
An Alternative to Certificate

Authorities using Blockchain

based Decentralized PKI

W.K.B.A.K Fernando

MASTER OF INFORMATION SECURITY

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

2020

mailto:kalashinie@gmail.com

Declaration

I hereby declare that the thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis. This thesis has also not been submitted for

any degree in any university previously.

Student Name: W.K.B.A.K Fernando

Registration Number: 2018MIS016

Index Number: 18770161

———————————————————-

Signature of the Student & Date

This is to certify that this thesis is based on the work of Ms.W.K.B.A.K Fernando

under my supervision. The thesis has been prepared according to the format stip-

ulated and is of acceptable standard.

Certified by,

Supervisor Name: Dr. Kasun De Zoysa

————————————————————-

Signature of the Supervisor & Date

i

Acknowledgments

First, I would like to convey my sincere gratitude to my project supervisor

Dr.Kasun De Zoysa for giving me constant guidance and suggestions for this

project and being available for discussions even when the university is closed

down due to the pandemic situation.

Secondly, I would like to extend my gratitude to all the academic and ad-

ministrative staff of University of Colombo School of Computing for the great

assistance they have given to me in numerous ways.

I would also like to thank Alexandra Elbakyan for breaking down barriers in

accessing research articles and making knowledge accessible to everyone in every

corner of the world. Her website made it possible to access many resources that

helped me with this project.

I am very much grateful to my family for their constant encouragement, sup-

port and patience through out this time.

Finally I extend my thanks to the “Hacker Who Hacked Me”. Without you,

I would have never followed a Masters in Information Security hence thank you

for paving this path for me.

ii

Abstract

A digital certificate is an electronic document which can be used to prove the own-

ership of a public key, which is a crucial aspect in web communication. These

digital certificates are issued by a central governing body named Certificate Au-

thorities. Activities of these certification authorities are not transparent and not

audited as well.

The problem with certification authorities is that the internet community need

to trust these certification authorities completely and currently we have placed

immense trust in them. Due to the importance of the certification authorities

they are tempting targets of criminals. There are many real-life examples for cer-

tification authorities being hacked or misbehaving. If the certification authority

is compromised, it is possible to create fake digital certificates which can be used

for malicious activities.

We have identified the reason for this issue is the fact that certification au-

thorities can be considered as a single point of failure in public key infrastructure.

Hence in this project we propose to eliminate this central figure and try to find

out whether it is possible to decentralize the functionalities of a certification au-

thorities by incorporating the blockchain technology.

In this project, we have followed an experimental research approach. Our

prototype implementation “TLSChain” is based on Ethereum blockchain network

and integrated with novel on-chain domain verification. The test cases carried

out revealed that the blockchain technology is a well-suited platform to build a

Public Key Infrastructure and possible to eliminate Certificate Authorities. After

evaluating the monetary side of “TLSChain”, it was evident the design should

address the scalability aspect due to the volatile nature of the cypto currency

market.

iii

Contents

Acknowledgments ii

Abstract iii

Contents iv

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Statement of the problem . 4

1.3 Research Aims and Objectives . 4

1.3.1 Aims . 4

1.3.2 Objectives . 5

1.3.3 Scope . 6

1.3.4 Structure of the Thesis . 6

2 Literature Review 8

2.1 Distributed Ledger Technology . 8

2.2 Blockchain . 8

2.2.1 Blockchain Characteristics 9

2.2.2 Blockchain Categorization 10

2.2.3 Bitcoin and Ethereum . 13

2.2.3.1 Bitcoin . 13

iv

CONTENTS

2.2.3.2 Ethereum . 13

2.2.4 Smart Contracts . 14

2.2.5 Dapps (Decentralized application) 15

2.2.5.1 Characteristics of Dapps 15

2.2.5.2 Benefits of Dapp Development 15

2.2.6 Blockchain Oracles (Blockchain Middleware) 16

2.2.6.1 The need of Oracles 16

2.2.6.2 Chainlink . 16

2.3 Public Key Infrastructure . 17

2.3.1 PKI supported functions 18

2.3.2 PKI Trust Models . 18

2.3.2.1 Certificate Authorities 19

2.3.2.2 Web of Trust . 19

2.3.2.3 Log based PKI 19

2.3.3 Certificate Authority Functionality 20

2.3.4 Certificate Authority Certificate Issuing Steps 20

2.3.4.1 Certificate Issuance Process 20

2.3.4.2 Revoking Certificates 22

2.3.5 X.509 Certificates . 23

2.4 Current Applications . 24

2.4.1 Decentralized Public Key Infrastructure 24

2.4.1.1 Web of Trust . 25

2.4.1.2 Log Based PKI 25

2.4.2 ACME Protocol . 25

2.4.3 Let’s Encrypt . 26

2.4.3.1 Certificate Management Agent Software 26

2.4.3.2 Domain Validation 26

2.4.3.3 Certification Issuance and Revocation 27

2.4.4 Trust CA . 28

2.4.5 DeTRACT . 29

2.4.6 NameCoin . 29

2.4.7 Blockstack . 30

2.4.8 Certcoin . 30

v

CONTENTS

2.4.9 SCPKI -Smart Contract-based PKI and Identity system . 31

2.4.9.1 SCPKI Improvements 31

2.4.10 Analysis of the current applications 31

2.4.11 Conclusion of the Review 32

2.4.11.1 Gap . 32

2.4.11.2 Viable Direction 33

3 Research Methodology 34

3.1 Knowledge gathered from previous researches 35

3.2 Solving the identified problems 36

3.3 Selecting the Blockchain Technology 37

3.4 Selecting the Blockchain Network 39

3.5 Our Approach . 40

4 Research Design - TLSChain 42

4.1 TLSChain Overview . 43

4.2 Main Components . 43

4.2.1 Domain Owner . 43

4.2.2 TLSChain CLI . 44

4.2.3 Chain Link . 44

4.2.4 TLSChain Smart Contract 44

4.2.5 TLSChain Web Extension 44

4.3 TLSChain CLI Functionalities . 45

4.3.1 Main functionalities of the TLSChain CLI 45

4.4 Smart Contract Functionalities 45

4.4.1 Domain public key registration 45

4.4.1.1 Validation points 45

4.4.2 Domain Public Key Revoke 47

4.4.3 Domain Public Key Renewal 47

4.4.4 Retrieve Validity . 47

5 Implementation 49

5.1 TLSChain Smart Contract . 49

5.1.1 Storing Domain Public Key Mapping 49

vi

CONTENTS

5.1.1.1 Information Storage 49

5.1.1.2 Struct Certificate 50

5.1.1.3 Solidity Code . 50

5.1.2 Domain Registration Function 50

5.1.2.1 requestRegister Function 50

5.1.2.2 requestRegister Validations 51

5.1.2.3 requestRegister Solidity Code 52

5.1.3 Renew Domain Public Key Validity Function 53

5.1.3.1 requestRenewDomainValidity Solidity Code . . . 53

5.1.4 Update Domain Public Key Function 54

5.1.4.1 requestRenewDomainPubKey Solidity Code . . . 55

5.1.5 Revoke Domain Public Key Registration Function 56

5.1.5.1 revoke Solidity Code 56

5.1.6 Retrieve Domain Public Key Information Function 56

5.1.6.1 retrieve Solidity Code 57

5.2 TLSChain CLI . 57

5.2.1 TLSChain CLI Available Commands 57

5.2.2 getPubHash Usage . 58

5.2.2.1 getPubHash scope 59

5.2.2.2 getPubHash Parameters 59

5.2.2.3 getPubHash Python Code 59

5.2.3 registerDomain Usage . 59

5.2.3.1 registerDomain Scope 59

5.2.3.2 registerDomain Pre-Configurations 60

5.2.3.3 registerDomain Parameters 60

5.2.3.4 registerDomain Python Code 61

5.2.4 retriveValidityCer Usage 61

5.2.4.1 retriveValidityCer scope 61

5.2.4.2 retriveValidityCer Parameters 62

5.2.4.3 retriveValidityCer Python Code 62

5.2.5 retriveValidityHash Usage 62

5.2.5.1 retriveValidityHash Scope 62

5.2.5.2 retriveValidityHash Parameters 62

vii

CONTENTS

5.2.5.3 retriveValidityHash Python Code 63

5.2.6 revokeDomain Usage . 63

5.2.6.1 revokeDomain Scope 63

5.2.6.2 revokeDomain Parameters 63

5.2.6.3 revokeDomain Python Code 63

5.2.7 renewDomainValidity Usage 64

5.2.7.1 renewDomainValidity Scope 64

5.2.7.2 renewDomainValidity Parameters 64

5.2.7.3 renewDomainValidity Python Code 65

5.2.8 requestRenewDomainPubKe Usage 65

5.2.8.1 requestRenewDomainPubKe Scope 65

5.2.8.2 requestRenewDomainPubKey Parameters 65

5.2.8.3 requestRenewDomainPubKey Python Code . . . 66

5.3 TLSChain Chainlink Usage . 66

5.3.1 TLSChain ChainLink Job Spcification 67

5.3.1.1 Job Specification Json 67

5.3.1.2 Chainlink Job Reading Server Value 68

5.4 TLSChain Extension . 68

5.4.1 TLSChain Extension Scope 70

5.4.2 TLSChain Java Script Code 70

6 TLSChain - A Use Case 72

6.1 TLSChain Functional Flow . 72

6.1.1 Step 1 - Creating a Self-Sign Certificate 72

6.1.2 Step 2- Use TLSChainCLI to get the Public Key Hash . . 72

6.1.3 Step 3- Configure the Web Server 74

6.1.4 Step 4- Register a Domain with TLSChain 76

6.1.5 Step 5- Verification . 77

6.1.5.1 retriveValidityCer 77

6.1.5.2 retriveValidityHash 79

7 Evaluation 80

7.1 Evaluation Setup . 80

viii

CONTENTS

7.2 Evaluation Process . 81

7.2.1 TLSChain Achieving Certificate Issuing Process 81

7.2.1.1 Test Case 1 - Possibility of registering a public

key for a domain using TLSChain 81

7.2.1.2 Test Case 2 - An attacker trying to register a new

public key for an already registered domain should

not be successful 82

7.2.1.3 Test Case 3 - Initial owner updating the registered

public key information should be successful . . . 82

7.2.2 TLSChain for Storage of Certificate Information 85

7.2.2.1 Test Case 4 - Successful storage of public key in-

formation . 85

7.2.2.2 Test Case 5 - Successful retrieval of public key

information . 85

7.2.3 Blockchain based PKI for certificate revocation 86

7.2.3.1 Test Case 6 - Initial Owner is able to revoke the

registered information 86

7.2.3.2 Test Case 7 - Attacker should not able be able to

revoke a registered information 87

7.2.4 TLSChain Achieve Certificate Verification Process 87

7.2.4.1 Test Case 8 - When accessing a domain registered

with TLSChain, if the correct public key sent from

the server it will be indicated 87

7.2.4.2 Test Case 9 - When accessing a domain registered

with TLSChain, an incorrect public key is sent

and it will be indicated 88

7.2.4.3 Test Case 10 - When accessing a domain not reg-

istered with TLSChain it will be indicated 89

7.2.5 TLSChain Efficiency . 91

7.2.5.1 Test Case 11 - Time taken for registering a public

key for a domain 91

7.2.5.2 Test Case 12 - Time taken for the validation in

the client side . 92

ix

CONTENTS

7.2.5.3 Test Case 13 - Registration cost in TLSChain

compared to the existing systems 92

7.3 Security Analysis . 95

7.3.1 Test Case 14 - Preventing Man in the Middle Attack . . . 95

7.3.2 Test Case 15 - Preventing Replay Attacks 96

7.3.3 Test Case 16 - Preventing Intruder trying to register a do-

main that he does not own 96

7.3.4 Test Case 17 -Preventing DNS Poisoning attacks 97

8 Conclusion and Future Work 98

8.1 Revisiting Aims and Objectives 98

8.1.1 Aims and Objectives . 98

8.1.2 Addressing Identified Problem 98

8.2 Conclusion . 100

8.3 Future Work . 101

8.3.1 Interoperability Support 101

8.3.2 Domain Validation . 101

8.3.3 Ethreum Price . 102

8.3.4 Validation to the browser and TLSChain support to meta-

mask . 102

8.4 Contribution and Novelty . 103

Appendix A : TLSChain Source Code 104

Bibliography 118

x

List of Figures

1.1 Evolution of Secure Communication 2

1.2 CA Hierarchy of Trust . 3

2.1 Blockchain Overview . 9

2.2 Chainlink Overview . 17

2.3 Certificate Issuing Process . 21

2.4 Structure of a X.509 V3 Certificate 24

2.5 Let’sEncrypt Domain Verification 27

4.1 TLSChain Overview . 42

4.2 Domain Public Key Registration 48

5.1 TLSChainCLI Help Option . 58

5.2 Published Chainlink Job Specification 68

5.3 Chainlink Job Reading Server Value 69

5.4 Certificate Details Provided by the Browser 69

5.5 TLSChain Extension . 71

6.1 Self-Sign SSL Certificate Creation 73

6.2 Generating public key hash using TLSChain 73

6.3 Creating Configuration Snippet 74

6.4 Adjust the Nginx Configuration to Use SSL 75

6.5 Public Key Hash in the public folder 75

6.6 Public Key Hash in the public folder 75

6.7 Domain registration with TLSChain 76

6.8 TLSChain Extension . 77

xi

LIST OF FIGURES

6.9 Step 5 - TLSChain Extension . 78

6.10 Step 5 - TLSChain Extension . 78

6.11 Validate the Public Key Hash with TLSChainCLI 79

7.1 Test Case 1 - Anne Successfully Register Domain Certificate with

TLSChain . 82

7.2 Test Case 2 - Eve’s unsuccessful attempt to register annefernando.com

with her certificate . 83

7.3 Test Case 3a - Anne successfully extending the validity 83

7.4 Test Case 3b - Eve’s unsuccessful attempt to extend the validity . 84

7.5 Test Case 3c - Anne successfully changing the certificate for the

same domain . 84

7.6 Test Case 4 - Eve’s unsuccessful attempt to renew the domain

public key validity . 85

7.7 Test Case 5 - Retrieving Certificate Domain Details 86

7.8 Test Case 6 - Anne successfully revoking 87

7.9 Test Case 7 - Eve’s unsuccessful attempt to revoke 88

7.10 Test Case 8 - TLSChain Extension Verification 89

7.11 Test Case 9a - TLSChain Extension Verification Incorrect Public

Key Received from the Server . 90

7.12 Test Case 9 - TLSChain Extension Verification Incorrect Public

Key Received from the Serve . 90

7.13 Test Case 10 - TLSChain Extension Verification 91

7.14 Test Case 14 - TLSChain Smart Contract Registration 93

7.15 Test Case 14 - Chainlink Oracle 93

7.16 Test Case 14 - TLSChain Smart Contract Revocation 94

7.17 Test Case 14 - ETH to USD fluctuating 95

xii

List of Tables

7.1 Legit User Anne’s Details . 81

7.2 Attacker Eve’s Details . 81

7.3 DV Certificate Providers . 91

7.4 TLSChain Costs Analysis . 93

7.5 TLSChain Costs Analysis . 94

7.6 TLSChain Costs Analysis . 94

7.7 TLSChain Costs Analysis . 94

xiii

Chapter 1

Introduction

1.1 Motivation

Originally, symmetric encryption scheme with the involvement of a secret key, is

the cryptographic solution which is used to share a secret between two parties.

The sender encrypts the message using the secret key and the receiver decrypts

the cipher text using the same secret key to obtain the original message. In this

scheme it is necessary to share the secret key between message exchanging parties.

Secure exchange of this secret key is difficult and can be considered as the main

drawback of the symmetric encryption scheme.

To overcome the above-mentioned secret key sharing problem, public key cryp-

tography which is based on two keys was introduced. The public key is used for

encrypting the message and the private key is used for decrypting the cipher text

to obtain the original message. The private key is not disclosed and securely

kept with the owner, while public key can be disclosed to any party interested in

sending an encrypted message.

Public key cryptography solves the secret key sharing problem in symmetric

encryption scheme but introduces a new problem of distributing trusted authentic

public keys. Trusted 3rd parties named Certification Authorities(CA) provides a

solution for this by issuing digital certificates which includes metadata such as

organization’s name, email address, country, entity that issued the certificate,

along with the public key. Any party that wishes to communicate securely can

1

obtain this digital certificate and extract the public key. CAs are trusted by the

owner of the digital certificate and the party relying on the verification. Refer

Figure 1.1

Figure 1.1: Evolution of Secure Communication

Public key infrastructure(PKI) guarantees secure exchange of identities over

the internet by providing policies and procedures to issue, manage, validate and

distribute digital certificates. To do this, PKI implements a centralized trust

model with a hierarchy of trusted certificate authorities.

CA is one of the most important elements in the PKI. Certification authority

is a centralized solution and it can be considered as the single point of failure in

the PKI which can lead to Denial of Service attacks. Recently there have been

several incidents of hackers taking advantage of this nature of the certification

authorities.

For instance, due to a security breach in CA DigiNotar, by using the company

infrastructure (Wolff 2016) many different attackers were able to generate a large

number of rogue digital certificates for high profile domains. This breach infected

domains pertaining to CIA, Mossad, Google, Microsoft & Twitter. There were

roughly 500 such fake certificates discovered hence web browser vendors were

forced to revoke certificates issued by the CA DigiNotar. During the same month

2

Figure 1.2: CA Hierarchy of Trust

DigiNotar had to declare bankruptcy (Fisher 2012).

In a different case, Malaysian CA DigiCert Sdn. Bhd had mistakenly issued

weak SSL certificates. These certificates have been used to impersonate websites

and due to this issue, major browsers had to revoke all the certificates issued by

this CA (Fisher 2012).

Even Though root certificates are trustworthy there could be mistakes along

the chain by intermediate certification authorities. Such an incident occurred

for TrustWave, a large U.S based certificate authority. This intermediate root

certificate authority allowed their holders to create certificates to any domain

on the internet. TrustWave then revoked the certificate and terminated issuing

intermediate certificates to customers (Constantin 2012) Refer Figure 1.2.

Apart from above situations, researchers have challenged the trustworthiness

of certification authorities. CAs continued to use obsolete cryptographic technolo-

gies, signed certificates without verifying their content, and signed certificates

that browsers parsed incorrectly, putting users at risk of undetectable attacks

(Schoen 2017).

3

1.2 Statement of the problem

Is it possible to design a novel Public Key Infrastructure by eliminating the

centralized Certification Authorities by incorporating blockchain middleware to

achieve on-chain domain verification?

1.3 Research Aims and Objectives

1.3.1 Aims

From the incidents that we have examined we can identify following issues related

to Certification Authorities

1. CA compromised. Hackers issuing rouge certificates using the private key

of the CA.

2. CA accidentally issuing erroneous certificates to customers enabling cus-

tomers to act as CA themselves.

3. Trusted root CAs are hardcoded to browsers and operating systems. In

order to remove a trusted CA a security updates should be pushed.

4. Certificate signing cost. A single certificate can cost between 100$ to 1000$
depending on the specific CA and the required certificate.

5. Slow certificate signing process

As there are a growing number of adversary attacks and security concerns

related to CAs, the aim of this project is to completely eliminate the single point

of failures in the PKI which is the Certification Authority. Current blockchain

based PKI systems uses blockchain as a storage medium and uses some-form at-

testors (existing Certification Authorities or 3rd party attestors). This project

we will consider whether it is possible to decentralize the functionalities of the cer-

tification authorities by tightly coupling the on-chain domain validation without

using any form of attestors and using blockchain technology more than a storage

medium to overcome the above-mentioned drawbacks of certification authorities

in the secure web communication domain.

4

1.3.2 Objectives

The iconic paper published by satoshi nakamoto “Bitcoin: A peer-to-peer elec-

tronic cash system” introduced a novel way to transfer digital money by solving

the long-worried problem of digital cash “double spending” (Nakamoto 2008).

This is exactly the similar situation that we are trying to solve in this project.

We are looking for a mechanism that controls and verifies the authenticity of the

public key (Two distinct entities cannot have the same public key). With this

inspiration we are proceeding this project by incorporating blockchain technology.

By design blockchain technology provides many characteristics which are us-

able when finding a solution to the CAs based PKI problems. Blockchain is a

peer to peer distributed ledger technology that provides a shared, immutable and

transparent history of all the transactions in a network. It is decentralized!

