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ABSTRACT 

This research aims to provide an automatic and real-time defect detection framework for the 

glove manufacturing industry using computer vision techniques. This research concerns 

detecting defects on specific sticker printed on the glove at the end of the production. The 

whole approach is divided into two operational modes: Teaching mode and Inspection mode. 

The teaching mode contains time complex tasks that can be performed before the actual 

inspection. The inspection mode does the actual inspection to find the defects. 

An image of a printed sticker will be processed in inspection mode using three levels to 

identify defects. Lower levels contain naïve computer vision algorithms and detect high-

degree errors only, whereas higher levels contain complex algorithms that could detect more 

sophisticated errors. It is an efficient technique to identify defects in the early stages of the 

defect inspection process.  

The significance of sticker's content to its domain will be calculated for every object in the 

sticker by combining the visibility and domain importance of that specific content. The 

visibility of content is measured using size and density. A decision function is proposed to 

decide whether to accept or reject the glove by considering the calculated error and the 

significance. Finally, a quality measurement model is proposed to calculate the printed 

sticker's quality for each accepting glove. 

The visibility calculation model proved to be valid and consistent with perceptual visibility. 

The significance calculation model also provides reliable and consistent results according to 

testing. The defect inspection process is also efficient and performs as expected. However, 

inspection level-3 provide inconsistent result in some situations, and that algorithm needs to 

be improved. 

Keywords: Computer Vision, Defect Detection, Object Visibility, Object Significance, 

Quality Measurement. 
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CHAPTER 1 

INTRODUCTION 

In any manufacturing process, it is difficult to find a production line with zero rejections due 

to the defects identified in the product. Usually, these defects are identified at the quality 

assurance stage using manual inspection by workers. The manual inspection process involves 

many issues, such as missed identifications or false rejections, and it requires many man-

hours. 

This research focuses on a specific production stage of the glove manufacturing process. 

There is a sticker printing process at the end of the glove production. This sticker contains 

several contents that hold vital information specific to the glove, such as branding 

information, model, size, and the world standard glove parameters. They use popular printing 

technologies to print this sticker on the glove; Heat Transfer Printing, Pad Printing. Because 

of the nature of the printing method and the material, it is inevitable to have several defects on 

the printed sticker. This research aims to provide a solution to identify defects on the sticker 

by concerning each content's importance. 

Identifying sticker printing defects before shipping the product is crucial because discovering 

a considerable amount of such defects in a shipment by the customer may result in the whole 

shipment being rejected. The quality assurance division of the company is highly concerned 

about identifying defects in every glove.  

However, it is impossible to print the sticker precisely; hence, each printed sticker may have 

slight variations. Such variations are not affecting to the readability or the identification of the 

content. Due to the high production cost, impossible to reject every glove that has printing 

variations. Therefore some reliable method is required to assess the actual impact of the 

printing error on the glove before rejection. 

The current way of identifying the defects is solely a manual method where an employee 

checks each glove to find defects. There may be a few dozens/hundreds of gloves printed per 

hour in a single production line. Therefore, it is challenging to find some defects by looking 

through the naked eye, and there could be a tendency to miss some defects. In addition to the 

inspection's labor cost, it is impossible to provide a quantitative measure that reveals the 

printed sticker's quality. The proposed solution is an automatic defect detection mechanism 

that is more accurate and efficient than manual inspection. It will be able to mitigate human 
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errors as well as reduce labor costs. In addition, a quantitative measurement can be provided 

at the end of the inspection. 

The primary computer science area used in this research is Computer Vision. The sticker 

images captured from the camera will be processed to identify defects by applying several 

computer vision techniques. Then decide whether to reject or accept the glove after evaluating 

the error caused by the defect. While evaluating the error, the actual impact of the defect on 

the glove will be considered. For each accepting glove, define a quality measurement by 

concerning the errors present in the sticker. 

Even if this research is built around the glove sticker printing area, the technique proposed 

here can be easily incorporated into defect detection in other printing-like domains containing 

the 2D arbitrary shapes that comply with the constraints in the proposed solution.  

1.1 Motivation 

It would be beneficial for any manufacturing process with a similar printing task to have an 

automatic defect detection system to eliminate human error and reduce false rejections in 

quality inspection. Any manufacturing industry demands real-time solutions to reduce 

bottlenecks at the production line due to manual inspection slowness at a high production rate. 

A reliable method is required to assess the actual impact of a defect on the glove because it is 

impossible to reject every glove with minor variations in printed sticker due to the high 

production cost. 

1.2 Statement of the problem 

As mentioned in the introduction, this research mainly concerns the specific sticker containing 

several objects or content that holds valuable information relevant to the glove. Usually, the 

glove material will be knitted cotton or rubber. For printing this sticker, they use two popular 

printing methods called Heat Transfer Printing and Pad Printing. Figure 1.1 shows two 

examples of a printed sticker. Each unique sticker has artwork that contains all the contents 

which must be printed on the sticker. The artwork can be considered as the precise and error-

free version of the sticker, Figure 1.2. The artwork usually is in the black foreground and 

white background. 
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Figure 1.1: Printed sticker on a glove 

 

(A) (B) (C) 

   

Figure 1.2: Artwork Images 

 

Due to the nature of the printing method and surface material, several defects are possible. In 

heat transfer printing, it is possible to have missing contents due to the uneven heat spread. 

Unwanted contents can also be found after print if the sticker contains such garbage. In the 

pad printing process, ink spillings, blurry content are possible. It is more frequent to have 

displacement and rotation defects, and minor scaling defects could also be possible. Several 

such defects are presented in Figure 1.3. 
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(A) (B) (C) (D) 

    

(E) (F) (G) (H) 

 

   

Figure 1.3: Type of Defects; (A) Displacement Defect, (B) Rotational Defect, (C) Scaling Defect, (D) 

Smudge objects, (E) Foreign bodies/objects, (F) Missing object, (G) Missing object’s part, (H) 

Inkblots 

The defects can be presented in different magnitudes. High-magnitude defects cause more 

damage to the content than minor defects. As an example, missing a whole component cause 

severe damage than missing part of a component. High magnitude defects may distort the 

content, hence challenging to identify. Sometimes a minor printing defect may not affect the 

content’s visibility.  

The current method of defect identification is manual. People at the production line inspect 

the sticker to identify defects soon after the printing process is completed. However, the 

printing process operates at a high rate, and it is challenging for a person to identify delicate 

defects at such a pace. There is a tendency to miss some defects and take much time. 

Therefore, there is a high demand for an automatic defect detection mechanism to identify 

more delicate defects in real-time and provide quantifiable measures. 

In any manufacturing process, it is impossible to replicate something precisely similar. Hence 

some amount of dissimilarity is always possible. As mentioned above, there could be minor 

defects that are not affecting the content much. Similarly, it is impossible to obtain the print 

result precisely similar to the original sticker/artwork. Due to the high production cost of each 

glove, it is not practical to reject every glove with a defect. So it is essential to measure the 

impact of the defect on the product to decide whether to reject it or not. Therefore it is vital to 

have a defect detection technique capable of providing a realistic value that must reflect the 

actual impact on the product.  
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A simple defect detection method could provide the magnitude of the defect, which is used to 

define the quality measure of the product. However, the following phenomena described in 

the sticker printing domain are not captured by such quality measures. Some content on the 

sticker is less important compared to others. The label showing the size of the glove is more 

important since it has frequent access by the customer. A chemical resistivity information of a 

chemical glove is also important. 

In comparison, a trademark registered label is less important. This research refers to this 

criticism as domain importance. The user must be aware of the importance of each content in 

the sticker to its domain. A defect on more important content may cause significant damage to 

the glove sticker. Therefore the domain importance must be considered when evaluating the 

impact of a defect. 

The visibility level of content in the sticker is also a vital factor when considering the impact 

of a defect. This is because the customer could easily capture a defect on a highly visible 

component. Therefore the proposed solution must be capable of measuring the visibility level 

of content in the sticker. 

A quantitative quality measure for a printed sticker is required for each accepting glove. By 

consolidating such measures, the production company could define the quality of the entire 

shipment. 

1.3 Research Aims and Objectives 

1.3.1 Aim 

Develop automatic and efficient defect detection and quality measurement techniques for the 

glove sticker printing process by considering both the visibility and domain importance of the 

content. 

1.3.2 Objectives 

The project objectives can be listed down as follows, 

1. Provide an automatic defect detection framework that can identify certain defects in real-

time. 

The defect detection method should be fully automatic without user involvement. 

However, user involvement might need to set some criteria and parameter values. The 
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primary concern of this research is to introduce a framework capable of detecting defects 

in a minimum time duration. The defect detection algorithm in the proposed framework 

should be able to be replaced by new and more sophisticated defect detection algorithms 

in the future.  

2. Identify the defects in a printed sticker in the early stage of the defect inspection process. 

The proposed solution should detect high magnitude defects early as possible and 

therefore decide to accept or reject the glove with less time.  

3. Define the significance of the content/objects in the sticker. 

As stated in the introduction and problem statement, some reliable measure is required to 

evaluate the defect’s actual impact on the glove. In such a case, the significance of 

defected object must be considered. This research aims to find the factors contributing to 

the object’s significance and combine them to create a model that outputs a numerical 

measure. 

4. Identify the acceptance and rejection of a glove using the specified criteria concerning 

calculated error and significance measure. 

A mechanism is required to accept or reject the glove by assessing calculated error with 

respect to the significance of the defective object in the sticker. 

5. Define the quality of the printed sticker on an accepted glove. 

Finally, create a mathematical model to measure the quality of the printed sticker of each 

accepting glove where the model should reflect the errors in the sticker found in each 

inspection stage. 

1.4 Scope 

In this research, we develop an automatic framework for real-time defect detection in glove 

stickers. In order to make the process real-time, the choice of algorithms must be less time 

complex while being robust. Additionally, the chosen algorithms should be arranged 

appropriately to make the framework efficient. It is beneficial to identify the complex 

operations that can be performed before the defect inspection and store results for later use. 

The framework will be designed in two stages: one containing a complex operation that is 

pre-performed and stored in a database for real-time operations. The other stage contains real-
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time operations that need to be performed just after the sticker printing is done.  

Since this research deals with images, the fundamental operations in computer vision 

techniques must be adopted. There are two types of images considered in this research; the 

artwork image and the inspection image. The user uploads the artwork image, and it is in 

RGB color space and JPEG/PNG format, see Figure 1.2. The inspection image is acquired 

automatically for the defect inspection soon after the printing is done. The image 

preprocessing techniques such as grayscaling, thresholding, morphological operations, 

geometric correction, and image smoothing must be performed on images. Image 

segmentation, feature extraction, shape representation & description techniques will also be 

required. The selection of appreciate method is challenging because it is a real-time solution. 

The defect detection process should be able to identify specific defects listed in Figure 1.3. 

The process will be designed to have several defect detection levels, where the complexity of 

algorithms will increase from top to bottom. Therefore, the high magnitude defects like 

displacements, scaling, rotations can be captured at an upper level and stop the inspection 

early. 

Another main concern in this research is to model the object’s significance that is used to 

decide the actual impact of a defect on a particular object. The model should combine the 

object’s visibility and domain importance specified by the user. In this project, the domain 

importance (range 0.0-1.0) denotes that each content in the sticker holds some information 

related to the product (such as brand, model, size, chemical resistance level, etc.) and that 

information will be helpful for the customer to pick up the right product for him. The 

importance of each content varies according to the context. For example, the chemical 

resistivity information of a chemical glove is more important than the manufactured country 

information. Therefore, the user should define the importance level for each content before 

the inspection process starts. 

Many facts affect the visibility of a printed object, such as size, density/solidity, contrast, and 

surrounding obstacles. The visibility of a printed object improves as its size and density grow. 

Additionally, when the contrast increases, printed things show out more against the 

background. The visibility of a printed object decreases when many surrounding objects are 

available close to the object itself. From the factors mentioned above, the essential factors for 

the current situation had to be determined and modelled accordingly while maintaining 

consistency. 
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After identifying a defect and calculating the error, there should be a reliable mechanism to 

decide whether to accept or reject the glove by considering the object’s significance. 

Therefore a decision function must be proposed that should take the significance as an input 

parameter.  

Finally, a mathematical model needs to be proposed to calculate the quality of each accepting 

glove. The model must consider all the errors identified and their impact when calculating the 

quality. The consistency and validity of proposed mathematical models and capabilities of 

defect detection algorithms will be evaluated using appropriate techniques at the end of the 

research. 

1.5 Structure of the Thesis 

Here is the outline of the main points of the thesis. Chapter one outlined the essential details 

of the problem, the objectives to be achieved, and the research scope. The introduction section 

under chapter one describes the problem environment, the requisite of the solution, and the 

computer science approach. The characteristics of the problem, constraints imposed by the 

environment are discussed under the problem statement section—the aim and objectives to be 

achieved are listed next. The scope section clearly described the concerns that needed to be 

covered to achieve the objectives, hence defining the boundary for the research.  

The literature review chapter outlines similar researches are carried out for defect detection on 

printed materials. Here briefly discuss their approach, capabilities, and limitations of each 

research. Then discuss several computer vision techniques, how they work, and their 

suitability to the current problem. 

The methodology chapter discusses the proposed solution with more technical details, figures, 

equations, etc. The methodology section is arranged in a staged manner, which follows the 

order to perform operations. Inside each stage, the order of steps is shown with flow charts. 

The techniques used to implement are thoroughly described, with figures containing results. 

The references are also given when appropriate.  

The evaluation chapter discusses how well the given objectives are achieved from the 

proposed methodology with test results. The evaluation is experiment-based, and the test 

results are provided with images and comparison tables. Tests are done separately for each 

main concept discussed in this research. 
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Finally, the conclusion chapter emphasizes the strengths and weaknesses of the proposed 

approach and where it should be improved. The future research section describes several 

techniques in this research that can be improved as independent research in the future. The 

appendixes contain more test results with figures and comparison tables that follow the same 

format described in the Evaluation chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 A Literature Review 

Numerous researches have been carried out to identify printing defects in many industries 

using computer vision techniques, especially on paper-based materials, and not particularity 

was done to identify the printing defect on the sticker of a glove. However, in this research, 

we are considering an image of the printed sticker, and after binarizing the color image, the 

material that is printed on does not matter. 

A real-time defect detection method for printed images is proposed by (Yangping et al., 2018) 

based on a combined approach of grayscale and gradient differences. A template-matching-

based difference algorithm and more concerned about the high speed than the high accuracy. 

