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Abstract

Investing in publically listed companies in Colombo Stock Exchange is a trendy

option among investors. These investments, though carry extremely higher risks,

if decisions are taken correctly, investors can achieve extremely higher returns,

potentially multiplying the initial investment. However, due to the market volatil-

ity, the investors have to keep their close eye on the market sentiments to get the

maximum gain, which is not an option for those who don’t have time for active

trading.

Technical indicators are mathematical and statistical equations based on his-

torical stock price and volume data visually represented as graphs to help in-

vestors understand market sentiments.

In this study, we model the problem of stock market investment as a game

and try to solve it with a reinforcement learning algorithm. The neural network

is a recurrent neural network that understands the market patterns within a 14

day moving window period.

The study includes multiple experiments, training the model with different

training data sets, different episode counts, and different types of RNN strate-

gies in the neural network, gated recurrent networks (GRU networks ) and long

short-term memory networks ( LSTM networks ), and comparing their profits in

different periods.

The study’s findings suggest that we cannot create a ’train once use forever’

model for stock market predictions. The model performs better when we train

it with a recent batch of data, and the model has to be retrained periodically

with the previous 200-day price points. Further, it suggests that GRU networks

work significantly better than LSTMs and for training, using an episode count of

around 500 is sufficient to train.
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Chapter 1

Introduction

The Colombo Stock Exchange (CSE) is the primary stock exchange in Sri Lanka.

It has 296 companies representing 20 business sectors as of 25 January 2021, with

a Market Capitalization of Rs. 3,699 Billion.

When it comes to investing, investing in shares of publicly-held companies is a

popular choice among its options. Here an investor buys a smaller piece of a com-

pany. If the company value goes higher as time pass, his value on the company

also goes higher, which call ”the capital gain”. The investor is also an owner of

the company; he would own a percentage of the profit paid as a dividend. Stock

market investing is categorized as a high-risk, high-reward investment option, and

when used strategically, it is one the best place to grow wealth.

Compared to other investment options like bonds, real estate, or even directly

investing in a company, a stock market investor get the advantage of diversifica-

tion. Rather than buying a larger chunk of a single company, the investor can

invest in multiple companies in smaller chunks in different sectors; he would get

more opportunity to diluting his risk. This is called the stock portfolio.

The best strategy to play in the stock market is to buy and hold strategy to secure

wealth. Here, an investor buys stocks and holds them for long terms, where he

believes that long-term returns will be worth withstanding the short-term volatil-

ity. This works well for most of the growing economies where, overall, the stock

prices also are in growth.

However, in Sri Lanka, we do not see such constant growth due to its financial

instability and ever-changing policies.
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In Sri Lanka, in CSE, for an investor to get the maximum advantage, when to

enter and exit ( Buy / Hold / Sell ), the decision has to be taken correctly timing

the market. The inability of doing so can result in losses and missed opportunities.

1.1 Motivation

If prices movements were considered for the last 12 years, the stock market has

given investors multiple opportunities to buy and sell. For example, in 2012

May-July, in 2019 May - June period, and 2020 March-May due to COVID19 hit,

periods stock market reached its minimal values giving investors ample opportu-

nities to buy stocks at a lot discounted prices. Also, during 2011 Jan-Feb, 2014

Oct 2015 Jan and in last week of Jan 2021, the CSE reach its maximum values,

where giving investors could sell their stocks at much higher prices.

For example, Expolanka Holdings PLC ( EXPO ) had its stock price around

LKR1.70 in May 2020. By Feb 2021, in 9 months, due to the increased demand

of its fright services, the price ran up to LKR64.6, giving investors a gain of

around 3700%. Though this is an extreme example, any investor who invested in

the stock market in May 2020 had his investment doubled by February 2021.

Even though there are such opportunities, many investors, especially show pri-

mary roles is not in the stock market, a doctor who uses the stock market to

secure his wealth against inflation regularly miss these opportunities. They do

not have the luxury of time to pay attention to all the stocks. This results in

them having a smaller stock portfolio, a less diversified set of stocks, ultimately

increasing the risk and reducing the potential profits.

1.2 The Problem

In stock market investments, there are two strategies in taking decisions, fun-

damental analysis and technical analysis. An investor would consider macro-

economic and micro-economic factors to analyze the companies and the market

in fundamental analysis. For example, an investor looking into the fundamental
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factors would look at government regulations, tariffs, and how the company goes;

its assets value, moats, cash flow. Understanding and modeling the variables

affecting the market requre a significent domain knowlage.

On the other hand, technical analysis is based on stock prices patterns and trad-

ing volumes patterns. An investor may use charts and graphs to visualize these

patterns. These charts graphs are derived by applying statistical and mathemat-

ical equations to historical price/volumes. We call them technical indicators.

Figure 1.1: Technical Indicators and Stock Prices of VONE
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1.2.1 Exact Computer Science Problem

The problem with technical indicators is that there are many. And not the same

technical indicator combination would be effective with every stock. For example,

for stocks with low volatility, Moving Averages of periods 15, 26 and their con-

vergence divergence will confidently predict the tendency; for stocks with higher

volatility, we have to use MA‘s with lower periods. And depending on the entire

market conditions ( usually reflected with All Share Price Index, ASPI ), the

Relative Strength Index ( RSI ), a leading indicator, can be used to correctly

predict the price movement before it happens. However, the same indicator can

give wrong predictions in a different ASPI condition for the same stocks.

So to get the best results, we may need to create vetted TE combinations for each

stock. And then, we have to re-evaluate the same against the ASPI‘s different

conditions. Doing this is a complicated and costly task to be done manually.

However, modeling this as a machine learning problem and using the historical

data as the training data can achieve better results. After all the evaluations,

this boils down to a classification problem. At a given time, given price/volume

information, the application would classify whether the right decision is a Buy,

Sell or Hold.

1.2.2 The Business Problem and the Opportunity

For an investor, especially whose primary role is not in the stock market, say, for

example, a doctor who uses the stock market to secure his wealth, it is not easy

to focus his attention on many stocks daily. However, if he can be presented with

a UI where he can see all his stocks and the signal ( Buy, Sell or Hold ) associated

with the stock, with a justification that we can retrieve by solving problem 1, he

would be greatly benefited.

1.3 Contribution

The research project‘s main contribution is to develop a model to suggest suitable

decisions for a stock with a confidence score; the higher the score, the higher the

4



system is confident about the price movement. The Open, Close, Max, Min

prices and traded volumes are used as the algorithm‘s raw input, converted into

technical indicator signals. Together, we use the same data of All Share Price

Index (ASPI ), converted into technical indicator signals to evaluate the price

tendency with the market tendency.

1.4 Aims and Objectives

• Literature review, research gap identification and formation of research

question.

• Retrieving stock market historical data for analysis.

• Evaluating technical indicator reliability against historical data.

• Building a model that can assess its signal with some confidence score given

a stock and its pricing information.

• Building a web-based dashboard where users can select and view the status

of their preferred stocks.

• Evaluate and finetune the system so it would maximise the profits of the

users.

1.5 Scope

There are hundreds of technical indicators that can be used to analyse all the 289

registered companies in the Colombo stock exchange. However, here this research

is limited to the following criteria.

• Only analyse a selected set of indicators.

– Multiple lengths of MACD and their convergent points as the points

of interest.

– Parabolic Sar, parts of Ichimoku Kinko Hyo as trend indicators
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– Stochastic, Average Directional Index (ADX), and Ichimoku Kinko

Hyo as momentum indicators

– On-Balance-Volume, Chaikin Money Flow, and Klinger Volume Oscil-

lator as volume indicators.

• Only apply the analysis to 7 companies.

– Following companies were selected.

∗ ACCESS ENGINEERING PLC. - AEL.N0000

∗ VALLIBEL ONE PLC. - VONE.N0000

∗ TOKYO CEMENT COMPANY (LANKA) PLC - TKYO.N0000

∗ SAMPATH BANK PLC. - SAMP.N0000

∗ JOHN KEELLS HOLDINGS PLC. -JKH.N0000

∗ HEMAS HOLDINGS PLC. - HHL.N0000

∗ RICHARD PIERIS EXPORTS PLC. - REXP.N0000

– companies that have had no stock splitting in history. Splitting is

difficult to incorporate with the training model.

– companies with enough volatility. Low volatile companies doesn’t show

much movement in the market to generate enough signals.

1.6 Structure of the Thesis

This thesis is divided into four main chapters, with specific details, source codes,

charts and results, to give an overview of the project. Chapter 1 goes through a

detailed description and understanding of the problem domain and the scope of

the study; the following chapters consist of information as mentioned below.

The second chapter is the literature review of the problem domain that has

been conducted alongside the project. The literature review takes an evolution-

ary approach. The stated studies under this chapter are the current knowledge,

and it explains how we proceeded with different approaches eliminating one by

6



one until we approached the current approach.

In the third chapter, we explain the methodology we have taken to complete

and achieve the targets of the quest. In this chapter, we explain the problem,

how it is modelled into a game, and then explain the solution approach, data

extraction, prepossessing, and the actual implementation of the ML model with

the software implementation that supports it.

In the fourth chapter of this thesis, we evaluate the results obtained by this

study. The project contained multiple experiments, and the document explains

how each experiment changed the narrative of the research conclusions.

The final chapter, in the conclusion chapter, gives the final comments and

thoughts about the study. Further, it suggests more research areas associated

with the same study than with their market opportunities.
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Chapter 2

Literature Review

2.0.1 Technical Analysis

In (Murphy, John J. 1996) and (Murphy, John J. 1999) , Murphy defines,

Technical analysis is the study of market action, primarily through

the use of charts, to forecast future price trends.

In both references, murphy explains most of the technical indicators and how to

use them.

2.0.2 Technical Analysis to understand market sentiment

It is a widespread argument whether technical analysis can be used to predict

market movements and increase profit. Among the many arguments against the

theory that the technical analysis cannot beat the market, i.e., get higher returns

than the buy and hold strategy, Efficient Market Hypothesis (Fama, Eugene

F. 1970) is one of the highest cited arguments. Here, Fama suggests, in an

efficient market, the stocks are sold to their fair values. Unless there is new

information related to the stock, the stock price cannot fluctuate. This declares

no undervalued or overvalued stocks; therefore, neither technical analysis nor

fundamental analysis can significantly return. Another such cited argument is

the Random Walk Hypothesis (Fama, Eugene F. 1965). As the name suggests,

even on top of the efficient market, the price movements can happen, but they

8



happen in a pure random notion, where it is impossible to predict.

Also, against technical analysis, the following arguments are frequently brought

forward.

• Nature of Self-fulfilling prophecy

• The inability to use historic price data to predict future prices

There are scenarios where these arguments seem valid. On the brink of Covid-

19, the market’s downturn is a good scenario that one can argue as a Self-Fulfilling

prophecy. In the early Covid19 hit, when the markets faced uncertainty, technical

indicators started showing red. Seeing this, people rushed to sell their assets, fur-

ther collapsing the markets. One may argue that indicators went red because the

market is about to crash, and others may argue that the market crashed because

indicators showed red. It is a chicken or the egg question.

