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ABSTRACT 

Graphical 3D models of a real-world scene could contribute to the knowledge, better 

understanding, and further investigations for a variety of scenarios such as accident sites, 

historical sites, construction progress monitoring, etc. This study proposed a proof of concept 

prototype for low-cost offline 3D reconstruction using 2D video frames obtained by a UAV 

using the method of Structure from Motion (SfM).  The work presented consists of novel 

approaches for video frame selection and feature matching in the reconstruction pipeline to 

improve the accuracy, robustness, and efficiency which are also considered as major challenges 

in 3D reconstruction. The introduced video frame selection stage to extract frames is based on 

the affine transformation between views and it is to obtain an optimal set of video frames to be 

processed with the required amount of feature points while maintaining the performance. 

Introduced feature matching stage with improved and a novel algorithm is presented with the 

underline assumption of spatial cohesion which is the consecutive video frames have higher 

matchings between them. The algorithm is designed to perform feature matchings between 

consecutive frames to avoid unnecessary processing thus improving the performance and final 

output. The feature matching stage consists of multiple filtering steps to remove noise and 

outliers among matched features to obtain robust matches. The evaluation results show that the 

improved feature matching algorithm has a significant performance improvement in terms of 

time and memory usage as well as the increased final output model accuracy. The evaluation 

results of Hausdorff distance comparisons between ground truth models and the output 3D 

models of the implemented prototype and between the output of existing 3D reconstruction 

tools show that the implemented prototype outperforms the existing tools. 
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CHAPTER 1 

 INTRODUCTION 

Reconstruction of environments such as buildings and landscapes into 3D graphical 

representations using video frames or sequence of images is an interesting topic of research in 

computer vision and photogrammetry (Chen et al., 2018). With computer vision advancements 

it allows to obtain 3D information of the scene without the knowledge of different important 

information (Pepe and Costantino, 2020) such as camera parameters, 3D point locations, etc. 

By only using 2D images will lose the geometry and other valuable information of real-world 

objects (Zheng, 2016). For some applications, 3D information is the key to success. For 

example, augmented/virtual reality, robots and autonomous car navigation, image-based 

rendering, and image enhancement are some application areas. Moreover, 3D information can 

utilize to improve many computer vision tasks as well. Such as object classification, 

recognition, and human pose estimation. An accurate and realistic reconstructed 3D model with 

preserved structural aspects enables detailed analysis of the reconstructed models or 

environment (Pepe and Costantino, 2020). Therefore, there is a strong requirement and 

importance (Zheng, 2016) to recover reliable 3D information from 2D photos and videos. 

Therefore, one of the most important parts in the reconstruction of a 3D environment is the 

capturing of required 2D photos or videos of that geo-specific area. UAVs will simplify the 

process of capturing those required images/videos since they can easily set the trajectory of the 

vehicle (D. Lapandic et al., 2017) since they consist of an autopilot system, navigation and 

orientation systems, various sensors, and the data links for the communication with the ground 

station (Javadnejad, 2018). Furthermore, UAV aircraft can be controlled by using a radio 

controller manually, from a ground control system, or by autopilot via the predefined flight 

path. These technology improvements and current ongoing developments of small unmanned 

aircraft systems allow consistent and convenient acquisition of high-quality aerial images at a 

low cost.  

1.1 Motivation 

Small UAVs with attached consumer-grade cameras are widely used to generate high-

resolution geospatial imagery. Low cost, widespread availability and ease of maneuvering as 

well as the rapid development of technology allow UAV-based photogrammetry (aerial 

imagery) to be used widely in a range of applications  
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Disaster response and disaster management is one such example. UAVs are becoming first 

responders during a time of natural or man-made disasters when there is a high risk associated 

with sending first responders as humans for analysis of the environment. Easy maneuvering of 

the UAV in a such harsh environment or a critical scenario is an added advantage (Pepe and 

Costantino, 2020). UAV data can be used to reconstruct the accident sites. Another use case is 

inspection and surveillance from media and law enforcement. UAV data can be useful for civil 

engineering applications such as construction, structural and maintenance inspection by 

visualization with 3D mapping. All of these use cases required some analysis of a specific 

geographic location. If it is possible to obtain a 3D scene of such an environment, it can be a 

vast advantage as further analysis can be carried out and it may also reveal hidden details in the 

environment. 

Even though different techniques in the field of computer vision are available to be used to 

reconstruct 3D scenes from inexpensive, consumer-grade cameras, significant research 

questions remain (Javadnejad, 2018) regarding the accuracy of UAV-based 3D scene 

generation. 

1.2 Statement of the Problem 

3D reconstruction using a sequence of 2D images is a low-cost approach compared to more 

expensive reconstruction approaches based on Lidar sensors and depth sensors (Pepe and 

Costantino, 2020; Xiao et al., 2020). With the technology improvement, UAVs are capable of 

capturing high-quality aerial videos. Capturing process can be simplified to a greater extent 

with its ability to fly a UAV in a predefined flight path. Therefore, it is essential to evaluate the 

3D reconstruction using UAV video feeds. 

This study will focus on the recovery of camera position and orientation information from video 

feed frames received from a UAV and using those data to study the process of reconstructing 

3D scenes.  

This thesis will further address the problems of dense 3D reconstruction with video streams 

captured from a UAV, which is offline 3D reconstruction. 

1.3 Novelty 

This work will contribute significantly to advancing the techniques for the problems of offline 

static scene reconstruction. The main objective is to implement a proof of concept prototype 

that can use UAV video footage to construct a 3D environment. 
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The outcome of the 3D reconstruction is heavily dependent on feature matching (Kumar, 2018). 

For accurate feature matching, and to get correct orientation and position values, focuses on 

implementing an improved noise removal algorithm to obtain robust matches and as a major 

improvement to improve the accuracy as well as the performance, implementation of the feature 

matching algorithm will be implemented by assuming the spatial cohesion which is the 

consecutive video frames have higher matches to avoid performing matches against each frame 

as in previous other studies (Chen et al., 2018; J. Hlubik et al., 2018; Yuan et al., 2018) hence 

to avoid unnecessary processing.  

A video file consists of a large number of frames. There should be selected a set of frames to 

incorporate in the reconstruction process. This work will introduce a novel and simple approach 

to video frame selection by measuring the transformation between frames based on a certain 

threshold value instead of selecting frames at specific intervals (D. Lapandic et al., 2017; J. Ke 

et al., 2020) as with the varying FPS rate of the camera can lead to other problems such as 

insufficient overlapping features between frames or wastage of computation resources. 

1.4 Aims and Objectives 

The main goal is to implement a proof of concept prototype to perform automatic detailed 

offline 3D models reconstruction from UAV video feeds received of an environment. For this 

study, an environment such as a building with its surrounding will be selected. 

To achieve the goals specified in the above sections, there need to be some objectives to be met 

which can be further specified as below, 

• A critical review of different methods and architectures available (literature) with 

regards to the problem domain. 

• Identification and analysis of algorithms exist for the 3D reconstruction from video 

frames. 

• Identify and set up a simulation environment for the purpose of development and 

evaluation. 

• Study the feasibility of developing a highly parallel and memory-efficient algorithm 

since it has to process a large amount of data (in a large environment). 

• Implementation of a proof of concept prototype solution for the automatic 3D 

reconstruction. 
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1.5 Scope 

This work is focusing on computer vision and image processing-related methodologies to fulfill 

that demand of creating a 3D environment from multiple video feeds received from a UAV. 

Those methods will be used to process frames of videos, identifying correspondences, and to 

generate a point cloud of the 3D scene offline. Development and testing will be carried out in 

a simulated environment such as AirSim. Which may also use to gather video feed data for the 

developer environment. 

This study is focusing on implementing a proof of concept prototype that runs on a ground 

computer in which UAV videos can be streamed via wifi, and using those video feeds to 

reconstruct detailed 3D models automatically and efficiently in the offline mode, of an 

environment. For this study environment such as a building with its surrounding will be 

selected. 

The techniques which will be involved in the 2D to 3D conversion are feature extracting and 

tracking, feature matching, three-dimensional geometry estimation, and refinement, and scene 

structure reconstruction. This study will mainly use the Structure from Motion (SfM) algorithm 

for the reconstruction process and algorithms such as The Random Sample Consensus 

(RANSAC) will be implemented to remove the outliers (Li, 2010) in the correspondences. 

Relative depth information for feature points will be estimated using the multiple views of the 

scene. Different data sets with their ground truth models will be used to evaluate the 2D to the 

3D conversion process, and the analysis of the experimental results will be presented. Visual 

feature point data will be used to estimate the vehicle and camera pose for each video frame. 

Then using that camera poses and stereo vision to recover dense depth measurements of the 

surfaces visible in the video. 

This work is assumed cameras have been pre-calibrated and that the objects in the environment 

to reconstructs are rigid and stationary. 

1.6 Structure of the Thesis 

The dissertation consists of different chapters with specific details including charts and 

diagrams to give an overview of the study. Chapter one has presented a detailed introduction of 

the study including, the problem, objectives, and scope.  