First, divide the inspection image into the edge and non-edge areas to reduce the influence of 

artifacts on defect detection. This algorithm uses different methods to identify the defect in 

edge and non-edge areas. The grayscale and gradient difference methods are joined to reduce 

false contours in the edge area without affecting the defective image. A quadratic image 

difference method is used to eliminate the edge artifacts in the nonedged area. Then combine 

both resulting images and perform BOLB analysis to detect the defect’s size, area, and shape. 

However, this research provides GPU (CUDA) based parallel implementation to achieve real-

time performance. Our approach also concerns real-time and efficient solutions with 

acceptable accuracy but without a GPU. This research focuses on designing non GPU-based 

defect detection techniques since many sticker printing stations are available in production 

houses. It is not cost-effective to have a high-end GPU for each printing device. Additionally, 

it is inefficient and unscalable to have one centralized system that performs all defect 

detection tasks from each printing station. 

SSIM and Chromatism based techniques proposed by Zhou et al. presented a defect detection 

method of printing images on cans (Zhou et al., 2017). They have divided the defects into 

geometric defects and color defects. The geometric defects include scratches, stains, blur, and 

other line defects evaluated by SSIM. The color defects are the difference between the print 

colors and use the most common CIEDE2000 color formula to measure the color difference, 

which is detected via setting threshold. Since our printing domain has no vivid color output, 

the color difference method is not required and only concerns structural defects. Here they 

have used SSIM to detect structural defects. This Structural Similarity Measurement (SSIM) 
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index is a framework introduced by (Wang et al., 2004). It measures the structural similarity 

between two images. SSIM index is calculated by combining three similarity measures: 

Luminance, Contrast, and Structure. The luminance, contrast, and structural (shape) details 

are extracted from the two images, then compared individually, and that comparison output 

will be combined to yield an overall similarity measure. This method is more suitable for 

situations where photographs like images are compared to find similarities. However, in the 

research of (Premaratne and Premaratne, 2014) shows that the SSIM  does not contain any 

notion of structure as structure in an image because their structural similarity calculation is 

simple cross-correlation. Cross-correlation would only capture similarity of pixels and not 

structure. Since the images of the our problem have no significant changes in luminance and 

contrast within the image, but more shape-based error. Therefore current problem requires a 

method that focused more on shape dissimilarities. 

Wang et al. proposed a color printed image defect detection based on the image feature match 

(Wang et al., 2014). The defect detection algorithm is based on SIFT and YIQ models. The 

SIFT (Scale Invariant Feature Transform) is invariant in zooming, rotating, and brightness 

variation. This method is efficient and suitable for detecting offsets and color defects of paper 

printing methods.  

In the study of (ou et al., 2007), a vision inspection system with high speed and online, is 

proposed to detect defects in printed matter. They have used the morphological preprocessing 

method to eliminate false defects brought by slight distortions. This research identifies the 

type of defect from an artificial neural network, trained by using a back-propagation 

algorithm, that can classify defects such as smudges, doctor streaks, pinholes, character 

misprints, foreign matters, hazing, and wrinkles, etc. The BP network inputs have six defect 

characteristics: position, area, length and breadth ratio, density, chromaticity, and shape. Their 

experimental results verify the speed, reliability, and accuracy of the proposed system. 

However, the detection accuracy of the system depends on the resolution. This research's 

scope does not include identifying the type of defect; therefore, it is unnecessary to implement 

a neural network. 

Despite how many efficient and robust defect detection methods are in the literature, none 

considers the significance of the content to its domain when assessing the defect. That is our 

aim to model in this research. 

As mentioned in chapter 1, this study is associated with many methodologies in computer 

vision. Each step in the proposed solution is required to have a different set of techniques. 



 

 

 

12 

 

Therefore it is mandatory to do a broad literature review over the correlated areas, which 

would be highly beneficial when selecting the most appropriate method in the implementation 

phase.  

Since the computer vision research area has been out there for quite some time, numerous 

research articles can be found in literature, even for a single step in this study. Therefore we 

referred to both traditional and recent research articles to find the most appropriate techniques 

that are good enough for the current problem. A vital overview of the researches done related 

to this study will be discussed in the following paragraphs.  

In any computer vision project, a preprocessing step involves making the input image suitable 

for the approach. There are multiple techniques available for preprocessing, and the choice 

depends on what kind of input image is expected by the subsequent steps. One of the most 

important steps is to convert the color image into a grayscale image and then into a binary 

image since many algorithms like feature extraction demand a binary image. Several image 

binarization and thresholding techniques are available, such as global thresholding, adaptive 

thresholding, Otsu’s thresholding, and more. Each technique has different characteristics and 

is suitable for different problems. The adaptive thresholding method is suitable when the 

image has different lighting conditions in different areas, where the algorithm calculates the 

threshold for small regions of the image. In global thresholding, the pixels above and below a 

specific threshold value are assigned new values. The threshold value is a constant for the 

entire image. This method is suitable if we have prior knowledge about the intensity 

distribution and histogram. Otsu’s method is an automatic threshold selection technique, and 

it calculates the threshold value from an image histogram of a grayscale image; however, it 

needs to be used with a global thresholding method (Otsu, 1979). Therefore with Otsu’s 

method, we need to have at least some control over lighting conditions. In our situation, the 

inspection images are captured in a light-controlled environment; hence different 

illuminations on the image are not possible. Moreover, since we do not know the intensity 

distribution of the histogram, Otsu’s method is best for our approach. It is an ancient method 

but is being used in many computer vision projects. 

We could perform geometric corrections on the image as a preprocessing technique if the 

image is deformed in translation, scaling, or rotation. Bilinear Interpolation and Affine 

Transform are such geometric correction methods available in the literature. Several 

morphological operators such as erode, dilation, open, and close are performed on a binary 

image to remove unwanted objects, noisy pixels, fill small holes, etc. These methods have 

been implemented in many image processing libraries. In the proposed approach, some of 
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these preprocessing techniques will be used where it is necessary.  

Suzuki and Abe have proposed two algorithms for topological analysis of images using border 

following techniques (Suzuki and Abe, 1985). These algorithms are capable of extracting 

contours of connected components in a binary image. These contours are useful for shape 

analysis and object recognition. In addition to the contours, it provides useful information 

such as the boundary and its surrounding relationships, i.e., hierarchical relationships of a 

component (the component inside the component, a hole inside a component, etc.). These 

algorithms can be used as the primary approach of segmentation in the proposed solution.  

Sklansky proposed an algorithm to find the convex hull of any simple polygon (Sklansky, 

1982). As they claim, when a sequence of m vertices is available, their algorithm can compute 

the convex hull with complexity O(m). However, later this algorithm, its predecessors and 

successors, has proven incorrect in certain situations. However, in the vast majority of cases, 

it produces the correct result. Even if this is an old algorithm, it is still prevalent in much 

recent research. (Fu et al., 2018) proposed an approach to measure shape similarity for areal 

entities in a geographical map where the convex hull is used to extract boundary features. It 

has been implemented in many image processing libraries. For our research, this convex hull 

approach would be beneficial for calculating the approximate area of a specific object. In 

order to calculate the hull area, we can use the green formula with the extracted convex hull. 

Since the current problem has artwork as a template image, we can use image or shape 

similarity measurement techniques to find dissimilarities or defects in the inspection image. 

There are many such shape similarity measurement methods available in the literature. Some 

methods are robust but time complex therefore not suitable for this research. Therefore, the 

choice of the method is challenging because achieving high performance while preserving 

acceptable accuracy. 

The current properties of human shape similarity judgments are not well understood yet, but 

some algorithms are developed to archive it to some extent. It is known that humans do not 

measure similarity in pixel by pixel. Therefore the object similarity measure should be 

calculated considering the object as whole or part based. The methods in literature and can be 

broadly categorized as region-based and contour-based approaches. 

The moment representations describe image components as a probability density function of a 

2D random variable and can be considered a region-based method. The properties of this 

random variable can be described using statistical characteristics called Moments. These 

moments, such as area, the centroid of a region, orientation, etc., can be used for region-based 
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shape representation in images.  M K Hu has first introduced moment invariants, where he 

derived seven rotation, translation, and scale-invariant moment characteristics (Ming-Kuei 

Hu, 1962). It has been used as a foundation for many other similar types of research as well. 

These seven moments can be used for feature extraction and similarity matching of the 

objects in the proposed solution. Later research has found that Hu moment invariants have 

some limitations on image scaling and rotation because the images are not continuous 

function and can be polluted by noise. Additionally, the fluctuations are increased with the 

low-resolution images (Huang and Leng, 2010). Since this study uses good resolution and less 

noisy images, the above limitations can be ignored. Even if this is an old algorithm, it is 

proven to be a powerful tool and still a popular algorithm used in recent research. (Premaratne 

and Premaratne, 2014) presented a Moment Invariants-based Similarity Measure (MISM) 

where they have used the first two moments of seven moments invariants. 

An image similarity measure based on moment invariants (MISM) was proposed by 

(Premaratne and Premaratne, 2014). This algorithm first normalizes two images by its own 

standard deviation, such that the two images being compared have unity standard deviation. 

Then approximate two images using wavelet decomposition and detect edges using the canny 

operator. Finally, calculate the first two moments invariant and compare using the equation 

proposed by them. They claim that MISM provides more accurate results than SSIM. 

However, Hu’s geometric moments are not orthogonal, thus resulting in information 

redundancy. (Khotanzad and Hong, 1990) proposed Zernike Moments (ZM), which are based 

on the orthogonal Zernike radial polynomials. The ZM are orthogonal and have no 

information redundancy; therefore, they have good shape representation capabilities. ZM 

moments are robust to noise. The ZM are rotational invariant but not scale and translation. 

Additional work has to be carried out to make the ZM scale and translate invariant. However, 

compared to other advantages, it would not be a problem. ZM has been used in shape 

representation and image retrieval in numerous researches and is still used. (Kim et al., 2000) 

proposed a modified ZM shape descriptor and similarity-based image retrieval method 

invariant to the translation, rotation, and scaling. (Hwang and Kim, 2006) proposed a novel 

approach to compute the Zernike moments. (Singh et al., 2013) given a method for accurately 

calculating the ZM. They proposed two algorithms to eliminate the geometric error and 

numerical integration error in the digitization process. (Castro-Ortega et al., 2019) proposed a 

hand vein pattern description from biometric data. Therefore, it is inevitable that Zernike 

moments are a powerful technique. 

(Shnain et al., 2018) came up with a face recognition approach based on high-order statistics 
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and Zernike moments. Here they discussed the limitation of Structural Similarity measure 

(SSIM), Feature Similarity Measure (FSIM) in the face recognition context and proposed a 

method that combines Kurtosis and Skewness Measure (KSM) (Shnain et al., 2017), and 

Zernike moment for face recognition. They evaluate each method and prove their method is 

accurate than other methods. Even though it is proposed in the context of face recognition, it 

is suitable for other shape similarity contexts. We can use this method for our defect detection 

solution. 

Basri et al. presented an approach to measure the shape similarity of deformable shapes using 

contour-based elastic matching (Basri et al., 1998). In this paper, they have identified several 

possibly desirable properties of a shape similarity method and determined the extent to which 

these properties can be captured by approaches that compare local properties of the contours 

of the shapes. Here, they have mentioned the importance of the part structure of an object; 

since parts appear to play a significant role in visual recognition, it is difficult to determine the 

part structure stably. They have mentioned that similarities of part structure can be captured 

without the explicit computation of part structure. As they have mentioned in the paper, this 

approach has some limitations. This approach has not considered the role of global properties 

of shapes, such as whether two shapes are symmetric or related by a single affine 

transformation. In our study, the sticker contains mostly arbitrary 2D shapes like logos, texts; 

hence this approach can also be appropriate. However, the choice of region-based or contour-

based method would be made by analyzing the shape structures, required accuracy, and 

performance level. 

For measuring 2D shape dissimilarity (Bribiesca and Wilson, 1997) proposed a solution. Two 

shapes are mapped to a representation invariant under translation, rotation, and area. This 

approach measures the similarity based on the transformation of one object to the other. First, 

perform maximum correlation on two shapes by taking one as a template. It is noticeably slow 

since this method superimposes one shape on another for all possible discrete transformations 

and rotations. After finding the best overlapping position, calculate the difference between the 

two shapes. For the remaining pixels, calculate the Euclidean distance to each other and make 

a weighted complete bipartite graph. Then, by using the Kuhn-Munkres algorithm, calculate 

the minimum distance that has to be made by each pixel to become the other shape. This 

measure will be taken as the dissimilarity between the two shapes. This algorithm has proven 

to be inefficient. However, with a preprocessed shape, this algorithm is yet to be robust. 

Tu and Yuille presented an algorithm for shape matching and recognition based on a 

generative model for how one shape can be generated by the other (Tu and Yuille, 2004). This 
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approach uses a modified variant of the EM algorithm. Their work is limited by the types of 

representations they use and the transformations they allow. For example, it gives poor results 

for shapes composed of parts that can deform independently, such as human figures. 

However, in our case, the sticker does not contain part structures, and it is unnecessary to 

concern about independent deformations. Since the nature of Heat transfer printing and Pad 

printing methods, the independent deformations do not happen naturally. 

The contour-based methods are more time complex than region-based methods. The contour-

based methods are more sensitive to noise compared to the region-based methods.  

As of the author's knowledge, no method has been proposed for defect detection, which 

concerns the significance of each printed content to its domain. Our primary goal is to 

propose a model that measures the significance of each content in the sticker. Moreover, 

provide a real-time defect detection approach that does not require to have GPU. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

The methodology section described how the research was conducted and how the objectives 

in chapter 1 were achieved, using knowledge gained from literature review and 

experimentations. As mentioned before, the majority of the scope is based on Image 

processing and Computer Vision techniques. This chapter provides a comprehensive overview 

of the design and implementation steps that have been carried out to achieve the goal. 

The whole solution is divided into two operational modes based on the occasion it will be 

performed; Teaching mode and Inspection mode. The user initiates the teaching mode when a 

new glove type arrives for production, where the user must create a template in the database 

by uploading the necessary information required for the defect inspection later at the 

production house. The teaching mode operations are performed only once for a unique type of 

sticker. All computer-intensive tasks (time-consuming work) that produce essential outputs 

required for defect identification and decision making are done in the teaching mode. 

