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ABSTRACT 

Teleoperation of Unmanned Aerial Vehicle (UAV) is a demanding task that requires skill and 

experience. For the most part, commercial-grade UAVs are still manually piloted. Some form 

of obstacle detection capability is desired in UAVs to minimize the chance of collisions and to 

ensure safety to human lives and properties. This thesis presents a heterogeneous sensor fusion 

framework for obstacle detection using complementary sensors, a monocular visual camera, 

and distance sensors to detect obstacles. The approach focuses on obstacles at low altitude, such 

as static obstacles with a large surface area and thin obstacles such as cables. The fusion of 

inputs is performed using fuzzy logic. The warning alerts to the pilots are sent using graphical 

and auditory signal methods when an obstacle is encountered. The evaluation was conducted 

using the simulation platform Microsoft AirSim. The approach detects thin obstacles, static 

large obstacles, and thin obstacles with a static obstacle in the background successfully. A case 

study was also conducted involving a human subject to obtain qualitative evaluation. Results 

obtained shows that the proposed approach has a great potential in the UAV obstacle detection. 

The proposed framework and the evaluation results are the contributions of this work. The 

thesis discusses the framework's limitations and provides an overview of aspects that should be 

focused on when the approach is extended and implemented for a real hardware platform. 

Keywords: Sensor Fusion, Collision Avoidance, Unmanned Aerial Vehicle, Obstacle Detection 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Recent years have seen immense growth in the Unmanned Aerial Vehicles (UAV) domain, 

from both research community and commercial applications. The usage of UAVs has increased 

significantly with a continuous rise in demand in various application domains. UAVs have the 

capability to perform tasks in situations where the conditions might be challenging, expensive, 

or risky when performed using human personnel (Martin et al., 2016; Li et al., 2017).  

Most of the commercial-grade UAVs are still manually teleoperated (Wang and Voos, 2019).  

Hence, it heavily depends on the skill of the pilot (Aguilar, Casaliglla and Pólit, 2017). Piloting 

a UAV is a skill-intensive task that requires experience in order to successfully complete a 

mission without collisions (Wang and Voos, 2020). Loss of line of sight, operating in difficult 

terrains and fatigue are some of the key challenges in piloting UAVs. Fatigue affects pilot 

performance during teleoperation (Aguilar, Casaliglla and Pólit, 2017; Yasin et al., 2020). 

Moreover, UAV accidents can happen due to limited situational awareness, operator 

negligence, equipment malfunction and bad weather. It is important that UAV operations must 

be conducted safely without causing risk to human lives or properties (Peng, Lin and Dai, 2016; 

Zhou et al., 2017).  

In order to successfully pilot a UAV and to minimize the chance of collisions, some sort of real-

time collision avoidance approaches are desired (Lu et al., 2018; Carrio et al., 2020). Collision 

avoidance approaches range from systems that warn the pilot to complex approaches that 

autonomously avoid the obstacles (Yasin et al., 2020). The ability to automatically detect 

obstacles will put a lesser cognitive load on the pilots and reduce stress levels (Gageik, Benz 

and Montenegro, 2015; Alvarez et al., 2016). Moreover, with the increase in UAV usage and 

the rapid growth in the applications, more UAVs are expected to be seen in public areas and 

everyday lives. Yasin et al. (2020) discussed that this creates demand for highly reliable 

collision avoidance systems from the public safety point of view. Obstacle avoidance in UAVs 

is currently an active field of research (Lu et al., 2018; Carrio et al., 2020). Most of the existing 

work focuses on autonomous UAVs and a limited number of works have addressed this in 

piloted or teleoperated UAVs. The main motivation of this research is to investigate and 

develop a sensor fusion-based obstacle detection framework for piloted UAVs. 
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1.2 Statement of the Problem 

Collision avoidance approaches can be designed to autonomously avoid obstacles or can be a 

simple approach that warns the pilot about the potential threat (Yasin et al., 2020). In 

comparison to autonomous UAVs, a limited focus is given to collision avoidance approaches in 

piloted UAVs. The state-of-the-art collision avoidance approaches for piloted UAVs use a 

limited number of sensor options. Expensive sensors like Light Detection and Ranging 

(LiDAR) sensors are being used commonly. Gauci et al., (2018) mentioned in future work that 

fusing the inputs from individual sensors can improve the overall performance and robustness. 

Relying on a particular sensor to extensively cover all types of obstacles can be a risk as some 

sensors are poor at detecting certain types of obstacles (Zhou et al., 2017). Heterogeneous 

sensors with different sensors can significantly improve the detection capability, as the approach 

will not suffer due to a certain limitation of one type of sensor (De Silva, Roche and Kondoz, 

2018). Using sensor data from different technologies gives more accurate results (Yu and 

Marinov, 2020). The literature indicates a little focus on sensor fusion in obstacle detection 

approaches for manually piloted UAVs.  

These collision avoidance approaches are developed based on varied requirements and 

operating environments. Hence, one approach might not successfully function across different 

conditions. This affects the overall design of the approach and the choice of sensors. 

Understanding of the common obstacles and operating environment can help in designing 

optimal collision avoidance approaches. For example, there is a high chance that UAVs can be 

operated more closer to the ground and the obstacles can be different from that are found in 

high altitude. A limited number of researches on collision avoidance focus on the obstacles at 

low altitude flying such as stationary obstacles like buildings, structures, and thin obstacles. 

Various existing works have emphasized the aspect of obstacles in low altitude flying (Candamo 

et al., 2009; Ramasamy et al., 2016; Zhou et al., 2017). This area has not been well explored 

with manually piloted UAVs.  

Monocular visual cameras are a good candidate for being the choice of the sensor in obstacle 

detection approaches. But several disadvantages are there with this sensor choice such as the 

inability to sense depth. On the other hand, stereo cameras provide the ability to sense depth. 

However, it increases the required computational power (Yasin et al., 2020). Monocular visual 

cameras are complemented using other types of sensors to counterbalance their limitations. Due 

to the recent advancements in imaging technologies, modern camera sensors have become more 

compact and are available at a low price. Therefore, a low-priced collision avoidance system is 
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achievable using vision-based sensors (Discant et al., 2007). There are various distance sensing 

options that can be used to address the obstacle detection problem by fusing with a monocular 

visual camera.  

The purpose of this thesis is to investigate and develop a sensor fusion-based obstacle detection 

framework in a collision avoidance approach for piloted UAVs that detects and warns the pilots 

about obstacles. 

1.2.1 Research Question 

This thesis is concerned with the following research questions:  

Q) How to develop an efficient sensor fusion-based obstacle detection framework for 

piloted UAVs using heterogeneous sensors? 

Sub Questions: 

(a) What type of sensors can be used in fusion to achieve the real-time sensing 

capability that is expected by the main research question? 

(b) What data processing or fusion methods can be leveraged considering the limited 

onboard resources to solve real-time obstacle detection and to alert the pilot about 

the potential collision? 

 

1.3 Aims and Objectives 

Integrating a collision avoidance approach in piloted UAVs will be highly effective because 

there is an associated high probability of human error related accidents. The aim of this research 

is to develop a heterogeneous sensor fusion-based obstacle detection framework in a collision 

avoidance approach for piloted UAVs.  

The objectives of this research are,  

• Conduct critical review about existing work that is done in obstacle detection in piloted 

UAVs and other related applications including mobile robots, autonomous vehicles, and 

assistive approaches.  

• Investigate and select heterogeneous sensors for obstacle detection framework design. 

• Investigate and develop a sensor fusion-based obstacle detection framework for piloted 

UAVs.  

• Evaluate the proposed approach using a simulation platform.  
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1.4 Scope 

The scope of this research is limited to investigating and developing a sensor fusion-based 

obstacle detection framework in piloted UAVs. The proposed approach performs obstacle 

detection using onboard sensors deployed in the UAV platform and alerts the operator about the 

potential collision. This work only focuses on frontal obstacle detection.  

Autonomously avoiding the obstacles will not be covered in this research. Moreover, obstacle 

detection under extreme weather and low lighting will not be covered. Detecting and tracking 

the dynamic obstacles is out of scope for this research. Usage of cooperative sensors (Lai et al., 

2012) will not be evaluated. Flying under inverted controls will not be tested in this research.  

The evaluation of the approach will be conducted only using simulations. 

1.5 Structure of the Thesis 

Chapter 2 discusses on UAV operation types, applications, and a review of sensors. 

Furthermore, it presents a comprehensive overview of the most recent and relevant work done 

in the collision avoidance domain particularly focusing on obstacle detection. The chapter 

enumerates existing collision avoidance approaches that use monocular visual camera sensors 

on recent collision avoidance approaches in manually operated UAVs as it is the primary 

interest of this research. Additionally, the section discusses related approaches in the non-aerial 

vehicle domain. Lastly, the chapter covers the review of sensor fusion methods. 

Chapter 3 covers the implementation of the proposed sensor fusion framework for obstacle 

detection in piloted UAVs. The section details the methodology of the research by adopting the 

constructive research method. Sensor fusion framework design, obstacle detection, sensor 

fusion approach and implementation of the control application including the warning interface 

are discussed in this chapter.  

Chapter 4 presents the results and discussion from the evaluation of the proof-of-concept 

prototype. The results from performance evaluation, profiling, and user study are summarized 

under the results subsection. The results are discussed based on the research objectives under 

the discussion subsection. 

Finally, a summary of the research and an outlook on the future work are discussed in Chapter 

5.  
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CHAPTER 2 

LITERATURE REVIEW 

The literature review section begins with an overview of the UAV operation types, applications 

and a review of sensors. Next, some of the existing works in the domain of collision avoidance 

were studied particularly focusing on the obstacle detection aspect of the approach, and a brief 

review of some of the key work is presented. Approaches that use monocular visual cameras 

and approaches focused on operator assistance in aerial and non-aerial vehicles are the main 

two categories of work considered in this research. Moreover, the background of sensor fusion 

approach is reviewed. Finally, the chapter concludes with a summary validating the research 

questions with the literature. 

2.1 UAV Operation Types and Applications 

The UAV technology is being adopted in a wide variety of applications that span both military 

and civilian domains (Sadraey, 2020). The applications include surveillance, forest fire (Mahjri, 

Dhraief and Belghith, 2015), precision agriculture (Radoglou-Grammatikis et al., 2020), natural 

disaster, visual inspection, surveying (Darwin, 2017), search and rescue (SAR), and military 

scenarios where it is challenging for humans to access (Carloni et al., 2013; Aguilar, Casaliglla 

and Pólit, 2017). UAVs have become a versatile and effective tool during the 2020 Coronavirus 

pandemic too. Although the regulations around UAV usage are mostly restrictive around the 

world, many countries utilized the technology in applications like contact-free delivery, 

surveillance, enforcement, and hygiene applications. In Sri Lanka, on several occasions, drones 

were utilized in enforcement and lockdown monitoring operations (Zulfick Farzan, 2020). 

Harrison (2020) discussed that the golden age for drones is coming as he goes on to highlight 

that the world has now started to see the utility of UAVs outweigh the potential threat. In the 

same post, the author mentioned new aerial technologies are set to play a key role in the 

economy, which focuses on innovative ways to cater to the demands from the COVID-19 crisis. 

This clearly indicates that there will be significant growth in UAV technology adoption as an 

integrated part of many businesses in the future. Recent research by Alvarado (2021) states that 

the investments gone into the drone industry have reached record levels during the year 2020 

despite the challenging conditions posed by the Coronavirus pandemic. The growing trend 

strongly indicates that the adoption of the technology is expected to grow during the year 2021 

and beyond (Sartori, 2021). Currently, the International Civil Aviation Authority expects that 

considering the limited number of UAVs in the airspace and lack of regulations, with suitable 
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enabling technologies, UAVs can be accommodated in the airspace. The integration is expected 

in the near future where there will be more mature technologies in this domain (ICAO, 2017). 