While (Murphy, John J. 1999) Murphy tries to disprove these arguments theo-

retically, countless other research such as (Fernando, Pnd 2014) (Muruganandan,

S. 2020) have been done to test the actual profitability of technical indicators in

different equity markets, and they show conflicting results.

However, most of the researchers agree that considering the fees and costs as-

sociated with the transactions, it is challenging to beat the market in significant

margins with simple technical trading rules.

2.0.3 Stock Market Technical Analysis as a Machine Learn-

ing problem.

However, with the emerging interest in using machine learning, combining them

to analyse the financial time series data became a trendy research topic.

Among many machine learning techniques used for this purpose: The Support

Vector Machine (SVM) is one of the most popular research options. In (Tay, Fran-

cis E. H and Cao, Lijuan 2001) and (Tay, Francis E. H and Cao, Lijuan 2003),

Tay and Cao compare the SVM approach with an Artificial Neural Network

(ANN) and explore its suitability for predicting market prices. They conclude

9



SVM outperforms compared to ANN. In (Chang, Pei-Chann and Fan, Chin-

Yuan and Liu, Chen-Hao 2009), Chang, Fan, and Liu take a different approach

using the piecewise linear representation (PLR) method for pattern matching

of candlestick charts from historical data. The identified patterns are used as

segment ’temporarily turning points’ of the historical stock data, which then be

inputted into a backpropagation neural network (BPN) for supervised learning of

the model. In (RodrÃguez-GonzÃ¡lez, Alejandro and GuldrÃs-Iglesias, Fernando

and Colomo-Palacios, Ricardo and Gomez-Berbis, Juan Miguel and Jimenez-

Domingo, Enrique and Alor-Hernandez, Giner and Posada-Gomez, RubÃ©n

and Cortes-Robles, Guillermo 2010), the GonzÃ¡lez and his team introduce a

new term, iRSI, a more accurate RSI value, calculated using artificial intelligence

techniques. GonzÃ¡lez’s research is fascinating as there are times where RSI’s

output became questionable among traders, and the same strategy is evaluated

inside this project. In (Shynkevich, Yauheniya and McGinnity, T.M. and Cole-

man, Sonya A. and Belatreche, Ammar and Li, Yuhua 2017), Shynkevich and his

team try to evaluate technical indicators’ effectiveness by testing them, taking

different time windows as input. The pattern is studied using multiple perfor-

mance metrics: prediction accuracy, winning rate, return per trade and sharp

ratio.

2.0.4 Stock Market Technical Analysis as a Classification

Machine Learning problem.

In (Dash, Rajashree and Dash, Pradipta Kishore 2016), Dash introduces a novel

decision support system using a computational efficient functional link artificial

neural network ( CEFLANN ) and a set of rule to generate the trading decision

more efficiently. Dash models ”the stock trading decision prediction” problem

as a classification problem with three class values of buy, hold or sell signals.

In (Borovkova, Svetlana and Tsiamas, Ioannis 2019), Borokova and Tsiamas are

working to solve the same problem for high-frequency stock markets, specifically

for intraday trading; buying and selling can happen on the same day. For this

purpose, They had used a group of LSTM neural networks, and they had operated

in a rolling window of one month of days for training the network, one week for

10



evaluating the performance. In (Basak, Suryoday and Kar, Saibal and Saha,

Snehanshu and Khaidem, Luckyson and Dey, Sudeepa Roy 2019), Basak and his

team use tree-based classifiers to predict the direction of stock market prices.

2.0.5 Stock Market Technical Analysis as a Reinforce-

ment Learning problem

In (Lee, Jae Won and Park, Jonghun and Jangmin and Lee, Jongwoo and Hong,

Euyseok 2007), Lee with his team proposes a new trading framework that incorpo-

rates multiple Q-learning agents, allowing them to effectively divide and conquer

the stock trading problem by defining necessary roles for cooperatively carrying

out stock pricing and selection decisions. They tested the framework in the Ko-

rean stock market with outstanding performances in profit and risk management.

In (Gao, Xiang 2018), Xiang combines the Q-learning agent’s strategy with recur-

rent network strategies. It’s questionable why he had used randomly generated

price variations to test the capability of the strategy. But the implementation he

has tried show the ability to use strategy in actual market conditions.

2.0.6 Research Gap Identified

Most of the discussed researches associating ML try to predict prices’ future

behaviour, thus outperforming human investors.

However, this project tries to mimic human investor behaviour, and there, it tries

to identify the market tendency and suggests the correct decisions.

Though technical indicators cannot predict where the stork price would be

in more extended periods, they can be accurately used to identify the tenden-

cies.Though there are uncountable amounts of fundamental factors affecting price

movements, this project assumes the cumulative effect of all those factors controls

the market interest. The tendency of the market interested can be uncovered via

the market patterns.

In this study, we evaluated all the strategies mentioned here and concluded to

proceed with a reinforcement learning algorithm based on an RNN model that is

based on GRU or LSTM, that is based on (Gao, Xiang 2018). We also evaluate

11



(Lee, Jae Won and Park, Jonghun and Jangmin and Lee, Jongwoo and Hong,

Euyseok 2007) approach to include multiple agents in helping taking decisions.

Still, due to its added complexity, I decided to consider it in later stages hence

out scope for this project.
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Chapter 3

Methodology

3.1 Problem Analysis

We try to build a decision assisting system that mimics a usual technical investor

behaviour during this project. To accomplish this, concerning a particular listed

company, investor behaviour can be simplified and modelled as a finite state ma-

chine as below.

Figure 3.1: Modeled Investor behavior
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Empty State - Cash At hand

At the empty stage, the investor only has money in his hand. He has two actions:

staying in this state or buying stocks and moving to Holding State. We assume

the investor starts and ends his journey from this state.

Holding State - Stocks At hand

At holding state, we assume the investor no longer has money to buy more stocks.

So he has two actions: stay in the same state or sell his holding and move to the

Empty state.

Though this is by far from the actual behaviour of a real investor, as he may be

buying or selling iteratively. However, in this project, we assume this behaviour

reduces the complexity and eliminates unwanted noise in the application.

Applying the investor behaviour to actual data.

Figure 3.2: Modeled Investor behavior
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As per the above figure, it can be seen that our investor can achieve the best

gains if he buys the stocks in the first week of October for around LKR18/=

per share and sells his holding by mid-November for a price around LKR23/=.

This would give him a profit of around 24% per his investment within a 2-month

duration after reducing the transaction costs.

In addition to that, he get another sell high and buy low oppertunity in mid

October and also in early November, that will help him increasing his gains

further.

MACD

Moving average convergence divergence (MACD) is a trend-following momentum

indicator that shows the relationship between two moving averages of prices. The

MACD is calculated by subtracting the longer period exponential moving average

(EMA) from the shorter period EMA.

The shorter period EMA curve runs above the longer period when the stock has

a bullish trend ( price increasing trend ). And otherwise when the stock has a

bear trend ( decreasing trend ). And the locations where these curves are crossed

are considered as buy or sell signals.

Figure 3.3: MACD 5,12
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The main problem of MACD is that it is a lagging indicator. It identifies the

trend reversal after it is done. While the reliability of MACD is higher, it doesn’t

help to reach the optimum gain due to the delay.

Usually, for calculating MACD, 12 days EMA and 26 days EMA is considered.

However, depending on the stock’s volatility, the 12-16 day EMAs signal could

be too late, and some trading opportunities can go unnoticed.

And For identifying the signal, we mainly focus on the sign of MACD rather than

the exact value. Therefore we use

tanhMACDx,y

At this stage, the project considers the following MACDs.

• tanh of MACD between 2 and 9

• tanh of MACD between 5 and 12

• tanh of MACD between 12 and 26

RSI

The relative Strength Index (RSI) is a momentum oscillator that indicates the

speed and change of price movements. The RSI value varies between 0 and 100,

and when it is outside of 30-70 range, it usually considers the stock is oversold or

overbought, so a trend reversal is expected.

The RSI is calculated with equations mentioned in 3.4 and 3.5

RSI = 100− 100

1−RS

Figure 3.4: RSI Calculation
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RS =
AverageofNday′sclosesUP

AvarageofNday′sclosesDown

Figure 3.5: RI Calculation

Though it is a little unreliable, RSI is usually a leading indicator. It indicates

the trend traversal before it happens.

MACD + RSI Starategy

MACD + RSI strategy is one of the basic and most frequently used strategy in

stock market. With it, an investor would enter the market ( buy action from

empty state ) when the RSI gives an over sold signal with supported by a MACD

signal line crossing, and exit the market ( sell the holding ) when the RSI gives an

over-bought signal with supported by a MACD signal line crossing. This strategy

is used as the primary strategy at the initial stage of the project.

3.2 Solution Approach

The complete solution is consist of two parts.

• AI component that builds the model and makes predictions

• Software solution that represents the results and helps analysis.

3.2.1 AI component

As per the finite state diagram, from the investor perspective, he has two states

of being in and in each state; he has the option to stay in the same state or

move to the next state. Depending on the state he selects, he is rewarded as an

increment or decrement of the portfolio value.

This can be modelled as a game, where an agent can choose actions based on the
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state and the environment inputs, and he’s rewared accordingly. This has the

exact nature of a reinforcement learning problem.

Therefore I try solving the problem with deep Q-learning with experience. The

experience of the agent is stored and randomly replayed at each time step for

training.

Reward Function

The reward function for each action the investor ( the agent ) can take in these

states can be shown as below.

Figure 3.6: Reward Function

c –transaction charges ( 1.34% x p(t) in Colombo Stock Exchange )

Q-Learning Algorithm

Psudo code of the Deep Q-Learning algorithem used in the agent is as follows
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Figure 3.7: Q Learning Algorithm
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Recurrent Neural Networks

When analysing the indicator values, we are looking at data in a time series.

Moreover, today’s correct trade decision ( to buy, stay, or sell ) does not entirely

depend on today’s market conditions.

Instead, it is required to have some memory of past events. Due to that reason,

this problem requires a recurrent neural network.

Therefore the model is created with an RNN component.

Currently Testing Models

Currently the project is experimenting with

• A GRU model - A neural network with GRU ( Gated Recurrent Unit )

layers

• A LSTM model - A neural network with a LSTM ( Long Short Term Mem-

ory ) layers

3.2.2 Implementation of AI Component

As mentioned in the literature review, the implementation of the machine learning

section is mainly based on Xiang’s implementation of (Gao, Xiang 2018) research.

The source code is available at https://github.com/golsun/deep-RL-trading.

The source code is modified to facilitate the following

• A new sampler was introduced ‘company data sampler’ replacing existed

SinSampler and PairSampler, to feed actual market values rather than gen-

erating random market values. ‘company data sampler’ also converts the

company pricing data into technical indicator values.

• Remove Convolutional Neural Network ( CNN ) and Multi-Layer Perception

(MLP) related implementations, as in this project would only consider RNN

based training.
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Figure 3.8: Console output for GRU Network summary
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Figure 3.9: Console output for LSTM Network summary
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• RandomMovingMarket extends the actual behaviour of Market to use ran-

dom segments of the entire dataset for training. This is to mimic cross-

validation behaviour in a usual machine learning implementation.

Data collection As this project emphasizes technical readings, the raw data

we require are Open, Close, High, Low prices and Volume information. There

are many approaches to extract this information, including web scrapping tools

that parse data from HTML pages. However, in the research, we found a private

API from the CSE website, which contain all the required information. From this

Rest based API following information is extracted.