We are expecting to evaluate different properties of blockchain technologies.

Such identified properties are Permission Type, Blockchain Type, Storage Type,

Smart Contracts, Privacy concerns. Also, there are PKI related properties that

we are expecting to consider. Such PKI properties are Trust Model, Revocation,

Data Structure, Incentives, Updatable Keys.

To address the inefficiencies tied to current blockchain based PKI systems,

we are hoping incorporate next generation blockchain technology named smart

contracts. With the usage of smart contracts and blockchain middleware, we are

hoping to incorporate verification functionalities with the storage of identities

which is a major drawback of the current approaches of blockchain based PKI

where CAs are still in use to issue certificates and blockchain is use as a storage

mechanism.

Following the experimental research approach, we will try to design a blockchain

based PKI system to replace the functionalities provided by the CAs. Before do-

ing this, we will evaluate different blockchain platforms and trust models to come

up with a novel approach for a blockchain based PKI without storing X.509 cer-

tificates.

A proof of concept will be developed by using available blockchain technologies

and hoping to use publicly available resources. Knowledge of theory extracted

from the literature survey will be used when determining resources which will be

5

effectively lead to find a solution for the identified problem.

1.3.3 Scope

There are different type of digital certificates which are used in different domain.

Types of digital certificates

• Root Certificate

• Personal Certificate

• Software Publisher Certificate

• Content Signing Certificate

• Server Certificate(SSL Certificate)

Different domains that digital certificates are used

• Digital Signatures

• Encryption for Email

• Smart Cards

• Web Communication

In this project we will be only considering server certificate(SSL Certificates)

in the web communication domain. The main focus is towards establishing a

trust model which can be replace the hierarchical trust model that certificate

authorities have established.

1.3.4 Structure of the Thesis

Chapter 2 of this thesis will contain a detailed literature review. It will comprise

of an in-depth study on the blockchain technology and public key infrastructure.

Chapter 3 will contain the methodology and the Chapter 4 will describe the design

6

of the proposing PKI. Chapter 5 will discuss the implementation, Chapter 6 will

be a sample case study and Chapter 7 is focused on evaluation and Chapter 8

will provide the conclusions.

7

Chapter 2

Literature Review

2.1 Distributed Ledger Technology

A distributed ledger is a record of consensus with a cryptographic audit trail

which is maintained and validated by several separate nodes (Rutland 2018).

Synchronized ledger is spread across multiple nodes and it is cryptographically

secured. Distributed ledgers could be either centralized or decentralized. In the

decentralized approach it gives the equal rights within the protocol to all the

participants and in the centralized, only a designated user has particular rights.

2.2 Blockchain

Blockchain is a decentralized, append-only database of singed transaction or op-

erations that yield a new globally consistent state which can be considered as a

combination of distributed ledger technology and blocked transactions.

Blockchain is one way of implementing a distributed ledger (but not all dis-

tributed ledgers necessarily employ blockchains). As per distributed ledger tech-

nology, blockchain contains chain of digitally signed, unchangeable data packages

and in the blockchain domain it is called “blocks”. A block is a bundle of trans-

action data. After certain predetermined criteria is met, blockchain is capable of

producing a new “block” where distributed ledger is only verifies a transaction

one it is submitted (Rutland 2018).

8

2.2.1 Blockchain Characteristics

• Un-editable record of all the transactions made

Blockchains creates the chaining effect by, current block referring to the

signature of the previous block in the chain, and that chain can be traced

all the way back to the genesis block. Data in a specific block cannot

be altered without changing subsequent blocks, which require the network

consensus. As a result of feature blockchain contains un-tampered records

of all the transactions made. Refer Figure 2.1.

Figure 2.1: Blockchain Overview

• Transparent and Distributed

A non-refutable and unbreakable record of data Blockchain is inherently

distributed (Many parties hold the copied of the ledger as it is replicated

across several nodes), hence there is no single point of failure.

• Consensus algorithms

Consensus algorithms determines the state of the ledger. The ledger’s ver-

sion validity is established though the consensus among the participating

nodes, called miners. Even though there are several mechanisms like Proof

Work, Proof of Stake, Proof of Authority but ultimately all serves to vali-

date information from inputs to the network.

Miners creates new blocks by validating transactions through Proof of Work

exercise (Or any other consensus algorithm). Anyone can create a valid

block if they can expand the required computing power (in PoW calculating

hashes). This resource intensive process also creates a financial barrier to

prevent malicious attacks.

9

– Proof of Work(PoW)

Consensus mechanisms that requires miners to go through an intense

race of trial and error to find the nonce for a block. Only blocks with

a valid nonce can be added to the chain.(Buterin et al. 2014).

– Proof of Stake(PoS)

Consensus mechanisms that work by selecting validators in proportion

to their quantity of holdings in the associated cryptocurrency. Un-

like a proof of work protocol, PoS systems do not incentivize extreme

amounts of energy consumption.

– Proof of Authority(PoA)

Consensus mechanism based on identity as a stake.

2.2.2 Blockchain Categorization

There are numerous variations of blockchain technologies exist in the concep-

tual and the implementation level. We are exploring and distinguishing following

properties which are relevant to this project (Brunner, Knirsch, Unterweger &

Engel 2020).

• Permission Type

– Public

Public (Permission-less\Decentralized) Anyone can perform transac-

tions on the blockchain. All the data is accessible to the participants

in blockchains. As this type of blockchains are open to public, mech-

anisms to combat vulnerabilities should be included to the design.

These mechanisms will prevent people from corrupting the system(Eg

:- Proof of work in Bitcoin).

– Private

Private (Permissioned\Centralized) These type of blockchains are con-

sist of parties whose identities are known. As there are only credible

and repudiated participants can post to the blockchain systems are

10

considered to be valid and since the identities are known, the transac-

tions can be audited. Data is only selectively accessible at participant

level.

• Blockchain Type

– Using Established Network

Implementation can be done on established and well investigated tech-

nologies. For this purpose existing blockchain networks can be used.

Bitcoin, Ethereum or a fork of an existing blockchain code base to

setup a new (Eg:- Namecoin is a fork of Bitcoin). Advantage of using

an established blockchain is that it has been used and tested by the

community around the world.

– Starting from scratch

Developers should write code to implement a new blockchain network.

Security and end user acceptance can be negatively impacted in these

situations.

• Storage Type

– On-chain

Data relevant for the use case is directly stored directly on the blockchain.

Within blocks and/or transactions. Full on-chain storage means all the

data is stored on the blockchain.

– Off - chain

Data is not stored in the blockchain. It can be stored in an external

storage either privately or publicly.

∗ Public - Stored in publicly accessible web servers. Everyone has

access to the data without restrictions.

∗ Private - Data is kept under the control of a limited number of

entities and allows only limited access.

11

∗ DHT (Distributed Hash Table) - Special form of off-chain storage,

where the stored data is distributed among multiple participants.

If a cryptographically secure hash function is used within the DHT

to address the stored data then the data can be timestamped,

integrity and tamper-proof protected.

∗ IPFS (Inter Planetary File System) - This is a popular storage

layer for decentralized applications. It is a peer-to-peer data dis-

tribution protocol where nodes in the IPFS network form a dis-

tributed file system. Cryptographic Hashed are used when ad-

dressing data in IPFS and the link always stays the same irrespec-

tive of which node serve the data. Storing data in blockchain costs

money hence economically is not particle to store large amount of

data on the Ethereum blockchain. IPFS is ideal for blockchain

application, as it make it possible to address large amount of data

from truncation in the blockchain using permanent and immutable

IPFS links.

• Privacy

– Storing a reference to the data not the actual data. Using hashed or

salted hashes.

– Permissioned blockchain - Effectively private

– PET (Privacy Enhancing Technologies) - Can be used in permission

less blockchain

• Evaluation

Operation, transmissions and storage on blockchains can be evaluated in

terms of time, space, complexity and cost

– Complexity - How much computing power or memory is needed with

a changing number of users, objects or per any dependent variable.

– Cost - Different blockchains implementations charge different fees for

the transaction and the data volume contains. Hence it is needed to

calculate cost per user, per object and dependent variable.

12

2.2.3 Bitcoin and Ethereum

Currently Bitcoin and Ethereum are the most popular public blockchains that

we have today. They have many similarities in terms of blockchain concepts,

but the key difference is that Bitcoin is merely a cryptocurrency but Ethereum’s

capabilities goes beyond a cryptocurrency. Ethereum is intended as a platform

to facilitate immutable, programmatic contracts and applications via its own

currency.

2.2.3.1 Bitcoin

With the idea of eliminating financial institutions from the electronic cash based

online transactions, Santoshi Nakamoto proposed a new electronic cash system

named ”Bitcoin” (Nakamoto 2008). This revolutionary idea of Bitcoin was not the

first attempt at an online digital currency, but it has become the most successful

cryptocurrency which has developed in past decade.

Even though the name Blockchain was not specifically mentioned in this pa-

per, it is the underline technology used where series of data blocks are crypto-

graphically chained together. With Bitcoin it was possible to transfer digital

money without going through trusted third-party or intermediary bank.

Over these years Bitcoin has managed to co-exist with the financial systems,

gained acceptance among regulators and government bodies despite of being reg-

ularly scrutinized and debated.

2.2.3.2 Ethereum

Vitalik Buterin published the Ethereum white paper after being inspired by the

success of Bitcoin. Ethereum is more than a cryptocurrency which enables the

deployment of smart contracts and decentralized applications (Dapps). Presently

Ethereum is the largest and most well-established, open ended decentralized soft-

ware platform(Buterin et al. 2014).

Ethereum’s cryptocurrency is called Ether. Ethers servers as a meant to

incentivize participants to engage in the protocol. Miners work is compensated

by giving them transaction fees that are expressed in unit called gas and calculated

based on the complexity of the code they execute.

13

2.2.4 Smart Contracts

Contracts are a well-established concept in the legal arena. It is a legally binding

document between that defines and governs the rights and duties of a parties to

an agreement. In Ethereum this concept has been incorporated and evolved.

Smart contract is a self-executing(automated) contract with the terms of the

agreement between buyer and seller being directly written into lines of code. The

code and the agreements contained therein exist across a distributed, decentral-

ized blockchain network. Execution is controlled by the code and the created

transactions are traceable and irreversible, no party can block or otherwise tam-

per with.

Smart contracts allow parties involved in an agreement to conclude with cer-

tainty that they in consensus all the times as the existence, nature and evolution

of the facts shared among them, which are governed by the program. Also, smart

contracts are useful to satisfy common contractual conditions, lower transaction

cost and rusk and eliminate the need for trusted intermediaries.

Ethereum smart contracts are accessible and transparent like open APIs. In

Ethereum smart contract is a program that runs on Ethereum blockchain. Smart

contract has a specific address and it contains collection of code (functions) and

data (state) that resides at a specific address on the Ethereum blockchain. The

basic order of transactions maintains the consistency smart contract execution

by peers. (Zhao, Lin, Huang, Zhang & Xiang 2020).

Ethereum supports Solidity programming language, which is a high-level,

complex, Turing complete language and then it is compiled-down to Ethereum

Virtual Machine. To prevents miners end up in a never ending loop (due to

Turing completeness), transactions and message calls specify an upper bound on

the amount of gas that they can consume. Contracts become part of Etheteum’s

global state by wrapping this initialization code in a transaction, signing it and

broadcasting it to the network.

The code and the state of the smart contracts are publicly accessible hence

it can be trusted for correctness. Also it is widely popular due to the large open

source community contributes to an efficient development process.

14

2.2.5 Dapps (Decentralized application)

In General, Decentralized applications are digital application or programs that

exist and run on peer to peer network of computers instead of a single computer

and are outside of the scope and the control of a single authority. While the

backend code running on a decentralized peer to peer network, the frontend and

the user interface can be written in any language that can make calls to its

backend. In Ethereum with smart contracts building Dapps has become much

easier. Dapps back end consist of smart contracts (ethereum.org 2020).

2.2.5.1 Characteristics of Dapps

• Decentralized - No Central authority to control. Take independent deci-

sions.

• Deterministic - Irrespective of the environment that they are executed, all

the nodes perform the same function.

• Turing Compatible - Given the required resources, Dapps can perform any

action.

• Isolated - Smart contracts are executed inside Ethereum virtual machines.

Because of this approach if a smart contract contains a bug it won’t hamper

the normal functioning of the Ethereum blockchain network.

2.2.5.2 Benefits of Dapp Development

• Zero Downtime - smart contract which is the core of the Dapp deployed in

the Ethereum blockchain, the network as a whole will be able to serve clients

looking to interact with the contract. Hence when it comes to individual

dapps, it is not possible to launch denial of service attacks.

• Privacy - It is not needed to have a real-world identity to deploy or interact

with Dapps.

• Complete Data Integrity - Malicious actors cannot forge transaction or the

data that has already been made public as Data stored in blockchain is

immutable and indisputable.

15

• Transparent and Verifiable Behavior - Without a need of a central authority

it is possible to verify deployed smart contracts and they are executing in

predictable ways. When compared the same with the traditional model, we

need to trust a financial institution or a central authority with data and

transaction misuse.

2.2.6 Blockchain Oracles (Blockchain Middleware)

Blockchain Oracle is any device or an entity that connects a deterministic blockchain

with off-chain real world data. Since blockchain oracles creates a bridge between

two world it is also known as blockchain middleware (chain.link 2020).

2.2.6.1 The need of Oracles

Due to the blockchain’s distributed nature, each node in the network should

come up with the same value with the given same input (Deterministic property).

Otherwise when a node tries to validate a transaction that another node created,

it would end up in different results. Then none of the nodes would be able to

agree upon what the actual state of the blockchain is. Due to this reason the

architecture has been intentionally designed to be deterministic. Deterministic

blockchain means if a transaction is replayed it should end up in the correct

state. If we have included an API call or another non-deterministic sources into

the infrastructure of the blockchain then there is a possibility that the source will

be deprecated, hacked, or broken. In situations like this it is difficult to come to

a consensus.

2.2.6.2 Chainlink

The deterministic nature of the blockchain does not allow to access the outside

data. If the suggested oracle is a centralized solution, then it will nullify the

advantages of smart contracts.

Chainlink is a decentralized oracle which will solve above mentioned problems.

For blockchain oracles Chainlink introduces the same decentralized infrastructure

concept that blockchain has. This is a framework to choose to independent net-

work nodes to connect the real world’s data to the block chain to enable smart

16

contracts to reach their true potential and security guarantees. The decentral-

ized network will carry on if the nodes and sources are hacked, deprecated or

deleted. Figure 2.2 how blockchain networks access outside data with the usage

of Chainlink.

Figure 2.2: Chainlink Overview

Multiple chain-link to evaluate the same data before it becomes a trigger.

2.3 Public Key Infrastructure

To secure and to encrypt the communication among multiple parties, Public Key

Infrastructure(PKI) is heavily used over the internet. Identity of a user is au-

thenticated and managed by PKI entities. PKI binds the physical identity of a

user with certificates.

PKIs are protocols of binding

• Public key to a name, email address, identity of an individual for authenti-

cation

• Establishing secure communication channel

• Verifying the creator of signatures

17

PKI is a set of entities, policies and procedures where the public key name

pairs are issued managed and revoked. This is based on public key cryptography

and require entities to have a public key and a private key (secret key). With the

usage of a digital certificate, PKI provides the link between a public key (which

has a corresponding private key) and its owner.

2.3.1 PKI supported functions

• Registering an identity with a corresponding public key

• Updating the public key corresponding to a previously-registered identity

• Looking up a public key corresponding to a given identity

• Verifying a public key corresponds to a given identity (step more than per-

forming lookup)

• Revocation (coping with key compromises) or backup

fundamental building block of many applications that rely on secure and re-

liable authentication.

Digital Certificates ensure that a certain entity is bound to its public key.

This relies on the trusted servers maintained by certificate authorities. These

authorities issue a certificate for a person or a domain that publicly and verifi-

able biding this entity to a certain key. The most common format of a digital

certificate is x.509.

2.3.2 PKI Trust Models

The most two common approaches to the public key infrastructure falls into two

categories.

• Certificate Authorities

• Web of Trust

18

2.3.2.1 Certificate Authorities

Certificate authorities are trusted 3rd party entities, who certify the ownership

of a public key by the said entity by providing a signed certificate. This is the

most common choice in practice. Hierarchical structured trust model CA issues

certificates to participants and other CAs. Root CAs issues certificates to other

CAs to build the chain of trust.Recent incident shows that there is too much trust

placed in CAs. Eg:-Symantec, GeoTrust, Comodo, DigiCert,Thawte, GoDaddy

Certification Authority based PKI consists of the following entities (Wikipedia

contributors 2020)

1. A certificate authority (CA) - that stores, issues and signs the digital cer-

tificates

2. A registration authority (RA) - which verifies the identity of entities re-

questing their digital certificates to be stored at the CA.

3. A central directory - a secure location in which keys are stored and indexed.

4. A certificate management system - managing things like the access to stored

certificates or the delivery of the certificates to be issued.

5. A certificate policy - stating the PKI’s requirements concerning its proce-

dures. Its purpose is to allow outsiders to analyze the PKI’s trustworthiness.

2.3.2.2 Web of Trust

Web of Trust establish the trust by verifying that a party is trusted by at least

one already trusted entity (Certificate is singed by an entity whom the verifier

has previously established trust). In web of trust all the participants are equal to

issue certificate to confirm each other’s public keys. Eg:- PGP Network of trust

(Caronni 2000)

2.3.2.3 Log based PKI

The Log based PKI’s public log allows to audit all the CA activities but does

not provide a fully decentralized approach. Log based PKI are an extension to

19

both hierarchical and Web of trust-based PKIs. This has a publicly append only

database and needs to register before they are considered valid. As the certificates

are publicized any misbehavior can detect quickly and denounce publicly.

Eg:- Certificate Transparency Project by Google

2.3.3 Certificate Authority Functionality

CA provide singed certificates to an entity on request, Certifying ownership of a

public key by the said entity. Relying parties check the validity of the signature

using the corresponding CA’s public key stored in a file called ”TrustStore”.

There are two types of certificate authorities. Root CA and Intermediate CA.

Intermediate CA’s get a signed certificate from root CA which allows interme-

diate CA to sign certificates on behalf of the root CA. There could be many

intermediate certificates with different trust levels, issuing different kind of cer-

tificates. If they are acting behalf of one single CA then only the certificate of

the root certification authority needed to be stored in the trust store.

Usually Root CA kept offline and if there is a need to revoke the trust in the

intermediary CA, Root CA comes online and revoke the trust in the intermediary

CA.

2.3.4 Certificate Authority Certificate Issuing Steps

1. Acceptance of certificate signing requests

2. Verification of entities’ identity

3. Signature of digital certificates

4. Revocation of certificates

2.3.4.1 Certificate Issuance Process

• Certificate Signing Request

When an entity requests for a certificate, they should provide the certificate

signing request which will be signed by the CA. This CSR will include

following information

20

Figure 2.3: Certificate Issuing Process

– Common Name (CN)

– Email address

– Company Name

– Department

– Address

– Public Key

• Registration Authority

Registration Authority is a part of the certificate validation process where

it will help to apply for, approve, reject and revoke certificates. Once the

RA validates the information provided in the CSR, it will contact the CA

and then CA will issue a date of expiry and sign the certificate with its

private key and provide it to the requesting party.

• Types of Certificates

– Domain Validation Certificate (Class 1, Class 2) - To obtain this kind

of certificate client needs to prove the Registration Authority that

they have the control over the specified domain in the CSR. During

the verification process domain owner will receive a verification request

via e-mail and to prove the ownership of the domain he has to reply

it. With Automatic Certificate Management Environment Protocol

(ACME Protocol) this process is automated.

– Organization Validation Certificates (OV) and Extended Validation

Certificates (EV) (Class 3) - Registration Authority will be more in-

volved, and also more scrutiny. In this process it will check that the

21

company is registered under the specified country in CSR. During EV,

RA will confirm that the CSR was originated from the authorized

company. In this process’s RA could make a phone call or request

paperwork or other out of band communication.

2.3.4.2 Revoking Certificates

CA will revoke the certificates due to following reasons.