Chapter two reviews the background and the existing literature related to this work including 

current knowledge, methods, and limitations relevant to the work. Review on background 
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concepts required for the study including structure from motion pipeline, camera projection, 

feature detection and matching, and triangulation will be discussed. 

The third chapter discusses the methodology of the study on the architecture design and steps 

in the proposed work in detail. This chapter will explain how the UAV video data feeds are 

used to perform the reconstruction process. 

The fourth chapter of the document will present results and evaluate the accuracy gained by 

this approach.  

The final chapter will conclude the dissertation with final comments, findings, and thoughts 

about the study and future improvements will be presented. 
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CHAPTER 2 

 LITERATURE REVIEW 

 

In traditional 3D modeling, it is manually building a 3D model of the objects or area of interest 

in the environment by manipulating a 3D modeling tool such as Maya or Autodesk 3ds Max. 

This procedure is widely used in 3D animation and some other fields due to its controllability, 

accuracy, and complete texture information (Yuan et al., 2018). The drawback is, it’s a time-

consuming and expensive process. When it comes to modeling scenes in a real-world 

environment, hidden details (Chen et al., 2018) may not be revealed by this traditional modeling 

technique.  

Even though there are different expensive 3D model reconstruction techniques available using 

Lidar sensors and depth sensors (Daftry et al., 2015), 3D model reconstruction using a 2D 

camera is cost-effective (D. Lapandic et al., 2017) solution. 

It creates a demand to create ground models of the environment to offer 3D visualizations 

(Pollefeys et al., 2008) of cities. However, the reconstruction of the 3D model for a large-scale 

environment accurately using a sequence of images/videos is a challenging task (D. Lapandic 

et al., 2017). These generated 3D models provide measurements that can be used for a variety 

of applications including city planning, disaster response, robot navigation (Gallup, 2011), etc.  

Some of the major challenges and considerations are 

• Generation of complex and large environments can be time-consuming and expensive 

(Gallup, 2011) since it requires capturing video footage that covers the entire area. 

• The algorithm for reconstruction must be optimized to process large amounts of data in 

a minimal time constraint (Gallup, 2011), with the utilization of high-performance 

computers and graphic cards (Gallup, 2011; Schöning and Heidemann, 2015). 

• Memory usage is also a concern (Chen et al., 2018). To process a large dataset that 

cannot fit into memory, the algorithm should exhibit locality (Gallup, 2011) (process 

parts independently). The algorithm needs to be parallelizable and scalable. 

• Storage of final generated 3D models in a way they can easily access (Gallup, 2011). 

 

The initial stage to reconstruct a 3D environment is the capturing of required and sufficient 

videos or images of that specific area with the completeness/coverage of the scene (Daftry et 

al., 2015). This can be simplified and achieved using UAVs compare to other methods.  
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Flightpath planning is a critical component for the acquisition of geodata (Gallaway, 2018). For 

a safe and productive data gathering, it needs to consider different parameters in the UAV such 

as height, speed, waypoint and pathing information. Apart from those parameters, weather can 

be affected as 18 knots wind can cause horizontal and vertical deviations of the UAV of 10m 

and 5m respectively (Gallaway, 2018). For a better 3D reconstruction outcome, it is important 

to use a flight system with a programmed/automated flight path consist of waypoints to follow 

using some coordinate system. Manual control for the UAV is also possible and for some 

scenarios, it is essential to use manual control such as flying close to or underneath trees or 

buildings. 

2.1 Camera Model 

Before the conversion process, it is important to understand its inverse in which the camera 

projects the information of a 3D world into a 2D image. The simplest way is the process in the 

pinhole camera projection model (Martell, 2017). This model does not include any lenses or 

any distortions (Kumar, 2018) it model maps any point in 3D space to a point in the image 

projection plane by the means of straight lines that connect through a fixed point in space which 

is the center of projection or camera center (C). This is known as the central projection camera 

model as illustrated in figure 2.1 

The focal length of the camera becomes the distance between the aperture and the image plane. 

A virtual image plane can be assumed to be formed in front of the camera at a distance 

equivalent to focal length. The mathematical relation (Kumar, 2018) between the real world 

(3D) points in the world coordinates and the 2D points in the image frame can be expressed as  

𝑤[𝑥 𝑦 1] = [𝑋 𝑌 𝑍 1]𝑃 (2.1) 

Figure 2.1: Central projection camera model 
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In the above equation (2.1, X, Y and Z represent the coordinates of the point in the world frame 

and x, y represents the coordinates in the 2D image frame. w is the scaling factor for the image 

frame and P is the 4x3 camera matrix which represents camera intrinsic and extrinsic parameters 

according to the relation (equation (2.2)), 

𝑃 = (𝑅
𝑡
)𝐾  (2.2) 

R and t in equation 2.2 represent the camera extrinsic, rotation and translation relative to the 

world origin in the world frame and K is the intrinsic matrix (equation (2.3)) which also known 

as the camera calibration matrix (Li, 2010) and is given by, 

 

(2.3) 

Where “s” is the camera sensor skew, fx and fy are the focal lengths in the x and y directions in 

pixels and cx and cy are the camera optical centers in pixels. 

The extrinsic matrices transform the world points into the camera coordinates and the intrinsic 

matrix transforms the camera coordinate points into the 2D image coordinates. 

Apart from camera intrinsic and extrinsic matrices, lens distortion should be considered as well. 

These distortions can be either, radial or tangential. 

2.2 3D Reconstruction 

3D reconstruction on multiple 2D image views is comprised of a wide variety of techniques 

and algorithms (Chen et al., 2018). As techniques, detection, extraction, and matching of image 

features from multi-views, calibration of camera matrix, sparse point cloud generation, dense 

point cloud generation, surface reconstruction, and texture mapping are some. The main 

algorithms are Structure from Motion (SfM) (Martell, 2017), Poisson Surface Reconstruction, 

and Multi-View Stereo. Geometrical camera calibration has major importance (J. Hlubik et al., 

2018) for the 2D image-based reconstruction process. Two major steps (J. Ke et al., 2020) of 

reconstruction are 3D point estimation and 3D surface rendering. 

2.2.1 Structure from Motion (SfM) 

Structure from Motion (SfM) can be considered as a robust approach for 3D reconstruction in 

the field of computer vision and photogrammetry. SfM algorithm is consists of steps, which 
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are, feature detection, feature matching and extraction, and incremental reconstruction (Chen 

et al., 2018). SfM is a well-defined approach to solve the problem of finding the camera motion 

(translation and rotation) and identifying the geometries (sparse point cloud) of the scene in an 

automatic and simultaneous manner (J. Hlubik et al., 2018; Pepe and Costantino, 2020) 

Feature detection: Responsible to search and identify interesting points to differentiate each 

frame from every other frame. These identified feature points with the surrounding information 

get stored and represented in a feature descriptor. Feature descriptors are depended on different 

factors such as rotation, scale, illumination, contrast, etc. 

Feature matching and extraction: It will use an approximate nearest neighbour algorithm to 

calculate the distance (in high dimension space) to identify corresponding descriptors between 

frames. This process can be accelerated by using a preemptive feature matching algorithm such 

as SIFT image feature detection algorithm (Martell, 2017). this preemptive feature matcher 

works by sorting the features in frames by decreasing scale order, Then it considers a certain 

threshold for matching features in image pairs. 

In order to work with an unordered collection of data, previous studies (Chen et al., 2018; J. 

Hlubik et al., 2018; Yuan et al., 2018), as well as different tools, were implemented to execute 

the feature matching stage by performing feature matches against each frame or image with 

each other frames/images. Therefore, feature matching and extraction is a time-consuming 

process in the reconstruction pipeline (Martell, 2017). 

Incremental reconstruction (figure 2.3): Incremental reconstruction will be initiated by 

estimating the relative pose of a good image pair and features visible in both images will be 

triangulated. This step follows by adding suitable next views incrementally to the 

reconstruction. This process continues until all reconstructable views are part of the scene. 

Camera distortion parameters can be estimated during reconstruction. The incremental SfM 

algorithm process is as in the following figure 2.2 

Some of the common limitations and considerations of such an approach are sparse output, 

simple and static scenes can give better results, requiring a controlled and well-planned data 

acquisition, the baseline should not loo large,  non-planar objects can be harder, required 

accurate camera calibration, geometric consistency (J. Hlubik et al., 2018) 

Structure from Motion will result in a sparse point cloud and using Multi-View Stereo (MVS) 

algorithm enables to densify that sparse point cloud given identified camera motions (J. Hlubik 

et al., 2018). Using the high-quality UAV images and combining the SfM and MVS algorithms 
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allows the reconstruction of 3D environments at a low cost compared to laser scanners (Pepe 

and Costantino, 2020) and allow for the identification of different complex structures in the 

scene. 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 Triangulation  

In SfM, camera poses are estimated based on matching two views and their geometries. After 

obtaining these poses, the triangulation is performed using cameras and 3D points (D. Lapandic 

et al., 2017). Triangulation allows estimating unknown points in space by applying projective 

geometry using the fixed known positions of two points that are in the known distance apart. 

