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ABSTRACT 

Data warehousing is a data management system that supports business intelligence activities 

like analytics. It collects data from heterogenous data sources and store this data while 

providing capability to analyze users. The existing warehousing system in the LSEG 

surveillance system is not supported for market data analysis on real-time basis. It keeps 

separate component to analyze and commit that data to storage. This is an outdated model as 

existing warehousing model has limited features when compared to modern warehousing 

technologies.  

Through out critical analysis of utilization, limitations, benefits of modern technologies for 

warehousing system implementation, technical design has been finalized with two hypotheses.  

Experimental based analysis has been performed to satisfy two hypothesis – new system 

developing with Apache Impala and Kudu can perform faster query response than existing 

system, and the new system can perform analytical queries for generating data summarization 

graphs without help of third component for data summarizing. With set of proper experimental 

query execution for both existing and new system above two hypotheses have been satisfied 

successfully.  

But since the algorithm used for data summarization by existing summarization process is client 

legacy algorithm, the two summarization graphs don’t equal exactly point to point– but it has 

been able to provide visual summarization output like existing summarization graph. So, 

implementing existing summarization methodology can be model as UDF which is fallen into 

future works of the project. 

 

Key words: Data Warehousing, LSEG, real-time, analyze, summarize, storage, Graph, Reports, 

legacy system, UDF, Exchange system, Surveillance System, Zooming level, query, latency, 

performance, Hadoop, Apache Kudu. Apache Impala, sql 
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CHAPTER 1 

INTRODUCTION 

Data warehousing has become mandatory feature for lots of systems today. Data are collected 

from different data sources in order to provide meaningful business insight. Data warehouse 

are used to analyze and generate reports from gathered data via heterogeneous sources.  

Therefore, this has become the core of analytical systems.  

Usually, composition of warehouse system is combination of technologies and components 

which provide secured connectivity for users. Including Banking, Airlines, Healthcare, 

Telecommunication, Insurance, Exchange Systems, Hospital industry and lots of systems are 

basically relay on data warehousing systems. Because it provides consistence information on 

various cross-functional activities. Users get capability to access critical data from many 

sources in one place. So, it saves time and reduce stress on production system.   

Historical data warehousing and dynamic data warehousing are two different processes. 

Traditionally, Datawarehouse is refreshed periodically. But with high data ingestion rates, real-

time data ingestion and analysis has become essential. Hence developing data warehousing 

system is not that much of easy task for critical data systems that feeding from exchange data. 

Because higher data rates analysis and streaming the data for report generation and graph point 

generation on different zooming levels really time and resource critical processes. So proper 

architectural design and technology basis implementation is very important for final platform 

of a warehouse.  

Requirement on warehousing system varies from system to system. So, one warehouse solution 

in another system won’t be full filling all needs of your system. Hence understanding each role 

of the warehousing system is very essential. Unless the final implementation would fail to cover 

business requirements. 

By now lots of warehousing technologies are available. Load Manager is one main component 

in warehousing system, and it is responsible on loading data onto warehouse. Warehouse 

Manager ensure consistency of data while creating indexes and views for analyzing. Query 

Manager handle user queries for the warehouse. Moreover, there are end-user access tools for 

supporting data reporting, query, application developing etc. So, combining suitable 

technologies for achieving final goal is very critical. 
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By now Various technologies are available for each component implementation for a desired 

warehouse system. Hadoop Hive, Kudu, HDFS, spark, impala Big Query, OLAP, Oracle, 

Domo, CData Sync, Xplenty, SAP are some of trending warehousing technologies currently 

available.  

So, under this project industrial level warehouse requirement has been addressed. The existing 

data warehouse system in the organization has been developed 12+ years ago. Meanwhile 

expecting business requirements are growing day by day. So, the technical feasibility and 

improvement level for existing native warehousing system has reached its maximum 

performances level.  

Integrating new tools for data query via different open-source user applications and report 

generation has become limited. Moreover, requirement for graph points generation for different 

data analysis purposes has fallen into limited scope as this existing system is not supporting for 

other third-party applications directly. Due to the incompatibilities of existing system data 

storage format, indexing, data types, it must integrate additional intermediate processes to 

support such business requirements. Existing data summarization process is such component 

that reserved for generating graph points for data visualization for user applications.  

Data summarization is one of main analytical task that is performing via modern data warehouse 

technologies. So, under this project, literature level evaluation for suitable warehousing model 

that can full fill the business and technical requirement has been addressed and experimental 

performance level evaluation for graph summarization point generation has been carried out 

while comparing existing graph points generation. 

 

1.1 Motivation 

London Stock Exchange Group (LSEG) plc is a British-based stock exchange and financial 

information company. As well as it is a global financial markets infrastructure business.  

LSEG Technology in Sri Lanka develops and operates high-performance technology solutions, 

including trading, post-trade systems and market surveillance for over 40 organizations and 

exchanges, including this LSEG’s own capital markets. 

On a regular day LSEG Exchange System process around 7 million of orders and trades per day 

for around twenty-four thousands of instruments. Meanwhile another system called LSEG 

surveillance process these data and checks for market manipulation patterns. So, if it finds any 
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abnormalities, Surveillance system triggers alerts and indicates market manipulation scenarios 

for further investigation of the trade.  

When we refer more details on Surveillance system, there is a dashboard to visualize these 

trading data for each instrument. So sometimes during rush hours, it could be several hundreds 

of orders and trades per second for an instrument.  

Hence data summarization plays major role on visualizing these data into the dashboard. 

Currently this summarization process is done with use of separate process. As per its 

implementation, it calculates summery data for each zooming level of data visualization 

considering the time interval displaying in the dashboard and store them in a data warehouse.  

So as per present system implementation, it uses separate process for data analysis and 

summarization. Then these pre summarized values for each summarization level are stored in 

existing data warehouse system. So, there is another process to handle frontend queries with 

this data warehouse. So, we understand, that the design of this existing platform outdated with 

respective to the responsibilities of today warehousing system. 

As described in here, this is an industrial level problem which is practically needed a better 

solution for market data summarization. Summarization is a feature of a warehouse. So, 

depending on the way data is stored, performances levels for facilitating data query with 

summarization would differ. As per the problem here, it expects high performance level query 

output with lower latency for real-time data. This is a challenging task. Google, OLAP, etc. has 

found and established their specific solutions considering the requirements. Here we are 

addressing on market data, which are needed to be more accurate and requires more availability 

for the data accessing while ensure the security of data. Simply the requirement is different and 

unique.  

As described in the introduction, there are lots of available technologies with different core 

features. So, any of technologies cannot be used without proper evaluation process. Due to this 

reason the company has needed proper evaluation process and details gathering for better model 

of data warehousing with required features.  

Existing warehousing model has become a paining point for the total system as it adds up lots 

of unnecessary burden for maintenance. Since it is legacy and initial contributors for the system 

are now not even in the company, maintaining process has become bit complicated due to less 

documentations. So, every moment the system needs a simple upgrade or bug fix, it costs lots 

to the project. Users are developing different business rules and requesting changes in data 

types, ranges, data source schemas, indexes, and queries. As well as they request to integrate 
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new applications for the warehouse to generate reports, graphs etc. Hence currently it has 

identified that scope of data warehousing system is increasing continuously and resource 

expenditure on training and implementation is also growing in considerably amount.  

Due to these reasons, proper warehousing solution implementation with newly emerged 

technologies has become one of next generation project in the organization. 

So, storing historical data and real-time data are the main expectations of the system and high-

performance level big data analysis capabilities has become the next main feature as per the 

business requirement of the warehousing system.  

This summarization process needs to be handled by warehouse system itself rather than 

assigning this task for another process. When graph summarization is handling by another 

process, it has to stamp summarized data also into warehouse while increasing data amount of 

the system while producing data redundancy. Concept of warehousing is then violating. Data 

storges should be managed carefully as they are big data systems. Only 0th level data is stored 

and on demand, request from user, data should be summarized send back to user for graph 

visualization. 

 

1.2 Statement of the problem 

 

 

 

 

Existing warehousing technology used in this surveillance system has been developed by LSEG 

Technology Sri Lanka 12+ years ago. So, it has got capability to customize its process to 

achieve best performance level according to business requirement by then.  

But maintaining these processes while keeping code quality standards requires extra effort. 

Because day by day trade counts are growing, hence scalability has become major requirement 

for the system. So continues performance level validation and non-functional testing require for 

Figure 1: Data Flow 
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each release as per the standards follow by LSEG Technology Sri Lanka. This is an additional 

overhead for the project.  

The algorithm for this market data summarization and visualization has been implemented 

concentrating only one type of data graph as per requirements by then. So, if it needs to integrate 

any other analytical model with different graph points – it has to implement another process to 

handover the responsibility. Moreover, the existing summarization model is bit complex and as 

per the internal design of the warehousing model, the designers by then had not anticipated 

exponential data growth like today. So, day by day, with respective to emerging new 

requirements expecting from warehouse system, current system is underperforming. 

Furthermore, as current implementation does not support advanced analytic capabilities, it has 

found it has to move with new technologies rather than staying on old ones as it got to compete 

with international business requirements.  

So when we look at today’s newly emerging technologies, LSEG Technology Surveillance 

team has found that there is an opportunity to move forward and gain better performance with 

more secured approaches which are available today. So now the team is looking into new 

emerging technologies and trying to validate these new technologies with project requirement. 

Additional to that, as per new design requirements, organization has wanted to handle these 

data summarization process on request other than keeping pre calculated data in a warehouse. 

As the data are real-time and as it needs to maintain low latency, on request real-time data 

summarization has discovered as an open challenging task in the project. 

 

1.3 Research Aims and Objectives 

As per the publication on Data Warehousing and analytics infrastructure at Facebook, it claims 

that they have authored and contributed numbers of open-source technologies in order to 

address their requirements. Scribe, Hadoop and Hive have been mentioned as main technologies 

used for log collection, storage and analyzing the data. Additional to that, they have revealed 

how these systems have integrated together and enabled to implement a data warehouse that 

stores more than 15PB of data (2.5PB after compression) and loads more than 60TB of new 

data (10TB after compression) every day. (Ashish Thusoo, 2010) 

As  per the paper published by Google Cloud – The Future of Data warehousing – they have 

introduced Big Query which is an enterprise data warehousing technology, highly scalable, 

serverless and cost-effective. It mentions that it supports streaming data from IoT sensors, web, 
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social media, mobile apps and more to support on business delivery quickly and easily. 

Additional to that, it has mentioned BigQuery supports federated queries for processing data in 

non-native BigQuery storage systems without moving data and with increased efficiency. 

(Google, 2020) – More details are discussed under literature review. 

So it is clear, LSEG Technology team has more opportunities to grow up their implementation 

for market data summarization for the dash board. 

