
i | P a g e

Natural Language based Test

Automation Model for Web

Applications

S.P.S. Sendanayaka

2021

ii | P a g e

Natural Language based Test

Automation Model for Web

Applications

A dissertation submitted for the Degree of Master of

Computer Science

S.P.S. Sendanayaka

University of Colombo School of Computing

2021

iii | P a g e

DECLARATION

I hereby declare that the thesis is my original work and it has been written by me in its entirety.

I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Student Name: S.P.S. Sendanayaka

Registration Number: 2017/MCS/075

Index Number:17440755

 _______Piyumi 29/11/2021______________________________

Signature of the Student & Date

This is to certify that this thesis is based on the work of Mr. /Ms. _______________________

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

 Certified by,

Supervisor Name: Dr. Jeevani Goonatillake

Signature of the Supervisor & Date

29/11/2021

iv | P a g e

I would like to dedicate this thesis to...

To my family…

v | P a g e

ACKNOWLEDGEMENT

My undivided gratitude for the following people who guided me, encouraged by and supported

me to complete this project successfully.

• Dr. Jeevani Goonatillake, my project supervisor for the continuous guidance and

support I received from the very beginning itself.

• Dr. Lasanthi De Silva, for suggestions and guidance in implementing the automation

model.

• The QA Engineers and domain experts who participated in the requirement elicitation

survey and evaluation of prototype for contributing their valuable time and effort to this

project.

• To my family and friends for always supporting me to the through the good and bad

days alike.

vi | P a g e

ABSTRACT

Test Automation is a latest technology in the software industry. People favor the test automation

over the manual testing due to significant advantages such as, automation is faster than the

manual testing, reduction of the human intervention, quality and improve the accuracy.

However, the initial cost of the test automation is high. The main reason for this is the lack of

technical expertise required for test automation within the industry. This results to organizations

have to invest time, money and effort to train the less technical resources. In current,

organizations are highly concerned with finding means of resolving this issue.

The proposed model addresses this issue by introducing a Natural Language Processing based

test automation model for web applications which can be used for non-technical resources with

the minimum technical expertise. It allows a user to enter test steps in English. The model is

capable of processing the test steps entered by the user and converting them into automation

scripts which can be executed using the automation framework that is built. Furthermore, result

reports can also be obtained by the execution of generated scripts. Overall accuracy of the new

model has been determined to be 84.33 %.

Keywords:

Web Applications, Test Automation, Test Automation Framework, Natural Language

Processing, Quality Assurance

vii | P a g e

TABLE OF CONTENTS

Contents
ACKNOWLEDGEMENT .. v

ABSTRACT .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Statement of the problem ... 1