• Open - Stock price when the market is opened on the day

• Close - Stock price when the market is closed on the day.

• High - Highest price the market reached during a day.

• Low - Lowest price the market reached during a day.

• Volume - Total number of stocks traded during a day.

Figure 3.10: Source Data extracted from CSE Rest API

Data Preprocessing and Preparation Within this project scope, we are

not primarily interested in the raw pricing information. Instead, we are required

to transform these values into technical indicators. This transformation is done

lazily when the data is feed into the training algorithm, as a part of the data

sampler.
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Figure 3.11: Calculation of Technical Indicator values
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3.2.3 Training the ML model

Training the Model with Laptop Computer

Initially, the model was trained with a laptop computer with the following specs.

Processor Intel®Core™i5 10210U
RAM DDR4 16GB
GPU Not Enabled

Table 3.1: Configurations of the Laptop computer

The training of the model with 200 price points took nearly 28 hours. This

is a considerably large amount of time. Especially when it is required to make

frequent changes to the network and test. Due to this reason, it was required to

find an alternative approach to train the model.

Following approaches were considered during the project.

• Inforporating Laptop GPU for training - This was not possible due to a

version incompatiiblity with TensorFlow and the GPU drivers.

• Using Google Colabotary

• Using Cloud servers for training the models.

Training the model with Google Colaboratory

Google Colaboratory ( or Google Colab for short ) is a Free SAAS product pro-

vided by google research that replicates Jupyter Notebook in the cloud. This

allows anybody to write and execute python code through a browser, with no

initial setup and free access to computing resources, including GPUs and TPUs.
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Google Colab servers have a restriction that we cannot run processing for

longer hours. Moreover, the algorithm took too much time, and it had to find an

alternative mechanism to train the model.

Training the model with GPU driven Cloud VMs

AWS SageMaker and GCP AI platform are tools that provide cloud-hosted Jypter

notebooks that allow executing python codes through a browser. And such ser-

vices are not provided under the free tire. While they are costly to carry out the

project, I configured a couple of VMs in AWS and GCP.

However, in training, it was noted that GPUs are not giving much of the gain

for the Q-Learning algorithm I had used.

Both GPU backed VMs, and simple VMs with some CPU capacity were training

the model roughly in the same period.

In further investigation, it was clear, the loop in the Q-Learning algorithm that

evaluates the model for each price point again causes the delay and using even a

GPU, we can get a smaller gain there.

Training the model with standard GCP Cloud VMs

As the standard VMs also providing almost the same performance as GPU hosted

machines, We switched to using GCP VMs to get it working. We created 9 VMs

that ran from time to time and trained the machine learning model with different

periods and configurations. This gave a significant cost reduction.
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Figure 3.12: Standard VM Pool in GCP
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Chapter 4

Results and Evaluation

4.1 Introduction

In this study, we had to conduct a series of experiments to narrow down the

best combination of date period, the neural network model and the most efficient

episode count to get the task correctly done.

These experiments are conducted in an evolutionary method where the re-

sult of each experiment clarifies a choice and in the next experiments assume the

correctness of that assumption. While this is not the most optimum way to cor-

rectly evaluate the choices, due to the training overhead and the cost involved in

multiple experiments for the same choice, we had to let every experiment control

the project’s narrative.

4.2 Experiments

The primary company used for the analysis was Access Engineering PLC ( AEL.N0000

). The company’s price points are available from 2012-03-27 to the current date.

The existing pricing data was used as the training data with selecting different

training periods, selecting different episode counts.
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Training Set ID Description

P-G16 200 price points, 500 episodes - (bug in reward function)

P-G17A Same P-G16, the bug in reward function fixed, GRU network

P-G17B Same P-G16, the bug in reward function fixed, LSTM network

P-G24 200 price points, 500 episodes (random samples)

P-G29 800 price points, 500 episodes (random samples)

P-H01 1800 price points, 500 episodes. ( no random )

P-H04 200 price points starting from 2019, 500 episodes.

P-H06 200 price points starting from 2019, 1000 episodes.

4.2.1 P-G16

The model was trained with price points starting from 2012-03-27, for 200 days

period. This is roughly the first year Access Engineering PLC after its IPO.

As the rewarding function had a bug in its implementation, the model had not

considered the cash-holding action much and therefore; it had done more trading

than it should.

The trained model’s behaviour for different time bands can be seen as below.

Here, in each case, we assume the agent invests LKR50,000 on the first day of

the duration and check his investment’s worth after the period.
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From To Final Worth Profit/Loss Profit/Loss Gain

2012-07-01 2013-06-30 121432.8 71432.83 142.86%

2013-01-01 2013-12-31 57138.85 7138.85 14.27%

2013-07-01 2014-06-30 51353.94 1353.94 2.70%

2014-01-01 2014-12-31 54021.08 4021.08 8.04%

2014-07-01 2015-06-30 42323.19 -7676.80 -15.35%

2015-01-01 2015-12-31 31921.293 -18078.70 -36.15%

2015-07-01 2016-06-30 36112.44 -13887.55 -27.77%

2016-01-01 2016-12-31 45507.024 -4492.97 -8.98%

2016-07-01 2017-06-30 49506.08 -493.91 -0.98%

2017-01-01 2017-12-31 45311.36 -4688.63 -9.37%

2017-07-01 2018-06-30 36133.85 -13866.14 -27.73%

2018-01-01 2018-12-31 37411.735 -12588.26 -25.17%

2018-07-01 2019-06-30 42540.22 -7459.77 -14.91%

2019-01-01 2019-12-31 71004.19 21004.19 42.00%

2019-07-01 2020-06-30 72546.00 22546.00 45.09%

2020-01-01 2020-12-31 57077.32 7077.32 14.15%

2020-07-01 2021-06-30 63173.04 13173.04 26.34%

Table 4.1: G16 performance with different time periods.

4.2.2 P-G17

After fixing the issue in the reward function, the model was trained for the same

date period. In this approach, we could see better, more reliable behaviour, that

the model is trying to hold the cash or money more.

4.2.2.1 P-G17A

This training session conducted with setting the GRU network as the core Neural

network. Following is how the agent’s reward is accumulated during the test

period.

And it can be seen that even when the stock price is decreasing, the agent is

capable of getting rewards.
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Figure 4.1: Test Episode #50 when trained in P-G17A test, with GRU network
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Figure 4.2: Reward gain with episode in GRU network
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Then we use the trained model to suggest the trading decisions in the fol-

lowing durations. Note: Here, the model has only seen the price points between

2012-03-27 and 2013-01-22.

And we assume the agent invests LKR50,000 on the first day of the duration

and check his investment’s worth after the period, after taking buying selling

decisions based his predictions.

From To Final Worth Profit/Loss Profit/Loss Gain

2012-07-01 2013-06-30 132246.06 82246.06 164.49%

2013-01-01 2013-12-31 58207.97 8207.97 16.41%

2013-07-01 2014-06-30 59094.73 9094.73 18.18%

2014-01-01 2014-12-31 67232.21 17232.21 34.46%

2014-07-01 2015-06-30 32115.63 -17884.36 -35.76%

2015-01-01 2015-12-31 23118.76 -26881.23 -53.76%

2015-07-01 2016-06-30 34813.66 -15186.33 -30.37%

2016-01-01 2016-12-31 48817.44 -1182.55 -2.36%

2016-07-01 2017-06-30 53193.45 3193.45 6.38%

2017-01-01 2017-12-31 44175.41 -5824.58 -11.64%

2017-07-01 2018-06-30 39674.16 -10325.83 -20.65%

2018-01-01 2018-12-31 37073.63 -12926.36 -25.85%

2018-07-01 2019-06-30 42927.06 -7072.93 -14.14%

2019-01-01 2019-12-31 79521.48 29521.48 59.04%

2019-07-01 2020-06-30 55977.08 5977.08 11.95%

2020-01-01 2020-12-31 57533.21 7533.21 15.06%

2020-07-01 2021-06-30 63574.22 13574.22 27.14%

Table 4.2: G17 performance with different time periods, with GRU network

Though the model can secure a significantly higher reward of 164.49% during

the training period ( the data it has already seen ), the reward is much smaller

in later date periods.
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Especially during 2015 to early 2019, the agent fails to secure a positive reward.

4.2.2.2 P-G17B

This training session conducted with setting the LSTM network as the core Neural

network. Following is how the agent’s reward is accumulated during the test

period.

And it can be seen that even when the stock price is decreasing, the agent is

capable of getting rewards.

Then we use the trained model to suggest the trading decisions in the fol-

lowing durations. Note: Here, the model has only seen the price points between

2012-03-27 and 2013-01-22.

And we assume the agent invests LKR50,000 on the first day of the duration

and check his investment’s worth after the period, after taking buying selling

decisions based his predictions.
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Figure 4.3: Test Episode #50 when trained in P-G17B test, with LSTM network
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Figure 4.4: Reward gain with episode in LSTM network
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From To Final Worth Profit/Loss Profit/Loss Gain

2012-07-01 2013-06-30 107315.4 57315.47 114.63%

2013-01-01 2013-12-31 55021.44 5021.44 10.04%

2013-07-01 2014-06-30 54167.53 4167.53 8.33%

2014-01-01 2014-12-31 58654.21 8654.21 17.30%

2014-07-01 2015-06-30 38948.3 -11051.62 -22.10%

2015-01-01 2015-12-31 34114.78 -15885.21 -31.77%

2015-07-01 2016-06-30 40653.53 -9346.46 -18.69%

2016-01-01 2016-12-31 55208.57 5208.57 10.41%

2016-07-01 2017-06-30 53195.32 3195.32 6.39%

2017-01-01 2017-12-31 41898.47 -8101.52 -16.20%

2017-07-01 2018-06-30 40999.47 -9000.52 -18.00%

2018-01-01 2018-12-31 36883.56 -13116.43 -26.23%

2018-07-01 2019-06-30 39389.86 -10610.13 -21.22%

2019-01-01 2019-12-31 61748.46 11748.46 23.49%

2019-07-01 2020-06-30 44121.58 -5878.41 -11.75%

2020-01-01 2020-12-31 45847.58 -4152.41 -8.30%

2020-07-01 2021-06-30 67224.63 17224.63 34.44%

Table 4.3: G17B performance with different time periods, with LSTM network

With LSTM network, the model can secure a higher reward of 114.63% during

the training period ( the data it has already seen ), comparing to the GRU network

, we can it is however lower to the GRU’s values.

4.2.3 P-G24

As the agent consistently failed to predict the price actions accurately for the

period between 2015 to early 2019, it was assumed that the agent had trained

only the prices between 2012-03-27 and 2013-01-22, and there is a missing pattern

the agent is not trained for.

Therefore, the implementation is modified not to use a limited period when se-

lecting price points. Instead, it was modified to pick 200 price points from the
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entire price point history randomly.

Again here also we assume the agent invests LKR50,000 on the first day of the

duration and check his investment’s worth after the period, after taking buying

selling decisions based his predictions.