• Request from the domain owner (Authorized person)

• Private key of the certificate has leaked

• The company that certificate was issued for gone out of business

• Certificate was revoked by an accident

When a certificate is invalidated, it should be notifying to the client that

the certificate is no longer trusted. This is a service directly provided by the

CA or Validation authority is authorized inform about the status of the revoked

certificates behalf of the CA.

Certificate revocation Two approaches of certificate revocation.

• CRL(Certificate Revocation List) - This contains a list of revoked certifi-

cates signed by a CA. CRLs are uploaded to public repositories like a public

FTP. Any client needs to verify a validity of a certificate should obtain the

recent CRL and validate it against the serial number of the certificate. The

drawback of this is approach is that CRLs could be very lengthy as the size

of the CRL is proportional to the number of revoked certificates.

• OSCP(Online Certificate Status Protocol) - This protocol is used to check

for the revocation status of a certificate. OSCP responses for an inquiry

from a client consist of a time stamped data structure signed by the CA,

which reveals the revocation status of a certificate at a given time. OSCP

responder server is responsible for this task.

According to OSCP stapling protocol, to speed establishing secure connec-

tion, the OCSP responses can be sent during the TLS handshake.

22

If the OCSP responder becomes unresponsive then it is not possible to

check the status of the certificate. This kind of situation can be occurred

due to a man in the middle attack (dropping the response from the OCSP

responder). Some client might ignore a failure to check the revocation status

of a certificate instead of terminating connection which can be exploited by

an advisory. This can be solved by using OCSP stapling and a certificate

can enforce OCSP stapling through a X.509 v3 extension.

If an OCSP responder become compromised by an adversary then there

isn’t a mechanism to revoke the trust in an OCSP responder. This should

be manually configured in the clients relying on the OCSP responder.

2.3.5 X.509 Certificates

The most common type for digital certificate is X.509. Figure 2.4 depicts fields

of a X.509 Version 3 digital certificate.

• Certificate Serial - Number Uniquely identifies a certificate issued by the

CA.

• Signature Algorithm - Identifier Contains the name and parameters of the

signature algorithm used by the CA to construct the CA signature.

• Issuer - The X.500 name of the certificate authority who has signed the

certificate.

• Validity - period Contains a start and expiry date which defines the period

where the certificate should be considered valid.

• Subject - The distinguished name (DN) of the entity who owns the private

key corresponding to the public key in the certificate.

• Subject Public Key Info - information Contains the public key of the subject

together with the algorithm and parameters used to construct the key.

• Extensions - Added in X.509 version 3 and contains a list of certificate

extensions.

23

Figure 2.4: Structure of a X.509 V3 Certificate

2.4 Current Applications

2.4.1 Decentralized Public Key Infrastructure

Decentralized PKI to return control of online digital certificate to the entities

they belong to.

24

2.4.1.1 Web of Trust

This is an entirely decentralized approach, which eliminates the central point of

failure. Users label each other as trustworthy by signing their public key. A user

will collect certificates which will contain his public keys and signatures from

others who will find him trustworthy. Then a third party can verify this user by

checking whether it contains the signature of someone he trusts.

Even though this is an efficient decentralized approach it is difficult for a new

user to join the network. Also, it is not possible to deal with the key revocation. A

user can choose only one other user to be the ”designated revoker” and provide a

grant to revoke the certificate if the private key is compromised (Yu & Ryan 2017).

2.4.1.2 Log Based PKI

In log-based PKI a public log is used to monitor and publish the certificates issued

by CAs. These public logs are deployed in high availability servers and they

provide transparency hence only publicly logged certificates are accepted. From

this approach it is possible to identify misbehaving CAs. The most successful

Log based PKI is Google’s Certificate Transparency and it is available in Chrome

and Firefox (Laurie, Langley & Kasper 2013). Even though there are many

benefits in this scheme, certification revocation is still a challenge (Matsumoto &

Reischuk 2017).

2.4.2 ACME Protocol

In this project we are examining ACME protocol as it is an automatic certification

issuing protocol which can be incoperated to blockchain technology when imple-

menting a PKI (Kfoury, Khoury, AlSabeh, Gomez, Crichigno & Bou-Harb 2020).

Automatic Certificate Management Environment is a communication protocol

which automates the interaction between the certificate authorities and the user’s

webserver. This was designed as a part of Let’s Encrypt service which provides

public key infrastructure for a lower cost. This protocol is based on passing

JSON-formatted messages over HTTPs.

ACME is now published as an internet standard in RFC 8555.

25

2.4.3 Let’s Encrypt

Let’s encrypt is an open and automated certificate authority that uses the ACME

protocol to provide free TLS/SSL certificates to any compatible clients. These

are typical SSL certificates that can be used to encrypt communication between

web server and the web client(LetsEncrypt n.d.).

Setting up a web server to use HTTPS communication with Let’s encrypt is

a two-step process.

• Certificate management agent deployed in the web server proves to the CA

that web server controls a domain.

• Certificate management agent can request, renew, revoke certificates for

that domain.

2.4.3.1 Certificate Management Agent Software

To get a let’s encrypted certificate an ACME client software should be used.

These clients are offered by third parties. The most popular ACME client is

Certbot. Certbot is capable of configuring TLS/SSL on both Apache and Nginx

web servers in addition to verifying domain ownership and fetching certificates.

2.4.3.2 Domain Validation

Let’s encrypt offers domain validation certificates by identifying the sever admin-

istrator by the public key. These certificates make sure that the request come

from a person who actually controls the domain. As the initial step agent soft-

ware interacts with Let’s Encrypt and generates a new key pair and proves to the

Let’s Encrypt CA that the server controls one or more domains. Refer Figure

2.5. For this Let’s encrypt CA will look at the domain name being requested and

issue one or more sets of challenges. There are two ways to that the agent can

prove the control of the domain. Eg:- if proving the control of example.com

• Provisioning a DNS record under example.com

• Provisioning an HTTP resource under a well-known URI on http://example.com

26

Along with these challenges, Let’s encrypt CA provide a nonce that the client

agent must sign to prove that it controls the public and private and key pair.

After completing above two tasks CA will verify that the challenges have been

satisfied and the signature over the nonce is valid. The key pair that the agent

used is marked as an “authorized key pair”

Figure 2.5: Let’sEncrypt Domain Verification

2.4.3.3 Certification Issuance and Revocation

Once key authorization step is done, by using certificate management messages

certificates can be requested, renew and revoke. Certificate is obtained by provid-

ing ta PKCS#10 CSR. CSR includes a signature by the private key corresponding

to the public key in the CSR. Agent also signs the CSR. Let’s encrypt CA verifies

the both signatures and if it is successfully verified a certificate is issued. To

revoke a certificate, Certificate revocation request is made by signing with the

authorized key pair. Let’s encrypt CA verifies thing and publish the revocation

information into the normal revocation channels.

27

2.4.4 Trust CA

Authors of this project are using smart contract in Ethereum platform to build

and independent entity named CA Proxy to manage life cycle of digital certificates

also they are integrating the CA proxy with the current CAs through applying

blockchain oracle services (Zhao et al. 2020).

The Certificate transparency is achieved though life cycle management of digital

certificated in blockchain platform. They are considering the process of digital

certificate issuance by CA, life cycle management of digital certificates, and in-

tegrating CA proxy with current CAs. This approach does not eliminate the

Certification Authority central entity but introduced more security by making

all the request that goes to certification authority more transparent. All the

metadata related to certificate requests, certificate signing, status checking, ver-

ification requests will be stored in the blockchain. Issues related to certification

authority is not eliminated but rather making the auditing and the information

transparency more evident.

They have identified four weaknesses of current certificate authorities

1. Problem in Acceptance of certificate Requests - log of Certificate Signing

Requests is not available publicly. If a hacker obtains CA’s private key it is

easy to forge the digital certificate. If there is a problem with the certificate,

the browser or operating system can audit whether the CA has recorded

the corresponding certificate request. If not, certificate is an invalid one.

2. Problem in Verification of Entities’ Identities - CA does not have high cred-

ibility in identifying the entities. Domain verification implementation has

some security holes when domain verification is requested via email.

3. Problems in signature of digital certificates - When the browser and the

operating system vendors install a CA certificate in them, they trust the CA

completely. At present there is no recognized root CA certificate list, each

browser and OS as a different list of root CAs hence this makes it difficult

for users to get a list of trusted root CAs. In the current architecture CAs

cannot response quickly when their internal infrastructure is compromised

and difficult to identity and track which certificates are forges and should be

28

revoked. In a situation like this, operating systems and browsers needed to

push a security update, to remove the compromised certification authority

from their trusted root CA repository.

4. Problems in revocation of Digital Certificates - There is no mechanism to

auditing certificate authorities and the certificate transparency is not high

enough and the security risks are high. CRL approach will over time be-

comes very large and causes a burden on CRL serves. These are central

servers hence prone to denial of service attacks also. In the OSCP approach

only provides the information of the requested certificate. Hence no impact

to the bandwidth and also less complexity. But an attacker can interfere

with the client’s OSCP queries. If the client timeouts most client will ignore

the OCSP.

2.4.5 DeTRACT

This solution address the PKI single point of failure problem by proposing a de-

centralized, transparent, immutable and open PKI certificate revocation. Authors

have mainly improved and focused on the certificate revocation aspect. Domain

owner is responsible for creating a self-signed certificate and store it either of the

Bitcoin or Etheruem blockchain networks. In this approach no central author-

ity to manage the issuance of the keys and certificates. For identity verification

uPort decentralized identification is used instead of CA that manages identity

verification. Authors suggests by this way anyone can verify the identity of any

entity of the network. This approach lacks a solid trust model and a domain

verification. Instead it relies on the domain owners identity(Sermpinis, Vlahavas,

Karasavvas & Vakali 2020).

2.4.6 NameCoin

Namecoin is a distributed DNS based Bitcoin. It is the Bitcoin’s first and the

longest running fork and uses blockchain as a storage medium for digital iden-

tities. Namecoin is the very first pioneer project of blockchain based identity

management area. Namecoin operate independent of ICANN and administer its

29

own .bit top domain. New names are registered in this namespace by posting a

message to the Namecoin blockchain. This established Name-Value Ownership

but it is not extended to handle other requirements related to the PKI like cer-

tificate issuance, signing, revocation. As Namecoin was a fork, it was possible to

introduce new features, but it also leads to some other issues. 51% attacks from

the miner pools were observed, software bugs caused issues and halted registra-

tion of new names, selfish mining nodes, discouraged miners due to consensus

breaking software updates. The major drawback of this is that it forces clients to

download and maintain and entire copy of blockchain to verify records. With the

increment of number of registered records, computation and storage requirements

scale linearly and limits the system applicability of storage-limited devices like

smart phones(namecoin n.d.).

2.4.7 Blockstack

PKI implementation supports a DNS and PKI implementation in the blockchain.

Blockstack initially ran on top of the Namecoin blockchain, but now users Bitcoin.

The challenges faced in the Namecoin lead Blockstack to use a mature blockchain

like Bitcoin. But mature blockchains are slow and costly. Blockstack implemented

a 4 layer architecture where they separated the control and the data planes.

Blockchain can be used for control information like name registration or transfers

while the data planes be ne used for storing data like DNS records or identity

information. Hash of a ”zonefile” is written on Atlas which is(Blockstack’s

distributed peer network.) When validating each zone file hash stored in the

atlas is searched for a Bloackstack Name Service transaction that contains this

hash.

2.4.8 Certcoin

Certcoin is a completely decentralized PKI which has the main focus on stronger

Identity retention(Do not effectively prevent one user from registering public key

under another’s already registered identity). It leverages the consistency offered

by blockchain platform Namecoin (Fromknecht, Velicanu & Yakoubov 2014).

In this approach users need to own two key pairs. ”Online” and ”Offline” key

30

pairs. ”Online” key pair is used to authenticate messages to and from the web

server and ”offline” is used to sign or revoke new keys in security incidents. When

looking up the public key ”pk” corresponding to an identity ”id” is handled by

traversing the blockchain and locating the latest value of the desired key. Later

improved version uses Cryptography Accumulators for efficient lookups which

reduces the time and space needed for verification from leaner to logarithmic.

Even though this approach has many good features in terms of lookups authors

do not address any security model for the PKI implementation nor a proof that

it provides the claimed service.

2.4.9 SCPKI -Smart Contract-based PKI and Identity sys-

tem

Proposed a smart contract-based PKI and identity system where users can add

and sign identity attributes to themselves. Due to lack of authorization there is a

possibility of users forging identity attributes(Patsonakis, Samari, Roussopoulos

& Kiayias 2017).

2.4.9.1 SCPKI Improvements

first implementation of secure smart contract-based PKI on top of Ethereum.

This construction incurs constant-sized storage at the expense of computational

complexity. To address the trade-off between storage vs computational cost trade-

off, they have built a Hash tree based universal accumulator as well as an RSA

based accumulator. Their results should that the hash tree-based construction in

the only smart contract-based PKI with constant fixed state that can be deployed

on Ethereum’s live chain(Patsonakis, Samari, Kiayias & Roussopoulos 2020).

2.4.10 Analysis of the current applications

• Permission type - Majority of the applications are permission less. Permis-

sion less implementations are to be preferred for internet scale applications

like domain holder verification and permission-ed approach are better for

small scale use cases with few participants

31

• Revocation - Revocation mechanism is built on almost all the approaches.

This is one of the key security properties of PKIs and traditionally relies on

trusted third parties. The use of blockchain spreads this trust over entities

hence it is positive that all approaches implement this property.

• Blockchain Types - Most implementations are based on Ethereum. Public

blockchain is mostly used. Some have used custom blockchains like Name-

coin which is based on blockchain. Some approaches only simulate the

creation of blocks. Using an established public block chain is beneficial

as their reliability, tamper proofness and availability. Due to the security

and gathering support of participants in the long run issues, custom block

chains are not used much.

• Certificate Format - Due to interoperability reasons most of the time X.509

certificates used some rely on extensions as in X.509 Version 3. Implemen-

tation specific, custom formats are also in the literature and PGP format

is also used.

• PKI Type - Some blockchain based PKI implementations still uses the cer-

tificate generated by the CA(Not necessarlty eliminating the CA) and store

it in the blockchain to achieve greater security by making information and

the process transparent.

Most of the implementations are hierarchical, but there are implementations

done related to WOT. By having a hierarchical structure means it is still

having a root CA and centralized behavior. Permission less blockchains

minimize this as it has many decentralized properties. The trusted central

nature can be eliminated by using WOT.

2.4.11 Conclusion of the Review

2.4.11.1 Gap

The current blockchain based PKI implementations still has centralized behavior

and uses Certification Authorities. Blockchains are mainly used as a storage

medium.

32

2.4.11.2 Viable Direction

Incorporating principles in the ACME protocol and the decentralized nature of

the blockchain technology is a viable approach to eliminate the need of a Certi-

fication Authority in Public Key Infrastructure.

33

Chapter 3

Research Methodology

In this project we are hoping to follow the experimental research approach to

find out whether it is possible to propose an alternative to Certificate Authorities

using Blockchain based Decentralized PKI. According to the determined design

goals an implementation will be carried out as a proof of concept to evaluate the

effectiveness of the solution.

As we are following the experimental research approach and following steps

are taken to solve the identified research objectives

1. Explore the current functionalities of a Certification Authority and different

problems caused due to the Certification Authority being the central point

of failure in the PKI.

2. Identifying design goals that needed to be achieved to have the full function-

ality of a PKI without the presence of the Certification Authority (Which

will solve the identified problems). Use cases for evaluation are also defined

in this stage.

3. Design the prototype of the proposed PKI considering the identified goals.

4. Identifying necessary tools and technologies to be use in the prototype im-

plementation.

5. Carrying out the prototype implementation.

34

6. Evaluating the implemented prototype based on the identified evaluation

use cases. After the evaluation will measure the effectiveness of the pro-

posed system and determine whether it is possible to have an alternative

to Certification Authorities based on Blockchain based Decentralized PKI.

3.1 Knowledge gathered from previous researches

Below properties gathered from the literature are incorporated as characteristics

in this research. In the literature when referring Blockchain based PKI it was

identified that the Blockchain technology was mostly used as an identity retention

medium. In this project with the inspiration of the ACME protocol, on-chain

domain validation is performed with the Blockchain technology tightly coupling

the trust with identity retention. During on-chain domain validation process, the

validation of the registering domain will be performed within the blockchain with

the help of blockchain middleware and will not be using any external attestors.

Following inspirations are gathered together to propose a novel blockchain based

decentralized PKI.

1. Web of Trust - Decentralization

2. Log based public ledger - Keeping a publicly accessible log

3. Lets Encrypt - Automatic domain validations

4. Namecoin - First to file paradigm

5. TrustCA - Making things transparent

6. Chainlink - Blockchain middleware which makes smart contracts smarter

7. Tor Hidden Service Names - Self authenticating Onion names

8. X.509 Certificate - Using Subject Public Key Info attribute

35

3.2 Solving the identified problems

• Problem 1 - CA compromised. Hackers issuing rouge certificate using the

private key of the CA.

– Solution 1 - Alternative to CA

If we are to eliminate the CA, all the tasks performed by the CA

should be achieved by in a better way. We will be incorporating the

Ethereum smart contract principles and self-sovereign identity aspects

to this. Identity retention will be achieved by using the smart con-

tract and the key generation and certificate generation(for backwards

compatibility) is perform by the owner of the domain (Domain owner

- Owner of the domain and the server’s public private key pair).

– Solution 2 - Identity Retention

Every domain will own a public key private key pair. Hash of this

public key will be saved on-chain along with the domain name, trans-

action date and the validity as a Boolean. Domain owner should own

an Ethereum wallet and this information will also be stored along with

the previously mentioned information as it is needed during the revo-

cation process. Also, the proposing model will have an identity renewal

mechanism where domain owner can update the on-chain information

if needed.

– Solution 3 - Fist to File Paradigm

First registration of the domain public key mapping will succeed and

the second attempt of using the same domain will fails unless the

request originated from the domain owner.

• Problem 2 - CA accidentally issuing erroneous certificate to customers en-

abling certificate to act as CA themselves.

– Solution 1 - Transparency

By using Ethereum smart contracts it is possible for anyone to save

36

and retrieve identities in the system. All the actions performed are

transparent hence fraudulent behavior is detected. Because of this

feature it is not necessary to rely on a central authority.

– Solution 2 - Backwards Compatibility

This project only considers the SSL certificate domain and to achieve

the backwards compatibility, a self-signed X.509 certificate is generated

to support current client server TLS communication protocols.

• Problem 3 - Slow certificate signing process

– Solution - On chain domain validation

Inspired by the domain validation mechanism in ACME protocol, on-

chain domain validation is performed to tighten the security. Owner-

ship of the domain and the ownership of the private key is verified,

and identity retention process will occur only if the above validations

are successful.

• Problem 4 - Trusted root CAs are hardcoded to browsers and Operating

Systems. In-order to remove a trusted CA a security updates should be

pushed.

– Solution - Fast and Reliable Verification

Due to the versatility of the identity retention and the backwards com-

patibility it is possible for incorporate any suitable approach in the ver-

ification stage. As the project scope is in the SSL domain, a browser

extension is in place to verify the identity.

3.3 Selecting the Blockchain Technology

In the literature review we have came across different types of Blockchain tech-

nologies and PKI requirements. In our PKI design we preserve the PKI basic

principles by carefully choosing the suitable Blockchain technologies to overcome

the identified problems.

37

• Permission type

– Available choices - Public and Private

– Selected - Public

Public Key Infrastructure should be publicly accessible by everybody, hence

the suitable blockchain permission type is public as all the data is public. It

is not possible to achieve this by selecting a private blockchain. In a private

blockchain only selected participants can be involved.

• Blockchain Type

– Available choices - Using Established Network, Starting from scratch

– Selected - Using Established Network

Security of the implementing PKI is extremely important. As established

networks like Bitcoin, Ethereum are well tested by the community around

the world hence security the security of these networks is solid. Creating

a blockchain network from scratch has its own advantages but, since the

security aspect can have a negative impact and to have public acceptance

’Using Established Network’ is selected.

• Storage Type

– Available choices - On-chain, Off-chain

– Selected - On-chain

By considering the available information to store, it is possible to directly

store the data in the blockchain. When storing data off-chain always impose

a security risk but there are distributed options (IPFS) are also available

for this but since the data to be stored in this design is not increasing large

storing data on-chain option is selected.

