support system 

attempts to classify an X-Ray image into the four standard COVID-19 pneumonia classes, whereas all 

the other researchers studied used different class labels. Furthermore, the model performance will be 

driven mainly by PPV (Positive Predicted Value) and NPV (Negative Predicted Value). Moreover, an 

explainability component will be added to the final output, highlighting why a particular classification 

has been made. This further enhances the trustworthiness of the model. 

1.7  The credibility of the Dataset 

A publicly available labelled input dataset is used for this project. The Society for Imaging Informatics 

in Medicine (SIIM) has partnered with the Foundation for the Promotion of Health and Biomedical 

Research of Valencia Region (FISABIO), Medical Imaging Databank of the Valencia Region (BIMCV), 

and the Radiological Society of North America (RSNA) for a Kaggle competition. They have put 

forward a dataset of 6,334 chest radiographs labelled by a panel of experienced radiologists for the 

presence of opacities and overall appearance. The images in the Dataset are in DICOM (Digital Imaging 

and Communications in Medicine) format, the international standard for transmitting, storing, retrieving, 

processing, and displaying medical imaging information. Hence, this data set can be considered a 

credible data set.  

1.8   Structure of the Dissertation 

The dissertation's structure includes the chapters Background and Related Work, Methodology, 

Discussion and Results, and References. 
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2. CHAPTER 2 BACKGROUND AND RELATED WORK 

 

2.1   Introduction 

Since the pandemic began in early 2020, researchers have developed numerous machine-learning models 

for diagnosing COVID-19 using Chest X-Rays (CXR). Most experiments have used public datasets in 

which a responsible governing body has not verified the chest X-rays. Furthermore, critical performance 

metrics such as PPV and NPV have not been calculated in any of the studies analyzed so far. PPV 

indicates the probability that a person has the disease given that the model predicts positive, and NPV 

suggests the probability that a person does not have the disease given that the model predicts negative. 

These two are critical metrics in this use case. 

Moreover, most of the literature focuses only on performance, whereas explainability is essential in the 

majority of Machine Learning/ Deep Learning applications. It is critical to highlight the area in the image 

which contributed to the decision-making. The following section describes past work that has been done 

related to diagnosing COVID-19 using Chest X-Rays. 

2.2   Related Work 

This section describes related work from 2020 to 2022 in chronological order. Six papers published in 

2020, two published in 2021, and one published in 2022 have been considered for this literature review. 

The literature set is further segregated into two subdomains: literature that uses transfer learning 

approaches and conventional Convolutional Neural Networks (CNNs). 

2.2.1 Diagnostic Models using Transfer Learning 

In 2020, Tartaglione et al. (Tartaglione et al., 2020) developed a ResNet-50-based CNN to classify if a 

person is COVID-19 Positive and COVID-19 negative. However, the number of images used for training 

and testing is less than 500 images, and the underlying biases of the data are unknown. Furthermore, 

model evaluation needs to be more precise in the paper. Ghoshal and Tucker (Ghoshal and Tucker, 2020) 

have also used a deep learning approach based on the ResNet-50 model to classify a CXR of a person 

into four categories; COVID-19, non-COVID-19 viral Pneumonia, non-COVID-19 bacterial 

Pneumonia, and Normal. The Dataset contained more than 5000 images, but it is highly imbalanced, 

with less than 60 images with COVID-19. Furthermore, this Dataset had CXRs of pediatric patients 
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making it biased. The paper had an unclear validation procedure, and the model evaluation was also not 

precise. 

Rahaman et al. (Rahaman et al., 2020) used a transfer learning approach using the VGG-19 model to 

classify CXR s into normal, COVID-19, and Non-COVID-10 Pneumonia. The model used less than 

1000 images with a high-class imbalance and performed internal holdout validation. The model yielded 

an Accuracy= 0.89, Precision = 0.90, Recall = 0.89 and F1-Score = 0.90. However, the data used for this 

analysis is insufficient, and significant metrics such as PPV and NPV have not been evaluated. 

Tsiknakis et al. (Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays, 

no date) used a model based on the Inception model, another transfer learning approach to classify a 

CXR into four categories as COVID-19, non-COVID-19 viral Pneumonia, non-COVID-19 bacterial 

Pneumonia, and normal. The model used about 700 images of CXRs with five-fold internal cross-

validation. The model yielded an AUC =1.0, Accuracy= 1.0, Sensitivity = 0.99 and Specificity = 1.0. 

However, there is a question about the quality of the public datasets used in this analysis. Furthermore, 

PPV and NPV metrics have not been calculated. 

Luz et al. (Luz et al., 2021) also utilized a transfer learning approach using the EfficientNet. This model 

classifies a CXR into three categories; COVID-19, Non-COVID-19 Pneumonia, and Normal. The 

authors used more than 13000 images and performed internal holdout validation. The model yielded an 

accuracy = 0.94, Sensitivity = 0.97 and PPV = 1.00. However, the test set size of 231 images is 

insufficient to justify the model's performance. Moreover, NPV or the Negative Predicted Value and 

Specificity have not been calculated. 

In 2021, Zhang et al. (Zhang et al., 2021) used Transfer Learning using the Dense Net-121 to classify if 

a patient has COVID-19 Pneumonia or non-COVID-19 Pneumonia. Five thousand eight hundred six 

chest radiographs with COVID-19 Pneumonia and 5300 chest radiographs with non–COVID-19 

Pneumonia were included and split into training, validation, and test data sets. This model used internal 

holdout validation yielding AUC = 0.92, Sensitivity = 0.88 and Specificity = 0.79. However, PPV and 

NPV, which are more important metrics than Sensitivity and Specificity, have not been calculated in this 

study. 

Jain et al.(Jain et al., 2021) attempted a classification problem with three classes; COVID-19 affected 

and Healthy and Pneumonia. They have used deep learning-based CNN models with transfer learning, 
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compared Inception V3, Xception, and ResNeXt models and examined their accuracy. The Xception 

model yielded the highest accuracy of 0.98. However, comparing only the accuracy in medical 

applications is not suitable due to the high class imbalance in reality. 

2.2.2 Diagnostic Models using Conventional Convolutional Neural Networks 

In 2022, Moura et al.(de Moura, Novo and Ortega, 2022) proposed deep learning approaches for the 

classification of chest X-ray images under the analysis of 3 different categories: Covid-19, Pneumonia, 

and healthy cases. A densely convoluted neural network architecture is used in this experiment. The 

authors adopt four approaches in classifying the CXR images; Healthy vs Pneumonia, tested with Covid-

19, Healthy vs Pneumonia/Covid- 19 Healthy/Pneumonia vs Covid-19, and Healthy vs Pneumonia vs 

Covid-19. The fourth approach yields excellent performance with F1-score = 0.99, but the Dataset used 

is only 621 X-ray radiographs. A comprehensive summary of the literature is presented in Table 2.1. 

2.3   Summary of related work 

Table 2.1 Comparison between different related works 

Reference 

Publis

hed 

Year 

Predictors 

Target 

Variables 

Developme

nt Sample 

Size 

Test Sample 

Size 

Model 

Performance 

Identified 

Issues 

Tartaglion

e et al.  
2020 

Deep 

Learning 

(CNN) 

Covid Positive 

, Covid 

Negative 

 

231 

images, 

including 

126 

COVID-19 

images 

135 images 

with 90 

COVID-19 

images 

Not Clear 

Performance 

metrics are 

not evident in 

the paper 

Ghoshal 

and 

Tucker 

 

2020 

Deep 

Learning 

(Transfer 

Learning) 

COVID-19, 

non-COVID-19 

viral 

pneumonia, 

non-COVID-19 

bacterial 

pneumonia and 

Normal 

4,752 

images 

including 

54 COVID-

19 images 

1,189 images, 

14 

COVID-19 

images 

Not Clear 

Performance 

metrics are 

not evident in 

the paper 

Rahaman 

et al.  
2020 

Deep 

Learning 

(Transfer 

Learning) 

Normal, 

COVID-19, and 

Non-COVID-10 

Pneumonia 

720 

images, 

220 

COVID-19 

140 images, 40 

COVID-19 

Accuracy = 

0.89 

Precision = 

0.90 

Recall = 0.89 

F1 score = 

0.90 

Data is not 

sufficient. 

