

AI Based UML Diagrams Generator

K. A. D Oshada Kasun Kiringoda Arachchi

2021

AI Based UML Diagrams Generator

A dissertation submitted for the Degree of Master of

Computer Science

K. A. D Oshada Kasun Kiringoda Arachchi

University of Colombo School of Computing

2021

i

DECLARATION

I hereby declare that the thesis is my original work and it has been written by me in its entirety.

I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Student Name: K. A. D Oshada Kasun Kiringoda Arachchi

Registration Number: 2018/MCS/047

Index Number: 18440474

_________________________________30/11/2021____

Signature of the Student & Date

This is to certify that this thesis is based on the work of Mr. /Ms. K. A. D Oshada Kasun

Kiringoda Arachchi under my supervision. The thesis has been prepared according to the format

stipulated and is of acceptable standard.

Certified by,

Supervisor Name: Prof G.K.A. Dias

Signature of the Supervisor & Date 30/11/2021

ii

I would like to dedicate this thesis To My Beloved Parents….

iii

ACKNOWLEDGEMENTS

It gives me great desire to acknowledge all those who supported me during the course of this

project.

First of all, my heartfelt gratitude goes out to Prof. Kapila Dias, my project supervisor and my

project proposal approver for his support throughout the project.

To my loving parents and brother, for supporting and encouraging me to make this project a

success.

To all the academic and non-academic staff at UCSC for their support, for allowing to

continuing studies without any issue during the pandemic situation.

My colleagues at Yukon Software, for the corporation extended and the inspiration from the

beginning.

But last not least all my colleagues from UCSC, who have always been there for me,

encouraging me when I was down and strengthening me.

A very big and whole-hearted thank you to all of you. This would not have been possible if not

for all of you.

iv

ABSTRACT

Unified Modeling Language (UML) diagrams are very useful to represent the business

requirement of any proposed system and help to design a system from the end user's point of

view. In the software analysis process, UML diagrams are drawn separately after gathering

requirement, and the time wastage of drawing these diagrams is high with using current drawing

tools due to the complexity of the business situation or the technical capabilities of the UML

diagrams. Automated UML Diagram generation tools necessity can be identified with amount

of time spent on requirement analysis and low quality of human analysis. The objective of this

project is to provide an approach to generating UML use case and class diagrams from the

functional requirement texts using natural language processing and machine learning.

Finding the key terms for class or use case diagram is reflected a classification task in machine

learning. The stories narrate different attributes of a diagram and the task is to identify key terms

for respective attributes. The use case diagram and class diagram have different set of attributes.

classification model can be designed and pre-process the data for extracting the key terms such

as actors, use case and classes from the requirement text. Furthermore, other text features like

position and distance of text can be integrated to improve accuracy. To Identify Use case and

class relationship sequence to sequence RNN model has introduced and it extracted key phrase

or relation phrase among text, which also outperformed the conventional technique

significantly. Improved strategies were proposed on this approach by substituting a sequence-

to-sequence RNNs with conventional techniques.

The proposed system is capable of providing solutions to generating usecase and class diagram

from the functional requirement text with using NLP and ML techniques. Diagram generating

has used Plant UML tool with its plan text language where user interaction also enabled.

Developed prototype is able to identify important actors, use cases and its relations with

relationship type for use case diagrams. And also for class diagrams important classes and it’s

relationships can identify. If this project is domain specific most of element would have been

identified. The developed final model has identified and generated the use case diagram and

class diagram up to a considerable extent according to the given requirement text which gives

a good idea about the business scenario.

Keywords: UML Diagram, Use case Diagram, Class Diagram, Natural Language Processing,

Machine Learning, Classification, RNN, sequence-to-sequence RNN, Plant UML

v

TABLE OF CONTENTS

DECLARATION .. i

ACKNOWLEDGEMENTS .. iii

ABSTRACT ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. vii

LIST OF TABLES .. viii

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Statement of the problem ... 1

1.3 Research Aims and Objectives .. 2

1.3.1 Aim ... 2

1.3.2 Objectives ... 2

1.4 Scope .. 2

1.5 Structure of the Thesis ... 3

CHAPTER 2 LITERATURE REVIEW ... 5

2.1 Literature Review .. 5

2.1.1 Natural Language Processing and Machine Learning .. 5

2.1.2 Derive Use case elements from requirement text ... 6

2.1.3 Derive Class Diagram elements from requirement text 8

2.1.4 Generate use case and class diagram .. 8

2.2 Presentation of Scientific Material .. 9

CHAPTER 3 PROBLEM ANALYSIS AND METHODOLOGY 15

3.1 Problem Analysis ... 15

3.2 Proposing Model/design .. 16

3.3 Methodology .. 17

3.4 Algorithmic design .. 19

3.4.1 Preprocess Functional requirement texts .. 22

3.4.2 Machine Learning Techniques to Identify Diagram Elements 23

vi

3.5 Data acquiring methods ... 26

CHAPTER 4 IMPLEMENTATION ... 28

4.1 Identifying Use case and Class Diagram Entities with NLP and ML techniques .. 28

4.2 Identifying Use case and Class Diagram Relationships with NLP and ML

techniques ... 32

4.3 Draw diagram with identified diagram elements ... 36

CHAPTER 5 EVALUATION AND RESULTS ... 39

5.1 Collecting Dataset .. 39

5.2 Dataset Preparation .. 41

5.3 Evaluation approach .. 42

5.4 Evaluation and Results ... 44

5.4.1 Identifying use case diagram element from requirement text 44

5.4.2 Identifying class diagram element from requirement text 52

5.4.3 Generating usecase and class Diagram ... 58

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 65

6.1 Conclusion ... 65

6.2 Future Work ... 67

REFERENCES .. I

Appendix A .. V

vii

LIST OF FIGURES

Figure 2.1 ML Model prediction flow ... 9

Figure 3.1 Proposed Solution Design ... 17

Figure 3.2 Process flow with NLP And ML Model ... 19

Figure 4.1 Sample JSON output format ... 36

Figure 5.1 Sample dataset format with functional requirement ... 41

Figure 5.2 Confusion matrix for the case of binary classification ... 43

Figure 5.3 Program generated language code for usecase diagram ... 59

Figure 5.4 Edited language code for usecase diagram ... 59

Figure 5.5 Actual usecase diagram according to the functional text .. 60

Figure 5.6 Generated usecase diagram using Plant UML tool ... 61

Figure 5.7 Program generated language code for class diagram .. 62

Figure 5.8 Edited language code for class diagram .. 62

Figure 5.9 Actual usecase diagram according to the functional text .. 63

Figure 5.10 Generated class diagram using Plant UML tool ... 63

viii

LIST OF TABLES

Table 2.1 Research gaps on deriving use case diagram elements .. 9

Table 2.2 Research gaps on deriving class diagram elements .. 10

Table 2.3 Existing research evaluation ... 11

Table 3.1 Sample dataset……………………………………………………………………. 20

Table 5.1 Test data snippet for actor in functional text .. 45

Table 5.2 Model Predicted results snippet for identified actors...…………………………… 45

Table 5.3 Evaluation metric result for actors ………..……………………………………… 46

Table 5.4 Test data snippet for usecase in functional text …………………..……………… 46

Table 5.5 Model Predicted results snippet for identified usecases ... 47

Table 5.6 Evaluation metric result for usecases ... 47

Table 5.7 Data snippet from preprocessing stage data separation .. 48

Table 5.8 Test data snippet for relationship involved entities in functional text...................... 49

Table 5.9 Model Predicted results snippet for identified usecase relationship involved entities

 .. 50

Table 5.10 Test data snippet for relationship Type in functional text 51

Table 5.11 Model Predicted results snippet for identified usecase relationship type............... 51

Table 5.12 Test data snippet for classes in functional text…………………..……………… 52

Table 5.13 Model Predicted results snippet for identified classes ... 53

Table 5.14 Evaluation metric result for classes… .. 53

Table 5.15 Data snippet from preprocessing stage class relationship data 54

Table 5.16 Test data snippet for class relationship involved entities in functional text 55

Table 5.17 Model Predicted results snippet for identified class relationship involved entities ...

 .. 56

Table 5.18 Test data snippet for class relationship type in functional text 57

Table 5.19 Model Predicted results snippet for identified class relationship type 58

1

CHAPTER 1

INTRODUCTION

In the Software development industry Requirement gathering and Design phase plays an

important role in software development lifecycle (Whitney, E., CODE Magazine 2020).

Depending on the time taken to these phases whole project duration will be affected since

different parties who are playing different kind of role need to provide their feedback and also

some authorities need to be agreed whether the Design would be satisfied with the requirements.

More importantly particular client needs to be satisfied with the Design with gathered

requirements.

1.1 Motivation

Creating UML diagrams is a vitally important and time-consuming task which both

requirements and design phases in software Development. These diagrams like use-case

Diagram and class diagram will consider as a transition between the two phases. Use case

diagram consider as the one of the most used functional modeling techniques that use in the

software development process and the main core of Object-Oriented analysis and design where

other models are derived is class diagram.

From the initial survey carried out by Madanayake R. S., (2019) in his research stated that

“Class diagrams, ER Diagrams, User stories and use case models were the most popular

diagrams used as well as where the most Duplication of Work occurred, according to the data

analysis conducted by the researchers.”

Since most of stakeholders are not aware on this diagram technique and not have capability of

understanding the particular diagram with comparing to the business requirement may lead to

consume more time on creating these diagrams against business requirements. Hence, reducing

the time taken to create the use-case diagram against the business requirements is the motivation

behind this project.

1.2 Statement of the problem

When drawing these UML Diagrams Requirement engineer or Business analyst need to put

lot of work with gathering and analyzing business requirements and also good amount of time

will waste due to this time taken process. UML Diagrams will draw separately after gathering

requirements and wastage of time will increase when drawing these Diagram using current

diagram tools according to particular business requirement due to complexity of business

scenario or technical capability of UML diagram concepts. Automated UML Diagram

2

generating tools necessity can be identified with the how much time would spend on

analyzing business requirements and also the low quality of the human analysis.

1.3 Research Aims and Objectives

This project proposes an approach to facilitate use case and class diagram extraction from

textual requirements using AI techniques.

1.3.1 Aim

The very first phase of the software development life-cycle is Requirement engineering.

This phase, the requirements should be able to translated from the client language to the

Developer’s language. Usecase diagram and class diagram are two different approaches

used to describe the functional requirements. Since the requirements can be written in

natural language, Natural Language Processing Techniques (NLP) and Machine

learning (ML) techniques would be able used to extract the information. This proposed

model aiming to provide an approach to generate the UML usecase diagrams and class

diagrams from the requirements text provided, using natural language processing and

Machine learning.