• Privacy

– Available choices â Storing a reference, Permissioned (Effectively pri-

vate), PET

38

– Selected - None

It is possible to incorporate privacy preserving technologies to the Blockchain

based PKI solution, but Public key information should be publicly accessi-

ble hence privacy of the storing data is not considered in this solution.

As mentioned above, since we have selected to use publicly available blockchain

networks next decision is to choose such network which will be suitable to design

a blockchain based public key infrastructure.

Bitcoin and Ethereum are the most publicly used blockchain networks. We

have carefully weighed in the pros and cons of using these networks and after

careful examination selected Ethereum to proceed with.

3.4 Selecting the Blockchain Network

Namecoin was a decentralized name registration application developed based on

the Bitcoin network. In this project what they have done is building an inde-

pendent network and a protocol on top of bitcoin network. For that they had to

create a fork of the Bitcoin main network.

If we are to use this kind of approach the implementation and the testing

will be difficult as it is needed to bootstrap an independent blockchain network

which should be thoroughly tested and verified on the state transitioning and the

network code. The main disadvantage of this kind of approach that it is that

not possible to incorporate simple payment verification features as each protocol

would have transactions related to the context of their own protocol and it will

be needed to implement a simple payment verification protocol which will have

to backtrack all the way back to the genesis of the Bitcoin blockchain and check

the validity of a certain transaction.

The scripting allowed in bitcoin only allows a weak version of smart contracts.

Limitation of the scripting language in Bitcoin are

• Lack of Turing completeness

• Value blindness

39

• Lack of state

• Block chain blindness

Due to restrictions of the UTXO model in Bitcoin when implementing decen-

tralized applications, Ethereum uses an account-based model which developers

can use to build different kind of consensus-based applications. As Ethereum has

a built-in Turing complete programming language it has provided wider oppor-

tunities for developers to develop smart contract with decentralized applications

with their own transactions format and transitions and rules of ownership. Along

with the account-based model in Ethereum, in addition to the Turing complete

scripting language, value awareness and blockchain awareness and state are added

advantages.

Due to above reasons Ethereum was chosen as the blockchain network for this

project.

3.5 Our Approach

The Domain Owner initiates a Domain identity registration request (Similar to

Certificate Signing request in the standard PKI). This could be performed by a

system administrator and he should have an Ethereum wallet with some Ether.

He will initially generate a key pair for the web server(using a suitable cryp-

tographic algorithm) and a self-sign X.509 certificate. Then he will setup the

webserver with the newly created self-sign certificate. After creating the certifi-

cate, provided public key registration program of this project will be initiated

and the relevant request to the smart contract will be invoked and the request

will be signed by using the Ethereum wallet private key. Request will be sent to

the smart contract reside in the Ethereum network and it will perform necessary

validations and if it is fulfilled information will be stored on chain. This smart

contract has the capability for the identity retention, revocation and domain val-

idation. All the information is stored on-chain.

Suggested PKI system is decentralized which is operating in large P2P network

hence it is not possible to hack into this infrastructure to perform fraudulent

activities.

40

During the identity verification stage (accessing a web site using a web browser),

standard SSL handshake will be proceed as the self-sign certificate is created to

support the backward compatibility and web browser extension that we create

will make a request to the smart contract and check the hash of the received

public key and the hash resides in the blockchain network and determine whether

the received public key is valid or not.

41

Chapter 4

Research Design - TLSChain

This chapter will include the design of the proposing decentralized PKI scheme

named TLSChain.

The aim of TLSchain is to map a public key to each domain and place the pub-

lic key hash and the domain name in the Ethereum blockchain. The corresponding

public and private key pair will be used for the TLS communication. During ver-

ification public key hash of the domain will be retrieved from the blockchain and

it will be compared with the received X.509 self-signed certificate.

Figure 4.1: TLSChain Overview

42

4.1 TLSChain Overview

Following is a description of the steps mentioned in the Figure 4.1

1. Step1 - Creating the X.509 Self-Sign Certificate, Placing the public key

hash in the public folder

2. Step2 - TLSChainCLI contact the TLSChain smart contract via Web3

3. Step3 - TLSChain smart contract performing the validations

4. Step4 - TLSChain smart contract contact ChainLink nodes

5. Step5 - ChainLink Nodes will access the webserver and fetch the public

key hash value

6. Step6 - ChainLink Nodes will present the fetched value to the TLSChain

smart contract

7. Step7 - Smart contract will perform the identity retention

8. Step8 - An end user will try to access a web page and he use TLSChain

extension to check the validity

9. Step9 - TLSChain extension contact the TLSChain smart contract via

Web3

10. Step10 - Smart contract will provide the requested details to TLSChain

web extension

4.2 Main Components

4.2.1 Domain Owner

Domain owner is the person who will execute the TLSChain CLI. Domain Owner

should own an Ethereum account to execute the TLSChain CLI. This same ac-

count should be use when performing this domain related activities.

43

4.2.2 TLSChain CLI

This is a command line tool provided by the TLSchain which will perform the

functionalities mentioned in Section 4.3. This tool will be written in Python

programming language using Web3 libraries.

Domain owner should create an asymmetric key pair and a X.509 self-signed

certificate for the web server TLS communication prior using the TLSChain CLI.

4.2.3 Chain Link

Chain Link will act as a blockchain middle tier and it will support the smart

contract in domain validation stage of the domain public key registration. Chain

Link nodes will read the value exposed in the web server public folder and then

come into a consensus and present the fetched value to the smart contract to

proceed with the validation. A Chain Link job is configured to fetch information

of from the Webserver.

4.2.4 TLSChain Smart Contract

The smart contract of TLSChain will contain functionalities to Register a Do-

main, Update a public key for a Domain, Revoke a public key for a Domain.

Smart contract will be written in the solidity programming language.

4.2.5 TLSChain Web Extension

End user will try to communicate with a Domain which was registered with

the TLSChain. Standard TLS communication will take place when End User

starts communicating with the Webserver. Client browser will receive the X.509

self-sign certificate which will contain the public key information. TLSChain

Web Extension will compare the received domain and the public key with the

information in the blockchain and determine whether the received information is

authentic.

44

4.3 TLSChain CLI Functionalities

4.3.1 Main functionalities of the TLSChain CLI

• Generate hash of the public key, to be placed it in the public folder of the

Web Server.

• TLS Chain CLI will have the capability to invoke the functionality of the

smart contract

– Domain public key Registration - Register a domain with the public

key

– Domain Public Key Revoke - Revoke a domain public key registration

– Domain Public Key Renewal - Renew domain public key registration

and validity

– Domain Public Key Validity - Check the validity given a X.509 certifi-

cate

4.4 Smart Contract Functionalities

4.4.1 Domain public key registration

Before the identity retention, the provided information goes through a validation

process to make sure the legitimacy of the information. Refer Figure 4.2

4.4.1.1 Validation points

• Whether this is an already registered domain - If this is an already registered

domain, the domain registration process will be terminated. This validation

is in place so that an attacker will not be able to re-register a domain with

their public key. First to file paradigm is used.

• Signature validation - This validation is performed to check whether the

domain owner actually has the private key corresponding to the public key

that he wishes to register with TLSChain. Below information sent to the

45

smart contract.

S-Pub, Signature(S-Priv(Hash(S-Pub)))

With the provided information signature is validated and prove that domain

owner has the Private key related to the sent Public key.

– S-Pub - Sever Public Key

– S-Priv - Server Private Key

– Hash - Hash function

• Domain Validation - This validation is performed to verify that the domain

owner is actually owns the domain and the domain is also accessible. To

validate this we are taking advantage of the fact that only the domain

owner is able to place the hash of the public key in the public folder in the

configured web server (eg:- TLSChain.json).

Smart contract will try to read the value placed (Hash of the public key) in

the public folder of the Webserver and compare it with the received public

key. As Ethereum nodes are deterministic smart contracts are not able

to access the web server public folder directly. For this Blockchain Oracle

ChainLink is used.

Chain-link nodes will read the value exposed by the public folder of the

web server and come into a consensus and then present it to the smart

contract to validate. Smart contract will compare the value presented by

the ChainLink and the received public key to make sure that the Domain

Owner who requested the domain public key registration is the owner of

the domain.

After success full validation of the received information below will be re-

tained in the smart contract.

– Public key Hash - string

– Domain Name - string

46

– Registration Date - uint256

– Domain Owner - address

– Validity - enum State{ Invalid,Valid }

4.4.2 Domain Public Key Revoke

Revocation can only be performed by the Domain Owner. Before proceeding the

revocation request, the Ethreum wallet address of the revoke requesting transac-

tion and the Domain owner information in the smart contract mapping is com-

pared. If the request came from the original owner revoke request is carried out

and the Domain and public key mapping will be invalidated. Domain Owner can

use this revoke option in following situations

• If the private key of the Webserver is compromised, he can use the revoke

option to remove the mapping.

• Domain is no longer functioning

4.4.3 Domain Public Key Renewal

Domain public key renewal can only be performed by the Domain owner. Domain

will be valid for one year from the registration date. By using the Domain Public

Key Renewal option, the registration date will be updated to the transaction

date.

Also the domain owner has the the capability to change a public key mapped

to a domain.

4.4.4 Retrieve Validity

This can be performed by anyone not necessarily the domain owner. If they

receive a X.509 certificate they can use this function to verify the domain that

the respective public key is mapped to.

47

Figure 4.2: Domain Public Key Registration

48

Chapter 5

Implementation

Based on the research design we have implemented a proof of concept to verify

whether it is possible to build Public Key Infrastructure based on blockchain

technologies.

5.1 TLSChain Smart Contract

Smart contract was developed using the Solidty Programming language to com-

municate with the Ethereum blockchain network.

5.1.1 Storing Domain Public Key Mapping

5.1.1.1 Information Storage

We are storing the Domain and the Public key information as mappings in solidity

as mappings in solidity gives greater flexibility. In TLSChain smart contract we

are using two such mappings.

• cerMapping - Mapping between the public key hash and the domain

• domainMapping - Mapping between the domain and the public key hash

49

5.1.1.2 Struct Certificate

To keep the certificate information intact, we are using a struct names Certificate

to store the necessary details.

• domain - Domain name

• dateTime - Date time of the transaction added to the blockchain

• state - Current state of the public key and the domain mapping

• owner - Owner of the domain. The initial Ethreum account registered the

public key domain mapping

5.1.1.3 Solidity Code

enum State {Invalid ,Valid ,NotRegistered}

struct Certificate {

string domain;

uint256 dateTime;

State state;

address owner;

}

mapping(string => Certificate) cerMapping;

mapping(string => string) domainMapping;

5.1.2 Domain Registration Function

In the TLSChain smart contract we have a function names requestRegister

which will register the initial domain public key mapping.

5.1.2.1 requestRegister Function

Below are the six parameters requested for the requestRegister function in

the smart contract. This can be invoked by the TLSChain CLI very easily and

then it is only necessary to provide the generated self-sign Certificate details, web

50

server private key details and the domain name. TLSChain will create the needed

transaction and will invoke this smart contract method.

• sPubHash - Hash of the web server public key extracted from the certifi-

cate

• domain - Name of the domain to register

• message - Signature verification - Hex value of the hash of the public key

extracted from the certificate

• exponent - Signature verification - Exponent of the RSA keys

• modulus - Signature verification - Modulus of the RSA keys

• signature - Signature verification - Generated signature by signing the web

server public key hash using the web server private key.

This function should be only used, when the initial domain public key mapping

registration. After the initial registration even the owner of the domain will not

be able to execute this function again. Any changes after the initial registration

should be using using requestRenewDomainValidity or requestRenewDo-

mainPubKey functions and only the domain owner is able to perform such

changes.

5.1.2.2 requestRegister Validations

Several validations are performed before storing certificate details in the blockchain.

1. Domain and the public key is not used for registration before

2. Validate that the private key corresponding to the public key that the do-

main is going get registered is available to the domain owner

3. Information displayed in the server public folder is similar to the provided

public key hash

51

5.1.2.3 requestRegister Solidity Code

function requestRegister(

string memory sPubHash_ ,

string memory domain_ ,

bytes memory message_ ,

bytes memory exponent_ ,

bytes memory modulus_ ,

bytes memory signature_

) public {

uint valid_sig_ = retrieveResult(message_ ,signature_ ,exponent_ ,modulus_);

require (valid_sig_ == 0, "Signature Validation Failed ");

bytes memory tempEmptysPubHash = bytes(domainMapping[domain_]);

require (tempEmptysPubHash.length == 0, "This Domain has a Certificate Attached ");

bytes memory tempEmptyDomain = bytes(cerMapping[sPubHash_]. domain);

require (tempEmptyDomain.length == 0, "This Certificate has a Domain Attached ");

Chainlink.Request memory req = buildChainlinkRequest(

stringToBytes32(JOBID),

address(this),

this.fulfillRequestRegister.selector

);

string memory URL= cancat(cancat ("http ://", domain_),"/ TLSChain.json ");

req.add("get", URL);

req.add("path", "TLSChain ");

RegInputDetails memory regInputDetails = RegInputDetails ({

sPubHash: sPubHash_ ,

oldPubHash: "",

domain: domain_ ,

owner: msg.sender });

bytes32 requestId = sendChainlinkRequestTo(ORACLE_ADDRESS , req , ORACLE_PAYMENT);

InputRequests[requestId] = regInputDetails;

}

function fulfillRequestRegister(bytes32 _requestId , bytes32 _result)

public recordChainlinkFulfillment(_requestId)

{

bytes32 fromSever = _result;

register(_requestId ,fromSever);

}

function register(bytes32 requestId_ , bytes32 fromSever_) public {

string sPubHash_ = InputRequests[requestId_]. sPubHash;

string domain_ = InputRequests[requestId_]. domain;

address owner_ = InputRequests[requestId_]. owner;

require(fromSever_ == stringToBytes32(sPubHash_), "Server Value Not Matching ");

cerMapping[sPubHash_] = Certificate ({

domain: domain_ ,

dateTime: now ,

state: State.Valid ,

owner: owner_

52

});

domainMapping[domain_] = sPubHash_;

}

5.1.3 Renew Domain Public Key Validity Function

Domain public key registration will expire after 365 days hence, it is possible for

the domain owner to extend the validity period. When the domain owner execute

this function, the registration date will be updated to the current date.

Signature and exposed public key hash validations will be performed to make

sure that the domain owner still have the access to the claimed domain.

Several validations are performed before renewing certificate details in the

blockchain.

1. Transaction sender address is similar to the domain owner address

2. Validate that the private key corresponding to the public key that the do-

main is going get registered is available to the domain owner

3. Information displayed in the server public folder is similar to the provided

public key hash

Parameters to invoke this function is similar to requestRegister function.

5.1.3.1 requestRenewDomainValidity Solidity Code

function requestRenewDomainValidity(

string memory sPubHash_ ,

string memory domain_ ,

bytes memory message_ ,

bytes memory exponent_ ,

bytes memory modulus_ ,

bytes memory signature_

) public {

uint valid_sig_ = retrieveResult(message_ ,signature_ ,exponent_ ,modulus_);

require (valid_sig_ == 0, "Signature Not Matching ");

require (msg.sender == cerMapping[sPubHash_].owner ,"Only Domain Owner

Can Perform This Function ");

Chainlink.Request memory req = buildChainlinkRequest(

stringToBytes32(JOBID),

address(this),

53

this.fulfillRequestRenewDomainValidity.selector

);

string memory URL = cancat(cancat ("http ://", domain_),"/ TLSChain.json ");

req.add("get", URL);

req.add("path", "TLSChain ");

RegInputDetails memory regInputDetails = RegInputDetails ({

sPubHash: sPubHash_ ,

oldPubHash: "",

domain: domain_ ,

owner: msg.sender });

bytes32 requestId = sendChainlinkRequestTo(ORACLE_ADDRESS , req , ORACLE_PAYMENT);

InputRequests[requestId] = regInputDetails;

}

function fulfillRequestRenewDomainValidity(bytes32 _requestId , bytes32 _result)

public recordChainlinkFulfillment(_requestId)

{

bytes32 fromSever = _result;

renewDomainValidity(_requestId ,fromSever);

}

function renewDomainValidity(bytes32 requestId_ , bytes32 fromSever_) public {

string sPubHash_ = InputRequests[requestId_]. sPubHash;

string domain_ = InputRequests[requestId_]. domain;

address owner_ = InputRequests[requestId_]. owner;

require(fromSever_ == stringToBytes32(sPubHash_), "Server Value Not Matching ");

cerMapping[sPubHash_] = Certificate ({

domain: domain_ ,

dateTime: now ,

state: State.Valid ,

owner: owner_

});

}

5.1.4 Update Domain Public Key Function

If domain owner needs to change the web server certificate used to configure the

webserver, he can change the already registered mapping with this function. Only

the domain owner can preform this function and he should provide the previous

web Certificate as well.

Several validations are performed before renewing certificate details in the

blockchain.

1. Transaction sender address is similar to the domain owner address

54

2. Domain name should be same as the previous mapping

3. Validate that the private key corresponding to the public key that the do-

main is going get registered is available to the domain owner

4. Information displayed in the server public folder is similar to the provided

public key hash

Parameters to invoke this function is similar to requestRegister function

and as an addtion the previous public key hash should be provided.

5.1.4.1 requestRenewDomainPubKey Solidity Code

function requestRenewDomainPubKey(

string memory sPubHash_ ,

string memory oldSPubHash_ ,

string memory domain_ ,

bytes memory message_ ,

bytes memory exponent_ ,

bytes memory modulus_ ,

bytes memory signature_

) public {

uint valid_sig_ = retrieveResult(message_ ,signature_ ,exponent_ ,modulus_);

require (valid_sig_ == 0, "Signature Not Matching "); https ://www.overleaf.com/project /5 fa2bc3af79cd985001b18a0

require (msg.sender == cerMapping[oldSPubHash_].owner ,"Only Domain Owner

Can Perform This Function ");

require ((keccak256(bytes(cerMapping[oldSPubHash_]. domain))) ==

(keccak256(bytes(domain_))));

Chainlink.Request memory req = buildChainlinkRequest(

stringToBytes32(JOBID),

address(this),

this.fulfillRequestRenewDomainPubKey.selector

);

string memory URL = cancat(cancat ("http ://", domain_),"/ TLSChain.json ");

req.add("get", URL);

req.add("path", "TLSChain ");

RegInputDetails memory regInputDetails = RegInputDetails ({

sPubHash: sPubHash_ ,

oldPubHash: oldSPubHash_ ,

domain: domain_ ,

owner: msg.sender });

bytes32 requestId = sendChainlinkRequestTo(ORACLE_ADDRESS , req , ORACLE_PAYMENT);

InputRequests[requestId] = regInputDetails;

}

function fulfillRequestRenewDomainPubKey(bytes32 _requestId , bytes32 _result)

55

public recordChainlinkFulfillment(_requestId)

{

bytes32 fromSever = _result;

renewDomainPubKey(_requestId ,fromSever);

}

function renewDomainPubKey(bytes32 requestId_ , bytes32 fromSever_) public {

string sPubHash_ = InputRequests[requestId_]. sPubHash;

string oldSPubHash_ = InputRequests[requestId_]. oldPubHash;

string domain_ = InputRequests[requestId_]. domain;

address owner_ = InputRequests[requestId_]. owner;

require(fromSever_ == stringToBytes32(sPubHash_), "Server Value Not Matching ");

revoke(oldSPubHash_);

cerMapping[sPubHash_] = Certificate ({

domain: domain_ ,

dateTime: now ,

state: State.Valid ,

owner: owner_

});

}

5.1.5 Revoke Domain Public Key Registration Function

If a domain owner wants to revoke the public key domain mapping that he already

registered to the blockchain this function can be used. Only the domain owner is

able to perform this function.

Only parameter is needed is the hash of the public key

5.1.5.1 revoke Solidity Code

function revoke(string pubHash_){

require (msg.sender == cerMapping[pubHash_].owner , "Only Domain Owner

Can Perform This Function ");

cerMapping[pubHash_].state = State.Invalid;

cerMapping[pubHash_]. dateTime = block.timestamp;

}

5.1.6 Retrieve Domain Public Key Information Function

This function can be invoked by anyone to check the validity of a domain and a

public key.