Furthermore, 

NPV and PPV 

are not 

calculated 

Tsiknakis 

et al.  
2020 

Deep 

Learning 

(Transfer 

Learning) 

COVID-19, 

non-COVID-19 

viral 

pneumonia, 

non-COVID-19 

bacterial 

458 (CV) 

images, 98 

COVID-19 

114 (CV) 

images, 

24 COVID-19 

AUC = 1.00 

Accuracy = 

1.00 

Sensitivity = 

0.99 

Data is not 

sufficient. 

Furthermore, 

NPV and PPV 

are not 

calculated 
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pneumonia, and 

Normal 

Specificity = 

1.00 

Luz et al.  2020 

Deep 

Learning 

(Transfer 

Learning) 

COVID-19, 

Non-COVID-19 

Pneumonia, and 

Normal 

13,569 

images, 

152 

COVID-19 

231 images, 31 

COVID-19 

Accuracy = 

0.94 

Sensitivity = 

0.97 

PPV = 1.00 

The test set 

size is not 

sufficient. 

Also, 

Specificity 

and NPV are 

not 

calculated. 

Zhang et 

al.  
2021 

Deep 

Learning 

(Transfer 

Learning) 

COVID-19 

pneumonia , 

Non-COVID-19 

pneumonia 

5236 

images, 

including 

2582 

COVID-19 

images 

5,869 images 

with 3,223 

COVID-19 

AUC = 0.92 

Sensitivity = 

0.88 

Specificity = 

0.79 

PPV and NPV 

not calculated 

Jain et al. 

 
2021 

Deep 

Learning 

(Transfer 

Learning) 

COVID-19 

affected, 
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et al.  
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COVID-19 
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0.98 
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0.98 
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0.99 

for all the 
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In a nutshell, ResNet and DenseNet architectures showed better performance than the others, with 

accuracies ranging from 0.88 to 0.99 (AIX-COVNET et al., 2021). However, direct comparisons across 

papers cannot be made because of different input datasets and class variables.  

2.4   Conclusion 

Since 2020, many papers have been put forward to diagnose COVID-19 through Chest X-Rays. 

Nevertheless, their readiness to deploy clinically is a question, mainly due to methodological flaws and 

underlying biases in data (AIX-COVNET et al., 2021). These include using unverified public datasets 

with inherent biases, failing to compute essential performance metrics such as PPV and NPV, and failing 

to include an explainability component in the final models to enhance the trustworthiness of the model. 

The following section presents a comprehensive solution that addresses the research gaps mentioned 

above. 
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3. CHAPTER 3 METHODOLOGY 
 

3.1    Overall Design of the System 

The Figure 3.1 illustrates the overall design and the workflow of the project. The final architecture 

consists of three modules: 

1. Data Pre-Processing Module 

2. Model Training Module 

3. Model Inference Module 

 

Figure 3.1  Overall Design of the System 

The following sections 3.2, 3.3 and 3.4 elaborate on the three modules in detail. 
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3.2   Data Pre-Processing Module 

 

The Data Pre-Processing Module is depicted in Figure 3.2. It takes a DICOM Image as Input, applies 

three pre-processing techniques and is capable of giving the PNG Image output in two formats: Non-

Standardized and Standardized. These are referred to as Stage 1 and Stage 2. 

 

Figure 3.2 Data Pre-Processing Module 

The three mandatory pre-processing techniques applied to a DICOM Image are: 

1. Monochrome Conversion 

2. Image Re-Sizing 

3. CLAHE Conversion 

3.2.1 DICOM Metadata Analysis and Pre-Processing: Monochrome Conversion 

The metadata ‘Photometric Interpretation' of a DICOM image is observed to decide on Monochrome 

Conversion. There are two ‘Photometric Interpretation’ types: MONOCHROME1 and 

MONOCHROME2. MONOCHROME1 indicates that the greyscale ranges from bright to dark with 

ascending pixel values, whereas MONOCHROME2 ranges from dark to bright with ascending pixel 

values. 

If the photometric interpretation of a DICOM Image is MONOCHROME1, it is converted to 

MONOCHROME2. If it is MONOCHROME1, then no Monochrome Conversion is done. This ensures 

INPUT: DICOM Image 

OUTPUT: PNG Image or Standardized PNG Image 
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that all the images follow the same photometric interpretation of MONOCHROME2. The Figure 3.3 

shows the same image in MONOCHROME1 and MONOCHROME2. 

 

Figure 3.3 Monochrome Conversion from MONOCHROME1 TO MONOCHROME2 

3.2.2 DICOM Metadata Analysis and Pre-Processing: Image Re-Sizing 

All images are re-sized to 320 x 320 pixels, irrespective of their original size. This ensures that all the 

input images follow the same size and that the input pixel size is convenient for model training and 

inference. The Figure 3.4 depicts an image of size 3000 x 3000 re-sized to 320 x 320. 

 

Figure 3.4 Image Re-Sizing to 320 x 320 Pixels 

3.2.3 DICOM Metadata Analysis and Pre-Processing: CLAHE Conversion 

 

Contrast Limited Adaptive Histogram Equalization (CLAHE) (Reza, 2004) is used to improve the 

visibility level of a foggy image by amplifying the contrast. CLAHE operates on small regions in the 

image, called tiles, rather than the entire image. The neighboring tiles are combined using bilinear 

interpolation to remove the artificial boundaries. The Figure 3.5 illustrates how the original image is 

enhanced with CLAHE. 
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Figure 3.5 CLAHE Applied to Enhance Visibility 

 

3.2.4 OUTPUT Stage 1: Non-Standardized Image 
 

This is the first option of the two PNG image output options in the Image Processing Module. This is 

the stage where an image is easily identifiable for a Human. In the Model Inference Module, Pre-

processing is initially done only up to Stage 1. 

3.2.5 OUTPUT Stage 2: Standardized Image 
 

This is the second option of the two PNG image output options in the Image Processing Module. This is 

the stage where an image is standardized over the output of Stage 1. A comparison of Stage 1 and Stage 

2 is illustrated in Figures 3.6 and 3.7.  Image standardizing makes convergence faster while training a 

model 
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Figure 3.6 Pre-Processed Output at Stage 2 

  

Figure 3.7 Pre-processed Output at Stage 1 

 

In the Model Training Module depicted in Figure 3.8, Pre-processing is done up to Stage 2 to get 

Standardized Images. However, in the Model Inference Module, Pre-processing is initially done only up 

to Stage 1. 

3.3  Model Training Module 

 

Figure 3.8 Model Training Module 

INPUT: DICOM Images 

OUTPUT: Convolutional Neural Network (CNN) based Multi-Class Classification Model 
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3.3.1 Metadata Retrieval and Exploratory Data Analysis 
 

An Exploratory Data Analysis (EDA) was performed to identify distributions of data and underlying 

biases in data and to analyze the data availability for each class variable.  

There are 6334 images in this Dataset, where 6054 images can be used for training and validation, while 

the remaining 280 images can only be used for model evaluation in Kaggle. All the images are in DICOM 

(Digital Imaging and Communications in Medicine) format. A single DICOM file contains a header 

(which stores metadata about the patient and the image) and the image data, which can contain 

information in three dimensions. 

The python libraries ‘pydicom’ and ‘os’ were used to traverse the image folders and read the DICOM 

files. Of the 6054 images, 232 returned errors, leaving only 5822 images for training and validation. 

During this process, the metadata collected from every image and analyzed are ‘Patient id’, ‘Gender’, 

‘Photometric Interpretation’, ‘Pixel width’, ‘Pixel height’, and ‘Body part’. In addition, the image data 

and the class variables were also analyzed. 