1.3.2 Objectives

Following are the objectives that have achieved over the span of the research project:

• Identification and analysis most popular UML techniques and investigation of the

existing techniques, practices and tools about drawing UML use case and class

diagrams.

• Investigation of Natural language processing and Machine learning in the context of

identifying use case and class diagram elements.

• Development of an AI based prototype for generate of use case and class diagram by

analyzing the requirements.

• Identification of an appropriate evaluation mechanism to evaluate the solution.

1.4 Scope

This study will mainly focus on providing solution to generating Usecase diagram and

Class diagram against the particular business requirement. system will read and

understand the business requirement using Natural Language Processing and Machine

3

learning and identifying entities and relationships on that for generate use case diagram.

And also, classes and relationship between classes will also be identified to generate

class diagram. Then system will show generated diagram with including user interacting

feature where user can add additional element and add changes to use case or class

diagram or edit existing element and its attribute or relations. There after user can

confirm to generate both use case and class diagram respectively. The proposed system

is limited only in reducing the time taken to draw use-case and class diagrams against

the business requirements in software developments projects.

1.5 Structure of the Thesis

Literature review

With this chapter our aim to identifies, evaluates and synthesizes the relevant

literature within a UML modeling, Natural Language Processing and Machine

Learning field of research. It will illuminate how UML modelling and Artificial

Intelligent techniques knowledge has evolved within the field as highlighting

what has already been done and what is emerging, what is generally accepted

and also what is the current state of thinking on the topic of UML modelling. In

addition to these literature review chapter will identify a research gap such as

under-researched or unexplored areas and articulates how this kind of research

project would addresses this gap.

Methodology

In this chapter need to answer these questions as how did I do this research and

why did I do it that way. This will cover not only the methods used to collect

and analyze relevant business requirement data, but also the theoretical approach

and relevant techniques, framework used in the term of Natural Language

Processing and Machine learning field. This would inform both the choice of

methods and the approach to interpreting those data towards generating UML

use case diagram and class diagram.

Evaluation and results

In this chapter the results of the research project are presented and discussed

evaluation with reference to the aim of the study, which was to generating UML

diagrams against Business Requirements Using Natural language processing

4

and Machine learning. The two sub-aims - the first to find the most appropriate

NLP and ML techniques towards identifying use case and class diagrams

elements from business requirement, and the second to generate diagram using

the diagram generating tool form the main comparisons in the evaluation.

Evaluation will be done using a case study and solution given in a text book with

the project output and also evaluation can be done with the help of domain

experts in order to evaluate the efficacy of the provided solution.

Conclusion and future works

This chapter would present the conclusions of the research described in this

project thesis. The aim and objectives of this research, will be outlined in the

Introduction chapter, and those are reviewed and their achievement addressed.

It summarizes the focus of the Natural language processing and Machine

learning approach on generating UML diagrams against Business

Requirements, and draws conclusions from the discussions and results in the

previous chapters. Proposals for future work indicated by the research are

suggested.

5

CHAPTER 2

LITERATURE REVIEW

In this chapter our aim is to identifies, evaluates and synthesizes the relevant literature within a

UML modeling, Natural Language Processing and Machine Learning field of research. It will

illuminate how UML modelling and Artificial Intelligent techniques knowledge has evolved

within the field as highlighting what has already been done and what is emerging, what is

generally accepted and also what is the current state of thinking on the topic of UML modelling.

In addition to these literature review chapter will identify a research gap such as under-

researched or unexplored areas and articulates how this kind of research project would

addresses this gap.

2.1 Literature Review

In this section will explore how UML modeling evolved with Natural Language Processing

and Machine Learning field of research with identifying existing research that has been done

so far.

2.1.1 Natural Language Processing and Machine Learning

In recent past years, different approaches have studied for the natural language requirements

transformation into UML diagrams, from that few researchers have specifically focused on both

usecase and class diagram using the Natural language processing techniques along with

machine learning techniques. User requirement analysis can be an information extraction

application of Natural Language Processing. It will be identified specific semantic elements in

the business requirements entered in textual form as mentioned in Bhagat, S., Kapadni, P.,

Kapadnis, N., Patil, D. and Baheti, M. (2012). Therefore, this proposed system will come under

the information extraction over the Information Retrieval and also in Questioning and

Answering Tasks in NLP Moldovan, Dan & Surdeanu, Mihai. (2002).

In natural language processing several approaches were used to extract the information from

given text in Barba, P., Lexalytics, (2020).

• Sentence splitting

With this approach all text will split into sentences.

• Lexical Analysis

This would get the split sentences and tokenize the sentences into words.

• Syntax analysis

6

This approach will receive the tokens generated by lexical analysis and applies a rule

based or machine learning approach to generate and outputs parts of speech in a given

text.

• Word chunking

With using this NLP approach, we can derive usecases from the input business

requirement text. That will mostly be identify noun phrases, and verb phrases and also

propositional phrases using tokenized text and POS tags.

Machine learning would be used to identify meaningful use cases, classes and identify

relationship types in use case and class diagram. And also, we would use this machine learning

techniques to identify multiplicities in the relationship of class diagram. Using machine learning

techniques, we can improve the accuracy level of identifying above mention elements in both

use case diagram and class diagram in a better way even though Rule based method also exists

there as an alternative option.

Fig. 2.1 shows the text classification flow to be considered when applying machine learning

techniques.

C. R. Narawita, K. Vidanage (2017) introduces a technique for generating UML model as use

case and class diagram. This mainly focused on the design phase of a software. In this proposed

system will extract usecase and class diagram elements with including relationships and also

user interaction were involved to do necessary changes. They were used classification model to

identify relationships and they suggested to use regression and they believe that would be a

better approach compared to classification. And also reducing user interaction on this proposed

system would be a good improvisation.

2.1.2 Derive Use case elements from requirement text

This section will briefly review the major research efforts focused on the application of natural

language processing technologies to gain insight from business needs to generate usage and

class diagrams.

Some commercial products that have representing usecase models have been developed such

as visual UML, Rational rose, smart Draw, MS Visio etc. Bajwa,I. S. & Choudhary,M. A.

(2006). Some advanced tools have also been suggested to automate software engineering

activities, which will be more complex than providing advice on drawing possibilities and other

diagrams.

7

Hamza, Z. and Hammad, M., (2019) In this article, he proposes an approach to generate the use

case diagrams from the business requirements using natural language processing techniques.

This proposed approach consists of a few steps to proceed with the requirements. Starting with

the filtering, the text errors and also went through natural language processes all the way to the

generation of the particular use case diagrams.

Osman, M.S., Alabwaini, N.Z., Jaber, T.B. and Alrawashdeh, T. (2019) create a new approach

which will focus on increasing precision of the technique which user requirements convert it to

UML diagrams with reducing time of generating the usecases of requirement text written in

natural language. This will also find solutions to some of the problems in current technologies

as people need a smart and accurate solution to meet their needs with saving time and also the

reliability increasing of the reliance on software.

Elallaoui, M., Nafil, K. and Touahni, R., (2018) present an approach were an Automatic

Transformation of User Stories into UML Use Case Diagrams using NLP Techniques. In there

they propose a process of transforming user stories into use cases and for that they used natural

language processing techniques. But in this solution, it’s not supported for exclude or include

relationships between usecases and also it does not support sentences which will contain more

than one compound noun. The limitations of this paper are derived associations from complex

sentences, which will mostly require exclude or include relationships between usecases and this

type of relationship not solved in this paper. And also, this does not resolve sentences containing

more than one compound noun. The paper also does not mention generalizations and

specializations and usage opportunities between actors and actresses and will not focus on this

solution but in their future work.

Pereira, A., (2018) has proposed a work as using NLP to generate user stories from software

specification in natural language and in there she proposed the user story generation approach

and tool to simplify all the work that eliciting user stories required for software development.

Vemuri, S., Chala, S. and Fathi, M., (2017) Attempts to approach the problem of automation of

the requirements analysis process automation process due to the text format of the requirements.

Use probabilistic technology to identify usecases and actors. This has yielded promising results,

and they state in their paper that this approach, which fully automates the analysis phase, will

be further enhanced.

Further research analysis with research gaps on deriving use case elements to generate use case

diagram can be found in Table 2.1 in 2.2 section.

8

2.1.3 Derive Class Diagram elements from requirement text

This section will briefly review the leading research efforts focusing on the application of

natural language processing to gain knowledge from the business requirement to generate a

class diagram.

Nasiri, S., Rhazali, Y., Lahmer, M. and Chenfour, N. (2020) in this paper they discuss how to

generate a class Diagram presented in the XMI file from the specifications given in the user

stories. Improvements such as quoting the cardinalities of class diagram associations and

applying artificial intelligence to generate new rules, especially for aggregation relationships,

can have better results.

Jaiwai, M. and Sammapun, U. (2017) According to the article, the proposed method is to

process the cable requirements written in Thai to extract UML class diagrams using natural

language processing techniques, and the extraction of UML class diagrams is based on

translation rules for identifying classes and attributes of these classes from the requirement text

provided.

Adhav, V., Ahire, D., Jadhav, A. and Lokhande, D. (2015) in this paper, they used Natural

Language Processing and domain ontology techniques to support class diagram extraction from

human language requirements to find four types of relationships as generalization, association,

composition / aggregation, and dependency. Inhere this Unable to identify one-to-one, one-to-

many, and many-to-many relationships.

Kumar, S.K. (2014) The proposed system would allow developers to create a UML class model

using software specifications using a standard configuration of natural language processing

technologies and class diagrams, and additionally classify the relationship between classes.

More, P. and Phalnikar, R. (2012) This proposed method extracts UML diagrams from text

requirements using natural language processing (NLP) and domain ontology technologies, as

well as finding basic concepts and their connections and extracting UML diagrams.

Further research analysis with research gaps on deriving class diagram elements from

requirement text to generate class diagram can be found in Table 2.2 in 2.2 section.

2.1.4 Generate use case and class diagram

The output of this system is a PlantUML diagram where the project is to generate a use case

and a class diagram using actors, classes, use cases, class attributes, usecase relationships and

class relationships. There are many CASE tools for drawing the UML usecase and class

diagrams. Visual paradigm, StarUML and Rational Rose are some of the famous software tools

currently using in the industry. This project will use an integrated solution for the PlantUML as

9

it is easy to generate language code after deriving the use case elements and class diagram

elements rather than using other tools (PlantUML, n.d.).

2.2 Presentation of Scientific Material

Figure 2.1 ML Model prediction flow

Figure 2.1 showing the Machine learning models prediction flow with using particular ML

algorithm.