From To Final Worth Profit/Loss Profit/Loss Gain

2012-07-01 2013-06-30 46684.35 -3315.64 -6.63%

2013-01-01 2013-12-31 50322.46 322.46 0.64%

2013-07-01 2014-06-30 49820.44 -179.55 -0.35%

2014-01-01 2014-12-31 49166.00 -833.99 -1.66%

2014-07-01 2015-06-30 48812.30 -1187.69 -2.37%

2015-01-01 2015-12-31 48379.61 -1620.38 -3.24%

2015-07-01 2016-06-30 50289.33 289.33 0.57%

2016-01-01 2016-12-31 49280.63 -719.36 -1.43%

2016-07-01 2017-06-30 48360.55 -1639.44 -3.27%

2017-01-01 2017-12-31 48225.14 -1774.85 -3.54%

2017-07-01 2018-06-30 48551.64 -1448.35 -2.89%

2018-01-01 2018-12-31 48676.02 -1323.97 -2.64%

2018-07-01 2019-06-30 49277.06 -722.93 -1.44%

2019-01-01 2019-12-31 59338.89 9338.89 8.67%

2019-07-01 2020-06-30 56504.48 6504.48 3.00%

2020-01-01 2020-12-31 52870.22 2870.22 5.74%

2020-07-01 2021-06-30 55096.98 5096.98 0.19%

Table 4.4: G24 performance with different time periods.

This approach ended up in failure. The agent failed to secure profits even for

the duration that it had previously had got positive rewards.

38



4.2.4 P-G29

At P-G24, we had selected only 200 random price points where there are 2000+

price points. Only 10% from the actual dataset. So we assumed the model fails

to identify patterns when fed with a significantly smaller percentage of data.

At P-G29, we use the same strategy of randomly picking the price points, but

here we increased the amount to 800

From To Final Worth Profit/Loss Profit/Loss Gain

2012-07-01 2013-06-30 50625.39 625.39 1.25% %

2013-01-01 2013-12-31 49276.56 -723.43 -1.44% %

2013-07-01 2014-06-30 49259.89 -740.10 -1.48% %

2014-01-01 2014-12-31 66581.95 16581.95 33.16% %

2014-07-01 2015-06-30 65297.29 15297.29 30.59% %

2015-01-01 2015-12-31 47772.87 -2227.12 -4.45% %

2015-07-01 2016-06-30 45811.87 -4188.12 -8.37% %

2016-01-01 2016-12-31 46538.62 -3461.37 -6.92% %

2016-07-01 2017-06-30 48700.45 -1299.54 -2.59% %

2017-01-01 2017-12-31 51313.22 1313.22 2.62% %

2017-07-01 2018-06-30 42463.40 -7536.59 -15.07% %

2018-01-01 2018-12-31 52598.74 2598.74 5.19% %

2018-07-01 2019-06-30 60430.41 10430.41 20.86% %

2019-01-01 2019-12-31 45060.95 -4939.04 -9.87% %

2019-07-01 2020-06-30 45604.30 -4395.69 -8.79% %

2020-01-01 2020-12-31 45994.21 -4005.78 -8.01% %

2020-07-01 2021-06-30 45752.82 -4247.17 -8.49% %

Table 4.5: G29 performance with different time periods.

At this stage, we could see it is still failing to gain higher rewards.

Even The model had marginally secured positive rewards during 2017, 2018, and

early 2019 periods, but it had still failed to secure gains where the stock had been
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rallying, especially like durations between 2020-07-01 and 2021-06-30.

4.2.5 P-H01

The randomisation component was removed from the model to isolate why it

fails when presented with a broader range of price points. Then we trained the

model with 1800 price points. It was trained with price points from 2012-03-27 to

2019-09-19, so it will include all years between 2012 to 2019 where mixed results

were shown.

The trained model’s behaviour for different time bands can be seen as below.

Here, again, in each case, we assume the agent invests LKR50,000 on the first

day of the duration and check his investment’s worth after the period.
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From To Final Worth Profit/Loss Profit/Loss Gain

2012-07-01 2013-06-30 51893.57 1893.57 3.78%

2013-01-01 2013-12-31 39082.42 -10917.57 -21.83%

2013-07-01 2014-06-30 41959.34 -8040.65 -16.08%

2014-01-01 2014-12-31 61562.84 11562.84 23.12%

2014-07-01 2015-06-30 62402.78 12402.78 24.80%

2015-01-01 2015-12-31 36758.57 -13241.42 -26.48%

2015-07-01 2016-06-30 38317.64 -11682.35 -23.36%

2016-01-01 2016-12-31 51288.14 1288.14 2.57%

2016-07-01 2017-06-30 53174.74 3174.74 6.34%

2017-01-01 2017-12-31 49765.93 -234.06 -0.46%

2017-07-01 2018-06-30 37648.03 -12351.96 -24.70%

2018-01-01 2018-12-31 39659.91 -10340.08 -20.68%

2018-07-01 2019-06-30 58814.09 8814.09 17.62%

2019-01-01 2019-12-31 63248.80 13248.80 26.49%

2019-07-01 2020-06-30 57506.61 7506.61 15.01%

2020-01-01 2020-12-31 49799.50 -200.49 -0.40%

2020-07-01 2021-06-30 40104.28 -9895.71 -19.79%

Table 4.6: H01 performance with different time periods.

In this approach, also we see mixed results. Moreover, in most periods, the

agent has not secured positive rewards. and in some durations, its lost has been

around 25%. At this stage we concluded that agent performs poorly when the

model is trained with wider range of price points.

4.2.6 P-H04

At P-G17 where the model is trained with price points between 2012-03-27 and

2013-01-22, we could see the agent is securing higher rewards in the 2013-2014

period. Therefore to test how the agent performs when the model is trained with

data from a recent year, we trained the model with price points between 2019-

01-02 and 2019-10-30 ( 200 price points).
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Then the trained model evaluated assuming the agent invests LKR50,000 on the

first day of the duration and check his investment’s worth after the period.

However, we are more interested in how the agent behaves between 2019-07 to

the current date.

From To Final Worth Profit/Loss Profit/Loss Gain

2012-07-01 2013-06-30 47256.05 -2743.94 -5.48%

2013-01-01 2013-12-31 47401.17 -2598.82 -5.19%

2013-07-01 2014-06-30 47649.02 -2350.97 -4.70%

2014-01-01 2014-12-31 55105.71 5105.71 10.21%

2014-07-01 2015-06-30 43055.24 -6944.75 -13.88%

2015-01-01 2015-12-31 50022.15 22.15 0.04%

2015-07-01 2016-06-30 52815.46 2815.46 5.63%

2016-01-01 2016-12-31 48108.90 -1891.09 -3.78%

2016-07-01 2017-06-30 48009.36 -1990.63 -3.98%

2017-01-01 2017-12-31 49020.60 -979.39 -1.95%

2017-07-01 2018-06-30 40772.74 -9227.25 -18.45%

2018-01-01 2018-12-31 45459.09 -4540.90 -9.08%

2018-07-01 2019-06-30 65145.18 15145.18 30.29%

2019-01-01 2019-12-31 182456.09 132456.09 264.91%

2019-07-01 2020-06-30 203225.87 153225.87 306.45%

2020-01-01 2020-12-31 68470.88 18470.88 36.94%

2020-07-01 2021-06-30 43580.71 -6419.28 -12.83%

Table 4.7: H04 performance with different time periods.

Here we can see the agent has secured significant rewords during and near its

trained period ( with the data it has seen and ) in 2019-01 to 2020-07, it has

reached around 300% rewards.
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4.2.7 The optimal episode count, compare between P-H04

and P-H06

Following figures shows how the reward is increased with different episode counts.

And below we can see that when we reaches to episode count to 500, the reward

reaches to its maximum, and there onwards, we cannot see an increment.

So we can deduct that the optimum episode count is around 500 and we can use

that value for our future implementations.

Figure 4.5: Reward when the episode count is 500 ( in P-H04 )

Following figures shows how the overall profit is changed with different episode

counts.
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Figure 4.6: Reward when the episode count is 1000 ( in P-H06 )
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Figure 4.7: Profit/Loss when the episode count is 500 ( in P-H04 )
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Figure 4.8: Profit/Loss when the episode count is 1000 ( in P-H06 )
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Chapter 5

Conclusion

5.1 Introduction

In this study, we tried to find an approach to predict market behaviour using

technical indicator signals. The study was carried out with three main steps

comprehensive literature view, implementation of a machine learning model to

identify patterns and make predictions and the visual framework for users to see

the predications from the system and do the analysis. This chapter wraps this

document by providing the final quest comments, thoughts and future works to

extend this study.

5.2 Problems Addressed

If we scrutinize the gained results for different combinations, we cannot create a

train once use forever model. Even the models return significantly higher results

in specific periods; when applied to another, it shows losses.

Following observations are noted in the study:

• Models trained with a recent date period tend to give better yields.

• Trying to train the model for the entire price do not improve the model

performance.
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The explanation for these observations right now is behavioural changes of

people. By observing the graph patterns, we observe the investor interests and be-

haviours. When the government policies, geo-economic factors, company strate-

gies change over time, investor perception of the company also changes. I au-

thorize that these changes affect the buying patterns making a trained model

for a particular duration invalid. So the solution would be, just as people learn

continuously, we must train the model from time to time to sync with current

trends.

5.3 Future Works

Research on investments in financial markets, in stock markets, as well as a vast

domain of research. Moreover, it is a huge market. Many companies research mar-

ket data and help investors making timely decisions. However, in the Colombo

Stock Exchange, I see a minimal number of such research carried out, probably

due to the less demand. I see this as an opportunity.

5.3.1 Researches on Finantial Market decisions.

Investing in a financial asset is not a single decision. In maintaining a financial

asset portfolio, hundreds of factors, considerations, and reductions are made be-

fore investing in a financial asset.

• Deciding the asset class invest on based on market conditions. ( the real

estate, stocks, bonds )

• Shortlisting assets to pay close attention.

• Selecting the asset from the pool to invest at a give moment.

• Right date/time to enter or exit the market.
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• Bid price/ask price to maximize the gain.

• Predicting market crashes.

• etc.