Therefore, the inspection time can significantly reduce and output the decision in real-time. 

Hence, the teaching mode plays a significant part when achieving the first objective, the real-

time solution. The technical details of the teaching mode operations are discussed under 

subsection 3.2. 

The inspection mode is a fully automatic process where the user has no involvement. These 

operations are performed for each glove after the print is done at the production house. As 

mentioned in the introduction, sticker printing is done at a significantly high speed. Therefore 

the inspection process must efficient as possible to eliminate the bottleneck. By considering 

this nature, the defect inspection framework is designed to decide whether to accept or reject 

the glove in the early stages. The framework consists of three defect detection levels, where 

the first layer contains naïve and less complex algorithms; therefore, it can only detect high-

magnitude defects. The second layer is quite complex than the first layer and takes time to 

operate. The third layer contains more complex algorithms, and it can detect sophisticated 

errors; hence it would take more time than the other two levels. This leveled approach can 

detect high magnitude defects at a beginning level; hence it is possible to decide whether to 

accept or reject the glove early. The first two objectives can be achieved from the framework 

mentioned above. The technical details about inspection mode implementation are described 
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in subsection 3.3.  

As stated in objective three, the significance of each object in the sticker is calculated by 

concerning the object’s visibility and domain importance. A mathematical model is proposed 

to combine the two factors. A separate mathematical model is proposed to calculate the 

object’s visibility which combines the object’s size and density. These measurements are 

precalculated in teaching mode and stored in a database. More technical details are discussed 

under subsection 3.2.3. 

A mechanism is proposed to evaluate error and make the decision, from which objective four 

will be achieved. This mechanism comprises of decision function, which calculates a 

maximum expected error for a specific object. The implementation and its use will be 

discussed in subsection 3.3.7. 

Finally, a mathematical model to measure quality for each accepting glove is newly proposed 

in this research, discussed under subsection 3.3.8.  

3.2 Teaching Mode 

The primary purpose of this mode is to create a template in the database for a specific sticker 

type. When a new glove type arrives at production, the user initiates this mode by uploading 

several pieces of information. Then several automatic operations are performed on uploaded 

data to extract the information required in defect inspection and store it in the database.  

The main tasks of Teaching Mode include  

1. Collecting user inputs 

2. Process the artwork to extract features 

3. Calculate object visibility and significance 

4. Calculate the maximum expected error for each object 

At the end of this mode, a template database for this specific glove is created. The steps and 

the results of each operation are thoroughly explained in subsequent sections. 

3.2.1 Collect User Inputs 

At the beginning of the teaching mode, the user should import the artwork image and input 

some information into the system.  
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The user must provide an image of the artwork into the system (Figure 3.1). The artwork 

image is usually high resolution and in RGB color space with jpg or png file format. The 

background is white (255, 255, 255), and the foreground is black (0, 0, 0).  The user must also 

input the following information along with the images.  

1. Sticker-placement-region (Figure 3.2) – the sticker is supposed to be printed inside of 

this region. If it is printed on or outside from this region, the glove will be rejected. 

2. Size-threshold – The user-accepting limit of a scaling defect. The use of this value will 

be discussed in the inspection mode. 

3. Angle-threshold - The user-accepting limit of a rotational defect. The use of this value 

will be discussed in the inspection mode. 

4. Select regions of artwork and define the domain importance for each region (Figure 

3.3). As stated in the problem statement, each label or object in the sticker holds some 

information relevant to the glove. Not every label is equally important to the domain. 

The user must be aware of how important each label is to a particular glove type, and 

he/she must provide that information to the system. The domain importance is a 

discrete variable ranging from 0 to 1 with 0.1 increments, where 0 indicates least 

importance and 1 indicates the highest importance. A simple desktop application is 

provided to the user for this purpose (Figure 3.4), where the user can select a label and 

specify the importance. The specified domain importance value will be applied to 

every individual object in the selected label. 

  

Figure 3.1: Example of Artwork  

 

Figure 3.2: Artwork with sticker placement 

region 
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Figure 3.3: Artwork with Domain Importance (0.0-1.0) for each content (red box) 

 

Figure 3.4: Domain importance selection application 

 

3.2.2 Processing of Artwork 

The artwork image will be going through several processing steps to extract features and 

information essential for the inspection process. The steps of artwork processing are shown in 

Figure 3.5, and a detailed explanation of each step is as follows. 

The artwork image is converted from 24-bit RGB color space into 8-bit grayscale (0-255) 

format to reduce unnecessary complexity using Eq.(1). It is a well-known method in the 
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literature called the weighted method or luminosity method, (Burger and Burge, 2009). 

 𝑌 ← 0.299 ⋅ 𝑅 + 0.587 ⋅ 𝐺 + 0.114 ⋅ 𝐵 (1) 

The grayscale image is then converted into a binary image using the inverse of the fixed-level 

threshold method (2). The inverse function has to be used here because the foreground is low-

intensity and the background is high-intensity.  

 𝑔(x, y) = {
0   if f(x, y) > threshold
1                       otherwise

 (2) 

 

Figure 3.5: Artwork processing 
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Figure 3.6: Original image vs. Inverse binary image 

The binary image is then used to extract several global features where the image is considered 

whole, not as the individual components. The global features extracting here are bounding 

rectangle, minimum area rectangle, and convex hull. The bounding rectangle function 

calculates the x, y, width, height of the up-right bounding rectangle of non-zero pixels in the 

binary image. That can be used to remove the padding around the non-zero region and get the 

actual dimension of the sticker. The minimum area rectangle function calculates the rotated 

rectangle enclosing non-zero pixels, resulting in useful information such as center, width, 

height, and angle of rotation. The algorithm proposed by (Sklansky, 1982) is used to find the 

convex hull of the whole image. The resulting convex hull points are used to calculate the hull 

area using the Green formula, and the hull area is used for size comparison in inspection 

mode. The extracted features are shown in Figure 3.7.   

 

Figure 3.7: Bounding Rectangle, Min Area Rectangle & Convex Hull 
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The binary image is then used for contour-based segmentation, which decomposes the whole 

image into isolated components. The contours in binary images are extracted using the 

algorithm proposed by (Suzuki and Abe, 1985). For the implementation and testing, the 

findContours() function in the OpenCV library is used. At this stage, the hierarchical 

arrangement of the contours is not concerned, and only the external contours are retrieved 

using the RETR_EXTERNAL parameter in OpenCV. Each isolated contours set is considered 

an individual object, and using these contour points, the objects are cropped out from the 

whole binary image. The contour points and cropped-out region of an individual object are 

stored in the feature database for later use. 

 

Figure 3.8: (A). External Contours in red color, (B). Masked out/cropped contour regions 

All the features and information extracted from the artwork will be stated as template features 

in subsequent sections. In addition, the binary artwork image refers to as the template image, 

and each object in the artwork will be referred to as a template object. 

3.2.3 Calculate object visibility and significance 

This research newly proposed two mathematical models to measure the visibility and 

significance of each object that is extracted from the artwork. 

Object Visibility 

Multiple factors determine the visibility of a 2D shaped object, such as size, density, contrast, 

surrounding obstacles, the complexity of the shape, convexity, etc. However, by closely 

examining the nature of the problem, it is decided to choose only two factors, size and density, 

into the research scope.  
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The size is calculated using Eq.(3). The hull area is computed using (Sklansky, 1982) method 

followed by the green formula as stated above. This value means having the notion that any 

object with an area beyond the upper bound value is visible anyway. Therefore the upper 

bound is chosen by considering the pixel dimension of the whole sticker with respect to a 

standard unit. The hull area greater than the upper bound is set to maximum size 1; otherwise, 

get the ratio (Figure 3.9). The validity of the model is discussed under the evaluation section 

with relevant test results. 

 
𝑠𝑖𝑧𝑒 (𝑠𝑜) = {

  1                      ℎ𝑢𝑙𝑙 𝑎𝑟𝑒𝑎 > 𝐴

ℎ𝑢𝑙𝑙 𝑎𝑟𝑒𝑎

𝐴
        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐴 − 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑓𝑜𝑟 𝑎𝑟𝑒𝑎 

(3) 

 

Figure 3.9: Graph of the size calculation function 

The density is calculated using a well-known method in the literature (Burger and Burge, 

2009), Eq. (4). The 𝒂𝒓𝒆𝒂 is number of white pixels in object. 

 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑑𝑜) =
𝑎𝑟𝑒𝑎

ℎ𝑢𝑙𝑙 𝑎𝑟𝑒𝑎
 (4) 

 

Then the proposed visibility model combines size and density with respect to their weight 

values, as in Eq. (5); where the 𝒘𝟏 +  𝒘𝟐 = 1. The influence of each factor to the final result 

can be changed by changing the weight values. The consistency and validity of this model 

will be discussed in the evaluation section with test results.  
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𝑂𝑏𝑗𝑒𝑐𝑡 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑉𝑜) =  𝑤1 × 𝑠𝑜 +  𝑤2 × 𝑑𝑜 

 𝑠𝑜 - 𝑠𝑖𝑧𝑒 

 𝑑𝑜 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦   

 𝑤1,  𝑤2 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 

(5) 

Object Significance 

A new model is proposed in this research to calculate the significance of each object in the 

sticker. It combines the calculated object visibility and domain importance specified by the 

user with respect to their weight values, as in Eq. (6), where the 𝒘𝟑 +  𝒘𝟒 = 1. The influence 

of both factor can be changed by changing the weight values. These values are stored in the 

database for later use in inspection mode.  

 

𝑜𝑏𝑗𝑒𝑐𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 (𝑓𝑠𝑖𝑔) =  𝑤3 × 𝐼𝑜 +  𝑤4 × 𝑉𝑜 

𝑉𝑜 −  𝑂𝑏𝑗𝑒𝑐𝑡 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

𝐼𝑜 − 𝐷𝑜𝑚𝑎𝑖𝑛 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 

𝑤3,  𝑤4 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 

(6) 

The consistency and validity of this model will also be discussed in the evaluation section 

with test results. 

3.2.4 Calculate the maximum expected error 

The maximum expected error is calculated for each object in the artwork. It is the maximum 

error acceptable for a specific object. The object’s significance value calculated previously is 

taken as a parameter to calculate this value. This function is called the decision function 

because it can decide whether to accept or reject the glove by evaluating errors in the 

inspection. This measure can also be precalculated in the teaching mode and stored in the 

database to use in inspection mode, hence saving inspection time. A more detailed explanation 

about the implementation with figures and equations is given in subtopic 3.3.7 in inspection 

mode. 

3.3 Inspection Mode 

The inspection mode is a fully automatic and real-time process. It is triggered soon after the 

sticker is printed on a glove. Then follows series of operations and decide whether to accept 

or reject the glove. If the glove is accepted, the quality of the printed sticker will be 

calculated. 
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3.3.1 Image Acquisition 

A draft version of the actual physical setup is shown in Figure 3.10. There are multiple metal 

hand formers attached to a conveyor chain with fixed gaps. When the conveyor chain receives 

a signal, it begins moving formers to one side for a predetermined distance. The setup is pre-

calibrated; therefore, the setup ensures that the formers are precisely aligned with the printing 

equipment and cameras. The glove with no sticker will be attached to a metal former on one 

side of the setup. (left side of Figure 3.10). Once the wearing process is completed, the former 

is moved to the printing unit, where the sticker is printed on the glove's surface. After printing 

is complete, the printing unit transmits a signal to the conveyor chain instructing it to begin 

moving. The former will perfectly align with the camera when the moving is completed. Soon 

after the move is completed, the conveyor chain system will initiate the defect inspection 

process by sending a signal to the defect inspection system. 

 

Figure 3.10: Physical Setup on the production house 

The defect inspection system acquires the inspection image from a high-resolution camera 

mounted on top of the former. Since the camera's position is not changing, the distance and 

angle from the camera to the printing glove are always the same. Therefore, the camera's 

region of interest (ROI) is fixed, and the output image has an approximately fixed dimension 

in pixels for every inspection. The captured image is in RGB color space and fixed resolution. 

The whole setup is in a light-controlled environment; therefore, uneven illumination in the 

captured image is rare. Soon after the image acquisition is made, the system starts to inspect 

the image.  
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Because the camera's distance and Field Of View (FOV) are constant, the glove's position in 

the acquired image is approximately constant. Therefore it is possible to crop the area that 

sticker should be printed correctly and then perform inspection only on that area. As a result, 

it is easy to crop the region on which the sticker is supposed to be printed and then perform 

inspection only for that region. Cropping the region with a fixed ROI is possible since the 

dimensions are always fairly identical. This method simplifies the complexity of extracting 

the glove from the background and locating stickers by examining the entire glove. 

Additionally, it considerably improves the algorithm's efficiency. 

After the inspection, the system provides a result command indicating whether the glove 

should be accepted or rejected. The inspection system will generate a signal and transmit it to 

the physical setup, which will take the glove from the former and place it in the proper 

location based on the outcome. Then the conveyor chain is triggered to start moving again. 

3.3.2 Preprocessing 

After acquiring the inspection image, several preprocessing steps need to be followed, as 

stated in Figure 3.11. The inspection image is in RGB color space, and it is converted into 

Grayscale format using the equation (1). As the nature of this problem, since it has a high-

contrast factor, the foreground objects are clearly separable from the background; this can be 

seen in the histogram diagram in  Figure 3.12. Therefore the grayscale image is converted into 

a binary image using Otsu’s threshold method. It is proven that the high-contrast factor 

provides better segmentation results, which significantly benefits the accuracy and 

performance of similar solutions. 

 

Figure 3.11: Preprocessing steps 
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Figure 3.12:Example Histogram of Inspection images 

3.3.3 Inspection Process 

The inspection process is broken down into three defect detection levels; in each level, out of 

three decisions (i.e., ACCEPT, REJECT and PROCEED), one decision will be taken. The 

inspection image is evaluated at each level to determine either the glove should be rejected or 

accepted. If the current level cannot make a decision, then proceed to the next level. This 

architecture leads the system to make an early decision by analyzing the data processed by 

current or previous levels; hence, the operation is efficient and effective. Different criteria are 

checked at each level to find the defects/errors in the sticker. The complexity of the 

algorithms and the restriction of criteria are increasing at each level. Some sticker defects can 

be captured in early levels; therefore, the system will decide to reject the glove and stop the 

process without proceeding to subsequent complex levels. A high-level abstraction of the 

inspection process is depicted in Figure 3.13. 