Table 2.1 Research gaps on deriving use case diagram elements

Research Topic Deficiencies in Research

Identifying use cases • Identifying meaningful and not meaningful

use cases (Hamza, Z. and Hammad, M., 2019;

Elallaoui, M., Nafil, K. and Touahni, R.,

2018).

Identifying Associations • Identifying include relationships between use

cases from complicated sentences (Osman,

M., Alabwaini, N., Jaber, T. and Alrawashdeh,

T., 2019; Elallaoui, M., Nafil, K. and Touahni,

R., 2018).

• Identifying exclude relationships between use

cases from complicated sentences (Osman,

M., Alabwaini, N., Jaber, T. and Alrawashdeh,

T., 2019; Elallaoui, M., Nafil, K. and Touahni,

R., 2018).

10

Identifying generalization • Identifying actor generalization (Narawita, C

& Vidanage, K. 2016; Elallaoui, M., Nafil, K.

and Touahni, R., 2018).

• Identifying use case generalization

(Narawita, C & Vidanage, K. 2016; Elallaoui,

M., Nafil, K. and Touahni, R., 2018).

Table 2.2 Research gaps on deriving class diagram elements

Research Topic Deficiencies in Research

Identifying multiplicities • In a relationship in class diagram identifying

o one to one

o one to many

o many to many

relationships accurately (Narawita, C &

Vidanage, K. 2016; Adhav, V., Ahire, D.,

Jadhav, A. and Lokhande, D. 2015).

Identifying class attributes and methods • Complete selection of class attributes and

methods by considering the frequency of

words in the document (Nasiri, S., Rhazali,

Y., Lahmer, M. and Chenfour, N. 2020;

Kumar, S.K. 2014).

Identifying Associations • Extract and Identify association classes

from requirements (Nasiri, S., Rhazali, Y.,

Lahmer, M. and Chenfour, N. 2020; Jaiwai,

M. and Sammapun, U. 2017).

Identifying Generalization • Identify class generalization relationships

(Kumar, S.K. (2014; More, P. and Phalnikar,

R. 2012).

Identifying Composition • Identify class composition relationships

(Nasiri, S., Rhazali, Y., Lahmer, M. and

Chenfour, N. 2020; Adhav, V., Ahire, D.,

Jadhav, A. and Lokhande, D. 2015; More, P.

and Phalnikar, R. 2012).

11

Table 2.3 Existing research evaluation

Research Title What have done Future works/ to do

UML generator – An

Automated system for

model driven development

(Narawita, C & Vidanage,

K. 2016)

✓ Automate UML diagrams

from the analyzed

requirement text using

NLP.

✓ Extract usecase and class

diagram elements

✓ Relationships also

identified

✓ User will interact to do

changes in extracted

elements including

relationship types.

• Used classification to

identify relationships,

suggested regression

could be a good

approach. (Weka vote

algo has used.)

• Reduce user interaction

Generating UML Use Case

Models from Software

Requirements Using

Natural Language

Processing (Hamza, Z. and

Hammad, M., 2019)

✓ Provides access to

generate UML usage

diagrams from the

Requirements using

natural language

processing.

• Future work is to

automate the chunking

process with the ability

to deal with non-

formatting requirement

texts that make NLP

processing easier in the

approach.

• Include, extends,

relationships

Generate use case from the

requirements written in a

natural language using

machine learning (Osman,

M., Alabwaini, N., Jaber, T.

and Alrawashdeh, T., 2019)

✓ This technology focuses

primarily on increasing

accuracy and reducing the

time spent on generating

systems that usecase text

written in natural

language.

• Identifying associations

from complicated

sentences such as include

or exclude relationships

between use cases

Automatic Transformation

of User Stories into UML

Use Case Diagrams using

NLP Techniques (Elallaoui,

M., Nafil, K. and Touahni,

R., 2018)

✓ transform user stories into

use cases and take the

advantage from all the

work done in the

transformation process of

the models according to

the MDA approach.

✓ sets of user stories

generate the UML use

case diagram

automatically.

• include or exclude

relationships between

use cases not yet

supported.

• in their future work

relationship type, such as

generalization and

specialization between

actors and use cases will

be addressed.

• resolve sentences which

containing more than one

compound noun

A Framework using NLP to

automatically convert User-

Stories into Use Cases in

Software Projects (Azzazi,

A. 2017)

✓ correctly detected actors

and use cases from user

stories.

• Relationships didn’t

identify.

12

A Proposed Architecture

for Automated Assessment

of Use Case Diagrams

(Vachharajani, V. and

Pareek, J. 2014)

✓ This is for assessment of

use case diagram where

teacher will include

problem statement and

generate use case diagram

then for particular

problem statement

student’s usecase diagram

will be evaluated.

• This will not draw

usecase according to the

input but evaluate and

assess the drawn

diagrams on particular

format.

An Automated Use Case

Diagrams Generator from

Natural Language

Requirements (Zakarya,

M., Alqaralleh, B.,

Alemerien, K., Malek, Z.,

Alksasbeh and Alramadin,

T. 2017)

✓ Read and performing a

full analysis of the user

requirements provided in

the English language text.

✓ It can also generate use

case diagrams.

• This does not have the

ability to reuse other

existing use cases with

using include, extend and

generalize relationships

An Automated Tool for

Generating UML Models

from Natural Language

Requirements

(Deeptimahanti, D. and

Babar, M., 2009)

✓ Generating the UML

models like the Usecase

Diagram, Analysis class

model, Collaboration

diagram and Design class

model from the natural

language requirements

using more efficient

Natural Language

Processing (NLP) tools.

✓ using available NLP tools

with syntactic

reconstruction rules to

extract required OO

artifacts like actors,

usecases, classes,

operations and attributes.

✓ Identified actors, usecases

and their association

between actors and

usecases.

✓ generate use-case and

class models from Natural

Language requirements

and collaboration and

design class models from

Use-case specifications

along with proper

relationships.

• Extending this function

to automatically generate

state chart diagrams for

testing class models

without the need for code

generation.

Towards a Generation of

Class Diagram from User

Stories in Agile Methods

(Nasiri, S., Rhazali, Y.,

Lahmer, M. and Chenfour,

N. 2020)

✓ generates a class diagram,

presented in XMI file

format, and from

specifications which are

presented in user story

wise.

• cardinalities of

associations in the class

diagram.

• test criteria with user

stories to build UML

13

diagrams dynamically

such as the Activity

diagram.

• Apply artificial

intelligence techniques to

generate new rules,

importantly to detect

aggregation relationships

in between classes.

Extracting UML Class

Diagrams from

Software Requirements in

Thai using NLP (Jaiwai, M.

and Sammapun, U. 2017)

✓ This has processed the

requirements written in

Thai language to gain

UML class diagram using

the natural language

processing techniques.

✓ class diagram extraction

based with the

transformation rules

which would identify

classes and it’s attributes

from requirement text.

• identifying methods and

relationships from

requirements to generate

class diagram

completely.

Generation of UML Class

Diagram from Software

Requirement Specification

Using Natural Language

Processing (Kumar, S.K.

2014)

✓ Semi-automated

designers can assist in the

development of a UML

class model from

software specifications

using natural language

processing technologies.

✓ class diagram in a

standard setting and

further identifying the

relationship in between

classes.

• Automate the selection

of classes, attributes, and

methods by considering

the frequency of words

in the document.

• Identify different kind of

modules and packages in

the system.

Generating UML Diagrams

from Natural Language

Specifications (More, P.

and Phalnikar, R. 2012)

✓ from textual requirements

with using the natural

language processing

(NLP) and Domain

Ontology techniques

extracting the UML

diagrams.

✓ finding basic concepts

and its relationships, and

extract the UML diagram

• User interaction

involving for add, delete

and renaming classes

with its relationships in

the class diagram.

• Allow the user to view,

add, modify, organize

concepts and

relationships. The user

can easily add new

concepts, change the

concept type and add

new relationships.

Class diagram extraction

from textual requirements

using Natural language

processing (NLP)

✓ Natural Language

Processing and domain

ontology techniques to

support the extraction of

class diagram from

• Unable to identify one to

one, one to many, and

many to many

relationships

14

techniques (Ibrahim, M.

and Ahmad, R., 2010)

Natural language

requirements.

✓ find four types of

relationships:

Generalization,

Association,

Composition/ aggregation

and dependency.

Semi-automatic Generation

of UML Models from

Natural Language

Requirements

(Deeptimahanti, D.K. and

Sanyal, R. (2011)

✓ to guide developer in

generating UML based

analysis semi-automated

technique has used in

here and design models

from normalized Natural

Language requirements.

✓ capable to visualize UML

diagrams in any UML

modeling tool which has

XMI import feature init.

• Multiplicity among

classes in class diagram

is still need to be

addressed in future work.

• Generation of state

diagram diagrams from

use cases to test class

models without the need

to generate code, so that

the test cases are

requirement-based to test

the behavior of the

system.

Table 2.1 and Table 2.2 shows the research gaps on deriving usecase and class diagram

elements. Table 2.3 shows the evaluation of existing research where similar works done.

This chapter mainly focused on finding the best approaches, concepts and techniques to provide

a solution to the problem domain. The chapter started by highlighting the existing researches

done on this domain according to the different techniques in the field of NLP and ML. and also

with the diagram generating techniques. Then presentation of scientific material also provided

in here with research gaps on deriving use case diagram elements and class diagram elements.

In the end detailed existing research evaluation has shown on the table.

15

CHAPTER 3

PROBLEM ANALYSIS AND METHODOLOGY

In this chapter focused on answering to the questions as how did the research was done and

why it was done in that way. This will cover not only the methods used to collect and analyze

relevant business requirement data, but also the theoretical approach and relevant techniques,

framework used in the term of Natural Language Processing and Machine learning field. This

would inform both the choice of methods and the approach to interpreting those data towards

generating UML use case diagram and class diagram.

3.1 Problem Analysis

Generally, requirements are split into two types as Functional and Non-functional requirements

(Guru99.com. 2019). Requirements that the client or vendor specifically demands as basic

facilities is the Functional requirements and this will be the basic requirements stated by

client/vendor. And also, these functional requirements will help to capture the intended

behavior of the proposed system (Guru99.com. 2019). Non-functional requirements will define

quality attributes of a suggested system and represent various standards that can be used to

identify the operations of a suggested system (Guru99.com. 2019).

Representing the functional requirements in any suggested system use case diagram will be

very helpful and will help in designing a system from the end user perspective (www.aha.io.

n.d.). The use case diagram shows the dynamic aspects of a system with internal and external

interactions. This is an effective technique which will help to communicate the behavior of the

system in the terms of the client by specifying all the behaviors of the system visible from the

outside (Visual-paradigm.com. 2019).