 

 

 

• Exchange Systems, Operational DBs, and External Sources  

Real-time data feeders for surveillance system. 

• Data Integrator & Pre-processor   

Integrate data from all data sources together and sequence them and downstream all these real-

time data after some data enrichments. 

• Data Distributor  

Distribute data for different processors for usages. 

• Graph Summarizer  

Summarizes data based on time-based summarization logic and writes data to the Data 

Warehouse. Feeds real-time graph points to the Graph Frontend Handler.  

• Graph Frontend Handler  

Figure 2: Current Datawarehouse and graph summarization model 



 

 

 

7 

 

Handles user requests on real time graphs. – postgresql are used as database management 

system. 

• Graph FED  

Frontend for Graph visualization 

1.3.1 Aim 

Data warehousing system is not a single component. It is composition of serval components 

and one single platform functioning together in order to satisfy business requirements. 

Then choosing of correct solution for each component of the warehouse system should be done 

precisely considering the following main technical requirements and business requirements. 

Technical requirements for new solution of warehousing system: 

1. Lower latency support 

2. Real-time data processing capability 

3. Data Security on cloud 

4. Fault Tolerance 

5. High availability 

6. Capability handle big data 

7. Scalability 

8. Maintainable  

 

Business requirements for new solution of warehousing system: 

1. Capability to integrate third-party applications for data visualization – Graphs 

2. Capability to integrate third-party applications for report generation. 

3. Capability to model different graphs for data analysis 

4. Analytics on live data and recent data and historical data. 

5. Correlation across data domains, even they are not traditionally stored together. 

6. Low latency 

7. One secure platform with above all features. 

 

Major Expectations with new design implementation:  

No separate component for Summarization process. It needs to be handled by data warehouse. 

So, Data warehouse should store all zero-level data set and on query from frontend handler 
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through Query Server, it should return summarized data set considering its summery level/zoom 

level. 

So Here the research problem is to implement warehousing model that can support for 

summarizing real-time market data with usage of newly emerged technologies while achieving 

business requirements and technical requirements.  

Since LSEG Technologies has met their current requirements with separate data summarization 

process and native data warehousing system – here it is not expecting to develop another 

process for each data analyzing and application requirements while discouraging capabilities of 

integrating new technologies for the system. 

Hence main aim of this project is to refine the back born for this real-time market data 

summarization methodology with open-source technologies. So, research problem is based on 

how to select best technologies to achieve the necessities described here and implementing 

while validating each technology against full requirement details. 

However, as here we have got the Input for the research, which is set of real-time market data 

and we have got clue about output which describes the final design approach as described above 

– display summarized set of market data on real-time basis. So here real research problem falls 

on development of process while merging available technologies for summarizing real-time 

market data in purpose of visualizing on market graph.  

1.3.2 Objectives 

• Literature level validation on selecting components for implementing warehouse platform 

that satisfy both technical and business requirements. 

• Remove existing pre data summarization process from the system and assign data 

summarization responsibility on request for data warehousing system. 

• Achieve high query performance with new warehouse platform than existing system – 

experimental level approach for validation. 

• Implement real-time data summarization logic for plotting graphs and compare data 

summarization output of both existing and new system. 

 

 

 

 



 

 

 

9 

 

1.4 Scope 

1.4.1 CRITICAL STUDY OF PROBLEM DOMAIN. 

As described in the introduction, project problem domain is on implementing data warehousing 

solution for market data summarization. Market data are real-time and they arrive into the 

warehouse faster. So as soon as data received for the warehouse they should be available for 

data queries. 

 

Figure 3: Standard architecture for a Real-Time Data Warehouse. (Hayes, 2020) 

The existing warehousing model cannot adopt with varying requirements from business side 

and technical side. The system cannot support on advances analytical needs with higher 

performance level. As the data visualization is time critical, existing market data dashboard 

feature has been implemented with limited set of features. But with standard archtechture for a 

real-time data warehousing system, we can extend its capabilities satisfying both technical and 

business requirements. 

 

Figure 4: Standard architecture for a Real-Time Data Warehouse with extended capabilities. 

(Hayes, 2020) 
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Real-time data warehousing describes a system that reflects the state of the warehouse in real-

time. Then if a query is run against the real-time data warehouse to monitor a particular facet 

about business or entity described by the warehouse, the response gives the state of that entity 

at the time query was executed. Most warehousing systems have data that are highly latent – or 

reflects the graph points at a point in the past. (Mukesh, 2009) 

Dynamic data summarization is bit challenging task. Although there are lots of static data 

summarization tools, real-time data summarizing methodologies are limited. Google, 

Facebook, twitter are some major organizations that face same kind of problem on data storing, 

analyzing, and accessing. Because as per their record on Facebook, within 6 month of time 

period their data storage capacity requirement for compressed data has increased 5-10TB range. 

So, in order to address these challenges on scalability and diversity of data they have built their 

solution on technologies that support these characteristics at their core. They have used Hive 

and Hadoop as their core to storage and data processing strategies and Scribe is the core for 

their log collection strategy.   (Dhruba Borthakur, 2010).  

But here we cannot use their technology platform as it is. Because data structures, data types, 

data usages and requirements are much different than their platforms as described in the 

introduction. It is needed to validate each above-mentioned requirement against core 

capabilities of each technologies going to be used. 

However, now it should be clear about the opportunity to grow up the existing system with 

open-source technologies to achieve the organization business requirements and the solution is 

about combination of technology platform. 

 

1.4.2 IDENTIFICATION OF WAREHOUSING TECHNOLOGIES FOR 

EACH COMPONENTS. 
 

Data warehouse is not a single component, as described it is consists of storage system and 

query engine. So identifying correct eco system is very important.  

1.4.2.1 Comprehensive analysis for technology evaluations for data warehousing against 

required features for the new system 

 
There are lots of newly emerged technologies that can be used for data warehousing. 

(Warehouse, n.d.) 

1. Amazon Redshift 
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2. IBM Db2 

3. Snowflake (Snowflake, n.d.) 

4. Vertica 

5. Google BigQuery (BigQuery, n.d.) 

 

So, it must review their strengths and weaknesses against requirements of real-time 

warehousing system.  

Performances on data summarization, query handling and analyzing are the main features 

expected here. Moreover, lower latency support with capability for optimizing database 

performances and real-time transaction processing with lower cost of pricing are other 

requirements. 

However, most of above mentioned are not open source.  So, selecting best warehousing tool 

for the project is bit challenging.  

 

1.4.2.2 Comprehensive analysis for technology evaluations for query engine against 

required features for the new system. 

 
Hive, Impala, HAWQ, IBM Big SQL, Drill, Tajo, Pig, Presto, DryadLINQ, Jaql are some top 

level big data query engines. (Chinnakali, 2015) But we cannot just combine them on solving 

our problem. Because each technology got their own strengths, weaknesses and their unique 

features.  

Feature Oracle Hive Impala 

Query Language SQL - full SQL - subset SQL - subset 

Update individual record Yes No No 

Delete individual record Yes No No 

Transaction Yes No No 

Index support Extensive limited No 

Latency High low medium 

Data size TB PB PB 

Table 1: Comparison on Query Engine (Simplilearn, 2021) 

 

So, each of them has to be validated against expected features from the query engine for this 

project implementation.  
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Mainly the query system should be able to support data summarization in an optimal manner 

with selected technology for data storage while achieving business requirements and 

technology requirements.  

 

1.4.2.3 Study and select feasible data summarization technologies for real-

time data processing 

 

There are lots of tools for static data summarization. But real-time data summarization is bit 

challenging. Because it has to full fill low latency requirements and data availability 

requirements also.  

So, it needs to justify best summarization methodology which can be iintegrated with query 

engine. 

As per the article on Summarizing data written by WSO2 (WSO2, n.d.) – Enterprise Integrator 

Documentation, clock-time base summarization involves two steps.  

1) Calculating the aggregations for the selected time granularities and storing the results. 

2) Retrieving previously calculated aggregations for selected time granularities. 

 

This method is not applicable as per the desired output design as this requires storing some 

calculated values on retrieving summarizing data. 

Therefore under completion of this objective, it needs to discover and validate real-time data 

summarization technologies/methods which are able to be implemented in selected query 

engine with use of query language. 

As mentioned, real-time data summarization methodologies are not frequent as static data 

summarization methods. So this objective is more challenging than other objectives. 

 

1.4.2.4 Design evaluation against technologies selected. 

 

As descried in the problem statement, expected design needs to be validated against selected 

technologies under 1.4.2.1 and 1.4.2.2. Because selected warehouse technology would not be 

compatible with selected query engine technology although they are the best solutions available 

as individually. So, this evaluation process is alco comes under the scope of this project.  
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So, it has to consider integrated system development when achieve the objective of the project. 

This approach is literature level task. So at the end the project, we have derived conceptual level 

integrated system which can full fill the requirement of real-time warehousing system with data 

summarization capabilities. 

 

1.4.3 EVALUATE THE CONCEPTUAL SOLUTION PRACTICALLY 

So obviously it needs to validate output of newly designed platform against existing data 

warehousing methodology and summarizing methodology in the organization.  

Both systems need to be fed with same data source and need to check query time of each 

warehousing technologies. And needs to evaluate data summarization output deviations of new 

platform against existing platform. 

 

1.5 Structure of the Thesis 

Importance of data warehousing has been discussed under introduction for providing initial 

entrance to the readers. Real-time data warehousing and Traditional warehousing differs from 

lots of features. Here we are focusing on real-time warehousing systems. Market data handling 

for a warehousing system is critical task as it requires lots of resources in both hardware level 

and software level. As data receives, warehouse needs to store them and make available for 

users to access on real-time basis. Latency, accessibility, availability is major.  

Data analytical capabilities are considered as another main feature in modern warehousing 

systems. Hence choosing appropriate warehousing storage technology and query engine has 

become decision that taken carefully. 

LSEG is a global organization that provide platforms for exchange systems and surveillance 

systems. It is handling big data on the market. Surveillance system is basically the alarming 

system for market manipulation detection. So Data Analysis is the core responsibility of the 

system. For that data warehousing perform tremendous workload. Real-time data storing and 

make available for analytical purposes is resource consuming. So managing this two tasks is 

vital.  

Current warehousing system consist of warehouse and separate process for data analysis 

purposes – but it is also not wide purposive. It only handles one algorithmic data summarization 

model. So, user expectations and technical expectations has limited into specific area. 

Here in the thesis, it has discussed reasons for looking on another warehousing model for the 

organization while describing what is a warehouse, importance of warehouse, difference of real-
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time warehousing systems and traditional warehousing systems. Because readers require basics 

for understanding the theories behind the rationale.  