1.3.1 Aim... 2

1.3.2 Objectives .. 2

1.4 Scope ... 2

1.5 Structure of the Thesis .. 3

 - LITERATURE REVIEW .. 4

2.1 Literature Review .. 4

2.1.1 Manual Testing vs Test Automation ... 4

2.1.2 Test Automation and Web Applications .. 5

2.1.3 Challenges in Test Automation ... 6

2.1.4 Lack of Technical expertise as a challenge... 8

2.2 Test Automation Approaches ... 8

2.2.1 Introduction to Test Automation Approaches ... 8

2.2.2 Modularity-driven Approach .. 9

2.2.3 Data-driven Approach ... 9

2.2.5 Hybrid Approach ... 11

2.2.6 Comparison of Test Automation Framework Approaches .. 11

2.2.7 Evaluation of approaches .. 13

2.3 Test Automation Techniques .. 14

2.3.1 Scripting Techniques .. 14

2.3.1.1 Capture and Replay method .. 15

2.3.2 Evaluation of Techniques .. 17

2.4 Natural Language Processing .. 18

2.4.1 Approaches in NLP .. 18

2.4. 2 Natural Language Processing Technologies ... 21

2.4.3 Natural Language Processing Tasks ... 22

viii | P a g e

2.4.4 Evaluation ... 23

2.5 Technologies ... 24

2.5.1 Web Automation Frameworks and Tools .. 24

2.6 Related Work ... 25

 – METHODOLOGY ... 27

3.1 Design ... 27

3.1.1 Development Methodology .. 27

3.2 High Level Design.. 28

3.3 Component and Deployment Diagrams .. 38

3.4 Implementation.. 41

3.4.1 Development Environment .. 41

3.4.2 Implementation of Graphical User Interface... 42

3.4.3 Implementation of the Natural Processing Module .. 44

3.4.4 Implementation of Script Generation Module... 50

3.4.5 Implementation of Executing and Reporting Module .. 52

3.5 System Testing ... 53

3.5.1 Functional Testing .. 53

 - EVALUATION AND RESULTS .. 55

4.1 Evaluation Criteria ... 55

4.2 Evaluation Methodology ... 55

4.3 Evaluation by Users .. 55

4.4 Quantitative Evaluation .. 57

4.5 Critical Evaluation of the System .. 58

4.6 Results .. 59

 CHAPTER 5 - CONCLUSION AND FUTURE WORK ... 60

5.1 Problems and Challenges Encountered ... 60

5.2 Learning Outcomes ... 61

5.3 Limitations of the Solution ... 61

5.4 Future Enhancements ... 61

5.4.1 Integration of an Object Spy ... 62

 APPENDICES ... i

REFERENCES ... xi

ix | P a g e

LIST OF FIGURES
Figure 2.1 Test Automation Challenges (World Quality Report, 2015-2016) .. 7

Figure 2.2 Architecture of Modularity Driven Approach ... 9

Figure 2.3 Sample Test Data File for a calculator program .. 10

Figure 2.4 Sample table with keywords, UI elements and test data for a calculator program 11

Figure 2.5 Architecture of the Hybrid Test Automation Framework .. 11

Figure 2.6 Sample Test Case (Software Testing Help, 2012) ... 14

Figure 2.7 Selenium IDE Firefox plugin (Left) and the developed test case (Right) 15

Figure 2.8 Test Script for Selenium Web Driver .. 16

Figure 2.9 Evolution of Cost with Time of Capture and Replay and Manual Programming techniques

(Leotta et al.,2013) .. 17

Figure 2.10 Decision Tree to determine EOS ... 22

Figure 2.11 Classification of POS tagging models (Kumawat,2015) ... 23

Figure 3.1 : Prototype Model (Learnwithkamal.wordpress.com, 2017) ... 28

Figure 3.2 High level Architecture for proposed solution ... 28

Figure 3.3 GUI of the Main UI ... 30

Figure 3.4 Sequence Diagram for Create/Update Test Script ... 31

Figure 3.5 Text Processing Algorithm in NLP Module .. 32

Figure 3.6 Template Design Pattern for Statement class .. 33

Figure 3.7 Sequence Diagram for Generate Automation Project .. 34

Figure 3.8 Proposed Automation Framework Architecture of Executing and Reporting Module 35

Figure 3.9 Sequence Diagram for Execute Automation Script ... 36

Figure 3.10 Component Diagram of proposed test automation model for web application.................. 38

Figure 3.11 Deployment Diagram of proposed test automation model for web application 39