3.3.1.1 Class Variable Distribution 

As stated in Chapter 1 and shown in Figure 3.9, this Dataset has four target variables. They are ‘Typical 

Appearance’, ‘Indeterminate Appearance’, ‘Atypical Appearance’, and ‘Negative for Pneumonia’. The 

following figure illustrates the distribution of class variables in the Dataset of 5822 images. 

 

Figure 3.9 Distribution of Classes 
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The Dataset is imbalanced. The class variable ‘Atypical Appearance’ has the lowest prevalence, 

indicating the highest imbalance. 

3.3.1.2 Metadata: Patient ID 

Out of the total of 5822 patient IDs, there are only 3198 (55%) distinct values. This indicates that there 

are only 3198 unique patients, and multiple X-rays of the same patient are included in the Dataset. This 

is essential when splitting the input data for training and validation sets to avoid data leakage. For patients 

with multiple X-rays, it should be made sure that they do not show up in both the training and validation 

sets in order to avoid data leakage. 

3.3.1.3 Metadata: Gender 

Fifty-five percent (55%) of the complete X-Rays belong to Males, and the remaining 45% belong to 

Females. Gender-wise class variable distribution was also analyzed to see if there was any gender 

preference for the class labels. Gender fairness assessment is vital since female X-Rays may contain 

breast shadows, and unbalanced proportions in male and female X-Rays may lead to incorrect model 

learning during the training process.  

Gender-wise distributions for the class labels ‘Negative for Pneumonia’, ‘Indeterminate Appearance’ , 

and ‘Atypical Appearance’ showed approximately similar proportions. However, there is a significantly 

higher proportion of ‘Male’ X-Rays with ‘Typical Appearance’ as shown in Figure 3.10 below. 

 

Figure 3.10 Gender-wise ‘Negative for Pneumonia’ and ‘Typical Appearance’ Class Label Distributions 
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3.3.1.4 Metadata: Photometric Interpretation 

The photometric interpretation of the X-Ray images was either ‘MONOCHROME1’ or 

‘MONOCHROME2’. As shown in Figure 3.11, 73% of the Dataset are MONOCHROME2 images. 

 

Figure 3.11 Photometric Interpretation of the Dataset 

MONOCHROME1 indicates that the greyscale ranges from bright to dark with ascending pixel values, 

whereas MONOCHROME2 ranges from dark to bright with ascending pixel values. This indicates that 

the pixel values in MONOCHROME1 images are reversed, and this is addressed in the Image Pre-

Processing Module. 

3.3.1.5 Image Resolution (Pixel width and Pixel height) 

The pixel width and the pixel height of images are not constant. Most images have pixel width and height 

between 2000 to 3500 pixels as depicted in Figure 3.12. However, the images need to be scaled down to 

a constant pixel width and height. This constant should be a low value, such as 320 x 320 pixels, since 

having higher resolutions would severely increase the processing power required to train this deep-

learning model. Image re-sizing is handled from the Image Pre-Processing Module. 

 

Figure 3.12 Image Resolution Distribution of Images 
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3.3.2  Application of the Data Pre-Processing Module 

 

The DICOM images are processed using the Data Pre-Processing Module by explicitly using 

Monochrome Conversion, Image Re-Sizing, CLAHE Conversion and Image Standardizing.  

3.3.3   Model Training 

 

3.3.3.1 Train-Test-Validation Split 

In medical use cases, it is vital to avoid data leakage by ensuring the train, validation and test sets contain 

only images of unique patients to each set that don't overlap. In other words, this avoids training on a 

patient's data point and predicting on the same patient's data point. 

The entire set of 6334 images belonging to 3261 patients was divided using the following mechanism to 

achieve this. 

Test Set  A random selection of 14% of unique patient data was allocated to the Test Set. Precisely, 

882 images belonging to 451 patients were allocated to the Test Set. 

Validation Set   A random selection of 14% of unique patient data after removing the Test Set patients, 

was allocated to the Validation Set. 894 images belonging to 464 patients were allocated to the 

Validation Set. 

Training Set   The remaining 72% of unique patient data was allocated to the Training Set. Precisely, 

4558 images belonging to 2346 patients were allocated to the Training Set. 

3.3.3.2 Defining Image Generators with Data Augmentation 

Image generators generate batches of tensor image data with real-time data augmentation. However, data 

augmentation is only applied to the Training set on a real-time basis when training the model. It is not 

applied to the validation or test set during inference. 

The Image generator ‘datagen_train’ was created as below. It standardizes an image by setting the mean 

to zero and the standard deviation to one, executes small random rotations to the image, performs minute 

random horizontal (left or right) shifts and vertical (up or down) shifts to the image, varies the brightness 

level of the image randomly within a range and zooms in or out by a small degree. During data 
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augmentation, it fills the points outside the input boundaries by the nearest pixel values. The Python 

implementation of the Data Augmentation is given in the Figure 3.13. 

 

Figure 3.13  Data Augmentation applied on the Training Set. 

The training generator is defined using the 'datagen_train' image generator and the python code for the 

training generator is given in Figure 3.14 below.  

 

Figure 3.14 Train Data Generator 

The training data generator normalizes each image per batch, meaning that it uses batch statistics. This 

should not be done with the test and validation data since, in real life, incoming images are processed 

one at a time, not batch at a time. Knowing the average per batch of test data would effectively give the 

model an advantage. The model should not have any information about the test data. Therefore, it is 

mandatory to normalize incoming test and validation data using the statistics computed from the training 

set. Hence, separate generators are required for validation and test sets.  

Ideally, to calculate the statistics from the training set, the sample mean and standard deviation should 

be computed using the entire training set. However, since this is considerably large, that would be very 

time-consuming. In the interest of time, a random sample of the training dataset was taken to calculate 

the sample mean and sample standard deviation. Another image generator was fit to this sample data and 

was used to define the validation and test data generators. 
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3.3.3.3 Model Training Architectures and Techniques to Improve 

Performance 
 

3.3.3.3.1 Convolutional Neural Network (CNN) Architectures 

Six types of CNN-based models were trained to solve this medical problem. The first model consists of 

a custom CNN architecture, while the other five are based on Transfer Learning from Densenet 121, 

VGG 16, Resnet 50, InceptionV3 and ChexNet. 

3.3.3.3.1.1 Custom Convolutional Neural Network (CNN) Architecture 

A Custom CNN Architecture was developed as shown in Figure 3.15 below. The model consists of six 

Convolutional blocks with 16 filters each of size 3x3 with a stride 1, Six Batch Normalization layers, 

Six Max Pooling layers of filter size 2x2 with a stride 1, a Flattening layer, a Dropout layer with a dropout 

rate of 0.4 and two Dense layers. The final dense layer has four neurons with a Softmax activation 

function. 

 

Figure 3.15 Custom CNN Architecture 

A Convolutional layer is the primary building block of a CNN. It contains a set of filters (or kernels), 

the parameters of which are to be learned throughout the training. Convolution layers are used to extract 

the features from input training samples. Each convolution layer has a set of filters that helps in feature 

extraction by creating feature maps. 
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Pooling layers are used to reduce the dimensions of the feature maps. Thus, it reduces the number of 

parameters to learn and the amount of computation performed in the network. 

Batch normalization layers allow every layer of the network to do learning more independently. It is 

used to normalize the output of the previous layers. Also, it can be used as regularization to avoid over-

fitting the model. In practical coding, we add Batch Normalization after the activation function of the 

output layer or before the activation function of the input layer. 

The Flatten layer converts the output of the final convolutional layer into a single one-dimensional 

vector.  

A Dense layer is a layer that is deeply connected with its preceding layer, which means the neurons of 

the layer are connected to every neuron of its preceding layer. 