 

Figure 3.13: Levels of Inspection Mode 
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3.3.4 Level 1 – Inspection Process 

In this section, the level-1 inspection process is discussed in detail. The entire process flow is 

shown in Figure 3.14. The main concern of level-1 is identifying the geometric deformations 

on the whole sticker resulting from the printing process. The whole sticker is considered as a 

single component here.  

 

Figure 3.14: Inspection process - level-1 
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The inspection image is compared with the template image to identify and quantify the degree 

of geometric deformations such as translation, scale, and rotation. Suppose the degree of 

deformation is higher than the corresponding threshold specified by the user. In that case, the 

system will decide to reject the glove. Otherwise, the system will decide to proceed to the 

next level for more inspection. 

The binary image that is resulted from preprocessing will be provided to series of global 

feature extractions and criteria evaluations, as shown in Figure 3.14. First, obtain the 

bounding rectangle (x, y, width, height) of the whole foreground using the same method in 

artwork processing. Then retrieve the sticker-placement-region (Figure 3.2) specified by the 

user in teaching mode from the feature database and check whether the bounding box is 

placed inside the region (Figure 3.15). The glove is rejected if the bounding box is either on 

top or outside the specified region (Figure 3.16). Otherwise, move to the next step. 

In the next step, find the convex hull of the whole foreground as the same method performed 

in artwork processing (Sklansky, 1982). Then compute the hull area (𝐴𝑖) using the Green 

formula. Retrieve template hull area (𝐴𝑡) and scale-threshold (ts) from the feature database 

and calculate the scale factor (s) using Eq. (7), and an example is depicted in Figure 3.17. 

 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑠) =
|𝐴𝑡 − 𝐴𝑖|

𝐴𝑡
 (7) 

If the scale factor is higher than the scale-threshold specified by the user, the glove is 

rejected. Otherwise, move to the next step. 

 

Figure 3.15: Sticker placed correctly within the 

region 

 

Figure 3.16: Sticker placed incorrectly, on the 

region 
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Figure 3.17: scale-factor calculation 

In the next step, find the minimum area rectangle to obtain the rotation angle (𝑎𝑖) of the whole 

image. Retrieve template’s rotation angle (𝑎𝑡) and rotation-threshold (tθ) from the feature 

database and calculate the angle difference (𝜃), Figure 3.18. 

 𝑎𝑛𝑔𝑙𝑒 𝑑𝑖𝑓𝑓 (𝜃) = |𝑎𝑡 − 𝑎𝑖| (8) 

If the angle difference is higher than the rotation-threshold (tθ) specified by the user, the glove 

is rejected. The level-1 processing is finished, and if no decision has been made, the system 

moves to the next level, i.e., level 2.  

 

Figure 3.18: Rotation difference calculation 

The level-1 operations are capable of detecting most of the high-degree geometric 

deformations on the sticker. If such deformation is present in the sticker, it can be captured 
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early and stop the process without proceeding to complex levels. Since the level-l checks for 

high-degree deformations using naïve algorithms, it is impossible to make an Accept decision, 

but multiple Reject decisions are possible. 

3.3.5  Level 2 – Inspection Process 

 

Figure 3.19: Inspection process – Level-2 

 

The system proceeds to level-2 if a decision has not been made in level-1. The complete 

process flow of level-2 is shown in Figure 3.19. In level-2, the system tries to find defects in 

an individual object on an inspection image, unlike level-1 operations where consider the 

whole sticker as a single object. This level starts with a preprocessing step where several 

geometric corrections will be applied to the binary image. Then the corrected binary image is 
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passed into two separate subprocesses; (1). Calculate the total error of the foreign objects, (2). 

Calculate the total error of template objects. These operations are discussed in more detail 

under subsequent sections.  

Geometric Correction 

Level-1 can proceed with accepting some degree of deformations; thus, the binary image 

passed to level-2 might present some degree of geometric deformation such as translate, scale, 

and rotate. These deformations must be corrected before using the binary image for other 

operations.  

The first step is correcting the rotation deformation into the correct angle as in the template 

image. The affine transform method is used to correct the rotation of the binary image. The 

angle difference (𝜃) calculated in the previous level can be taken as an input for the rotation 

function. Then, calculate the minimum bounding rectangle (x, y, w, h) for the corrected image 

and crop the non-zero area from the entire binary image, eliminating the translation 

deformation. Retrieve template bounding rectangle (xt, yt, wt, ht) from feature database and 

then correct the scale deformation by changing the Inspection image’s scale to Template 

image’s scale using bilinear interpolation. All the deformations in the inspection image are 

corrected. Both the template image and inspection image now have the same dimensions. The 

steps are shown in (Figure 3.20) 

 

Figure 3.20: Preprocessing steps of level-2 
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(1). Calculate the total error of foreign objects 

A foreign object is an object detected in the background area of the inspection image, which 

does not belong to the same place on the original artwork (Figure 3.21). These objects are 

possible when ink is spilled on the glove, smudge an object after printing, or a displaced 

object, etc. The foreign objects can be identified as printing defects; when a considerable 

degree of error is presented, the glove must be rejected. The identification of foreign objects 

and calculating error is discussed in this section. The steps are depicted in Figure 3.22. 

 

Figure 3.21: Foreign Objects 

 

First, remove all template objects from the inspection image. Then, use the contour extraction 

algorithm (Suzuki and Abe, 1985) to find objects in the resulting image (Figure 3.23). If the 

resulting image is empty and no contours are detected, there are no foreign objects available. 

If there are foreign objects available, extract local features such as the size and density of each 

object using the same method explained in (3),(4).  
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Figure 3.22: Process of calculating foreign object error 

 

Figure 3.23: Extracted foreign bodies 
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First, calculate the single foreign object error (et) by combining size and density as in Eq. (9), 

where the 𝑤𝟓 +  𝑤𝟔 = 1. 

 

𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑒𝑟𝑟𝑜𝑟 (𝑒𝑡) = 𝑤5 × 𝑠𝑖 +  𝑤6 × 𝑑𝑖 

𝑑𝑖 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑠𝑖 −  𝑠𝑖𝑧𝑒 

𝑤5, 𝑤6 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠  

 

(9) 

Then calculate the mean error using Eq. (10) and max error using Eq. (11).  The 𝑁 represent 

the number of foreign objects. 

 𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 (𝐸𝑚𝑒𝑎𝑛) =
1

𝑁
∑ 𝑒𝑡

𝑁

𝑖

 (10) 

 

 𝑀𝑎𝑥 𝐸𝑟𝑟𝑜𝑟 (𝐸𝑚𝑎𝑥) = 𝑚𝑎𝑥(𝑒𝑡) (11) 

 

Finally, combine mean and max error as in Eq. (12), where the 𝑤𝟕 + 𝑤𝟖 = 1. Here, the max 

value is used because to mitigate the information loss that happens when averaging in Eq. 

(10). For example, suppose there is one sizeable foreign object and many small dotted like 

foreign objects; in that case, by calculating mean, the impact from the sizable object would 

fade away. Adding the max value will eliminate this issue. The consistency and validity of the 

model will be discussed in the evaluation section with test results. The Nth root of mean 

calculates here to introduce the notion of foreign object count that is faded away when 

calculating the mean.  

 
𝐹𝑜𝑟𝑒𝑖𝑔𝑛 𝑏𝑜𝑑𝑦 𝐸𝑟𝑟𝑜𝑟 (𝑒𝑓𝑜𝑟𝑒𝑖𝑔𝑛) =  𝑤7 × (𝐸𝑚𝑒𝑎𝑛)

1
𝑁 +  𝑤8 × 𝐸𝑚𝑎𝑥 

𝑤7, 𝑤8 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠  

(12) 

 

(2). Calculate the total error of template objects 

The main concern of this subprocess is to calculate the amount of error in the legitimate 

objects in the artwork. The legitimate objects are the objects we extracted from the artwork in 

the Teaching mode. Retrieve all legitimate objects from the feature database. Following 

operations are applied to one object at a time to calculate the error. The process flow is shown 

in Figure 3.24.  
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Figure 3.24: Process of calculating template object error 
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Pull a legitimate object from the database and obtain its bounding rectangle (xi, yi, wi, hi). Add 

fixed padding to the bounding rectangle to create a new rectangle. 

 (𝑥𝑖
, ,  𝑦𝑖

, ,  𝑤𝑖
,,  ℎ𝑖

, ) =  (𝑥𝑖 −  𝛼,   𝑦𝑖 −  𝛼,  𝑤𝑖 +  𝛼,  ℎ𝑖 +  𝛼) (13) 

Then use the new rectangle (𝑥𝑖
, ,  𝑦𝑖

, ,  𝑤𝑖
,,  ℎ𝑖

, ) to define a region of interest (ROI) in the 

inspection binary image as depicted in Figure 3.25. In the next step, the system examines the 

ROI to determine either it is empty or filled, as in Figure 3.26. The empty ROI means that the 

legitimate object has not been printed on the glove. The filled ROI can mean many things, 

such as the object may have printed defectively, ink can be spiled, another displaced object 

covers the area, etc. In either situation, the system will decide to reject the glove. Otherwise, 

the system will move to the next step, cross-correlation, as depicted in Figure 3.24. 

  

  

Figure 3.25: Define ROI around the Inspection object 

 

Figure 3.26: Empty or filled areas result in a missing object 
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In the next step, perform the normalized cross-correlation function over the inspection image 

ROI with the legitimate object from the template. The performance can significantly improve 

by applying the cross-correlation function only to the ROI than applying it to the entire image. 

The cross-correlation function returns the best overlapping location and value. If the resulting 

value is approximately 1, the two images overlap and perform the XOR operation. After the 

XOR operation, perform the morphological erode operation with a 3x3 kernel to eliminate the 

noisy edges. Then count the white pixels in the resulting image; if the number of white pixels 

is close to zero, then the inspection image object is very similar to the template image object. 

In such a case, set the error value for the object as min_value (zero) and continue to the next 

object. If the number of white pixels is not close to zero, then send the object to defect 

detection level-3. 

Moving back to the cross-correlation result, if it is not close to 1, then send the object to 

defect detection level-3 to check for any defect. 

3.3.6 Level 3 – Inspection Process 

The level-3 operations are more sophisticated than previous levels; hence the time complexity 

is high. This level will be able to capture more delicate errors in objects. This level also 

inspects object by object. The Zernike moments proposed by (Khotanzad and Hong, 1990) is 

used for detecting the shape dissimilarity between template object and inspection object. The 

main steps are shown in Figure 3.27. 

The Zernike moments are not invariant to the scale and translation. Therefore both template 

object and inspection object need to be normalized first. The non-pixel area is cropped out to 

make the object translation-invariant. Then make both template object and inspection object 

the same size using the bilinear interpolation, making the object scale-invariant. 
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Figure 3.27: Level-3 Defect detection process 

After normalization, calculate Zernike moments for both objects by providing their minimum 

enclosing circle’s radius (Figure 3.28) as the disc radius to the Zernike function.  

 

Figure 3.28: Minimum enclosing circle  

Cite: https://docs.opencv.org/3.4/dd/d49/tutorial_py_contour_features.html 

Then calculate dissimilarity between two shapes by measuring the sum of Euclidean distance 

between the first 20 Zernike moments, Eq. (14). 

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐷) = √∑(𝑍𝑖
𝑇 − 𝑍𝑖

𝐼)2

20

𝑖

 

𝑍𝑖
𝑇 − 𝑖𝑡ℎ 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 

𝑍𝑖
𝐼 − 𝑖𝑡ℎ 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 

(14) 

The calculated dissimilarity value will be considered as the error for that object. This error 

will send to the error evaluation process to determine whether to accept or reject the object. 

The functionality of the error evaluation process is described in the following section.  

The discussion of the defect inspection process ends here. 
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3.3.7 Error Evaluation and Decision Making 

It is possible to reject or accept the glove in every defect detection level by comparing the 

defect with user-specified threshold values. However, in defect detection level-2 and level-3, 

there are some situations where the calculated error needs to be evaluated to assess the actual 

impact. To satisfy this purpose, the research proposes an error evaluation mechanism that 

takes the calculated error from level-2 or level-3 and the object’s significance as inputs and 

outputs a decision to accept or reject the glove, as depicted in Figure 3.29.  

 

Figure 3.29: Error Evaluation 

The error evaluation process comprises a decision function, which is the exponential decaying 

function, Eq. (15). This function calculates the maximum expected error for each object with 

respect to its significance value. If the object’s significance increases, the acceptable error that 

an object can hold is strictly reduced. This behavior can represent a continuous function that 

decays exponentially (Figure 3.30). 

This value is the maximum error that an object can deform if it needs to be accepted. If the 

calculated error of the object is beyond this value, it will be considered fatal to the glove and, 

therefore, decide to reject it. 

 
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑥 𝑒𝑟𝑟𝑜𝑟 (𝑒𝑚𝑎𝑥) =  𝛼𝑒−𝜆𝑓𝑠𝑖𝑔 

𝑓𝑠𝑖𝑔 − 𝑜𝑏𝑗𝑒𝑐𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 
(15) 
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Figure 3.30: Decision function 

 

 

Figure 3.31: Error is higher than the expected error, reject the glove. Accept otherwise. 

After the inspection complete for all objects, the glove could either be rejected or accepted. If 

the glove is accepted, then calculate the quality of sticker printing for that glove. The quality 

measurement method is explained in detail in the next section. 
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3.3.8 Quality Measurement Index (QMI) 

At the end of the defect inspection, a quality value is calculated for each accepting glove. A 

mathematical model is newly proposed in this research to calculate the printing quality of the 

glove, where combine the error calculated in level-1, foreign body error, and the calculated 

error for each object in level-2 or level-3, as shown in Figure 3.32. 

 

Figure 3.32: Quality Measurement 

First, iterate through all objects in the sticker and filter out defective objects results from 

inspection. Then calculate the average error from all defective object’s errors, Eq. (16). 

Finally, combine the result from Eq. (16),  foreign body error, and the level-1 error with 

respect to their weight values to obtain the quality measure, Eq. (17). By changing the weight 

values, the influence from each factor can be changed. The consistency and validity of the 

mathematical model are proved experimentally in evaluation by comparing test results. 