Figure 3.12 Main view of the application ... 42

Figure 3.13 Generated Script View ... 43

Figure 3.14 JSON of Test Script ... 44

Figure 3.15 Steps involved in the project generation .. 44

Figure 3.16 Code Snippet of Pre-Processing Data .. 45

Figure 3.17 Sample Excel Sheet containing location information .. 45

Figure 3.18 Pseudo Code for Open Statement .. 46

Figure 3.19 Build method implementation of Open Statement ... 47

Figure 3.20 Pseudo Code for Type Statement ... 48

Figure 3.21 Build method implementation of the Type Statement ... 48

Figure 3.22 Pseudo Code for Click Statement .. 49

Figure 3.23 Build method implementation of the Click Statement ... 49

Figure 3.24 Script template designed using Apache velocity templates ... 50

Figure 3.25 Code Snippet for velocity engine initialization ... 51

Figure 3.26 Object page template designed using Apache Velocity templates 51

Figure 3.27 Web driver configuration and report initialization using TestNG 52

Figure 3.28 Code snippet for Type command wrapper method .. 53

Figure 4.1 Manual Automation Scenario .. 57

Figure 5.1 Updated High-Level Architecture Diagram ... 62

Figure 6.1 Results of Q02 in Questionnaire ... i

Figure 6.2 Results of Q03 in Questionnaire ... i

Figure 6.3 Results of Q05 in Questionnaire .. ii

Figure 6.4 Results of Q06 in Questionnaire .. ii

file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431110
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431111
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431112
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431113
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431114
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431115
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431117
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431118
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431118
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431119
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431120
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431121
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431122
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431123
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431124
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431125
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431127
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431128
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431129
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431130
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431131
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431132
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431134
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431136
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431137
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431138
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431139
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431140
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431141
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431142
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431145
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431147
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431148
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431149
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431150
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431151
file:///D:/MCS3204_Thesis/Interim_report.docx%23_Toc82431152

x | P a g e

Figure 6.5 Results of Q07 in Questionnaire .. ii

Figure 6.6 Results of Q08 in Questionnaire ... iii

Figure 6.7Results of Q09 in Questionnaire .. iii

Figure 6.8 Results of Q10 in Questionnaire ... iii

Figure 6.9 Results of Q11 in Questionnaire ... iv

Figure 6.10 Results of Q12 in Questionnaire ... iv

Figure 6.11 Results of Q13 in Questionnaire ... iv

Figure 6.12 Interviewee Background Status ... v

xi | P a g e

LIST OF TABLES
Table 2.1 Benefits and Challenges of Test Automation Approaches .. 13

Table 2.2 Advantages and Disadvantages of Capture and Replay method ... 16

Table 2.3 Advantages and Disadvantages of Manual Programming .. 17

Table 2.4 Comparison of advantages and disadvantages of classical and statistical NLP ((Farrús et al.,

2012)) .. 20

Table 2.5 Explanation of comparison parameters ... 24

Table 2.6 Comparison of Selenium, QTP and TestComplete ... 25

Table 3.1 Data Sources in the Data layer .. 37

Table 3.2 Description of class diagram of proposed solution ... 41

Table 3.3 Implementation and Test Status of Functional .. 54

Table 3.4 Implementation and test status of Usability Testing ... 54

Table 3.5 Accuracy of the test results ... 54

Table 4.1 Evaluation criteria of developed model .. 55

Table 4.2 Online Questionnaire... 57

1 | P a g e

 INTRODUCTION

1.1 Motivation
Software test automation has become more popular in the software testing as it has many

advantages than manual testing. Test automation is the practice of running tests automatically,

managing test data, and utilizing results to improve software quality. Most of the organizations

in the IT industry advice to their QA engineers to learn and move to the test automation. For

test automation requires specific scripting knowledge and engineers have to practice it. An

organization might have technical engineers and as well as non-technical engineers. If an

engineer who has the technical knowledge, he or she can easily move to the test automation.

However, this task might be bit hard to non-technical engineer due to lack of technical

knowledge. This is the point where the problem occurs. That is, how do we carry out the test

automation with such non-technical resources and this project aims to find a solution to

this problem.

 1.2 Statement of the problem
Testing is an important stage in the software development life cycle. However, when

considering the past decade, manual testing of software has dominated on software quality

assurance. “Software testing is a costly and time-consuming activity in the software

development life cycle” (Rankin, C, 2002). It had been observed that writing testing code costs

a lot and also takes as much time as it takes to develop the software product (Li & Wu, 2004).

Organizational spending on quality assurance of applications has rapidly increased over the

past years. (World Quality Report, 2014-2015). Therefore, people favor the test automation

because of its many advantages, mainly the reduction of human intervention and the ability to

reuse the same tests over and over again using the simple execution of pre-defined scripts at

minimum cost and significantly faster than the manual testing.