Camera pose and camera intrinsic matrix can be used to express the camera projective matrix.  

 

 

 

 

 

 

 

 

Figure 2.3: Incremental SfM process 

Figure 2.2: Identified features (left) and matches 

feature between two frames (right) 

Figure 2.4:The setup of the triangulation problem when given two views 
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Figure 2.4 illustrates the triangulation problem given two views. Unknown point P in 3D space, 

known camera intrinsic parameters K and K’ respectively, known relative orientations and 

offsets R, T of these cameras with regards to each other. camera centers O1, O2 and the image 

locations p, p’ 

Even though it is theoretically feasible to estimate and recover coordinate positions of 3D points 

by using only coordinates of two views or observations, correct matches (corresponding points) 

between the two image points is a significant factor for accuracy. Therefore, it generally 

involves an error (Ling, 2013). Usually, overestimations are solved by using a set of points. 

Some algorithms further proposed to minimize the sum of squared errors (Ling, 2013) by 

considering the 3D positions of points between the measured and predicted values for all the 

views. 

2.2.3 Bundle Adjustment 

Bundle adjustment (BA) is a technique for simultaneously optimizing the camera pose as well 

as 3D point locations for visual reconstruction (Kumar, 2018). It achieves that by minimizing 

the re-projection errors between observed and predicted locations of image feature points. The 

result of BA is a refined more fitted 3D reconstruction. BA gets applied as individual or batches 

of image frames are getting introduces to the initial seed (Gallaway, 2018). That is, the bundle 

adjustment is a process of global optimization that executes recursively for all the views. The 

basic algorithm behind bundle adjustment implementation is the Levenberg-Marquardt 

algorithm. That algorithm is a combination of the Gauss-Newton algorithm with the gradient 

descent method (Ling, 2013) with the purpose of solving all the correspondence points non-

linear criteria. 

2.3 Other Related Work 

A system was developed (Chen et al., 2018) to run on windows using the techniques and 

algorithms which are Structure from Motion, Multi-View Stereo, and Poisson Surface 

Reconstruction. It takes images of an object in multiple different views as the inputs and 

generates the 3D representation of that object. It was designed to produce a sparse point cloud, 

densified point cloud, polygonal mesh, and 3D model of the object throughout the process. The 

input images have to be uniformly scaled with the same resolution and for better results, images 

should have to be uniformly distributed around the target object.  



 

 

 

12 

 

The study that was done by Chen et al. (2018) was able to provide acceptable results for a small 

object, but when it used to generate and reconstruct a street view from images captured by a 

UAV, they have experienced some holes in the dense point cloud. It was due to they were 

unable to capture images with large overlapping features and another major drawback they have 

faced is a practical limitation of memory (Chen et al., 2018; Gallup, 2011) consumption issues 

in the system.  

The final analysis of that study (Chen et al., 2018) shows that it's not only important to capture 

high resolution and quantity images, but also the quality of the images and the captured angles 

of the camera will also vastly affect the quality of the final 3D models. For compact objects, 

densely sampled images in a spiral path with many overlaps within images will lead to the 

optimal outcome. However, it may not practical for large open environments. They have 

experienced, parts that are not connected in SfM and point cloud holes in the multi-view stereo 

when using sparse sampling. 

D. Lapandic et al. (2017) proposed a six-stage framework for 3D model reconstruction in near 

real-time. As stages, it consists of, image acquisition, detection and extraction of feature points, 

feature matching and identifying correspondence points, filtering of the point cloud, estimating 

camera poses, triangulation, and calculate points and generate a point cloud.   

In the Features Detection and Extraction stage, detection of points of interest known as features 

is used to locate, identify, and categorize objects in image frames. The main characteristic of 

point detection algorithms is the possibility to detect the same point of interest in multiple 

views. A set of feature vectors (descriptors) are the output from the feature extraction. To 

achieve a rapid 3D reconstruction, the algorithm must be fast enough. They have employed the 

FAST algorithm (D. Lapandic et al., 2017) which is one of the fastest features detection and 

extraction algorithms available. 

In the 2D Point Correspondence stage, when considering two consecutive frames, there are 

many corresponding points available. The optical flow approach was used to compute 2D point 

correspondences between two views with the Lucas-Kanade algorithm. The objective is to 

identify feature point motion from one image to the second image. The computation of the 

optical flow algorithm is based on a search window (patches) with centers in points of interest 

identified by the FAST feature detector algorithm. 

In the estimation of camera poses and triangulation stages, camera poses are computed and 

estimated from the matches of two views and feature geometries with using structure from 
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motion (Martell, 2017). The triangulation will execute once the camera pose estimations are 

available.  

In the stages of estimating the camera poses and 3D point triangulation, they have employed 

two algorithms (D. Lapandic et al., 2017). The first algorithm determines the subsequent camera 

locations based on the currently generated point cloud and the matching of interesting feature 

points in the next view. The rationale behind this first algorithm is with the identification of the 

motion of image features with optical flow from one view to the other view, evaluation of the 

camera fundamental matrix and by using that, calculate the essential matrix. Having the 

essential matrix, it will allow identifying each camera position and rotations in the 3D space. 

Then projection matrix gets calculated by composing the essential matrix in order to determine 

feature point locations in the 3D space. 

The second algorithm is used to calculate two successive camera locations and then to use 

triangulation to compute the positions of 3D points (D. Lapandic et al., 2017). Then those point 

positions determined by continuous and consecutive triangulations are merged into the point 

cloud being generated, hence 3D reconstruction. 

The first algorithm above that they have proposed generates a smaller amount of points with 

faster execution in increased accuracy. However, the second algorithm is capable of detecting 

more correspondences but it introduces noise, hence decreases the accuracy.  

D. Lapandic et al. (2017) had tried to improve the performance and to archive near real-time 

reconstruction by sampling the UAV video feeds on a specific frame count while ignoring other 

frames. By discarding some frames, they have experience incompleteness (holes) of the 3D 

construction.  

J. Ke et al. (2020) presented a real-time 3D visualization from a video feed based on multi-view 

geometry. To achieve a visualization at the speed of frame rate, they are only able to reconstruct 

a sparse point cloud. For the video frame feature tracking, the KLT tracker was incorporated. 

For the acceleration of feature matching and filtering of feature tracks, used trifocal tensor and 

epipolar geometry. It was proposed to use the SfM to identify camera pose and features for the 

initial frame, then features will get tracked for newly added frames. J. Ke et al. (2020) 

experienced limitations of the implemented system including high time consumption when the 

feature count gets increased and when the feature count becomes reduced, the final point cloud 

contains holes. 
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Another research work (Li, 2010) was proposed based on MATLAB to convert from 2D to 3D 

using multiple images based on sparse depth map calculations. It was developed to use with 

uncalibrated handheld cameras with unknown camera parameters (intrinsic and extrinsic) or 

geometries in the scene 

The above system in MATLAB comprises of different stages including feature detection, 

extracting and tracking, image registration, two-view three-dimensional estimation of 

geometries, calibration of cameras by updating metric transformation, and the reconstruction of 

the projective scene in 3D. The method they have proposed uses the scale-invariant feature 

transform (SIFT) (Li, 2010) algorithm to extract the features of the scene and register the feature 

points in different views. The Random Sample Consensus (RANSAC) algorithm was 

implemented to remove the outliers in the correspondences identified. Triangulation and bundle 

adjustment was employed later to estimate and refine the projective reconstruction of the 3D 

scene. As an important step, they have introduced, an auto-calibration technique to upgrade the 

projective reconstruction of structures to the metric coordinates. Through these combined 

techniques, the relative depth information is estimated for feature points among multiple views 

of the scene. 

As a limitation, they have faced an issue of the system being sensitive to the noise in the images 

and it tends to produce some mismatched 2D feature points between multiple views. 

Yuan et al. (2018) have done a study to reduce the time consumption of 3D reconstruction by 

proposing an improved method based on SfM. Input is a video stream. They proposed a 

keyframe extraction technique based on the discovery of feature similarity and also proposed a 

dense algorithm to increase the accuracy of models. It was also proposed to incorporate a 3D 

model filtering approach to remove resulting models which are redundant. especially 

incremental SfM required intensive computation compared to SLAM. The capability to produce 

a dense result is an advantage in the SfM (SLAM usually generates sparse models). A 

densification algorithm has been used for the final models in the 3D scene.  

Incremental SfM includes two major components (Yuan et al., 2018), which are correspondence 

computation and incremental reconstruction.  

Correspondence computation focus on matching different parts of input images and 

geometrically verify those matches. Different algorithms, techniques, and steps are involved in 

this stage. SfM generally uses the RANSAC algorithm to eliminate mismatches (Yuan et al., 

2018). The output of this stage which are image correspondences and a scene graph (Yuan et 

al., 2018) will be the input to the next stage. This scene graph is obtained On the completion of 
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all the pair-wise image matches and generate by chaining the identified feature points which 

are common among images. The graph is represented by images as nodes and edges will be the 

pair of confirmed images. 