 

𝐴𝑣𝑔.  𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑒𝑟𝑟𝑜𝑟, (𝐸) =
1

𝑁𝑑
∑ [ (

𝑒𝑖

𝑒𝑚𝑎𝑥
× 𝑓𝑠𝑖𝑔(𝑖))]

𝑁𝑑

𝑖

 

 𝑒𝑖 − 𝑐𝑎𝑙𝑐.  𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 − 1 𝑜𝑟 − 2; 𝑒𝑚𝑎𝑥 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 max 𝑒𝑟𝑟𝑜𝑟   

𝑓𝑠𝑖𝑔(𝑖) − 𝑜𝑏𝑗𝑒𝑐𝑡′𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒;  𝑁𝑑 − 𝑁𝑜.  𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 

(16) 

 

 

𝑄𝑀𝐼 = 1 − [𝑤1 × 𝐸 + 𝑤2 × 𝑒𝑓𝑜𝑟𝑒𝑖𝑔𝑛 + 𝑤3 × 𝑒𝑙𝑒𝑣𝑒𝑙1 ] 

𝑒𝑙𝑒𝑣𝑒𝑙1 − 𝑙𝑒𝑣𝑒𝑙 1 𝑒𝑟𝑟𝑜𝑟𝑠 

𝑒𝑓𝑜𝑟𝑒𝑖𝑔𝑛 − 𝑓𝑜𝑟𝑒𝑖𝑔𝑛 𝑏𝑜𝑑𝑦 𝑒𝑟𝑟𝑜𝑟𝑠 

𝑤1, 𝑤2, 𝑤3 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠  

(17) 

The inspection mode operations are finished after calculating the QMI value for the glove. 
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CHAPTER 4 

EVALUATION AND RESULTS 

4.1 Introduction 

The proposed methodology in the previous section comprises a computer vision-based defect 

detection approach and several mathematical models to calculate numerical measures like 

visibility, significance, and QMI. In order to evaluate the consistency and validity of the 

proposed solution, different types of evaluation methods will be used. The overall evaluation 

method is experimental based on test results produced by providing images into algorithms. 

The test results are compared from several perspectives to prove the consistency and validity. 

Since the proposed solution is based on computer vision techniques, the dataset is images. As 

described in the methodology, two types of images are used, template image and inspection 

image. The template image is the binarised artwork, and the inspection image is the binarised 

printed sticker. The artwork images are actual and provided by the production company.  

However, the inspection images used for testing and evaluation are not the actual sticker 

images printed on a glove. Instead of actual printed sticker images, a set of synthetic images 

that are derived from manipulating the artwork are used for testing. The most common and 

possible defects happen when printing is artificially created by changing the particular 

artwork image. A series of images are obtained for evaluation by changing the magnitude of a 

specific type of defect. It is possible to obtain systematic results by providing synthetic defect 

images that are created with known magnitudes. On the other hand, if the algorithms are 

provided with random defective images, the results are also random. It is difficult to evaluate 

the consistency of a model by comparing the result obtained from random inputs. Therefore, 

synthetic defect images with known magnitudes better evaluate a model scientifically than 

randomly selected actual printed stickers on a glove. 

The proposed methodology is implemented using python language for testing. A set of 

precompiled computer vision algorithms in OpenCV, Numpy, Scipy, Mahotas libraries are 

used. The test result images are generated using the matplotlib library. All the tests are 

performed on a computer with an Intel Core i7-8750H 2.20GHz processor and 8GB RAM.  

For the evaluation, the artwork image shown in Figure 4.1 is used. The inspection images 

used in this evaluation have the dimension of 1000px ×1000px. The list of different objects 

shown in Figure 4.2 is used for comparison-based evaluations. More test results are presented 
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in APPENDIX A. 

 

Figure 4.1: Artwork of selected sticker for the 

evaluation 
 

Figure 4.2: Selected artwork objects 

4.2 Test Results 

The test results discussed under the following sections are obtained using Figure 4.1 artwork 

and the list of objects in Figure 4.2. The essential features of Figure 4.2 objects required in 

the following sections are listed in Table 4.1. 

Table 4.1: Object Features 

Id 
Area (No. of white 

pixels) 
Hull Area 

1 672 1178.5 

2 2317 3811 

3 2968 13305 

4 757 1106 

5 667 870 

6 614 908.5 

7 2206 3392.5 

8 2929 3894 

9 2717 4497.5 

10 1960 2793.5 

11 12201 26570 

12 14468 25465.5 

 

(12) (11) 

(10) 

(9) (8) 

(7) 

(6) 
(5) (4) 

(3) 

(2) 
(1) 
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4.2.1 Object Visibility 

This section presents the test results of object visibility measures obtained by applying Eq. (5) 

for each object in Figure 4.2. Here, we used 𝒘𝟏 = 0.5, 𝒘𝟐 = 0.5 as weight values, therefore the 

size and desity have equal influence on the visibility. To calculate the size using Eq. (3), we 

choose 10000 for the upper bound (A) value. The density is calculated using Eq. (4), where 

the area and hull area values are calculated as in Table 4.1.  

The test results of visibility measurement are listed in Table 4.2. Three objects (3, 11, 12) have 

the highest size value equals to 1.0 because their hull area is higher than the upper bound (A) 

value; check Table 4.1. Among objects-3, -11, -12, object-12 has given the highest visibility 

due to its high-density value compared to the other two. The object-11’s visibility is slightly 

behind object-12 since it has low density than object-12. On the other hand, object-3’s 

visibility is relatively low compared to object-11 and -12 since its density value is very low. 

Object-1 has the lowest visible value since its size and density are small. Likewise, the 

calculated visibility values reflect the perceptual visibility difference of each object.  

Table 4.2: Test Result of Object Visibility 

Id Size Density Visibility 

1 0.1179 0.5702 0.3440 

2 0.3811 0.6080 0.4945 

3 1.0000 0.2231 0.6115 

4 0.1106 0.6844 0.3975 

5 0.0870 0.7667 0.4268 

6 0.0909 0.6758 0.3833 

7 0.3393 0.6503 0.4948 

8 0.3894 0.7522 0.5708 

9 0.4498 0.6041 0.5269 

10 0.2794 0.7016 0.4905 

11 1.0000 0.4592 0.7296 

12 1.0000 0.5681 0.7841 

4.2.2 Object Significance 

The object significance test results are obtained by applying Eq. (6) on each object in Figure 

4.2. The weight values are chosen as 𝒘3 = 0.5, 𝒘4 = 0.5, hence the visibility and domain 

importance have equal influence to the significance value. The test results are shown in Table 

4.3.  

The user sets the domain-importance value according to the importance of the object's 

information to its domain. For example, object-7 is given the highest importance value since it 

shows the glove's size, which is the most frequently accessing customer information. The 
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visibility of object-7 is also moderate; therefore, it has been given the highest significance 

value compared to other objects. Object-1 has the lowest visibility and domain importance; 

therefore, its significance value is also low. Table 4.3 shows the comparative results. 

The weight values 𝒘3, 𝒘4 can be changed according to the requirement of the user. 

Table 4.3: Test Result of Object Significance 

Id Visibility Domain Importance Significance 

1 0.3440 0.2000 0.2720 

2 0.4945 0.4000 0.4473 

3 0.6115 0.5000 0.5558 

4 0.3975 0.7000 0.5488 

5 0.4268 0.7000 0.5634 

6 0.3833 0.7000 0.5417 

7 0.4948 0.9000 0.6974 

8 0.5708 0.6000 0.5854 

9 0.5269 0.6000 0.5635 

10 0.4905 0.6000 0.5452 

11 0.7296 0.3000 0.5148 

12 0.7841 0.3000 0.5420 

4.2.3 Defect Inspection 

The defect detection methods in each level are tested separately by providing images 

containing artificially created defects. Series of images containing the different magnitudes of 

the same defect will be tested and compared. 

Defect Inspection Level-1 

Scale Factor 

In level-1, the three most common defects can be detected; displacement, scaling, and 

rotation. The scale factor is calculated using Eq. (7) to detect scaling defects. Figure 4.3 

depicts the comparative scale-factor calculation results. 
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(A) (B) (C) 

   

(D) (E) (F) 

   

Figure 4.3: Scale factor calculation; (A) Correct Scale, (B)-(F) Scale deformations 

Figure 4.3 (A) shows the original size of the sticker. The calculated template hull area (At) is 

423924.0. Figure 4.3 (B)-(F) shows the five sticker images that have scaling defects. Both 

Image (B) and (C) are scaled-up, and Image (D),(E), and (F) is scaled-down in increasing 

order. The calculated scale factor is consistent with perceptual scale differences when each 

image is compared with the original image and with each other. Table 4.4 shows the 

calculated scale factor for each image. 

The rejection threshold can be set as the preference of the user. If the calculated value is 

greater than the threshold value, the glove will be rejected. 

Table 4.4: Test result of scale factor calculation 

template hull area (At) = 423924.0 
 inspection hull area (Ai) scale factor (s) 

(B) 467947.0 0.1038 

(C) 513711.0 0.2118 

(D) 306299.0 0.2775 

(E) 271618.5 0.3593 

(F) 238519.5 0.4374 

 



 

 

 

49 

 

Angle Difference 

The rotational defects can be identified by calculating the angle difference using Eq. (8). 

Figure 4.4 depicts the comparative angle-difference calculation results. 

(A) (B) (C) 

   

(D) (E) (F) 

   

Figure 4.4: Angle-diff calculation; (A) Correct Angle, (B)-(F) Rotational deformations 

Figure 4.4 (A) shows the correct orientation of the original sticker. The rotation angle of the 

template image (at) is 90o. Figure 4.4 (B)-(F) shows the five sticker images that have 

rotational defects. Both images (B) and (C) are rotated counter-clockwise direction in 4o and 

6o, respectively. Image (D), (E), and (F) are rotated clockwise in 2o,4o, and 6o, respectively. By 

observation, the calculated angle-diff is approximately equal to artificially deformed values, 

and it is also consistent with perceptual rotational differences. Table 4.5 shows the calculated 

angle difference for each image. 

Here also, the rejection threshold can be set as the preference of the user. The glove will be 

rejected if the calculated value is greater than the threshold value. 
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Table 4.5: Test result of rotation diff.  calculation 

template rotation angle at = 90o 
 Inspection angle (ai) angle diff (θ) 

(B) -85.99o 4.0058 

(C) -83.99o 6.0010 

(D) 88.02o 1.9749 

(E) 86.00o 3.9958 

(F) 84.00o 5.9982 

Table 4.6 shows the approximate time taken to inspect and reject three defect types. The level-

1 completes the inspection around 25ms. The testing is done in the environment described in 

the introduction. 

Table 4.6: Performance of Level-1 

Defect Type Aprrox. Inspection Time (ms) 

Displacement ≈ 12 ms 

Scaling ≈ 25 ms 

Rotational ≈ 27 ms 

Defect Inspection Level-2 

Foreign Object Errors 

One primary purpose in level-2 is identifying foreign or unwanted objects and quantify the 

error. Figure 4.5 shows comparative test results of foreign body error calculation using Eq. 

(9),(10),(11), and (12).  The weight values in Eq. (9) are chosen as 𝒘5 = (1- 𝒘6), 𝒘6 = size (𝑠𝑖) 

/ 2.0, after the experiment. The weight values in Eq. (12) are chosen as 𝒘7 = 0.5, 𝒘8 = 0.5, 

hence have equal influence to the final result.  

(A) 
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(B) 

 

(C) 

 

(D) 
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(E) 

 

Figure 4.5: Test figures and results of foreign body errors 

Image (A) contains only one foreign body, and Image (B) contains five approximately 

similar-sized foreign bodies. By comparing the image (A) and (B), see Table 4.7, the mean 

and max value of both images are similar, but the (𝐸𝑚𝑒𝑎𝑛)
1

𝑁 value in image (B) brings the 

notion of object count and elevates the final result. The image (C) contains the same foreign 

objects as image (B) but is not filled; hence, each object's density value is reduced while size 

remains intact. This situation is reflected in the final result as its final result is slightly smaller 

than the image (B) result. The image (D) contains one moderate-sized foreign object and 

several small objects. Since the small objects are negligible, we are not taking those for mean 

calculation. Image (E) contains one large object, and the final result reflects its impact on it. 

Table 4.7: Test results of foreign body calculation 

 Significant Size 

Objects (N) 
Mean (𝐸𝑚𝑒𝑎𝑛) (𝐸𝑚𝑒𝑎𝑛)

1
𝑁 

Max (𝐸𝑚𝑎𝑥) Foreign Body 

Error (𝑒𝑓𝑜𝑟𝑒𝑖𝑔𝑛) 

(A) 1 0.2719 0.2719 0.2719 0.2719 

(B) 5 0.2316 0.7463 0.2777 0.5120 

(C) 5 0.2105 0.7322 0.2513 0.4917 

(D) 1 0.3976 0.3976 0.3740 0.3858 

(E) 1 0.9994 0.9994 0.9994 0.9994 

The user can define some rejection threshold as their requirement. If the calculated foreign 

body error is greater than the threshold, the glove will be rejected.  

Table 4.8 shows the approximate time taken to calculate the foreign body error. The 

inspection time will increase as the number of objects increases.  
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Table 4.8: Performance of foreign body error calculation 

 Aprrox. Inspection Time (ms) 

(A) ≈ 2.6 ms 

(B) ≈ 9 ms 

(C) ≈ 9 ms 

(D) ≈ 30 ms 

(E) ≈ 2.6 ms 

 

Template Object Errors 

If there are no foreign bodies or no significant impact on the sticker, level-2 will look for high 

magnitude errors such as missing objects. As mentioned in the methodology, this is done by 

examining the template object area to see whether it is empty or filled out, like in Figure 4.6. 

The approximate time range is taken to find such defects is shown in Table 4.9.  

(A) (B ) 

  

Figure 4.6: High-level object defects; (A) object missing due to inkblot, (B) object missing 

 

Table 4.9: Performace of high-magnitude template object errors 

 Aprrox. Inspection Time (ms) 

(A) ≈ 5-10 ms 

(B) ≈ 5-10  ms 

 

If there are no missing objects, then perform cross-correlation followed by Bitwise XOR for 

each object. If the similarity result is not approximately equal to 1, then send the object to 

Level-3 for further insection. Suppose the inspection image is very similar to the template 

image, and the inspection can be stoped in level-2 without going to level-3. In that case, it will 

take approximately 7ms to perform cross-correlation over 41 objects in the specific sticker we 
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have chosen for evaluation. Naturally, the cross-correlation operation is inefficient with 

images that have high dimensions. As explained in the methodology, the cross-correlation 

operation performs only within ROI around the object rather than the whole image, which 

significantly reduces time.  