Recent research has indicated that QA and Testing budgets contain the most part of labor costs

of an organizations. As of 2015, 35% of an average organizational QA budget was allocated

for human resources while 33% was allocated for hardware and infrastructure and 32% was

allocated for tools (World Quality Report, 2014-2015). The main reason why most part of the

budget is assigned for individual is that in order to automate a process, automation engineers

should have experience in the scripting language used by the tool and also need to have

2 | P a g e

specialized knowledge in the automation tool. Organizations spend time, money and effort on

training human resources in using these different tools for test automation. This demand for

specialized resources for test automation conflict with the initial purpose of test automation

which is to reduce the cost and duration of the quality test cycle. Software companies are highly

concerned with developing cost-effective test automation tools to overcome this problem.

The purpose of this research is to explore a potential solution for this problem. The proposed

solution would be a test automation model for web applications that can be used by any non-

technical person with sufficient knowledge regarding an automation scenario. This model

would use natural language processing technique to extract actions in the web-based scenario

given by the user. Then map the actions with the UI object repository input by the user as a

data source and generate an automation project accordingly. The generated project contains

automation scripts that can then be executed to generate a result report.

The new model does not require any specialized technical knowledge. This reduce the

complexity would save time and minimize initial cost of test automation, otherwise

organizations have to spend significant cost to train the human resources who are non-technical

for scripting purposes.

1.3 Research Aims and Objectives

1.3.1 Aim
The aim of the project is, to design, develop and evaluate a test automation model for web

applications which is capable of generating automation scripts by extracting user actions

from test scenarios input in natural language (English), to be used by any non-technical

resource.

1.3.2 Objectives
The objectives of the proposed model are as follows,

• Makes the test automation easier to the less technical engineers by providing script less

automation.

• Reduce the time and cost of the organizations in order to train the less technical

engineers to do the automation.

1.4 Scope
The proposed model will handle UI automation scenarios which are defined by the QA

engineers by English language.

3 | P a g e

1.5 Structure of the Thesis
The final report has been structured as follows,

• Chapter 1 – Introduction

This chapter consists of a basic introduction to the problem domain and the proposed solution.

It includes the project aim, scope and objectives. The features of the prototype and the resource

requirements have also been discussed.

• Chapter 2 - Literature Review

This chapter consists a literature review of research articles and related documents regarding

the problem background, tools, technologies and related work carried out pertaining to the

problem domain.

• Chapter 3 – Methodology

This chapter consists the design of the proposed model and the implementation.

• Chapter 4 - Evaluation and Results

This chapter consists of the evaluation of the project using various evaluation techniques.

• Chapter 5 – Conclusion and Future work

This chapter provides the concluding remarks including the limitations of the project,

challenges faced, leaning outcomes and the future enhancements.

4 | P a g e

 - LITERATURE REVIEW

2.1 Literature Review

2.1.1 Manual Testing vs Test Automation
Software testing is a concept that continues to evolve in the software development industry. As

Burnstein (2003) points out, the process of software testing is utilized in determining defects

and faults in software products in order to guarantee that a particular product meets its standards

as expected with regards to pre-defined attributes. These attributes can be the functional and

non-functional requirements specified at the beginning of the development of a particular

software. As the complexity of software applications is increasing, it is important to maintain

quality of software at a scale parallel to the complexity level. The goal of quality assurance of

a software can be achieved in two different ways, either by manual testing or through test

automation (Mayer, 1998)

Manual Testing is defined as a process through which quality assurance engineers (QA

engineers) execute manual test cases with the objective of detecting bugs or defects by

comparing the expected and actual outcomes of the software (Herath et.al, 2015). The IEEE

Standard 829 (1983) defines a test case as a document “specifying inputs, predicted results and

a set of execution conditions for a test item”. In manual testing, QA engineers create manual

test cases using test scenarios identified from system requirements and use cases. Although this

method of testing is deemed fit as a cost effective and more reliable method of testing on a

smaller scale (Base36.com, 2016), the error count is high when practiced on a larger scale

owing to the fact that it requires manual input, analysis and evaluation. Torkar (2006) points

out that humans often get tired of repetitive processes. This caused the inclination of the

software testing trend towards automated testing (Torkar, 2006).

TA is preferred over manual testing as means of overcoming the complications mentioned

above. People have defined the TA process in different ways. TA as defined by Herath et al.