The next Stage, Incremental Reconstruction, includes different steps such as initialization, 

triangulation and bundle adjustment (Daftry et al., 2015; Yuan et al., 2018). In triangulation, 

due to the noise, structure from motion typically uses the least square approach to compute 

spatial points. In SfM, new views will get registered to the model by solving the Perspective-n-

Point (PnP) (Yuan et al., 2018). Perspective-n-Point is a technique to solve the camera positions 

using the points which are triangulated and the projections of their correspondences. Then 

Bundle Adjustment is utilized for the optimization of camera parameter matrixes and spatial 

point positions. The output of this stage is a sparse model and optimized camera parameters 

matrix.  

The keyframe Extraction (Yuan et al., 2018) step is incorporated into the correspondence 

computation stage. That is, there can be a large number of frames that have high similarity 

among them from the same video. That can lead to redundancy and high time consumption. In 

this step, unnecessary frames will be ignored. They have initially detected AKAZE feature point 

sets from consecutive frames and perform feature matching between two frames by a KD-tree, 

then obtain a set of inliers using RANSAC. At last, the keyframe extraction is performed using 

inliers. 

For the densification, the sparse point cloud is parsed through an operation consists of patch 

generation and surface reconstruction. Poisson surface reconstruction algorithm (Yuan et al., 

2018) is utilized for the surface reconstruction since that algorithm has advantages, including 

better geometric surface, watertight closure, and details.  

A major limitation in the study done by Yuan et al. (2018) is without a consistent video stream, 

it tends to produce defective results due to dataset incompletions. 

Another development (Yu and Park, 2016) has been done with a DJI Phantom 3 drone to 

construct a 3D scene based on conventional SfM, with using adaptive RANSAC (Gallup, 2011; 

Pollefeys et al., 2008; Yu and Park, 2016) optimization. This development was mainly focused 

on the reconstruction of a single object such as a building in the environment. It assumes that 

camera intrinsic parameters are known and objects are static. Moving objects are considered as 

outliers from the system. This proposed method was composed of three steps including, aerial 

image acquisition, extraction and matching of 2D feature points, camera pose estimation and 

the 3D point cloud generation.  
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For extraction and matching of 2D feature points, Harris Corner detector and SIFT feature 

matching algorithms (Yu and Park, 2016) were used in their implementation. For camera pose 

estimation and the 3D generation, computation of the camera projection matrix and generation 

of new 3D points are performed at each image.  

SfM algorithm should incorporate RANSAC (Random sample consensus) to compute F 

(Fundamental matrix) and P (Projection matrix) (Yu and Park, 2016). RANSAC is useful to 

identify outliers using a prior defined threshold value for reprojection error. Instead of using a 

fixed threshold, this development (Yu and Park, 2016) was done with an adaptive threshold 

value. It helps to improve the stability of the SfM algorithm. In the adaptive approach, it 

performs RANSAC calculation iteratively with decreasing threshold values until it extracts 

sufficient inliers. Limitations of this study can be considered as images should be captured at 

low altitude (below 100 meters), and for example, if a construction object is a building, its top 

view (roof) should always be in each image and the path of the UAV should be a curved path 

around the building with the camera pointing to the center position of the building and it 

consumes a considerable amount of time for the reconstruction. 

Accurate reconstruction heavily depends on the quality of input data (images) (Chen et al., 

2018; Daftry et al., 2015). A study (Daftry et al., 2015) was proposed a closed-loop interactive 

approach to process the reconstruction incrementally in online mode with providing continuous 

real-time feedback to the user regarding different quality parameters including Ground 

Sampling Distance (GSD), redundancy, etc on the mesh being generated. As claimed by recent 

studies, image base reconstruction may archive an accuracy level that can be compared to laser-

based reconstruction. However, there are many constraints for that and an arbitrary set of 

images would never meet that accuracy. 

The accuracy of the model is important for industrial applications like automatic façade 

reconstruction, however current techniques are not up to the required accuracy under 

unconstrained circumstances (Daftry et al., 2015). The image acquisition strategy is one 

concern for this aspect. For that and as well as to minimize the accumulated error due to drift, 

they have proposed an image acquisition strategy that takes images at different distances.   

Other aspects for an accurate 3D model are, angels between two views in two consecutive 

frames should not be too large and there should be overlapping in view cones for better feature 

matching. Another important parameter is camera calibration (Daftry et al., 2015; Ladikos, 

2011). The accuracy of the outcome can be increased with an accurately calibrated camera 

setup. Another major concern is the completeness/coverage of the scene. To overcome these 
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issues, (Daftry et al., 2015) proposed to integrate the acquisition process with the reconstruction 

pipeline itself rather than processing after the acquisition of a set of images. It should perform 

incrementally to achieve a real-time reconstruction. At each iteration, the process estimates the 

camera poses for the newly acquired views, updates the sparse point cloud, and then constructs 

a surface mesh using feature points that are triangulated. This approach will allow computing 

quality parameters including Ground Sampling Distance (GSD) and the image overlaps. 

For better feature matching, (Daftry et al., 2015)  have identified that image texture should be 

non-repetitive and lighting should not vary too much between images and there should be 

proper illumination in the image. However, it is not always practical to achieve such image sets 

with the required illumination. A study (J. Hlubik et al., 2018) done with the PhotoScan tool 

found that even it was able to provide acceptable results with varying lighting conditions, it was 

unable to reconstruct finer details and the result was a surface that was over-smoothed. (Y. Xie 

et al., 2019) have identified that due to the shadow areas of captured images, texture maps of 

the final reconstructed output will have darker areas which result in models that are not 

sufficient to use in some application areas such as gaming applications or virtual reality 

applications. As a solution (Y. Xie et al., 2019) have proposed a process known as “intrinsic 

decomposition” in which the properties of images are inferred into different components. The 

approach they have used is the decomposition of the intensity of pixel values into specular, 

illumination, and reflectance components which can be illustrated in equation (2.4). (K. Luo et 

al., 2020) also identified extend the MVS algorithm to work with specular and reactive areas as 

well as weak textures is a challenge. 

𝐼(𝑥) = 𝑆(𝑥)𝑅(𝑥) + 𝐶(𝑥)  (2.4) 

I(x) is the pixel intensity value observed, S(x), R(x), and C(x) represents the illumination, 

reflectance, and specular components in order. Their (Y. Xie et al., 2019) proposed solution is 

a CycleGAN based approach to make a prediction on reflectance component using the captured 

image. The goal is the elimination of major inconsistent color variations due to shadows. Their 

reconstruction system was developed on top of the OpenMVS and OpenMVG open source 

libraries. The result is dependant on the data that is used to train the IntrinsicGAN can be 

considered as a limitation of that approach. Another work (K. Luo et al., 2020) was done a study 

on the learning-based multi-view stereo method. They identified that how to incorporate learned 

percept feature set to have a robust matching confidence volume is a significant question that 

remains in the learning-based MVS approach. They also identified that with higher quality 

training data, the system can provide accurate results with increased accuracy. 
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Xiao et al., (2020) explored another use case of the combination of SfM and MVS for 

topography analysis with the use of input as low-resolution satellite image data (elevation data). 

The output will be generated higher resolution ortho mosaics and digital elevation models 

which can be used for the geographic surface analysis with critical information including slope 

and height data. 

Drift (Daftry et al., 2015) is an issue in the incremental SfM method. Drift will occur due to the 

border area of the interested area is covered with only a few images by the camera network 

comparing to the center area of the scene. They have proposed to modify the strategy in image 

acquisition as a solution to that problem by using a multiple-scale camera network to capture 

image data at varying distances to achieve a more accurate dense reconstruction outcome. 

However, this approach is incapable of solving limitations such as tradeoffs between high-

resolution and accuracy. The lower resolution gives higher efficiency and lower memory usage 

(J. Hlubik et al., 2018) but with less accuracy of the output point cloud. 

Major strengths and limitations for above reviewed previous related work can be summarized 

as in table 2.1 

Related Work Strengths Limitations 

Chen et al. 

(2018) 

• Output acceptable results for a 

small and single object. 

• Required uniformly scaled images 

with the same resolution. 

• Memory limitation issues for large 

data sets 

D. Lapandic et 

al. (2017) 

• Fast feature detection since it 

uses the FAST algorithm. 

• Achieve near real-time 

performance 

• Not as robust and accurate as SIFT 

algorithm. 

• Video frame selection was don on 

a specific frame interval 

J. Ke et al. 

(2020) 

• Real-time 3D visualization with 

less feature count. 

• High time consumption with 

increased feature count. 

• Only capable of constructing a 

sparse point cloud 

Li (2010) • Capable to use with uncalibrated 

handheld cameras 

• Sensitive to noise and produced 

mismatched corresponding points. 

Yuan et al. 

(2018) 

• Introduces a keyframe selection 

strategy based on feature 

similarity 

• Tend to produce defective results 

for inconsistent video streams. 