UAVs are operated remotely by a pilot at a Ground Control Station (GCS) or autonomously 

controlled based on a pre-programmed flight plan (Sadraey, 2020; STARS Project, no date). 

Depending on the operation type UAVs are mainly categorized as teleoperated (manually 

piloted UAVs and autonomous UAVs accordingly. UAVs can operate in diverse environments 

where various types of obstacles can be found e.g., static, or dynamic obstacles, buildings, 

humans, trees, thin objects like cables. Designing an effective obstacle detection approach that 

works well in all scenarios can be a real challenge. Although there are many existing approaches 

for collision avoidance in UAVs, each approach suffers from different drawbacks (Al-Kaff et 

al., 2017). Obstacle detection approaches can provide improved durability in long-range 

missions such as Beyond Visual Line of Sight (BVLOS) operations and operations in new 

terrains. One of the aspects that were given less emphasis in the literature about collision 

avoidance approaches for piloted UAVs is the operating environment and common obstacles 

that can be encountered. By focusing on the target obstacles, the collision avoidance system 

can be optimized in terms of cost and performance. LiDAR is a popular choice in collision 

avoidance systems of UAVs and is preferred in low-flight applications because of the low 

angular resolution (Sabatini, Gardi and Richardson, 2014). LiDARs are typically expensive 

which increases the cost of the hardware. 

According to the current regulation by the Federal Aviation Administration (FAA), 400 feet is 

the maximum limit at which drones must be operated without additional approvals (Unmanned 

Aircraft Systems (UAS), no date). Thin cables like obstacles are missed by the pilots in the 

presence of heavily cluttered backgrounds (Candamo et al., 2009). As UAVs being more agile 

flying equipment, there is a high possibility for collisions in cases where the UAV is operated 

close to the ground (Hrabar, 2011). Small-to-medium-sized UAVs are prone to this risk. Most 

of the static obstacles that the UAV encounters are buildings, structures, poles, trees, bridges, 

power cables, etc. (Parappat et al., 2014; Kong, Xu and Zhang, 2021). Sensors have limitations 

on which type of obstacle it can detect better. For example, thin subjects can be challenging to 

detect for active sensors like sonar, LiDAR and even with stereo cameras (Zhou et al., 2017). 

When designing a system for real-world usage the understanding of the common obstacles that 

the UAV will encounter in its operating region is advantageous.  

The UAV operations (Figure 1) can be divided into mainly three categories: VLOS (Visual 

Line of Sight), EVLOS (Extended Visual Line of Sight) and BVLOS (Beyond Visual Line of 
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Sight) (The SOARIZON Team, 2020). In VLOS, the operator must maintain unaided visual 

contact with the UAV and in EVLOS, it is allowed flight Beyond Visual Line of Sight using 

“Trained Observers”. There will be one or more observers who observe the flight path and 

communicate flight safety information with the pilot to maintain a safe flight. BVLOS flights 

are flown beyond the pilot’s visual range, and it enables a UAV to cover far greater distances. 

Moreover, BVLOS operations allow in performing tasks in fewer deployments which reduces 

the overall cost (Choudhary, 2019). With the increasing demand in UAV applications, the 

motivation towards enabling UAVs for BVLOS operations is also growing (ICAO, 2017; 

Davies et al., 2018).  

 

 

2.2 Sensors 

The ability to perceive the environment is a key factor in obstacle avoidance methods. Various 

types of sensors such as range-based sensors (e.g., laser) and vision-based sensors (e.g., camera) 

are currently available, which can enable UAVs to perceive the environment (Alvarez et al., 

2016; Yasin et al., 2020). This perceived information can be then used to provide better 

situational awareness to pilots as well as in enabling autonomous decision-making capabilities 

in UAVs. All the sensors have some limitations and strengths over the others e.g., a range-based 

sensor like LiDAR can detect the distance from the obstacle accurately but it does not realize 

the visual characteristic information of the obstacles. Whereas a vision-based sensor like a 

typical visual camera can be used to detect the shape or visual features of an obstacle but is not 

useful to recognize the distance from the obstacle because it lacks depth sensing. Yasin et al. 

(2020) mentioned that not one type of sensor can comprehensively cover the problem of 

collision avoidance. A single type of sensor cannot fulfill the requirement of obstacle detection 

due to the limitations in range, technology, signal features, and environmental conditions. 

Therefore, this has motivated researchers to develop alternative solutions using multi–sensor 

fusion-based methodology. Silva and Wimalaratne (2017, 2020) further acknowledged this by 

Figure 1: Types of UAV Operations 
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discussing that a single sensor cannot provide sufficient information on its environment. 

Typically to design an effective collision avoidance system, multi-sensor methods are 

considered as an option. Yasin also mentioned that more than one sensor can be used to cover 

large areas to eliminate blind spots or data from multiple sensors can be fused together to 

counterbalance the weaknesses between sensors.  

This section discusses the common sensors that are used to build obstacle detection systems in 

UAVs. Sensors can be classified based on their perception mode (Figure 2): Active Sensors and 

Passive Sensors (Yasin et al., 2020). Sensors enable perception capability to the UAVs as well 

as other autonomous entities.  

 

UAVs can be equipped with cooperative and non-cooperative sensors (Gauci et al., 2018). 

Investigating on utilizing cooperative sensors will be out of scope for this research.  

2.2.1 Active Sensors  

Distance sensors are a type of active sensor that is used to measure the distance to 

objects without physical contact. Distance sensors are categorized based on their 

technology.  

The different distance sensor types: 

● Ultrasonic/Sonar 

● Infrared 

● LiDAR 

● Time of Flight 

Figure 2: Sensor Categories 
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Ultrasonic/Sonar 

Ultrasonic or Sound Navigation and Ranging (Sonar) sensor functions based on emitting 

ultrasonic sound waves to the environment and listening to its reflection back to estimate 

the distance to any obstacle that may exist. This type of sensor offers a limited sensing 

range and a low sampling rate. Ultrasonic sensors are not suitable when measuring 

distance to fast-moving obstacles, have complex surfaces or extreme textures.  

Infrared 

Infrared-based distance sensors are compact in size and can be suitable for both daytime 

and night-time usages. Unlike other types of distance sensors, infrared sensors are much 

cheaper and are readily available (Yasin et al., 2020).  

The principle of triangulation is the theory behind the functioning of infrared-based 

distance sensors. The distance to the object is measured based on the angle of the 

reflected beam. The infrared light is emitted from the LED emitter. The emitted light 

beam hits the object in the environment, and it reflects off a certain angle. This reflected 

light beam then reaches the position-sensitive device where the position/distance of the 

reflective object is determined. This category of the sensor has a limited range too. 

LiDAR 

LiDAR sensor is a popular choice of a sensor in obstacle detection approaches. This is 

an attractive option because of the low angular resolution and is preferred in low-flight 

applications (Sabatini, Gardi and Richardson, 2014). LiDARs are available in 1D, 2D 

and 3D configurations. LIDAR typically uses laser and operates based on the time-of-

flight concept. LiDAR systems have become much smaller, lighter and affordable in 

recent years (Yasin et al., 2020). The inability to detect transparent objects such as glass 

is a weakness of LiDAR.  

Time of Flight 

The functioning of Time of Flight (ToF) is like LiDAR. The transmitter on the ToF 

sensor emits an infrared LED light to the environment. The pulse of the transmitted 

LED is picked up by the obstacles in the environment and reflected. The distance to an 

object is estimated by using the relationship between the time between the sending and 

receiving of the signal and the constant speed of light in the air (Shawn, 2020).  
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One of the important benefits of using infrared LED technology is its eye safety. 

Moreover, sensors of this class provide field-of-view (FOV) rather than point 

measurement which in turn provides a more stable data stream in many use cases 

(‘Sensor Modules from Terabee: TOF, Lidar & More’, 2019). For example, the Terabee 

TeraRanger Evo 60m sensor’s FOV is illustrated in Figure 3.  

 

 

The diameter of the FOV is measured as 3cm at 1m and 30cm at 10m (Laughlin et al., 

2020). Low power consumption, small form factor and high refresh rate are some other 

advantages too. LED ToF offers excellent sensing capability at a moderate cost. Terabee 

Evo 60m sensor is available at the price of 99$ and weighs 12 grams. Figure 4 has some 

examples for ToF sensors. 

 

 
Figure 4: ToF Sensors – Terabee Evo 60m and TF Mini LiDAR 

Figure 3: Resolution of Terabee Evo 60m at Different Distance Points 
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Table 1 provides a comparison of distance sensors in terms of several key selection 

criteria for collision avoidance systems. 

Table 1: Comparison of Distance Sensor Characteristics: 

 Ultrasonic 

or Sonar 

Infrared Time of 

Flight 

LiDAR 

Range Low  Low High Very High 

Sampling Rate Low Low High High 

Cost of the sensor Low Low Low High 

Ability to detect 

complex objects 

No Yes Yes Yes 

Sensitive to external 

environmental 

conditions 

Yes No No No 

2.2.2 Passive Sensors 

Passive sensors work based on detecting the natural energy emitted by the objects in the 

environment. Visual Cameras, Thermal or Infrared (IR) cameras and spectrometers are 

some examples of passive sensors.  

Visual Camera 

Visual cameras can be used to capture the environment and the image can be used to 

extract useful information through processing. Visual cameras can be monocular, stereo 

and event based. Nowadays, most UAVs are equipped with a camera (Nous et al., 2016). 

Therefore, it is advantageous to utilize the same hardware as part of any obstacle 

detection system without additional hardware. Moreover, modern camera hardware has 

become more compact in size and low cost, so it is preferred over other sensors. Visual 

cameras can be of types: monocular or stereo. These cameras function in the visible 

light spectrum. Range finders are not suitable for complex environments because of the 

limited FOV, opposed to visual cameras which can capture an abundance of information 

(Lu et al., 2018). On the other hand, this requires high processing to filter important 

characteristics. 
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Infrared Camera 

Infrared or thermal cameras are sensors that work in the infrared band of the light 

spectrum. These types of cameras are particularly preferred in low-light situations. All 

objects in the environment emit infrared energy. These IR cameras can detect and 

measure the infrared energy of objects. Compared to RGB camera output, the results 

from IR cameras are lower resolution, distorted and blurry at times. IR cameras are 

typically used in combination with RGB cameras. 

Table 2 provides an overview on the sensors that are discussed in this section.  

Table 2: Comparison of Sensor Characteristics: 

Sensor Mode Range Accuracy Weather 

Dependency 

Sensor Size Processing 

Requireme

nt 

Power 

Requireme

nt 

Price  

(USD) 

Sonar Active Low Medium Partial Small Low Medium <100  

Infrared Active Low Medium Partial Small Low Low <100 

ToF Active Medium Medium Partial Small Low Low <200 

LiDAR Active High High Low Medium- 

Large 

Low Medium >1000 

Camera Passive Low Medium High Small High Low <100 

IR or 

Thermal 

Camera 

Passive Medium Medium High Small High Low >1000 

 

2.3 Collision Avoidance Approaches using Visual Cameras 

Using visual cameras as an obstacle detection sensor can bring notable advantages as they can 

bring the overall cost of the system low by using lightweight modern cameras (Peng, Lin and 

Dai, 2016). Although LiDAR-like sensors can provide better accuracy and precision, they can 

be too large to carry for small scale UAVs. In such situations, imaging-related approaches can 

provide benefits. Peng et al. (2016) proposed a totally imaging-based obstacle avoidance 

approach using the optical flow method to sense the environment. The drawback here is that 

the approach performs well under single obstacle circumstances and fails to perform better 

otherwise. Zhou et al. (2017) attempted to propose an obstacle detection method for mobile 

robots using a monocular camera, stereo, and an ultrasonic sensor. It is evaluated that the system 
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performs well in static object conditions. This approach was focused on detecting thin obstacles 

such as a wire in indoor environments. This approach was also tested by deploying in a UAV.  