Only parameter is needed is the hash of the public key

56

5.1.6.1 retrieve Solidity Code

function retrieve(string pubHash_)

public

view

returns (string , State , uint256 , address)

{

if ((bytes(cerMapping[pubHash_]. domain)). length == 0){

return (’No Associated Domain for this Certificate ’, cerMapping[pubHash_].state , 0, 0);

}else{

return (cerMapping[pubHash_].domain , cerMapping[pubHash_].state , cerMapping[pubHash_].dateTime ,

cerMapping[pubHash_].owner);

}

}

5.2 TLSChain CLI

With TLSChainCLI domain owner can invoke all the smart contract function

by giving simple parameters. TLSChainCLI is written using Python scripting

language and use Web3 API to communicate with the Ethereum blockchain net-

work. TLSChain CLI will convert the given parameter values to be compatible

with the smart contract function, so that it will provide greater flexibility to the

end users.

5.2.1 TLSChain CLI Available Commands

Following functions are available from the TLSChain CLI. Help option will pro-

vide a guidance which methods are available and what parameters should be

provided.

Following functions are available in the TLSChain CLI

• getPubHash

• registerDomain

• retriveValidityCer

• retriveValidityHash

57

Figure 5.1: TLSChainCLI Help Option

• revokeDomain

• renewDomainValidity

• requestRenewDomainPubKey

5.2.2 getPubHash Usage

Domain owners can use this command to generate the hash of the public key,

which then should be exposed by the webserver by placing it in the public folder.

The return value of this function is also can be used to invoke the method re-

triveValidityHash where you can check the public key domain mapping validity

by giving the public key hash.

The hash generated is a string which is Base64 encoded SHA-256 hash of the

DER-encoded public key info.

This function will provide the generated public key hash to the domain owner

and internally the modulus and the exponent also will be extracted from the

provided certificate for internal functionalities.

58

5.2.2.1 getPubHash scope

This function can be executed by anyone. Open to public. This function will not

change the state of the smart contract hence it will not cost gas for the usage.

5.2.2.2 getPubHash Parameters

• c - Path to the the Self-Signed SSL Certificate Generated

5.2.2.3 getPubHash Python Code

Get the public key hash to place in the public folder of the server

def getPubHash(CERT_FILE):

file_path = os.path.join(os.getcwd(), CERT_FILE)

f = open(file_path , "r")

cert = f.read()

pubkey = RSA.importKey(cert)

modulus = "{0:#0{1}x}". format(pubkey.n, 256)

exponent = "{0:#0{1}x}". format(pubkey.e, 256)

pub_key_obj = crypto.load_certificate(crypto.FILETYPE_PEM , cert). get_pubkey ()

pub_key = crypto.dump_publickey(crypto.FILETYPE_ASN1 ,pub_key_obj)

m = hashlib.sha256 ()

m.update(pub_key)

digest = m.digest ()

encoded = base64.b64encode(digest)

print(f’\ nPublic Key Hash of Certificate {CERT_FILE} : {encoded}’)

return modulus ,exponent ,encoded

5.2.3 registerDomain Usage

A domain owner can use this function to register a domain with a public key

attached to the generated self-sign webserver certificate. This function can be

used only once.

5.2.3.1 registerDomain Scope

This function can be executed by anyone. Open to public. This function will

change the state of the smart contract hence it will cost gas for the usage.

59

5.2.3.2 registerDomain Pre-Configurations

For a successful execution of this function the domain owner should do some prior

configurations in the webserver.

1. Should obtain Ethereum Ether and configure a Wallet. The wallet private

address should secure.

2. Creating a RSA Key based X.509 self-signed certificate

3. Obtain the Pubic Key Hash of the Generated Certificate using TLSChain

CLI command getPubHash

4. Secure the generated RSA private key

5. Place the public key hash in the public folder of the webserver The name

of the file should be ”TLSChain.Json” with the following mapping.

{”TLSChain”:<Public Key Hash >}

eg:-

{”TLSChain”:”66XtQ+REJXHBaFGVsKPrWe6n4FJ14MRxLhmXDq3QgwM=”}

6. Configure the Webserver to use HTTPs

For more details of the prior configurations please refer to Chapter6 case study

chapter.

5.2.3.3 registerDomain Parameters

• c - Path to the Self-Signed SSL Certificate Generated

• p - Path to the Private key of the Self-Signed SSL Certificate Generated

• d - Domain name needed to be associate with the public key

• wa - Wallet address which will contain Ether

60

• wp - Wallet Private key to sign the transaction

5.2.3.4 registerDomain Python Code

#Register a public key with a domain

def registerDomain(CERT_FILE ,KEY_FILE ,domain_name ,wallet_address ,wallet_private_key):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

signature = getSignature(KEY_FILE ,encoded)

if (connected_to_ganache):

print(f’\ nRegister Domain Public Key in TLSChain: {domain_name }’)

txn_dict = contract.functions.requestRegister(encoded , domain_name ,

encoded.hex(),exponent ,modulus ,signature). buildTransaction ({

’from ’: wallet_address ,

’gas ’: 2000000 ,

’gasPrice ’: web3_client.toWei(’50’, ’gwei ’),

’nonce ’: web3_client.eth.getTransactionCount(wallet_address)

})

try:

signed_txn = web3_client.eth.account.signTransaction(txn_dict , wallet_private_key)

result = web3_client.eth.sendRawTransaction(signed_txn.rawTransaction)

tx_receipt = web3_client.eth.waitForTransactionReceipt(result)

except ValueError as e:

print(e.args [0][’message ’])

time.sleep (10)

retriveValidityHash(encoded)

5.2.4 retriveValidityCer Usage

After registering the domain and the public key with the TLSChain it is possible

to check the status of the registration using this command. If the end user has the

public key hash he can use retriveValidityHash command also. Both gives the

same result. TLSchain CLI gives the flexibility to choose a command according

to the available information.

5.2.4.1 retriveValidityCer scope

This function can be executed by anyone. Open to public. This function will not

change the state of the smart contract hence it will not cost gas for the usage.

61

5.2.4.2 retriveValidityCer Parameters

• c - Path to the Self-Signed SSL Certificate Generated

5.2.4.3 retriveValidityCer Python Code

Retrieve the validity using the certificate

def retriveValidityCer(CERT_FILE):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

if (connected_to_ganache):

Retrieve the value to verify

retrieved_domain_name , domain_is_valid , dateTime , address =

contract.functions.retrieve(encoded).call()

print(f’\ nQuery from Ethereum:’)

print(f’Domain Name: {retrieved_domain_name }’)

print(f’Domain Is Valid: {domain_is_valid }’)

if dateTime != 0:

dateTime = time.strftime(’%Y-%m-%d %H:%M:%S’, time.localtime(dateTime))

print(f’Registered Date: {dateTime}’)

print(f’Owner: {address}’)

5.2.5 retriveValidityHash Usage

After registering the domain and the public key with the TLSChain it is possible

to check the status of the registration using this command.If the end user has the

SSL Certificate he can use retriveValidityCer command also. Both gives the

same result. TLSchain CLI gives the flexibility to choose a command according

to the available information.

5.2.5.1 retriveValidityHash Scope

This function can be executed by anyone. Open to public. This function will not

change the state of the smart contract hence it will not cost gas for the usage.

5.2.5.2 retriveValidityHash Parameters

• ph - Hash of the public key. Generated from the TLSChain CLI getPub-

Hash command.

62

5.2.5.3 retriveValidityHash Python Code

Retrieve the validity using the public key hash

def retriveValidityHash(pubHash):

connected_to_ganache ,web3_client ,contract = runConfig ();

Retrieve the value to verify

retrieved_domain_name , domain_is_valid , dateTime , address =

contract.functions.retrieve(pubHash).call()

print(f’\ nQuery from Ethereum:’)

print(f’Domain Name: {retrieved_domain_name }’)

print(f’Domain Is Valid: {domain_is_valid }’)

if dateTime != 0:

dateTime = time.strftime(’%Y-%m-%d %H:%M:%S’, time.localtime(dateTime))

print(f’Registered Date: {dateTime}’)

print(f’Owner: {address}’)

5.2.6 revokeDomain Usage

Domain owner might need to revoke the validity of the registered domain and the

public key mapping. For this he can use this command.

5.2.6.1 revokeDomain Scope

This function is restricted and can be executed only by the domain owner (De-

termined by the wallet address). Not open to public. This function will change

the state of the smart contract hence it will cost gas for the usage.

5.2.6.2 revokeDomain Parameters

• c - Path to the Self-Signed SSL Certificate Generated

• wa - Wallet address which will contain Ether

• wp - Wallet private key to sign the transaction

5.2.6.3 revokeDomain Python Code

def revokeDomain(CERT_FILE ,wallet_address ,wallet_private_key):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

63

if (connected_to_ganache):

print(f’\n Revoke Domain Public Key Validiy in TLSChain ’)

txn_dict = contract.functions.revoke(encoded). buildTransaction ({

’from ’: wallet_address ,

’gas ’: 2000000 ,

’gasPrice ’: web3_client.toWei(’50’, ’gwei ’),

’nonce ’: web3_client.eth.getTransactionCount(wallet_address)

})

try:

signed_txn = web3_client.eth.account.signTransaction(txn_dict , wallet_private_key)

result = web3_client.eth.sendRawTransaction(signed_txn.rawTransaction)

tx_receipt = web3_client.eth.waitForTransactionReceipt(result)

except ValueError as e:

print(e.args [0][’message ’])

time.sleep (10)

Retrieve the value to verify

revokedDetails(encoded)

5.2.7 renewDomainValidity Usage

After a revocation or automatic invalidation after 365 days, the domain owner

might need to renew the validity of the domain and the public key mapping. For

this only domain owner can use this command.

5.2.7.1 renewDomainValidity Scope

This function is restricted and can be executed only by the domain owner (De-

termined by the wallet address). Not open to public. This function will change

the state of the smart contract hence it will cost gas for the usage.

5.2.7.2 renewDomainValidity Parameters

• c - Path to the Self-Signed SSL Certificate Generated

• p - Path to the Private key of the Self-Signed SSL Certificate Generated

• d - Domain name needed to be associate with the public key

• wa - Wallet address which will contain Ether

• wp - Wallet Private key to sign the transaction

64

5.2.7.3 renewDomainValidity Python Code

#Renew a domain valifiy

def renewDomainValidity(CERT_FILE ,KEY_FILE ,domain_name ,wallet_address ,wallet_private_key):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

signature = getSignature(KEY_FILE ,encoded)

if (connected_to_ganache):

print(f’\ nRenew Domain Public Key Validiy in TLSChain: {domain_name }’)

txn_dict = contract.functions.requestRenewDomainValidity(encoded , domain_name ,encoded.hex(),exponent ,modulus ,signature). buildTransaction ({

’from ’: wallet_address ,

’gas ’: 2000000 ,

’gasPrice ’: web3_client.toWei(’50’, ’gwei ’),

’nonce ’: web3_client.eth.getTransactionCount(wallet_address)

})

try:

signed_txn = web3_client.eth.account.signTransaction(txn_dict , wallet_private_key)

result = web3_client.eth.sendRawTransaction(signed_txn.rawTransaction)

tx_receipt = web3_client.eth.waitForTransactionReceipt(result)

except ValueError as e:

print(e.args [0][’message ’])

time.sleep (10)

retriveValidityHash(encoded)

5.2.8 requestRenewDomainPubKe Usage

After a domain public key mapping registration, the domain owner may need to

change the certificate that the web server is configured. To change the public key

mapping of a particular domain, following method can be used.

5.2.8.1 requestRenewDomainPubKe Scope

This function is restricted and can be executed only by the domain owner (De-

termined by the wallet address). Not open to public. This function will change

the state of the smart contract hence it will cost gas for the usage.

5.2.8.2 requestRenewDomainPubKey Parameters

• c - Path to the Self-Signed SSL Certificate Generated

65

• p - Path to the Private key of the Self-Signed SSL Certificate Generated

• d - Domain name needed to be associate with the public key

• wa - Wallet address which will contain Ether

• wp - Wallet Private key to sign the transaction

5.2.8.3 requestRenewDomainPubKey Python Code

#Renew a domain publick key

def requestRenewDomainPubKey(CERT_FILE ,OLD_CERT_FILE ,KEY_FILE ,domain_name ,wallet_address ,

wallet_private_key):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

signature = getSignature(KEY_FILE ,encoded)

omodulus ,oexponent ,oencoded = getPubHash(OLD_CERT_FILE)

if (connected_to_ganache):

print(f’\ nRenew Public for a Domain in TLSChain: {domain_name }’)

txn_dict = contract.functions.requestRenewDomainPubKey(encoded ,

oencoded ,domain_name ,encoded.hex(),exponent ,modulus ,signature). buildTransaction ({

’from ’: wallet_address ,

’gas ’: 2000000 ,

’gasPrice ’: web3_client.toWei(’50’, ’gwei ’),

’nonce ’: web3_client.eth.getTransactionCount(wallet_address)

})

try:

signed_txn = web3_client.eth.account.signTransaction(txn_dict , wallet_private_key)

result = web3_client.eth.sendRawTransaction(signed_txn.rawTransaction)

tx_receipt = web3_client.eth.waitForTransactionReceipt(result)

except ValueError as e:

print(e.args [0][’message ’])

time.sleep (10)

retriveValidityHash(encoded)

5.3 TLSChain Chainlink Usage

For the domain validation process explained in the chapter 4(4.3.1.1) in detail,

we needed to incorporate blockchain middle tier. We have selected Chainlink for

this and a Chainlink node(s) is setup.

66

End users will not be interacting with this and this setup is only used for

internal functionalities.

5.3.1 TLSChain ChainLink Job Spcification

The following job dedicated to TLSChain published to the Chainlink. The pur-

pose is to read the content exposed by the given URL and extract only the

information related to the given tag ’TLSChain’ and present it to the smart

contract.

5.3.1.1 Job Specification Json

Address ’0xc612350d871cda87fbfdafb2a9553b680707aca8’ is the Chainlink oracle

smart contract address it will be constant through out the this deployment of

TLSChain.

{

"initiators ": [

{

"type": "runlog",

"params ": {

"address ": "0 xc612350d871cda87fbfdafb2a9553b680707aca8"

}

}

],

"tasks": [

{

"type": "httpget",

"confirmations ": null ,

"params ": {}

},

{

"type": "jsonparse",

"confirmations ": null ,

"params ": {}

},

{

"type": "ethbytes32",

"confirmations ": null ,

"params ": {}

},

{

"type": "ethtx",

"confirmations ": null ,

"params ": {}

67

}

],

"startAt ": null ,

"endAt": null

}

For this deployment of TLSChain the job specification ID is ’3d583fa977f14919b01ee09f26f1

bbab’ and it will be constant through out this deployment.

Figure 5.2: Published Chainlink Job Specification

5.3.1.2 Chainlink Job Reading Server Value

As per the Figure 5.3 chainlink job will read the public key hash value exposed

in the sever and fetch the value and present it to the smart contract.

5.4 TLSChain Extension

TLSChain browser extension is developed only for the demonstration purposes to

validate the concept that TLSChain is usable in browser side. Having a browser

extension impose many security issues, hence as a future enhancement this should

be an inbuilt browser function.

68

Figure 5.3: Chainlink Job Reading Server Value

Figure 5.4: Certificate Details Provided by the Browser

69

During TLS Communication browser provided the public hash of the sever

certificate, TLSChain take advantage of this and use it for the purpose of vali-

dating the received certificate against the TLSChain smart contract details.

5.4.1 TLSChain Extension Scope

This extension developed based on the TLSChin smart contract retrieve func-

tion. Hence this extension is publicly accessible by anyone and will not cost any

gas.

5.4.2 TLSChain Java Script Code

Following is the code snippet for the retrieval of the validity. For the full code,

please refer the Appendix.

if (securityInfo && securityInfo.certificates) {

const certificateKeyHash = JSON.stringify(

securityInfo.certificates [0]. subjectPublicKeyInfoDigest.sha256 ,

null ,

2

);

console.log(

‘securityInfo subjectPublicKeyInfoDigest: ${certificateKeyHash}‘
);

console.log(web3.utils.toHex(certificateKeyHash));

const KeyHash = certificateKeyHash.replace (/[’"]+/g, "");

const result = await smartContract.methods.retrieve(KeyHash).call ();

const {

0: retrieved_domain_name ,

1: domain_is_valid ,

2: dateTime ,

} = result;

console.log(result);

console.log(‘retrieved_domain_name == ${retrieved_domain_name }‘);
console.log(‘dateTime == ${dateTime }‘);
console.log(‘domain_is_valid == ${domain_is_valid }‘);

if (requestDetails.url === currentTabUrl) {

let $statusIndicator = $("# status ");
$statusIndicator.removeClass (" loader active ");

if (domain_is_valid === "1") {

70

$statusIndicator.addClass (" success animated pulse ");

$statusIndicator.text(" Passed ");

console.log(" Domain is valid ");

} else {

$statusIndicator.addClass (" failure animated pulse ");

$statusIndicator.text(" Failed ");

console.log(" Domain is not valid ");

}

}

}

}

Figure 5.5: TLSChain Extension

71

Chapter 6

TLSChain - A Use Case

This chapter will examine a use case were a domain owner configure his web

server with TLSchain to have HTTPs communication. It will be evident that a

certification authority is not involved in this process.

6.1 TLSChain Functional Flow

6.1.1 Step 1 - Creating a Self-Sign Certificate

Domain owner can crate a self-sign certificate by himself for the domain he owns.

He can use Openssl commands for this purpose.

In this project we have created a X.509 certificate by using RSA algorithm

for the domain annefernando.com. Certificate annefernando.com.cer and

private key annefernando.com.private.key were created and extracted. Refer

Figure 6.1.

6.1.2 Step 2- Use TLSChainCLI to get the Public Key

Hash

After creating the certificate, TLSChainCLI can be used get the public key hash

which should be placed in the public folder of the sever. Path to the generated

certificate should be given as a parameter. Refer Figure 6.2

• Command to use - getPubHash

72

Figure 6.1: Step 1 - Self-Sign SSL Certificate Creation

• Parameter needed - Generated self-sign certificate name

In this project we have given the previously created annefernando.com.cer as

an argument

Figure 6.2: Step 2 - Generating public key hash using TLSChain

Retrieved public key hash is ’66XtQ+REJXHBaFGVsKPrWe6n4FJ14MRxLhmXDq3QgwM=’

73

6.1.3 Step 3- Configure the Web Server

Configure the web server with the newly created certificate and the private key

to use HTTPS. Also place the generated public key hash in the public folder.

In this project we have used a linux hosting server and a Nginx web server.

Nginx configuration snippet in the ‘/etc/nginx/snippets’ directory with the name

‘self-signed.conf’ is created to clearly distinguish the purpose. In this file

we have specified ‘ssl-certificate’ directive to our certificate file and the ‘ssl-

certificate-key’ to the associated private key. Refer figure 6.3

Figure 6.3: Step 3a - Creating SSL Configuration Snippet

After creating the SSL configuration snippet we can add it to the Nginx

Configurations to use SSL

In this porject we have configured the Nginx sever to allow both HTTP and

HTTPS traffic for the moment. After registering with TLSChain we will re-

move HTTP related configurations. For this ‘deafult.conf’ file is changed in the

location ‘etc/nginx/conf.d’. Refer Figure 6.4

After that we will have to place the retrieved public key hash inside the public

folder. For this we have created a file named ‘TLSChain.Json’ and placed the

following Json content. Refer Figures 6.5 6.6

{”TLSChain”:”66XtQ+REJXHBaFGVsKPrWe6n4FJ14MRxLhmXDq3QgwM=”}

74

Figure 6.4: Step 3b - Adjust the Nginx Configuration to Use SSL

Figure 6.5: Step 3c - Placing Public Key Hash in the public folder

Figure 6.6: Step 3d - Public Key Hash in the public folder should be visible from
the a browser

75

6.1.4 Step 4- Register a Domain with TLSChain

After configuring the web server, domain can be registered to the TLSChain. For

this we can use the TLSChainCLI “registerDomain” command.

• Command to use - registerDomain

• Parameter needed - -c -p -d -wa -wp

– c - Generated self-sign certificate name

– p - Private key of the server certificate

– d - Domain to register

– wa - Wallet address

– wp - Wallet private key

After a domain is registered, if the domain is successfully configured the reg-

istered date and the validity will be displayed. Refer Figure 6.7

Figure 6.7: Step 4 - Domain registration with TLSChain

76

6.1.5 Step 5- Verification

After performing the above steps, Domain Owner can add the TLSChain exten-

sion to the browser and verify the validity of the domain by pressing TLSChain

icon. Green color text “Pass” will indicate the domain public key mapping is

registered in the TLSChain. Red color text “Fail” will indicate that the domain

public key mapping is not registered or the received public key is different to the

public key registered with TLSChain. Refer figure 6.8 6.9

In this project we have developed the TLSChain extension for the Firefox

browser.