Storage technology used needs to compatible with query engine. So selecting the best 

combination on order to implement proper solution for this problem solving has been discussed 

under scope of the project. Main expectations on new warehousing model has been addressed 

while clarifying weaknesses and strengths of existing system.  

As the outcome of thoroughly done literature reviews on data warehousing technologies – it 

has filtered out 3 of storage systems and 3 of data query systems. Then under approach of the 

final solution – it has discussed compatibilities of each storage and query systems and their 

main weaknesses and strengths.  

Likewise, potential solution has been identified from Hadoop eco system – Kudu and Impala 

as storage and query system. 

Then the thesis has revisited their strengths and has discussed how it can support to achieve 

final goal of the warehousing system. Since the suggesting system can’t be low level solution, 

here it has done some practical tests on revealing performance levels in both system – existing 

on and newly suggesting one. This approach has declared that newly suggesting warehouse 

platform is capable of performing better. 

As the next stage of the thesis, then it has developed online data summarization queries from 

new warehousing model. Evaluation for this data output has done only for graph points. Since 

native system graph points are pre calculated and stored – this algorithm is bit complex to 

implement via a single query. Therefore, it has developed several models for data 

summarization and validated their deviations against current summarized graph points.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 A Literature Review 

2.1.1 Case Study - Data warehousing and analytics infrastructure at Facebook. (Ashish 

Thusoo, 2010) 

We already know that many of Facebook's website features are based on large dataset analytics. 

So the analysts analyze data across the company and creating business intelligence dashboards 

in order to pattern mining. Then simple reporting apps like Facebook get capabilities to do more 

advanced type advertising such as friend recommendations. Their data requirement it is 

growing exponentially. But it has successfully managed their requirement inside the platform. 

As per the records, they have inspired a number of open-source technologies to meet these 

needs on Facebook. These include Scrub, Hadoop and Hive. Scrub has composed the 

Facebook's log collection, and Hive and Hadoop is the core technology for storage and analytics 

infrastructure. 

 

As per reference paper (Ashish Thusoo, 2010) they have presented how these systems have 

come together and enabled them to implement a data warehouse that stores more than 15PB of 

data (2.5PB after compression) and loads more than 60TB of new data (10TB after 

compression) every day. 

 

Additional to that they have discussed the motivations behind their design choices, the 

capabilities of this solution, the challenges that they face in day-to-day operations and future 

capabilities and improvements that they are working on. 

 

2.1.2 Case Study - Google cloud – Introducing big Query (Google, 2020) 

At Google, they have developed their serverless, highly scalable, and cost-effective cloud data. 

Warehouse BigQuery to address all these questions. It has brought agility, advanced analytics, 

data sharing and collaboration, security and governance, and data diversity. 

 

As per the studies BigQuery is easy to set up and manage and does not require a database 

administrator. They further mention that any organization can quickly get up and running in 

seconds and start querying gigabytes to petabytes of data with standard SQL. It has powerful 
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security, governance, and reliability controls with a 99.9% uptime SLA and built-in protections 

like encryption by default, and fine-grained identity and access controls. 

 

2.1.3 Customer case study for Big Query (Devoteam, 2021) 

StubHub: Partnered with Google to transform their data infrastructure and empower teams to 

unlock the power of data. 

 

Strategy 

o Replaced legacy data warehousing infrastructure with BigQuery. 

o Used BigQuery to establish a new data lake and set up an ETL framework. 

o Migrated 60% of their data to BigQuery in less than a year. 

Results 

o Gained the ability to run complex queries in minutes, including ones that always used to 

time out. 

o Created a single source of truth for all their data. 

o Laid the foundation for using BigQuery ML to automate anomaly detection. 

 

2.1.4 Case Study – OLAP (WAREHOUSE, 2021) 

Customer: British American Tobacco Trading Company, a member of British American 

Tobacco Group, the world leader in the tobacco industry. Their target was to develop a 

consolidated data warehouse for storage and analysis of data uploaded from four different 

systems. The solution also needed to generate ad-hoc reports. 

As the system had to provide online data processing and analysis, they have chosen Microsoft 

SQL Server 2008 Analysis Services (SSAS) OLAP technologies as the basis for the solution. 

All input data was moved to OLAP-cubes, and the multidimensional data warehouse was the 

only place where it could be stored and processed as per their requirement. 

This allowed the system managers to analyze and measures in coming data from different 

systems (more than 150 measures) in different analytical slices (more than 40 dimensions and 

around 500 attributions). 

2.1.5 Case Study - Google Mesa (Ashish Gupta, 2014) 

Google runs an extensive advertising platform across multiple channels that serves billions of 

advertisements (or ads). So Google has present end-to-end design and implementation of a geo-
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replicated, near real-time, scalable data warehousing system called Mesa. Mesa supports online 

queries and updates while providing strong consistency and transactional correctness 

guarantees. To capture and render content at high speeds, with low latency, they needed to do 

something that hadn’t been done before. 

Mesa has got capability to handle petabytes of data, processes millions of row updates per 

second, and serves billions of queries that fetch trillions of rows per day. Mesa is geo-replicated 

across multiple datacenters and supplies steady and repeatable query answers at low latency, 

even when an entire data center fails. 

 

Technical Background study 

So, let’s study on some technologies mentioned above case studies and other related 

technologies trending by now. 

2.1.6 OLAP (queries, 2021) 

Online analytics Processing is a technique that can be used to analyze multidimensional data 

through queries. Additionally, it can be used as a business intelligence tool for data analysis, 

reporting, forecasting, and planning. 

It performs analyzing by collecting data from multiple resources and storing in a 

Datawarehouse. Then it sorts the data and organize the data in different cubes and categorize 

data by dimensions. 

There are several types of OLAP Types. ROLAP, MOLAP, HOLAP are some of them. 

OLAP system advantages: 

• Fast and efficient analysis operation in real time 

• Forecasting with “What if” action 

• Flexible self-service 

• Single platform for all data operations 

• Multidimensional data representation 
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Figure 5: OLAP and Data Warehouse 

Typically, OLAP queries are executed over a separate copy of the working data. 

Usual OLAP queries need considerable time to be processed. Therefore, improve the execution 

time of each single query is vital. ParGRES is an open-source database cluster middleware 

which can be used for high performance OLAP query execution. By using intra-query 

parallelism on PC clusters, ParGRES has shown outstanding performance speed up using the 

TPC-H benchmark. So, it has recognized ParGRES as a very cost-effective solution for OLAP 

query execution in real-time data processing. (Mattoso, n.d.) 

But due to following limitations of OLAP systems, still this also not a solution anymore. 

• The traditional OLAP tools do not allow for the immediate analysis without pre-

modeling. 

• Although business personnel are the intended user of OLAP, they will still have to work 

with the IT pros because the traditional OLAP tools requires a complex modeling 

procedure and its users have to write a great number of codes/scripts/SQL. 

• Poor computation capability - the traditional OLAP tools are of insufficient 

computational capabilities and few computational methods such as drilling, slicing, 

rotation, and simple column computation. This is because their architectures are old, 

lacking the innovation. (Collective, n.d.) 

So, as per this literature level analysis – OLAP is not a potential solution for further 

investigation. 
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2.1.7 Hadoop Eco system (Hadoop, n.d.) 

Apache Hadoop is a pool of open-source software tools that enables to handle network of 

computers to resolve problems relating huge amounts of data and calculations. It provides a 

software platform for distributed storage and handling of big data which using the MapReduce 

programming model.  

 

Figure 6: Apache Hadoop Ecosystem (Hsiao-Kang Lina, 2016) 

 

Hadoop was initially implemented for computer clusters. Since then, it also found that is has 

been used on clusters of higher-end hardware.  

The core of Apache Hadoop consists of:  

• Storage - Allows organizations to store and analyze unlimited amounts and types of data 

• Data processing, analyzing and serve - Quickly integrate with existing systems or 

applications to move data into and out of Hadoop through bulk load processing or 

streaming. 
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With Hadoop, analysts and data scientists have the flexibility to develop and iterate on advanced 

statistical models using a mix of partner technologies as well as open-source frameworks like 

Apache Spark 

Hadoop breaks files into large blocks and distributes them across nodes in a cluster. Then it 

transfers codes into nodes to process the data in parallel. This approach got advantage of data 

locality, which nodes operate the data that they can access. This lets the dataset to be processed 

quicker and more efficiently than a more conventional supercomputer architecture. 

Additionally, followings can be listed as benefits of Hadoop platform. 

1. Low-cost implementation 

2. Scalable 

3. Open-source software for reliable, scalable, distributed computing. 

4. Running application on clusters 

5. Data Management Provision 

6. Data analysis 

7. Process, big messy data sets for insights and answers. 

So moreover, we can check available Hadoop storage systems and analytical tools for further 

analysis. 

Top Hadoop Analytics Tools for 2021: (Analytics, 2021) 

Apache Spark, MapReduce, Apache Impala, Apache Hive, Apache Mahout, Pig, HBase, 

Apache Storm, Tableau, R, Talend, Sqoop 

Top Hadoop Storage systems  (UpGrad, 2021) 

HDFS, Mahout, GIS tools, Spark, MapReduce  

2.1.8 HDFS 

Hadoop Distributed File System, which is commonly known as HDFS is designed to store a 

large amount of data, hence is quite a lot more efficient. HDFS is used to carter large chunks of 

data quickly to applications. Yahoo has been using Hadoop Distributed File System to manage 

over 40 petabytes of data. (UpGrad, 2021) It provides a reliable means for managing pools of 

big data and supporting related big data analytics applications.  

Features of HDFS can be listed like this: Data replication, Fault tolerance and reliability, High 

availability, Scalability, High throughput, Cost effectiveness, Large data set storage, Streaming 

data access. 
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2.1.9 Impala (Overview, 2021) 

Impala is open-source software and it is a Massive Parallel Processing SQL query engine which 

can process huge volumes of data which is stored in Hadoop cluster. I is capable of providing 

high performance and low latency more than other SQL engines for Hadoop. Additional to that, 

Impala carries scalable parallel database technology for Hadoop, while giving capability for 

users to issue low-latency SQL queries to data stored in HDFS and Apache HBase without 

demanding data movement or transformation. 

In other words, Impala is the main performing SQL engine (giving RDBMS-like experience) 

which provides the fastest way to access data that is stored in Hadoop Distributed File System.  

2.1.10 MapReduce (MapReduce, n.d.) 

Since it was presented by Google in 2004, MapReduce (MR) has been emerged as a popular 

framework for Big Data processing model in cluster environment and cloud computing. It has 

become a key of success for processing, analyzing, and managing large data sets with some 

number of implementations including the open-source Hadoop framework.  