Dropouts are a regularization technique that is used to prevent over-fitting in the model. Dropouts are 

added to randomly switch off some percentage of neurons of the network. Dropouts are usually advised 

not to use after the convolution layers; they are mainly used after the dense layers of the network. This 

is done to enhance the learning of the model. 

The Figure 3.16 shows the Python implementation of the custom CNN. 

 

Figure 3.16 Custom CNN Model Python Implementation 
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3.3.3.3.1.2 Densenet121 

DenseNet (Dense Convolutional Network) (Huang et al., 2018) is a convolutional neural network where 

each layer is connected to all other layers that are deeper in the network. This is done to enable maximum 

information flow between the layers of the network. To preserve the feed-forward nature, each layer 

obtains inputs from all the previous layers and passes on its feature maps to all the layers which will 

come after it. DenseNet consists of two critical blocks other than the basic convolutional and pooling 

layers: the Dense Blocks and the Transition layers. In DenseNet, the classifier uses features of all 

complexity levels. It tends to give more smooth decision boundaries. It also explains why DenseNet 

performs well when training data is insufficient. 

The Densenet121 model loaded with the ‘imagenet' weights and the final layer removed was used as a 

base model to build a Densenet121-based CNN model through transfer learning. All the layers in the 

base model were frozen from training and learning new weights. An Average Pooling layer was added 

on top of the base model, and finally, a Dense layer with four neurons and a Softmax activation function. 

The final model was referred to as the ‘densenet_model’ and its Python implementation is given in Figure 

3.17 below. 

 

Figure 3.17 densenet_model Python Implementation 

3.3.3.3.1.3 VGG16 

VGG-16 (Simonyan and Zisserman, 2015) is a convolutional neural network that is 16 layers deep. In 

VGG16, there are thirteen convolutional layers, five Max Pooling layers, and three Dense layers, which 

sum up to 21 layers. However, it has only sixteen weight layers, that is learnable parameter layers. 
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The VGG16 model loaded with the ‘imagenet' weights and the final layer removed was used as a base 

model to build a VGG16-based CNN model through transfer learning. All the layers in the base model 

were frozen from training and learning new weights. On top of the base model, the convolutional output 

was flattened and a dense layer with 128 neurons with an activation function ReLu was added. Finally, 

another dense layer with four output neurons and a softmax activation function was added to create the 

‘vgg16_final_model’. The Python implementation is as shown in Figure 3.18. 

 

Figure 3.18 vgg16_final_model Python Implementation 

3.3.3.3.1.4 Resnet50 

ResNet-50 (He et al., 2015), or Residual Network, is a convolutional neural network that is 50 layers 

deep. ResNet first introduced the concept of skip connection, which is it adds the original input to the 

output of the convolution block. 

The ResNet-50 model loaded with the ‘imagenet’ weights and the final layer removed was used as a 

base model to build a ResNet-50-based CNN model through transfer learning. All the layers in the base 

model were not frozen from training and learning new weights, as opposed to the other models. On top 

of the base model, a flattening layer of the convolutional output, a dense layer with 256 neurons and an 

activation function ReLu, and finally, another dense layer with four output neurons and a softmax 

activation function was added to create the ‘resnet50_x_final_model’ as illustrated in Figure 3.19. 

 

Figure 3.19 resnet50_x_final_model Python Implementation 
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3.3.3.3.1.5 InceptionV3 

InceptionV3 (Szegedy et al., 2015) is an image recognition model shown to attain greater than 78.1% 

accuracy on the ImageNet Dataset. It consists of many convolution and max pooling layers and, finally, 

a set of fully connected networks. 

The InceptionV3 model loaded with the ‘imagenet' weights and the final layer removed was used as a 

base model to build an InceptionV3-based CNN model through transfer learning. All the layers in the 

base model until the 250th layer were frozen from training and learning new weights. From the 250th 

layer,  all the layers were not frozen from training. On top of the base model, a flattening layer of the 

convolutional output, a dense layer with 256 neurons and an activation function ReLu was added, 

followed by a dropout layer with a dropout rate of 50%. Finally, another dense layer with four output 

neurons and a softmax activation function was added to create the 'InceptionV3_x_final_model.' The 

Python implementation is given in Figure 3.20. 

 

Figure 3.20 InceptionV3_x_final_model Python Implementation 

3.3.3.3.1.6 CheXNet 

CheXNet (Rajpurkar et al., 2017) is a 121-layer convolutional neural network model proposed by some 

researchers at Stanford University to diagnose Pneumonia. The model is trained on ChestX-ray14 

Dataset and diagnose all the 14 pathologies of the Dataset. It should be noted that CheXNet has been 

built on the DenseNet121 model. 

The Densenet121 model loaded with no weights, and the final layer removed was used as a base model. 

A dense layer with 14 output neurons and with a sigmoid activation function was added on top of the 

base so that the model architecture is similar to the CheXNet architecture. The derived model was loaded 
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with the CheXNet trained weights (CheXNet-Keras/weights.py at master · brucechou1983/CheXNet-

Keras, no date). All the layers in the CheXNet weights loaded model were frozen from training and 

learning new weights, and then the final two layers were removed. An Average Pooling layer was added 

on top of the fourth layer from the end, and finally, a Dense layer with four neurons and a Softmax 

activation function. The final model was referred to as the ‘chexnet_model’and its Python 

implementation is given below in Figure 3.21. 

 

Figure 3.21 chexnet_model Python Implementation 

3.3.3.3.2 Class Imbalance Treatment 

It can be considered ideal for training a model on an evenly balanced dataset so that the positive and 

negative training cases would contribute equally to the loss. Generally, the categorical cross-entropy loss 

function is used as the loss function in multi-class classification problems to measure how well a model 

fits the data. 

However, if the categorical cross-entropy loss function is used with a highly unbalanced dataset, the 

algorithm will be incentivized to prioritize the majority class since it contributes more to the loss.  

A weighted cross-entropy loss function was defined, which is the categorical cross-entropy loss function 

weighted by class, increasing or decreasing the relative penalty of a probabilistic false negative for an 

individual class. The Python implementation of the weighted cross-entropy loss function is shown in 

Figure 3.22. 
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Figure 3.22 Weighted Cross-Entropy Loss Function 

3.3.3.3.3 Using different Optimizers 

Optimizers are algorithms or methods used to change the attributes/ parameters of a convolutional neural 

network so that the loss computed by the loss function is minimized. Their parameters include weights 

of neurons in different layers, bias values and learning rates. The following two optimizers were tested 

with the six convolutional neural network architectures stated in this thesis. 

3.3.3.3.3.1 Stochastic Gradient Descent (SGD) 

Stochastic Gradient Descent or SGD (Amari, 1993) is an optimization algorithm used to find the model 

parameters that correspond to the best fit between predicted and actual outputs. Compared to Gradient 

Descent, Stochastic Gradient Descent is much faster and more suitable for large-scale datasets. It is 

called ‘stochastic’ since the gradient it's not computed for the entire Dataset but only for one random 

point on each iteration. Stochastic gradient descent maintains a single learning rate for all weight updates, 

and the learning rate does not change during training. 

3.3.3.3.3.2 Adam Optimizer 
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Adam (Kingma and Ba, 2017) optimization algorithm combines the advantages of two other extensions 

of stochastic gradient descent; Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square 

Propagation (RMSProp). Adam changes the learning rate during training. 

3.3.3.3.4 Using Data Augmentation on the Training Set 

Data augmentation is a popular strategy for artificially increasing the amount of data needed to train 

robust ML/Deep Learning models. It increases the number of examples in the training set while also 

introducing more variety in what the model sees and learns from. Chapter 3.3.3.2 states in detail how 

data augmentation was applied to the training set using Keras Image Data Generators. 

3.3.3.3.5 Application of different Pre-processing Techniques on the Data 

Chapter 3.2 explains the different pre-processing techniques used in detail. In a nutshell, these include 

Monochrome conversion, Image Re-Sizing, CLAHE Conversion, Image Standardization and using 

different colour maps when converting to PNG format. Multiple colour maps applied to a Chest X-Ray 

is depicted in Figure 3.23. 