As a design phase, the first step will be to move from the problem domain to the solution

domain. The objective of this phase is to draft the solution of the problem specified in the

gathered requirements. Requirements will indicate as what is needed, design would take it

towards how to satisfy those needs (Computer Notes. 2013). Class diagrams are defined as

static diagrams, and the static view of need is represented by its attributes and functions. They

can also be mapped directly with object-oriented source code (Holland, K. 2018).

16

In the Requirement gathering and design phase will be useful to avoid misunderstanding

regarding the particular software system with involving the users. In order to do this most

requirement engineers, need to analyze requirements and come out with UML Models.

According to the initial investigation carried on during the preparation of this proposal we

identified that, according to the surveys done by various researcher in software industry most

popular UML models are the use case diagrams and class diagrams (Madanayake R. S., 2019).

When drawing these UML Diagrams Requirement engineer or Business analyst need to put lot

of work with gathering and analyzing business requirements and also good amount of time will

waste due to this time taken process. UML Diagrams will draw separately after gathering

requirements and wastage of time will increase when drawing these Diagram using current

diagram tools according to particular business requirement due to complexity of business

scenario or technical capability of UML diagram concepts. Automated UML Diagram

generating tools necessity can be identified with the time spent on analyzing business

requirements and the low quality of the human analysis.

3.2 Proposing Model/design

This study will focus on providing solution to generate Use-Case diagram and Class diagram

against the particular business requirement. system will read and understand the business

requirement using Natural Language Processing and Machine learning and identifying entities

and relationships on that for generate use case diagram. And also, classes and relationship

between classes will also be identified to generate class diagram. Then system will show

generated diagram with including user interacting feature where user can add additional element

and add changes to use case or class diagram or edit existing element and its attribute or

relations. There after user can confirm to generate both use case and class diagram respectively.

The proposed system is limited only in reducing the time taken to draw use-case and class

diagrams against the business requirements in software developments projects.

According to the investigation carried out almost all works that have found was related to

requirement text transform to one particular model diagram either use case or class diagram.

But in this proposed system will review existing NLP and Machine learning techniques which

have been applied to user stories or business requirements and will investigate how well they

meet the requirement of text to model transformation.

17

Figure 3.1 Proposed Solution Design

As showing in the Figure 3.1 proposed solution design, user can upload a text file containing a

scenario or simply copy and paste the text inside. The system extracts word fragments and

named entities using the NLP module. Subsequently, the ML module will identify and extract

the usecases, actors, classes, associations according to the ML algorithms which have

implemented. Plant UML modeling draws the use case and class diagram. The system allows

editing of the generated diagrams and the user can modify and adjust the use cases, actors,

classes, attributes and all types of relationships. Therefore, the output is a highly customizable

output that the user will be able to achieve the desired output according to the business

requirements provided.

3.3 Methodology

Text data contains a lot of information, but not all of it matters. We can search for names; others

like to get specific links between these named entities. Our goal varies according to our needs.

Sometimes we have to go through all the legal documents to find a legal precedent to validate

your current case or you may need to go through all the research material to find relevant

information on how to cure a disease. There are many other examples such as resume

harvesting, media analysis, email analysis.

18

Imagine when we have to manually go through all the textual data and extract the most relevant

information. Certainly, it is an uphill struggle and you might even end up skipping important

information in the texts.

Therefore, providing an automated way to extract information from text data and present it in a

structured way will help us reap many benefits and significantly reduce the time we have to

spend browsing text documents. This is precisely what information mining strives to achieve.

As the sentences are made up of words that belong to different Parts of Speech which normally

referred as POS. There are eight different Part of Speech in the English language such as noun,

verb, adverb, preposition, conjunction, adjective, intersection and pronoun.

How a specific word functioning in meaning in a given sentence determined by The Parts of

Speech (POS). As an example, take the word “good”. In the sentence, “he was concerned with

establishing and maintaining his good name”, “good” is used as an adjective. Whereas, in the

sentence, “he convinces his father to use his genius for the good of mankind”, “good” is treated

as a noun.

This shows that the Parts of Speech tag of a word is very important when we want to understand

the meaning of a sentence. And this way can influence to extract meaningful information from

our business requirement or functional requirement text.

19

3.4 Algorithmic design

Figure 3.2 Process flow with NLP And ML Model

Figure 3.2 shows the process flow with Natural language processing and Machine learning

model where several preprocessing stages has involved before proceeding to the ML based

information extraction.

Usually, the target information which is related to the requirement text is basically arranged in

a few specific patterns. When we look into the Parts of Speech tagging of a certain sentence,

they follow with a specific pattern. If we can investigate towards those patterns, we can easily

extract the information. Using that extracted information, we can easily create usecase and class

diagram for the project purpose.

For the purposes of algorithmic design, we can choose any pos tagger modules for the English

Literature. Part of the process of marking parts of speech is to mark the words in a story based

on its definition and context for a specific part.

Some POS tagging examples can be mention as: Coordinating Conjunction (CC), Cardinal

Digit (CD), existential (EX), adjective (JJ), modal (MD) such as could, will etc., proper noun

(NNP), predeterminer (PDT), possessive pronoun (PRP), etc. (Rachiele, G.2018) To assign

grammatical information to each word in a sentence we used POS taggers.

20

Most of the information in a requirement text is made up with verb, gerund/present (VBG),

noun plural (NNS), TO, verb base (VB), noun (NN), preposition or subordinating conjunction

with these pos taggers. But they come with different patterns.

Sample requirement text would be like below.

Dataset would be like as Table 3.1 shown below according to the above requirement text.

Table 3.1 Sample dataset

21

For now, according to the given sample, there are 3 kinds of specific patterns that can identify:

• {VBG>NNS>TO>VB>NN}

• {NN>IN>DT>NN}

• {VB>DT>NNS>TO>VB}

Like this way we need to experiment more requirement text for find out more feasible patterns

to figure out the algorithmic features behind this project. Machine learning techniques we can

use to,

• identify actors, usecase and classes

• identify relationship types in use-case diagram and class diagram.

Finding the key terms for class or use case diagram is reflected a classification task in machine

learning. The stories narrate different attributes of a diagram and the task is to identify key

terms for respective attributes. The use case diagram and class diagram have different set of

attributes. The machine learning techniques polarize the data into two clusters; one is training

set and the other is testing test. The features from training instances are used for learning

purpose of the model. The learned model is later on used for prediction of words for unseen

dataset. The comparison of predicted and ground truth key terms assist to estimate performance

of the model.

One of the basic statistical techniques depending on the adjustments among the classification

result by means of probability and overheads that supplement the conclusion. It follows the

theory that problem is probability task and expected values are already available in the space

set. The choice is made with instance with minimal error rate. On contrary, where the cost value

is not being taken into account for decision making, the class with highest probability is chosen.

22

3.4.1 Preprocess Functional requirement texts

All the words in a document have different chances to appear as a key term in respective

attribute. Initially, all the token in a sentence is recognized by means of delimiters. The recurrent

words such as propositions don’t participate as key terms. However, while calculating the term

frequency and inverse document term frequency (TF X IDF), these expressions can dominate

other meaningful expressions. Consequently, to deal with these challenging terms we can

eradicate from script by allocating probability assessment of zero. Additionally, numerals and

non-alphanumeric characters should be removed.

Text pre-processing involves reduction of ambiguities caused by use of several forms of a

certain verb, or singular/plural form of a word. Further, stop words, such as a, the, of, is, do not

carry much information towards our goal of summarization. Described below are multiple

operations employed for preprocessing of documents.

• Document segmentation

A text is divided into several paragraphs to find where each sentence is placed in its

respective paragraph.

• Stemming.

We apply stemming to bring a word to its root or base form. The examples include use of a

singular form rather than using a plural, or removal of ‘ing’ from a verb. To this end,

Stanford NLP stemmer is employed in this paper. Paragraph segmentation. Paragraph

segmentation divides a paragraph into sentences using sentence tags.

• Word normalization.

Each sentence consists of multiple normalized words. Through normalization and

lemmatization individual words become one common form, stemming down to their roots.

Ambiguities are removed by Porter’s algorithm.

• Stop word filtering.

Stop words can be filtered out after performing other preprocessing steps. There is no

uniform rule for selecting a stop word because it depends on individual tasks. In this work,

words such as a, is, in, the, of are selected as stop words and are filtered out from the

document. In text mining applications stop word filtering is considered as a standard step.

23

3.4.2 Machine Learning Techniques to Identify Diagram Elements

3.4.2.1 Classification Model

The training data correlated with computed feature value declared formerly, we can take

advantage of naïve Bayes classifier in order to identify multiple attributes of diagram. The

features for each attribute set are different from other. Hence, we would calculate independent

features for all. Based on this assumption we compute separate features and use naïve Bayes

for extraction of key terms. Using above-mentioned formula provided with training data, a

classification model can be designed and pre-process the data for extracting the key terms such

as actors, use case, class and their relationship. Furthermore, other text features like position

and distance of text can be integrated to improve accuracy. One of the major hypotheses of

naïve Bayes is each feature has independent existence and equally contributes to absolute

outcome.

There are a variety of metrics which can be used to assess how effectively a model works. To

determine the optimal evaluation measure for our model, we must first comprehend what every

metric evaluates. Although we may hear that a trained model is incredibly accurate, based on

the question, what our model is seeking to address, another statistic may be more appropriate

for evaluating the model.

3.4.2.2 Recurrent neural network Unit

Recurrent neural network (RNN) (Jordan, 1997) is being successfully applied to sequential

training issues also including action identification (Donahue et al., 2014), scenery tagging

(Byeon et al., 2015), and speech understanding (Cho et al., 2014). A RNN features a recurring

connectivity, unlike feed-forward systems like convolution neural network (CNN), how the

final hidden stage is an intake towards the forward stage. The following is a description of how

stage is updated,

The intake and concealed states at 𝜏 are time interval are 𝑥𝑡𝜖𝑅𝑀 and ℎ𝑡 𝜖𝑅𝑁 , correspondingly.