 

 

 

19 

 

Yu and Park 

(2016) 

• Uses adaptive thresholding 

method for RANSAC 

• Unable to work with an 

uncalibrated camera. 

• UAV should capture by following 

a curved path in a low altitude 

Xiao et al., 

(2020) 

• Combined SfM and MVS for 

better densification 

• Limited to satellite image data 

(elevation data) 

Table 2.1: Major strengths and limitations in related work 

2.4 Summary 

There is a strong requirement and importance to construct 3D information from 2D images or 

video frames. UAVs can simplify the capturing process and capable to feed video data with 

additional information such as GPS and orientation data which can help for the reconstruction 

task. However, there are only a few references to research attempts that utilize additional data 

available from UAVs to improve the accuracy. 

It is a challenging task to recover reliable 3D information from 2D images of an environment. 

There have been several research attempts to meet this challenge with each having different 

limitations. Several research works (Chen et al., 2018; Daftry et al., 2015) prove that it is 

important to have high-quality input data with overlapping features between multiple views. 

3D reconstruction, in general, can be considered as three stages that are correspondences, 

geometry, and surface. Structure from motion (SfM) is a major photogrammetry and computer 

vision technique to estimate 3D structures from a sequence of 2D images. SfM consists of key 

stages including feature point detection, extraction and matching, camera pose estimation, 

triangulation, and point cloud reconstruction. 

Different algorithms such as Bundle Adjustment (BA) and RANSAC (RANdom SAmple 

Consensus) should be incorporated in the reconstruction process to optimize the camera poses 

by minimizing the reprojection error and to remove outliers or mismatched points in feature 

detection and matching stages. 
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CHAPTER 3 

 METHODOLOGY 

 

3.1 Representation of the Problem 

With the literature review, it can be identified that a 3D graphical representation of a real 

environment can be helpful for the improvement of many industries and areas. Even though 

there are more expensive 3D model reconstruction techniques available using Lidar sensors and 

depth sensors, reconstruction using 2D images captured from a camera is a cost-effective 

solution.  

Capturing process can be automated and simplified with the help of UAVs and captured video 

data including the GPS data can be fed to the ground computer via wifi.  This thesis focuses on 

the recovery of camera position and orientation data and then the process of 3D scene 

reconstruction from received video frames. This study will address the problems of camera pose 

estimations and offline dense 3D reconstruction. 

3.2 Proposed System Overview 

This study proposes a reconstruction approach with dense outcome based on the structure from 

motion (SfM) technique to estimate the three-dimensional structure of objects in the 

environment from two-dimensional image sequences using the video feeds and flight data such 

as GPS received from a UAV. Therefore the main problem considered in estimating 3D point 

positions from multiple frames and their feature correspondences. SfM process involves 

continuous estimation of both 3D geometry (structure) and camera pose (motion) 

The reconstruction process will be executed on a ground computer. Core algorithms will be 

operated on frames of video feeds. However, cameras with a high FPS (frames per second) 

value, can result in inefficient and unnecessary processing of frames as there can be a large 

number of frames to process and many frames can be almost the same and overlap. To overcome 

that, the algorithm will be implemented with the capability to defined a time interval to process 

the frames and video frame selection algorithm under the assumption that the area of interest 

remains static over the reconstruction process. 

The proposed reconstruction pipeline consists of different stages (Figure 3.2), 
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1. Preparation of data 

The data required for this process are video feeds, UAV retrieved video data files should be 

presented to the next stages of the algorithm. 

2. Video frame selection 

Video frame selection is done by measuring the transformation between frames and by selecting 

based on a certain threshold. That is, initially obtain the feature points for subsequent frames 

by Lucas-Kanade optical flow algorithm and using those points calculate the affine 

transformation between frames. Frame selection is performed by using threshold values for 

translation and rotation between frames. 

3. Feature detection 

In this stage, important points known as features will be detected. These features are useful to 

identify, locate, and categorization of objects in image frames. The idea behind feature detection 

is to ultimately identify the same interesting points in multiple views. This process will output 

a set of feature vectors (descriptors). This study involves the process of a large amount of data 

Figure 3.1: Proposed Reconstruction System 
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(data that covers large environments). The feature detection phase will get incorporated with 

the SIFT (Scale Invariant Feature Transform) feature detection algorithm. Comparison and 

characteristics (Ajayi, 2020; Mouats et al., 2018; Govender, 2009) of different feature detection 

algorithms illustrated in table 3.1 

 

Feature detector algorithm Characteristics 

Scale Invariant Feature 

Transform (SIFT) 

Invariant to rotation, scale, and also for illumination changes, 

and noise. Compared to others, execution is time-consuming 

but gives an optimal detection capability. 

Principal Component 

Analysis (PCA)-SIFT 

Lower effectiveness in feature detection compared to SIFT. 

The algorithm intends to reduce the time consumption in 

detection and matching. 

Speeded Up Robust Features 

(SURF) 

Scale and rotation invariant. Lower execution time 

consumption compared to other feature detector algorithms 

but the accuracy and detection capability is lower. 

Features from Accelerated 

Segment Test (FAST) 

Invariant to scale and rotation. A circle of 16 pixels is used 

around the interesting pixel to identify whether that pixel is 

a corner pixel. Computationally efficient algorithm when the 

noise does not exist. 

Smallest Uni-value Segment 

Assimilating Nucleus 

(SUSAN) 

Not invariant to scale. A corner detection algorithm that 

computes intensity differences to identify corners. 

 

Modified Harris Corner 

Detector (MHCD) 

Rotation invariant. Optimal performance can obtain without 

a scale variance. The algorithm is tests pixels to identify 

corners. the sum of squared differences (SSD) is used as the 

similarity measure  

Table 3.1: Characteristics of feature detection algorithms 

4. Feature matching and extraction 

Once identifying interest points and have feature descriptors, the feature matching phase will 

use an approximate nearest neighbour algorithm to calculate the distance (in high dimension 

space) to identify corresponding descriptors between frames. It needs to be considered a certain 

threshold for matching features in image pairs. The Random Sample Consensus (RANSAC) 



 

 

 

23 

 

algorithm will be incorporated to remove the outliers from the identified correspondences. 

Usage of the RANSAC algorithms is described later in this chapter. 

Since the input for this work is assumed to be a video feed and not a set of unordered images, 

implementation of the feature matching stage will be done by assuming consecutive frames 

have higher matchings compared with random pairs of frames. Hence for a selected frame, 

instead of obtaining matches against all other frames, it matches only a predefined number of 

subsequent frames to achieve improved performance as well as an improved final output. When 

compared to existing reconstruction tools such as Bundler SfM, which try to obtain matches 

against all image pairs by assuming an unordered collection of images require extensive 

computation and produce more outliers leading to degraded performance and final output. 

5. Camera pose estimation and triangulation 

The camera pose which is the camera position and heading will be estimated using identified 

2D feature points, which are visual inputs. Estimation of camera poses from visual data will be 

provided by pair of view matches. 

For each camera pose obtained, triangulation is performed using those poses and 3D points. In 

this process, it computes the locations and orientation (pose) of two consecutive camera views 

and determines the positions of 3D points using triangulation. These points will be added to the 

point cloud. 

When estimating camera poses, since this study assumes cameras have pre-calibrated, the 

essential matrix can be calculated using corresponding points. Then this matrix will contain 

information about the relative orientation. Then current projection matrix can be computed from 

the essential matrix. With these matrices, it can identify the position and rotation of each camera 

view in space, and with obtained projection matrix, the triangulation process will be performed 

to determine points in 3D space. 

6. Depth map estimation and model generation 

From the above stage, by triangulation, the depth of 3D points can be obtained and generate a 

point cloud with a large number of points. Triangular meshes will be created for these depth 

maps to generate 3D models. 
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3.2.1 Incremental Reconstruction 

Reconstruction in the proposed system is incremental. Once the reconstruction is initiated by 

estimating poses of an image pair followed by triangulating visible features of that image pair 

which generates 3D points and adding them to the point cloud, this will iterate by adding the 

suitable next view incrementally to the process. Therefore, this is a frame-by-frame iterative 

process to achieve a dense surface reconstruction. This process stops when all the 

reconstructable views are part of the scene.  

In this incremental process, bundle adjustment (BA) optimization is also performed to optimize 

the camera pose as well as 3D point locations for visual reconstruction. It will be achieved by 

minimizing the re-projection errors between observed and predicted locations of image feature 

points. Bundle adjustment is performed as video frames are added to the incremental process. 

The result of BA is a refined more fitted 3D reconstruction. It is a process of global optimization 

that executes recursively for all the views. 

3.2.2 Geo Specific Pose Estimation 

Camera pose estimation, that is, based only on image features can only obtain the pose in a 

local coordinate system which is defined by and relative to the first camera view. Therefore, to 

obtain 3D models which are geotagged, the camera poses can be identified in a geographic 

coordinate system. 