Figure 6.8: Step 5a - TLSChain Extension

Also the domain owner can verify the registration by using the public key

hash or the certificate it self. He can you the TLSChainCLI for this. Refer figure

6.10 6.11

6.1.5.1 retriveValidityCer

• Command to use - retriveValidityCer

• Parameter needed - X.509 certificate name

77

Figure 6.9: Step 5b - TLSChain Extension Successful Validation

Figure 6.10: Step 5c - TLSChain CLI Successful Validation retriveValidityCer

78

6.1.5.2 retriveValidityHash

• Command to use - retriveValidityHash

• Parameter needed - Public key hash

Figure 6.11: Step 5d -TLSChain CLI Successful Validation retriveValidityHash

79

Chapter 7

Evaluation

Evaluation process will be carried out based on the implemented proof of con-

cept TLSChain. Current functionalities of certification authorities are compared

against TLSChain in this process.

We have identified 17 test cases that one case conclude whether is it possible to

come up with a novel decentralized public key infrastructure based on blockchain

technology without having a certification authority. Following test cases were

carefully selected not only to evaluate the functionality of the PKI, but also to

evaluate the efficiency and security of the proposing PKI.

7.1 Evaluation Setup

To have a consistency throughout the evaluation process, we will be using using

two users, “Anne” and “Eve” continuously in this chapter. These two users

actions will show how the TLSChain would behave for a legitimate user and for

an attacker.

Anne - The actual domain owner of the annefernando.com and a legitimate

user of the TLSChain.

Eve - An attacker, the main intention is to get the control of annefernando.com

by associating Eve’s public key to this domain.

80

TLSChain User Anne
Attribute Value
Description Domain owner of the annefernando.com
Certificate annefernando.com.cer
Private Key annefernando.com.private.key
Wallet Address 0x12e6EED8a7B2593649Aa3A75912d449521044769
Wallet Private Key 86924ffe8ff82494fbca5946ab9a56acb4447b6281c218c5c82

afebbaac3e108

Table 7.1: Legit User Anne’s Details

TLSChain User Eve
Attribute Value
Description Evil Attacker of the annefernando.com
Certificate eve.cer
Private Key eve.private.key
Wallet Address 0xa4B1146eDE50eEBD9fD2564e199E311f112B0Ae6
Wallet Private Key a5aea50dfc6262a48577871f8476f2180bde219dae04b036b15

605cbd0373d76

Table 7.2: Attacker Eve’s Details

7.2 Evaluation Process

7.2.1 TLSChain Achieving Certificate Issuing Process

7.2.1.1 Test Case 1 - Possibility of registering a public key for a do-

main using TLSChain

• Current CA Behavior - In the current CA based PKI, this is achieved by

using a Certificate Signing Request (CSR). This CSR contain domain owner

information and public key details.

• TLSChain Behavior - Generate a self-sign certificate and creates and Ethereum

transaction which contains domain owner information and public key hash.

• Proof - User Anne is registering domain she owns annefernando.com with

TLSChain and it’s successful. Anne is the first user to register this domain

with a public key to TLSChain. Anne should have done all the configura-

tions steps mentioned in the Chapter 6 before proceeding with this. Refer

81

figure 7.1

Figure 7.1: Test Case1 -Anne Successfully Register Domain Certificate with
TLSChain

7.2.1.2 Test Case 2 - An attacker trying to register a new public key

for an already registered domain should not be successful

• Current CA Behavior - In the current CA based PKI this is achieved by the

Registration Authority(RA) which is part of CA based PKI. RA verifies the

identity in question, and it is not possible for a different entity to register a

public key for an already registered domain and such request are rejected.

• TLSChain Behavior - If a domain is registered with a public key it is not

possible for a different user to register a public key for the same domain.

Necessary validations are performed by the smart contract.

• Proof - Eve is trying to register annefernando.com with her own public key.

This is unsuccessful. Refer Figures 7.2

7.2.1.3 Test Case 3 - Initial owner updating the registered public key

information should be successful

• Current CA Behavior - In the current CA based PKI this is achieved by

following the renewal process of the CA.

• TLSChain Behavior - Only the initial owner can update the public key

information

82

Figure 7.2: Test Case2 - Eve’s unsuccessful attempt to register annefernando.com
with her certificate

• Proof - Anne is trying to extend the validity this is successful. Anne is pro-

viding the wallet address and the wallet private key that she used register

the domain initially. Eve is also trying to take control of the annefer-

nando.com by using extending validity option but it is unsuccessful. Refer

Figures 7.3 7.4 7.5

•

Figure 7.3: Test Case 3a - Anne successfully extending the validity

83

Figure 7.4: Test Case 3b - Eve’s unsuccessful attempt to extend the validity

Figure 7.5: Test Case 3c - Anne successfully changing the certificate for the same
domain

84

7.2.2 TLSChain for Storage of Certificate Information

7.2.2.1 Test Case 4 - Successful storage of public key information

• Current CA Behavior - In the current CA based PKI this is achieved by

CA issuing a digital certificate which contains the public key information

and storing public key information in a central directory.

• TLSChain Behavior - Self-sign certificate generated with the public key

and the public key hash and domain information retained in the blockchain

after successful verification. Else the transaction is revoked. Successful

transactions are retained in the blockchain and unsuccessful transactions

are ignored.

• Proof - Eve’s unsuccessful attempt to renew domain with a different pri-

vate key. Signature validation step detect this and the transaction is re-

verted. Retrived information display that the domain is still belong to

domain owner Anne.

Retrieved information displayed owner as Anne due to successful retention

of the public key details. Refer figures 7.6 and 7.1

Figure 7.6: Test Case 4 - Eve’s unsuccessful attempt to renew the domain public
key validity

7.2.2.2 Test Case 5 - Successful retrieval of public key information

• Current CA Behavior - In the current CA based PKI this information is

distributed using a Certification Revocation List (CRL) or provided when

85

requested via an Online Certificate Status Protocol (OCSP) request.

• TLSChain Behavior - This information can be retrieved from the smart

contract by providing the hash of the public key or the certificate.

• Proof - If the Certificate is provided, it is possible to retrieve the status of

the domain public key mapping. Refer figure 7.7

Figure 7.7: Test Case 5 - Retrieving Certificate Domain Details

7.2.3 Blockchain based PKI for certificate revocation

7.2.3.1 Test Case 6 - Initial Owner is able to revoke the registered

information

• Current CA Behavior - In the current CA based PKI a compromised entity

will create a revocation request and present it to the CA.

• TLSChain Behavior - The initial owner can send an Etherum transaction to

the smart contract requesting to invalidate the entry for a particular public

key.

• Proof - Anne successfully revoking the domain public key registration. Refer

figure 7.8

86

Figure 7.8: Test Case 6 - Anne successfully revoking

7.2.3.2 Test Case 7 - Attacker should not able be able to revoke a

registered information

• Current CA Behavior - In the current CA based PKI a compromised entity

will create a revocation request and present it to the CA.

• TLSChain Behavior - The initial owner can send an Etherum transaction

to the smart contract requesting to invalidate the entry for a particular

public key. If the transaction is signed by a different user other than the

initial owner, the transaction would fail and it not possible to revoke such

mapping.

• Proof - Eve’s unsuccessful attempt to revoke. Refer Figure 7.9

7.2.4 TLSChain Achieve Certificate Verification Process

7.2.4.1 Test Case 8 - When accessing a domain registered with TLSChain,

if the correct public key sent from the server it will be indi-

cated

• Current CA Behavior - Browser indicate this with a lock symbol in the URL

field.

87

Figure 7.9: Test Case 7 - Eve’s unsuccessful attempt to revoke

• TLSChain Behavior - The browser extension will fetch domain of the web

page and retrieve the public key information and the domain and verify it

against the information stored in the smart contract. If the domain and the

relevant public key information stored and it is valid this will be indicated.

• Proof - annefernando.com is registered with the TLSChain hence extension

will indicate the received public key from the server is indeed the correct

public key. Refer figure 7.10

7.2.4.2 Test Case 9 - When accessing a domain registered with TLSChain,

an incorrect public key is sent and it will be indicated

• Current CA Behavior - Browser will indicate a warning is such situations

only if the received certificate’s CA is not trusted by the browser. If the this

is a fake certificate created by an attacker with a compromised CA browser

will allow the communication until the certificate is revoked.

• TLSChain - The browser extension will fetch domain of the web page and

retrieve the public key information and the domain and verify it against

the information stored in the smart contract. If there is a valid entry in

88

Figure 7.10: Test Case 8 - TLSChain Extension Verification

the smart contract for a particular domain but the public does not match

with the received certificate this will be indicated. If the public key for the

domain is correct but the entry is invalid this is also indicated.

• Proof - Domain owner registered the annefernando.com with TLSchain us-

ing the certificate annefernando.com.cer. But Eve hacked the web server

and configured the webserver with her certificate eve.cer private key eve.private.key.

Now during the HTTPS communication annefernando.com.cer will send the

public key related to eve.cer. This is different what is registered in TLSchain

hence the extension will indicate this. Refer Figure 7.11 and 7.12 and com-

pare the public key hashes.

7.2.4.3 Test Case 10 - When accessing a domain not registered with

TLSChain it will be indicated

• Current CA Behavior - This will be indicated as a warning in the browser.

• TLSChain Behavior - The browser extension will fetch domain of the web-

page and retrieve the public key information and the domain and verify

it against the information stored in the smart contract. If there isnât any

89

Figure 7.11: Test Case 9 - TLSChain Extension Verification Incorrect Public Key
Received from the Server

Figure 7.12: Test Case 9b - TLSChain Extension Verification Incorrect Public
Key Received from the Server

registration for this domain (valid or invalid), it is also indicated. Then the

user can determine whether to proceed with the connection or not.

• Proof - www.facebook.com yet to be registered with TLSChain. Hence

TLSChain extension will indicate that it is not registered. Refer Figure

7.13

90

Figure 7.13: Test Case 10 - TLSChain Extension Verification

7.2.5 TLSChain Efficiency

7.2.5.1 Test Case 11 - Time taken for registering a public key for a

domain

• Current CA Behavior - According Table 7.3 to issue a domain validation

certificate it will takes around 5-30 mins.

Current DV Certificate Price and Issuance Time
CA Validation Method Issuance Time Price(USD)
AlphaSSL Via Email 5 mins or less 16
RapidSSL Automated domain

control validation
10 mins 16

THAWTE Domain Validation 1 Business day, or less 32
COMODO Domain Validation 15 mins or less 32
GEOTRUST Domain Validation 30 mins or less 40
GLOBALSIGN Domain Validation 30 mins 100

Table 7.3: DV Certificate Providers

• TLSChain Behavior - Current implementation of TLSChain takes 2 minutes

or less to register a domain public key mapping. Current implementation

91

takes around 1-2 for this. But this time will vary when there are several

transactions are pending and the miner business. If we are providing a

higher gwei value the time it will take would be reduced and for a lesser

gwei time will be higher.

7.2.5.2 Test Case 12 - Time taken for the validation in the client side

• Current CA Behavior - Validation of the certificate performed by the web

browser side. Trusted certificate authorities are hard-coded coded and if the

received certificate is signed by one of the trusted certification authority the

received certificate is also trusted. This take only few seconds.

• TLSChain Behavior - TLSChain web extension check for the validity of the

received domain and public key mapping. This also takes few seconds.

Current browsers it won’t much time for this validation as validation is inbuilt

to the browsers. TLSChain extension will take sometime as it need to access the

TLSChain Smart contract for current mappings.

7.2.5.3 Test Case 13 - Registration cost in TLSChain compared to

the existing systems

• Current CA Behavior - According Table 7.3 it will cost around 16 USD -100

USD.

• TLSChain Behavior - There are two transactions happens when registration

of the domain public key mapping, one related to the TLSChain smart

contract registration function and when the Chainlink oracle access the

web server. In the TLSChain client we have set the gas price to 50 gwei,

but it is possible to change this gas price.

• Proof - Refer Figure 7.14 , 7.15 , 7.16

92

Figure 7.14: Test Case 14 - TLSChain Smart Contract Registration

Figure 7.15: Test Case 14 - Chainlink Oracle

TLSChain Costs 2021 May 1ETH = 2447.92 USD
TLSChain Func-
tion

Gas Used 50(gwei) Ether(ETH) USD Prediction

Registration 944,732 47,236,600 0.0472366 116 100
Revoke 35705 1,785,250 0.0017852 4.37 100

Table 7.4: TLSChain Costs Analysis

When referring to the above information,in 2020 May if a domain owner used

TLSChain to register a domain public key with 50Gwei which will give 100%

predictability (Percentage of last 200 blocks accepting this gas price) he only

93

Figure 7.16: Test Case 14 - TLSChain Smart Contract Revocation

TLSChain Costs 2021 May 1ETH = 2447.92 USD
TLSChain Func-
tion

Gas Used 20(gwei) Ether(ETH) USD Prediction

Registration 944,732 18,894,640 0.0188946 46.25 71
Revoke 35705 714,100 0.0007141 1.75 71

Table 7.5: TLSChain Costs Analysis

TLSChain Costs 2020 May 1ETH = 241 USD
TLSChain Func-
tion

Gas Used 50(gwei) Ether(ETH) USD Prediction

Registration 944,732 47,236,600 0.0472366 11.38 100
Revoke 35705 1,785,250 0.0017852 0.43 100

Table 7.6: TLSChain Costs Analysis

TLSChain Costs 2020 May 1ETH = 241 USD
TLSChain Func-
tion

Gas Used 20(gwei) Ether(ETH) USD Prediction

Registration 944,732 18,894,640 0.0188946 4.55 71
Revoke 35705 714,100 0.0007141 0.17 71

Table 7.7: TLSChain Costs Analysis

needed to spend 11 USD. If it was 20Gwei it was just 4USD with 71%.

But this was drasticially changed in a year later and in 2021 May for the same

94

Figure 7.17: Test Case 14 - ETH to USD fluctuation

transaction the domain owner has to pay 116 USD for the 50 Gwei transaction

and 46 USD if 20 Gwei was used.

Hence unpredictability of the transaction fee to pay is a drawback in TLSChain.

7.3 Security Analysis

7.3.1 Test Case 14 - Preventing Man in the Middle Attack

Typical man in the middle attacks can be carried out in two ways. 1) Obtain

access to a fake web server certificate issued by a trusted CA 2) Creating a fake

certificate and adding it to the trusted CA list.

These type of attacks are not possible when using TLSChain. Creating a

fake web server certificate is not enough, to register an incorrect mapping in

TLSChain hackers need to get hold of the actual webserver, and as well as the

domain owner’s Ethereum wallet.

95

7.3.2 Test Case 15 - Preventing Replay Attacks

Every Ethereum Transaction has a Nonce. Nonce is a property of transaction

originating address. This value is not stored in the Ethereum blockchain. Value

of nonce is calculate by counting the number of transactions sent from an address.

Sample Ethereum transaction

{ ”nonce” : ’how many confirmed transactions this account has sent previ-

ously?’,

”gasPrice”,

”to”,

”value”,

”data”,

”v,r,s”

}

Value of Nonce can be used to prevent replay attacks. It is possible to make

each transaction unique by including a Nonce. If an attacker performs a replay

attack by using the same transaction miners will reject that transaction as it is

a duplicate.

7.3.3 Test Case 16 - Preventing Intruder trying to register

a domain that he does not own

A legitimate owner of a domain might send a request to the smart contract to

register his domain and the public key. Due the unavailability of the hosted web

server or some other reason, there could be a situation where Chain-Link nodes

will not able to access the public folder of the webserver (Legitimate scenario)

then an attacker might try to register that domain with his own public key.

Signature verification step would pass. But since he does not own the domain,

he will not be able to place the necessary Hash of the public key to the public

folder of the server. Hence the domain validation step would fail (comparing the

content of the public folder and the public key provided for registration -in this

case public key provided by the attacker), and attacker will not be able to register

the domain with his public key.

96

7.3.4 Test Case 17 -Preventing DNS Poisoning attacks

Attacker might try to poison DNS and try to direct the domain validation request

to his server. Chain-link nodes are responsible for fetching the content of the

public folder information. There are several chain link nodes involved in this

process and they will access different DNS servers to resolve the domain name.

Also, after fetching the web server public folder information chain link nodes

needs to come into consensus. Hence carrying out this kind of attack is extremely

difficult as it is not possible for predetermine which nodes will involve in the public

folder value fetching process and each chain link node may access different DNS

providers.

97

Chapter 8

Conclusion and Future Work

8.1 Revisiting Aims and Objectives

8.1.1 Aims and Objectives

Eliminate the single point of failure in the PKI which is the Certification Author-

ity.

8.1.2 Addressing Identified Problem

1. CA compromised. Hackers issuing rouge certificates using the private key

of the CA.

DigiNotar incident is a real-world example of this. More than 500 fake cer-

tificates were discovered after security breach in CA including “google.com”.

Web browsers trusted these certificates as they were hard-corded to trust

the certificate authority.

With TLSChain, a hacker creating a certificate to a domain is not enough.

The domain registering party should prove that they have actual access

to the domain that they are trying to register at the time of registration.

Hence if the a hacker do not have access to the actual server, the registration

process will not be successful.

For an already registered domain, only the domain owner will be able to

98

perform any renewal activity of the public key by using TLSChainCLI re-

questRenewDomainPubKey method. For a hacker, it will only be pos-

sible to perform this if the hacker get hold of the domain owner’s Ethereum

wallet. To secure the Ethereum wallet, domain owners can use cold storage

or other secure mechanisms to keep their Ethereum wallet secure.

Also Just providing a fake certificate will not be able to get the needed val-

idation from the TLSChain web extension side, as the registered certificate

and the browser received certificate is different.

Defense in depth, layered security is in TLSChain.

2. CA accidentally issuing erroneous certificates to customers enabling cus-

tomers to act as CA themselves.

TrustWave incident is a real-world example for this. They have issued a

CA signing certificate to a customer allowing them act as a CA.

In TLSChain, trust and the responsibilities of the CA is distributed and

transparent. Validation steps involved in the TLSChain smart contract

would reject fake certificates (will fail validations) and will not include in

the blockchain. These validations are performed by the miners and only

be retained in the Ethereum blockchain, after coming into a consensus. All

the validations are visible and it will provide greater transparency on the

domain pubic key approval behavior.

3. Trusted root CAs are hard-coded to browsers and operating systems. In-

order to remove a trusted CA security updates should be pushed and high

certificate verification time.

CRLs do not operate in real time, they are commonly updated periodically

by the CA. There could be a delay in CRL issuing. CRLs can get very large

and they should be updates regularly. When it comes to OCSP, the service

sometime become unavailable then the verification part ignored altogether.

In TLSChain if a domain owner revokes a certificate(domain public key

mapping) this will be reflected to all the nodes when the transaction is

mined and the blockchain is updated.

99

Domain public key mapping in TLSChain is stored on-chain across many

different nodes. This prevents periodical updates for a off-chain storage

and maintain data consistency and has an updated list of the certificate

information among all the nodes. Hence even a non-updated browser will

also be able to identify a revoked certificate if TLSChain extension is in

use.

4. Certificate signing cost. A single certificate can cost between 100 USD to

1000 USD depending on the specific CA and the required certificate.

To obtain a domain verification certificate from an established certification

authority it will take around cost. For an Organization Validation certificate

or Extended Validation certificate it will cost around 100 USD to 1000 USD.

Certificate signing in TLSChain is related to registering domain and public

key mapping. Due to the inflation of the Ethreum price, the TLSChain

registration price is higher than the current approach. But this can be

further reduced by Ethreum layer 2 solutions.

5. Slow certificate signing process.

Certificate signing in TLSChain is related to registering domain and public

key mapping. This functionality is automated and only take few minutes.

If there is a congestion in the Ethreum network to mine a transaction, then

it will take some time.