 

Figure 3.23 Saving PNG with different Color Maps 

A combination of the above-mentioned pre-processing techniques was applied before training multiple 

models before concluding with the final set of pre-processing steps in the Data Pre-Processing Module, 

as explained in chapter 3.2. 

3.3.4 Model Interpretation through Visualization 

The objective of this project is to build a multi-class classification model using chest radiographs, which 

predicts the probabilities for each of the four classes, as described in Chapter 1.3. It is vital to add an 

interpretability component to the final output, highlighting why a particular classification or decision has 

been made. This further enhances the trustworthiness of the decision support system. 
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One of the most common approaches aimed at increasing the 

interpretability of models for computer vision tasks is to use Class 

Activation Maps (CAM). Class activation maps are helpful for 

understanding where the model is "looking" when classifying an 

image. Gradient-weighted Class Activation Mapping (Grad-

CAM) (Selvaraju et al., 2020) is a type of CAM that uses the 

gradients of any class variable flowing into the final convolutional 

layer to produce a coarse localization map highlighting the critical 

regions in the image for predicting the class variable. GRADCAM 

applied to a Chest X-Ray image is depicted in Figure 3.24. This is 

a useful debugging tool for medical experts to validate that the 

model is indeed using the correct areas of the image to predict the 

class.                                                                                                   Figure 3.24 Image Interpretation with GRADCAM 

The Python implementation of GRADCAM Heatmap is given in Figure 3.25 below.                                                                                               

 

Figure 3.25 GRADCAM Heatmap Python Implementation 
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3.3.5 Perform Error Analysis 

3.3.5.1 Establishing a Baseline  

Since the pandemic began in early 2020, researchers have developed numerous machine-learning models 

for diagnosing COVID-19 using Chest X-Rays (CXR). Most experiments have used public datasets in 

which a responsible governing body has not verified the chest X-rays. Furthermore, critical performance 

metrics such as PPV and NPV have not been calculated in any of the studies analyzed so far. Moreover, 

the target classes used in almost all the studies analyzed do not follow the standard COVID-19 

pneumonia classification. Hence, it is not convenient to set a baseline target using literature. It is also 

important to note that no Human-Level Performance (HLP) figure is available for this task to set up as 

a baseline. Therefore, setting up an initial baseline for this use case is not convenient. 

3.3.5.2 Evaluation Approach 

The evaluation approach is experiment-based. A credible publicly available dataset elaborated in chapter 

1.7, has been used to train several deep learning CNNs (Convolutional Neural Networks). The different 

deep learning architectures used in the model training process are explained in chapter 3.3.3.3.1. 

The model performance evaluation is mainly driven by PPV (Positive Predicted Value) and NPV 

(Negative Predicted Value). The intuition behind choosing the metrics as PPV and NPV is that PPV 

indicates the probability that a patient is positive given that the model predicts positive. NPV indicates 

the probability that a patient is negative given that the model predicts negative. Hence, optimizing these 

two metrics leads to a trustworthy model. In addition to these two metrics, the confusion matrix and the 

ROC curves are evaluated to make an informed decision on model usability and applicability. 

To evaluate the models, three user-defined functions were developed in Python to evaluate all the critical 

metrics, including PPV and NPV, to visualize the confusion matrix and the ROC curves. The three 

functions are namely: get_performance, plot_confusion_matrix and get_roc_curve. 

3.3.5.2.1 get_performance Function 

The ‘get_performance’ function indicates all the critical metrics, including PPV and NPV. These 

critical metrics are True Positives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN), 

Accuracy, Prevalence, Sensitivity, Specificity, PPV, NPV, Area Under the Curve (AUC) and the F1-

Score. Separate user-defined functions were developed for the metrics mentioned above and collated in 
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the ‘get_performance’ function. These metrics are generated for each of the four class variables. The 

output of the function ‘get_performance’ is as depicted in Figure 3.26. 

 

Figure 3.26 'get_performance' Function Output 

The Python implementation of the ‘get_performance’ function is provided in Figure 3.27 below. 

 

Figure 3.27 'get_performance' Python Implementation 
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3.3.5.2.2 plot_confusion_matrix Function 

The ‘plot_confusion_matrix’ function was developed to visualize the confusion matrix. The function 

output is similar to Figure 3.28. 

 

Figure 3.28 ‘plot_confusion_matrix’ Function 

The confusion matrix is critical to deciding the best-performing model, specifically by considering the 

False Positive and False Negative tradeoff. However, in medical applications, it is a common practice to 

optimize a model to reduce the number of False Negatives. 

The following Figure 3.29 depicts the Python implementation of the ‘plot_confusion_matrix’ function. 
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Figure 3.29 ‘plot_confusion_matrix’ Python Implementation 

 

3.3.5.2.3 get_roc_curve Function 

The 'get_roc_curve' function plots the ROC curve for each of the four class variables. The ROC curve 

or the Receiver Operating Characteristic curve shows the tradeoff between Sensitivity and Specificity. 

This assists in visually seeing the goodness of the fitted models for each class variable. The output of the 

function 'get_roc_curve' is similar to Figure 3.30 and its Python implementation is provided in Figure 

3.31 below. 
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Figure 3.30 ‘get_roc_curve' Function 

Classifiers that give curves closer to the top-left corner indicate better performance. As a baseline, a 

random classifier is expected to give points lying along the diagonal. 

 

Figure 3.31 ‘get_roc_curve'  Python Implementation 
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3.4  Model Inference Module 

 

 

Figure 3.32 Model Inference Module 

 

The Figure 3.32 above demonstrates the Model Inference Module. It utilizes the Data Pre-Processing 

Module and the Model Training Modules as input to provide inference for a Chest X-Ray through a 

deployed application. The application not only can classify into a COVID-19 Pneumonia class but can 

also highlight using a heat map to point out why the particular COVID-19 Pneumonia class was 

predicted. 

A DICOM image to be diagnosed is processed using the Data Pre-processing module and is staged in a 

staging area as a PNG human-identifiable image. The PNG image is then provided as input to the 

deployed application. The application was developed using Python, explicitly using the ‘gradio’ library 

as shown in Figure 3.33. 

INPUT: Data Pre-Processing Module, Model Training Module 

OUTPUT: Deployed Application to Diagnose COVID-19 
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Figure 3.33 Gradio Application Development 

The Gradio application developed was deployed in Huggingface with a public URL. The deployed 

Huggingface application can be accessed via the link below. 

https://huggingface.co/spaces/shehan16/decision_support_system_covid . A snapshot of the web 

application is given in Figure 3.34. 

 

Figure 3.34 Huggingface Application 

 

https://huggingface.co/spaces/shehan16/decision_support_system_covid
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4. CHAPTER 4 DISCUSSION AND RESULTS 
 

As stated in chapter 3.3.3.3, multiple models were trained with six CNN architectures, different 

optimizers, different pre-processing techniques, and different loss functions. The techniques and 

processes which yielded the best-performing model were used to develop the Data Pre-Processing 

Module (Chapter 3.2) and the Model Training Module (Chapter 3.3) 

A detailed evaluation of model performances of the best model performance from each of the six CNN 

architectures is provided below.  

4.1  Custom CNN Model Performance 

The Custom CNN model was trained on the training image set without data augmentation over 32 epochs 

with a batch size of 32. The custom model was trained to optimize the validation set accuracy. During 

the training process, Adam was used as the optimization algorithm, while the Weighted cross-entropy 

loss was used as the loss function. However, the model could not even overfit the training set, which 

implied that the model was not learning. This is evident in the model performance shown in Figure 4.1. 

 

Figure 4.1 Custom Model Performance on the Training Set 

 

4.2  ‘densenet_model’ Performance 

The ‘densenet_model’ was trained on the training image set without data augmentation over eight epochs 

to optimise the validation set accuracy. The Adam optimization algorithm was used, and weighted cross-

entropy loss was used as the loss function. The validation accuracy reached 0.54 as the training ended. 