MR has many interesting qualities which are highly noticed in its design and simplicity in 

writing programs. It got only two functions, known as Map and Reduce, written by developer 

to process key-value data pairs.  

Even though, MR is very simple to understand, it is hard to develop, optimize, and maintain its 

functionality especially in large-scale projects.  

Moreover, MR identifies several limitations coming from its batch nature to handle real-time 

data.  

Additional to that, as per records, it is inappropriate for many operations with multiple 

feedbacks like Join operation. So, the effort related to low-level programming of MR provides 

rise to high-level query languages (HLQL) based on MR. 

Therefore, MapReduce is not potential candidate for the warehousing system implementation 

here as per our technical requirements. 

2.1.11 Apache Storm (Storm, 2021) 

Apache Storm is a distributed real-time computation system which is free and open source. 

Apache Storm helps to process limitless streams of data for real-time like Hadoop did for batch 

processing. Apache Storm can be used with any programming language and it is simple to use. 
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Apache Storm can be used for real-time analytics, online machine learning, continuous 

computation, distributed RPC, ETL, and more. And it is really fast and it can process over a 

millions of tuples per second by a node. As well as, It is scalable, fault-tolerant, guarantees that 

data will be processed, and it is easy to set up and work with. Among many, Yahoo, Alibaba, 

Groupon, Twitter, Spotify uses Apache Storm. 

Here the main limitation for our usage is that Storm performs Task-Parallel computations rather 

than data-parallel computation. Although Storm can provide better latency than spark streaming 

– development cost is much higher than streaming. (Hari Kumar, 2015) 

Therefore, we have to keep out Apache Storm also from the final list of technology platforms. 

2.1.12. Apache HIVE 

Apache Hive is a java-based data warehousing tool designed by Facebook for analyzing and 

processing large data. And HIVE is data warehousing system built on to of Apache Hadoop. It 

is data warehousing solution for big data. Hive provides SQL-like interface and abstract query 

language (HiveQL) to query data stored in database and fill systems that are integrated with 

Hadoop. Hive Query Language (HIVEQL) supports similar SQL operations including joins, 

sub queries, Order By, Sort by etc. Hive tables consist of data and schema and they are divided 

for maximum flexibility. The CPU analysis depends on Hadoop configuration nodes and 

System configuration. (Sai Prasad Potharaju, 2014) 

Hive support analysis of large datasets stored in the HDFS, with compatibility for file systems 

such as Amazon S3 and Alluxio. Hadoop use tool MapReduce and generate output for data 

graphs and reports. (Analytics, 2021) 

Most of applications in the organization have been written in C++ and the market data storing 

are not file type – but relational. So, approach with HIVE is not possible for market data 

processing. 

 

Figure 7:Apache HIVE usage 
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These each technology include their own core level features. So, filtering out each technology 

as per requirement belongs to the literature part. And integrating them together and evaluating 

belong to the implementation part of the project. But since there are lots of available 

technologies, each one must be evaluated carefully considering the whole requirement of the 

project. Because as mentioned, this is a industrial level requirement and here we are not 

targeting just to develop and implement a solution. It is required to justify the implementation 

model against their core capabilities considering use cases and evaluate them with production 

level dataset for the performance study. 

 

2.1.13 Apache Spark 

This is also an open-source unified analytical engine that can be used for big data and machine 

learning. And this has been developed speeding up Hadoop big data processing. Apache Spark 

enables batch, real-time, and advanced analytics over the Hadoop platform. Spark provides in-

memory data processing for the developers and the data scientists. Companies, including 

Netflix, Yahoo, eBay, and many more, have deployed Spark at a massive scale. 

Features of Apache Spark: Speed, Easy to use, Generality, Run everywhere. 

 

2.2 Presentation of Scientific Material 

As mentioned here I have used two approaches for validating the final platform of warehouse. 

This is not a single technology platform – it needs to be the best combination of several 

technologies for solving the problem. Selecting best storage for the warehouse is not enough. 

Combining the most preferable query execution tool, metadata hander is a challenge. So, this 

initial validation is literature level approach with publicly available experimental outputs. 
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Figure 8: Current warehousing model 

 

Figure 9: New System suggest 

 

Figure 10: Existing Native warehouse platform 
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Key Features Limitations 

• Customizable in-house API - SQL 

support via NORA API 

• Flexibility of having customized data 

retrieval methods. 

• Performance - writing 

• Scalability control - i.e., 

data partitioning and distribution 

support (pages, volumes, and files - 

range and hash) 

• Tiered storage support 

• Backward compatibility support e.g., 

data transformations 

• Data replication support  

• Schemeless behavior - ability to store 

multiple data types in a single data 

store 

• Archive/backup/restore support 

• Query return time slowness 

• Lack of analytical query support 

• Cluster dependency 

• Lack of security features such as column 

encryption 

• Insert rate limitation due to lack of real 

time compression and encoding 

• Cannot support updates 

• Weak data integrity checks 

• No transaction concepts 

• No commit/rollback support 

• Native message type dependency on 

meta data management 

• No concurrency control/atomicity – no 

table level locks 

• Cannot scale horizontally due to cluster 

dependency 

• Lots of random writes in index writing 

and hence index writing requires faster 

disks e.g., RAM 

  

Table 2: Strengths and weaknesses of existing warehousing model 

 

• Nora is a row oriented flat file storage with indexing support. 

• Row oriented: data stored row by row. 

• Index support: single layer and multi-layer indexing for column values of the rows 

 

So now let’s go through the evaluation of selected solutions for implementing data warehousing 

system. 

 

Hadoop Eco system 

One platform, multiple components. 
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Figure 11: Apache Hadoop Eco System 

1. Data Store options: 

1.1.HDFS – File system 

1.2.KUDU – Relational 

1.3.Hbase – NoSQL 

 

2. Data Processing, Analyzing and Serving options: 

2.1.Spark, Hive, Pig, MapReduce – Batch 

2.2.Spark – Stream 

2.3.Apache Impala – SQL 

2.4.Apache Solr – Search 

2.5.Kite – Other 

Targeting warehousing system needs to process Random access queries, support data 

streaming, support multiuser environments. 
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And the Analytical tool should have features like – scalable, faster access support, in memory 

data processing and security 

 

Selecting right storage for relational data from Apache HDFS, Apache Hbase, Apache 

Kudu. 

Requirement – Analytics in Hadoop 

The warehousing system needs to support analytical capabilities 

1.1.HDFS:  

• Flexibility to store any type of data in any format. 

• Infinite scalability for cost-effective active archival 

• Highest throughput and storage density for analytics on static data set. 

Cons: 

• Limited/no ability for updates, deletes or streaming inserts. 

• Good for traditional batch applications but not good for data streaming as data 

arrives. 

 

1.2.Hbase:  

• Flexibility to store any type of data with semi-structured schema. (But difficult to 

query with SQL) 

• Real-Time Data Ingest and Serving 

- Built to handle fast changing data. 

- Scalable 

- So can serve big data requirements, but 

Cons: 

• Poor performance for analytic queries. (than HDFS) 

 

1.3.Kudu 

• Simple architecture for building real-time analytic application. 

• Fast Analytics on Fast Data 

- Reporting with update support through Kudu and Impala 
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- Real-Time and streaming applications with Kudu+Spark 

Kudu is not fast as HDFS storage efficiencies, and not good as Hbase random access. 

But with Kudu we can build happy intermediate solution easier.   

 

2.1.Spark 

• Analytics engine for large scale data processing 

• Can achieve high performance for both batch and streaming data – high speed. 

• Offers over 80 high-level operators that make it easy to build parallel apps. – easy 

to use. 

• Supports stack of libraries including data analytics. 

• Can run on everywhere – on Hadoop, Apache Mesos, Kubernetes, standalone, or in 

the cloud. It can access diverse data sources. 

Apache spark is great, but not the perfect solution for here. 

Cons: 

• Apache Spark does not fit for a multi-user environment. It is not capable of 

handling more users concurrency. 

2.2.Solr 

• Advanced full-text search capabilities 

• Optimized for high volume traffic 

• Easy monitoring 

• High scalable and fault tolerance 

• Near real-time indexing 

• Flexible and powerful query language allows to build complex queries 

• High-speed query response 

But there are some major limitations of using this for cloud-based systems. 

 Cons: 

• Does not support authentication and authorization – so can be placed inside 

private network 
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2.3.Impala 

• High performance SQL in Hadoop. 

• Scalable 

• Cost Effective 

• Flexible 

• Resilient to failure 

• Support standard Hadoop components. 

Cons:  

• Impala does not support both serialization and deserialization. 

• Impala can only read a text file. It does not support to read binary file user 

defined. 

• Impala should update table whenever new record/file are added in the data 

directory of HDFS. 

As per the organization technical and business requirements – above limitations of impala are 

not related as its main objective is to store market data and process. 

We see that Impala can be integrated with storage managers – Kudu, HDFS or Hbase. 

Therefore, Impala data analysis tool can be used on implementing the warehousing solution 

with above any of storage managers as we evaluated here. 

 

Final Approach  

Let’s have detail study on shortlisted components – Data storage: Apache Kudu and analysis 

tool: Apache Impala. 

1. Data Storge: Apache kudu  

Rationale – Following main features of Apache Kudu supports for the storage. 

• Scalable 

o Millions of read/write operations per second across cluster. 

o Multiple GB/second read throughput per node. 

• Fast 

o Currently tested up to 300 nodes 

o Designed to scale 1000s of nodes and tens of PBs. 

• Tabular 
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o Represent data in structured tables like relational database– no clob/blob/files. 

o Individual record level access to 100+ billion row tables. 

• Kudu tables has SQL-like schema and finite number of columns (not like 

Hbase/Cassendra) 

• Support different data types – Bool, INT8, INT16, INT32, INT64, FLOAT, DOUBLE, 

STRING, BINARY, TIMESTAMP 

• With subset of columns – can create composite primary key. 

• Fast ALTER TABLE. 

• Natively Kudu has different APIs– Java, Python, C++ and NoSQL-Style APIs 

• Insert(), Update(), Delete(), Scan() functioning with low-milliseconds latencies. 

• SQL via integrations with Impala and Spark. 

• So great for online applications. But if expects to access with complex queries like join, 

group, aggregate we have to integrate with Impala or Spark. 

• Support for many columns encoding and compression schemes. 

o Encoding – Delta, dictionary, bitshuffle. 

o Compression – LZ4, gzip, bzip2 

• Kudu support flexible set of partitioning schemes 

o Partition by time range, hash or both 

• Parallelizable scans. 

• Scale-out storage system. 

Partitioning schemes - By time range + series hash 
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Figure 12: Apache Kudu Schema Design (Design, n.d.)    