Defect Inspection Level-3 

The inspection process proceeds to level-3 if it cannot decide about a particular object in 

level-2. Level-3 uses Zernike moments to measure the dissimilarity between template object 

and inspection object. The comparison table in Figure 4.7 shows the dissimilarities calculated 

in level-3 for each object in Figure 4.2, where one row contains four different defects of a 

single object in different magnitudes. The dissimilarity values are shown at the top of each 

figure. By comparison, the dissimilarity values in the same row have some level of 

consistency. The dissimilarity value does not reflect the actual magnitude of the defect in 

some objects; see the figure in the 2nd row and 2nd column. It is also inconsistent with 

perceptual dissimilarity in some situations; see the figure in the 12th row and 3rd column. 

Moreover, the dissimilarity value is not consistent across different objects; two different 

objects with the same dissimilarity value might not have the same perceptual dissimilarity.  

Therefore, according to the test results, the Zernike moments with Euclidean distance measure 

alone are insufficient to measure reliable perceptual dissimilarity. 

 A B C D 
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11 

    
12 

    

Figure 4.7: Level-3 defect detection  test results 
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4.2.4 Maximum Expected Error 

The maximum expected error for each object is calculated using Eq. (15). The input 

parameters were chosen as 𝛼 = 0.9 and 𝜆 = 2.5. Figure 4.8 shows the resulting graph of the 

function. According to the graph, even if the significance of an object is 0, we cannot expect 

the maximum error of 1. That is true because every object in the sticker has some value; 

therefore, it must be present in the final output at least recognizable. On the other hand, even 

if the object’s significance is very high, like close to 1, we cannot expect it to have 0 error 

because it is impossible to print exactly as same as the artwork every time. 

 

Figure 4.8: Graph of the decision function; α=0.9 and λ=2.5 

Table 4.10 depicts the calculated maximum expected error for each object in Figure 4.2. The 

object-7 is the most significant object in the list; hence the maximum error we can expect 

from it is low. Object-1 can tolerate relatively high error since it is a less significant object 

compared to others.  
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Table 4.10: Test results of maximum expected error calculation 

Id Significance Expected Error 

1 0.2720 0.4559 

2 0.4473 0.2942 

3 0.5558 0.2243 

4 0.5488 0.2283 

5 0.5634 0.2200 

6 0.5417 0.2323 

7 0.6974 0.1574 

8 0.5854 0.2083 

9 0.5635 0.2200 

10 0.5452 0.2303 

11 0.5148 0.2485 

12 0.5420 0.2321 

The decision function decided after evaluating the calculated error in Figure 4.7 is listed in 

Table 4.11. 

Table 4.11: Decision Results 

Id A B C D 

1 a a r r 

2 a a r r 

3 a r r r 

4 a a a r 

5 a a r r 

6 a r r r 

7 a r r r 

8 a a r r 

9 a a r r 

10 a a r r 

11 a a r r 

12 a a r r 
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4.2.5 Quality Measurement Index (QMI) 

The sticker printing quality is calculated for every accepting glove using Eq. (17). Here we 

calculate the quality value for each sticker shown in Figure 4.9.  

(A) (B) (C) 

   

(D) (E) (F) 

   

(G) (H)  

   

Figure 4.9: Test figures of quality measurement 
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Table 4.12 lists down the quality measurement result obtained from Figure 4.9. 

Table 4.12: Test results of quality values 

 Quality 

A 97.94% 

B 89.96% 

C 91.00% 

D 95.51% 

E 90.32% 

F 90.85% 

G 82.87% 

H 78.00% 

 

In Figure 4.9 (A), only one object has a minor defect, and that object has moderate 

significance around 0.5; hence less impact from that defect, and the quality is high.  Figure 

4.9 (B) shows two defects in two different objects, and their defect magnitude is higher than 

(A). Both objects have significance around 0.5 as in (A); however, quality is given as 89.96% 

due to the defect magnitude.  

Figure 4.9 (C) contains minor defects in many objects. Since they are minor defects, they do 

not affect the readability of the object; thus, the quality is high. Figure 4.9 (D) has a minor 

defect in a single object as in (A), but the significance of the defective object in (D) is higher 

than the defective object in (A). Therefore, the quality of the (D) is less than (A), even if their 

defect magnitudes are similar. The defect in Figure 4.9 (E) can be identified as a high 

magnitude defect since the object is barely recognizable. However, the object has the least 

significance; hence impact from the defect is low, and a high-quality value is given. Figure 

4.9 (F) only contains foreign body defects, and other legitimate objects are intact; therefore, 

the quality value is 90.32%. Figure 4.9 (G), (H) have multiple defects; therefore, the quality 

value is very low. 

4.3 Evaluation 

The defect detection framework and its operations proposed in the methodology are 

thoroughly tested, and the results are presented and explained in the above section.  

As test results have clearly shown, the object visibility measure is valid and consistent with 

perceptual visibility. The significance measuring model is also giving valid and consistent 

results.  

According to the tests performed in the specified computer, the overall inspection process 
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takes about 300ms to complete the worst-case scenario. For high magnitude defects, 

inspection time is significantly reduced using the leveled approach. Therefore the 

performance of the proposed framework is high and undoubtedly real-time. 

The defect detection level-1 and -2 can detect almost all defects as intended.  However, the 

level-3 algorithm based on Zernike moments has given inconsistent results in some instances. 

Therefore, the Zernike moments with euclidean distance dissimilarity measurement alone are 

not accurate enough. This can be clearly seen in the comparison table in Figure 4.7. The level-

3 algorithm is required to be upgraded in future research. 

The test result shows that the decision function accurately models the requirement and works 

as intended. The function's output can be changed and fine-tuned as the user's requirements by 

changing the parameters. 

The quality measure is also valid and consistent according to test results. However,  the 

consistency of quality measurement depends on the results of defect detection algorithms, 

mainly level-3 algorithms. Since the level-3 algorithms shown inconsistencies in some 

situations, the quality value might also be inconsistent.  

An overall, the defect detection framework acceptably achieves all objectives. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Introduction 

This chapter wraps up this document by providing the final quest comments, thoughts, and 

future works to extend this study. This research proposed an automatic and real-time defect 

detection framework for the glove manufacturing industry that can detect certain sticker 

printing defects. We proposed a model to measure the significance of each object in the glove 

sticker by combining object visibility and domain importance specified by the user. The 

object’s visibility is measured by combining the size and density. We introduce a decision 

function that calculates the maximum expected error for each object using the object’s 

significance, which can then be used to decide whether to accept or reject the glove. Finally, 

measure the quality of the printed sticker of each accepting glove. 

5.2 Findings, Contribution & Limitations  

The first objective of creating an automatic and real-time process and the second objective of 

identifying the defects in an early stage is satisfied successfully. The time-consuming 

operations are done in the teaching mode and store result in a database for later use. The 

almost all the operations performed on artwork image is done at the teaching mode. 

Moreover, the calculation of visibility, significance, and maximum expected error for each 

object is done in the teaching mode. Therefore the time for the inspection process has 

significantly been reduced.  

Since the defect detection framework is broken down into several levels, it could defect high 

magnitude errors in the early stage, therefore output the decision as early as possible. This 

also reduces the inspection time of a particular sticker hence the production bottleneck. 

The level-1 and level-2 defect detection algorithms can detect all types of defects that are 

assigned to them. However, the level-3 algorithm based on Zernike moments produces 

inconsistent results in some cases. Therefore level-3 needed to be upgraded with a more 

sophisticated algorithm. 

The evaluation of the defect detection algorithm is done with the synthesized defect images. 

Artwork images were used to construct a series of artificial defect images that are as near to 

the natural defect as possible. The use of synthetic images with established defect magnitudes 

was expected to produce more systematic findings. In most cases, the result produced by the 
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algorithm is shown to be consistent with the artificial magnitude of the defect on the synthetic 

image. 

In the worst-case scenario, the defect inspection process takes approx—300ms to complete 

the inspection. In the best-case scenario, such as a high magnitude defect, the defect 

inspection process takes approx. 30ms. Therefore the framework can be considered as real-

time. 

In this research, we consider the size and density of the object to calculate the object's 

visibility. The properties of human visibility factors are not well understood yet. However, 

many other aspects could affect the visibility of a printed sticker, such as contrast, 

surrounding obstacles, shape simplicity, and complexity. In order to make the model 

consistent and straightforward, we only use size and density factors in this research. The 

evaluation of the object visibility model shows that it is consistent with perceptual visibility. 

Nevertheless, the weight values can be more fine-tuned as relevant to the domain. 

The consistency of the object significance measurement is shown in the evaluation. However, 

the weight values can be fine-tuned to change the influence of domain importance and 

visibility to satisfy the user’s requirement.  

The evaluation of the quality measurement shows that it is valid with perceptual defect 

magnitudes and their impact. The comparison table shows that it is consistent in the range of 

different defects. 

Even if this research is built around a requirement of the glove sticker printing industry, the 

technique proposed here can be easily incorporated into defect detection in other printing-like 

domains containing the 2D arbitrary shapes that comply with the constraints in the proposed 

solution.  

5.3 Future Work 

The object visibility model can be improved by incorporating more visibility factors. The 

contrast factor is essential when recognizing an object from its background. The contrast 

factor is unimportant in this domain since the contrast is chosen to be high and uniform 

throughout the image. However, if this model is used in another domain, the contrast factor 

will be required. The simplicity of an object is also essential for visibility because a defect in 

a simple shape notice quickly than a defect in a complex shape. The complexity of an object 

can be measure using its convexity, Euler number, etc. The number of obstacles around an 
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object and how close those obstacles are to the object could determine the visibility. This can 

quantify by making the particular object the center and examine the circular area with some 

known radius. 

The defect detection algorithm is implemented using Zernike moments and uses Euclidean 

distance to measure dissimilarity. However, this algorithm has given inconsistent results in the 

evaluation. In order to make the algorithm robust and consistent with perceptual dissimilarity, 

we can still use Zernike moments with other high-order statistical methods like Kurtosis and 

Skewness. Also, in order to make the dissimilarity measure more accurate, other distance 

calculation methods can be tested on Zernike moments, such as cosine, city block, 

Minkowski, etc.  

Moreover, the defect detection algorithms needed to be tested by collecting actual gloves 

images from production houses. 
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APPENDICES 

APPENDIX A: Test Results 

Template A.1 
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Object Features   Test Result of Object Visibility 
 

Id 
Area (No. of white 

pixels) 
Hull Area 

1 459 799.5 

2 438 544 

3 416 648.5 

4 326 527 

5 409 616 

6 1582 2565.5 

7 1302 2551 

8 2927 10989.5 

9 2117 8967 

10 40 29 

11 40 29 

12 508 719 

13 374 524 

14 406 545.5 

15 306 452.5 

16 423 568 

17 368 555.5 

18 450 581 

19 454 579 

20 363 554.5 

21 349 447.5 

22 329 493.5 

23 322 387 

24 458 637.5 

25 420 596.5 

26 1445 2241.5 

27 938 1243 

28 540 523 

29 2008 2877 

30 1498 2144.5 

31 1986 2642 

32 2091 2831 

33 1131 1462 

34 1807 3032.5 

35 2958 4385 

36 2323 3497.5 

37 1373 1910.5 

38 7066 16941.5 

39 8231 17847 

40 9768 17176.5 

41 10361 17353.5 

Id Size Density Visibility 

1 0.07995 0.574109 0.327029 

2 0.0544 0.805147 0.429774 

3 0.06485 0.64148 0.353165 

4 0.0527 0.618596 0.335648 

5 0.0616 0.663961 0.362781 

6 0.25655 0.616644 0.436597 

7 0.2551 0.510388 0.382744 

8 1 0.266345 0.633173 

9 0.8967 0.236088 0.566394 

10 0.0029 1 0.50145 

11 0.0029 1 0.50145 

12 0.0719 0.706537 0.389218 

13 0.0524 0.71374 0.38307 

14 0.05455 0.744271 0.399411 

15 0.04525 0.676243 0.360747 

16 0.0568 0.744718 0.400759 

17 0.05555 0.662466 0.359008 

18 0.0581 0.774527 0.416313 

19 0.0579 0.784111 0.421005 

20 0.05545 0.654644 0.355047 

21 0.04475 0.779888 0.412319 

22 0.04935 0.666667 0.358008 

23 0.0387 0.832041 0.435371 

24 0.06375 0.718431 0.391091 

25 0.05965 0.704107 0.381879 

26 0.22415 0.644658 0.434404 

27 0.1243 0.754626 0.439463 

28 0.0523 1 0.52615 

29 0.2877 0.697949 0.492825 

30 0.21445 0.698531 0.456491 

31 0.2642 0.751703 0.507952 

32 0.2831 0.738608 0.510854 

33 0.1462 0.773598 0.459899 

34 0.30325 0.595878 0.449564 

35 0.4385 0.674572 0.556536 

36 0.34975 0.664189 0.506969 

37 0.19105 0.71866 0.454855 

38 1 0.417082 0.708541 

39 1 0.461198 0.730599 

40 1 0.568684 0.784342 

41 1 0.597055 0.798528 
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Test Result of Object Significance  

Id Visibility Domain Importance Significance Expected Error 

1 0.327029 0.2 0.263515 0.465731 

2 0.429774 0.2 0.314887 0.409599 

3 0.353165 0.2 0.276583 0.450761 

4 0.335648 0.2 0.267824 0.460740 

5 0.362781 0.2 0.28139 0.445376 

6 0.436597 0.4 0.418298 0.316287 

7 0.382744 0.4 0.391372 0.338311 

8 0.633173 0.5 0.566586 0.218313 

9 0.566394 0.5 0.533197 0.237318 

10 0.50145 0.7 0.600725 0.200453 

11 0.50145 0.7 0.600725 0.200453 

12 0.389218 0.7 0.544609 0.230643 

13 0.38307 0.7 0.541535 0.232423 

14 0.399411 0.7 0.549705 0.227723 

15 0.360747 0.7 0.530373 0.239000 

16 0.400759 0.7 0.55038 0.227340 

17 0.359008 0.7 0.529504 0.239519 

18 0.416313 0.7 0.558157 0.222962 

19 0.421005 0.7 0.560503 0.221659 

20 0.355047 0.7 0.527523 0.240708 

21 0.412319 0.7 0.55616 0.224078 

22 0.358008 0.7 0.529004 0.239819 

23 0.435371 0.7 0.567685 0.217714 

24 0.391091 0.7 0.545545 0.230104 

25 0.381879 0.7 0.540939 0.232769 

26 0.434404 0.9 0.667202 0.169761 

27 0.439463 0.9 0.669731 0.168691 

28 0.52615 0.9 0.713075 0.151367 

29 0.492825 0.6 0.546412 0.229606 

30 0.456491 0.6 0.528245 0.240274 

31 0.507952 0.6 0.553976 0.225305 

32 0.510854 0.6 0.555427 0.224489 

33 0.459899 0.6 0.529949 0.239253 

34 0.449564 0.6 0.524782 0.242364 

35 0.556536 0.6 0.578268 0.212029 

36 0.506969 0.6 0.553485 0.225582 

37 0.454855 0.2 0.327428 0.396956 

38 0.708541 0.3 0.504271 0.255116 

39 0.730599 0.3 0.515299 0.248178 

40 0.784342 0.3 0.542171 0.232053 

41 0.798528 0.3 0.549264 0.227975 
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Template A.2 