8.2 Conclusion

Blockchain technology provides an enriched platform to create a public key infras-

tructure without an involvement of a central authority. In-built characteristics

like distributed consensus, signed transactions and immutability provided a solid

foundation to the TLSChain - an alternative to a certification authority based on

decentralized public key infrastructure design.

Our novel approach of performing domain validation on-chain distinguish this

project from related work in this area where most of the current approaches store

certificate authority generated certificates on-chain or off-chain. As mentioned

100

in the “Statement of the problem” it was possible to design a novel Public Key

Infrastructure by eliminating the centralized Certification Authorities by incor-

porating blockchain middleware to achieve on-chain domain verification.

Ethreum price fluctuation happened in late 2020 and early 2021 is an eye

opener to all the Dapp developers how volatile the cypto currency market can be.

Hence if a PKI system is to be launched based on a blokchain network despite

of all the advantages that can be gained from the blockchain architecture, the

scalability aspect of the solution should be address with priority.

8.3 Future Work

8.3.1 Interoperability Support

Ethreum is the most evolved smart contract echo system. But there are new

smart contract platforms are emerged hence interoperability aspects also should

be examined.

eg:- Hyperledger Fabric, Tezos, Polkadot, Solana

8.3.2 Domain Validation

Blockchain based PKI can achieve the functionalities of a Certification Authority.

When it come to Domain Validating certificates Blockchain based PKI provides

greater security as it is begin validated by several different miners. But our proof

of concept only replace the Domain Validation certificates.

But there is a need to extend TLSChain to replace Organization and Extended

validation certificates.

In our project domain owner is identified by the wallet address only. Hence

the actual identity of the wallet address owner is anonymous. To simulate the

Organization validation and the extended validation performed by the registration

authority(Which is part of the CA) we can incorporate the wallet address with

and real world identity. If protecting the privacy is a concern for the domain

owner he can keep several different wallet addresses.

To solve the above we can integrate decentralized identity platform uPort

101

(Naik & Jenkins 2020). It is a self-sovereign identity, and user-centric data plat-

form. With this users are able to register their own identity in Ethereum and

sign transactions and request credentials and securely manage keys and data.

This decentralized identity platform builds a shared identity web of trust

and integrating this to TLSChain would solve the Organization and Extended

validation requirements, as the public key owner can be mapped to an Uport

identity and yet there isn’t any centralized governing body.

8.3.3 Ethreum Price

Ethreum emerged on 2015 but 2021 is a significant year for Ethreum as it reached

all time all time high value for ETH. In May 10th it reached all time high

4,196USD for 1ETH. Even though the high price indicate the popularity and

the success of Ethreum, on the other hand as result of this Etherum gas fees

are also steadily increasing and it also continue to break all time highs. Many

Ethreum based applications are becoming unusable.

To address this scaling issue, many scaling solutions for Ethreum network are

produced. These are called layer 2 solutions and the main objective is to off-load

the financial transaction to a different layer. OMG Network, SKALE Network,

and IDEX are such layer 2 solutions.

Layer 2 scaling solutions were been in the work since 2017, but the actual need

of such scaling solution is evident in 2021 more than ever (layer 2 ethereum.org

2021).

The price fluctuation of the Ethreum market does effect the transaction cost.

The prise of Ethreum rose to all time high and the to stabilize this layer 2 Ethreum

solutions should be Incorporated.

8.3.4 Validation to the browser and TLSChain support to

metamask

Normal Dapps typical interfaces uses HTML/Java-scripts. We have followed

the same path and created an extension using javascript. But in our situation

using Java script is not the most secure solution as we are involved with TLS

102

communication. Hence the ideal solution would be to in-cooperate this as an

inbuilt function to the browser it self.

Current TLSChain CLI we have to provide the wallet details manually, but

by integrating this with existing wallet solutions like Metamask, greater security

can be achieved.

8.4 Contribution and Novelty

In “TLSChain” blockchain based Public Key Infrastructure, we have proposed

a novel on-chain domain verification and retention scheme without the usage of

any attestors. This eliminated the need to having a Certification Authority.

103

Appendix A : TLSChain Source

Code

TLSChain Smart Contract

pragma solidity >=0.4.24;

import "chainlink/contracts/ChainlinkClient.sol";

import "chainlink/contracts/vendor/Ownable.sol";

import "./ SolRsaVerify.sol";

contract TLSChainRegistrationDomain is ChainlinkClient , Ownable {

address ORACLE_ADDRESS = 0xC612350d871cda87fBFDafb2A9553b680707aca8;

string constant JOBID = "3 d583fa977f14919b01ee09f26f1bbab ";

uint256 private constant ORACLE_PAYMENT = 1 * LINK;

struct RegInputDetails {

string sPubHash;

string oldPubHash;

string domain;

address owner;

}

mapping(bytes32 => RegInputDetails) InputRequests;

enum State {Invalid ,Valid ,NotRegistered}

struct Certificate {

string domain;

uint256 dateTime;

State state;

address owner;

}

mapping(string => Certificate) cerMapping;

mapping(string => string) domainMapping;

constructor(address _link) public Ownable () {

setChainlinkToken(_link);

104

}

function getChainlinkToken () public view returns (address) {

return chainlinkTokenAddress ();

}

/******************************** RequestRegister *********************************/

function requestRegister(

string memory sPubHash_ ,

string memory domain_ ,

bytes memory message_ ,

bytes memory exponent_ ,

bytes memory modulus_ ,

bytes memory signature_

) public {

uint valid_sig_ = retrieveResult(message_ ,signature_ ,exponent_ ,modulus_);

require (valid_sig_ == 0, "Signature Validation Failed ");

bytes memory tempEmptysPubHash = bytes(domainMapping[domain_]);

require (tempEmptysPubHash.length == 0, "This Domain has a Certificate Attached ");

bytes memory tempEmptyDomain = bytes(cerMapping[sPubHash_]. domain);

require (tempEmptyDomain.length == 0, "This Certificate has a Domain Attached ");

Chainlink.Request memory req = buildChainlinkRequest(

stringToBytes32(JOBID),

address(this),

this.fulfillRequestRegister.selector

);

string memory URL= cancat(cancat ("http ://", domain_),"/ TLSChain.json ");

req.add("get", URL);

req.add("path", "TLSChain ");

RegInputDetails memory regInputDetails = RegInputDetails ({

sPubHash: sPubHash_ ,

oldPubHash: "",

domain: domain_ ,

owner: msg.sender });

bytes32 requestId = sendChainlinkRequestTo(ORACLE_ADDRESS , req , ORACLE_PAYMENT);

InputRequests[requestId] = regInputDetails;

}

function fulfillRequestRegister(bytes32 _requestId , bytes32 _result)

public recordChainlinkFulfillment(_requestId)

{

bytes32 fromSever = _result;

register(_requestId ,fromSever);

}

function register(bytes32 requestId_ , bytes32 fromSever_) public {

string sPubHash_ = InputRequests[requestId_]. sPubHash;

string domain_ = InputRequests[requestId_]. domain;

address owner_ = InputRequests[requestId_]. owner;

105

require(fromSever_ == stringToBytes32(sPubHash_), "Server Value Not Matching ");

cerMapping[sPubHash_] = Certificate ({

domain: domain_ ,

dateTime: now ,

state: State.Valid ,

owner: owner_

});

domainMapping[domain_] = sPubHash_;

}

/******************************** Request Register ********************************/

/******************************** Request Renew Domain Validity ********************************/

function requestRenewDomainValidity(

string memory sPubHash_ ,

string memory domain_ ,

bytes memory message_ ,

bytes memory exponent_ ,

bytes memory modulus_ ,

bytes memory signature_

) public {

uint valid_sig_ = retrieveResult(message_ ,signature_ ,exponent_ ,modulus_);

require (valid_sig_ == 0, "Signature Not Matching ");

require (msg.sender == cerMapping[sPubHash_].owner ,"Only Domain Owner Can Perform

This Function ");

Chainlink.Request memory req = buildChainlinkRequest(

stringToBytes32(JOBID),

address(this),

this.fulfillRequestRenewDomainValidity.selector

);

string memory URL = cancat(cancat ("http ://", domain_),"/ TLSChain.json ");

req.add("get", URL);

req.add("path", "TLSChain ");

RegInputDetails memory regInputDetails = RegInputDetails ({

sPubHash: sPubHash_ ,

oldPubHash: "",

domain: domain_ ,

owner: msg.sender });

bytes32 requestId = sendChainlinkRequestTo(ORACLE_ADDRESS , req , ORACLE_PAYMENT);

InputRequests[requestId] = regInputDetails;

}

function fulfillRequestRenewDomainValidity(bytes32 _requestId , bytes32 _result)

public recordChainlinkFulfillment(_requestId)

{

bytes32 fromSever = _result;

renewDomainValidity(_requestId ,fromSever);

}

106

function renewDomainValidity(bytes32 requestId_ , bytes32 fromSever_) public {

string sPubHash_ = InputRequests[requestId_]. sPubHash;

string domain_ = InputRequests[requestId_]. domain;

address owner_ = InputRequests[requestId_]. owner;

require(fromSever_ == stringToBytes32(sPubHash_), "Server Value Not Matching ");

cerMapping[sPubHash_] = Certificate ({

domain: domain_ ,

dateTime: now ,

state: State.Valid ,

owner: owner_

});

}

/******************************** Request Renew Domain Validity ********************************/

/******************************** Request Renew Domain Validity ********************************/

function requestRenewDomainPubKey(

string memory sPubHash_ ,

string memory oldSPubHash_ ,

string memory domain_ ,

bytes memory message_ ,

bytes memory exponent_ ,

bytes memory modulus_ ,

bytes memory signature_

) public {

uint valid_sig_ = retrieveResult(message_ ,signature_ ,exponent_ ,modulus_);

require (valid_sig_ == 0, "Signature Not Matching ");

require (msg.sender == cerMapping[oldSPubHash_].owner ,"Only Domain Owner

Can Perform This Function ");

require ((keccak256(bytes(cerMapping[oldSPubHash_]. domain))) ==

(keccak256(bytes(domain_))));

Chainlink.Request memory req = buildChainlinkRequest(

stringToBytes32(JOBID),

address(this),

this.fulfillRequestRenewDomainPubKey.selector

);

string memory URL = cancat(cancat ("http ://", domain_),"/ TLSChain.json ");

req.add("get", URL);

req.add("path", "TLSChain ");

RegInputDetails memory regInputDetails = RegInputDetails ({

sPubHash: sPubHash_ ,

oldPubHash: oldSPubHash_ ,

domain: domain_ ,

owner: msg.sender });

bytes32 requestId = sendChainlinkRequestTo(ORACLE_ADDRESS , req , ORACLE_PAYMENT);

InputRequests[requestId] = regInputDetails;

}

function fulfillRequestRenewDomainPubKey(bytes32 _requestId , bytes32 _result)

107

public recordChainlinkFulfillment(_requestId)

{

bytes32 fromSever = _result;

renewDomainPubKey(_requestId ,fromSever);

}

function renewDomainPubKey(bytes32 requestId_ , bytes32 fromSever_) public {

string sPubHash_ = InputRequests[requestId_]. sPubHash;

string oldSPubHash_ = InputRequests[requestId_]. oldPubHash;

string domain_ = InputRequests[requestId_]. domain;

address owner_ = InputRequests[requestId_]. owner;

require(fromSever_ == stringToBytes32(sPubHash_), "Server Value Not Matching ");

revoke(oldSPubHash_);

cerMapping[sPubHash_] = Certificate ({

domain: domain_ ,

dateTime: now ,

state: State.Valid ,

owner: owner_

});

}

/******************************** Request Renew Domain Validity ********************************/

/******************************** Signature Verification ********************************/

function retrieveResult(bytes message_ , bytes signature_ ,bytes exponent_ , bytes modulus_)

public returns (uint256) {

uint256 i = SolRsaVerify.pkcs1Sha256VerifyRaw(

message_ ,

signature_ ,

exponent_ ,

modulus_

);

return i;

}

/******************************** Signature Verification ********************************/

/******************************** Revoke a Domain ********************************/

function revoke(string pubHash_){

require (msg.sender == cerMapping[pubHash_].owner , "Only Domain Owner Can Perform

This Function ");

cerMapping[pubHash_].state = State.Invalid;

cerMapping[pubHash_]. dateTime = block.timestamp;

}

/******************************** Revoke a Domain ********************************/

/******************************** Retrieve a Domain ********************************/

function retrieve(string pubHash_)

public

view

returns (string , State , uint256 , address)

108

{

if ((bytes(cerMapping[pubHash_]. domain)). length == 0){

return (’No Associated Domain for this Certificate ’, cerMapping[pubHash_].state , 0, 0);

}else{

return (cerMapping[pubHash_].domain , cerMapping[pubHash_].state ,

cerMapping[pubHash_].dateTime , cerMapping[pubHash_].owner);

}

}

/******************************** Retrieve a Domain ********************************/

/******************************** Supporting Functions ********************************/

function withdrawLink () public onlyOwner {

LinkTokenInterface link = LinkTokenInterface(chainlinkTokenAddress ());

require(

link.transfer(msg.sender , link.balanceOf(address(this))),

"Unable to transfer"

);

}

function stringToBytes32(string memory source)

public

pure

returns (bytes32 result)

{

bytes memory tempEmptyStringTest = bytes(source);

if (tempEmptyStringTest.length == 0) {

return 0x0;

}

assembly {

result := mload(add(source , 32))

}

}

function toBytes(bytes32 _data) public pure returns (bytes) {

return abi.encodePacked(_data);

}

function bytes32ToStr(bytes32 _bytes32)

public

pure

returns (string memory)

{

bytes memory bytesArray = new bytes (32);

for (uint256 i; i < 32; i++) {

bytesArray[i] = _bytes32[i];

}

return string(bytesArray);

}

function cancat(string memory a, string memory b) public view returns(string memory){

109

return(string(abi.encodePacked(a,"",b)));

}

/******************************** Supporting Functions ********************************/

}

TLSChain CLI

import hashlib

import base64

import os

import argparse

import json

import time

from web3 import Web3

from Crypto.PublicKey import RSA

from OpenSSL import crypto

Constants

ganache_url = "http ://127.0.0.1:7545"

contract_address = "0 xdF4FC5bE335DA5c2403916934f61A6690782c5DF"

path = "../ ChainLinkProject2/truffle/build/contracts/TLSChainRegistrationDomain.json"

def runConfig ():

web3_client = Web3(Web3.HTTPProvider(ganache_url))

connected_to_ganache = web3_client.isConnected ()

print(f’\ nConnected to Ethreum Network: {connected_to_ganache }!’)

if (connected_to_ganache):

with open(path) as f:

data = json.load(f)

contract_abi = data[’abi ’]

contract_checksum_address = Web3.toChecksumAddress(contract_address)

contract = web3_client.eth.contract(address=contract_checksum_address , abi=contract_abi)

return connected_to_ganache ,web3_client ,contract

Get the public key hash to place in the public folder of the server

def getPubHash(CERT_FILE):

file_path = os.path.join(os.getcwd(),CERT_FILE)

f = open(file_path , "r")

cert = f.read()

pubkey = RSA.importKey(cert)

modulus = "{0:#0{1}x}". format(pubkey.n, 256)

exponent = "{0:#0{1}x}". format(pubkey.e, 256)

pub_key_obj = crypto.load_certificate(crypto.FILETYPE_PEM , cert). get_pubkey ()

110

pub_key = crypto.dump_publickey(crypto.FILETYPE_ASN1 ,pub_key_obj)

m = hashlib.sha256 ()

m.update(pub_key)

digest = m.digest ()

encoded = base64.b64encode(digest)

print(f’\ nPublic Key Hash of Certificate {CERT_FILE} : {encoded}’)

return modulus ,exponent ,encoded

def getSignature(KEY_FILE , plainText):

key_file = open(KEY_FILE , "r")

key = key_file.read()

key_file.close()

if key.startswith(’-----BEGIN ’):

prkey = crypto.load_privatekey(crypto.FILETYPE_PEM , key)

else:

prkey = crypto.load_pkcs12(key). get_privatekey ()

sign = crypto.sign(prkey , plainText , "sha256 ")

signature = sign.hex()

return signature

#Register a public key with a domain

def registerDomain(CERT_FILE ,KEY_FILE ,domain_name ,wallet_address ,wallet_private_key):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

signature = getSignature(KEY_FILE ,encoded)

if (connected_to_ganache):

print(f’\ nRegister Domain Public Key in TLSChain: {domain_name }’)

txn_dict = contract.functions.requestRegister(encoded , domain_name ,encoded.hex(),

exponent ,modulus ,signature). buildTransaction ({

’from ’: wallet_address ,

’gas ’: 2000000 ,

’gasPrice ’: web3_client.toWei(’50’, ’gwei ’),

’nonce ’: web3_client.eth.getTransactionCount(wallet_address)

})

try:

signed_txn = web3_client.eth.account.signTransaction(txn_dict , wallet_private_key)

result = web3_client.eth.sendRawTransaction(signed_txn.rawTransaction)

tx_receipt = web3_client.eth.waitForTransactionReceipt(result)

except ValueError as e:

print(e.args [0][’message ’])

time.sleep (10)

retriveValidityHash(encoded)

111

#Renew a domain valifiy

def renewDomainValidity(CERT_FILE ,KEY_FILE ,domain_name ,wallet_address ,

wallet_private_key):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

signature = getSignature(KEY_FILE ,encoded)

if (connected_to_ganache):

print(f’\ nRenew Domain Public Key Validiy in TLSChain: {domain_name }’)

txn_dict = contract.functions.requestRenewDomainValidity(encoded , domain_name ,encoded.hex(),

exponent ,modulus ,signature). buildTransaction ({

’from ’: wallet_address ,

’gas ’: 2000000 ,

’gasPrice ’: web3_client.toWei(’50’, ’gwei ’),

’nonce ’: web3_client.eth.getTransactionCount(wallet_address)

})

try:

signed_txn = web3_client.eth.account.signTransaction(txn_dict , wallet_private_key)

result = web3_client.eth.sendRawTransaction(signed_txn.rawTransaction)

tx_receipt = web3_client.eth.waitForTransactionReceipt(result)

except ValueError as e:

print(e.args [0][’message ’])

time.sleep (10)

retriveValidityHash(encoded)

#Renew a domain public key

def RenewDomainPubKey(CERT_FILE ,OLD_CERT_FILE ,KEY_FILE ,domain_name ,wallet_address ,

wallet_private_key):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

signature = getSignature(KEY_FILE ,encoded)

omodulus ,oexponent ,oencoded = getPubHash(OLD_CERT_FILE)

if (connected_to_ganache):

print(f’\ nRenew Public for a Domain in TLSChain: {domain_name }’)

txn_dict = contract.functions.requestRenewDomainPubKey(encoded , oencoded ,domain_name ,

encoded.hex(),exponent ,modulus ,signature). buildTransaction ({

’from ’: wallet_address ,

’gas ’: 2000000 ,

’gasPrice ’: web3_client.toWei(’50’, ’gwei ’),

’nonce ’: web3_client.eth.getTransactionCount(wallet_address)

})

try:

signed_txn = web3_client.eth.account.signTransaction(txn_dict , wallet_private_key)

result = web3_client.eth.sendRawTransaction(signed_txn.rawTransaction)

tx_receipt = web3_client.eth.waitForTransactionReceipt(result)

112

except ValueError as e:

print(e.args [0][’message ’])

time.sleep (10)

retriveValidityHash(encoded)

Retrieve the validity using the certificate

def retriveValidityCer(CERT_FILE):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

if (connected_to_ganache):

Retrieve the value to verify

retrieved_domain_name , domain_is_valid , dateTime , address =

contract.functions.retrieve(encoded).call()

print(f’\ nQuery from Ethereum:’)

print(f’Domain Name: {retrieved_domain_name }’)

print(f’Domain Is Valid: {domain_is_valid }’)

if dateTime != 0:

dateTime = time.strftime(’%Y-%m-%d %H:%M:%S’, time.localtime(dateTime))

print(f’Registered Date: {dateTime}’)

print(f’Owner: {address}’)

Retrieve the validity using the public key hash

def retriveValidityHash(pubHash):

connected_to_ganache ,web3_client ,contract = runConfig ();