Each of these decisions contain many factors considered, where evaluating

them and automating require their own researches.
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Appendix A : The Source Code

agents.py

from lib import *

import tensorflow as tf

class Agent:

def __init__(self, model,

batch_size=32, discount_factor=0.95):

self.model = model

self.batch_size = batch_size

self.discount_factor = discount_factor

self.memory = []

def remember(self, state, action, reward, next_state, done,

next_valid_actions):

self.memory.append((state, action, reward, next_state, done,

next_valid_actions))
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def replay(self):

batch = random.sample(self.memory, min(len(self.memory),

self.batch_size))

for state, action, reward, next_state, done, next_valid_actions

in batch:

q = reward

if not done:

q += self.discount_factor *

np.nanmax(self.get_q_valid(next_state,

next_valid_actions))

self.model.fit(state, action, q)

def get_q_valid(self, state, valid_actions):

q = self.model.predict(state)

q_valid = [np.nan] * len(q)

for action in valid_actions:

q_valid[action] = q[action]

return q_valid

def act(self, state, exploration, valid_actions):

if np.random.random() > exploration:

q_valid = self.get_q_valid(state, valid_actions)

if np.nanmin(q_valid) != np.nanmax(q_valid):

return np.nanargmax(q_valid)

return random.sample(valid_actions, 1)[0]
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def save(self, fld):

makedirs(fld)

attr = {

’batch_size’:self.batch_size,

’discount_factor’:self.discount_factor,

#’memory’:self.memory

}

pickle.dump(attr, open(os.path.join(fld,

’agent_attr.pickle’),’wb’))

self.model.save(fld)

def load(self, fld):

path = os.path.join(fld, ’agent_attr.pickle’)

print(path)

attr = pickle.load(open(path,’rb’))

for k in attr:

setattr(self, k, attr[k])

self.model.load(fld)

def add_dim(x, shape):

return np.reshape(x, (1,) + shape)
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class QModelKeras:

# ref: https://keon.io/deep-q-learning/

def init(self):

pass

def build_model(self):

pass

def __init__(self, state_shape, n_action):

self.state_shape = state_shape

self.n_action = n_action

self.attr2save = [’state_shape’,’n_action’,’model_name’]

self.init()

def save(self, fld):

makedirs(fld)

with open(os.path.join(fld, ’model.json’), ’w’) as json_file:

json_file.write(self.model.to_json())

self.model.save_weights(os.path.join(fld, ’weights.hdf5’))

attr = dict()

for a in self.attr2save:
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attr[a] = getattr(self, a)

pickle.dump(attr, open(os.path.join(fld,

’Qmodel_attr.pickle’),’wb’))

def load(self, fld, learning_rate):

json_str = open(os.path.join(fld, ’model.json’)).read()

self.model = keras.models.model_from_json(json_str)

self.model.load_weights(os.path.join(fld, ’weights.hdf5’))

self.model.compile(loss=’mse’,

optimizer=keras.optimizers.Adam(lr=learning_rate))

attr = pickle.load(open(os.path.join(fld, ’Qmodel_attr.pickle’),

’rb’))

for a in attr:

setattr(self, a, attr[a])

def predict(self, state):

q = self.model.predict(

add_dim(state, self.state_shape)

)[0]

if np.isnan(max(q)):

print(’state’+str(state))

print(’q’+str(q))

raise ValueError
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return q

def fit(self, state, action, q_action):

q = self.predict(state)

q[action] = q_action

self.model.fit(

add_dim(state, self.state_shape),

add_dim(q, (self.n_action,)),

epochs=1, verbose=0)

class QModelMLP(QModelKeras):

# multi-layer perception (MLP), i.e., dense only

def init(self):

self.qmodel = ’MLP’

def build_model(self, n_hidden, learning_rate, activation=’relu’):

model = keras.models.Sequential()

model.add(keras.layers.Reshape(

(self.state_shape[0]*self.state_shape[1],),

input_shape=self.state_shape))
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for i in range(len(n_hidden)):

model.add(keras.layers.Dense(n_hidden[i],

activation=activation))

#model.add(keras.layers.Dropout(drop_rate))

model.add(keras.layers.Dense(self.n_action, activation=’linear’))

model.compile(loss=’mse’,

optimizer=keras.optimizers.Adam(lr=learning_rate))

self.model = model

self.model_name = self.qmodel + str(n_hidden)

class QModelRNN(QModelKeras):

"""

https://keras.io/getting-started/sequential-model-guide/#example

note param doesn’t grow with len of sequence

"""

def _build_model(self, Layer, n_hidden, dense_units, learning_rate,

activation=’relu’):

model = keras.models.Sequential()

model.add(keras.layers.Reshape(self.state_shape,

input_shape=self.state_shape))

m = len(n_hidden)

59



for i in range(m):

model.add(Layer(n_hidden[i],

return_sequences=(i<m-1)))

for i in range(len(dense_units)):

model.add(keras.layers.Dense(dense_units[i],

activation=activation))

model.add(keras.layers.Dense(self.n_action, activation=’linear’))

model.compile(loss=’mse’,

optimizer=keras.optimizers.Adam(lr=learning_rate))

self.model = model

self.model_name = self.qmodel + str(n_hidden) + str(dense_units)

class QModelLSTM(QModelRNN):

def init(self):

self.qmodel = ’LSTM’

def build_model(self, n_hidden, dense_units, learning_rate,

activation=’relu’):

Layer = keras.layers.LSTM

self._build_model(Layer, n_hidden, dense_units, learning_rate,

activation)

class QModelGRU(QModelRNN):

def init(self):
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self.qmodel = ’GRU’

def build_model(self, n_hidden, dense_units, learning_rate,

activation=’relu’):

Layer = keras.layers.GRU

self._build_model(Layer, n_hidden, dense_units, learning_rate,

activation)

class QModelConv(QModelKeras):

"""

ref: https://keras.io/layers/convolutional/

"""

def init(self):

self.qmodel = ’Conv’

def build_model(self,

filter_num, filter_size, dense_units,

learning_rate, activation=’relu’, dilation=None, use_pool=None):

if use_pool is None:

use_pool = [True]*len(filter_num)

if dilation is None:

dilation = [1]*len(filter_num)

model = keras.models.Sequential()
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model.add(keras.layers.Reshape(self.state_shape,

input_shape=self.state_shape))

for i in range(len(filter_num)):

model.add(keras.layers.Conv1D(filter_num[i],

kernel_size=filter_size[i], dilation_rate=dilation[i],

activation=activation, use_bias=True))

if use_pool[i]:

model.add(keras.layers.MaxPooling1D(pool_size=2))

model.add(keras.layers.Flatten())

for i in range(len(dense_units)):

model.add(keras.layers.Dense(dense_units[i],

activation=activation))

model.add(keras.layers.Dense(self.n_action, activation=’linear’))

model.compile(loss=’mse’,

optimizer=keras.optimizers.Adam(lr=learning_rate))

self.model = model

self.model_name = self.qmodel + str([a for a in

zip(filter_num, filter_size, dilation, use_pool)

])+’ + ’+str(dense_units)
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class QModelConvRNN(QModelKeras):

"""

https://keras.io/getting-started/sequential-model-guide/#example

note param doesn’t grow with len of sequence

"""

def _build_model(self, RNNLayer, conv_n_hidden, RNN_n_hidden,

dense_units, learning_rate,

conv_kernel_size=3, use_pool=False, activation=’relu’):

model = keras.models.Sequential()

model.add(keras.layers.Reshape(self.state_shape,

input_shape=self.state_shape))

for i in range(len(conv_n_hidden)):

model.add(keras.layers.Conv1D(conv_n_hidden[i],

kernel_size=conv_kernel_size,

activation=activation, use_bias=True))

if use_pool:

model.add(keras.layers.MaxPooling1D(pool_size=2))

m = len(RNN_n_hidden)

for i in range(m):

model.add(RNNLayer(RNN_n_hidden[i],

return_sequences=(i<m-1)))

for i in range(len(dense_units)):

model.add(keras.layers.Dense(dense_units[i],
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activation=activation))

model.add(keras.layers.Dense(self.n_action, activation=’linear’))

model.compile(loss=’mse’,

optimizer=keras.optimizers.Adam(lr=learning_rate))

self.model = model

self.model_name = self.qmodel + str(conv_n_hidden) +

str(RNN_n_hidden) + str(dense_units)

class QModelConvLSTM(QModelConvRNN):

def init(self):

self.qmodel = ’ConvLSTM’

def build_model(self, conv_n_hidden, RNN_n_hidden, dense_units,

learning_rate,

conv_kernel_size=3, use_pool=False, activation=’relu’):

Layer = keras.layers.LSTM

self._build_model(Layer, conv_n_hidden, RNN_n_hidden,

dense_units, learning_rate,

conv_kernel_size, use_pool, activation)

class QModelConvGRU(QModelConvRNN):

def init(self):

self.qmodel = ’ConvGRU’

def build_model(self, conv_n_hidden, RNN_n_hidden, dense_units,
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learning_rate,

conv_kernel_size=3, use_pool=False, activation=’relu’):

Layer = keras.layers.GRU

self._build_model(Layer, conv_n_hidden, RNN_n_hidden,

dense_units, learning_rate,

conv_kernel_size, use_pool, activation)

def load_model(fld, learning_rate):

s = open(os.path.join(fld,’QModel.txt’),’r’).read().strip()

qmodels = {

’Conv’:QModelConv,

’DenseOnly’:QModelMLP,

’MLP’:QModelMLP,

’LSTM’:QModelLSTM,

’GRU’:QModelGRU,

}

qmodel = qmodels[s](None, None)

qmodel.load(fld, learning_rate)

return qmodel

main.py
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#!/usr/bin/env python2

from lib import *

from sampler import *

from agents import *

from emulator import *

from simulators import *

from emulator2 import RandomMovingMarket

from visualizer import *

from company_data_sampler import CompanyDataSampler

from properties import *

# import cProfile, pstats, io

def get_model(model_type, env, learning_rate, fld_load):

print_t = False

exploration_init = 1.

if model_type == ’MLP’:

m = 16

layers = 5

hidden_size = [m]*layers
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model = QModelMLP(env.state_shape, env.n_action)

model.build_model(hidden_size, learning_rate=learning_rate,

activation=’tanh’)

elif model_type == ’conv’:

m = 16

layers = 2

filter_num = [m]*layers

filter_size = [3] * len(filter_num)

#use_pool = [False, True, False, True]

#use_pool = [False, False, True, False, False, True]

use_pool = None

#dilation = [1,2,4,8]

dilation = None

dense_units = [48,24]

model = QModelConv(env.state_shape, env.n_action)

model.build_model(filter_num, filter_size, dense_units,

learning_rate,

dilation=dilation, use_pool=use_pool)

elif model_type == ’RNN-LSTM’:

m = 32

layers = 3

hidden_size = [m]*layers

dense_units = [m,m]
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model = QModelLSTM(env.state_shape, env.n_action)

model.build_model(hidden_size, dense_units,

learning_rate=learning_rate)

print_t = True

elif model_type == ’RNN-GRU’:

m = 32

layers = 3

hidden_size = [m]*layers

dense_units = [m,m]

model = QModelGRU(env.state_shape, env.n_action)

model.build_model(hidden_size, dense_units,

learning_rate=learning_rate)

print_t = True

elif model_type == ’ConvRNN’:

m = 8

conv_n_hidden = [m,m]

RNN_n_hidden = [m,m]

dense_units = [m,m]

model = QModelConvGRU(env.state_shape, env.n_action)

model.build_model(conv_n_hidden, RNN_n_hidden, dense_units,

learning_rate=learning_rate)

print_t = True
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elif model_type == ’pretrained’:

agent.model = load_model(fld_load, learning_rate)

else:

raise ValueError

return model, print_t

def main():

"""

it is recommended to generate database usng sampler.py before run

main

"""

exploration_init = 1.; fld_load = None

open_cost = 3.3

#db_type = ’SinSamplerDB’; db = ’concat_half_base_’; Sampler =

SinSampler

db_type = ’PairSamplerDB’; db = ’randjump_100,1(10, 30)[]_’

batch_size = 8

learning_rate = 1e-4

discount_factor = 0.8

exploration_decay = 0.99
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exploration_min = 0.01

window_state = 14

fld = os.path.join(’..’,’data’,db_type,db+’A’)

# sampler = Sampler(’load’, fld=fld)

sampler = CompanyDataSampler(company_code=company_code)