 

2. Data analysis tool: Apache Impala 

Rationale: Impala is software from Cloudera, which is leading software for Massively Parallel 

Processing of SQL Query Engine, which runs natively on Apache Hadoop. 

- Impala is modern sequel engine for Hadoop. 

- Has implemented with idea of MPP – Massive Parallel Processing. 

- Has designed for very good performances. – Has written from scratch c++ 

- Meta data stored in HIVE MetaStore 

- Impala is open source and open standard 

- Impala can access data using a query like SQL. 

- Impala supports in-memory data processing. It is possible to analyze or access 

data stored on nodes in Hadoop without data transaction. 

- can connect via ODBC/JDBC, Authenticate via Kerberos/LDAP, Authorization 

with GRANT/REVOKE. 

- Impala can be integrated with Business Intelligence (BI) tools such as Tableau, 

Pentaho, Micro strategy, and Zoom data. 

- Impala supports various file formats such as LZO, Sequence File, Avro, RCFile, 

and Parquet. 
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Figure 13: Impala Query performance for single user 

 

 

Figure 14: Impala Query performance for multiple users 
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Kudu and Impala together 

Traditional database 

Ex: Postgress 

 

Figure 15: Kudu and Impala together 

 

So as per our literature review – we have evaluated that Apache Impala and Apache Kudu as 

candidates for solving out warehousing model for real-time data processing. Now let’s check 

how we can validate our hypothesis under methodology section. 

 

Hypothesis1:  

Together with Apache Kudu and Apache Impala can perform better than existing warehousing 

model on data query. 

Hypothesis 2: 

Together with Apache Kudu and Apache Impala can perform data summarization queries 

without no other external component. 
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CHAPTER 3 

METHODOLOGY 

 

As described in above section – Apache Kudu has been able to select as best solution for storage 

and Impala has been able to select as best option for query execution. Then Hive meta store 

becomes the metadata handler. So, this selection criteria are purely based on literature reviews 

and experiments has been done by others. 

But validating our hypothesis is experimental approach.  

Methodology of validating query performances of new warehousing model. 

Initially, here it has been identified some production like queries as per the current system 

implementation. Then these each query has been validated against existing warehouse system 

and newly suggesting warehousing system. As these set of queries are already used by used for 

query data for Frontends, the performance outcome can be directly used for validating and 

compare two systems. 

Special notes: 

• Please note that here native system (Nora) and new system (Kudu) was set up with same 

set of data in the same instance. 

• Although there are around 35 table spaces in original system – in order to perform 

testing only 3 tables have been migrated to Kudu storage (Execution report table, trade 

report table and instrument table) 

• Queries have been performed individually and measured query return time. 

o For Nora : 

▪ time ~/postgres/bin/psql -q -t -c "select count(*) from instrument" 

o For impala 

▪ Query time returns with the query as follows in default. 

Figure 16: Impala shell - query time 
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• Queries ran on each warehouse systems as follows and due to data privacy reasons, their 

results won’t be displaying.  

• But as for proof of experiment following analitical queries output will be displayed 

under experiment 02. 

 

Experiment 01: 

Run same set of queries in two systems and check query return time. 

Here this experiment has been performed on high data volume from production data – so only 

query time details only reported. 

And please note that the queries have been selected considering existing system queries for the 

system. 

Qu

ery 

No 

PSQL query for Native warehouse  Impala Query for KUDU warehouse 

1 – 

Tr

ad

e 

qu

ery 

SELECT 

instrument_id,buy_broker_id,sell_brok

er_id,buy_order_id,sell_order_id,exec

_type, 

execution_type,executed_qty,executed_

value,transact_time,time_sequence,tra

de_report_id, 

security_description,buy_participant_

name,sell_participant_name,routing_se

q, 

trade_report_link_id,aggressor_side,b

argain_conditions,buy_account_type,bu

y_clearing_alpha, 

buy_client_order_id,buy_submittedtrad

er,buy_trader_id,cross_id,cross_type,

dealing_capacity_buy, 

dealing_capacity_sell,delay_mode,exch

ange_transaction_id,execution_venue,f

irm_trade_id, 

intended_publish_time,isin,late_trade

_indicator,match_status,novated_indic

ator, 

old_qty,old_value,only_for_market_dat

a,order_book_id,original_exe_price, 

product_type,publish_indicator,report

ing_participant,reporting_submitted_t

rader,segment_id, 

self_execution_flag,sell_account_type

,sell_clearing_alpha,sell_client_orde

r_id, 

sell_submittedtrader,sell_trader_id,s

ettlement_currency,settlement_date,sy

mbol, 

third_party_trade,trade_event_id,trad

e_report_parent_id,trade_report_ref_i

d, 

trade_reporting_model,trade_reported_

time,trade_status,trade_sub_type,trad

SELECT 

instrument_id,buy_broker_id,sell_broker_

id,buy_order_id,sell_order_id,exec_type, 

execution_type,executed_qty,executed_val

ue,transact_time,time_sequence,trade_rep

ort_id, 

security_description,buy_participant_nam

e,sell_participant_name,routing_seq, 

trade_report_link_id,aggressor_side,barg

ain_conditions,buy_account_type,buy_clea

ring_alpha, 

buy_client_order_id,buy_submittedtrader,

buy_trader_id,cross_id,cross_type,dealin

g_capacity_buy, 

dealing_capacity_sell,delay_mode,exchang

e_transaction_id,execution_venue,firm_tr

ade_id, 

intended_publish_time,isin,late_trade_in

dicator,match_status,novated_indicator, 

old_qty,old_value,only_for_market_data,o

rder_book_id,original_exe_price, 

product_type,publish_indicator,reporting

_participant,reporting_submitted_trader,

segment_id, 

self_execution_flag,sell_account_type,se

ll_clearing_alpha,sell_client_order_id, 

sell_submittedtrader,sell_trader_id,sett

lement_currency,settlement_date,ImpReser

v_symbol, 

third_party_trade,trade_event_id,trade_r

eport_parent_id,trade_report_ref_id, 

trade_reporting_model,trade_reported_tim

e,trade_status,trade_sub_type,trade_type

, 

transaction_id,unique_id,exchange_routin

g_seq,is_carried_forward,agreed_time, 

waiver_indicator,pt_is_actx,pt_is_size,p

t_is_ilqd,pt_is_lrgs,pt_is_rpri,pt_is_du
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e_type, 

transaction_id,unique_id,exchange_rou

ting_seq,is_carried_forward,agreed_ti

me, 

waiver_indicator,pt_is_actx,pt_is_siz

e,pt_is_ilqd,pt_is_lrgs,pt_is_rpri,pt

_is_dupl, 

pt_is_tpac,pt_is_xfph,pt_is_benc,pt_i

s_tncp,pt_is_sdiv,pt_is_pric,pt_is_or

gn, 

price_notation,unit_quantity,notional

_amount,notional_currency,buy_client_

id, 

sell_client_id,buy_investor_code,sell

_investor_code,buy_executing_trader_c

ode, 

sell_executing_trader_code,buy_dea_fl

ag,sell_dea_flag,buy_lp_flag,sell_lp_

flag, 

buy_algo_flag,sell_algo_flag,buy_clie

nt_type,sell_client_type,buy_investor

_type, 

sell_investor_type,buy_executing_trad

er_type,sell_executing_trader_type 

from trade_report where 

(instrument_id = 'RDSA') AND 

((transact_time>='20190707-

23:00:00.000') AND 

(transact_time<='20191006-

22:59:59.999')) AND (_rownum_ < 

100000); 

pl, 

pt_is_tpac,pt_is_xfph,pt_is_benc,pt_is_t

ncp,pt_is_sdiv,pt_is_pric,pt_is_orgn, 

price_notation,unit_quantity,notional_am

ount,notional_currency,buy_client_id, 

sell_client_id,buy_investor_code,sell_in

vestor_code,buy_executing_trader_code, 

sell_executing_trader_code,buy_dea_flag,

sell_dea_flag,buy_lp_flag,sell_lp_flag, 

buy_algo_flag,sell_algo_flag,buy_client_

type,sell_client_type,buy_investor_type, 

sell_investor_type,buy_executing_trader_

type,sell_executing_trader_type from 

trade_report where (instrument_id = 

'RDSA') AND ((transact_time>='20190707-

23:00:00.000') AND 

(transact_time<='20191006-

22:59:59.999')) order by routing_seq 

limit 100000; 

2 – 

Tr

ad

e 

Hi

sto

ry 

qu

ery 

SELECT 

instrument_id,buy_broker_id,sell_brok

er_id,buy_order_id,sell_order_id,exec

_type,execution_type, 

executed_qty,executed_value,transact_

time,time_sequence,trade_report_id,se

curity_description, 

buy_participant_name,sell_participant

_name,routing_seq,aggressor_side,agre

ed_time, 

bargain_conditions,buy_account_type,b

uy_clearing_alpha,buy_client_order_id

,buy_submittedtrader, 

buy_trader_id,cross_id,cross_type,dea

ling_capacity_buy,dealing_capacity_se

ll,delay_mode, 

exchange_transaction_id,execution_ven

ue,firm_trade_id,intended_publish_tim

e,isin, 

late_trade_indicator,match_status,nov

ated_indicator,old_qty,old_value,only

_for_market_data, 

order_book_id,original_exe_price,prod

uct_type,publish_indicator,reporting_

participant, 

reporting_submitted_trader,segment_id

,self_execution_flag,sell_account_typ

e, 

sell_clearing_alpha,sell_client_order

_id,sell_submittedtrader,sell_trader_

id, 

settlement_currency,settlement_date,s

ymbol,third_party_trade,trade_event_i

d, 

trade_report_link_id,trade_report_par

ent_id,trade_report_ref_id,trade_repo

rting_model, 

trade_reported_time,trade_status,trad

e_sub_type,trade_type,transaction_id,

SELECT 

instrument_id,buy_broker_id,sell_broker_

id,buy_order_id,sell_order_id,exec_type,

execution_type,executed_qty,executed_val

ue, 

transact_time,time_sequence,trade_report

_id,security_description,buy_participant

_name,sell_participant_name,routing_seq, 

aggressor_side,agreed_time,bargain_condi

tions,buy_account_type,buy_clearing_alph

a,buy_client_order_id,buy_submittedtrade

r,buy_trader_id, 

cross_id,cross_type,dealing_capacity_buy

,dealing_capacity_sell,delay_mode,exchan

ge_transaction_id,execution_venue,firm_t

rade_id, 

intended_publish_time,isin,late_trade_in

dicator,match_status,novated_indicator,o

ld_qty,old_value,only_for_market_data,or

der_book_id, 

original_exe_price,product_type,publish_

indicator,reporting_participant,reportin

g_submitted_trader,segment_id,self_execu

tion_flag, 

sell_account_type,sell_clearing_alpha,se

ll_client_order_id,sell_submittedtrader,

sell_trader_id,settlement_currency, 

settlement_date,ImpReserv_symbol,third_p

arty_trade,trade_event_id,trade_report_l

ink_id,trade_report_parent_id, 

trade_report_ref_id,trade_reporting_mode

l,trade_reported_time,trade_status,trade

_sub_type,trade_type,transaction_id, 

unique_id,exchange_routing_seq,waiver_in

dicator,is_carried_forward,pt_is_actx,pt

_is_size,pt_is_ilqd,pt_is_lrgs,pt_is_rpr

i, 

pt_is_dupl,pt_is_tpac,pt_is_xfph,pt_is_b

enc,pt_is_tncp,pt_is_sdiv,pt_is_pric,pt_
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unique_id, 