The values for the present and recurrent inputs, as well as the bias of the neuron, are 𝑊 ∈

24

 𝑅𝑁𝑋𝑀, 𝑈 ∈ 𝑅𝑁𝑋𝑁, and b 𝜖 𝑅𝑁. N is the count of total neurons in this RNN layers, and 𝜎 is a

component wise activation function of the neuron. Due to the repetitive manipulation of the

recurrence weight matrices, RNN learning struggles out from gradient disappearing and

expanding issue. To solve the gradient difficulties, numerous RNN versions have been

suggested, including the long short-term memory (LSTM) (Greff et al., 2017; Jozefowicz,

Zaremba and Sutskever, 2015) and the gated recurrent unit (GRU) (Cho et al., 2014). As a

result, building and learning a broad LSTM or GRU-dependent RNN networks is nearly

impossible. Conventional Convolutional Neural Networks with non-soaked activation

functions like relu, on the other hand, may be layered into a deep neural network and learned

effectively. However, residue interconnections for LSTM systems have been explored in

numerous studies (Pradhan and Longpre, 2016; Wu et al., 2016), no substantial enhancement

has been achieved Furthermore, all extant RNN models have the same ingredient as above

formula.

in which the continuous connections debilitate together all sensory cells. Because the

straightforward display of the outcomes of each sensory cell (Karpathy, Johnson and Fei-Fei,

2015) makes it extremely difficult to determine the functionality of one sensory cell without

understanding everyone else, it is difficult to comprehend and grasp the functions of the

programmed sensory cells (e.g., what sequences each sensory cell reacts to). The autonomously

recurrent neural networks (RNNs) is introduced in this study as a current form of RNN. The

recurring input parameters are, as

3.4.2.3 RNN based Sequence to Sequence Model

This gives a numerous benefit well over standard RNN, which include Machine translation

(Bahdanau, Cho and Bengio, 2014; Klein et al., 2017), headlines creation (Ayana et al., 2017;

Chopra, Auli and Rush, 2016; Rush, Chopra and Weston, 2015), textual summarization

(Chopra, Auli and Rush, 2016), as well as the speech recognition (Donahue et al., 2014) have

all been effectively used using sequence to sequence algorithms (Donahue et al., 2014). In the

(Rush, Chopra and Weston, 2015), influenced with the achievement of intelligent or neural

25

machine translations (NMT), developed the neural consideration the sequence to sequence

design by the based on attention encoder and the Neural Network Languages Model (NNLM)

decoder for extracting key phrase or relation phrase among text, which also outperformed the

conventional technique significantly. Improved strategies were proposed (Sutskever, Vinyals

and Le, 2014) on this approach by substituting a sequence to sequence RNNs with conventional

techniques.

The proposed algorithm includes the recursive encoder and a Recurrent Neural Network and

decoding, and it beats some other best models on widely utilized benchmarked datasets, such

as in (Chopra, Auli and Rush, 2016) has used a rich-feature the encoder to extract buzzwords.

Numerous the text extraction algorithms focused on reducing brief content to phrase

descriptions (Sutskever, Vinyals and Le, 2014). The propose method overcomes numerous

flaws for content extraction in lengthy materials:

✓ They are able to correctly recreate the key elements of primary source materials.

✓ They are able to process long sentences effectively.

✓ They have a tendency not to repeat words conveying same meaning, resulting in

artificial summation.

The proposed recursive RNN based system indirectly blends extracting feature to address the

initial two difficulties.

Such style uses a link to extract words from original sentence retain the context. The real data

can be correctly duplicated. The effectiveness of these Recursive-RNN based mechanisms has

been proven in several following experiments that have attained excellent performance (Jiang

and Bansal, 2018).

3.4.2.4 Strategies of training

Expose the bias and unpredictability of the train and the test measures are two further non-

trivial problems by the present the seq2seq system. The Seq2seq architectures are often learned

with maximizing the probability of ground-truth words provided by their preceding the ground-

truth words and concealed states. Therefore, they are substituted by characters produced by the

algorithm. The interpretation errors can rapidly build throughout sequencing formation since

the produced symbols or words have never been presented to the decoder throughout learning.

Experiential bias is a term used to describe such phenomenon. The discrepancy of readings is

another problem.

26

A curricular training technique called as planned samples is presented to gradually convert the

decoder's feed from the ground-truth words to algorithm produced words. As a result, the

proposed algorithm overcomes the learning and the testing. It is a feasible method of

minimizing susceptibility bias.

3.5 Data acquiring methods

In this research mainly based on business requirement or user stories collections, there will be

a repository of requirement specification documents, text file contains requirements and

documents which contain functional requirements which can be use as training data sets and

also as preliminary test-cases with techniques to process them. Data acquiring methods and

availability of required data for the research are briefly explained in this section.

For the both modules Data will be acquired through online resources and also from various

people and company involve with software developments. Online resources can be various

books, white papers and also freely available repositories in world wide web. From this resource

category I expect to take texts which contains software description, big picture information

about a desired software and specially software requirements or software requirements

specification documents. These texts will explain the idea of a software and what will expect to

find in terms of requirements. In this module expect to have the feature to identify functional

and non-functional requirements most important and valuable resources would be classified

requirement text and software requirement specification documents. Some of the resources that

can be found in world wide web as follow.

• Software requirement dataset can be find in keggle

(https://www.kaggle.com/iamsouvik/software-requirements-dataset).

• Labeled requirement dataset can be find in zenodo (

https://zenodo.org/record/268542#.X05hwMgzZhF).

• Freely available Natural Language Requirements Dataset

(http://fmt.isti.cnr.it/nlreqdataset/).

these NLP and ML models would be evaluated by adding text which containing the

requirements of a software product or project and check result to confirm how far this module

able to identify use-case and class diagram elements through the requirement text. This can be

https://www.kaggle.com/iamsouvik/software-requirements-dataset
https://zenodo.org/record/268542#.X05hwMgzZhF
http://fmt.isti.cnr.it/nlreqdataset/

27

checked easily by referencing the software requirements specification document if available, if

not that can be checked manually. Evaluation method for these models with adding only

functional requirements and check result to confirm whether the output results are correct.

Further we can use, case studies and diagrams drawn for them (as an example BIT Case studies

can be used) and also text books having case studies and answers can be used for the evaluation.

This chapter mainly focused on detailed explanation of problem analysis and methodology of

the proposed system. First in here describing the problem analysis was performed and the

proposed model with design has mentioned thereafter. Then the methodology section started

with explaining the methodology that has been used for the research and algorithmic design

shown at the next section. In there the sample data sets which is prepared for the model

training was shown according to the data set that has been extracted for the project through

various sources as mention in the Data acquiring methods section at last. Mainly in this

chapter preprocessing techniques for requirement texts and machine learning techniques to

identify diagram elements has explained deeply.

28

CHAPTER 4

IMPLEMENTATION

Having discussed the problem analysis and methodology of the proposed system in the previous

chapter, in this chapter it will be focused on implementation process of the proposed system

with different NLP and ML related techniques and libraries. It starts off with a discussion on

the identifying Use case and Class Diagram related elements with NLP and ML techniques for

the implementation of the prototype followed by detail explanation of the implementation

process and problems encountered with providing proposed solutions upon will also be

discussed in using appropriate code snippets

After preparing the initial dataset as Figure 4.1 we have separate it with each component

according to the diagram element wise. Then we start to working on model building according

to each dataset we have prepared. Python has been used as the programming language and

depending on the model and algorithm we chose, relevant library and framework selected for

the experiment.

4.1 Identifying Use case and Class Diagram Entities with NLP and ML

techniques

After dividing the initial dataset to consists of functional requirement sentences against each

diagram element, we have datasets with actors, usecases and classes separately. Thereafter

each Data set is divided in to following sets:

Having,

• 10 percent validation pairs,

• 80 percent training pairs

• 10 percent test pairs.

To identify each diagram element from the requirement text, separate machine learning model

for each element has built using these training datasets.

In the implementation first preprocessing the data for each model using same the python

function as below. Tokenization, finding unique keywords and removing redundant values,

29

check the words in the english dictionary and removing unused punctuation, removing

stopwords etc. are the preprocessing stages done in the implementation.

Thereafter extracting feature task was perform where it checks existence of whole keyword

and also existence of all parts of known keywords were performed.

30

The recurrent words such as propositions don’t participate as key terms. Calculating the term

frequency and inverse document term frequency (TF X IDF), these expressions can dominate

other meaningful expressions. Consequently, to deal with some challenging terms we can

eradicate from script by allocating probability assessment of zero and also, numerals and non-

alphanumeric characters will be removed.

Thereafter naïve based classifier has been implemented and as previous stages clean and

tokenization tasks also perform before generate predicted tags based on decision rule.

31

In the decision rule method, it takes the functional text, and the keywords from the early stage

perform and also stopwords. First it gets scores of each whole keywords from the functional

text provided. Then get scores for each known keywords with all parts in the requirement

sentence. After that, three steps performed as,

1. adding tag if posterior probability is higher than or equal to 0.5

2. add highest scoring to TF-IDF keywords if not already added.

3. Add ‘c#’ if there no tags (‘c#’ just a special keyword to identify it clearly from other

keywords)

Following above procedures separate models created to identify actors, usecase and classes

from the functional requirement text. Those models trained using training dataset and

evaluation performed using test dataset. We have to perform model training for each actor,

usecase and class Models and store those in a file location to predict using different dataset

(validation dataset) in the evaluation stage.

32

4.2 Identifying Use case and Class Diagram Relationships with NLP and

ML techniques

In this implementation our focus mainly on identifying relationship in both use case and class

diagram related components separately. This is a combination of two models where one model

will be identifying relationship involved entities. As an example of use case diagram first model

will identify what are the actors and use cases involve in the relationship. Second model will

be identifying the relationship type of that particular relationship. These two models need to

build for both use case and class diagram separately. Two models per each diagram type to

identify relationship involved in particular functional requirement text.

As previous implementation, in this implementation also we dividing the initial dataset to

consists of functional requirement sentences against each diagram element which we need this

time usecase relationship and class relationship. Each dataset, again we need to separate for the

two models as explained above paragraph, where one dataset with relationship involved entities

and other dataset with relationship type along with the functional text of each. Each data set is

divided in to following sets:

Having,

• 10 percent validation pairs,

• 80 percent training pairs

• 10 percent test pairs.

To identify each diagram relationship from the requirement text, two separate machine learning

models for each diagram type has built using these training datasets.

Below mentioning the implementation of model which identifying the diagram entities

involving in the Relationship. For this RNN based Sequence to Sequence Model applied train

and build this model. ‘Keras’ framework and its related libraries used for this implementation

and important code snippets shown below from the implementation.

33

In above code input text will transform to a sequence of text and below code will split the

target text.

34

Above function will generate batch with taking input and output text.

After identifying diagram entities involving in the relationship, second model will identify the

relationship type those entities involved with. Important code snippets shown below from that

model implementation.

In below code showing the Convolution Neural network classifier for text classification to

identify relationship type.