The proposed system could be extended to use GPS/INS data send from the UAV and an 

extended Kalman filter can be used to combine the image feature-based vision measurements 

and the GPS/INS measurements to retrieve geo-specific camera poses. From those poses, it can 

be obtained geo-specific 3D points. That is, 3D point locations of identified image features in 

each camera can obtain in an orthogonal, earth-centered, earth-fixed coordinate system such as 

Universal Transverse Mercator (UTM). The procedure in the extended Kalman filter is a 

smooth motion model. Therefore, to model the pose over time, it assumes there is a constant 

velocity change in rotation and translation. 

3.2.3 Dense Reconstruction 

This study assumes cameras are calibrated and no need for a calibration step. Therefore, that 

can increase computational efficiency. Then the computationally complex stage is the surface 

reconstruction from multiple views.  With the identified feature correspondences in the above 

feature matching stage, a collection of tracks can be created. 
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As in the figure 3.3, a track is a set of the matched point across multiple views. For example, if 

consider the point Xi in space, that point in the points of xi1, xi2 and xi3 of three views which 

forms a track of Xi. Image coordinates of those tracked features will be the input to the next 

stages of structure from motion algorithm. Then, the general SfM problem is to find the 3D 

coordinate of the point (Xi) in the scene using those tracked features. With a large number of 

correspondences and tracks, these different views can be densely connected. 

In a typical 3D reconstruction process, the next stage after the feature detection and matching 

would be the calibration of camera intrinsic parameters. This calibration stage is not necessary 

for this study as it assumes cameras are pre-calibrated and camera extrinsic and intrinsic 

parameters are known.  

The surface reconstruction process will get initialized with the first two frames/images. From 

those two images, the first image will be used as the reference image. That is the world origin 

is assumed to be in the first image. Then the projective matrix (equation (3.1)) of the camera is 

defined by, 

𝑃1 = 𝐴[𝐼|0] (3.1) 

Where “A” is the 3 x 3 intrinsic matrix, “I” is the identity matrix, The projection matrix will be 

evaluated using the camera motion parameters R (rotation) and t (translation) which can be 

determined by the essential matrix. With the R and t, the projective matrix (equation (3.2)) can 

be defined by, 

𝑃2 = 𝐴[𝑅|𝑡]  (3.2) 

Then the 3D coordinates will be computed from matching points using linear triangulation. 

Then the projective matrix is optimized using the bundle adjustment. As in figure 3.3, if xi1, xi2 

Figure 3.2: Feature tracks 
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are matching points of the 3D coordinate Xi, then 𝑃2 is optimized with the minimized function 

(equation (3.3)), 

𝑚𝑖𝑛 ∑ 𝑑(𝑃𝑋𝑖 − 𝑥𝑖)
2

𝑛

𝑖=1

 
  (3.3) 

Multiview reconstruction will be performed by merging subsequent images into the initial 

reconstruction as an image by image increment. As in figure 3.3, when merging the third image, 

first, it will calculate a new projective matrix using the matches with already reconstructed 

points. Then reconstruction gets updated with new points as well as refinements of points and 

removal of incorrect points. 

3.2.4 RANSAC 

The proposed solution will employ the RANSAC (RANdom SAmple Consensus) algorithm 

which is a robust estimation algorithm in the feature extraction and matching stage to remove 

outliers or mismatched points. The RANSAC method will get converge to accommodate only 

the inliers after some iterations. 

Figure 3.4 is from the literature that illustrates the resulting feature points after applying the 

RANSAC algorithm. It represents two consecutive frames/images which have two view angles. 

Matched feature points from two images before and after applying the RANSAC are shown. In 

figure 3.4, It can be seen that RANSAC, will result in a refined set of feature points. 

Figure 3.3: RANSAC example from literature 
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 For the above refinement, this algorithm classifies data as inliers and outliers. For the 

classification, it uses a cost function with a threshold value. The threshold value is related to 

the feature point count. Since this study has to process a large amount of data (data that covers 

large environments), to achieve acceptable accuracy with fast and rapid reconstruction, from 

the literature it can be identified that a threshold value around 100 is appropriate. A new feature 

point will be added if the current feature count is below the threshold. A feature point gets 

removed if a matching point cannot be found in the new image frame. 

3.3 Image/Video Capturing 

When capturing the videos for the 3D reconstruction purpose, it's not only important to capture 

high resolution and a large number of images, but the quality and the viewing angles of 

capturing will also vastly affect the final 3D models. For the proposed system the area that 

needs to be reconstructed will be captured by flying the UAV in a spiral path with increasing 

the altitude to cover the entire area and to obtain densely sampled images with a large number  

of overlapping features. Figure 3.1 is from the literature that represents flying path (camera 

positions). 

 

This is important since sparsely sampled images can result in disconnected points or holes in 

reconstruction outcomes. Cameras in the UAV need to be arranged in a way that they have 

minimal overlap in terms of field of view. Image acquisition strategy will not much be 

considered in this work as it is not in the scope of the study. For this study, it assumes that the 

objects/scene that will be captured remain static. 

Figure 3.4: Capturing path sample from literature 
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3.4 Implementation 

A system prototype was implemented as a proof of the concept and to exhibit the reconstruction 

results. C++ programming language was used with the OpenCV as the main library and 

different other libraries for the development. C++ is a powerful library for computer vision-

related tasks. The prototype was implemented with a command-line interface to pass the 

parameters including reconstruction mode (from images or a video), the path to images/video 

file, and the feature detector algorithm to use. Implementation for different stages with 

challenges, considerations, and assumptions are explained in the next sections These stages are 

consist of debug outputs to visualize the progress of the reconstruction. 

3.4.1 Video Frame Selection 

The algorithm for video frame selection for the reconstruction process was implemented for 

each two video frames, it will first identify 100 strong corners in the first frame using the Shi-

Tomasi algorithm and then calculate the optical flow for the identified corners using the 

iterative Lucas-Kanade algorithm and get set of feature points for the second frame. Using those 

two sets of feature point sets implementation is done to calculate the optimal limited affine 

transformation. Then it will compare with the predefined threshold values for translation in X 

and Y directions to select frames which get exceeds the threshold values. Selected frames will 

write to a folder and read them back and feed to the reconstruction pipeline. 

3.4.2 Feature Extraction and Matching 

Initially for each selected frame, using the feature detector algorithm defined in the command 

line, it will detect key features, compute and store feature descriptors in a feature descriptor. 

These descriptors will be the input to the feature matching stage. The improved and novel 

feature matching algorithm is implemented to compute matches for each selected frame for a 

predefined number of subsequent frames. The assumption behind that is, in a video frame 

sequence, consecutive frames have higher matchings compared with random pairs of frames. 

Track generation is important as it helps to have consistency among multiple views. 

To obtain robust matches for each selected pair of video frames, the feature matching process 

is consists of multiple filtering stages. When considering two frames,  for example, frame 1 and 

frame 2, first obtain raw matches from frame 1 to frame 2 using the knn matcher to obtain k 

best matches from descriptor followed by the Lowe's ratio test. Then obtain raw matches from 

frame 2 to frame 1 using the knn matcher followed by the Lowe's ratio test similar to above. 
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The output of these two will filter by removing the matches which do not exist in both. That is 

to make sure there are ono-to-one matches between two matching frames. The final filtering 

stage is performed by applying the epipolar constraint by calculating the fundamental matrix 

with the RANSAC algorithm to further remove outliers. Example debug outputs for detected 

and final filtered matches are illustrated in figure 3.5 and figure 3.6 

 

 

3.4.3 Feature Tracks and Point Cloud Generation 

Generation of feature tracks is implemented using a graph data structure. Image features will 

be the vertices and feature matches will be the edges in the graph. Connected components in 

the graph become tracks. The final obtained tracks will be stored in a vector.  

These feature tracks will become the input to the generation of the sparse point cloud. The sfm 

module in the OpenCV is utilized to generate the sparse point cloud, to recover the camera 

poses (rotation and translation) for each view, and to estimate 3D point locations by 

Figure 3.5: Debug outputs for detected features 

Figure 3.6: Debug outputs for final filtered matches 
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triangulation. Then for each point, it will retrieve the point colors using image pixel locations. 

Identified point locations with color information will plot using viz3d module in the OpenCV. 

For the densification of this sparse point, implementation is utilized cloud, the OpenMVS 

library. 

 

3.5 Summary 

When compared with previous related work that has been reviewed in the literature review 

section, This work has addressed some issues that have been identified. Those are video frame 

selection algorithm to select frames based on the transformation between frames with a certain 

threshold instead of selection based on a certain frame count interval (D. Lapandic et al., 2017; 

J. Ke et al., 2020). That is, initially obtain the feature points for subsequent frames by Lucas-

Kanade optical flow algorithm and using those points calculate the affine transformation 

between frames. Another major improvement is done to the feature matching stage by assuming 

consecutive frames have higher matchings compared with random pairs of frames. Hence for a 

selected frame, instead of obtaining matches against all other frames (Chen et al., 2018; J. 

Hlubik et al., 2018; Yuan et al., 2018), it matches only a predefined number of subsequent 

frames to achieve improved performance as well as an improved final output. 