# env = RandomMovingMarket(sampler, window_state, open_cost,

considering_t_max= sample_count)

env = Market(sampler, window_state, open_cost)

model, print_t = get_model(model_type, env, learning_rate, fld_load)

model.model.summary()

#return

agent = Agent(model, discount_factor=discount_factor,

batch_size=batch_size)

visualizer = Visualizer(env.action_labels)

fld_save = os.path.join(OUTPUT_FLD, sampler.title, model.model_name,

str((env.window_state, sampler.window_episode, agent.batch_size,

learning_rate,

agent.discount_factor, exploration_decay, env.open_cost)))

print(’=’*20)

print(fld_save)

print(’=’*20)
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simulator = Simulator(agent, env, visualizer=visualizer,

fld_save=fld_save)

simulator.train(n_episode_training, save_per_episode=1,

exploration_decay=exploration_decay,

exploration_min=exploration_min, print_t=print_t,

exploration_init=exploration_init)

#agent.model = load_model(os.path.join(fld_save,’model’),

learning_rate)

#print(’=’*20+’\nin-sample testing\n’+’=’*20)

simulator.test(n_episode_testing, save_per_episode=1,

subfld=’in-sample testing’)

"""

fld = os.path.join(’data’,db_type,db+’B’)

sampler = SinSampler(’load’,fld=fld)

simulator.env.sampler = sampler

simulator.test(n_episode_testing, save_per_episode=1,

subfld=’out-of-sample testing’)

"""

if __name__ == ’__main__’:

main()

# profile()

emulator.py
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from lib import *

# by Xiang Gao, 2018

def find_ideal(p, just_once):

if not just_once:

diff = np.array(p[1:]) - np.array(p[:-1])

return sum(np.maximum(np.zeros(diff.shape), diff))

else:

best = 0.

i0_best = None

for i in range(len(p)-1):

best = max(best, max(p[i+1:]) - p[i])

return best

class Market:

"""

state MA of prices, normalized using values at t

ndarray of shape (window_state, n_instruments * n_MA),

i.e., 2D

which is self.state_shape
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action three action

0: empty, don’t open/close.

1: open a position

2: keep a position

"""

def reset(self, rand_price=True):

self.empty = True

if rand_price:

prices, self.title = self.sampler.sample()

price = np.reshape(prices[:,0], prices.shape[0])

self.prices = prices.copy()

self.price = price/price[0]*100

self.t_max = len(self.price) - 1

self.max_profit = find_ideal(self.price[self.t0:], False)

self.t = self.t0

return self.get_state(), self.get_valid_actions()

def get_state(self, t=None):

if t is None:

t = self.t

state = self.prices[t - self.window_state + 1: t + 1, :].copy()
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for i in range(self.sampler.n_var):

norm = np.mean(state[:,i])

if norm != 0:

state[:,i] = (state[:,i]/norm - 1.)*100

return state

def get_valid_actions(self):

if self.empty:

return [0, 1] # wait, open

else:

return [2, 3] # close, keep

def get_noncash_reward(self, t=None, empty=None):

if t is None:

t = self.t

if empty is None:

empty = self.empty

reward = self.direction * (self.price[t+1] - self.price[t])

if empty:

reward -= self.open_cost

if reward < 0:

reward *= (1. + self.risk_averse)

return reward

def calc_reward(self,t=None):
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if t is None:

t = self.t

return (self.price[t+1] - self.price[t])

def calc_commission(self, t=None, commission = 0.00134):

if t is None:

t = self.t

return (self.price[t] * commission)

def step(self, action):

done = False

if action == 0: # wait-stay

reward = 0.

self.empty = True

elif action == 1: # buy

reward = self.calc_reward() - self.calc_commission()

self.empty = False

elif action == 2: # holding - stay

reward = self.calc_reward()

self.empty = False

elif action == 3: # sell

reward = -self.calc_commission()

self.empty = True

else:

raise ValueError(’no such action: ’+str(action))
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self.t += 1

return self.get_state(), reward, self.t == self.t_max,

self.get_valid_actions()

def __init__(self,

sampler, window_state, open_cost,

direction=1., risk_averse=0.):

self.sampler = sampler

self.window_state = window_state

self.open_cost = open_cost

self.direction = direction

self.risk_averse = risk_averse

self.n_action = 4

self.state_shape = (window_state, self.sampler.n_var)

self.action_labels = [’wait-stay’,’buy’,’holding - stay’, ’sell’ ]

self.t0 = window_state - 1

if __name__ == ’__main__’:

test_env()

emulator2.py
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from lib import *

# by Xiang Gao, 2018

from emulator import Market, find_ideal

import random

class RandomMovingMarket(Market):

"""

state MA of prices, normalized using values at t

ndarray of shape (window_state, n_instruments *

n_MA), i.e., 2D

which is self.state_shape

action three action

0: empty, don’t open/close.

1: open a position

2: keep a position

"""

def reset(self, rand_price=True):

self.empty = True

if rand_price:

prices, self.title = self.sampler.sample()

price = np.reshape(prices[:, 0], prices.shape[0])
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self.prices = prices.copy()

self.price = price / price[0] * 100

self.t_max = self.considering_t_max

id_range = [*range(self.t0, len(self.price) - 1, 1)]

self.working_sample = random.sample(id_range, self.t_max+1)

self.max_profit = find_ideal(self.price[self.t0:], False)

self.t = 0

return self.get_state(), self.get_valid_actions()

def get_state(self, t=None):

if t is None:

t = self.t

t_ = self.working_sample[t]

state = self.prices[t_ - self.window_state + 1: t_ + 1,

:].copy()

for i in range(self.sampler.n_var):

norm = np.mean(state[:, i])

if norm != 0:

state[:, i] = (state[:, i] / norm - 1.) * 100

return state

def __init__(self,
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sampler, window_state, open_cost,

direction=1., risk_averse=0., considering_t_max=800):

self.sampler = sampler

self.window_state = window_state

self.open_cost = open_cost

self.direction = direction

self.risk_averse = risk_averse

self.n_action = 4

self.state_shape = (window_state, self.sampler.n_var)

self.action_labels = [’wait-stay’, ’buy’, ’holding - stay’,

’sell’]

self.t0 = window_state - 1

self.considering_t_max = considering_t_max

if __name__ == ’__main__’:

test_env()

lib.py

import random, os, datetime, pickle, json, sys

from tensorflow import keras

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np
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OUTPUT_FLD = os.path.join(’..’,’results’)

PRICE_FLD = ’/Users/xianggao/Dropbox/distributed/code_db/price

coinbase/vm-w7r-db’

def makedirs(fld):

if not os.path.exists(fld):

os.makedirs(fld)

sampler.py

from lib import *

def read_data(date, instrument, time_step):

path = os.path.join(PRICE_FLD, date, instrument+’.csv’)

if not os.path.exists(path):

print(’no such file: ’+path)

return None

df_raw = pd.read_csv(path, parse_dates=[’time’], index_col=’time’)

df = df_raw.resample(time_step, how=’last’).fillna(method=’ffill’)

return df[’spot’].values

class Sampler:

def load_db(self, fld):
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self.db = pickle.load(open(os.path.join(fld, ’db.pickle’),’rb’))

param = json.load(open(os.path.join(fld, ’param.json’),’rb’))

self.i_db = 0

self.n_db = param[’n_episodes’]

self.sample = self.__sample_db

for attr in param:

if hasattr(self, attr):

setattr(self, attr, param[attr])

self.title = ’DB_’+param[’title’]

def build_db(self, n_episodes, fld):

db = []

for i in range(n_episodes):

prices, title = self.sample()

db.append((prices, ’[%i]_’%i+title))

os.makedirs(fld) # don’t overwrite existing fld

pickle.dump(db, open(os.path.join(fld, ’db.pickle’),’wb’))

param = {’n_episodes’:n_episodes}

for k in self.attrs:

param[k] = getattr(self, k)

json.dump(param, open(os.path.join(fld, ’param.json’),’w’))

def __sample_db(self):

81



prices, title = self.db[self.i_db]

self.i_db += 1

if self.i_db == self.n_db:

self.i_db = 0

return prices, title

class PairSampler(Sampler):

def __init__(self, game,

window_episode=None, forecast_horizon_range=None,

max_change_perc=10., noise_level=10., n_section=1,

fld=None, windows_transform=[]):

self.window_episode = window_episode

self.forecast_horizon_range = forecast_horizon_range

self.max_change_perc = max_change_perc

self.noise_level = noise_level

self.n_section = n_section

self.windows_transform = windows_transform

self.n_var = 2 + len(self.windows_transform) # price, signal

self.attrs = [’title’, ’window_episode’, ’forecast_horizon_range’,

’max_change_perc’, ’noise_level’, ’n_section’, ’n_var’]

param_str = str((self.noise_level, self.forecast_horizon_range,
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self.n_section, self.windows_transform))

if game == ’load’:

self.load_db(fld)

elif game in [’randwalk’,’randjump’]:

self.__rand = getattr(self, ’_PairSampler__’+game)

self.sample = self.__sample

self.title = game + param_str

else:

raise ValueError

def __randwalk(self, l):

change = (np.random.random(l + self.forecast_horizon_range[1]) -

0.5) * 2 * self.max_change_perc/100

forecast_horizon =

random.randrange(self.forecast_horizon_range[0],

self.forecast_horizon_range[1])

return change[:l], change[forecast_horizon: forecast_horizon +

l], forecast_horizon

def __randjump(self, l):

change = [0.] * (l + self.forecast_horizon_range[1])

n_jump = random.randrange(15,30)

for i in range(n_jump):
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t = random.randrange(len(change))

change[t] = (np.random.random() - 0.5) * 2 *

self.max_change_perc/100

forecast_horizon =

random.randrange(self.forecast_horizon_range[0],

self.forecast_horizon_range[1])

return change[:l], change[forecast_horizon: forecast_horizon +

l], forecast_horizon

def __sample(self):

L = self.window_episode

if bool(self.windows_transform):

L += max(self.windows_transform)

l0 = L/self.n_section

l1 = L

d_price = []

d_signal = []

forecast_horizon = []

for i in range(self.n_section):

if i == self.n_section - 1:

l = l1
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else:

l = l0

l1 -= l0

d_price_i, d_signal_i, horizon_i = self.__rand(l)

d_price = np.append(d_price, d_price_i)

d_signal = np.append(d_signal, d_signal_i)

forecast_horizon.append(horizon_i)

price = 100. * (1. + np.cumsum(d_price))

signal = 100. * (1. + np.cumsum(d_signal)) + \

np.random.random(len(price)) * self.noise_level

price += (100 - min(price))

signal += (100 - min(signal))

inputs = [price[-self.window_episode:],

signal[-self.window_episode:]]

for w in self.windows_transform:

inputs.append(signal[-self.window_episode - w: -w])

return np.array(inputs).T,

’forecast_horizon=’+str(forecast_horizon)