exchange_routing_seq,waiver_indicator

,is_carried_forward,pt_is_actx,pt_is_

size, 

pt_is_ilqd,pt_is_lrgs,pt_is_rpri,pt_i

s_dupl,pt_is_tpac,pt_is_xfph,pt_is_be

nc, pt_is_tncp, 

pt_is_sdiv,pt_is_pric,pt_is_orgn,pric

e_notation,unit_quantity, 

notional_amount,notional_currency,buy

_client_id,sell_client_id,buy_investo

r_code, 

sell_investor_code,buy_executing_trad

er_code,sell_executing_trader_code,bu

y_dea_flag, 

sell_dea_flag,buy_lp_flag,sell_lp_fla

g, 

buy_algo_flag,sell_algo_flag,buy_clie

nt_type, 

sell_client_type,buy_investor_type,se

ll_investor_type, 

buy_executing_trader_type, 

sell_executing_trader_type from 

trade_report where 

trade_report_link_id='1XOQQLSGXF' AND 

transact_time>='20190731-

00:00:00.000000' AND 

transact_time<='20191031-

05:52:56.646208' AND instrument_id = 

'RTO' AND (_rownum_ < 100000); 

is_orgn,price_notation,unit_quantity, 

notional_amount,notional_currency,buy_cl

ient_id,sell_client_id,buy_investor_code

,sell_investor_code,buy_executing_trader

_code, 

sell_executing_trader_code,buy_dea_flag,

sell_dea_flag,buy_lp_flag,sell_lp_flag,b

uy_algo_flag,sell_algo_flag,buy_client_t

ype, 

sell_client_type,buy_investor_type,sell_

investor_type, 

buy_executing_trader_type,sell_executing

_trader_type from trade_report where 

trade_report_link_id='1XOQQLSGXF' AND 

transact_time>='20190731-

00:00:00.000000' AND 

transact_time<='20191031-

05:52:56.646208'AND instrument_id = 'RTO' 

order by routing_seq limit 100000; 

3 – 

Or

der 

qu

ery 

SELECT 

instrument_id,broker_id,trader_id,ord

er_status,order_sub_type,transact_tim

e,order_qty,value,order_id, 

exec_type,execution_type,side,securit

y_description,participant_name,tif,en

try_time,symbol, 

account_type,active_status,p_or_a_ind

icator,capacity,clearing_alpha,client

_id,client_order_id, 

container,contingent_condition,cross_

id,cross_type,cumulative_executed_siz

e,date_of_expiry, 

exchange_transaction_id,execution_min

_size,executed_qty,executed_value,hid

den_size, 

inactive_time,isin,old_qty,old_value,

only_for_market_data,order_book_id,or

der_book_priority, 

order_consideration,order_reject_code

,order_seq,order_type,original_client

_order_id, 

original_cross_id,original_visible_si

ze,parent_order_id,passiveonlyorder,p

ricedifferential, 

public_order_id,reason,time_sequence,

routing_seq,segment_id,stop_price,sub

mittedtrader, 

time_of_expiary,total_qty,trade_repor

t_id,trade_report_link_id,trade_reque

st_type, 

transaction_id,unique_id,visible_size

,exchange_routing_seq,waiver_indicato

r,client_code, 

investment_decision_maker,executing_t

rader_code,dea_flag,lp_flag,algo_flag

,party_client_type, 

investor_type,executing_trader_type,b

bbo_setting,priority_time_stamp from 

execution_report where (instrument_id 

SELECT 

instrument_id,broker_id,trader_id,order_

status,order_sub_type,transact_time, 

order_qty,ImpReserv_value,order_id,exec_

type,execution_type,side,security_descri

ption, 

participant_name,tif,entry_time,ImpReser

v_symbol,account_type,active_status,p_or

_a_indicator, 

capacity,clearing_alpha,client_id,client

_order_id,container,contingent_condition

,cross_id, 

cross_type,cumulative_executed_size,date

_of_expiry,exchange_transaction_id, 

execution_min_size,executed_qty,executed

_value,hidden_size,inactive_time, 

isin,old_qty,old_value,only_for_market_d

ata,order_book_id,order_book_priority, 

order_consideration,order_reject_code,or

der_seq,order_type,original_client_order

_id, 

original_cross_id,original_visible_size,

parent_order_id,passiveonlyorder,pricedi

fferential, 

public_order_id,reason,time_sequence,rou

ting_seq,segment_id,stop_price,submitted

trader, 

time_of_expiary,total_qty,trade_report_i

d,trade_report_link_id,trade_request_typ

e,transaction_id, 

unique_id,visible_size,exchange_routing_

seq,waiver_indicator,client_code,investm

ent_decision_maker, 

executing_trader_code,dea_flag,lp_flag,a

lgo_flag,party_client_type,investor_type

,executing_trader_type,bbbo_setting,prio

rity_time_stamp from execution_report 

where (instrument_id = 'RDSA') AND 

((transact_time>='20190707-

23:00:00.000')AND 
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= 'RDSA') AND 

((transact_time>='20190707-

23:00:00.000') AND 

(transact_time<='20191006-

22:59:59.999')) AND 

(only_for_market_data != 1) AND

(_rownum_ < 100000); 

(transact_time<='20191006-

22:59:59.999')) AND 

(only_for_market_data != 1) order by 

routing_seq limit 100000;

4 – 

Or

der 

Hi

sto

ry 

qu

ery 

SELECT 

instrument_id,broker_id,trader_id,ord

er_status,order_sub_type,transact_tim

e,order_qty,value,order_id, 

exec_type,execution_type,side,securit

y_description,participant_name,symbol

,account_type,active_status, 

p_or_a_indicator,capacity,clearing_al

pha,client_id,client_order_id,contain

er,contingent_condition, 

cross_id,cross_type,cumulative_execut

ed_size,date_of_expiry,entry_time,exc

hange_transaction_id, 

execution_min_size,executed_qty,execu

ted_value,isin,old_qty,old_value,only

_for_market_data, 

order_book_id,order_book_priority,ord

er_consideration,order_reject_code,or

der_seq,order_type, 

original_client_order_id,original_cro

ss_id,original_visible_size,parent_or

der_id,passiveonlyorder, 

pricedifferential,public_order_id,rea

son,time_sequence,routing_seq,segment

_id,stop_price, 

submittedtrader,tif,time_of_expiary,t

otal_qty,trade_report_id,trade_report

_link_id, 

trade_request_type,transaction_id,uni

que_id,visible_size,exchange_routing_

seq, 

waiver_indicator,client_code,investme

nt_decision_maker,executing_trader_co

de, 

dea_flag,lp_flag,algo_flag,party_clie

nt_type,investor_type,executing_trade

r_type,bbbo_setting, 

priority_time_stamp from 

execution_report where 

order_id='00eujjkVjrZk' AND 

transact_time>='20190731-

00:00:00.000000' AND 

transact_time<='20191031-

06:29:28.118834' AND instrument_id = 

'RDSA' AND (only_for_market_data != 1) 

AND (_rownum_ < 100000); 

SELECT 

instrument_id,broker_id,trader_id,order_

status,order_sub_type, 

transact_time,order_qty, 

ImpReserv_value,order_id,exec_type, 

execution_type,side,security_description

,participant_name, 

ImpReserv_symbol,account_type,active_sta

tus,p_or_a_indicator, 

capacity,clearing_alpha,client_id,client

_order_id,container, 

contingent_condition,cross_id,cross_type

,cumulative_executed_size, 

date_of_expiry,entry_time,exchange_trans

action_id,execution_min_size, 

executed_qty,executed_value,isin,old_qty

,old_value,only_for_market_data, 

order_book_id,order_book_priority,order_

consideration,order_reject_code,order_se

q, 

order_type,original_client_order_id,orig

inal_cross_id,original_visible_size,pare

nt_order_id, 

passiveonlyorder,pricedifferential,publi

c_order_id,reason,time_sequence,routing_

seq,segment_id, 

stop_price,submittedtrader,tif,time_of_e

xpiary,total_qty,trade_report_id,trade_r

eport_link_id, 

trade_request_type,transaction_id,unique

_id,visible_size,exchange_routing_seq,  

waiver_indicator, 

client_code,investment_decision_maker,ex

ecuting_trader_code,dea_flag,lp_flag, 

algo_flag,party_client_type,investor_typ

e,executing_trader_type,bbbo_setting,pri

ority_time_stamp from execution_report 

where order_id='00fFcCKBVkXl' AND 

transact_time>='20190731-

00:00:00.000000' AND 

transact_time<='20191031-

06:29:28.118834' AND instrument_id = 

'RDSA' AND (only_for_market_data != 1) 

order by routing_seq limit 100000;

Table 3: Experiment1 - Queries 

Query Time – Existing system Time – proposing model for 

standalone mode. 

1 1 0.842 

2 0.84 0.690 

3 6.198 2.13 

4 1.3 0.65 

Table 4: Experiment1 - Query Performance Time 
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Figure 17: Experiment 1 - Query Performance time Graph 

Results: Proposing system show better query performance than existing system. 

 

Experiment 02: 

Perform some analytical queries on both systems. And compare their query execution time. 