This study focuses on offline dense 3D reconstruction using UAV video data feeds. The 

reconstruction process will run on a ground computer in which UAV data can be streamed via 

wifi. It assumes that the objects/scenes that will be captured remain static for this study. The 

design overview illustrates a dense reconstruction based on the structure from motion (SfM) 

technique to estimate the 3D geometry (structure) and camera pose (motion). The main stages 

of the reconstruction pipeline consist of video frame selection, feature detection, feature 

matching and extraction, camera pose estimation and triangulation, and depth map estimation 

and model generation.  

The prototype was implemented with the capability to work with a user-selected feature 

detection algorithm. This study has to process a large amount of UAV video data (data that 

covers outdoor environments). The RANSAC algorithm will be incorporated in the feature 

matching and extraction stage to remove outliers from the identified correspondences. Camera 

pose estimation will be performed using identified 2D feature points. For the obtained camera 

poses, triangulation is performed to determine the positions of 3D points and identified points 

will be added to the point cloud. 



 

 

 

31 

 

CHAPTER 4 

 EVALUATION AND RESULTS 

  

4.1 Evaluation Plan 

This work addresses the problem of recovering 3D scenes from a sequence of 2D video image 

frames captured using a UAV. This study will focus on the reconstruction pipeline, starting 

from the recovery of camera position and orientation information from video feed frames and 

using those pose estimations, carry out the reconstruction process, hence the reconstruction 

process mainly uses the Structure from Motion (SfM) technique with other algorithms including 

RANSAC and Bundle Adjustment (BA) to remove outliers and to perform optimization.  

Therefore, the main objective is to implement a proof of concept prototype which automatically 

and efficiently reconstructs detailed 3D models offline from UAV video feeds received of a 

static environment. For this study and for the evaluation purpose, an environment such as a 

building with its surrounding will be selected. The following evaluation plan is proposed to 

determine whether the actual outcome of the work is effective in terms of the performance and 

results and whether the proposed outcomes are achieved. 

4.1.1 Data Sets 

Most of the computer vision and image processing-related algorithms evaluated against 

standard data sets such as MINST. Researchers use these data sets as a benchmark or ground 

truth for new implementations to compare the accuracy and efficiency. However, when it comes 

to scene reconstruction from An ariel video feed from a UAV, such standard and well-

established video data with ground truth models couldn't be found.  

There are some image sets such as Fountain (figure 4.1) and Herz-Jesu that can be found in the 

literature which were used to evaluate the reconstruction results. Those image data sets will be 

used in this implementation as well to calculate different metrics to compare the result with the 

other implementations. These benchmark data sets are available with high-quality 3D models 

generated using the Lidar sensors which can be used as a ground truth. Apart from those 

benchmark image data sets, own collected data including images and videos of different static 

scenes with different resolutions and different cameras will be used to calculate the metrics and 

evaluate the performance. The reconstruction will also be evaluated for areal image and video 

data available online for different scenes such as historical locations, buildings, accident sites, 



 

 

 

32 

 

etc., and their quantitative results such as reconstruction performance have been analyzed and 

presented. 

   

   

   

 

   

   

   

 

Figure 4.1: Image samples from Fountain Dataset 

Figure 4.2: Image samples from Hertzjesu Dataset 
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4.1.2 Evaluation Approach  

The reconstruction pipeline is implemented to automatically calibrate the camera intrinsic and 

extrinsic parameters using input video frames instead of demanding the user to feed them as 

external inputs since, in the real world, it is not always possible to find camera parameters for 

all the available data. Therefore, it needs to evaluate the accuracy of the calibration process. 

That can be done by comparing the recovered camera matrices using data captured from a 

known calibrated camera (known intrinsic matrix). 

To evaluate the overall accuracy of the generated 3D models, above-specified benchmark data 

sets such as Fountain and Herz-Jesu will be used to reconstruct the scene. Then a software tool 

such as Meshlab can be used to have qualitative and quantitative measures on the final output 

with their Lidar generated ground truth models.  

For a qualitative measure, in the Meshlab, generated 3D models can be roughly aligned 

manually with the ground truth models by loading both models and specifying a few numbers 

of corresponding points between generated and imported models. Then Meshlab is capable of 

refining the alignment process (using the iterative closest point/ICP algorithm). With aligned 

models, it can have an idea of how well the reconstruction process performed. 

For a quantitative measure, Meshlab allows computing the error/distance for 3D points between 

the generated model and the corresponding ground-truth models. Calculating the average 

distance for a different set of corresponding points will give a quantitative idea of the final 

output. 

Different other metrics will also be used to evaluate the outcome and the performance of the 

reconstruction pipeline and to get quantitative measures, Those metrics are, 

• Feature match percentage 

This is the number of matches between images from the total detected features. It can be 

calculated using “Number of matches / Total detected features” 

• Reconstruction performance  

The performance will be evaluated by calculating the average time consumed, for the entire 

pipeline, and each stage in the pipeline. It will also measure the CPU and memory usage using 

a profiler. 
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• Correct match percentage.  

This is the number of matches after removing outliers after applying the RANSAC algorithm. 

It can be calculated using “Number of correct matches / Total detected features” 

• Mean distance 

Distance measure gives an accuracy of a match. The smaller the distance is better. 

• The number of points in the point cloud 

The number of points in the generated point cloud indicates the density details level of the 

generated models. 

 

The above metrics will be calculated for different feature detection algorithms including SIFT, 

ORB, and AKAZE and present the outcome and the performance. Evaluation and experimental 

results for different datasets with different frame resolutions will be presented and analyzed. 

4.1.3 Hausdorff Distance  

Hausdorff distance will be used to measure the distance between generated point clouds and 

ground truth models. In general Hausdorff distance is the maximum between the two meshes. 

Which can be calculated using the equation (4.1), 

𝑑𝐻(𝑋, 𝑌) = max {𝑠𝑢𝑝𝑥𝜖𝑋 𝑖𝑛𝑓𝑦𝜖𝑌 𝑑(𝑥, 𝑦), 𝑠𝑢𝑝𝑦𝜖𝑌 𝑖𝑛𝑓𝑥𝜖𝑋 𝑑(𝑥, 𝑦)}   (4.1) 

However, the Meshlab tool measures one-sided Hausdorff distances. That is only the 

𝑠𝑢𝑝𝑥𝜖𝑋 𝑖𝑛𝑓𝑦𝜖𝑌 𝑑(𝑥, 𝑦). Therefore, the results will depend on the selection of X (sampling mesh) 

and Y (target mesh). The calculation of the above formula will be proceeded with a sampling 

approach by taking some points in mesh X and for each point x, search and measure the distance 

for the closest point y in mesh Y. Therefore, the results will be affected by the number of points 

selected over X.  

For the evaluation of the reconstruction system, sampling mesh (X) will be selected as the 

ground truth model and target mesh (Y) will be selected as the generated model. Vertex 

sampling will be used as the sampling option with the sampling count as the number of vertexes 

in the sampling mesh. It gives results in the mesh units as well as with respect to the diagonal 

of the bounding box of the mesh which is a result independent of the mesh/model units.  
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4.2 Results 

Quantitative results with the proposed prototype for different datasets will be presented in this 

section. Results will be evaluated for Fountain and Hertzjesu datasets as described in above 

sections since ground truth models are available for those datasets. Final point cloud outputs 

(Figure 4.3 - Fountain, Figure 4.5 - Hertzjesu) from the system and their recovered camera 

poses (Figure 4.4 - Fountain, Figure 4.6 – Hertzjesu) will illustrate below. 

 

 

 

 

Figure 4.3: Dense point cloud output for Fountain dataset 

Figure 4.4: Estimated camera poses for Fountain dataset 
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Hausdorff distance calculation between the ground truth and generated models from 

implemented prototype and the VisualSFM 3D-reconstruction tool will be compared in the 

below tables for Fountain (Table 4.1) and Hertzjesu (Table 4.2)  datasets. 

Figure 4.5: Dense point cloud output for Hertzjesu dataset 

Figure 4.6: Estimated camera poses for Hertzjesu dataset 
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 VisualSFM Implemented Prototype 

Min Distance 0.000010 0.000004 

Max Distance 0.036388 0.039027 

RMS (root mean square) 

value 
0.010515 0.010118 

Mean Distance 0.005362 0.004639 

Table 4.1: Hausdorff distance comparison for Hertzjesu dataset 

 

 VisualSFM Implemented Prototype 

Min Distance 0.000000 0.000001 

Max Distance 0.320314 0.062872 

RMS (root mean square) 

value 
0.015886 0.006118 

Mean Distance 0.011085 0.002720 

Table 4.2: Hausdorff distance comparison for Fountain dataset 

 

 

From the above Hausdorff distance results, it can identify that implemented prototype is capable 

of producing better results compared to the VisualSFM tool. 