85



class SinSampler(Sampler):

def __init__(self, game,

window_episode=None, noise_amplitude_ratio=None,

period_range=None, amplitude_range=None,

fld=None):

self.n_var = 1 # price only

self.window_episode = window_episode

self.noise_amplitude_ratio = noise_amplitude_ratio

self.period_range = period_range

self.amplitude_range = amplitude_range

self.can_half_period = False

self.attrs = [’title’,’window_episode’, ’noise_amplitude_ratio’,

’period_range’, ’amplitude_range’, ’can_half_period’]

param_str = str((

self.noise_amplitude_ratio, self.period_range,

self.amplitude_range

))

if game == ’single’:

self.sample = self.__sample_single_sin

self.title = ’SingleSin’+param_str

elif game == ’concat’:
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self.sample = self.__sample_concat_sin

self.title = ’ConcatSin’+param_str

elif game == ’concat_half’:

self.can_half_period = True

self.sample = self.__sample_concat_sin

self.title = ’ConcatHalfSin’+param_str

elif game == ’concat_half_base’:

self.can_half_period = True

self.sample = self.__sample_concat_sin_w_base

self.title = ’ConcatHalfSin+Base’+param_str

self.base_period_range = (int(2*self.period_range[1]),

4*self.period_range[1])

self.base_amplitude_range = (20,80)

elif game == ’load’:

self.load_db(fld)

else:

raise ValueError

def __rand_sin(self,

period_range=None, amplitude_range=None,

noise_amplitude_ratio=None, full_episode=False):

if period_range is None:

period_range = self.period_range

if amplitude_range is None:
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amplitude_range = self.amplitude_range

if noise_amplitude_ratio is None:

noise_amplitude_ratio = self.noise_amplitude_ratio

period = random.randrange(period_range[0], period_range[1])

amplitude = random.randrange(amplitude_range[0],

amplitude_range[1])

noise = noise_amplitude_ratio * amplitude

if full_episode:

length = self.window_episode

else:

if self.can_half_period:

length = int(random.randrange(1,4) * 0.5 * period)

else:

length = period

p = 100. + amplitude * np.sin(np.array(range(length)) * 2 *

3.1416 / period)

p += np.random.random(p.shape) * noise

return p, ’100+%isin((2pi/%i)t)+%ie’%(amplitude, period, noise)
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def __sample_concat_sin(self):

prices = []

p = []

while True:

p = np.append(p, self.__rand_sin(full_episode=False)[0])

if len(p) > self.window_episode:

break

prices.append(p[:self.window_episode])

return np.array(prices).T, ’concat sin’

def __sample_concat_sin_w_base(self):

prices = []

p = []

while True:

p = np.append(p, self.__rand_sin(full_episode=False)[0])

if len(p) > self.window_episode:

break

base, base_title = self.__rand_sin(

period_range=self.base_period_range,

amplitude_range=self.base_amplitude_range,

noise_amplitude_ratio=0.,

full_episode=True)

prices.append(p[:self.window_episode] + base)

return np.array(prices).T, ’concat sin + base: ’+base_title

def __sample_single_sin(self):
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prices = []

funcs = []

p, func = self.__rand_sin(full_episode=True)

prices.append(p)

funcs.append(func)

return np.array(prices).T, str(funcs)

def test_SinSampler():

window_episode = 180

window_state = 40

noise_amplitude_ratio = 0.5

period_range = (10,40)

amplitude_range = (5,80)

game = ’concat_half_base’

instruments = [’fake’]

sampler = SinSampler(game,

window_episode, noise_amplitude_ratio, period_range,

amplitude_range)

n_episodes = 100

"""
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for i in range(100):

plt.plot(sampler.sample(instruments)[0])

plt.show()

"""

fld = os.path.join(’data’,’SinSamplerDB’,game+’_B’)

sampler.build_db(n_episodes, fld)

def test_PairSampler():

fhr = (10,30)

n_section = 1

max_change_perc = 30.

noise_level = 5

game = ’randjump’

windows_transform = []

sampler = PairSampler(game, window_episode=180,

forecast_horizon_range=fhr,

n_section=n_section, noise_level=noise_level,

max_change_perc=max_change_perc,

windows_transform=windows_transform)

#plt.plot(sampler.sample()[0]);plt.show()

#"""

n_episodes = 100
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fld = os.path.join(’data’,’PairSamplerDB’,

game+’_%i,%i’%(n_episodes,

n_section)+str(fhr)+str(windows_transform)+’_B’)

sampler.build_db(n_episodes, fld)

#"""

if __name__ == ’__main__’:

#scan_match()

test_SinSampler()

#p = [1,2,3,2,1,2,3]

#print find_ideal(p)

test_PairSampler()

visualizer.py - drawing charts

import pandas as pd

from lib import *

def get_tick_labels(bins, ticks):

ticklabels = []

for i in ticks:

if i < len(bins):
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ticklabels.append(’%.2f’%(bins[int(i)]))

else:

ticklabels.append(’%.2f’%(bins[-1])+’+’)

return ticklabels

class Visualizer:

def __init__(self, action_labels):

self.n_action = len(action_labels)

self.action_labels = action_labels

def plot_a_episode(self,

env, model,

explored_cum_rewards, explored_actions,

safe_cum_rewards, safe_actions,

fig_path):

f, axs = plt.subplots(3, 1, sharex=True, figsize=(14, 14))

ax_price, ax_action, ax_Q = axs

ls = [’-’, ’--’]

for i in range(min(2, env.prices.shape[1])):

p = env.prices[:, i] / env.prices[0, i] * 100 - 100
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ax_price.plot(p, ’k’ + ls[i], label=’input%i - 100’ % i)

ax_price.plot(explored_cum_rewards, ’b’, label=’explored P&L’)

ax_price.plot(safe_cum_rewards, ’r’, label=’safe P&L’)

ax_price.legend(loc=’best’, frameon=False)

ax_price.set_title(env.title + ’, ideal: %.1f, safe: %.1f,

explored: %1.f’ % (

env.max_profit, safe_cum_rewards[-1],

explored_cum_rewards[-1]))

ax_action.plot(explored_actions, ’b’, label=’explored’)

ax_action.plot(safe_actions, ’r’, label=’safe’, linewidth=2)

ax_action.set_ylim(-0.4, self.n_action - 0.6)

ax_action.set_ylabel(’action’)

ax_action.set_yticks(range(self.n_action))

ax_action.legend(loc=’best’, frameon=False)

style = [’k’, ’r’, ’b’,’c’]

qq = []

for t in range(env.t0):

qq.append([np.nan] * self.n_action)

for t in range(env.t0, env.t_max):

qq.append(model.predict(env.get_state(t)))

for i in range(self.n_action):

ax_Q.plot([float(qq[t][i]) for t in range(len(qq))],

style[i], label=self.action_labels[i])
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ax_Q.set_ylabel(’Q’)

ax_Q.legend(loc=’best’, frameon=False)

ax_Q.set_xlabel(’t’)

plt.subplots_adjust(wspace=0.4)

plt.savefig(fig_path)

plt.close()

def plot_episodes(self,

explored_total_rewards, safe_total_rewards,

explorations,

fig_path, MA_window=100):

f = plt.figure(figsize=(14, 10)) # width, height in inch (100

pixel)

if explored_total_rewards is None:

f, ax_reward = plt.subplots()

else:

figshape = (3, 1)

ax_reward = plt.subplot2grid(figshape, (0, 0), rowspan=2)

ax_exploration = plt.subplot2grid(figshape, (2, 0),

sharex=ax_reward)

tt = range(len(safe_total_rewards))

if explored_total_rewards is not None:
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pma = pd.Series(np.array(explored_total_rewards))

ma = pma.rolling(window=MA_window, min_periods=1).median()

std = pma.rolling(window=MA_window, min_periods=3).std()

ax_reward.plot(tt, explored_total_rewards, ’bv’,

fillstyle=’none’)

ax_reward.plot(tt, ma, ’b’, label=’explored ma’, linewidth=2)

ax_reward.plot(tt, std, ’b--’, label=’explored std’,

linewidth=2)

series = pd.Series(np.array(safe_total_rewards))

ma = series.rolling(window=MA_window, min_periods=1).median()

std = series.rolling(window=MA_window, min_periods=1).std()

ax_reward.plot(tt, safe_total_rewards,’ro’, fillstyle=’none’)

ax_reward.plot(tt, ma,’r’, label=’safe ma’, linewidth=2)

ax_reward.plot(tt, std,’r--’, label=’safe std’, linewidth=2)

ax_reward.axhline(y=0, color=’k’, linestyle=’:’)

#ax_reward.axhline(y=60, color=’k’, linestyle=’:’)

ax_reward.set_ylabel(’total reward’)

ax_reward.legend(loc=’best’, frameon=False)

ax_reward.yaxis.tick_right()

ylim = ax_reward.get_ylim()

ax_reward.set_ylim((max(-100,ylim[0]), min(100,ylim[1])))

if explored_total_rewards is not None:

ax_exploration.plot(tt, np.array(explorations)*100., ’k’)
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ax_exploration.set_ylabel(’exploration’)

ax_exploration.set_xlabel(’episode’)

plt.savefig(fig_path)

plt.close()

def test_visualizer():

f = plt.figure()#figsize=(5,8))

axs_action = []

ncol = 3

nrow = 2

clim = (0,1)

ax = plt.subplot2grid((nrow, ncol), (0,ncol-1))

ax.matshow(np.random.random((2,2)), cmap=’RdYlBu_r’, clim=clim)

for action in range(3):

row = 1 + action/ncol

col = action%ncol

ax = plt.subplot2grid((nrow, ncol), (row,col))

cax = ax.matshow(np.random.random((2,2)), cmap=’RdYlBu_r’,

97



clim=clim)

ax = plt.subplot2grid((nrow, ncol), (0,0), colspan=ncol-1)

cbar = f.colorbar(cax, ax=ax)

plt.show()

class VisualizerSequential:

def config(self):

pass

def __init__(self, model):

self.model = model

self.layers = []

for layer in self.model.layers:

self.layers.append(str(layer.name))

self.inter_models = dict()

model_input = self.model.input

for layer in self.layers:

self.inter_models[layer] = keras.models.Model(

inputs=model_input,
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outputs=self.model.get_layer(layer).output)

self.config()

class VisualizerConv1D(VisualizerSequential):

def config(self):

self.n_channel = self.model.input.shape[2]

n_col = self.n_channel

for layer in self.layers:

shape = self.inter_models[layer].output.shape

if len(shape) == 3:

n_col = max(n_col, shape[2])

self.figshape = (len(self.layers)+1, int(n_col))

def plot(self, x):

f = plt.figure(figsize=(30, 30))

for i in range(self.n_channel):

ax = plt.subplot2grid(self.figshape, (0, i))

ax.plot(x[0, :, i], ’.-’)

ax.set_title(’input, channel %i’ % i)
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for i_layer in range(len(self.layers)):

layer = self.layers[i_layer]

z = self.inter_models[layer].predict(x)

print(’plotting ’ + layer)

if len(z.shape) == 3:

for i in range(z.shape[2]):

ax = plt.subplot2grid(self.figshape, (i_layer+1, i))

ax.plot(z[0,:,i], ’.-’)

ax.set_title(layer+’ filter %i’%i)

else:

ax = plt.subplot2grid(self.figshape, (i_layer+1, 0))

ax.plot(z[0,:], ’.-’)

ax.set_title(layer)

ax.set_ylim(-100,100)

def print_w(self):

layer = self.layers[0]

ww = self.inter_models[layer].get_weights()

for w in ww:

print(w.shape)

print(w)

simulators.py
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from lib import *

class Simulator:

def play_one_episode(self, exploration, training=True,

rand_price=True, print_t=False):

state, valid_actions = self.env.reset(rand_price=rand_price)

done = False

env_t = 0

try:

env_t = self.env.t

except AttributeError:

pass

cum_rewards = [np.nan] * env_t

actions = [np.nan] * env_t

states = [None] * env_t

prev_cum_rewards = 0.