Chakravarty et al. (2017) proposed a collision avoidance method and navigation of a quadrotor 

using a single camera with a trained Convolutional Neural Network (CNN) using depth image 

information. The depth estimation approach failed in some conditions due to not much 

contextual information being extracted from the scene. An approach of using a single 

monocular camera in combination with Scale Invariant Feature Transform (SIFT) feature point 

detection was also explored (Aguilar, Casaliglla and Pólit, 2017). Here, a database is stored 

with the obstacle images. The obstacle images are compared with real-time images captured 

using the onboard camera. The comparison is done based on the feature points to detect the 

obstacle and perform any avoidance manoeuvre. Depth sensing is another characteristic 

explored in obstacle detection. Carrio et al. (2020) proposed an approach in detecting other 

drones that are moving in mid-air using a model that is trained using depth images. Karlsson’s 

(2020) work on collision avoidance in Micro Aerial Vehicles (MAV) used YOLO (You Only 

Look Once) object detection to avoid pedestrians in the path. Hatch, Mern and Kochenderfer 

(2021) used a hybrid neural network to avoid collisions in UAVs. These works are categorized 

under the trained or data-based approaches. Deep learning or trained methods do not perform 

well in new environments. Yu et al. (2020) further validated that saying deep learning 

approaches are good at detecting road obstacles that are predictable in nature e.g., pedestrian 

detection in autonomous vehicles. This approach can be challenging in the context of UAVs 

where the obstacles are mostly unknown in a large outdoor space.  

With a monocular camera, Al-Kaff et al.’s (2017) work on detecting approaching obstacles by 

analysing consecutive frames using SIFT feature points worked well in most situations. The 

drawback observed is that the camera-based systems are sensitive and prone to fail when 

confronted with high-intensity lighting conditions, such as sunlight. This may lead to UAV 

sensing a lack of information which can potentially cause collisions. Kim and Do (2012) in 

their work in obstacle detection for mobile robots using a single camera proposed a block-based 

motion estimation technique. This method failed in tough imaging situations with respect to 

distance to the obstacle, object colour, and lighting. Although imaging-based approaches can 

give better perception ability it is not a good approach for realizing distance to obstacles.  

A multi-sensor approach proposed by Anis et al. (2018) used heterogeneous sensors such as a 

visual camera and ultrasonic sensor. The approach resulted in a high success rate (85%) in 

detecting obstacles. Here an observed disadvantage is that the camera’s resolution played a vital 
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role in detecting obstacles and reduced effectiveness. This is due to the loss of information on 

the obstacles which are farther away from the drone. Furthermore, the effective range of 

ultrasonic sensors is low. A sensor fusion of ultrasonic sensor and camera was proposed by Yu 

et al. (2017) to detect frontal obstacles for mobile robots. Yu et al. used information fusion to 

detect and measure the obstacles. The complementary characteristics of the sensors are utilized. 

Yu et al. (2020) proposed a sensor fusion-based collision avoidance approach using radar and 

a monocular camera in UAVs. The radar is used to detect the distance to the obstacle while the 

image is used to determine the regions precisely for avoidance path planning. The approach 

was tested to be feasible to operate in outdoor environments and in detecting different kinds of 

obstacles while only using very little onboard power.    

Using limited FOV sensing is another category of obstacle avoidance methods under visual-

based approaches (Lopez and How, 2017). Limited FOV sensing will capture less information 

per frame and enables reduced computation time to perform obstacle detection and avoidance. 

Figure 5 summarizes the discussed past work into categories.  

 

Figure 5: Taxonomy of Collision Avoidance Approaches that use Visual Camera 
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Stereo vision is another type of vision-based obstacle detection method. Instead of using one 

camera, two cameras are used together (Nous et al., 2016). The major advantage here is that it 

is possible to measure the distance from the obstacle using properties like pixel displacement, 

focal length, and the distance between cameras. García Carrillo et al.’s (2012) work on fusing 

data from sensors experimented with quadrotors. As monocular camera related work is the 

primary focus of this thesis, this area was not further explored.  

For UAVs, to safely integrate into the non-segregated airspace, a robust collision avoidance 

system is required. Using sensors that are cooperative and non-cooperative can bring 

advantages in terms of robustness. Ramasamy et al. (2014) proposed a data fusion approach 

that uses inputs from varied types of cooperative (TCAS, ADS-B, Transponder) and 

noncooperative (Visual Camera, Thermal Camera, LIDAR, MMW Radar and Acoustic) sensors 

in combination to determine the obstacles in UAVs path. This approach was tested to detect 

obstacles at the accuracy of 500m and allows flexibility (choosing suitable sensor combination) 

in implementation depending on the use cases  (Ramasamy, Sabatini and Gardi, 2014). These 

work highlights the considerations that go into designing a sensor fusion approach.  

 

2.4 Collision Avoidance Approaches in Manually Teleoperated UAVs and 

Driver Assistance Systems in Non-Aerial Vehicles 

This subsection provides an outlook on some of the selected work on collision avoidance 

targeting manually teleoperated UAVs and Driver Assistive Systems for non-aerial vehicles. 

The approaches in these two domains are based on the principle of assisting the operators and 

enabling safe operation. Hence, both contexts have common requirements.  

Teleoperation can be defined as the operation of a device or machine at or over a distance where 

the term “tele” means at or over a distance (Qasim, 2016). Teleoperation of a UAV is a 

challenging task and even it can be difficult for trained operators when piloted just with live 

camera-feed from the vehicle particularly in indoor GPS denied environments (Israelsen et al., 

2014). To enable successful piloting and to improve situational awareness some form of 

collision avoidance capability is desired in UAVs in addition to relying on the pilot’s ability to 

see and avoid any obstacles remotely. Modern-day vehicles like cars are no exception to this 

problem. Vehicles including the autonomous category, nowadays have systems built into them 

and these systems assist the driver in driving or safely override the operator input if required 

e.g., Automatic Emergency Braking (What is AEB and how does it work?, no date). A collision 

avoidance system can be simply warning the operator or can autonomously control the vehicle 
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to avoid the collision (Yasin et al., 2020). These kinds of systems can help improve situational 

awareness as well as allow inexperienced pilots or operators to handle the task without any 

issues.  

Recent works on assistive-based collision avoidance methods for manually teleoperated UAVs 

used expensive sensors like 2D LiDAR and Motion Capture Camera for obstacle detection 

(Israelsen et al., 2014; Wang and Voos, 2019, 2020). Work focused on detecting other aircraft 

from UAVs by integrating sensors like Electro-Optical (EO) and Infrared (IR) cameras and an 

Automatic Dependent Surveillance-Broadcast (ADS-B) (Gauci et al., 2018). The primary focus 

is given to the detection of obstacles such as light and commercial aircraft at 2 nautical miles 

(drone sizes small to medium). As future work, the author proposed fusing the measurements 

from the individual sensors to improve the overall performance and robustness of the system. 

Another work that is similar to previously mentioned uses the sensor fusion to detect obstacles 

(Theuma et al., 2017). This Remotely Piloted Aircraft System (RPAS) is designed for 

unmanned aircraft of size up to 200kgs. This is a considerably heavy payload for small scale 

drones.  

In addition to what was discussed in the UAV space, the obstacle detection problem is being 

actively investigated in other domains such as robotics and autonomous driving assistance 

systems. Although these operate under different environmental conditions than the UAVs, the 

objective is the same. Sensor fusion of stereo vision and laser was experimented with by Kumar, 

Gupta and Yadav (2010) focusing on the robotics domain. Here the obstacle avoidance 

approach could help the robot in navigation by complementing each sensor's different capability 

(3D sensing of stereo vision and accuracy of laser). A sensor fusion based obstacle detection 

approach using a monocular camera and radars was proposed by Otto (2013) in an Advanced 

Driver Assistance System (ADAS). In this work, the visual camera is used to detect pedestrians 

in the scene and to feed the algorithm. Another work targeting the rail transit field proposed a 

sensor fusion obstacle detection approach using video recognition and a LiDAR sensor 

(Yaodong, 2020). Another work proposes sensor integration between LiDAR and camera to 

perform obstacle detection (Bin Ramli, Shamsudin and Legowo, 2018). The LiDAR and wide 

angle camera image fusion were explored in research targeting free space detection for 

autonomous mobile robots (De Silva, Roche and Kondoz, 2018). The author further highlighted 

that the perception capability can significantly improve using multi-modal sensor fusion.  

Table 3 compares the existing approaches on collision avoidance targeting manually 

teleoperated UAVs and provides a brief overview. 
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The taxonomy in Figure 6 summarizes the selected works on both aerial and non-aerial vehicles.  

Table 3: Comparison of existing Collision Avoidance related work in piloted UAVs: 

Literature 

Work 

Method Sensors Important 

Contribution 

Limitations 

Wang and 

Voos (2020) 

Sense-and-

avoid 

2D LiDAR Focuses on dynamic 

obstacles in a complex 

environment. Assisting 

unskilled pilots 

Expensive sensor. 

Wang and 

Voos (2019) 

Sense-and-

avoid 

2D LiDAR Focuses on dynamic 

obstacles in a complex 

environment.  

Assisting unskilled 

pilots 

Expensive sensor. 

Gauci et al. 

(2018) 

Alert the 

pilot 

Electro 

Optical (EO) 

camera 

module, an IR 

camera 

module, and 

an ADS-B 

receiver 

Uses multi-sensor 

obstacle detection. 

Detects light and 

commercial aircrafts. 

Limited to detecting 

light and commercial 

aircrafts. 

Theuma et 

al. (2017) 

Alert the 

pilot 

EO camera 

module, an IR 

camera 

module, and 

an ADS-B 

receiver 

Detecting other 

aircrafts at 2 nautical 

miles distance. IR can 

capture in adverse 

weather. 

Emphasis is on 

detecting other aircrafts. 

Designed for RPAS of 

size of small (up to 50 

kg) medium (50-200 

kg). < 5000ft. 

Qasim 

(2016) 

Sense-and-

avoid 

Override 

input 

Motion 

Capture 

System 

Overrides the pilot 

command that are in 

the direction of the 

obstacle. Evaluated 

using simulation and 

actual hardware in lab 

environment. 

Expensive sensor. 

Limited real-world 

testing. 

Ramasamy 

et al. (2016) 

Alert the 

pilot 

Sense-and-

avoid 

LisDAR Targets the obstacles at 

low altitude flying, like 

wire, structures, and 

terrain.  

Expensive sensor. 

Israelsen et 

al. (2014) 

Sense-and-

avoid 

OptiTrack 

Flex 3 Motion 

Capture 

System 

Onboard processing 

and uses force feedback 

method. 

Expensive sensor.  

Limited real-world 

testing. 
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2.5 Sensor Fusion 

Sensor fusion is an approach to combine data from many sensors or a sensor. The main objective 

of combining the sensory information is to produce a single representational format of the 

environment rather than the synergetic use of the sensors also known as sensor integration 

(Elmenreich, 2002). The data from multiple sensors are processed and results are determined 

such that the resulting information has less uncertainty than would be possible when these 

sources were used individually. Human’s inference of the surrounding environment is an 

example of sensor fusion where the inference is based on the fusion of different sensory 

information such as sight, smell, touch, hearing, and taste. 

This approach has gotten rise due to the inherent limitations that resulted when the sensors are 

used individually (Kumar, Gupta and Yadav, 2010). Sensors can be of any type and can have 

the capability to sense the environment for different characteristics. The sensor fusion approach 

provides robustness and reliable output as the result does not rely on a single sensor’s input. 

Figure 6: Taxonomy of selected work on Collision Avoidance in UAVs and Non-Aerial 

Vehicles 
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Moreover, it allows flexibility in designing a collision avoidance system by allowing the choice 

of different combinations of sensors. Fusing measurements from individual sensors can 

improve the overall robustness and performance of the system (Gauci et al., 2018). 