Retrieve the value to verify

retrieved_domain_name , domain_is_valid , dateTime , address =

contract.functions.retrieve(pubHash).call()

print(f’\ nQuery from Ethereum:’)

print(f’Domain Name: {retrieved_domain_name }’)

print(f’Domain Is Valid: {domain_is_valid }’)

if dateTime != 0:

dateTime = time.strftime(’%Y-%m-%d %H:%M:%S’, time.localtime(dateTime))

print(f’Registered Date: {dateTime}’)

print(f’Owner: {address}’)

def revokeDomain(CERT_FILE ,wallet_address ,wallet_private_key):

connected_to_ganache ,web3_client ,contract = runConfig ();

modulus ,exponent ,encoded = getPubHash(CERT_FILE)

if (connected_to_ganache):

print(f’\n Revoke Domain Public Key Validiy in TLSChain ’)

txn_dict = contract.functions.revoke(encoded). buildTransaction ({

’from ’: wallet_address ,

’gas ’: 2000000 ,

113

’gasPrice ’: web3_client.toWei(’50’, ’gwei ’),

’nonce ’: web3_client.eth.getTransactionCount(wallet_address)

})

try:

signed_txn = web3_client.eth.account.signTransaction(txn_dict , wallet_private_key)

result = web3_client.eth.sendRawTransaction(signed_txn.rawTransaction)

tx_receipt = web3_client.eth.waitForTransactionReceipt(result)

except ValueError as e:

print(e.args [0][’message ’])

time.sleep (10)

Retrieve the value to verify

revokedDetails(encoded)

def revokedDetails(pubHash):

connected_to_ganache ,web3_client ,contract = runConfig ();

Retrieve the value to verify

retrieved_domain_name , domain_is_valid , dateTime , address =

contract.functions.retrieve(pubHash).call()

print(f’\ nQuery from Ethereum:’)

if dateTime != 0:

dateTime = time.strftime(’%Y-%m-%d %H:%M:%S’, time.localtime(dateTime))

if domain_is_valid == 1:

print(f’Domain Public Key not Revoked ’)

print(f’Registered Date: {dateTime}’)

else:

print(f’Domain Public Key Revoked ’)

print(f’Revoked Date: {dateTime}’)

print(f’Domain Name: {retrieved_domain_name }’)

print(f’Domain Is Valid: {domain_is_valid }’)

print(f’Owner: {address}’)

if __name__ == ’__main__ ’:

parser = argparse.ArgumentParser(prog=’TLSChain ’,

usage=’An Alternative to CA using Blockchain based Decentralized PKI ’,

description=’’’

* *

* This is TLSChainCLI Decentralized PKI *

* *

’’’,

epilog =" Copyrights @ Anne Fernando",

formatter_class=argparse.RawDescriptionHelpFormatter ,

add_help=True

)

parser.add_argument (" command",type=str , help= "’getPubHash -c’,’registerDomain -c -p -d -wa -wp’,

114

’retriveValidityCer -c’,’retriveValidityHash -hp’,’revokeDomain -c -wa -wp ’,

’renewDomainValidity -c -p -d -wa -wp ’ , ’requestRenewDomainPubKey -c -oc -p -d -wa -wp ’",

choices= [’registerDomain ’,’getPubHash ’,’retriveValidityCer ’,’retriveValidityHash ’,

’revokeDomain ’,’renewDomainValidity ’,’requestRenewDomainPubKey ’], metavar =" Commands ")

parser.add_argument ("-hp",type=str , help=" Public Key Hash", required=False)

parser.add_argument ("-c",type=str , help=" Certificate File Name", required=False)

parser.add_argument ("-oc",type=str , help="Old Certificate File Name", required=False)

parser.add_argument ("-p",type=str , help=" Private Key File", required=False)

parser.add_argument ("-d",type=str , help=" Domain Name", required=False)

parser.add_argument ("-wa",type=str , help=" Wallet Address", required=False)

parser.add_argument ("-wp",type=str , help=" Wallet Private Key", required=False)

arg = parser.parse_args ()

if arg.command == ’getPubHash ’:

getPubHash(arg.c)

elif arg.command == ’registerDomain ’:

registerDomain(arg.c,arg.p,arg.d,arg.wa,arg.wp)

elif arg.command == ’retriveValidityCer ’:

retriveValidityCer(arg.c)

elif arg.command == ’retriveValidityHash ’:

retriveValidityHash(arg.hp)

elif arg.command == ’revokeDomain ’:

revokeDomain(arg.c,arg.wa,arg.wp)

elif arg.command == ’renewDomainValidity ’:

renewDomainValidity(arg.c,arg.p,arg.d,arg.wa ,arg.wp)

elif arg.command == ’requestRenewDomainPubKey ’:

RenewDomainPubKey(arg.c,arg.oc,arg.p,arg.d,arg.wa,arg.wp)

TLSChain Web Extension

const Web3 = require ("../ web3 ");

const contractInterface = require ("../ abi/TLSChainRegistrationDomain.json ");

// Ganache Endpoint

const rpcURL = "http ://127.0.0.1:7545";

// Web3 Client

const web3 = new Web3(rpcURL);

// SmartContract

const smartContractAddress = "0 xdF4FC5bE335DA5c2403916934f61A6690782c5DF ";

const smartContract = new web3.eth.Contract(

contractInterface ,

smartContractAddress

);

115

// Current Active Tab URL

let currentTabUrl;

async function getSecInfo(requestDetails) {

// console.log(" inside getSecInfo ");

console.log(

‘Got a request for ${requestDetails.url} with ID ${requestDetails.requestId}‘
);

// Yeah this is a String , even though the content is a Number

var requestId = requestDetails.requestId;

var securityInfo = await browser.webRequest.getSecurityInfo(requestId , {

certificateChain: false ,

rawDER: false ,

});

if (securityInfo && securityInfo.certificates) {

// console.log(‘securityInfo : ${JSON.stringify(securityInfo , null , 2)} ‘);

const certificateKeyHash = JSON.stringify(

securityInfo.certificates [0]. subjectPublicKeyInfoDigest.sha256 ,

null ,

2

);

console.log(

‘securityInfo subjectPublicKeyInfoDigest: ${certificateKeyHash}‘
);

console.log(web3.utils.toHex(certificateKeyHash));

const KeyHash = certificateKeyHash.replace (/[’"]+/g, "");

const result = await smartContract.methods.retrieve(KeyHash).call ();

const {

0: retrieved_domain_name ,

1: domain_is_valid ,

2: dateTime ,

} = result;

console.log(result);

console.log(‘retrieved_domain_name == ${retrieved_domain_name }‘);
console.log(‘dateTime == ${dateTime }‘);
console.log(‘domain_is_valid == ${domain_is_valid }‘);

if (requestDetails.url === currentTabUrl) {

let $statusIndicator = $("# status ");
$statusIndicator.removeClass (" loader active ");

if (domain_is_valid === "1") {

$statusIndicator.addClass (" success animated pulse ");

116

$statusIndicator.text(" Passed ");

console.log(" Domain is valid ");

} else {

$statusIndicator.addClass (" failure animated pulse ");

$statusIndicator.text(" Failed ");

console.log(" Domain is not valid ");

}

}

}

}

async function loadCurrentCertData () {

await new Promise ((resolve) => {

setTimeout (() => {

let $statusIndicator = $("# status ");

$statusIndicator.addClass (" active ");
$statusIndicator.addClass (" loader ");

resolve ();

}, 1000);

});

await fetch(currentTabUrl);

}

async function main() {

currentTabUrl = (

await browser.tabs.query ({ currentWindow: true , active: true })

)[0]. url;

web3.eth.net.isListening (). then((data) => {

// console.log(" Connected to Ganache ...");

});

browser.webRequest.onHeadersReceived.addListener(

getSecInfo ,

{

urls: ["<all_urls >"],

},

[" blocking "]

);

loadCurrentCertData ();

}

main ();

117

Bibliography

Brunner, C., Knirsch, F., Unterweger, A. & Engel, D. (2020). A comparison of

blockchain-based pki implementations., ICISSP, pp. 333–340. 10

Buterin, V. et al. (2014). A next-generation smart contract and decentralized

application platform, white paper 3(37). 10, 13

Caronni, G. (2000). Walking the web of trust, Proceedings IEEE 9th Interna-

tional Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises (WET ICE 2000), IEEE, pp. 153–158. 19

chain.link (2020).

URL: https://chain.link/features/ 16

Constantin, L. (2012). Trustwave admits issuing man-in-the-middle digital

certificate; mozilla debates punishment.

URL: https://www.computerworld.com/article/2501291/trustwave-

admits-issuing-man-in-the-middle-digital-certificate–mozilla-debates-

punishment.html 3

ethereum.org (2020).

URL: https://ethereum.org/en/developers/docs/dapps/ 15

Fisher, D. (2012). Final report on diginotar hack shows total compromise of ca

servers.

URL: https://threatpost.com/final-report-diginotar-hack-shows-total-

compromise-ca-servers-103112/77170/ 3

118

BIBLIOGRAPHY

Fromknecht, C., Velicanu, D. & Yakoubov, S. (2014). A decentralized pub-

lic key infrastructure with identity retention., IACR Cryptol. ePrint Arch.

2014: 803. 30

Kfoury, E. F., Khoury, D., AlSabeh, A., Gomez, J., Crichigno, J. & Bou-Harb,

E. (2020). A blockchain-based method for decentralizing the acme protocol

to enhance trust in pki, 2020 43rd International Conference on Telecommu-

nications and Signal Processing (TSP), IEEE, pp. 461–465. 25

Laurie, B., Langley, A. & Kasper, E. (2013). Certificate transparency. 25

layer 2 ethereum.org (2021).

URL: https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/

102

LetsEncrypt (n.d.). How it works.

URL: https://letsencrypt.org/how-it-works/ 26

Matsumoto, S. & Reischuk, R. M. (2017). Ikp: Turning a pki around with

decentralized automated incentives, 2017 IEEE Symposium on Security and

Privacy (SP) . 25

Naik, N. & Jenkins, P. (2020). uport open-source identity management system:

An assessment of self-sovereign identity and user-centric data platform built

on blockchain, 2020 IEEE International Symposium on Systems Engineering

(ISSE), pp. 1–7. 102

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system, Technical

report, Manubot. 5, 13

namecoin (n.d.).

URL: https://namecoin.org/ 30

Patsonakis, C., Samari, K., Kiayias, A. & Roussopoulos, M. (2020). Implementing

a smart contract pki, IEEE Transactions on Engineering Management . 31

119

BIBLIOGRAPHY

Patsonakis, C., Samari, K., Roussopoulos, M. & Kiayias, A. (2017). Towards a

smart contract-based, decentralized, public-key infrastructure, International

Conference on Cryptology and Network Security, Springer, pp. 299–321. 31

Rutland, E. (2018). Blockchain byte: R3 research, Technical report. 8

Schoen, S. (2017). New research suggests that governments may fake ssl certifi-

cates.

URL: https://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-

governments-fake-ssl 3

Sermpinis, T., Vlahavas, G., Karasavvas, K. & Vakali, A. (2020). Detract: a

decentralized, transparent, immutable and open pki certificate framework,

International Journal of Information Security pp. 1–18. 29

Wikipedia contributors (2020). Public key infrastructure — Wikipedia, the free

encyclopedia. [Online; accessed 16-November-2020].

URL: https://en.wikipedia.org/w/index.php?title=Publickeyinfrastructureoldid =

98692899619

Wolff, J. (2016). How a 2011 hack you’ve never heard of changed the internet’s

infrastructure.

URL: https://slate.com/technology/2016/12/how-the-2011-hack-of-

diginotar-changed-the-internets-infrastructure.html 2

Yu, J. & Ryan, M. (2017). Evaluating web pkis.

URL: https://www.sciencedirect.com/science/article/pii/B9780128054673000077

25

Zhao, J., Lin, Z., Huang, X., Zhang, Y. & Xiang, S. (2020). Trustca: Achiev-

ing certificate transparency through smart contract in blockchain platforms,

2020 International Conference on High Performance Big Data and Intelli-

gent Systems (HPBDIS), IEEE, pp. 1–6. 14, 28

120

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Statement of the problem
	1.3 Research Aims and Objectives
	1.3.1 Aims
	1.3.2 Objectives
	1.3.3 Scope
	1.3.4 Structure of the Thesis

	2 Literature Review
	2.1 Distributed Ledger Technology
	2.2 Blockchain
	2.2.1 Blockchain Characteristics
	2.2.2 Blockchain Categorization
	2.2.3 Bitcoin and Ethereum
	2.2.3.1 Bitcoin
	2.2.3.2 Ethereum

	2.2.4 Smart Contracts
	2.2.5 Dapps (Decentralized application)
	2.2.5.1 Characteristics of Dapps
	2.2.5.2 Benefits of Dapp Development

	2.2.6 Blockchain Oracles (Blockchain Middleware)
	2.2.6.1 The need of Oracles
	2.2.6.2 Chainlink

	2.3 Public Key Infrastructure
	2.3.1 PKI supported functions
	2.3.2 PKI Trust Models
	2.3.2.1 Certificate Authorities
	2.3.2.2 Web of Trust
	2.3.2.3 Log based PKI

	2.3.3 Certificate Authority Functionality
	2.3.4 Certificate Authority Certificate Issuing Steps
	2.3.4.1 Certificate Issuance Process
	2.3.4.2 Revoking Certificates

	2.3.5 X.509 Certificates

	2.4 Current Applications
	2.4.1 Decentralized Public Key Infrastructure
	2.4.1.1 Web of Trust
	2.4.1.2 Log Based PKI

	2.4.2 ACME Protocol
	2.4.3 Let's Encrypt
	2.4.3.1 Certificate Management Agent Software
	2.4.3.2 Domain Validation
	2.4.3.3 Certification Issuance and Revocation

	2.4.4 Trust CA
	2.4.5 DeTRACT
	2.4.6 NameCoin
	2.4.7 Blockstack
	2.4.8 Certcoin
	2.4.9 SCPKI -Smart Contract-based PKI and Identity system
	2.4.9.1 SCPKI Improvements

	2.4.10 Analysis of the current applications
	2.4.11 Conclusion of the Review
	2.4.11.1 Gap
	2.4.11.2 Viable Direction

	3 Research Methodology
	3.1 Knowledge gathered from previous researches
	3.2 Solving the identified problems
	3.3 Selecting the Blockchain Technology
	3.4 Selecting the Blockchain Network
	3.5 Our Approach

	4 Research Design - TLSChain
	4.1 TLSChain Overview
	4.2 Main Components
	4.2.1 Domain Owner
	4.2.2 TLSChain CLI
	4.2.3 Chain Link
	4.2.4 TLSChain Smart Contract
	4.2.5 TLSChain Web Extension

	4.3 TLSChain CLI Functionalities
	4.3.1 Main functionalities of the TLSChain CLI

	4.4 Smart Contract Functionalities
	4.4.1 Domain public key registration
	4.4.1.1 Validation points

	4.4.2 Domain Public Key Revoke
	4.4.3 Domain Public Key Renewal
	4.4.4 Retrieve Validity

	5 Implementation
	5.1 TLSChain Smart Contract
	5.1.1 Storing Domain Public Key Mapping
	5.1.1.1 Information Storage
	5.1.1.2 Struct Certificate
	5.1.1.3 Solidity Code

	5.1.2 Domain Registration Function
	5.1.2.1 requestRegister Function
	5.1.2.2 requestRegister Validations
	5.1.2.3 requestRegister Solidity Code

	5.1.3 Renew Domain Public Key Validity Function
	5.1.3.1 requestRenewDomainValidity Solidity Code

	5.1.4 Update Domain Public Key Function
	5.1.4.1 requestRenewDomainPubKey Solidity Code

	5.1.5 Revoke Domain Public Key Registration Function
	5.1.5.1 revoke Solidity Code

	5.1.6 Retrieve Domain Public Key Information Function
	5.1.6.1 retrieve Solidity Code

	5.2 TLSChain CLI
	5.2.1 TLSChain CLI Available Commands
	5.2.2 getPubHash Usage
	5.2.2.1 getPubHash scope
	5.2.2.2 getPubHash Parameters
	5.2.2.3 getPubHash Python Code

	5.2.3 registerDomain Usage
	5.2.3.1 registerDomain Scope
	5.2.3.2 registerDomain Pre-Configurations
	5.2.3.3 registerDomain Parameters
	5.2.3.4 registerDomain Python Code

	5.2.4 retriveValidityCer Usage
	5.2.4.1 retriveValidityCer scope
	5.2.4.2 retriveValidityCer Parameters
	5.2.4.3 retriveValidityCer Python Code

	5.2.5 retriveValidityHash Usage
	5.2.5.1 retriveValidityHash Scope
	5.2.5.2 retriveValidityHash Parameters
	5.2.5.3 retriveValidityHash Python Code

	5.2.6 revokeDomain Usage
	5.2.6.1 revokeDomain Scope
	5.2.6.2 revokeDomain Parameters
	5.2.6.3 revokeDomain Python Code

	5.2.7 renewDomainValidity Usage
	5.2.7.1 renewDomainValidity Scope
	5.2.7.2 renewDomainValidity Parameters
	5.2.7.3 renewDomainValidity Python Code

	5.2.8 requestRenewDomainPubKe Usage
	5.2.8.1 requestRenewDomainPubKe Scope
	5.2.8.2 requestRenewDomainPubKey Parameters
	5.2.8.3 requestRenewDomainPubKey Python Code

	5.3 TLSChain Chainlink Usage
	5.3.1 TLSChain ChainLink Job Spcification
	5.3.1.1 Job Specification Json
	5.3.1.2 Chainlink Job Reading Server Value

	5.4 TLSChain Extension
	5.4.1 TLSChain Extension Scope
	5.4.2 TLSChain Java Script Code

	6 TLSChain - A Use Case
	6.1 TLSChain Functional Flow
	6.1.1 Step 1 - Creating a Self-Sign Certificate
	6.1.2 Step 2- Use TLSChainCLI to get the Public Key Hash
	6.1.3 Step 3- Configure the Web Server
	6.1.4 Step 4- Register a Domain with TLSChain
	6.1.5 Step 5- Verification
	6.1.5.1 retriveValidityCer
	6.1.5.2 retriveValidityHash

	7 Evaluation
	7.1 Evaluation Setup
	7.2 Evaluation Process
	7.2.1 TLSChain Achieving Certificate Issuing Process
	7.2.1.1 Test Case 1 - Possibility of registering a public key for a domain using TLSChain
	7.2.1.2 Test Case 2 - An attacker trying to register a new public key for an already registered domain should not be successful
	7.2.1.3 Test Case 3 - Initial owner updating the registered public key information should be successful

	7.2.2 TLSChain for Storage of Certificate Information
	7.2.2.1 Test Case 4 - Successful storage of public key information
	7.2.2.2 Test Case 5 - Successful retrieval of public key information

	7.2.3 Blockchain based PKI for certificate revocation
	7.2.3.1 Test Case 6 - Initial Owner is able to revoke the registered information
	7.2.3.2 Test Case 7 - Attacker should not able be able to revoke a registered information

	7.2.4 TLSChain Achieve Certificate Verification Process
	7.2.4.1 Test Case 8 - When accessing a domain registered with TLSChain, if the correct public key sent from the server it will be indicated
	7.2.4.2 Test Case 9 - When accessing a domain registered with TLSChain, an incorrect public key is sent and it will be indicated
	7.2.4.3 Test Case 10 - When accessing a domain not registered with TLSChain it will be indicated

	7.2.5 TLSChain Efficiency
	7.2.5.1 Test Case 11 - Time taken for registering a public key for a domain
	7.2.5.2 Test Case 12 - Time taken for the validation in the client side
	7.2.5.3 Test Case 13 - Registration cost in TLSChain compared to the existing systems

	7.3 Security Analysis
	7.3.1 Test Case 14 - Preventing Man in the Middle Attack
	7.3.2 Test Case 15 - Preventing Replay Attacks
	7.3.3 Test Case 16 - Preventing Intruder trying to register a domain that he does not own
	7.3.4 Test Case 17 -Preventing DNS Poisoning attacks

	8 Conclusion and Future Work
	8.1 Revisiting Aims and Objectives
	8.1.1 Aims and Objectives
	8.1.2 Addressing Identified Problem

	8.2 Conclusion
	8.3 Future Work
	8.3.1 Interoperability Support
	8.3.2 Domain Validation
	8.3.3 Ethreum Price
	8.3.4 Validation to the browser and TLSChain support to metamask

	8.4 Contribution and Novelty

	Appendix A : TLSChain Source Code
	Bibliography