The Loss and the Accuracy change of the Test and Validation  sets over the training epochs is depicted 

in Figure 4.2 below.   



46 
 

 

Figure 4.2 Training and Validation Set Accuracy - densenet_model 

 However, the ‘densenet_model’ was not successful as a suitable model for the classifier since it 

predicted either Positive only or Negative only for each of the four classes as shown in Figure 4.3. 

 

Figure 4.3 'get_performance' report - densenet_model on the Training Set 

 

4.3  'vgg16_final_model' performance 

The ‘vgg16_final_model’ was trained on the training image set without data augmentation over 12 

epochs so that the validation set accuracy is optimized. The Adam optimization algorithm was used as 

the optimizer. The weighted cross-entropy loss and the categorical cross-entropy loss functions were 

used as the loss function to compare performance.  

The model trained with the weighted cross entropy loss function yielded better results. The Figure 4.4 

depicts the model performance when it was trained with the weighted cross entropy loss function. 
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Figure 4.4 Test Set Performance of ‘vgg16_final_model’ trained with 'weighted_crossentropy' loss function 

The evaluation results show that the ‘vgg16_final_model’ had been able to learn from the data, compared 

to the ‘densenet_model’. Nevertheless, the PPV for ‘Indeterminate Appearance’ and ‘Atypical 

Appearance’ are 11% and 19%, respectively, which is not a well-desired outcome. 

4.4  ‘resnet50_x_final_model’ Performance 

The 'resnet50_x_final_model' was trained on the training image set without data augmentation over ten 

epochs so that the validation set accuracy is optimized. The Stochastic Gradient Descent algorithm was 

used as the optimizer with a learning rate of 0.01. However, like the ‘densenet_model’, the 

‘resnet50_x_final_model’ was unsuccessful during the training process, with the model always 

predicting Negative for the ‘Negative for Pneumonia’ class and always predicts Positive for the other 

three classes. The Figure 4.5 is clear evidence for the above statement. 

 

Figure 4.5 Test Set Performance of ‘resnet50_x_final_model' 

4.5  ‘InceptionV3_x_final_model’ Performance 

The ‘InceptionV3_x_final_model’ was trained on the training image set without data augmentation over 

15 epochs so that the validation set accuracy is optimized. However, the validation accuracy worsened 

as the number of epochs increased, as shown in Figure 4.6. 
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Figure 4.6 Validation Accuracy Reduction with Time – Inception_x_final_model 

The model was trained with a Stochastic Gradient Descent algorithm as the optimizer, with a learning 

rate of 0.001. The loss function used was the weighted cross-entropy function. The following figure 

depicts the Test Set Performance of the ‘InceptionV3_x_final_model’. The ‘get_performance’ output 

for the ‘InceptionV3_x_final_model’ is shown below in Figure 4.7. 

  

Figure 4.7 Test Set Performance of 'InceptionV3_x_final_model' 

This model performed worse than the 'vgg16_final_model', with AUC scores for all four classes falling 

below 0.5.  

4.6  ‘chexnet_model’ Performance 

A more significant number of experiments were performed to find the best performing ‘chexnet_model’ 

since it was pretty evident for the 'chexnet_model' to perform better on the Chest X-Ray dataset. The 

main reason for this assumption was that the original CheXNet model had already been trained on Chest 

X-Rays, and it was ideal for transfer learning. 

The following experiments were conducted in search of the best-performing 'chexnet_model'. 



49 
 

1. Adam Optimizer Vs Stochastic Gradient Descent Optimizer (SGD) 

Both the chexnet models were trained with the weighted cross entropy loss function. The classifier 

trained with the adam optimizer returned a higher validation accuracy of 0.6091 compared to 0.6049 

with the SGD optimizer. Both the classifiers were trained over eight epochs. 

2. Testing with and without a flattened final layer before the dense layers 

The classifier with the final convolutional layer flattened trained with an adam optimizer returned a 

validation accuracy of 0.6166 as shown in Figure 4.8, which is slightly better than 0.6091 of the non-

flattened architecture trained with the adam optimizer. The weighted cross entropy loss function was 

used in both cases. 

 

Figure 4.8 Validation Accuracies of Non-Flattened Vs Flattened Architectures 

3. Re-scaling images Vs Standardizing images before model training 

Separate chexnet models were trained with Image Re-Scaling and with Image standardization. The 

Figure 4.9 illustrates the Python implementation for rescaling. 

 

Figure 4.9 Image Re-scaling in Image Generator 

The model trained with standardized images obtained better performance in terms of PPV values. This 

is why Image standardization was added as a component of the Image Pre-Processing Module. 
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The following performance report in Figure 4.10 summarizes the lack of performance in the model 

trained with re-scaled data. 

 

Figure 4.10 Test Set Performance of 'chexnet_model' trained on re-scaled data 

It is to be noted that the best-performing model was trained on standardized images, and this is 

discussed in detail in Chapter 4.8. 

4. Training models on PNGs saved in different Color Maps 

The Data Pre-Processing Module takes a DICOM object and converts it to a PNG Image with color map 

‘grey’. This was decided after the color map 'grey' images contributed to the highest performances in the 

trained models. The other color maps tested were ‘bone’ and the default color map. The different color 

maps used are depicted in Figure 3.23 in Chapter 3.3.3.3.5. 

5. Testing with data augmentation on the training set 

The model was trained for 15 epochs, and the same image would be presented differently in each epoch 

with width, height shifts, brightness and zoom level adjustments. As expected, the test set performance 

was better with data augmentation compared to the other model performances. The best-performing 

model was obtained with data augmentation, which is discussed in Chapter 4.8. 

4.7  False Positive Vs False Negative Tradeoff in Medicine 

After multiple experiments and analysis, it was evident that the most suitable model must strike a balance 

between False Positives and False Negatives.  

The following figure depicts the confusion matrix output of a ‘chexnet_model’ that was trained on color 

map ‘grey’ images with no CLAHE conversion. An example of a confusion matrix having high False 

Positives is depicted in Figure 4.11. 
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Figure 4.11 Confusion Matrix with more False Positives 

It should be noted that ‘Typical Appearance’, ‘Atypical Appearance’ and ‘Indeterminate Appearance’  

are all classes of COVID-19 Pneumonia, whereas ‘Negative for Pneumonia’ is the equivalent of not 

having COVID-19 Pneumonia. Having said the above statement, 84% of ‘Typical Appearance’ have 

been correctly classified, and only 15% of the cases have been misclassified as ‘Negative for 

Pneumonia’. Similarly, a more significant majority of ‘Indeterminate Appearance’ and ‘Atypical 

Appearance’ have also been classified as COVID-19 Pneumonia, although they have been tagged under 

a different COVID-19 Pneumonia class. This proves that this model detects COVID-19 well. However, 

~52% of ‘Negative for Pneumonia’ X-Rays have been misclassified as COVID-19 Pneumonia, which is 

a significant False Positive rate. 

On the other hand, the following figure depicts the confusion matrix output of a 'chexnet_model’ that 

was trained on color map ‘bone’ images with CLAHE conversion. An example of a confusion matrix 

having high False Negatives is depicted in Figure 4.12. 
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Figure 4.12 Confusion Matrix with more False Negatives 

It can be clearly seen that more than 83% of the cases have been predicted correctly, which proves the 

model has a low False Positive rate of 17% compared to 52% in the previous model. However, this 

model has an increased False Negative rate with significant portions from the three COVID-19 

Pneumonia classes that have been predicted as ‘Negative for Pneumonia’. 

Generally, in medical applications, there is more harm in not identifying a positive case rather than 

falsely identifying a negative case as positive. Hence, the final model that has been selected has more 

tendency to have fewer False Negatives. However, the number of False Positives should also be not too 

large to avoid unnecessary complications. 