Various past researches have discussed advantages in building efficient collision avoidance or 

obstacle detection approaches using the sensor fusion approach. Silva and Wimalaratne (2017) 

used different types of sensors to complement the overall performance of the detection process. 

Sensor fusion helps in designing systems for mission-critical applications where using 

redundant data can improve reliability and accuracy (Otto, 2013; Ramasamy, Sabatini and 

Gardi, 2014; Lu et al., 2018). Furthermore, timeliness in response can be achieved using this 

method (Lu et al., 2018). Sensor fusion is also considered an enabling driver that helps in 

replacing expensive technology by using similar low-cost alternatives (Gageik, Benz and 

Montenegro, 2015). 

Sensor fusion is not an omnipotent method, and it comes with its own challenges. Based on the 

existing knowledge on the sensor fusion performance, a slight scepticism is appropriate on the 

“perfect” or “optimal” sensor fusion approach (Fowler, 1979; Elmenreich, 2002). Optimizing 

the overall performance of the approach based on individual sensor performance. The 

performance of a sensor fusion approach relies on the quality of sensor data used. The overall 

performance of the fusion system might be lower than that of each individual source if a number 

of sources provide inconsistent data into the algorithm (Abdulhafiz and Khamis, 2013). 

Therefore, using bad data can degrade the system’s performance. Problems often when fusing 

different types of sensor data, which have varied noise characteristics and poor synchronization 

(Lu et al., 2018).  

The level of sensor fusion is based on the kind of information used in the algorithm. That can 

be raw sensor feed, extrapolated features or decisions made by using individual sensor nodes 

(Ruta and Gabrys, 2000). Sensor fusion is alternatively referred to as data fusion in the literature 

(Castanedo, 2013). Moubayed et al. (2021) referred to data fusion as the process of integrating 

data and knowledge from multiple sources. Processing of raw sensor data is typically 

considered as data fusion e.g., fusing of temperature data from multiple sensors. On the other 

hand, information fusion is a higher level, where it deals with combining various features from 

data sources into a common feature map which can be later used for detection e.g., the fusion 

of data from camera and LiDAR (Elmenreich, 2002). Decision fusion or classifier fusion is 

suitable when it is difficult to combine data from different data sources into a single feature 

vector representation (Silva and Wimalaratne, 2020). Fusion algorithms can be categorized as 
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direct fusion or indirect fusion. Direct fusion means that the data from heterogeneous or 

homogeneous sensors are used while indirect fusion uses priori knowledge in addition to 

sensory data.  

Enhanced data authenticity and availability, reduced exchange of redundant data and data 

transmission energy consumption are some advantages of using the data fusion approach in 

multi-sensor systems (Khaleghi et al., 2013). It also helps in extending the temporal and spatial 

coverage using multiple sensors. This advantage comes in handy with developing collision 

avoidance systems for resource constrained environments like UAVs. Data Fusion methods can 

be categorized based on their fusion level, fusion model, and architecture (Figure 7).  

 

 

These classifications provide a framework for designing sensor fusion approaches. There are 

some well-known approaches for data fusion. Probabilistic fusion, Kalman Filter, AI based or 

soft computing methods such as fuzzy logic, neural networks and genetic algorithms are to 

name a few (Abdulhafiz and Khamis, 2013; Safari, Shabani and Simon, 2014; Alyannezhadi, 

Pouyan and Abolghasemi, 2017; Kim and Park, 2020).  

Fuzzy logic is a decision fusion method that is based on how humans think. This is an example 

fusion process for decision fusion (Elmenreich, 2002). Fuzzy inference is performed using a set 

of defined fuzzy rules based on the inputs determined by the rules. This approach is helpful in 

modelling decision making like humans where the decisions are not always binary. Kim and 

Park (2020) have explored fuzzy rules by giving sensors precedence based on their strength. 

These rules can be further extended to cover more situations. Shitsukane et al., (2018) proposed 

a fuzzy control approach to autonomously navigate the mobile robot. The author has tried to 

Figure 7: Classification of Data Fusion Methods (Moubayed et al., 2021) 
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create rules based on human driving knowledge. A similar approach was tried in the context of 

navigation where a fusion of GPS and INS is performed  (Mayhew, 1999). Mayhew further 

discussed that, using fuzzy logic, the sensor fusion can be performed in a more structured and 

easily understood manner. 

In summary, the state-of-the-art collision avoidance methods targeting piloted UAVs 

commonly use expensive sensors like 2D LiDAR and Motion Capture System as outlined in 

Table 3. There have not been many attempts on exploring low-cost alternatives in this focus 

area. Heterogeneous sensor fusion-based approaches can bring advantages over methods that 

rely on a single sensor or technology. In recent literature, sensor fusion-based approaches are 

explored in dynamic environments like mobile robots, but a limited focus has been given to 

UAVs. This indicates a research gap for a sensor fusion-based obstacle detection approach in 

piloted UAVs.  

The obstacles to the UAVs are depended on the operating environments. In existing collision 

avoidance approaches, there is less emphasis on urban low-flight applications. Focusing on the 

operating environment can help to design optimal collision avoidance approaches. During a 

flight in an urban environment, UAVs can encounter obstacles such as static obstacles with a 

large surface area or thin obstacles like cables. A building or a structure is an example of the 

former. Powerlines and high-tension cables are examples of thin obstacles. A single type of 

sensor may suffer in detecting both successfully. Therefore, a sensor fusion approach can be a 

potential candidate in such a situation where the complementary sensing ability of different 

sensors can be utilized. In existing work, this is not focused well, and the approaches use 

dedicated sensors to detect different types of obstacles e.g., using a camera to detect the thin 

obstacles and using ultrasound to detect obstacles with large surfaces (Zhou et al., 2017). 

Moreover, from the past work, it can be observed that there hasn’t been a significant focus on 

establishing a sensor fusion framework that can be extended and used depending on the sensor 

choices and the obstacle to detect. This also indicates a gap in the knowledge in terms of a 

sensor fusion-based framework for obstacle detection. This is the basis of the main research 

question.  

Based on the taxonomy in Figure 5, visual cameras are a popular choice in collision avoidance 

approaches. This is due to the recent advancements in the technology, cost, and compactness 

of the hardware. However, it lacks the ability to sense depth in the scene. Hence, it is mostly 

paired with some distance sensors to counterbalance the limitation. With regards to distance 

sensing, there is not much focus given to LED ToF sensors in obstacle detection approaches. 
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ToF sensor offers a high detection range and high sampling rate at a considerably low cost 

based on the comparison in Table 1. This positions itself in between the low range ultrasonic 

sensors and expensive LiDARs or Laser based methods. Furthermore, it makes it a candidate 

to be considered for obstacle detection approaches. However, this type of sensor is not currently 

explored in existing collision avoidance approaches for dynamic environments in general. 

Therefore, the combination of visual camera and distance sensing is investigated in this 

proposed research, attempting to validate the sub question (a). 

In terms of data processing, as this research attempts to address the main research question by 

using heterogeneous sensors, decision fusion is deemed as a suitable option. Fuzzy logic is 

utilized in this presented framework considering the advantages it provides and it enables a 

more structured way of implementing the fusion and it is extendable with improving the rule 

base. The sub question (b) focuses on this.   
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CHAPTER 3 

METHODOLOGY 

In this chapter, the methodology of the proposed research is detailed. The constructive research 

method was followed (Silva and Wimalaratne, 2020) in this work, and a proof-of-concept 

prototype was developed as an experimental setup. This is one of the common research 

approaches in the computing research domain. The approach aims to solve problems faced in 

real world by producing innovative constructions, and by that means, contributes to the domain 

in which it is applied (Lukka, 2003). This section is detailed by adopting the constructive 

research approach. 

Figure 8 provides a high-level overview of the Obstacle Detection Framework. The collision 

avoidance approach is tested on a simulation platform for validity.  

 

 

The outcome of this research work is the obstacle detection framework using heterogeneous 

sensors. As depicted in Figure 8, obstacle detection is performed on the UAV platform and a 

warning is given to the pilot when the UAV encounters an obstacle. Then the pilot can 

manoeuvre the UAV to avoid the obstacle.  

3.1 Simulation Platform 

The complete development and testing of the approach took place in the simulation 

environment. The simulation platform of choice for this research is Microsoft AirSim (Shah et 

al., 2018). AirSim is an open-source simulation platform for drones and cars. It is built on 

Figure 8: High-Level Overview of the Obstacle Detection Framework 
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Unreal Engine; it can provide a high-fidelity simulation experience with rich graphics and 

physics. This makes it suitable to be used to test image processing algorithms.  

This research focuses on the sensor fusion approach between the imaging sensor and distance 

sensors. AirSim offers simulated sensors such as Camera, LiDAR and Distance Sensors out of 

the box (Rosique et al., 2019). This makes AirSim an ideal choice for this research work. 

Although it is a developing platform, it offers necessary APIs through which the simulation can 

be created and managed easily. 

3.2 Obstacle Detection Framework Design 

According to the scope of this research, the proposed heterogeneous sensor fusion-based 

obstacle detection framework is limited to frontal obstacle detection. When selecting sensors 

for the framework design, the practical aspects of the UAV deployment were considered. 

Various past works have highlighted the following parameters for sensor selection: payload 

limitation (Yasin et al., 2020), onboard computational power (Gageik, Benz and Montenegro, 

2015), cost of hardware (Yasin et al., 2020),   and complexity in integrating the sensors (Carrio 

et al., 2020). A monocular visual camera and distance sensors are the sensors selected for this 

development. Figure 9 illustrates the arrangement of the sensors and their coverage.  

 

 

Albaker and Rahim (2009) outlined the five major design factors related to a collision avoidance 

system. These are (1) Sensing the environment, (2) Conflict detection and awareness, (3) 

Selection of escape trajectories, (4) manoeuvre realization and dimensions and (5) Other design 

Figure 9: Frontal Sensor Arrangement and Coverage 
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factors such as computation complexity and time requirement. On that basis, the proposing 

approach focuses on areas 1-2 and 5. Since this work is in piloted UAVs, 3 and 4 are not 

applicable. The framework’s performance is expected to be accurate and with a minimal false 

positive warning about threats.  

In a high level, the proposed framework is mainly divided into three components. Individual 

obstacle detection experts based on imaging and distance sensing, sensor fusion component 

responsible for fusing inputs from individual sources and the control application that functions 

as the interface between the obstacle detection approach and pilot. The following sections 

elaborate on the methodology in detail. The fusion layer uses fuzzy logic to provide output.  

3.2.1 Design Assumptions 

The prototype is evaluated within a simulated environment. External environmental 

conditions such as the effect of wind are not considered in the methodology. This 

research attempts to conceptualize the idea of using a visual camera and distance sensors 

in sensor fusion. The image processing algorithm is mainly developed to demonstrate 

the proposed concept. The algorithm does not yield accurate results when the 

environment has complex objects or is used in a new environment. The environment 

realism was not focused on the research. Therefore, the simulated environment setup 

used during the development and evaluation of this research uses primitive obstacles.  

3.3 Obstacle Detection using Visual Camera 

Typically, UAVs are equipped with one or more visual camera sensors which are used to 

perceive the environment from the UAV. If a UAV is already equipped with a camera, utilizing 

it in an obstacle detection approach will be a good idea since it minimizes the additional payload 

of sensors as part of the obstacle detection system. Unlike other sensors, visual cameras provide 

an abundance of information in each frame (Yasin et al., 2020). By using various image 

processing or deep learning approaches, individually or in combination, information can be 

extracted from the image feed. This can be fed into an algorithm to perform obstacle detection. 