35

In below code it adding regularization to output layer and calculate loss and accuracy of each

iteration of input.

36

The proposed model is trained on CPU system with 32GB RAM. In our experiments, dimension

of hidden states and word embeddings are 256 and 128 respectively. For source and target

vocabulary of roughly 22, 00 words is used for training the network. Proposed network is

capable of retaining the context of words; hence we can employ shorter vocabulary size.

Proposed recursive RNN structure introduces very low number of learnable parameters to

network. Recursive property adds 153 and spare parameters in network. Contrary to train

embedding from scratch for smaller number of words we have employed pre-trained embedding

for words representation. We have trained our network with learning rate of 0.0001.

Accumulator value is set to 0.1 using Adagrad. For regularization, we have employed early

stopping. We concurrently run our model in training and evaluation mode. Early stopping

ceases network training when it seems over fit.

4.3 Draw diagram with identified diagram elements

With this implementation we want to generate the usecase and class diagram according to

identified elements through previous two implementation. Usecase and class diagram elements

that has been identified from functional requirement text has outputted as JSON file format.

Sample JSON output structure can be seen as Figure 4.1.

Figure 4.1 Sample JSON output format

37

According to the generated JSON format generate the plantUML markup to render was the goal

of this implementation. After generating plantUML markup text, with using ‘plantuml’ python

library where we can simply generate the respective diagrams. Implementation shown below.

38

This chapter discussed about the implementation process of the proposed UML Diagrams

Generator system. Chapter started with justifying the use of various ML models for the

identifying different diagram elements on the both usecase and class diagram. Mainly in

identifying use case and class diagram entities with NLP and ML techniques describe as the

first section and after identifying use case and class diagram relationships with NLP and ML

techniques described. After wards implementation for the drawing diagram with identified

diagram elements was described. each section in this chapter was describe with the explanation

through code snippets for better understanding of the implementation.

39

CHAPTER 5

EVALUATION AND RESULTS

In this chapter the results of the implementation are presented and discussed evaluation with

reference to the aim of the study, which was to generating UML diagrams against Business

Requirements Using Natural language processing and Machine learning. The two sub-aims -

the first to find the most appropriate NLP and ML techniques towards identifying use case and

class diagrams elements from business requirement, and the second to generate diagram using

the diagram generating tool form the main comparisons in the evaluation. Evaluation was done

by using a case study and solution given in a text book with the project output.

To describe the functional requirements, we used UML use case diagram and class diagrams as

two different approaches. Natural Language Processing (NLP) and Machine learning (ML)

techniques would use to extract the information because the requirements are written in natural

language. The aim of this project is to setup an approach to automate in generating the UML

use case diagrams and class diagrams from the business requirements text using natural

language processing and Machine learning technologies.

5.1 Collecting Dataset

This proposed system will be adhering to experimental research methodology. Proposed system

will contain with two main approaches to be considered as identify use case elements through

business requirement and identify class Diagram elements through business requirement. Each

approach evaluation data availability briefly explains as follows.

For the both NLP and ML models required Data will be acquired through online resources and

also from various people and company involve with software developments. Online resources

can be various books, white papers and also freely available repositories in world wide web.

From this resource category, expect to take texts which contains software description, big

picture information about a desired software and specially software requirements or

requirement text from software requirements specification documents. These texts will explain

the idea of a software and what will expect to find in terms of requirements. In this module

expect to have the feature to identify use case and class diagram required elements most

important and valuable resources would be classified requirement text and software

requirement specification documents. Some of the resources that can be found in world wide

web as follow.

40

• Software requirement dataset can be found in Kaggle and just needed functional

requirements. (https://www.kaggle.com/iamsouvik/software-requirements-dataset)

• Labeled requirement dataset can be find in Zenodo and need to extract functional

requirements from them. (https://zenodo.org/record/268542#.X05hwMgzZhF)

• Freely available Natural Language Requirements Dataset in National Research council

of Italy with software Requirement specification documents, from them functional

requirements needed to extract. (http://fmt.isti.cnr.it/nlreqdataset/)

41

5.2 Dataset Preparation

Dataset has been created with functional requirements which has been extracted through

above mentioned sources. Sample dataset format model training created as below Figure 5.1.

Both these NLP and ML models will be evaluated by adding text containing the requirements

of a software product or project and check result to confirm how far this module able to identify

use-case and class diagram elements through the requirement text. Also, it’s worth to evaluate

using a Case study and Solution given in a text book with the model output.

Figure 5.1 Sample dataset format with functional requirement

42

5.3 Evaluation approach

Accuracy of identifying elements to draw use case and class diagram can be checked easily by

referencing Case study and Solution given in a text book. Also referring the software

requirements specification document diagrams if those available, if not then that can be checked

by manually identifying. Then we can check result to confirm whether the output results are

same or different. From that we can be able to evaluate that, model was able to identify relevant

elements which are useful to draw complete use case and class diagram.

To evaluate the Model, we can use the term called Model Evaluation Metrics.

Model evaluation metrics are needed to measure model performance. The choice of evaluation

parameters depends on the machine learning task provided. In this project that is classification.

Classification metrics

When performing predictions through classification, four kinds of result that could occur as

follow.

• True positives are when we assume an observation belongs to a particular class and

actually it is belonging to that exact class.

• True negatives are when we assume an observation is not belonging to a particular

class and that actually not belonging to that particular class as expected.

• False positives occur when we predict our observation belongs to a one particular class

but in reality, it is not belonging to that class.

• False negatives occur when we assume an observation is not belonging to a particular

class but actually it is belonging to that same class.

Above mentioned four types of results are usually plotted on a confusion matrix. Following

confusion matrix in Figure 5.2 can be presented as an example for the case of binary

classification.

43

Figure 5.2 confusion matrix for the case of binary classification

Accuracy, precision, and recall are the three main metrics that can be used to evaluate a

classification model in generally.

Accuracy – In here, this is defining as the percentage of correctly predicted predictions of the

test data. This can be calculated simply with dividing the number of correctly predicted

predictions by the total number of all predictions.

Precision – This would be defined as a fraction of true positives which means relevant

examples among all of the examples as this will predicted to belong in a particular class.

Simply this means how many relevant items were predicted.

44

Recall – This is also defined as the fraction of test data which were predicted as belonging to

a particular class with respect to all of the test data that truly belong in the class. Simply it

means how many relevant items are predicted.

To evaluate both the precision and recall of a model is important. Therefore, it's better to have

one number to evaluate a machine learning model with including this precision and recall

metrics. Thus, it makes sense to have a common approach for combining these metrics. f-

score is introduced to address that concern.

In here β parameter allows to control the tradeoff value as it is important between precision

and recall. When β<1 means focuses more on precision, and β>1 indicating focuses more on

recall. In this case, it’s better to focus more on the model's recall than its precision.

5.4 Evaluation and Results

Detailed discussions of the evaluation results shown below.

5.4.1 Identifying use case diagram element from requirement text

Machine Learning model has able to identified use case diagram element such as actors, use-

cases to acceptable extend since the three main metrics Precision, Recall and F1 score showed

good scores as below.

Identifying Actors

After execution of the program against the functional requirement text identified actors by ML

model and test dataset used to evaluate shown in below Table 5.1, Table 5.2 and Table 5.3.

45

Table 5.1 Test data snippet for actor in functional text

Table 5.2 Model Predicted results snippet for identified actors

46

The evaluation result of the three main metrics used to evaluate a classification model as

below.

Table 5.3 Evaluation metric result for actors

Identifying Use case

Identifying use cases from the requirement text also had good evaluation metric scores. Test

and it’s predicted data set can find on below Table 5.4 and 5.5.

Table 5.4 Test data snippet for usecase in functional text

47

Table 5.5 Model Predicted results snippet for identified usecases

Evaluation metrics calculation for identifying usecase from functional requirement text as

below Table 5.6.

Table 5.6 Evaluation metric result for usecases

Identifying use case relationships

Identifying use case relationships was done with two models as explained in Implementation

chapter. First model identifying relationship involved entities. After several training with

parameter changing, it was able to generate good result.

In Table 5.7 shows the data snippet from the preprocessing stage data separation to identify use

case relationship according to involved entity types. As an example, whether that functional

text having actor to use case relationship or use case to use case relationship. Table 5.8 shows

the Test data snippet used to Test the first ML model and Table 5.9 shows the predicted result.

48

Table 5.7 Data snippet from preprocessing stage data separation

49

Table 5.8 Test data snippet for use case relationship involved entities in functional text

50

Table 5.9 Model Predicted results snippet for identified use case relationship involved entities

Second model will be identifying the relationship type of that particular relationship that can

identify in respective functional requirement text. Table 5.10 shows the Test data snippet used

to test the second ML model and Table 5.11 shows the predicted result of it.

51

Table 5.10 Test data snippet for use case relationship Type in functional text

Table 5.11 Model Predicted results snippet for identified use case relationship type

52

5.4.2 Identifying class diagram element from requirement text

Trained NLP and ML model able to identify class diagram elements from the functional

requirement input text. This project is only considered on class diagram elements such as

classes and identifying classes that have relationship. Due to limited amount of data relationship

type identifying is difficult with this phase. Identifying classes within the functional

requirement text has acceptable result as the three main metrics Precision, Recall and F1 score

showed good scores as below.

Identifying Classes

Identifying classes from the requirement text had good evaluation metric scores. Test dataset

and it’s predicted data set can find on below Table 5.12 and Table 5.13 respectively.

Table 5.12 Test data snippet for classes in functional text

53

Table 5.13 Model Predicted results snippet for identified classes

Evaluation metrics calculation for identifying classes from functional requirement text as

below Table 5.14.

Table 5.14 Evaluation metric result for classes

Identifying Class Relationships

Same as usecase relationships, identifying class relationship also done with two models as

explained in Implementation chapter. First model identifying relationship involved entities.

After several training with parameter changing, it was able to generate good result.

In Table 5.15 shows the data snippet from the preprocessing stage data separation to identify

class relationship according to involved entity types. Table 5.16 shows the Test data snippet

used to Test the first ML model and Table 5.17 shows the predicted result.

54

Table 5.15 Data snippet from preprocessing stage class relationship data

55

Table 5.16 Test data snippet for class relationship involved entities in functional text

56

Table 5.17 Model Predicted results snippet for identified class relationship involved entities

Second model will be identifying the class relationship type of that particular relationship that

can identify in respective functional requirement text. Table 5.18 shows the Test data snippet

used to test the second ML model and Table 5.19 shows the predicted result of it.