4.8  Best Model Selection 

After a series of experiments, the best model with the highest performance has the following properties. 

It possesses a CheXNet-based architecture, as explained in detail in chapter 3.3.3.3.1.6. The model 

follows the same pre-processing steps as stated clearly in the Data Pre-Processing Module in chapter 

3.2. This model used the weighted cross entropy loss function, Adam optimizer as the optimization 

algorithm and Data Augmentation during the model training phase. The model pre-processing steps and 

the model training steps that were involved in the model building were used as the foundation for 
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developing the Data Pre-Processing Module (Chapter 3.2) and the Model Training Module (Chapter 

3.3). 

The Evaluation Report of the best model is explained below. A detailed explanation of the Evaluation 

Report is provided in chapter 3.3.5.2. 

1. ‘get_performance’ function 

The Figure 4.13 below summarizes the performance metrics relevant to the best model. 

 

Figure 4.13 Performance metrics of the best model 

The final model can identify ‘Negative for Pneumonia’ and ‘Typical Appearance’ better than the other 

two classes because of the class imbalance in the dataset. For a chest X-Ray, if the final model predicts 

the class ‘Negative for Pneumonia’, there is a 66% chance that the X-Ray is actually ‘Negative for 

Pneumonia’. The same is true for ‘Typical Appearance’ with a chance of 73%. However, this model 

needs to better identify the two classes ‘Indeterminate Appearance’  and ‘Atypical Appearance’. The 

PPV scores are 16% and 31% respectively, indicating a lesser chance of believing the model when it 

predicts one of the two underperforming classes. 

2. get_roc_curve Function 

The ROC curves also support the same ideology that the final model does a satisfactory job in identifying 

the two classes, ‘Negative for Pneumonia’ and ‘Typical Appearance’, but fails to do well with the other 

two classes. This is a graphical representation of the AUC scores mentioned in the ‘get_performance’ 

report. The ROC curves indicate the model does the best in identifying ‘Negative for Pneumonia’ with 

an AUC of 0.81 and does equally well in identifying ‘Typical Appearance’ with an AUC of 0.76. 

However, the ROC curves for the other two classes almost fall upon the diagonal line indicating that the 

classifier is similar to a random classifier when predicting the said classes. The ROC curve of the best 

model is given in Figure 4.14. 
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Figure 4.15 Confusion Matrix of the Final Model 

 

Figure 4.14 ROC Curves of the Best Model 

3. ‘plot_confusion_matrix’ function 

It should be noted that the objective of this project is not to diagnose COVID-19 Pneumonia directly but 

to act as a decision support system to guide patients and medical staff. Hence, an indication of whether 

the subject is suffering from COVID-19 or not is sufficient to decide on getting further medical advice 

and checkups. This is a vital idea since all three classes, ‘Typical Appearance’, ‘Indeterminate 

Appearance’ and the ‘Atypical Appearance’ lead to COVID-19 Pneumonia. The validity of the final 

model from this aspect is addressed from the ‘plot_confusion_matrix’ function given in Figure 4.15. 
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The final model has a low false negative rate while still maintaining a low false positive rate. 

Approximately, ~80% of the ‘Negative for Pneumonia’ cases have been classified correctly, whereas 

around 20% of the cases have been classified into one of the three COVID-10 Pneumonia classes. This 

indicates that the False Positive Rate of the model for the class ‘Negative for Pneumonia’ is at 20%.  

On the other hand, 79% of the ‘Typical Appearance’ cases have been correctly classified, and 11% of 

the ‘Typical Appearance’ cases have been incorrectly classified into the ‘Indeterminate Appearance’ and 

‘Atypical Appearance’ classes. However, it should be noted these all these three classes are COVID-19 

Pneumonia classes. Hence, the purpose of this decision support system is served. However, around 10% 

of the ‘Typical Appearance’ cases have been misclassified as ‘Negative for Pneumonia’. This is 

considered a False Negative and is the worst-case scenario. The False Negative Rate for the class 

‘Typical Appearance’ is approximately 10%. 

Furthermore, the cases with the class labels ‘Atypical Appearance’ and ‘Indeterminate Appearance’  are 

subclasses of COVID-19 Pneumonia with a low Prevalence, contributing only up to 22% of the cases in 

the data set. The best model itself is performing poorly in the two classes, ‘Atypical Appearance’ and 

‘Indeterminate Appearance’ , with 8% and 11% correct classifications, respectively. It should be noted 

that the predicted class label for most misclassifications is ‘Typical Appearance’, which itself is a 

COVID-19 Pneumonia class. Having said that, the effective False Positive Rate is comparatively lower 

at 27% and 35%, respectively, where the model predicted both these classes as ‘Negative for 

Pneumonia’.   

4.9  Summary of Model Performances 

A comprehensive summary of model performances on the Test Set is provided in Table 4.1 below. Four 

critical metrics, namely Sensitivity, Specificity, PPV and NPV, which are critical in medical 

applications, have been considered for the comparison. The chexnet_model was selected as the best-

performing model, and this is clearly seen when comparing the said critical metrics calculated separately 

for all four classes. 
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Table 4.1 Model Performance Comparison on Test Set 

  Class 

Metric Model 

‘Negative 

for 

Pneumonia’ 

‘Typical 

Appearance’ 

‘Indeterminate 

Appearance’ 

‘Atypical 

Appearance’ 

Sensitivity 

Custom CNN Model - 1.00 - - 

densenet_model 1.00 - - - 

vgg16_final_model 0.77 0.76 0.02 0.19 

resnet50_x_final_model - - - 1.00 

InceptionV3_x_final_model 0.32 0.74 0.14 0.07 

chexnet_model 0.80 0.79 0.11 0.08 

 

Specificity 

Custom CNN Model 1.00 - 1.00 1.00 

densenet_model 1.00 1.00 1.00 - 

vgg16_final_model 0.81 0.66 0.98 0.93 

resnet50_x_final_model 1.00 1.00 1.00 - 

InceptionV3_x_final_model 0.86 0.41 0.90 0.96 

chexnet_model 0.83 0.73 0.90 0.99 

 

PPV 

Custom CNN Model - 0.48 - - 

densenet_model 0.30 - - - 

vgg16_final_model 0.63 0.66 0.12 0.19 

resnet50_x_final_model - - - 0.08 

InceptionV3_x_final_model 0.49 0.52 0.22 0.13 

chexnet_model 0.66 0.73 0.16 0.31 

 

NPV 

Custom CNN Model 0.70 - 0.86 0.92 

densenet_model - 0.54 0.84 0.92 

vgg16_final_model 0.89 0.77 0.84 0.93 

resnet50_x_final_model 0.70 0.54 0.84 - 

InceptionV3_x_final_model 0.75 0.65 0.84 0.92 

chexnet_model 0.91 0.79 0.86 0.92 
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5. CHAPTER 5 CONCLUSION AND FUTURE WORK 

5.1  Conclusion 

As stated in Chapter 1.3, the objective of this project is to develop a decision support system to diagnose 

COVID-19, which is a multi-class classification system that can classify an X-Ray DICOM Object to 

one of the four COVID-19 Pneumonia classes: ‘Negative for Pneumonia’, ‘Typical Appearance’, 

‘Indeterminate Appearance’ and ‘Atypical Appearance’. The classes ‘Typical Appearance’, 

‘Indeterminate Appearance’ and ‘Atypical Appearance’ indicate the presence of COVID-19, while the 

class ‘Negative for Pneumonia’ indicates the absence of COVID-19. The decision support system is also 

incorporated with the capability to highlight using a heat map why a specific classification or a decision 

has been made.  