Query No PSQL query for Native 

warehouse 

Impala query for KUDU warehouse 

01 - Get average 

executed quantity 

of orders per 

instrument 

select avg(executed_qty) as avg_ex from execution_report group 

by instrument_id order by avg_ex desc; 

02 - Sum of 

executed quantity 

per broker and per 

instrument 

select instrument_id, broker_id, sum(executed_qty) as 

sum_trade_vol from execution_report group by instrument_id, 

broker_id order by sum_trade_vol desc limit 10; 

03 - Joining 

execution report 

and trade report 

based on 

transaction_id 

select e.instrument_id, order_id, e.trade_report_link_id, 

trade_reported_time, currency_conv_indicator, 

trade_consideration, t.waiver_indicator from execution_report e 

inner join trade_report t on e.transaction_id = t.transaction_id 

limit 100; 

0

1

2

3

4

5

6

7

Query1 Query2 Query3 Query4

Query performance Existing Vs Proposing model

Existing system Proposing system
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Table 5: Experiment 2 - Analytical Queries 

 

Query Time – Existing system (s) Time – proposing model for 

standalone mode. (s) 

1 5.634 0.27 

2 0.655 0.23 

3 7.28 0.41 

Table 6: Experiment 2 - Analytical query time 

 

 

Figure 18: Experiment 2- Analytical Query time graph 

 

Query 01 

Kudu sample query output 

 

Figure 19: Experiment 2 - Query 1- Impala query Output 
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Native system query output: 

 

Figure 20: Experiment 2 - Query 1- Postgres query Output 

 

Query 02 

Kudu sample query output: 

 

Figure 21: Experiment 2 - Query 2- Impala query Output 

Native system query output: 

Figure 22: Experiment 2 - Query 2- Postgres query Output 

 

 

Query 03 

Kudu sample query output: 

 

Figure 23: Experiment 2 - Query 3- Impala query Output 
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Native system query output: 

 

Figure 24: Experiment 2 - Query 3- Postgres query Output 

 

Experiment 03 

Now need to build data summarization query which support maximum performance level and 

low error rate compared to existing data summarized values. 

In existing system there is a table for storing pre calculated summarization data points. So 

Postgres queries just got to collect data from table. But new proposing system needs to perform 

online data summarizations also. 

Here at this point we have concluded the data query performance level is better in new 

proposing system. So, under this experiment it is expected to validate query output for data 

summarization. 

 

Level zero original data points 

SELECT time_sequence,y_pos from graph_points WHERE 

(time_sequence >= 1603947279832890000 AND time_sequence <= 

1603956063602808000 ) AND filterfieldvalue='IRR04' AND level = 

0 AND data_partition_id = 551; 

+---------------------+------------+  

| time_sequence      |   y_pos    |  

+---------------------+------------+  

| 1603947279832890000 | 120 |  

| 1603947281149609000 | 123 |  

| 1603947281909799000 | 126 |  

| 1603947283073676000 | 129 |  

| 1603947283961332000 | 132 |  

| 1603947285059472000 | 135 |  

| 1603947286034132000 | 138 |  

| 1603947287060625000 | 141 |  

| 1603947288102194000 | 144 |  

| 1603947289188403000 | 147 |  

| 1603947290511048000 | 150 |  
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| 1603947291246374000 | 153 |  

| 1603947292276991000 | 156 |  

| 1603947293311413000 | 159 |  

| 1603947294438627000 | 162 |  

| 1603947295419112000 | 165 |  

| 1603947296482587000 | 168 |  

| 1603947297844352000 | 171 |  

| 1603947298596609000 | 174 |  

| 1603955991782818000 | 174 |  

| 1603956059470845000 | 220 |  

| 1603956060498245000 | 223 |  

| 1603956061536288000 | 226 |  

| 1603956062566090000 | 229 |  

| 1603956063602808000 | 232 |  

+---------------------+------------+  

 

For zoom level 5000 real output from Native system,  

SELECT time_sequence,y_pos from graph_points WHERE 

(time_sequence >= 1603947279832890000 AND time_sequence <= 

1603956063602808000 ) AND filterfieldvalue='IRR04' AND level = 

5000 AND data_partition_id = 551; 

+---------------------+-------------+  

| time_sequence      |y_pos        |  

+---------------------+-------------+  

| 1603947279832890000 | 120 |  

| 1603947286034132000 | 138 |  

| 1603947290511048000 | 150 |  

| 1603947295419112000 | 165 |  

| 1603947298596609000 | 174 |  

| 1603955991782818000 | 174 |  

| 1603956060498245000 | 223 |  

+----------------------------+-----+  

 

Suggested query 01:  

WITH temptable AS (SELECT time_sequence, FLOOR ((time_sequence 

- MIN(time_sequence) OVER (PARTITION BY level))/5000000000) AS 

g, y_pos FROM graph_points WHERE level=0 AND 

filterfieldvalue='IRR04' AND data_partition_id=551 AND level=0 

AND (time_sequence >= 1603947279832890000 AND time_sequence <= 

1603956063602808000)),  

temptable2 AS (SELECT MAX(y_pos) OVER (PARTITION BY g) AS 

y_pos_selected, LAST_VALUE(time_sequence) OVER (PARTITION BY 

y_pos,g) AS time_sequence_selected,y_pos FROM temptable)  
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SELECT y_pos_selected,time_sequence_selected FROM temptable2 

WHERE y_pos = y_pos_selected; 

+-------------------+-------------------------------+  

| y_pos_selected  | time_sequence_selected   |  

+-------------------+-------------------------------+  

| 132       | 1603947283961332000    |  

| 147       | 1603947289188403000    |  

| 162       | 1603947294438627000    |  

| 174       | 1603947298596609000    |  

| 174       | 1603955991782818000    |  

| 220       | 1603956059470845000    |  

| 232       | 1603956063602808000    |  

+-------------------+-------------------------------+  

 

MAX(y_pos) aggregate function should be replaced by a suitable aggregation function for 

summarization. 

 

Original level 0 graph: 

 

Figure 25: Level zero original data points - Graph 
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Existing summarized graph 

 

Figure 26 :  Summarization Graph for zoom level 5000 real output from Native system 

 

Newly suggesting summarization graph 

 

Figure 27: Summarization Graph for zoom level 5000 output from New system 
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CHAPTER 4 

EVALUATION AND RESULTS 

Real-time data warehousing system suggested has been evaluated via set of actions as follows. 

1. Identify weaknesses of existing warehousing model and discuss requirements for new 

warehousing model for the surveillance system. – Chapter1 

2. Identify expected technical and business requirement for new warehousing model – 

Chapter1 

3. List down components for warehousing system implementation – storage system and 

query system. – Chapter2 

4. List down appropriate technologies for each component considering both business 

requirements and technical requirements– Chapter2 

5. Shortlist compatible technologies for buildup total warehousing system considering 

their features and compatibilities for final system.  – Impala and Kudu technologies 

were finalized for hypothesis development. – Chapter2 

a. Hypothesis1:  

Together with Apache Kudu and Apache Impala can perform better than existing 

warehousing model on data query. 

b. Hypothesis2: 

Together with Apache Kudu and Apache Impala can perform data 

summarization queries without no other external component. 

6. Experiment on validating each Hypothesis – Methodology 

a. Hypothesis1: 

i. Experiment 1 has concluded that Query performance is better in 

proposing system around 37.32% for direct queries. 
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Query Time(s) – Existing 

system 

Time(s) – proposing model 

for standalone mode. 

Query performance 

enhancement Px 

1 1 0.842 
𝑃1 =

1 − 0.842

1
 × 100%

= 15.8% 

2 0.84 0.690 
𝑃2 =

0.84 − 0.690

0.84
 

× 100%

= 17.86% 

3 6.198 2.13 
𝑃3 =

6.198 − 2.13

6.198
 

× 100%

= 65.63% 

4 1.3 0.65 
𝑃4 =

1.3 − 0.65

1.3
 × 100%

= 50% 

Average enhancement of query return time 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4

4

= 37.32% 

Table 7: Experiment 1 – Query enhancement analysis 

 

ii. Experiment 2 has concluded that Query performance is better in 

proposing system around 84.82% for analytical queries. 

 

Query Time – 

Existing 

system (s) 

Time – proposing model for 

standalone mode. (s) 

Query performance 

enhancement Px 

1 5.634 0.27 
𝑃1 =

5.634 − 0.27

5.634
 

× 100%

= 95.20% 

2 0.655 0.23 
𝑃2 =

0.655 − 0.23

0.655
 

× 100%

= 64.88% 
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3 7.28 0.41 
𝑃3 =

7.28 − 0.41

7.28
 × 100%

= 94.37% 

Average enhancement of query return time 𝑃1 + 𝑃2 + 𝑃3

4
= 84.82% 

Table 8:Experiment 1 – Analysis Query enhancement analysis 

 

As per above experimental results – it clearly concludes that new system perform better. When 

it comes to analytical queries, new proposing system has been able to record 84.82% of query 

enhancement. This is a real big number that can make positive trigger point to look at new 

system as an analytical system rather than integrating or reserving another process for that. 

b. Hypothesis 2: 

i. Experiment 3 has concluded that Query output for summarized data 

output has deviation of SS% when compared to native system data 

summarization. 

From 26 graph points:   

After summarization as per existing model – 7 points has been extracted 

for visualization.   

After summarization as per suggested query – 7 points has been extracted 

for visualization. 

But only 2 points has overlapped. – means expected similarity between 

two graph/summarization model is around 28%. This value is not as 

expected due to following reasons: 

• Data summarization algorithm in existing system is a complex 

model. 

• Demonstrated summarization model is a simple analytical query 

selecting highest value for each granular time interval – mans two 

systems has demonstrated outputs from two different algorithms. 

But visually they have created 28% similar outputs as summarization 

outputs. We have more potential for enhancing the summarization logic 

for reach out existing summarization output. Since the objective is to 

conclude that with new model, we can analyze data and generate reports 

and graphs has been satisfied. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

Moving into new warehousing model is not a simple task for any kind of live system. Because 

it includes stream of proper validation procedures and migration tasks. But as described, 

existing warehousing system in the organization has reached out its maximum performance 

level and requirement level. Facebook, Google, and many more systems maintain their own 

warehousing models and has introduced fascinating warehousing technologies. But Market data 

warehousing system behaviors and expectations are much different than them. So, adopting to 

such platforms is not feasible here.  

Apache Hadoop is echo system consisting of various solutions for big data storing and 

analyzing. As a result of critical literature review, Apache Kudu and Apache Impala have been 

identified as candidates for new warehouse implementation. Analyzing on their strengths and 

weaknesses helped to reach out this conclusion and hypothesis development. But justification 

has been conducted in experimental level. Both hypotheses have been concluded successfully. 

Therefore, new warehousing model technologies have been proofed as better solution than 

existing warehousing model. 

In hypothesis2: although we have concluded that new system is capable of generating analytical 

queries and generate summarization output for given set of data – its output has not exactly 

matched for pre summarized data set in existing model. It is obvious both systems have used 

two different algorithms hence two different outputs. So as future work: it can 

enhance/implement more realistic summarization model matching to existing summarization 

algorithm. As per appendices – In order to reach out exact summery points for given data set – 

it needs to develop UDF for impala queries with existing algorithm implementation. 
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APPENDICES 

Other summarization techniques:  

1. Average all the values in a specific interval and get the floor(avg) as y_pos and maximum 

time_sequence value as the output time_sequence.  