57

Table 5.18 Test data snippet for class relationship type in functional text

58

Table 5.19 Model Predicted results snippet for identified class relationship type

5.4.3 Generating usecase and class Diagram

In here after identifying relevant usecase and class diagram elements from the functional

requirement text using NLP and ML models, particular diagram can be drowned with Plant

UML tool. Generated diagram can evaluate using and comparing the actual diagram that used

to test the program.

Generating Usecase diagram

Generated language code after deriving the use case elements as below in Figure 5.3. In their

identified usecase diagram elements have been put together in a single language code to

generate usecase diagram.

59

Figure 5.3 Program generated language code for usecase diagram

Syntax error would occur in generated code as Figure 5.3 and user can make changes to the

code with referring identified actor, usecases and their relationship. In below Figure 5.4 shows

the edited version of above Figure 5.3 language code.

Figure 5.4 Edited language code for usecase diagram

60

Figure 5.5 shows the actual diagram that was given in case study and Figure 5.6 shows the

generated usecase diagram according to above Figure 5.4 edited language code.

Figure 5.5 Actual use case diagram according to the functional text

61

Figure 5.6 Generated usecase diagram using Plant UML tool

Generating Class diagram

Generated language code after deriving the class diagram’s elements as below in Figure 5.7. In

their identified class diagram elements have been put together in a single language code to

generate class diagram.

62

Figure 5.7 Program generated language code for class diagram

Figure 5.8 Edited language code for class diagram

63

After identifying syntax error and incorrect classes and their relationships user can edit the

language code accordingly. Edited language code for above Figure 5.7 would be as above

Figure 5.8

Figure 5.9 shows the actual diagram according to the given functional text and Figure 5.10

shows the generated class diagram according to above Figure 5.8 edited language code.

Figure 5.9 Actual usecase diagram according to the functional text

Figure 5.10 Generated class diagram using Plant UML tool

64

As a conclusion this project prototype has identified some important elements that have

identified by the evaluator, in here it mentioning as actual elements or diagram for particular

functional requirement text. If this project is domain specific most of element would have been

identified the application itself. In general, this proposed diagram generating tool has identified

and generated the use case diagram and class diagram up to a considerable extent which gives

a good idea about the scenario.

This chapter started with describing collecting of dataset and dataset preparation where it

described the data acquiring method from various sources for the both NLP and ML model

training and validation. Then evaluation approach and selected different types of evaluators as

classification metrics to evaluate the different models of the project along with the justifications

for those selections. Evaluation and results were discussed deeply according to the identifying

use case diagram element from requirement text and identifying class diagram element from

requirement text. In there expected results against predicted results shown according to the

snippets of the test dataset and also generated diagram using plant UML tool also be shown

against the actual diagram which is expected according to the test functional text.

65

CHAPTER 6

CONCLUSION AND FUTURE WORK

The previous chapter presented the results of the evaluation process carried out on the System.

This chapter will be focused on concluding the project by highlighting the achievement of the

goal and objectives, the problems and challenges faced during the life cycle of the project.

And also, in here the limitations of the project, identified future enhancements and closing

remarks describe at the end of this chapter.

6.1 Conclusion

Comparing the research and studies conducted in this context, the generation of UML use case

diagram and class diagram from the natural language text using natural language processing

and machine learning technologies can still be considered a relatively new field. There have

been several research attempts to generate automated use case diagrams and class diagrams

using natural language processing and machine learning methods to extract the element of that

diagram from a functional requirement text or user story text. Also, generating the use case and

the class diagram remain the most challenging areas for finding the ability to analyze and

understand business requirement text as a unit of interpretation to extract important elements.

There was good amount of work related to NLP techniques related to identify UML diagram

elements from functional requirement text or user stories. The work represented by C. R.

Narawita, K. Vidanage (2017) is quite similar to the present one but their approach was more

towards with rule-based approach. According to specific sentence pattern they identifying

usecase and class diagram elements from functional requirement text. They were used

classification model to identify relationships type but that’s not specifying what element would

involve to that relationship. And also, they suggested to use regression and they believe that

would be a better approach compared to classification.

There were some works that automatically generate conceptual models from a series of user

stories in the form of OWL ontology, and our approach to automatically generating UML use

case diagram from functional requirements text or user stories. The advantage of this

66

technology is the ability to reduce the ambiguity of software requirements specifications and to

facilitate the work of the development team and product owner to generate automated design

templates. The advantage of using automate UML use case and class diagram generator is that,

it is easy to understand and helps the developer to interpret the functional requirements or user

stories in one way so that the teams are really integrated in the design process. Also, this allows

designers to save time as they can generate UML use case and Class models from a series of

functional requirement or user stories in a short time.

In this research, the developed prototype can read and fully analyze the functional requirements

provided in English language texts. It can also automatically generate use case diagram and

class diagrams. In our system early stage uses NLP technologies such as tokenization and POS

tagging to interpret system specifications based on a predetermined set of syntactic heuristic

rules. Then, our proposed system includes the ability to analyze and understand input scenarios

with the help of a machine learning model with a classification and also Recurrent neural

network-based Sequence to Sequence Model.

We have taken the advantage of naïve Bayes classifier in order to identify multiple attributes

of diagram. The features for each attribute set are different from other. Hence, we would

calculate independent features for all. Based on this assumption we compute separate features

and use naïve Bayes for extraction of key terms. And also, Recurrent neural network-based

Sequence to Sequence Model used to identify relationships among actors to use cases, use case

to use case and class relationships. Using the training dataset we prepared, a classification

model can be designed and pre-process the data for extracting the key terms such as actors, use

cases, class and their relationship.

In the initial process, the proposed system faced some challenges in research and development

and had to be developed throughout the experiments with different approaches. The author has

done a lot of experimentation and brought it to its present state. Currently the proposed system

has its own ingenuity to extract the essence of UML use case and class diagrams and can

generate use case and class diagrams according to the provided requirement text with

customization. The main objective of this project was to automate generation of use case

diagram and class diagram from the user input text scenario to reduce the time, and cost factors

67

for both system users and business analyst. That input text would be functional requirement text

or user stories in the agile point of view.

Identifying class attributes and multiplicity for classes is very important features in generating

the class diagram. Furthermore, it is important to correctly identify include and extend

relationships in the use case diagram. However, due to the time limit of the research and the

complexity of the task, the author has placed it as a future improvement with the machine

learning model, which requires a high level of intelligence and high accuracy and a good

amount of data for training. The better improved version of a machine learning or deep learning

model should be considered in this regard.

Moreover, the proposed method provides a static and dynamic view for a given business

requirement by generating a class diagram and use case diagram where user can edit the diagram

with Plant UML language code. In relation to the evaluation and testing performed, the system

demonstrates the ability to generate use case and class diagram according to the input text of

the functional requirement or set of user stories. With the use of NLP and ML technologies

researched and implemented by the author, the relevant system will give adequate results in a

reasonable time. But the results can prove that the approach is successful and adaptable to a

variety of business situations. This is simple to prove that the system is pretty much a good

product. The system has the ability to identify business decisions in words, by analyzing the

user's writing style.

In conclusion, the author has done an in-depth analysis and improvements in the field of

generating the use case and class diagram against business requirement. By fine-tuning and

preparing more data for different set of business domains this research may eventually lead to

a commercial product, which will certainly help the system users to get a quick and rough

overview regarding to the system to be developed.

6.2 Future Work

This system can generate use case diagram and class diagram with identifying relationship and

it’s involved component. It does not have the capability to identify relationship types like

include, extend and generalize relationships in use case diagram, and Aggregation

68

Composition, Generalization in class diagram. Therefore, we hope to provide the ability to reuse

existing use cases to reduce the efforts required to define the use cases and class relationship of

the system. Our goal, on the other hand, is to extend our system to automatically identify other

features such as class diagram multiplicity and class attribute. With this phase it couldn’t

achieve as reason of Limited amount of data and Domain variation among data instances.

Improving this sequence-to-sequence learning approach with significant amounts of data may

be targeted for specific domain data in the future.

REFERENCES

✓ Adhav, V., Ahire, D., Jadhav, A. and Lokhande, D. (2015). ‘Class Diagram Extraction

from Textual Requirements Using NLP Techniques’. IOSR Journal of Computer

Engineering, 17(2), pp.27–29.

✓ Ayana, Shen, S.-Q., Lin, Y.-K., Tu, C.-C., Zhao, Y., Liu, Z.-Y. and Sun, M.-S. (2017).

Recent Advances on Neural Headline Generation. Journal of Computer Science and

Technology, 32(4), pp.768–784.

✓ Azzazi, A. (2017). ‘A Framework using NLP to automatically convert User-Stories

into Use Cases in Software Projects’. IJCSNS International Journal of Computer

Science and Network Security, 17(5), p.71. Available.

at:http://paper.ijcsns.org/07_book/201705/20170510. pdf (Accessed: 10 Sep. 2020).

✓ Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural Machine Translation by Jointly

Learning to Align and Translate. arXiv.org. Available at:

https://arxiv.org/abs/1409.0473.

✓ Bajwa,I. S. & Choudhary,M. A. (2006) “Natural language processing based automated

system for uml diagrams generation,” in The 18th Saudi National Computer Conf.

on computer science (NCC18). Riyadh, Saudi Arabia: The Saudi Computer Society

(SCS), Riyadh, Saudi Arabia, 2006, pp. 1-6.

✓ Barba, P., Lexalytics, (2020). ‘Machine Learning (ML) for Natural Language

Processing (NLP)’. Available at: https://www.lexalytics.com/lexablog/machine-

learning-natural-language-processing (Accessed: 29 Aug 2020).

✓ Bhagat, S., Kapadni, P., Kapadnis, N., Patil, D. and Baheti, M. (2012), ‘Class Diagram

Extraction Using NLP’. International Journal of electronics, Communication & Soft

Computing Science & Engineering, p.1 Available at:

http://www.ijecscse.org/papers/SpecialIssue/comp2/190.pdf (Accessed: 10 Sep. 2020).

✓ Bradbury, J., Merity, S., Xiong, C. and Socher, R. (2016). Quasi-Recurrent Neural

Networks. arXiv:1611.01576 [cs]. Available at: https://arxiv.org/abs/1611.01576

[Accessed 28 Aug. 2021].

✓ Byeon, W., Breuel, T., Raue, F. and Liwicki, M. (2015). Scene Labeling with LSTM

Recurrent Neural Networks. , pp.3547–3555.

✓ Cho, K., Merrienboer, Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and

Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation. arXiv.org. Available at:

https://arxiv.org/abs/1406.1078.

✓ Chopra, S., Auli, M. and Rush, A.M. (2016). Abstractive Sentence Summarization

with Attentive Recurrent Neural Networks. Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pp.93–98.