 

 

 



 

 

 

V 

 

Object Features   Test Result of Object Visibility 
 

Id 
Area (No. of 

white pixels) 
Hull Area 

1 127 111.5 

2 361 421 

3 422 487.5 

4 764 975 

5 783 947 

6 905 1033.5 

7 899 1046 

8 860 1039.5 

9 804 1154 

10 938 1134.5 

11 933 1141.5 

12 851 1036.5 

13 854 1034 

14 930 1137 

15 345 541.5 

16 167 169 

17 186 198.5 

18 312 410 

19 312 421 

20 4842 14782 

21 5475 11737.5 

22 3693 9683.5 

23 431 551.5 

24 297 321 

25 347 378.5 

26 351 381.5 

27 305 404.5 

28 2012 2394.5 

29 1895 3180 

30 1581 3152 

31 4986 5261.5 

32 2923 3834 

33 4243 5766 

34 2611 3779.5 

35 4394 5612.5 

36 380 343 

37 367 329.5 

38 5766 7698 

39 5402 5616 

Id Size Density Visibility 

1 0.01115 1 0.505575 

2 0.0421 0.857482 0.449791 

3 0.04875 0.865641 0.457196 

4 0.0975 0.78359 0.440545 

5 0.0947 0.826822 0.460761 

6 0.10335 0.875665 0.489508 

7 0.1046 0.859465 0.482032 

8 0.10395 0.827321 0.465635 

9 0.1154 0.696707 0.406054 

10 0.11345 0.826796 0.470123 

11 0.11415 0.817346 0.465748 

12 0.10365 0.821032 0.462341 

13 0.1034 0.825919 0.464659 

14 0.1137 0.817942 0.465821 

15 0.05415 0.637119 0.345635 

16 0.0169 0.988166 0.502533 

17 0.01985 0.937028 0.478439 

18 0.041 0.760976 0.400988 

19 0.0421 0.741093 0.391596 

20 1 0.327561 0.66378 

21 1 0.466454 0.733227 

22 0.96835 0.38137 0.67486 

23 0.05515 0.781505 0.418327 

24 0.0321 0.925234 0.478667 

25 0.03785 0.916777 0.477313 

26 0.03815 0.920052 0.479101 

27 0.04045 0.754017 0.397234 

28 0.23945 0.840259 0.539854 

29 0.318 0.595912 0.456956 

30 0.3152 0.501586 0.408393 

31 0.52615 0.947639 0.736894 

32 0.3834 0.762389 0.572895 

33 0.5766 0.735865 0.656233 

34 0.37795 0.690832 0.534391 

35 0.56125 0.782895 0.672073 

36 0.0343 1 0.51715 

37 0.03295 1 0.516475 

38 0.7698 0.749026 0.759413 

39 0.5616 0.961895 0.761747 
 

 

 

 

 

 

 

 

 

 



 

 

 

VI 

 

Test Result of Object Significance  

Id Visibility Domain Importance Significance Expected Error 

1 0.733335 0.500000 0.616667 0.141513 

2 0.736894 0.300000 0.518447 0.190006 

3 0.761747 0.300000 0.380874 0.287084 

4 0.539646 0.900000 0.719823 0.103848 

5 0.489321 0.100000 0.294660 0.371821 

6 0.449791 0.100000 0.274896 0.394535 

7 0.457196 0.100000 0.278598 0.390177 

8 0.505600 0.100000 0.302800 0.362852 

9 0.759151 0.300000 0.529575 0.183767 

10 0.663780 0.500000 0.581890 0.157075 

11 0.466106 0.100000 0.283053 0.384997 

12 0.482510 0.100000 0.291255 0.375639 

13 0.463383 0.100000 0.281691 0.386573 

14 0.462341 0.100000 0.281171 0.387177 

15 0.572658 0.300000 0.436329 0.243084 

16 0.516475 0.300000 0.408238 0.264458 

17 0.460761 0.100000 0.280380 0.388096 

18 0.517150 0.300000 0.408575 0.264190 

19 0.465464 0.100000 0.282732 0.385368 

20 0.672073 0.300000 0.486036 0.209408 

21 0.469281 0.100000 0.284640 0.383168 

22 0.534391 0.300000 0.417196 0.257446 

23 0.440193 0.100000 0.270097 0.400256 

24 0.384748 0.500000 0.442374 0.238715 

25 0.477109 0.500000 0.488555 0.207832 

26 0.674557 0.500000 0.587278 0.154557 

27 0.408393 0.600000 0.504197 0.198305 

28 0.406054 0.100000 0.253027 0.421287 

29 0.418327 0.500000 0.459164 0.226989 

30 0.478439 0.500000 0.489219 0.207418 

31 0.400743 0.500000 0.450372 0.233056 

32 0.466423 0.100000 0.283212 0.384814 

33 0.398028 0.500000 0.449014 0.234007 

34 0.656233 0.300000 0.478116 0.214443 

35 0.479101 0.500000 0.489551 0.207212 

36 0.502533 0.500000 0.501266 0.200056 

37 0.457113 0.600000 0.528557 0.184330 

38 0.478053 0.500000 0.489026 0.207538 

39 0.345635 0.500000 0.422817 0.253140 
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Template A.3 

 

 

 



 

 

 

VIII 

 

Object Features   Test Result of Object Visibility 
 

Id 
Area (No. of 

white pixels) 
Hull Area 

1 631 891 

2 625 959.5 

3 238 198 

4 576 834.5 

5 545 712.5 

6 647 937.5 

7 708 900 

8 543 712 

9 338 583.5 

10 553 899 

11 508 873.5 

12 11600 33324.5 

13 12724 33329.5 

14 1083 1406 

15 724 1057 

16 440 667.5 

17 719 1146 

18 514 817 

19 525 833.5 

20 632 822.5 

21 571 849 

22 374 468.5 

23 611 600 

24 1317 2054 

25 950 1496.5 

26 1334 2356 

27 123 108 

28 420 497 

29 315 300.5 

30 744 882.5 

31 539 610 

32 610 730.5 

33 161 129.5 

34 1301 2722 

35 1372 2022.5 

36 4293 4874.5 

37 444 839.5 

38 1155 2009.5 

39 1403 2653 

40 3520 4140.5 

41 6998 8228 

Id Size Density Visibility 

1 0.089100 0.708193 0.836836 

2 0.095950 0.651381 0.690930 

3 0.019800 1.000000 0.334459 

4 0.083450 0.690234 0.425140 

5 0.071250 0.764912 0.351282 

6 0.093750 0.690133 0.379490 

7 0.090000 0.786667 0.684120 

8 0.071200 0.762640 0.318807 

9 0.058350 0.579263 0.426535 

10 0.089900 0.615128 0.356012 

11 0.087350 0.581568 0.400874 

12 1.000000 0.348092 0.355860 

13 1.000000 0.381764 0.632283 

14 0.140600 0.770270 0.530050 

15 0.105700 0.684957 0.371000 

16 0.066750 0.659176 0.505400 

17 0.114600 0.627400 0.392566 

18 0.081700 0.629131 0.417353 

19 0.083350 0.629874 0.363490 

20 0.082250 0.768389 0.506500 

21 0.084900 0.672556 0.423347 

22 0.046850 0.798292 0.674077 

23 0.060000 1.000000 0.438333 

24 0.205400 0.641188 0.397256 

25 0.149650 0.634815 0.395329 

26 0.235600 0.566214 0.391942 

27 0.010800 1.000000 0.455791 

28 0.049700 0.845070 0.387704 

29 0.030050 1.000000 0.418539 

30 0.088250 0.843059 0.472258 

31 0.061000 0.883607 0.446986 

32 0.073050 0.835044 0.385825 

33 0.012950 1.000000 0.439425 

34 0.272200 0.477957 0.509900 

35 0.202250 0.678368 0.465730 

36 0.487450 0.880706 0.372969 

37 0.083950 0.528886 0.375060 

38 0.200950 0.574770 0.454732 

39 0.265300 0.528835 0.398647 

40 0.414050 0.850139 0.515150 

41 0.822800 0.850510 0.306418 
 

  

 

 

 

 



 

 

 

IX 

 

Test Result of Object Significance  

Id Visibility Domain Importance Significance Expected Error 

1 0.836836 0.300000 0.568418 0.163554 

2 0.690930 0.500000 0.595465 0.150807 

3 0.334459 0.200000 0.267230 0.403714 

4 0.425140 0.600000 0.512570 0.193385 

5 0.351282 0.200000 0.275641 0.393654 

6 0.379490 0.600000 0.489745 0.207091 

7 0.684120 0.300000 0.492060 0.205658 

8 0.318807 0.200000 0.259403 0.413305 

9 0.426535 0.600000 0.513268 0.192981 

10 0.356012 0.600000 0.478006 0.214514 

11 0.400874 0.900000 0.650437 0.127879 

12 0.355860 0.600000 0.477930 0.214563 

13 0.632283 0.300000 0.466142 0.222287 

14 0.530050 0.900000 0.715025 0.105353 

15 0.371000 0.700000 0.535500 0.180530 

16 0.505400 0.900000 0.702700 0.109322 

17 0.392566 0.900000 0.646283 0.129482 

18 0.417353 0.100000 0.258676 0.414207 

19 0.363490 0.700000 0.531745 0.182575 

20 0.506500 0.300000 0.403250 0.268445 

21 0.423347 0.900000 0.661674 0.123640 

22 0.674077 0.500000 0.587038 0.154668 

23 0.438333 0.100000 0.269167 0.401374 

24 0.397256 0.300000 0.348628 0.316243 

25 0.395329 0.700000 0.547664 0.174060 

26 0.391942 0.100000 0.245971 0.430300 

27 0.455791 0.900000 0.677895 0.117767 

28 0.387704 0.300000 0.343852 0.320807 

29 0.418539 0.100000 0.259270 0.413470 

30 0.472258 0.200000 0.336129 0.328326 

31 0.446986 0.200000 0.323493 0.341012 

32 0.385825 0.100000 0.242912 0.434266 

33 0.439425 0.300000 0.369713 0.296859 

34 0.509900 0.100000 0.304950 0.360519 

35 0.465730 0.200000 0.332865 0.331557 

36 0.372969 0.100000 0.236484 0.442722 

37 0.375060 0.300000 0.337530 0.326949 

38 0.454732 0.200000 0.327366 0.337072 

39 0.398647 0.100000 0.249323 0.425994 

40 0.515150 0.200000 0.357575 0.307868 

41 0.306418 0.300000 0.303209 0.362407 
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Template A.4 

 

 

 

 



 

 

 

XI 

 

Object Features   Test Result of Object Visibility 
 

Id 
Area (No. of 

white pixels) 
Hull Area 

1 980 1158 

2 1158 1385 

3 1130 1350 

4 1120 1320 

5 2110 3418.5 

6 2145 2567 

7 1472 2119 

8 2108 3418.5 

9 2146 2568 

10 1389 1967.5 

11 2940 3339 

12 2421 3392.5 

13 2421 3391.5 

14 3566 4420 

15 4068 5180 

16 4730 5438 

17 3674 4422 

18 4501 4784 

19 5121 5639.5 

20 6266 7055 

21 4555 5150 

22 4256 5023.5 

23 51223 74570 

Id Size Density Visibility 

1 0.705500 0.888306 0.796903 

2 0.333900 0.880503 0.607202 

3 0.196750 0.705972 0.451361 

4 0.502350 0.847218 0.674784 

5 1.000000 0.687005 0.843503 

6 0.256800 0.835670 0.546235 

7 0.563950 0.908059 0.736005 

8 0.339150 0.713843 0.526497 

9 0.515000 0.884466 0.699733 

10 0.132000 0.848485 0.490242 

11 0.341850 0.616645 0.479247 

12 0.135000 0.837037 0.486019 

13 0.478400 0.940844 0.709622 

14 0.115800 0.846287 0.481043 

15 0.138500 0.836101 0.487301 

16 0.211900 0.694667 0.453284 

17 0.442200 0.830846 0.636523 

18 0.256850 0.835507 0.546179 

19 0.543800 0.869805 0.706803 

20 0.339250 0.713633 0.526442 

21 0.518000 0.785328 0.651664 

22 0.341850 0.617230 0.479540 

23 0.442000 0.806787 0.624394 
 

  

Test Result of Object Significance  

Id Visibility Domain Importance Significance Expected Error 

1 0.796903 0.300000 0.548452 0.173650 

2 0.607202 0.700000 0.653601 0.126671 

3 0.451361 0.700000 0.575681 0.160029 

4 0.674784 0.300000 0.487392 0.208558 

5 0.843503 0.000000 0.421751 0.253951 

6 0.546235 0.700000 0.623117 0.138801 

7 0.736005 0.300000 0.518002 0.190259 

8 0.526497 0.700000 0.613248 0.142972 

9 0.699733 0.300000 0.499867 0.200898 

10 0.490242 0.800000 0.645121 0.129935 

11 0.479247 0.700000 0.589624 0.153473 

12 0.486019 0.800000 0.643009 0.130760 

13 0.709622 0.300000 0.504811 0.197939 

14 0.481043 0.800000 0.640522 0.131740 

15 0.487301 0.800000 0.643650 0.130509 

16 0.453284 0.700000 0.576642 0.159568 

17 0.636523 0.300000 0.468261 0.220878 

18 0.546179 0.700000 0.623089 0.138813 

19 0.706803 0.300000 0.503401 0.198778 

20 0.526442 0.700000 0.613221 0.142984 



 