Successful implementation of this decision support system will be advantageous to people who are not 

privileged enough to find COVID-19 test kits at their convenience. Furthermore, many people obtain 

Chest X-Rays for different requirements, and this decision support system can be used to get an insight 

into COVID-19 Pneumonia upon their consent. This provides an immense contribution to society, on 

the one hand, to the people getting a cost-free diagnosis. This will aid radiologists quickly and 

confidently diagnosing thousands of COVID-19 patients in Sri Lanka and, if required, channel them for 

further testing through accepted means like PCR and advise on further medical assistance. On the other 

hand, this is beneficial for society as a whole to identify the level of spread of COVID-19 in society. 

The development of this decision support system is based on three main modules; Data Pre-Processing, 

Model Training and Model Inference Modules. The Data Pre-Processing Module describes the pre-

processing steps that need to be applied to a DICOM object after metadata analysis. The Model Training 

Module focuses on developing the best-performing model. It should be noted that even the best model 

chosen performs poorly on two of the COVID-19 Pneumonia classes, ‘Atypical Appearance’ and 

‘Indeterminate Appearance’  classes. Nevertheless, the best model is still usable since a significant 

percentage of misclassifications of the above-mentioned classes are misclassified as ‘Typical 

Appearance’, which is again an indication of COVID-19 Pneumonia. Also, the occurrences of the 

minority classes are low due to low prevalence.   

This chosen best model, or the 'chexnet_model', is incorporated inside the decision support system to 

perform the classifications. The most feasible solution to deploy this decision support system technically 



58 
 

is to deploy it on a web server. The prototype decision support system that was developed as a part of 

this project can be accessed using the link below.   

https://huggingface.co/spaces/shehan16/decision_support_system_covid 

A DICOM image to be diagnosed is processed using the Data Pre-processing module and is staged in a 

staging area as a PNG human-identifiable image. The PNG image is then provided as input to the 

deployed application to get a classification result which can then be used as a support mechanism to 

diagnose COVID-19. 

5.2  Future Work 

The primary concern of the deployed decision support system is that the underlying multi-class 

classification model is performing poorly on the ‘Atypical Appearance’ and ‘Indeterminate Appearance’  

classes. Hence, the model needs to be re-trained by acquiring more DICOM Images for the said two 

classes. Based on initial discussions with the Kalubowila hospital, DICOM Objects of X-Rays can be 

obtained from their database after a proposal of work is presented to the hospital as well as to the Ethical 

governing body. Support from radiologists will also be required to label the DICOM Objects. Acquiring 

Sri-Lankan X-Rays will help to validate the model in a local context.  

Furthermore, the current application is deployed in a Huggingface space which is entirely free. However, 

the number of inferences per day is limited in Huggingface. More cost-effective, especially cloud-related 

services can be exploited to deploy the application. 

 

 

 

 

 

 

 

https://huggingface.co/spaces/shehan16/decision_support_system_covid


59 
 

6. LIST OF REFERENCES 
 

AIX-COVNET et al. (2021) ‘Common pitfalls and recommendations for using machine learning to detect and 

prognosticate for COVID-19 using chest radiographs and CT scans’, Nature Machine Intelligence, 3(3), pp. 

199–217. Available at: https://doi.org/10.1038/s42256-021-00307-0. 

Amari, S. (1993) ‘Backpropagation and stochastic gradient descent method’, Neurocomputing, 5(4), pp. 185–

196. Available at: https://doi.org/10.1016/0925-2312(93)90006-O. 

CheXNet-Keras/weights.py at master · brucechou1983/CheXNet-Keras (no date) GitHub. Available at: 

https://github.com/brucechou1983/CheXNet-Keras (Accessed: 13 November 2022). 

Gans, J.S. et al. (2022) ‘False-Positive Results in Rapid Antigen Tests for SARS-CoV-2’, JAMA, 327(5), pp. 

485–486. Available at: https://doi.org/10.1001/jama.2021.24355. 

Ghoshal, B. and Tucker, A. (2020) ‘Estimating Uncertainty and Interpretability in Deep Learning for 

Coronavirus (COVID-19) Detection’, arXiv:2003.10769 [cs, eess, stat] [Preprint]. Available at: 

http://arxiv.org/abs/2003.10769 (Accessed: 10 March 2022). 

He, K. et al. (2015) ‘Deep Residual Learning for Image Recognition’. arXiv. Available at: 

https://doi.org/10.48550/arXiv.1512.03385. 

Huang, G. et al. (2018) ‘Densely Connected Convolutional Networks’. arXiv. Available at: 

http://arxiv.org/abs/1608.06993 (Accessed: 12 November 2022). 

Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays (no date). Available at: 

https://www.spandidos-publications.com/10.3892/etm.2020.8797 (Accessed: 10 March 2022). 

Jain, R. et al. (2021) ‘Deep learning based detection and analysis of COVID-19 on chest X-ray images’, Applied 

Intelligence, 51(3), pp. 1690–1700. 

Kingma, D.P. and Ba, J. (2017) ‘Adam: A Method for Stochastic Optimization’. arXiv. Available at: 

https://doi.org/10.48550/arXiv.1412.6980. 

Luz, E. et al. (2021) ‘Towards an effective and efficient deep learning model for COVID-19 patterns detection 

in X-ray images’, Research on Biomedical Engineering [Preprint]. Available at: https://doi.org/10.1007/s42600-

021-00151-6. 

de Moura, J., Novo, J. and Ortega, M. (2022) ‘Fully automatic deep convolutional approaches for the analysis of 

COVID-19 using chest X-ray images’, Applied Soft Computing, 115, p. 108190. 

Nayak, S.R. et al. (2021) ‘Application of deep learning techniques for detection of COVID-19 cases using chest 

X-ray images: A comprehensive study’, Biomedical Signal Processing and Control, 64, p. 102365. 

Rahaman, M.M. et al. (2020) ‘Identification of COVID-19 samples from chest X-Ray images using deep 

learning: A comparison of transfer learning approaches’, Journal of X-Ray Science and Technology, 28(5), pp. 

821–839. Available at: https://doi.org/10.3233/XST-200715. 

Rajpurkar, P. et al. (2017) ‘CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep 

Learning’. arXiv. Available at: https://doi.org/10.48550/arXiv.1711.05225. 



60 
 

Reza, A.M. (2004) ‘Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-

Time Image Enhancement’, Journal of VLSI signal processing systems for signal, image and video technology, 

38(1), pp. 35–44. Available at: https://doi.org/10.1023/B:VLSI.0000028532.53893.82. 

Selvaraju, R.R. et al. (2020) ‘Grad-CAM: Visual Explanations from Deep Networks via Gradient-based 

Localization’, International Journal of Computer Vision, 128(2), pp. 336–359. Available at: 

https://doi.org/10.1007/s11263-019-01228-7. 

Simonyan, K. and Zisserman, A. (2015) ‘Very Deep Convolutional Networks for Large-Scale Image 

Recognition’. arXiv. Available at: https://doi.org/10.48550/arXiv.1409.1556. 

Simpson, S. et al. (2020) ‘Radiological Society of North America Expert Consensus Document on                     

Reporting Chest CT Findings Related to COVID-19: Endorsed by the Society of                     Thoracic 

Radiology, the American College of Radiology, and RSNA’, Radiology: Cardiothoracic Imaging, 2(2), p. 

e200152. Available at: https://doi.org/10.1148/ryct.2020200152. 

Szegedy, C. et al. (2015) ‘Rethinking the Inception Architecture for Computer Vision’. arXiv. Available at: 

https://doi.org/10.48550/arXiv.1512.00567. 

Tartaglione, E. et al. (2020) ‘Unveiling COVID-19 from CHEST X-Ray with Deep Learning: A Hurdles Race 

with Small Data’, International Journal of Environmental Research and Public Health, 17(18), p. 6933. 

Available at: https://doi.org/10.3390/ijerph17186933. 

Zhang, R. et al. (2021) ‘Diagnosis of Coronavirus Disease 2019 Pneumonia by Using Chest                    

Radiography: Value of Artificial Intelligence’, Radiology, 298(2), pp. E88–E97. Available at: 

https://doi.org/10.1148/radiol.2020202944. 

 

 