As described in previous chapters, implementation of the feature matching stage was done by 

assuming subsequent frames have higher matchings hence for a selected frame, instead of 

obtaining matches against all other frames, it matches only a predefined number of subsequent 

frames. Evaluation results for feature matching stage with improved algorithm to match an only 

pre-defined number of subsequent frames vs matching against all frames are illustrated in the 

following tables for Fountain dataset (Table 4.3) and Hertzjesu dataset (Table 4.4). 
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 Improved algorithm (Match 

only two subsequent frames) 

Match against all frames 

Time consumption 88.59 seconds 413.21 seconds 

Memory usage 3394.11 KB 6228.72 KB 

Mean Hausdorff distance 

with ground truth 
0.002720 0.003411 

Table 4.3: Feature matching stage with improved algorithm for Fountain dataset 

Performance evaluation results in above table 4.3 can be represented graphically as below in 

the Figure 4.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Evaluation results for feature matching stage with improved algorithm for 

Fountain dataset 
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 Improved algorithm (Match 

only one subsequent frame) 

Match against all frames 

Time consumption 5.3 seconds 16.2 seconds 

Memory usage 129.12 KB 220.66 KB 

Mean Hausdorff distance 

with ground truth 
0.004639 0.006230 

Table 4.4: Feature matching stage with improved algorithm for Hertzjesu dataset 

Performance evaluation results in above table 4.4 can be represented graphically as below in 

the Figure 4.8 

 

 

 

 

 

 

 

 

 

 

 

 

The above evaluation results for the feature matching stage show that the improved algorithm 

gives better results (lower Hausdorff distance with ground truth) and significant performance 

(time and memory usage) improvement. This is due to the subsequent frames in a video have a 

higher number of matches. When the matching stage is performed against all the frames there 

can be invalid matches which will result in a higher Hausdorff distance with ground truth. 

Figure 4.8: Evaluation results for feature matching stage with improved algorithm for 

Hertzjesu dataset 
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Quantitative results of different other metrics to evaluate the outcome and the performance of 

the reconstruction pipeline are illustrated in the following tables for both the Fountain dataset 

(Table 4.5) and the Hertzjesu dataset (Table 4.6). 

 

Total time consumed 887.242 seconds 

Average feature match percentage between 

frames 

37.25 

Average correct match percentage (after 

applying RANSAC) between frames 

35.65 

Sparse point cloud density 50230 

Dense point cloud density 3880655 

Table 4.5: Performance and outcome measures with Fountain dataset 

 

Total time consumed 177.14 seconds 

Average feature match percentage between 

frames 

22.6 

Average correct match percentage (after 

applying RANSAC) between frames 

21.54 

Sparse point cloud density 4657 

Dense point cloud density 1824456 

Table 4.6: Performance and outcome measures with Hertzjesu dataset 

 

Apart from the above benchmark data sets, output results, performance, and dataset samples for 

aerial video feeds are illustrated below. 

Figure 4.9 illustrated a sample set of frames extracted for the “Independence Square” aerial 

video with the use of implemented frame extraction algorithm. X and Y translation threshold 

values were set to 15. The Video file is 6.16 megabytes, duration of 7 seconds, and a total of 
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380 frames. The extraction algorithm was able to select 23 frames from 380 available frames 

based on the defined threshold values. Figure 4.10 illustrates the reconstructed dense point 

cloud output for the “Independence Square” using extracted frames. Table 4.7 illustrates 

quantitative results of different other metrics to evaluate the outcome and the performance of 

the reconstruction pipeline for the “Independence Square” aerial video. 

    

    

    

 

 

Figure 4.10: Dense point cloud output for Independence Square aerial video  

Figure 4.9: Extracted frame samples from Independence Square aerial video  
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Total time consumed 195.1 seconds 

Time consumes for frame extraction 21.75 seconds 

Average feature match percentage between 

frames 

29.95 

Average correct match percentage (after 

applying RANSAC) between frames 

28.3 

Sparse point cloud density 12949 

Dense point cloud density 533284 

Table 4.7: Performance and outcome measures with “Independence Square” aerial video 

 

Figure 4.11 illustrated a sample set of frames selected for the Sigiriya historical site aerial video 

for the reconstruction process. Figure 4.12 illustrates the reconstructed sparse point cloud 

output. Figure 4.13 and Figure 4.14 illustrate the reconstructed dense point cloud output for the 

Sigiriya using extracted frames. Table 4.8 illustrates quantitative results of different other 

metrics to evaluate the outcome and the performance of the reconstruction pipeline for the 

Sigiriya historical site aerial video. 

 

    

    

    

Figure 4.11: Frame samples from Sigiriya aerial video 
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Figure 4.14: Sparse point cloud output for Sigiriya aerial video 

Figure 4.12: Dense point cloud output for Sigiriya aerial video (view 2) 

Figure 4.13: Dense point cloud output for Sigiriya aerial video (view 1) 
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Total time consumed 452.6 seconds 

Average feature match percentage between 

frames 

41.06 

Average correct match percentage (after 

applying RANSAC) between frames 

39.41 

Sparse point cloud density 14129 

Dense point cloud density 309158 

Table 4.8: Performance and outcome measures with Sigiriya aerial video 

 

4.3 Summary 

Evaluation of the results with the proposed prototype for different datasets has been presented 

in this chapter. Results will be evaluated for Fountain and Hertzjesu datasets since ground truth 

models are available for those datasets. Dense point cloud output results for different aerial 

videos also presented with the quantitative performance and outcome measures including time 

consumption, average feature match percentage, average correct match percentage, and point 

cloud densities. 

Final output 3D models has been evaluated against ground truth models which are Lidar 

generated models by calculating the Hausdorff distance. Output 3D models have been 

compared with the output of the VisualSfM reconstruction tool. Results show that the 

implemented prototype outperforms the VisualSfM tool. 

The extracted frames using the implemented frame selection algorithm and their quantitative 

performance and outcome measures for the generated dense point clouds have also been 

presented. Improved feature matching algorithm with the underline assumption that the 

subsequent frames in a video have a higher number of matches has been evaluated against 

traditional method and presented results show that improved algorithm gives better results that 

are lower Hausdorff distance with ground truth and significant performance improvement in 

terms of time and memory usage. 
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CHAPTER 5 

 CONCLUSION AND FUTURE WORK 

5.1 Conclusion  

According to the literature and as described in the above chapters, the reconstruction of 

environments such as buildings and landscapes into 3D graphical representations using 2D 

images and videos is useful in a variety of applications and is an interesting topic of research in 

computer vision. This thesis presented a system prototype for offline 3D reconstruction from 

UAV video feeds with structure from motion (SfM) method. The approach presented is 

considered significant challenges including selection and processing of video frames from a 

video with a large number of frames, obtaining robust feature matches by removing noise, and 

efficient reconstruction with improved feature matching techniques. The work presented novel 

approaches for video frame selection and feature matching for video frames. 

The introduced novel approach for the frame selection algorithm from the video was achieved 

by measuring the transformation between frames and by selecting based on a certain threshold 

value. When compared with some of the previous studies (D. Lapandic et al., 2017; J. Ke et al., 

2020) which extract frames at specific intervals, implemented frame selection algorithm in this 

work is more effective as different videos consist of different frame rates. 

An Improved and novel feature matching algorithm was implemented by considering 

consecutive frames have higher matchings hence for a selected frame, instead of obtaining 

matches against all other frames, it matches only a predefined number of subsequent frames.  

Therefore, the underline assumption is the input is to be a video feed and not a set of unordered 

images. In the literature review, it has been identified that the outcome is heavily dependent on 

feature matchings between views. Implemented feature matching stage in the proposed 

prototype also consists of multiple filtering to remove noise to obtain robust matches. When 

compared with some of the previous works (Chen et al., 2018; J. Hlubik et al., 2018; Yuan et 

al., 2018) which are implemented to obtain matches against all other frames, the evaluation 

results show that the improved feature matching algorithm has a significant performance 

improvement in terms of time and memory usage as well as the increased final output model 

accuracy.  

Final output 3D models have been evaluated against ground truth models by calculating the 

Hausdorff distance. Output 3D models have been compared with the VisualSfM which is an 

existing 3D reconstruction tool. Results show that the implemented prototype outperforms the 
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VisualSfM tool. Furthermore, image-based 3D reconstruction is a cost-effective solution 

compared to Lidar-generated 3D models. It can conclude that the proposed solution is capable 

of producing a reconstruction that is an effective representation of the environment. 

5.2 Future Work 

The study in this thesis was carried out for a video input received from a UAV and there are 

some extensions available to incorporate into the implemented prototype for further 

improvements. UAVs are capable of retrieving GPS positions with time stamps. Those GPS 

data can be used to generate a geo-tagged point cloud which can have significant importance 

for some applications. There can appear holes in the dense point cloud due to the inefficient 

feature points and matches between frames. That can be improved with an implementation of a 

mesh repairing algorithm by filling holes in the final mesh. Implemented video frame selection 

algorithm only considers translation between frames, It can be further improved by using the 

rotation. Another suggestion to improve the reconstruction process hence to process a large 

amount of data is to use GPU processing for CPU-intensive stages in the reconstruction 

pipeline. 
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