✓ Computer Notes. (2013). ‘Write a Note on Software Design Phases’. Available at:

https://ecomputernotes.com/software-engineering/write-a-note-on-software-design-

phases (Accessed: 20 Mar. 2021).

✓ Deeptimahanti, D. and Babar, M., (2009). ‘An Automated Tool for Generating UML

Models from Natural Language Requirements’. 2009 IEEE/ACM International

Conference on Automated Software Engineering, pp 680-682.

doi:10.1109/ASE.2009.48.

✓ Deeptimahanti, D.K. and Sanyal, R. (2011). ‘Semi-automatic generation of UML

models from natural language requirements’. Proceedings of the 4th India Software

Engineering Conference on - ISEC ’11, pp. 165-174. doi:10.1145/1953355.1953378.

✓ Donahue, J., Hendricks, L.A., Rohrbach, M., Venugopalan, S., Guadarrama, S.,

Saenko, K. and Darrell, T. (2014). Long-term Recurrent Convolutional Networks for

Visual Recognition and Description.arXiv.org. Available at:

II

https://arxiv.org/abs/1411.4389 [Accessed 7 Aug. 2021].

✓ Elallaoui, M., Nafil, K. and Touahni, R., (2018). ‘Automatic Transformation of User

Stories into UML Use Case Diagrams using NLP Techniques’. Procedia Computer

Science, 130, pp.42-49.

✓ Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R. and Schmidhuber, J. (2017).

LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and

Learning Systems, 28(10), pp.2222–2232. Available at:

https://arxiv.org/pdf/1503.04069.pdf.

✓ Guru99.com. (2019). ‘Functional Requirements vs Non Functional Requirements: Key

Differences’. Available at: https://www.guru99.com/functional-vs-non-functional-

requirements.html (Accessed: 1 Sep. 2020).

✓ Hamza, Z. and Hammad, M., (2019). ‘Generating UML Use Case Models from

Software Requirements Using Natural Language Processing’. 2019 8th International

Conference on Modeling Simulation and Applied Optimization (ICMSAO).

✓ He, K., Zhang, X., Ren, S. and Sun, J. (2015). Deep Residual Learning for Image

Recognition. arXiv.org. Available at: https://arxiv.org/abs/1512.03385.

✓ Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), pp.1735–1780.

✓ Holland, K. (2018). ‘What is a Class Diagram?’ Medium. Available at:

https://medium.com/@katie.holland.runs.fast/what-is-a-class-diagram-c74a2129e66c

(Accessed: 20 Mar. 2021).

✓ Ibrahim, M. and Ahmad, R., (2010). ‘Class Diagram Extraction from Textual

Requirements Using Natural Language Processing (NLP) Techniques’. 2010 Second

International Conference on Computer Research and Development, pp. 200-204.

doi:10.1109/ICCRD.2010.71.

✓ Jaiwai, M. and Sammapun, U. (2017). ‘Extracting UML Class Diagrams from

Software Requirements in Thai using NLP’, pp. 1-5. doi:

10.1109/JCSSE.2017.8025938.

✓ Jiang, Y. and Bansal, M. (2018). Closed-Book Training to Improve Summarization

Encoder Memory. arXiv:1809.04585 [cs]. Available at:

https://arxiv.org/abs/1809.04585 [Accessed 28 Aug. 2021].

✓ Jordan, M.I. (1997). Serial Order: A Parallel Distributed Processing Approach. Neural-

Network Models of Cognition - Biobehavioral Foundations, pp.471–495.

✓ Jozefowicz, R., Zaremba, W. and Sutskever, I. (2015). An Empirical Exploration of

Recurrent Network Architectures. proceedings.mlr.press. Available at:

http://proceedings.mlr.press/v37/jozefowicz15.html.

✓ Karpathy, A., Johnson, J. and Fei-Fei, L. (2015). Visualizing and Understanding

Recurrent Networks. arXiv:1506.02078 [cs]. Available at:

https://arxiv.org/abs/1506.02078 [Accessed 8 Aug. 2021].

✓ Klein, G., Kim, Y., Deng, Y., Senellart, J. and Rush, A.M. (2017). OpenNMT: Open-

Source Toolkit for Neural Machine Translation. arXiv.org. Available at:

https://arxiv.org/abs/1701.02810 [Accessed 25 Aug. 2021].

✓ Kumar, S.K. (2014). ‘Generation of UML class diagram from software requirement

specification using natural language processing’. Available at:

https://www.semanticscholar.org/paper/Generation-of-UML-class-diagram-from-

software-using-Kar/cc3acd603c865de6af012f0b1ab803ad86c88402 [Accessed 08 Sep.

2020].

✓ Lei, T., Zhang, Y., Wang, S.I., Dai, H. and Artzi, Y. (2018). Simple Recurrent Units for

Highly Parallelizable Recurrence. arXiv:1709.02755 [cs]. Available at:

https://arxiv.org/abs/1709.02755 [Accessed 28 Aug. 2021].

✓ Madanayake R. S., (2019) ‘Transformation of Requirement Techniques to Reduce

Duplication of Work in Methodologies’, MPhil Thesis,University of Colombo School

III

of Computing. doi: 10.13140/RG.2.2.11058.22728.

✓ Moldovan, Dan & Surdeanu, Mihai. (2002). ‘On the Role of Information Retrieval and

Information Extraction in Question Answering Systems’. pp. 129-147.

doi:10.1007/978-3-540-45092-4_6.

✓ More, P. and Phalnikar, R. (2012). ‘Generating UML Diagrams from Natural

Language Specifications’. International Journal of Applied Information Systems, 1(8),

pp.19–23. doi: 10.5120/ijais12-450222.

✓ Narawita, C & Vidanage, K. (2016). ‘UML generator - an automated system for model

driven development’. pp. 250-256. doi:10.1109/ICTER.2016.7829928.

✓ Nasiri, S., Rhazali, Y., Lahmer, M. and Chenfour, N. (2020). ‘Towards a Generation of

Class Diagram from User Stories in Agile Methods’. Procedia Computer Science, 170,

pp.831–837. doi: 10.4018/978-1-7998-3661-2.ch008.

✓ Osman, M., Alabwaini, N., Jaber, T. and Alrawashdeh, T., (2019). ‘Generate use case

from the requirements written in a natural language using machine learning’. 2019

IEEE Jordan International Joint Conference on Electrical Engineering and Information

Technology (JEEIT). Available at: https://ieeexplore.ieee.org/document/8717428

(Accessed 5 Sep. 2020).

✓ Pereira, A., 2018. ‘Using NLP to generate user stories from software specification in

natural language’, Universidade Federal do Paraná. Setor de Ciências Exatas.

Programa de Pós-Graduação em Informática, Available at:

https://acervodigital.ufpr.br/handle/1884/58882 (Accessed 6 Sep. 2020).

✓ PlantUML.com. (n.d.). Class Diagram syntax and features. Available at:

https://plantuml.com/class-diagram (Accessed: 10 March 2021).

✓ PlantUML.com. (n.d.). Use case Diagram syntax and features. Available at:

https://plantuml.com/use-case-diagram (Accessed: 10 March 2021).

✓ Pradhan, S. and Longpre, S. (2016). Exploring the Depths of Recurrent Neural

Networks with Stochastic Residual Learning.

✓ Rachiele, G. (2018). ‘Tokenization and Parts of Speech(POS) Tagging in Python’s

NLTK library’. [Medium]. Available at:

https://medium.com/@gianpaul.r/tokenization-and-parts-of-speech-pos-tagging-in-

pythons-nltk-library-2d30f70af13b. (Accessed: 07 May. 2021).

✓ Rush, A.M., Chopra, S. and Weston, J. (2015). A Neural Attention Model for

Abstractive Sentence Summarization. arXiv.org. Available at:

https://arxiv.org/abs/1509.00685 [Accessed 17 Aug. 2021].

✓ Sutskever, I., Vinyals, O. and Le, Q.V. (2014). Sequence to Sequence Learning with

Neural Networks. arXiv.org. Available at: https://arxiv.org/abs/1409.3215.

✓ Vachharajani, V. and Pareek, J. (2014). ‘A Proposed Architecture for Automated

Assessment of Use Case Diagrams’. International Journal of Computer Applications,

108(4), pp.975–8887. doi: 10.5120/18902-0193.

✓ Vemuri, S., Chala, S. and Fathi, M., 2017. ‘Automated use case diagram generation

from textual user requirement documents’. 2017 IEEE 30th Canadian Conference on

Electrical and Computer Engineering (CCECE). doi:10.1109/CCECE.2017.7946792.

✓ Visual-paradigm.com. (2019). ‘What is Use Case Diagram?’ Available at:

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-

case-diagram/ (Accessed: 20 Mar. 2021).

✓ Whitney, E., CODE Magazine (2020). ‘Introduction to Gathering Requirements and

Creating Use Cases’. Available at: https://www.codemag.com/Article/0102061/

Introduction-to-Gathering-Requirements-and-Creating-Use-Cases (Accessed: 25 Aug

2020).

✓ Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M.,

Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,

Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H. and Stevens, K. (2016). Google’s

IV

Neural Machine Translation System: Bridging the Gap between Human and Machine

Translation. arXiv.org. Available at: https://arxiv.org/abs/1609.08144.

✓ www.aha.io. (n.d.). ‘User Stories vs. Requirements’. Available at:

https://www.aha.io/blog/user-stories-vs-product-requirements (Accessed: 1 Sep.

2020).

✓ Zakarya, M., Alqaralleh, B., Alemerien, K., Malek, Z., Alksasbeh and Alramadin, T.

(2017). ‘An Automated Use Case Diagrams Generator From Natural Language

Requirements’, 95(5), pp.1182-1190.

V

Appendix A

Following figure illustrate the prototype screenshots with brief description with steps to

followed.

Initial page would be as below where user can upload text file containing the functional

requirement.

VI

After uploading the text file user can review the text containing and can edit if needed.

After proceeding with the ‘Extract UML elements’ user can view the identified elements of

each usecase and class diagram elements. And also user able to view the generated language

code for each diagram and see whether generated language code id syntactically correct or

where it has syntax errors if there any.

VII

User can edit each diagram language code with removing or adding elements if there need.

Following figure showing the edited code of above figure which is generated by the

prototype.

After proceeding with ‘Update Diagram’ user will be able to view the usecase and class

diagram generated accordingly.

VIII

If there any error with generating diagram that also will show with mentioning the syntax

error with the line of the code as following figure.

User can right click on each image and view each diagram in separate tab to view and

download each diagram in original size. And also the particular URL for generated diagrams

can be seen after opening it with separate tab.

IX