WITH temptable AS (SELECT time_sequence, FLOOR ((time_sequence 

- MIN(time_sequence) OVER (PARTITION BY level))/5000000000) AS 

g, y_pos FROM graph_points WHERE level=0 AND 

filterfieldvalue='IRR04' AND data_partition_id=551 AND level=0 

AND (time_sequence >= 1603947279832890000 AND time_sequence <= 

1603956063602808000)) SELECT FLOOR(AVG(y_pos)) AS 

y_pos_selected, MAX(time_sequence) AS time_sequence_selected 

FROM temptable GROUP BY g ORDER BY time_sequence_selected;  

+----------------+------------------------+  

| y_pos_selected | time_sequence_selected |  

+----------------+------------------------+  

| 126            | 1603947283961332000    |  

| 141            | 1603947289188403000    |  

| 156            | 1603947294438627000    |  

| 169            | 1603947298596609000    |  

| 174            | 1603955991782818000    |  

| 220            | 1603956059470845000    |  

| 227            | 1603956063602808000    |  

+----------------+------------------------+  

As per this only one graph point has overlapped with existing model. 
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2. Moving average technique  

As explained in (Introduction, 2021), rolling average can be used to summarize the trade points. 

Per minute a point is plotted over a graph, where that point is based on rolling average of the 

previous 5 minutes.  

This can be altered to implement summarization technique for different levels. Since we can 

identify the trade points related to each possible interval, we can calculate the rolling average 

of trade points for 2 intervals (previous interval and current interval). The time sequence 

selected would be the final time sequence of that interval.  

Example:  

+---------------------+------+-------+  

| time_sequence       | g    | y_pos |  

+---------------------+------+-------+  

| 1603947279832890000 | 0    | 120 |  

| 1603947281149609000 | 0    | 123 | 126  

| 1603947281909799000 | 0    | 126 |  

| 1603947283073676000 | 0    | 129 |  

| 1603947283961332000 | 0    | 132 | 133  

| 1603947285059472000 | 1    | 135 |  

| 1603947286034132000 | 1    | 138 |  

| 1603947287060625000 | 1    | 141 |  

| 1603947288102194000 | 1    | 144 |  

| 1603947289188403000 | 1    | 147 | 148  

| 1603947290511048000 | 2    | 150 |  

| 1603947291246374000 | 2    | 153 |  

| 1603947292276991000 | 2    | 156 |  

| 1603947293311413000 | 2    | 159 |  

| 1603947294438627000 | 2    | 162 |  

| 1603947295419112000 | 3    | 165 |  
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| 1603947296482587000 | 3    | 168 |  

| 1603947297844352000 | 3    | 171 |  

| 1603947298596609000 | 3    | 174 |  

| 1603955991782818000 | 1742 | 174 |  

| 1603956059470845000 | 1755 | 220 |  

| 1603956060498245000 | 1756 | 223 |  

| 1603956061536288000 | 1756 | 226 |  

| 1603956062566090000 | 1756 | 229 |  

| 1603956063602808000 | 1756 | 232 |  

+---------------------+------+-----+  

Query –  

WITH temptable AS (SELECT time_sequence, FLOOR ((time_sequence 

- MIN(time_sequence) OVER (PARTITION BY level))/5000000000) AS 

g, y_pos FROM graph_points WHERE level=0 AND 

filterfieldvalue='IRR04' AND data_partition_id=551 AND level=0 

AND (time_sequence >= 1603947279832890000 AND time_sequence <= 

1603956063602808000)),  

temptable2 AS (SELECT MAX(time_sequence) AS 

time_sequence_selected,SUM(y_pos) AS sum_y_pos,COUNT(y_pos) AS 

n FROM temptable GROUP BY g)  

SELECT time_sequence_selected, FLOOR(SUM(sum_y_pos) OVER (ORDER 

BY time_sequence_selected ROWS BETWEEN 1 PRECEDING AND CURRENT 

ROW)/SUM(n) OVER (ORDER BY time_sequence_selected ROWS BETWEEN 

1 PRECEDING AND CURRENT ROW)) as y_pos_selected FROM temptable2  

+------------------------+----------------+  

| time_sequence_selected | y_pos_selected |  

+------------------------+----------------+  

| 1603947283961332000  | 126     | 

| 1603947289188403000  | 133         |  
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| 1603947294438627000  | 148     |  

| 1603947298596609000   | 162     | 

| 1603955991782818000  | 170     | 

| 1603956059470845000  | 197       |  

| 1603956063602808000  | 226       |  

+------------------------+----------------+  

3. Cumulative moving average.  

Cumulative moving average from the starting time_sequence also can be used.  

Example –  

+---------------------+------+-------+  

| time_sequence    | g    | y_pos |  

+---------------------+------+-------+  

| 1603947279832890000 | 0    | 120 |  

| 1603947281149609000 | 0    | 123 |  

| 1603947281909799000 | 0    | 126 | 126  

| 1603947283073676000 | 0    | 129 |  

| 1603947283961332000 | 0    | 132 | 133  

| 1603947285059472000 | 1    | 135 |  

| 1603947286034132000 | 1    | 138 |  

| 1603947287060625000 | 1    | 141 | 141  

| 1603947288102194000 | 1    | 144 |  

| 1603947289188403000 | 1    | 147 |  

| 1603947290511048000 | 2    | 150 |  

| 1603947291246374000 | 2    | 153 |  

| 1603947292276991000 | 2    | 156 |  

| 1603947293311413000 | 2    | 159 |  

| 1603947294438627000 | 2    | 162 |  
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| 1603947295419112000 | 3    | 165 |  

| 1603947296482587000 | 3    | 168 |  

| 1603947297844352000 | 3    | 171 |  

| 1603947298596609000 | 3    | 174 |  

| 1603955991782818000 | 1742 | 174 |  

| 1603956059470845000 | 1755 | 220 |  

| 1603956060498245000 | 1756 | 223 |  

| 1603956061536288000 | 1756 | 226 |  

| 1603956062566090000 | 1756 | 229 |  

| 1603956063602808000 | 1756 | 232 |  

+---------------------+------+-------+  

Query-  

WITH temptable AS (SELECT time_sequence, FLOOR ((time_sequence 

- MIN(time_sequence) OVER (PARTITION BY level))/5000000000) AS 

g, y_pos FROM graph_points WHERE level=0 AND 

filterfieldvalue='IRR04' AND data_partition_id=551 AND level=0 

AND (time_sequence >= 1603947279832890000 AND time_sequence <= 

1603956063602808000)),  

temptable2 AS (SELECT MAX(time_sequence) AS 

time_sequence_selected,SUM(y_pos) AS sum_y_pos,COUNT(y_pos) AS 

n FROM temptable GROUP BY g)  

SELECT time_sequence_selected, FLOOR(SUM(sum_y_pos) OVER (ORDER 

BY time_sequence_selected ROWS BETWEEN UNBOUNDED PRECEDING AND 

CURRENT ROW)/SUM(n) OVER (ORDER BY time_sequence_selected ROWS 

BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)) as y_pos_selected 

FROM temptable2  

+------------------------+----------------+  

| time_sequence_selected | y_pos_selected |  

+------------------------+----------------+  
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| 1603947283961332000  | 126 |  

| 1603947289188403000  | 133 |  

| 1603947294438627000  | 141 |  

| 1603947298596609000  | 147 |  

| 1603955991782818000  | 148 |  

| 1603956059470845000  | 151 |  

| 1603956063602808000  | 163 |  

+------------------------+----------------+  

ISSUE  

Consider the points available for level 300000, the suggested query would result the following,  

WITH temptable AS (SELECT time_sequence, FLOOR ((time_sequence 

- MIN(time_sequence) OVER (PARTITION BY level))/300000000000) AS 

g, y_pos FROM graph_points WHERE level=0 AND 

filterfieldvalue='IRR04' AND data_partition_id=551 AND level=0 

AND (time_sequence >= 1603947279832890000 AND time_sequence <= 

1603956063602808000)),  

temptable2 AS (SELECT MAX(y_pos) OVER (PARTITION BY g) AS 

y_pos_selected, LAST_VALUE(time_sequence) OVER (PARTITION BY 

y_pos,g) AS time_sequence_selected,y_pos FROM temptable)  

SELECT y_pos_selected,time_sequence_selected FROM temptable2 

WHERE y_pos = y_pos_selected  

+----------------+------------------------+  

| y_pos_selected | time_sequence_selected |  

+----------------+------------------------+  

| 174     | 1603947298596609000    |  

| 232     | 1603956063602808000    |  

+----------------+------------------------+  

Actual available points would be,  
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SELECT time_sequence,y_pos from graph_points WHERE 

(time_sequence >= 1603947279832890000 AND time_sequence <= 

1603956063602808000 ) AND filterfieldvalue='IRR04' AND level = 

300000 AND data_partition_id = 551;  

+---------------------+-------+  

| time_sequence    | y_pos |  

+---------------------+-------+  

| 1603947298596609000 | 174  |  

+---------------------+-------+  

 

From the starting time_sequence of 1603947279832890000 until 1603947579832890000 

would covers first time interval (300000ms from the starting time_sequence). Only first 19 

entries belong to that interval. Rest of the final 6 entries belongs to another interval.  

+---------------------+----+-------+  

| time_sequence    | g  | y_pos |  

+---------------------+----+-------+  

| 1603947279832890000 | 0 | 120 |  

| 1603947281149609000 | 0 | 123 |  

| 1603947281909799000 | 0 | 126 |  

| 1603947283073676000 | 0 | 129 |  

| 1603947283961332000 | 0 | 132 |  

| 1603947285059472000 | 0 | 135 |  

| 1603947286034132000 | 0 | 138 |  

| 1603947287060625000 | 0 | 141 |  

| 1603947288102194000 | 0 | 144 |  

| 1603947289188403000 | 0 | 147 |  

| 1603947290511048000 | 0 | 150 |  

| 1603947291246374000 | 0 | 153 |  
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| 1603947292276991000 | 0 | 156 |  

| 1603947293311413000 | 0 | 159 |  

| 1603947294438627000 | 0 | 162 |  

| 1603947295419112000 | 0 | 165 |  

| 1603947296482587000 | 0 | 168 |  

| 1603947297844352000 | 0 | 171 |  

| 1603947298596609000 | 0 | 174 |  

| 1603955991782818000 | 29 | 174 |  

| 1603956059470845000 | 29 | 220 |  

| 1603956060498245000 | 29 | 223 |  

| 1603956061536288000 | 29 | 226 |  

| 1603956062566090000 | 29 | 229 |  

| 1603956063602808000 | 29 | 232 |  

+---------------------+----+-------+  

But there is only 1 entry after summarization for level 300000. Hence there is clear requirement 

for implementing summarization function with the help of UDF as future works. 
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