while not done:

if print_t:

print(self.env.t)
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action = self.agent.act(state, exploration, valid_actions)

next_state, reward, done, valid_actions = self.env.step(action)

cum_rewards.append(prev_cum_rewards+reward)

prev_cum_rewards = cum_rewards[-1]

actions.append(action)

states.append(next_state)

if training:

self.agent.remember(state, action, reward, next_state,

done, valid_actions)

self.agent.replay()

state = next_state

return cum_rewards, actions, states

def train(self, n_episode,

save_per_episode=10, exploration_decay=0.995,

exploration_min=0.01, print_t=False, exploration_init=1.):

fld_model = os.path.join(self.fld_save,’model’)

makedirs(fld_model) # don’t overwrite if already exists

with open(os.path.join(fld_model,’QModel.txt’),’w’) as f:
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f.write(self.agent.model.qmodel)

exploration = exploration_init

fld_save = os.path.join(self.fld_save,’training’)

makedirs(fld_save)

MA_window = 100 # MA of performance

safe_total_rewards = []

explored_total_rewards = []

explorations = []

path_record = os.path.join(fld_save,’record.csv’)

with open(path_record,’w’) as f:

f.write(’episode,game,exploration,explored,safe,MA_explored,MA_safe\n’)

for n in range(n_episode):

print(’\ntraining...’)

exploration = max(exploration_min, exploration *

exploration_decay)

explorations.append(exploration)

explored_cum_rewards, explored_actions, _ =

self.play_one_episode(exploration, print_t=print_t)

explored_total_rewards.append(100.*explored_cum_rewards[-1]/self.env.max_profit)

safe_cum_rewards, safe_actions, _ = self.play_one_episode(0,

training=False, rand_price=False, print_t=False)
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safe_total_rewards.append(100.*safe_cum_rewards[-1]/self.env.max_profit)

MA_total_rewards =

np.median(explored_total_rewards[-MA_window:])

MA_safe_total_rewards =

np.median(safe_total_rewards[-MA_window:])

ss = [

str(n), self.env.title.replace(’,’,’;’),

’%.1f’%(exploration*100.),

’%.1f’%(explored_total_rewards[-1]),

’%.1f’%(safe_total_rewards[-1]),

’%.1f’%MA_total_rewards, ’%.1f’%MA_safe_total_rewards,

]

with open(path_record,’a’) as f:

f.write(’,’.join(ss)+’\n’)

print(’\t’.join(ss))

if n%save_per_episode == 0:

print(’saving results...’)

self.agent.save(fld_model)

self.visualizer.plot_a_episode(
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self.env, self.agent.model,

explored_cum_rewards, explored_actions,

safe_cum_rewards, safe_actions,

os.path.join(fld_save, ’episode_%i.png’%(n)))

self.visualizer.plot_episodes(

explored_total_rewards, safe_total_rewards, explorations,

os.path.join(fld_save, ’total_rewards.png’),

MA_window)

def test(self, n_episode, save_per_episode=10, subfld=’testing’):

fld_save = os.path.join(self.fld_save, subfld)

makedirs(fld_save)

MA_window = 100 # MA of performance

safe_total_rewards = []

path_record = os.path.join(fld_save,’record.csv’)

with open(path_record,’w’) as f:

f.write(’episode,game,pnl,rel,MA\n’)

for n in range(n_episode):

print(’\ntesting...’)
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safe_cum_rewards, safe_actions, _ = self.play_one_episode(0,

training=False, rand_price=True)

safe_total_rewards.append(100.*safe_cum_rewards[-1]/self.env.max_profit)

MA_safe_total_rewards =

np.median(safe_total_rewards[-MA_window:])

ss = [str(n), self.env.title.replace(’,’,’;’),

’%.1f’%(safe_cum_rewards[-1]),

’%.1f’%(safe_total_rewards[-1]),

’%.1f’%MA_safe_total_rewards]

with open(path_record,’a’) as f:

f.write(’,’.join(ss)+’\n’)

print(’\t’.join(ss))

if n%save_per_episode == 0:

print(’saving results...’)

self.visualizer.plot_a_episode(

self.env, self.agent.model,

[np.nan]*len(safe_cum_rewards),

[np.nan]*len(safe_actions),

safe_cum_rewards, safe_actions,

os.path.join(fld_save, ’episode_%i.png’%(n)))
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self.visualizer.plot_episodes(

None, safe_total_rewards, None,

os.path.join(fld_save, ’total_rewards.png’),

MA_window)

def __init__(self, agent, env,

visualizer, fld_save):

self.agent = agent

self.env = env

self.visualizer = visualizer

self.fld_save = fld_save

if __name__ == ’__main__’:

#print ’episode%i, init%i’%(1,2)

a = [1,2,3]

print(np.mean(a[-100:]))

company data sampler.py
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from sampler import Sampler

import copy

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

sample_size=-1

def get_data_file_path(company_code):

return "../data/" + company_code + ".csv"

def load_data(file_path):

data = pd.read_csv(file_path)

data[’Date’] = pd.to_datetime(data[’Date’])

TechIndicator = copy.deepcopy(data)

TechIndicator[’Momentum_1D’] = (TechIndicator[’Close’] -

TechIndicator[’Close’].shift(1)).fillna(0)

TechIndicator[’RSI_14D’] =

TechIndicator[’Momentum_1D’].rolling(center=False,

window=14).apply(rsi).fillna(0)
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TechIndicator[’26_ema’] = TechIndicator[’Close’].ewm(span=26,

min_periods=0, adjust=True, ignore_na=False).mean()

TechIndicator[’12_ema’] = TechIndicator[’Close’].ewm(span=12,

min_periods=0, adjust=True, ignore_na=False).mean()

TechIndicator[’9_ema’] = TechIndicator[’Close’].ewm(span=9,

min_periods=0, adjust=True, ignore_na=False).mean()

TechIndicator[’5_ema’] = TechIndicator[’Close’].ewm(span=5,

min_periods=0, adjust=True, ignore_na=False).mean()

TechIndicator[’2_ema’] = TechIndicator[’Close’].ewm(span=2,

min_periods=0, adjust=True, ignore_na=False).mean()

TechIndicator[’MACD_2_9’] = (np.tanh((TechIndicator[’2_ema’] -

TechIndicator[’9_ema’]) * 1000))

TechIndicator[’MACD_5_12’] = (np.tanh((TechIndicator[’5_ema’] -

TechIndicator[’12_ema’]) * 1000))

TechIndicator[’MACD_12_26’] = (np.tanh((TechIndicator[’12_ema’] -

TechIndicator[’26_ema’]) * 1000))

TechIndicator = TechIndicator.fillna(0)

columns2Drop = [

’Open’, ’Low’, ’High’, # ’Close’,

’Momentum_1D’,

’26_ema’, ’12_ema’, ’9_ema’, ’5_ema’, ’2_ema’, # ’aupband’,

# ’adownband’

]
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TechIndicator = TechIndicator.drop(labels=columns2Drop, axis=1)

data_columns = [

# ’Open’, ’High’, ’Low’, ’Volume’,

’Close’,

’MACD_2_9’,

’MACD_5_12’,

’MACD_12_26’,

’Volumn’,

’RSI_14D’

]

# X_traning, X_validation, y_training, y_validation =

split_data(TechIndicator, data_columns)

# TechIndicator.insert(0,’-c-’,TechIndicator[’Close’])

np_arr = TechIndicator[data_columns].to_numpy()

return (np_arr)

# def convert_to_arr(data):

#

# def split_data(data, columns):

# cols = columns.copy()

# cols.append(’Close’)

# input_features = data[cols]
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# input_data = input_features.values

#

# prices = data[’Close’].values

#

# scaler = MinMaxScaler(feature_range=(0, 1))

# input_data = scaler.fit_transform(input_data)

#

# lookback = 14

# total_size = len(data)

# X = []

# y = []

# for i in range(0, total_size - lookback): # loop data set with

margin 50 as we use 50 days data for prediction

# t = []

# for j in range(0, lookback): # loop for 50 days

# current_index = i + j

# t.append(input_data[current_index, :]) # get data margin

from 50 days with marging i

# X.append(t)

# y.append(prices[lookback + i])

#

# X, y = np.array(X), np.array(y)

#

# X_traning, X_validation, y_training, y_validation =

train_test_split(X, y, test_size=0.2, random_state=42)

#
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# X_traning = X_traning.reshape(X_traning.shape[0], lookback,

len(cols))

# X_validation = X_validation.reshape(X_validation.shape[0],

lookback, len(cols))

#

# return X_traning, X_validation, y_training, y_validation

def rsi(values):

up = values[values > 0].mean()

down = -1 * values[values < 0].mean()

return 100 * up / (up + down)

class CompanyDataSampler(Sampler):

def __init__(self, company_code="AEL",window_episode=None):

self.n_var = 6

self.company_code = company_code

self.sample = self.__load_my_data

self.title = "CompanyData-" + company_code

self.window_episode=window_episode

def __load_my_data(self):

file_path = get_data_file_path(self.company_code)

return load_data(file_path), self.title
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data loader.py - used to extract data from cse website

from company_list import companies

import requests

data = {

"symbol": "AEL.N0000",

"fromDate": "27-07-2020",

"toDate": "27-07-2021",

"period": 1,

"token":

"eyJhbGciOiJSUzI1NiIsImtpZCI6Ijk0NEVEQ0NGMTVBOUFBNjI3NjIxMzAxNjI2MzVBOTg5NEUzQzJENjBSUzI1NiIsInR5cCI6ImF0K2p3dCIsIng1dCI6ImxFN2N6eFdwcW1KMklUQVdKaldwaVU0OExXQSJ9..XIWBZV84czqK7b5Su3ZC4Kxw5_qxm4zwILN0PGNvNepdkjd-SnTw2jk4MyoUtbEk7y1ELEqXJwk_K0LCJM4g6usVF12V8ibjfHU2cganWIvPKCAusjMfveIyyR3FbyZDwJhNVSdIRT_D5xKXiTvNh6-ndpt3ZjBwqOJ_v3nJnqSqXayp5TYR9iJNH5K6PBhpGfZEnswplTWM5nxxLdNUBaEynlLCcVmjqTN1TGAPvD31DCF3PUFsEJ4gk-z0w7Bas5FfbUtWl5gdBbP7cGPp_eRg2JOL1W6QIPDCzKk3MbrfEZORzgrICqUi8WW0iCMc3xyU-4wqU4QIX01xYgXHrQ"

}

def saveToFile(company, data):

f = open("D:\\MSC Project\\ml-code\\row-data\\" + company +

".json", "w")

f.write(data)

f.close()

for company in companies:

data[’company’] = company

resp = requests.post("https://www.cse.lk/api/charts", data)
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saveToFile(company, resp.text)
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