Candamo et al. (2009) mentioned in their study that vision technology is not considered as a 

replacement for other sensors but is to enhance the system’s reliability. 
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3.3.1 Sensor Setup and Coverage of Visual Camera 

A forward facing camera sensor is placed in the front-centre position of the UAV. The 

simulated camera captures at 480x240 resolution with 90 degree of FOV. Visual based 

approaches are known to suffer due to high processing requirements. In the proposed 

framework, to simplify the detection using visual technology, only the obstacles that 

intersect the path of the UAV are considered the primary threat to the unit. This 

approach is inspired from Valavanis’ (2019) work on monocular obstacle detection and 

collision avoidance. Valavanis used bounding boxes to identify obstacles in the 

environment of the UAV. The bounding boxes that intersect with the centre region are 

highlighted as immediate threats. Figure 10 illustrates the region of interest for obstacle 

detection in the proposed work. Focusing only on an enclosed region can reduce the 

processing load. Therefore, the proposed framework prioritizes obstacle detection in 

that region. The term “Obstacle Detection Region” (ODR) is used to refer to the region 

of interest in the following sections of this thesis. The variables w and h are the width 

and the height of the image frame accordingly. 

 

3.3.2 Obstacle Detection Algorithm for Visual Camera 

Common obstacles that can be found in low flight applications are the primary interest 

of this research. Thin objects such as cables can be often missed by active sensors, 

especially in cluttered environments. Visual cameras with a suitable processing 

algorithm can be effective in such cases in detecting these types of obstacles. Image 

segmentation and edge detection based approaches are explored in the literature in 

Figure 10: Obstacle Detection Region 
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purely image based obstacle detection situations (Parappat et al., 2014; Zhou et al., 

2017).  

A simple image processing-based algorithm is developed to estimate the presence of 

thin obstacles, a category of objects that can be often missed by active sensors when it 

exists in the environment. The sample result is shown in Figure 11. As depicted in the 

flow chart in Figure 12, this algorithm performs a series of image processing and 

morphological operations in a feed-forward manner to extract features of interest. This 

algorithm is primarily developed to demonstrate the working of the proposed 

framework. This area can be further improved and extended by incorporating various 

image processing or deep learning algorithms to improve accuracy and robustness. 

 

 Figure 11: Detection of Simulated Cable using Image Processing 
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The output of the visual based detection algorithm is given by a value between 0 and 1. 

The value being closer to 1 shows a high degree of confidence in the presence of 

obstacles and vice versa. According to this research work, visual based detection focuses 

on thin obstacles, a category of obstacles that are difficult to detect using active sensors 

like distance sensors. The approach taken here is to determine the detection value using 

the occupancy of pixels in the ODR. 

An example input frame to the occupancy calculation is shown in Figure 11. According 

to the image processing algorithm used (Figure 12), pixels that are represented by white 

colour in the binary image are the obstacle or foreground pixels, while the black pixels 

belong to the background. The certainty of the presence of obstacles is calculated using 

Equation 1. 

Figure 12: Feed Forward Flow of Image Processing Algorithm for Obstacle Detection 
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𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑂𝐷𝑅
 

 

As the monocular image does not realize the depth to the obstacle, it is a challenge to 

clearly identify how close the threat is to the subject. Hence, the value from Equation 1 

is an indication of whether an obstacle is visible from the perspective of the UAV.  

Proposing a state-of-the-art thin obstacle detection algorithm is not clearly the focus of 

this thesis. As stated in the design assumptions, the algorithm used in this proof of 

concept has limitations and only applicable within the simulation environment 

conditions used in this research. If the algorithm is used in complex environments or in 

real-world, it can classify the pixels incorrectly. Therefore, the intent of detecting only 

the thin obstacle fails. Moreover, the detection is depended on the physical dimensions 

of the thin obstacle, surface features and shape. The monocular camera sensor’s 

resolution also plays a part in the detection. This is the key area to focus on when 

adopting this framework for detecting thin obstacles in real world. 

3.4 Obstacle Detection using Distance Sensors 

Although monocular cameras are good at extracting complex features, it lacks the ability to 

sense depth (Hatch, Mern and Kochenderfer, 2021). Due to that reason, typically cameras are 

used with some form of distance sensors in combination to get more meaning out of the 

perceived information. Unlike cameras, the data from active sensors do not contain unnecessary 

information that requires filtering. Hence, these data are known as directed data. This eliminates 

the requirement for complex pre-processing of the data.  

The framework proposed in this thesis is limited to forward obstacle detection. Therefore, the 

preliminary design uses three sensors in combination to cover the horizontal region in the ODR. 

These distance sensors are used to estimate the distance to obstacles in the proximity of the 

UAV.  

3.4.1 Sensor Placement and Coverage 

As shown in Figure 9, the proposed framework uses three distance sensors (DLEFT, 

DCENTER, and DRIGHT) which are attached to the UAV in a forward-facing way and 

Equation 1: Formula for Obstacle Detection in Image Frame 
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positioned to have coverage on horizontally distinct areas of the obstacle detection 

region. These distance sensors are angled (yaw angle) 1 degree apart and measure the 

distance to obstacles that intersect the path of the UAV.  

IR LED ToF based distance sensor was the sensor of choice for this framework design 

due to the advantage of supporting FOV as opposed to point measurements in laser-

based sensors. This technology was not explored in the existing literature. To simulate 

this framework in AirSim, the distance sensor was configured based on the range 

characteristics of the IR LED ToF sensor to mimic that in the simulation environment. 

3.4.2 Obstacle Detection Algorithm for Distance Sensor 

The objective of the obstacle detection algorithm is to fuse the data from the coordinated 

distance sensors DLEFT, DCENTER, and DRIGHT and estimate the distance to the obstacle in 

the path of the UAV. The arithmetic averaging method is used to fuse these 

measurements to obtain a single value. Let MLEFT, MCENTER, MRIGHT and are distance 

measurements from the individual sensors. Then the average or mean distance is 

calculated using Equation 2. A similar approach was used by Shitsukane (2018). 

𝑀𝑒𝑎𝑛 𝑜𝑟 𝑋 =
𝑀𝐿𝐸𝐹𝑇 +  𝑀𝐶𝐸𝑁𝑇𝐸𝑅 +  𝑀𝑅𝐼𝐺𝐻𝑇

3
 

 

The averaged distance measurement is mapped to a value sandwiched between 0 and 1 

to simplify the handling in the fusion process. The range is divided into three equal sub 

ranges to calculate the fitting detection level indicating the correct level of threat in the 

common scheme. The pseudocode of the algorithm used to obtain the corresponding 

mapped value to the distance measurement is given in Figure 13. The function accepts 

the averaged distance as a parameter.  

 

Equation 2: Average Distance Measurement 
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MAX_DISTANCE ← 15 // maximum range of the sensor 

H_MAX_DISTANCE ← MAX_DISTANCE / 2.0 

 

Function mapped_value_distance(distance_) 

If distance_ >= MAX_DISTANCE: //FAR 

   value_for_fuzzy = 0 

Else If: 

   If H_MAX_DISTANCE <= distance_ < MAX_DISTANCE: //THRESH 

      dist_to_check_ ← distance_ - H_MAX_DISTANCE 

      value_for_fuzzy ← (1 / 3.0) + (1 / 3.0) * (1 - (dist_to_check_ / H_MAX_DISTANCE)) 

   Else If 0.0 <= distance_ < H_MAX_DISTANCE: //NEAR 

      value_for_fuzzy ← (2 / 3.0) + (1 / 3.0) * (1 - (distance_ / H_MAX_DISTANCE)) 

Return value_for_fuzzy 

End Function 

 

The pilot must be warned about the obstacles that are located closer relative to the UAV 

compared to the obstacles that are far away. Based on that notion, a safe boundary 

distance within the sensor’s range is selected as the upper bound. Any measurements 

from the obstacles beyond the upper bound are suppressed. Detections below the upper 

bound are calculated and classified accordingly.  

These variables can be tweaked depending on used sensor options and required 

precision. The output of the mapped value is then fused at the fusion layer together with 

the estimate from the image detection value to get a better estimation of the obstacle.  

3.5 Sensor Fusion 

3.5.1 Choice of Fusion Method 

As discussed in section 2.5, Sensor Fusion is considered as an effective approach when 

using data from heterogeneous sensor sources. The sensor fusion layer of this proposed 

framework works by fusing outputs from the individual imaging and distance sensor 

modules and provides a more robust result that would not be possible if the sensors were 

used individually.  

Figure 14 illustrates the framework in a high-level diagrammatic form with inputs and 

outputs. 

 

Figure 13: Pseudocode for Fuzzification of Crisp Distance Value 
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Data level fusion requires compatible types of sensors. This method is not applicable 

for the proposed framework as the image features and distance measurements are of 

incompatible types. Feature level fusion also possesses a similar challenge with 

mapping the features from heterogeneous data to a feature map. Decision fusion is 

considered more robust over fusion at data or feature levels (Dasarathy, 1991). 

Moreover, decision fusion is suitable when dealing with data heterogeneous sensors 

when the data cannot be combined in the same feature vector. Decision level fusion or 

high-level fusion is considered practical for this proposed obstacle detection framework. 

One of the main advantages that are seen with the level of fusion is that it can be easily 

extended to incorporate more components that can further enhance this framework’s 

performance. 

Figure 14: Block Diagram of the Proposed Framework’s Architecture 
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3.5.2 Fuzzy Logic and Estimating Alert Level 

Fuzzy logic is adopted as the core decision making method of this proposed sensor 

fusion framework. Figure 15Error! Not a valid bookmark self-reference. illustrates 

the functional blocks of the Fuzzy Inference System (FIS).  

The type of FIS used in the proposed sensor fusion-based obstacle detection framework 

is Mamdani type. This method was originally created as a control system by combining 

a set of linguistic rules obtained from experienced human operators (Mamdani and 

Assilian, 1975).  

 

 

 

3.5.3 Fuzzification of Inputs 

The inputs to the FIS are the individual outputs from the experts, visual based detection 

module and distance sensor-based detection module. These crisp values go through the 

fuzzification to be mapped to their corresponding input fuzzy set. The mapping between 

crisp values and the input fuzzy set values is detailed in this subsection. 

 

Figure 15: Fuzzy Inference at Sensor Fusion Layer 
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Fuzzification of Visual based Detection Output 

As previously described, the visual based obstacle detection module outputs a value 

between 0 and 1 based on the certainty of the presence of an obstacle. Due to the 

inability in determining the depth using the monocular image-based approach, it is a 

challenge to detect how close or far the obstacle is to the subject. Furthermore, the 

output from the image processing showed inaccuracies due to the noisy pixels. Due to 

these reasons’ threshold was performed on the crisp output value as mentioned in Table 

4. During the initial evaluations, the value for the variable threshold = 0.2 gave 

acceptable results for the proposed obstacle detection framework. The value is obtained 

by testing the algorithm under the presence of multiple thin objects (two or more) in a 

single frame to minimize erroneous results.  

The fuzzy set label NODET denotes that there is no obstacle in the ODR, while DET 

denotes the presence of an obstacle.  

 Table 4: Fuzzification of Image-based Detection Value: 

 

Fuzzification of Distance Sensor Detection Output  

The output from the distance sensor-based detection module is a value given the range 

between 0 and 1 based on the confidence of obstacles present in the ODR. The range is 

divided into three equal sub ranges namely as mentioned in Table 5. Each sub range is 

labelled after a corresponding fuzzy set value. The calculated crisp value from the 

algorithm in Figure 13 seamlessly fits the fuzzification scheme and can be classified 

without any additional modification. 

Table 5: Mapping of Distance Measurements to Common Scale: 

Fuzzy set 

label 
FAR (far) 

THRESH 

(threshold) 
NEAR (near) 

Distance 

Range 

Greater than 10 

meter 
Between 5 – 10 meter Less than 5 meter 

Mapped range 0 ~0.3 – 0.67 ~0.67 – 1  

 

Fuzzy set label NODET (no detection) DET (detection) 

Crisp output  Value < Threshold  Value >= Threshold 
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3.5.4 Rule Base and Inference  

The rule base is the key functional component of the FIS. Fuzzy rules are a collection 

of linguistic statements that describe how the system should decide about controlling an 

output. The rule base for this sensor fusion framework is created according to the 

obstacle avoidance information provided by the inputs. The Mamdani-type inference 

system expects the output membership function to be a fuzzy set. The output fuzzy set 

here is created for alert level, which indicates the level of warning that must be raised 

to the pilot based on the obstacles in the proximity. The linguistic values of the output 

fuzzy set are HIGH, MEDIUM, and LOW. Once the inputs are received, the individual 

rule strength is determined by combining the fuzzified inputs based on the fuzzy rules. 