 

 

XII 

 

21 0.651664 0.300000 0.475832 0.215918 

22 0.479540 0.700000 0.589770 0.153406 

23 0.624394 0.300000 0.462197 0.224933 
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APPENDIX B: Source Codes  

 

 

def preprocess(path): 

    # Read RGB image 

    image = cv2.imread(path) 

    # Convert to grayscale image 

    image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 

    if mode == 1: 

        type = cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU 

    else: 

        type = cv2.THRESH_BINARY + cv2.THRESH_OTSU 

 

    # Convert to binary image 

    ret, binary = cv2.threshold(image_gray, 0, 255, type) 

    return binary 

def _extract_global_features(binary): 

    # foreground (white pixels) area of image 

    points1 = cv2.findNonZero(binary) 

 

    # Get bounding rectangle 

    boundingRect = cv2.boundingRect(binary) 

    x, y, w, h = boundingRect 

    # Crop-out foreground area 

    binary = binary[y - 1:y + h + 1, x - 1:x + w + 1] 

 

    # Get minimum area rectangle 

    minAreaRect1 = cv2.minAreaRect(points1) 

    # Get angle parameter from minimum area rectangle 

    angle = minAreaRect1[2] 

    # Calculate convex hull 

    hull1 = cv2.convexHull(points1) 

 

    # Calculate convex hull area 

    hull_area = cv2.contourArea(hull1) 

     

    if angle < -45: 

        angle = -(90 + angle) 

    else: 

        angle = -angle 

 

    features = dict() 

    boundingRect = [str(i) for i in boundingRect] 

 

    features['Bounding_Rect'] = ':'.join(boundingRect) 

    features['Angle'] = angle 

    features['Hull_Area'] = hull_area 

 

    return binary, features 
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def _extract_object_features(image): 

    # Extract image contours to segment objects 

    contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

 

    objects = [] 

    for i in range(len(contours)): 

        c = contours[i] 

 

        object = Object() 

        object.contour = c 

 

        # Masking-out each object 

        mask = np.zeros_like(image) 

        cv2.drawContours(mask, contours, i, 255, -1) 

        out = np.zeros_like(image) 

        out[mask == 255] = image[mask == 255] 

 

        # Crop-out each object 

        (y, x) = np.where(mask == 255) 

        (topy, topx) = (np.min(y), np.min(x)) 

        (bottomy, bottomx) = (np.max(y), np.max(x)) 

        cropped = out[topy - 1:bottomy + 1, topx - 1:bottomx + 1] 

        boundingRect = cv2.boundingRect(c) 

 

        object.image = cropped 

        object.boundingRect = boundingRect 

        objects.append(object) 

 

    # Sort objects from top-x value of object 

    objects.sort(key=lambda e: e.boundingRect[0]) 

    return objects 

def visibility(object:Object, w1=0.5, w2=0.5, upper_bound=10000): 

    # No. of white pixels 

    wp_area = cv2.countNonZero(object.image) 

 

    # find convex hull & calculate hull area 

    hull = cv2.convexHull(object.contour) 

    hull_area = cv2.contourArea(hull) 

 

    # calculate density 

    density = wp_area / (hull_area + 0.00000001) 

    density = min(density, 1) 

 

    # calculate size 

    size = min(hull_area / upper_bound, 1) 

 

    # calculate visibility 

    visibility = w1 * size + w2 * density 

    object.visibility = visibility 

    return visibility 

def significance(object:Object, w1=0.5, w2=0.5): 

    # calculate significance 

    significance = w1*object.visibility + w2*object.domain_importance 

    return significance 
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def expected_error(object: Object, alpha=0.9, _lambda=-3): 

    # calculate maximum expected error for the object 

    expected_error = alpha*(math.exp(_lambda * object.significance)) 

    return expected_error 

def inspect(template:Template, path): 

    # start performance monitoring timer 

    t1_start = time.perf_counter_ns() 

 

    # do preprocessing & retrieve binary image 

    bin_image = _preprocess(path) 

 

    # initialize inspection object 

    inspection = Inspection() 

    inspection.bin_image = bin_image 

    inspection.image = bin_image 

 

    # create error evaluator object 

    error_eval = ErrorEvaluation() 

     

    # perform inspection level-1 & obtain result 

    result = level1.level_1(template, inspection, error_eval) 

     

    if result: 

        # if result is True 

        # then perform inspection level-2 & obtain result 

        result = level2.level_2(template, inspection, error_eval) 

 

        # if result is True 

        # then calculate quality for the sticker 

        if result: 

            quality = QMI.calc_quality(error_eval, template.objects) 

 

    # stop performance monitoring timer 

    t1_stop = time.perf_counter_ns() 
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def inspection_level_1(template: Template, inspection: Inspection, 

error_eval:ErrorEvaluation): 

 

    binary_2 = inspection.bin_image 

 

    # Find Bounding Rectangle of inspection image 

    x, y, w, h = cv2.boundingRect(binary_2) 

 

    # User defined ROI for sticker placement 

    roi_x, roi_y, roi_w, roi_h = template.roi 

 

    # Is inside the sticker-placement-region 

    if (x<roi_x or y<roi_y or (x+w)>(roi_x+roi_w) or 

(y+h)>(roi_y+roi_h)): 

        return False 

    else: 

        # Find Convex Hull and Calculate Hull Area 

        points_2 = cv2.findNonZero(binary_2) 

        hull_2 = cv2.convexHull(points_2) 

        hull_area_2 = cv2.contourArea(hull_2) 

 

        # Calculate Scale Diff factor 

        scale_diff_factor = abs(template.hull_area - hull_area_2) / 

template.hull_area 

 

        if scale_diff_factor > template.scale_thresh:         

            return False 

        else: 

            # Find Minimum Area Rectangle 

            minAreaRect_2 = cv2.minAreaRect(points_2) 

            # Get angle from min area rectangle array 

            angle = minAreaRect_2[2] 

             

            # Get template image angle 

            template_angle = template.angle       

 

            # Calculate Angle Diff 

            if abs(template_angle) % 90 == 0: 

                a = angle 

                k = math.floor(abs(a) / 45) 

                theta = (abs(a) ** (1 - k)) * (90 - abs(a)) ** k 

            else: 

                theta = abs(template_angle - minAreaRect_2[2]) 

 

            if theta > template.rotate_thresh: 

                return False 

            else: 

             

                # Calculate total level-1 error 

                inspection.boundingRect = (x, y, w, h) 

                inspection.angle = angle 

                inspection.hull_area = hull_area_2 

 

                level_1_error = 0.5 * scale_diff_factor + 0.5 * theta 

                error_eval.level_1_error = level_1_error 

                return True 
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def inspection_level_2(template: Template, inspection: Inspection, 

error_eval: ErrorEvaluation): 

     

    # perform geometric correction 

    _geometric_correction(template, inspection) 

 

    # calculate foreign body error 

    foreign_error = foreign_body_error.calc_error(template, 

inspection) 

    # evaluate calculated foreign body error 

    r = error_eval.evaluate_foreign_body_error(foreign_error) 

 

    if not r: 

        return False 

 

    else: 

        objects = template.objects 

        binary_2 = inspection.bin_image 

 

        # iterate through template objects 

        for i in range(len(objects)): 

            object = objects[i] 

 

            x, y, w, h = object.boundingRect 

            templ_obj_img = object.image 

 

            # skip the template objects with neglegible size 

            if templ_obj_img.shape[0]==0 or 

templ_obj_img.shape[1]==0: 

                continue 

 

            # crop-out corresponding inspection object's area using 

template object coordinates 

            # with some padding 

            cand_obj_img = binary_2[max(y - 10, 0):min(y + h + 10, 

binary_2.shape[0]), 

                           max(x - 10, 0):min(x + w + 10, 

binary_2.shape[1])] 

 

            # count white pixels in template object 

            template_white_pxls = cv2.countNonZero(templ_obj_img) 

            # count white pixels in inspection object 

            white_pxls = cv2.countNonZero(cand_obj_img) 

 

            # calculate pixel ratio 

            pixel_ratio = white_pxls / template_white_pxls 

 

            error_msg = '' 

 

            # If inspection area is nearly empty 

            if pixel_ratio < 0.01: 

                return False 

            else: 

                # If inspection area is nearly filled 

                pixel_ratio = white_pxls / (cand_obj_img.shape[0] * 

cand_obj_img.shape[1]) 

                if pixel_ratio > 0.85: 

                    return False 

 

                else: 

                    # Apply Normed Cross-Correlation 
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                    res = cv2.matchTemplate(cand_obj_img, 

object.image, cv2.TM_CCORR_NORMED) 

                    min_val, max_val, min_loc, max_loc = 

cv2.minMaxLoc(res) 

 

                    top_left = max_loc 

                    ccorr_sim = max_val 

 

                    # If the objects are highly similar 

                    if ccorr_sim > 0.9: 

                        # crop-out exact object region 

                        cand_obj_img = 

cand_obj_img[top_left[1]:top_left[1] + h + 1, top_left[0]:top_left[0] 

+ w + 1] 

                         

                        # perform XOR operation on template object 

image and inspection object image 

                        bitwiseXor = cv2.bitwise_xor(object.image, 

cand_obj_img) 

                        # perform morphological erosion operation 

over XOR-ed image with 3x3 kernal 

                        bitwiseXor = erosion(bitwiseXor, 3) 

 

                        # count white pixels in result image 

                        white_pxls = cv2.countNonZero(bitwiseXor) 

                        # calculate pixel ratio 

                        pixel_ratio = white_pxls / 

template_white_pxls 

 

                        if pixel_ratio < 0.0001: 

                            error = 0.0 

                            object.error = error 

                        else: 

                            # if the pixel ratio is high  

                            # then move for inspection level-3 & 

obtain the error 

                            level_3_error = level_3.level_3(object, 

cand_obj_img) 

                            object.error = level_3_error 

 

                    else: 

                        # if result of CCORR operation showing 

dissimilarities of two objects  

                        # then move for inspection level-3 & obtain 

the error 

                        level_3_error = level_3.level_3(object, 

cand_obj_img) 

                        object.error = level_3_error 

 

            # Evaluate the calculated error    

            r = error_eval.evaluate_object_error(object) 

            if not r: 

                return False 

 

        return True 



 

 

 

XIX 

 

 

def _geometric_correction(template: Template, inspection: 

Inspection): 

    angle_1 = template.angle 

    angle_2 = inspection.angle 

 

    if angle_1 < -45: 

        angle_1 = -(90 + angle_1) 

    else: 

        angle_1 = -angle_1 

 

    if angle_2 < -45: 

        angle_2 = -(90 + angle_2) 

    else: 

        angle_2 = -angle_2 

 

    # calculate angle difference 

    angle_diff = (angle_1 - angle_2) 

    corrected = inspection.bin_image 

 

    # Correct Angle 

    if angle_diff != 0 and angle_diff != 90.0: 

        (h_, w_) = corrected.shape[:2] 

        center = (w_ // 2, h_ // 2) 

        M = cv2.getRotationMatrix2D(center, angle_diff, 1.0) 

        size = (w_, h_) 

        # correct rotation deformation using Bicubic interpolation 

        corrected = cv2.warpAffine(corrected, M, size, 

flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) 

 

    x, y, w, h = cv2.boundingRect(corrected) 

 

    # Crop Sticker Region 

    corrected = corrected[y - 1:y + h + 1, x - 1:x + w + 1] 

     

    dim = (template.bin_image.shape[1], template.bin_image.shape[0]) 

    # Resize to same W x H as template size 

    corrected = cv2.resize(corrected, dim, 

interpolation=cv2.INTER_AREA) 

 

    return corrected 
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def calc_foreign_body_error(template: Template, inspection: 

Inspection): 

    binary_2 = inspection.bin_image 

 

    # Remove legitimate template objects  

    # keep only foreign objects 

    background_image = np.copy(binary_2) 

    objects = template.objects 

    for i in range(len(objects)): 

        object = objects[i] 

        x, y, w, h = object.boundingRect 

        cv2.rectangle(background_image, (max(x - 1, 0), max(y - 1, 

0)), 

                      (min(x + w + 1, binary_2.shape[1]), min(y + h + 

1, binary_2.shape[0])), 

                      (0, 0, 0), -1) 

 

    # Remove small variations using morphological erosion with 3x3 

kernal 

    kernal = np.ones((3, 3), np.uint8) 

    background_image = cv2.erode(background_image, kernal) 

 

    # find contours to extract foreign objects 

    contours_2, hierarchy_2 = cv2.findContours(background_image, 

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

 

    total_error = 0 

    max_error = 0 

    for i in range(len(contours_2)): 

        c = contours_2[i] 

 

        # crop-out each object 

        mask = np.zeros_like(background_image) 

        cv2.drawContours(mask, contours_2, i, 255, -1) 

        out = np.zeros_like(background_image) 

        out[mask == 255] = background_image[mask == 255] 

 

        # count white pixels in object 

        wp_area = cv2.countNonZero(out) 

 

        # Find convex hull & calc. hull area 

        hull = cv2.convexHull(c) 

        hull_area = cv2.contourArea(hull) 

        if hull_area == 0: 

            continue 

 

        # Calculate density 

        density = wp_area / hull_area 

        density = min(density, 1) 

         

        # Calculate size 

        area_thresh = 10000 

        size = min(hull_area / area_thresh, 1) 

 

        # Calculate object's error 

        error = (0.75 * size + 0.25 * density) 

 

        total_error += error 

        max_error = max(max_error, error) 
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    # calulate mean error 

    mean_error = 0 

    if len(contours_2) > 0: 

        mean_error = total_error/len(contours_2) 

 

    # calculate final foreign body error 

    foreign_body_error = 0.5 * mean_error + 0.5 * max_error 

    return foreign_body_error 

def calc_quality(error_eval:ErrorEvaluation, objects): 

    total = 0 

    defected_object_count = 0 

    for object in objects: 

        if object.error == 0: 

            pass 

        else: 

            defected_object_count += 1 

            total += ((object.error + 2*(object.significance * 

object.error))) 

 

    variance = total / defected_object_count 

    w1 = 0.6 

    w2 = 0.3 

    w3 = 0.1 

 

    QMI = 1 - (w1 * variance + w2 * error_eval.foreign_body_error + 

w3 * error_eval.level_1_error) 

    return QMI 