Next, the consequent of the rule is estimated by combining the individual rule strength 

and the output membership function. The output distribution is obtained by combining 

all the consequents. Finally, the crisp output value for the combined detection also called 

the alert level is obtained. 

Given the input fuzzy variables INPUTIMAGE and INPUTDISTANCE and output fuzzy 

variable OUTPUTALERT, all the rules used in the proposed framework are shown here,  

• IF (INPUTIMAGE = DET) THEN (OUTPUTALERT = HIGH) 

• IF (INPUTIMAGE = NODET) and (INPUTDISTANCE = FAR) THEN (OUTPUTALERT = LOW) 

• IF (INPUTIMAGE = NODET) and (INPUTDISTANCE = THRESH) THEN (OUTPUTALERT = MEDIUM) 

• IF (INPUTIMAGE = NODET) and (INPUTDISTANCE = LOW) THEN (OUTPUTALERT = HIGH) 

The implementation of the FIS of the proposed sensor fusion framework is done using 

Simpful, a Python library for fuzzy logic reasoning (Spolaor et al., 2020).  

The plots of membership functions of each linguistic variable contained in the fuzzy 

system are shown in Figure 16. 
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3.6 Control Application 

The control application is the interface between the pilot and the core obstacle detection 

approach. The control application handles the sensor inputs and implements the warning 

interface. It is responsible for providing alerts to the pilot about the obstacles based on the fused 

detection value resulting from the obstacle detection approach.  

In a study conducted by Simon (2006) on the learnability of advanced driver assistance systems, 

it was observed that the drivers who participated in the experiment felt absolutely sure with 

acoustic and visual alerts in terms of learning the system and when to intervene the control of 

the vehicle. Simon also highlighted that visual warning, and an acoustic alert is considered 

effective when the timing is the most important factor. This characteristic aligns with the 

 

Input - Image Sensor Detection 

 

Input - Distance Sensor Detection 

 

Output – Alert Level 

Figure 16: Membership Functions of the Linguistic Variables contained in the Fuzzy 

System 
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objective of the proposed framework. Therefore, the warning interface of the proposed 

framework is developed with a graphical warning display and an auditory warning. Gauci et al. 

(2018), Theuma et al. (2017) and Ramasamy et al. (2016) have used a graphical display of 

warnings in their respective approaches targeting teleoperated UAVs. Additionally, Ramasamy 

et al. have used auditory warning. In recent research by Solovey, Ryan and Cummings (2021) 

haptic feedback is discussed in the context of alerting the operators.  

The fused output crisp value from the obstacle detection algorithm is a numeric value 

sandwiched between 0 and 1. The interval is equally subdivided into three sub regions, each 

corresponding to different threat levels defined in the algorithm i.e., low, medium, and high. 

The acoustic alert switches on when the detection value reaches high. Therefore, the pilot must 

immediately take action to navigate the UAV without colliding with the obstacle. The signals 

switch off as the pilot moves the UAV away from the threat. The level to provide auditory alerts 

can be changed in the algorithm depending on the requirement.  

The visual warning display intends to provide the warning in textual form using colour coded 

labels. Furthermore, the interface algorithm uses individual sensor detections in combination 

with the fused output to additionally interpret the type of obstacle ahead through visual display. 

This allows the pilots to make informed manoeuvring to avoid obstacles. An example warning 

display is shown in Figure 17. Table 6 summarizes the alerts provided by the warning interface. 

 

  

Figure 17: Graphical Warning Display 
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Table 6: Summary of Alerts Provided by Warning Interface: 

Threat Level Acoustic 

Alert 

Label and 

Colour Code 

for Visual 

Display 

Example 

LOW No CLEAR 

(Green) 

 

MEDIUM No WARN 

(Orange) 

 

HIGH Yes ALERT (Red) 

 

 

In summary, this chapter summarized the methodology of the proposed sensor fusion-based 

obstacle detection framework. The approach used complementary sensors, a visual camera and 

distance sensors to detect obstacles. The fusion of the inputs is performed using fuzzy logic. 

Through the preliminary testing and modification, the obstacle detection approach yielded 

positive results. The individual building blocks of the framework have been detailed well so 

that it allows any users to build or extend the framework to better suit their requirements. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Results 

The results section is dedicated to present the evaluation results of the sensor fusion-based 

obstacle detection framework. The framework is the primary outcome of this research. To 

validate the framework a proof-of-concept is created, and the performance of the approach is 

assessed and validated. Due to the restrictions with the COVID-19 pandemic, the real-world 

testing using actual UAV hardware has been cancelled and the testing was primarily conducted 

using a simulation platform.  

In real-world situations, UAVs can be confronted with various types of obstacles. These 

obstacles can be in any form or shape and the obstacle detection system of the UAV should be 

able to detect them and warn the pilot in real-time so that they can effectively perform the 

avoidance manoeuvre and navigate the UAV to avoid the obstacle. Although it is easier for 

humans to perceive the environment and sense obstacles, it is a difficult task to automate. 

Because not all sensors or methods can detect every object type in the real world. This section 

further elaborates the evaluation strategy and results of this work.  

Right now, there are no widely accepted benchmarking methods for evaluating or comparing 

the performance of UAV collision avoidance approaches. Therefore, existing works have 

designed their own strategy for evaluation. Nous et al. (2016) discussed that developing a 

standardized evaluation framework is challenging due to aspects such as a high variety of 

operating environments and the collision avoidance methods are developed based on different 

requirements. An attempt to propose a benchmarking framework was done by Montcel et al. 

(2019) which can be used to evaluate the performance of quadrotors and estimate the probability 

of successful attempts using simulation experiments. Montcel further validated that there is a 

clear gap for a generic testing framework to evaluate collision avoidance approaches.  

Using repeated trials and estimating the capability of the approach in avoiding the obstacle is a 

method commonly seen in the evaluation of autonomous collision avoidance approaches. This 

method was considered not suitable in evaluating the proposed sensor fusion framework as this 

target piloted UAVs. The obstacle detection performance and usability of the framework were 

identified as the main areas for evaluation.  
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4.1.1 Simulation Setup and Scenarios 

Microsoft AirSim (Shah et al., 2018) was selected as the simulation platform for the 

evaluation. AirSim offers the ability to virtually test the obstacle detection approach 

using the multirotor and available sensors. It is capable of providing a high fidelity 

simulation experience using different environments that are built using Unreal Engine 

(Unreal Engine, no date). Simulation played a vital role in the overall work. Using 

simulation is beneficial as it is less expensive and enables reproducibility of the tests. 

All the simulation experiments and calculations were performed on a laptop computer 

with Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz CPU, 16GB of RAM, and M.2 SSD 

Storage.  

Based on the focus of the proposed obstacle detection framework, obstacles and 

simulation setups are created to evaluate the performance. Table 7 summarizes the main 

scenarios that are covered in the evaluation of this research. These scenarios have 

significance in what obstacles that the proposed framework attempts to detect. The 

result from this evaluation is considered important when adopting the proposed 

framework.  

The main types of obstacles that are focused on the evaluation are mainly of two 

categories. The sample simulation setups were created by modifying the blocks 

environment, packaged with AirSim.  

• Type A – Thin Obstacles: Type of obstacles which are often undetected by active 

sensors like distance sensors e.g., high tension cables and power lines.  

o Created using cable component in Unreal engine. The obstacle width were 7 

units in measurement (cm). 

• Type B – Large Static Obstacles: Type of obstacles which are detectable using 

distance sensors and have sufficiently large surface area e.g., buildings. 

Table 7: Evaluation Scenarios and Obstacles: 

 Scenario 1 Scenario 2 Scenario 3 

Foreground Obstacle 

Type 
A B A 

Background 

Obstacle Type 
N/A None B 

Example simulation 

setup of obstacle 
Figure 18 (a) Figure 18 (b) Figure 18 (c) 
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(a) 

 
(b) 

 
(c) 

 

4.1.2 Performance Evaluation of Obstacle Detection Framework 

The objective of the performance evaluation is to evaluate the proposed heterogeneous 

sensor fusion-based obstacle detection framework on how well it can detect obstacles 

by conducting a series of simulation-based experiments. This section summarizes the 

Figure 18: Simulation Setup of Obstacles 
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results. Using various metrics collected during these experiments, it is attempted to 

establish a quantitative understanding of the proposed approach.  

As elaborated in the methodology the proposed framework detects obstacles by fusing 

inputs from visual camera and distance sensors. The line graph in Figure 19 illustrates 

the change in the output detection value when an obstacle is detected using a series of 

images of ODR using 100 simulated runs. For this example, the algorithm is configured 

such that 20% or more occupancy of foreground pixels in the ODR is considered as a 

presence of a Type B obstacle. Hence, the fusion layer produces a stronger detection 

value (0.9) after 0.2 in the x-axis. Otherwise, a low output value is given. The distance 

sensor input was maintained constant through these simulated runs.  

 

Similarly, another 100 runs were performed using variable values for distance sensor 

input. The objective here is to get an understanding of how distance-based detection 

performs with the change in distance to obstacles in the environment. The image 

detection was defaulted to 0 to simulate no detection through the image. This result is 

obtained using a distance sensor configuration that has a maximum range of 10 meter. 

As illustrated in Figure 20, a gradual decrease in detection value can be observed as the 

distance to the obstacle increases from 0 to 10 meter. As the approach does not consider 

the obstacles that are beyond the maximum range as a threat, a drop in the detection 

value is seen with the increase in distance. 

Figure 19: Obstacle Detection with Imaging using Variable Occupancy Values 
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By comparing the graphs Figure 19 and Figure 20, it can be observed that the inability 

to sense the distance to the obstacle in the ODR using image based detection is clearly 

reflected in the results. The framework gives precedence to the obstacle detected using 

the image as it has a limitation with realizing the actual distance to the obstacle using 

imaging. 

Simulated flight experiments were conducted on three obstacle scenarios as mentioned 

in Table 7. The idea here is to autonomously launch and fly the UAV towards the 

obstacle and observe how well the obstacle is detected using the proposed obstacle 

detection framework. The simulated flight is started from a point and flown towards the 

obstacle in a straight path. The flight was set to a constant speed of 5m/s. The UAV was 

maintained at a fixed altitude and in the forward flight mode. The configurations of the 

sensors used in this experiment are mentioned in Table 8. 

Table 8: Configuration of Sensors used in Simulation: 

Sensor Configuration 

Visual Camera 
Resolution: 480 x 240  

FOV: 90° 

Distance Sensor Max Range: 15 meter 

Figure 20: Obstacle Detection with Variable Distance 
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The first experiment was to fly the UAV towards the thin obstacle (Scenario 1) the 

category of obstacles that are detected using image processing in the proposed approach. 

As this category of obstacle cannot be detected using a distance sensor, the Euclidean 

distance method was used to obtain the ground truth distance between the UAV and the 

obstacle for comparison. The fused detection output, actual distance and timestamp 

were recorded during the simulated flight. The results are plotted in the dual-axis graph 

shown in Figure 21. To simplify the labelling the x-axis represents the corresponding 

frame number in which the metrics were recorded as opposed to timestamp.  

A stronger detection response of greater than 0.8 can be seen as the obstacle gets closer 

to the UAV. The image-based detection is highly sensitive to noise as opposed to 

distance sensor-based detection. This contributed to the noisy responses during frames 

393, 457-463 and 480-492. High detection output has resulted when the actual distance 

to the obstacle was 16 meter. As the UAV gets closer to the obstacle, the high detection 

level was maintained until the distance reached approximately 4 meter. 

 

Although the approach resulted in the intended detection, the noise in the output can 

contribute to false alarms. The moving average filtering was performed on the result to 

minimize the influence of noises in the final output. The smoothing was performed by 

averaging the last three detections. Moving average is simple and has an easy 

implementation. This approach is used in reducing the impact of noises (Amposta, 2020; 

Brett Garberman, 2020). The same experiment was conducted again by enabling 

smoothing and the result is shown in Figure 22 for the same parameters. Smoothing 

contributes to minimizing the false detections The smoothed output eliminates the 
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impact due to noisy values and it makes the detection due to the obstacle distinguishable 

from the noises. The strong obstacle detection can be observed around the same distance 

to the obstacle as the previous experiment, from 14 meter down to 4 meter. The 

remaining results mentioned in this chapter are all conducted under smoothing enabled. 

Under the experimental condition, it was observed that the smoothing did not 

significantly impact the performance. Furthermore, the imaging-based detection 

produced erroneous reading when the actual distance is less than 4 meter.  

 

The next simulated flight experiment was conducted to evaluate the performance on 

Scenario 2. There are not any objects in between the large static obstacle and the UAV. 

A cube object represents an obstacle in this case. Additionally, a distance sensor was 

attached to the simulated multirotor to measure the actual distance to the obstacle with 

the objective of providing the ground truth. The static obstacles are intended to be 

detected by the distance sensors used in the proposed sensor fusion framework. The 

graph in Figure 23 shows the fused detection of the approach against the actual distance. 

After the actual distance of 10 meter, the detection gradually increases as the UAV gets 

closer to the obstacle. The occasional noisy detections were resulted due to false 

detection of the image processing algorithm. However, the smoothing helped in keeping 

the false detection low.  

The final simulated flight experiment was conducted on the complex scenario where a 

thin obstacle is in the foreground while a static obstacle is in the background (Scenario 

3). The two obstacles were set up within a short distance such that both obstacles fall 

within the range of distance sensors. Same metrics as in previous experiments were 
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Figure 22: Simulated Flight Experiment for Thin Obstacle (Smoothing Enabled) 
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recorded which includes ground measurements from reference distance sensor (static 

obstacle) and Euclidean method (thin obstacle). The results are shown in Figure 24. 

 

The “Distance Reference” represents the actual distance to the static obstacle. The 

“Euclidean Reference” represents the distance to the thin obstacle. The expectation from 

this experiment is that the image-based detection must be given precedence over the 

distance sensor-based detection. The reason for this is due to the limitation of image-

based detection value not representative of the actual distance to the obstacle. The 

obstacle is detected at approximately 8 meter distance to the obstacle and a high 

detection value is obtained. The detection value is maintained at the highest value as the 

UAV gets closer to the obstacles.  
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Figure 23: Simulated Flight Experiment for Large Static Obstacle 

Figure 24: Simulated Flight Experiment for Thin Obstacle and Large Static Obstacle 
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4.1.3 Profiling Results of Obstacle Detection Algorithm 

The algorithm’s resource consumption must be evaluated when designing a framework 

for an environment that is typically resource constrained. UAVs have limitations with 

onboard power. Furthermore, the obstacle detection application must provide feedback 

in real time. Hence, the algorithm must have a good time efficiency. The memory 

consumption and execution timing are the main metrics that were focused on the 

proposed framework.  

The proof-of-concept is developed using Python language. The Python modules 

memory-profiler and in-built module cProfile are used to profile the algorithm. The 

profiling was performed on odcontroller.py, the entry point and the main script that 

implements the obstacle detection algorithm. Furthermore, the functions that are of 

interest in profiling are summarized with their purpose in Table 9. 

Table 9: Python Scripts and Purpose: 

Script Name  Function Name Purpose 

odcontroller detect() Main entry point. Implements the detection 

algorithm.  

odimg detect_cable() Implements image processing algorithm to 

detect presence of thin obstacles. 

odfuzzy infer() Implements fuzzy logic and rules. Performs 

inference.  

The algorithm was executed for 1000 simulated runs to profile. Randomly generated 

distance values (3) and images recorded from the simulation environment were used. 

Smoothing was disabled. The profiling results are discussed in the subsections. 

Execution Time 

The results from the simulated run are visualized using SnakeViz, a browser based 

graphical viewer for the cProfile output. The execution timing results are shown in 

Figure 25.  
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Most of the execution time of the root function for detection is taken up by the fuzzy 

inference and image processing algorithm. Suppose the framework is implemented as 

per the objective of this proposed research, there will not be a significant change in this 

execution time due to the chosen library. However, optimizing the fuzzy inference layer 

and the impact of the growing rule base can be a direction for future work.  

The image processing algorithm is another identified hotspot in the proposed 

framework. During the simulated profiling run the algorithm consumed 2.967s for 1000 

calls with an average per call timing of 0.002967s. The image processing algorithm used 

in the proof-of-concept is developed based on design assumptions and to conceptualize 

the idea and is not suitable to be directly used in real world situations. Therefore, the 

algorithm must be replaced using a suitable image processing algorithm or by 

incorporating deep learning methods. The selection of the approach can cause a 

considerable impact on the algorithm’s performance due to the required pre-processing 

of image data. 

Figure 25: Execution Time Report of the Obstacle Detection Algorithm 
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The fusing of distance sensor inputs is implemented as part of the odcontroller’s (detect) 

internal logic. Additionally, the controller is responsible for constructing and returning 

the response. The actual time spent on the execution of internal functions is minimal 

compared to called functions. This indicates that increasing the number of distance 

sensor inputs will not significantly impact the execution time of the algorithm. This can 

be applicable when incorporating sensors that provide directed data that does not require 

much pre-processing. The actual time spent on the internal function during the 

experiment is as follows,  

Average actual time spent on internal function =
( 47.66 −  (44.66 +  2.967))

1000

=  0.000033 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Memory Consumption 

When implementing the obstacle detection algorithm on an onboard companion 

computer memory consumption is an important characteristic to consider. As the 

algorithm extends, optimizing the memory consumption can speed up the execution to 

an extent. The proposed framework was profiled using a memory profiler and results 

are discussed in this section.  

The profiling results did not exhibit any significant memory issues. This is due to the 

algorithm not having any memory intensive operations. The top memory consumed 

code line was to initialize the fuzzy system (odcontroller). This is a one of initialization 

that occupies up to < 5MB of memory. Additionally, calling of functions odimg 

(detect_cable) and odfuzzy (infer) reported memory occupancy of < 1MB per call. 

Based on the available companion computer options, these memory usages have a 

considerably lower footprint (Raspberry Pi available in 2GB – 8GB RAM 

configuration). However, considering that the proposed framework attempts to 

conceptualize the idea of sensor fusion, there will be opportunities in terms of 

optimization when implementing. 
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4.1.4 User Study 

A case study evaluation was performed to examine the proposed obstacle detection 

framework by participating an experienced UAV pilot. The main objective of the study 

is to obtain a qualitative understanding of the proposed framework in terms of usability. 

This section presents the details of the case study with the results.   

Task 

The participant plays the role of the pilot during the study. A simulated course with 

obstacles is created using AirSim. The layout of the obstacle course is shown in Figure 

26. The obstacles are constructed using cubes and cable objects provided in the Unreal 

platform.  

 

The pilot is supposed to launch the simulated multirotor UAV from the starting point 

and navigate the UAV through the course as shown in Figure 26. The flight must be 

conducted by using the first-person view mode in the AirSim. When an obstacle is 

encountered, the pilot must navigate the UAV to avoid making a collision by changing 

the altitude. 

Figure 26: Simulated Obstacle Course for User Study 
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Procedure 

The evaluation began with a short briefing about the evaluation plan and the objective 

using an instruction sheet. Firstly, the pilot will perform an introductory flight in the 

obstacle course using the remote control. During this step, the pilot is expected to 

familiarize with the environment. In addition to the path related instruction, the only 

information provided was on which altitude the UAV must fly. The pilot was provided 

with a display that shows the current altitude of the UAV measured using a downward-

facing distance sensor. The obstacle avoidance is completely manual, and no assistance 

was given to the pilot.  

After the introductory flight, the participant was instructed to enable the obstacle 

detection and was explained about the functioning of the obstacle detection approach. 

The participant continues to perform the experimental flight in the obstacle course as 

the same as the introductory flight. During this step, the pilot uses the Warning Interface 

as an assistance method.  

After the evaluation, the participant was administered the post study questionnaire to 

reflect on their experience with the obstacle detection framework. 

Questionnaire 

The post study questionnaire was administered to the participant to get subjective 

feedback. The questionnaire is the selected evaluation tool for this user study. The 

questionnaire is used to collect information from the pilot on their experience with the 

obstacle detection approach. This provides means of subjective evaluation of the 

proposed framework. The questionnaire used in this research can be found in Appendix 

A.  

The questionnaire has two sections. The first section collected demographic related 

information. The demographic questions were selected based on several related past 

works (van Driel and van Arem, 2005; Ažaltovič et al., 2020). A similar approach was 

adopted by Solovey et al. (2021) too.  

Section two of the questionnaire aims to measure the participant’s experience with the 

obstacle detection framework. This includes questions on understanding of the system, 

safety in the handling and assessment of the warning interface. The questionnaire used 

by Simon (2006) in a similar study targeting learnability of an advanced driver 
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assistance system is the foundation of this questionnaire design. The original 

questionnaire is available in the German language. Hence, it was translated using 

Google Translate and appropriately modified and adopted into the evaluation of this 

work. The type of rating scale used for each question was a 7-point Likert-type scale. 

The digital version of the questionnaire was created using Google Forms and shared 

with the participant through email.  

Participant and Apparatus 

The user study was conducted by involving one participant. The recruited participant is 

26 years old, male and has UAV piloting experience of 50-60 flight hours. The 

participant has prior training experience in the simulator and has basic familiarity with 

using obstacle detection systems in UAVs. 

Due to the prevailing situation with the COVID-19, the experiments were administered 

remotely using the personal computers of the participants at their location. The 

evaluation was monitored through a screen share session using the Zoom application. 

The setup used for the study is shown in Figure 27. The model of the remote controller 

used in the user study is FlySky i6 (Figure 28). The computer configuration is intel i5 

11th generation, 8GB RAM and Hard Disk Drive.  

 

Figure 27: User Study Setup  
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Data Collection 

The data from the simulated environment such as UAV position, sensor readings, and 

the detection from the obstacle detection approach was collected and logged. The video 

frames were recorded with the corresponding timestamp through AirSim for post study 

analysis. The observations and additional comments from the participant during the task 

were noted as well. The questionnaire answers were obtained through Google Forms.  

User Study Results 

This subsection presents the observation from the user study and the results from the 

questionnaire that was administered to the participant.  

The pilot performed the introductory flight for 10 minutes. During the flight, the pilot 

spent most of the time getting familiarized with the course and the navigation 

instructions provided in an instruction sheet. Initially, it was observed that the pilot ran 

into sideway collisions at multiple instances when piloting with the forward flight mode. 

However, the pilot managed to recover and continue the flight in the planned path while 

paying attention to the altitude display. The pilot did not run into any forward collisions 

during the flight, except a few times when learning the instructions.  

As the second part of the evaluation, the participant was instructed to enable the obstacle 

detection application and perform the same flight navigation. The participant was 

briefed about the obstacle detection application before starting the second part of the 

evaluation. The participant was confident and was able to learn the assistance method 

quickly. He further stated that he clearly understood the feedback from the system and 

Figure 28: FlySky I6 Remote Controller 
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felt positive about the assistance that the proposed obstacle detection approach was 

providing.  

Although the participant expressed that the warning interface offered meaningful 

support during the piloting task, he was neutral about the support provided by the 

graphical warning display. He showed positive agreement with the auditory feedback. 

During the evaluation, it was clearly observed that the participant was mainly paying 

attention to the auditory warning cues and correcting the path to avoid collisions. In the 

post study questionnaire, the participant mentioned that he found the graphical display 

of warning as a distraction during the task. One of the reasons for this can be that the 

graphical warning display is a separate window that the participant must pay attention 

to. Heads up display within the camera view would have improved the experience. 

Unexpectedly the detection feedback was not as expected when the UAV was 

approaching large static obstacles. This was due to the configured sensor range of 15 

meter and the speed of the approach. The image-based detection of thin obstacles was 

consistent throughout the trials and resulted in timely warnings. Another key limitation 

that was observed during the experimental flight was the distance sensors used in the 

framework providing point measurement instead of covering a larger FOV. As the 

multirotor platform becomes more agile the point measurements can be less accurate to 

depend on. The participant managed to learn the limitation of the framework and 

expressed this as a comment during the experimental flight.  

In terms of collisions with the obstacles in the environment, it was not particularly 

different from the introductory flight. But the participant perceived the feedback from 

the warning interface as assistance to modify the path to avoid collisions. The 

experimental flight lasted for 10 minutes.  

The user study provides useful insights on the framework’s limitations and areas in 

which it must be improved. The participant’s confidence indicates that the proposed 

framework could deliver expected results when implemented after addressing the 

observed limitations. Due to the challenging pandemic conditions, the evaluation was 

limited to one participant. Hence, the results can be considered less accurate and subject 

to bias. However, the observation results opened new directions to investigate in terms 

of improving the approach as part of future work.  
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4.2 Discussion 

The proposed research attempted to investigate and develop a heterogeneous sensor fusion-

based obstacle detection framework targeting piloted UAVs. The research on the subject helped 

in gaining a lot about the domain. The obstacle detection approach by using complementary 

sensors detected thin obstacles at 14 meter, large static obstacles at 10 meter and thin obstacles 

with a background at 8 meter of distance. The user study results supported the quantitative 

outcome. All experiments led to positive results in terms of answering the main research 

question. The observation from the evaluation clearly showed that the proposed approach can 

be used to detect obstacles in piloted UAVs. The results give the confidence to extend the 

approach as part of future work.  

The heterogeneous sensors used in the framework were selected as they offer complementary 

sensing characteristics. The framework has the potential of being used with other types of 

sensors, as the core of the data fusion method is decision based. The user study results indicate 

the pilot’s approval of the system. Although the user study results can be considered subjective 

due to the number of participants (one), the positive result enhanced the confidence in the 

approach. The acceptable real time performance offered by the obstacle detection framework 

can be considered as a key contributor for this. This supports the sub questions of the research. 

However, the real time performance is highly subjective due to the chosen algorithms in the 

implementation of this framework.  

The detection results were consistent and predictable throughout the experimental flights 

despite image processing related noises and known limitations with point measurements from 

the distance sensors. This can be addressed by using more robust algorithms and replacing them 

with suitable sensors. In addition, imaging-based detection was observed as producing 

erroneous results when the UAV gets closer to the obstacle. Unlike distance sensors, image-

based detections will not yield accurate results in short range (less than 4 meter). Therefore, it 

is suitable to ignore any detections within the minimum range. Furthermore, the framework’s 

resource consumption and algorithm’s execution timings contributed to satisfactory results. 

This is indicative of the algorithm’s applicability for resource constrained environments. 

However, an elaborate evaluation using an actual UAV platform with the algorithm running on 

a companion computer such as Raspberry Pi would be useful to support this conclusion.  

The usefulness of the warning interface of the proposed framework is supported by the results 

from the user study. Based on the results, the auditory warning was preferred by the participant. 

However, the effectiveness of the warning method was clearly not the focus area of this 
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research. The proposed framework is lenient, and any form of alert mechanism can be adopted 

and implemented. Although the warnings were considered as a meaningful support tool during 

the flight task, the observation on forward collisions during the introductory flight and the 

experimental flight did not exhibit any significant improvements due to the assistive method. 

This could be due to the layout of the environment. Moreover, the aspect of pilot fatigue or 

human errors was not reflected in the results. 

In summary, the evaluation of the proposed sensor fusion-based obstacle detection framework 

yielded positive results and it supports the research questions. The user study observation 

clearly showed several key areas for improvement in terms of accuracy and general usability of 

the framework. The study also revealed the limitations of the current approach. However, the 

pilot’s confidence and approval of the approach can be a sign of the solution being in line with 

the expectations. Real-world testing of the framework will provide more confidence. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis presented a heterogeneous sensor fusion-based obstacle detection framework for 

piloted UAVs. The purpose of the proposed framework is to detect obstacles from the UAV and 

alert the pilot so that the pilot can navigate the UAV to avoid collision. The proposed framework 

uses the complementary sensing capability of the visual camera and distance sensors in 

detecting obstacles. The framework detects static obstacles with large surface areas and thin 

cable-like obstacles using sensor fusion. The core sensor fusion layer is implemented using 

fuzzy logic. The warning interface of the framework uses graphical and auditory cues to alert 

the pilot about the threat.  

A limited number of past works are focused on collision avoidance for manually piloted UAVs 

while more focus has been given towards fully autonomous UAVs. The state-of-the-art collision 

avoidance approaches targeting piloted UAVs mainly relied on expensive sensors like LIDARs, 

and less focus is given to exploring alternative low-cost options. Moreover, sensor fusion-based 

approaches are not well explored in the context and there is less emphasis on collision 

avoidance for urban low-flight applications. The idea of detecting static obstacles with a large 

surface area and thin obstacles using the sensor fusion method is explored in the proposed 

approach. In real-world terms, a building or a structure is an example for the former while high 

tension cables and power lines are examples for the latter. The fusion of a visual camera and 

distance sensors is not considered in the existing collision avoidance approaches for piloted 

UAVs. Upon completion of this thesis, the sensor fusion-based obstacle detection framework is 

the main contribution of this research. 

The proposed approach is evaluated using the Microsoft Airsim simulation platform. The 

positive result from this research shows that sensor fusion can be utilized to solve the detection 

problem in piloted UAVs using heterogeneous sensors. Additionally, by focusing on obstacles 

in the operating environment an optimal collision avoidance approach can be designed. The 

evaluation results including the case study result are also considered as a key contribution from 

this work. The presented sensor fusion framework has the potential of being expanded and 

adapted to other similar use cases in addition to what this thesis has discussed. 
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5.2 Future Work 

The results from this research are encouraging and show that the proposed approach does work 

in the context of obstacle detection in piloted UAVs. However, there is more room for 

improvement. This section discusses on the direction for future research.  

Expanding upon this thesis, the first step would be to implement and enhance the image-based 

detection. Because the current image-based obstacle detection algorithm is implemented based 

on design assumptions and specifically to demonstrate the sensor fusion algorithm. Hence, the 

algorithm is expected to give incorrect results with real world applications and complex 

environments. Replacing the algorithm with a more robust algorithm would allow the 

framework to be tested under real world conditions or more realistic simulation environments. 

This will certainly encourage acceptance of this framework.  

The distance sensors that are used in this thesis provide point measurements that are 

representative of one-dimensional laser-based distance sensors. These sensors are good at 

proximity detection but can result in unstable data with reading. This was experienced in the 

evaluation of the proposed work. LED ToF distance sensors can be alternatively tested to be 

used in the framework. This type of sensor offers measurements in a FOV rather than a point 

measurement. Therefore, a more stable data stream can be expected. This could be verified 

using simulations by implementing the sensor in a simulation environment or testing the 

approach using a real UAV platform. 

Visual cameras are considered a key candidate in designing obstacle detection approaches due 

to the recent advancements in technology and the compactness of modern cameras. Many 

researchers have highlighted that imaging-based approaches can be resource intensive. The 

same was experienced in this research as well. Therefore, this is an important area to consider 

when adopting this framework. Moreover, the proposed framework utilizes image-based 

detection to detect thin obstacles. The data from the same visual sensor can be used to enhance 

the detection of obstacles not limited to thin subjects, using image processing or deep learning 

algorithms. Deep learning can be seen as a widely used approach in imaging-based methods in 

recent years (Figure 5). The resolution of the camera influences the image-based detection 

methods. This was not explored well in this research.  

The warning interface of the framework uses a graphical display and auditory cues to warn the 

pilots about the obstacles. Since this area was not the primary focus of this research, it was not 

well explored. During the evaluation, it was observed that the auditory warning was preferred 
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by the participant at the evaluation. This indicates that the auditory based warning would be an 

area to improve as part of the direction of future work. However, this being an active field of 

research, it would be ideal to explore other alternate alert methods that would be superior to 

auditory based methods (Solovey, Ryan and Cummings, 2021). During the user study 

evaluation, the participant perceived the graphical display as a distraction. The graphical display 

being a separate window was one of the reasons for this. The warning interface can be integrated 

by overlaying the warnings in the video feed itself. Annotating and localizing the obstacles in 

the pilot view screen would enhance the experience, but the trade-off would be the additional 

process load that this would require if it ran onboard. Therefore, offloading such non-critical 

operations to the cloud or a ground computer would be an option. 

Another direction for future work from this research would be to extend this work to incorporate 

obstacle avoidance in the context of piloted UAVs. This would allow the framework to be 

extended and used in fully autonomous UAVs. The proposed framework’s applicability is not 

limited to UAVs but also can be adopted to other dynamic environments like mobile robotics 

where a similar requirement exists (Zhou et al., 2017). The flexibility offered by the concept 

allows the idea to be adopted to situations with varying complexity such as indoor or outdoor 

situations.  
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APPENDICES 

6.1 Appendix A. Questionnaire  

Demographic Questions 

1. Gender: Male/Female 

2. Age: ……………… 

3. Frequency of UAV flying:  

a. >3 times a week 

b. 1-3 times a week 

c. 1-3 times a month 

d. <1 time a month 

4. UAV piloting experience in flying hours:    

a. <10  

b. <100  

c. <500  

d. >500  

5. Simulator training experience:  Yes / No 

6. Experience with collision avoidance solutions in UAV: 

a. not familiar with 

b. somewhat familiar with 

c. (very) familiar with 

 

 

 

  



 

 

 

X 

 

Obstacle Detection (OD) Framework Related Questions 

 

Understanding of the OD System 

1. When I used the OD system, I had the feeling that I always understood what the system was 

doing or what was happening. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

2. During the flight, I understood better when I had to perform the avoidance maneuver if an 

obstacle exists. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

 

Safety in handling the OD System 

1. With the warnings from the OD, I had sufficient distance to the obstacle to perform the 

avoidance maneuver and always experienced safety. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

2. I feel confident in using the OD system. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

 

Assessment of the Warning Interface 

Support from the Warning Interface 

1. The support from the graphical warning display was helpful to me. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

2. The support from the auditory signals were helpful to me. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

3. The piloting experience was enhanced while piloting with the support of the graphical 

warning display. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

4. The auditory signals offered meaningful support during piloting. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

 



 

 

 

XI 

 

Services provided by the Warning Interface 

1. The warning interface helped me by alerting me when there is an obstacle at front. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

2. The warning interface helped me get awareness about the type obstacles in front of the 

UAV. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

3. The warning interface helped me in preventing collisions with the obstacles. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

Distraction from the Warning Interface 

1. I perceived the graphical warning display as a distraction during the piloting task. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

2. I perceived the acoustic signal of the OD system as a distraction during the piloting task. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

3. The changes in the warning display were clearly distinguishable. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

4. Perceiving the information from the graphical warning display is irritating. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

5. I found the acoustic signals of the OD display to be irritating. 

Strongly disagree     1       2       3       4       5       Strongly Agree 

6. The time at which the auditory signals occurred were, 

Way too early          1       2       3       4       5       Way too late 

 

 

 

 

 

  



 

 

 

 

 