(2005) is the process of executing pre-defined scripts to generate result reports in order to find

defects in software and to determine software quality. If the actual and expected outcomes of a

program align then the program can be certified as bug-free. Dustin et.al (1999) outlines TA as

a process where the testing activities are automated which includes the development of test

5 | P a g e

cases, execution and verification of the test scripts through the use of automated tools. Gao et

al. (2003) highlights that software TA refers to the effort put into automating operations of the

testing process of software through distinct policies and strategies. Organizations opt to adopt

TA with the common objectives of reducing delivery time by optimizing the test cycle, detect

bugs in the early stages of the SDLC, increase test coverage and accuracy while reducing the

cost of testing.

It is difficult however to conclude which out of the two software testing methods is better.

Rather, it is about determining the ideal scenario for either manual testing or automated testing.

Berner et.al (2005) announces an interesting point regarding this matter in the paper

Observations and Lessons Learned from Automated Testing. It states that the cost effectiveness

of TA is directly related to the number of times a test suite is executed. Additionally, based on

an interview conducted by Asfaw (2015) with two experts in the namely Samuel, a Computer

Scientist and Hanip, a professor of a Technology Institute, Samuel identifies a good candidate

for automated testing to be repetitive, recurring, tedious and likely to cause errors if tried by

manual means. Based on that remark, web applications can be viewed as ideal candidates for

TA because testing of web applications tend to be a very long, tedious, repetitive and error-

prone task. Hanip adds to Samuel stating that a test case which is very lengthy or in need of

higher accuracy would also count as a proper candidate for TA. These factors can be used in

establishing whether a test case needs to be automated or if it could be tested using manual

methods.

2.1.2 Test Automation and Web Applications
A web application is defined as an application program that has content stored remotely in a

separate server and distributed over the Internet through a browser using a Graphical User

Interface (GUI) (SearchSoftwareQuality, 2016). Web applications have continued to become

more and more complex over the past years. QA Labs Inc. (2000) had noted that there is a wide

range of refinement in web applications from a typical company website with a simple structure

to applications like eBay and Amazon with complex search engines and e-commerce facilities.

Increasing reliance on complex web-based solutions demand for the usage of proper

methodologies and guidelines in the development of applications in order to guarantee on time

delivery within the allocated budget with a high level of quality. However, despite being one

of the fastest growing classes of software systems in the present, (Arora & Sinha, 2012) web

applications have continued to degrade in quality.

6 | P a g e

QA Labs Inc. (2000) states the main reason to the reduction in quality is the over-pressurized

deadlines that web developers are required to meet with. Unlike traditional development of any

other software, the go-to market time of web-based applications is comparatively low.

Furthermore, QA Labs Inc. discusses how system requirements of a web application are subject

to change throughout the development cycle because most clients are not satisfied even with

their own initial requirements once implemented. Several adjustments, especially to the GUI

of the web application, would have to be made before launching the application. Manual testing

of such applications with constant requirement alterations within limited timeframes can be a

difficult and costly task.

Mayer (1998) and Pepe (2000) insists that a relationship exists between utilization of TA

strategies and quality assurance of web applications. This stems from the fact that the many

benefits of automation can be applied in web application testing domain in order to optimize

time consumption and cost of determining quality. For example, the reduction of test cycle

duration which is a benefit of TA stands out as an ideal solution in dealing with the tight

timelines of web application development. Furthermore, the reusability of test scripts,

reduction of test costs and the increased test coverage are other means of improving quality of

web applications while overcoming the challenges that exist in the particular domain.

This infers that any automation tool chosen for the purpose of TA in web applications should

primarily have the features that highlight the benefits of TA mentioned above.

2.1.3 Challenges in Test Automation
Although TA proves to be beneficial and continues to evolve, organizations seem rather

reluctant to adopt it completely. The World Quality Report 2015-16 (Muthukrishnan &

Margaliot, 2015) reveals that only 45% which is less than half of overall test cases have been

automated by organizations by 2015. Similarly, Bogdanov (2015) observes that only 49% of

600 participants inclusive of QA leads, project managers, QA engineers and automation

engineers on a survey pertaining to research on automated software testing trends actively used

automated testing. The following challenges as illustrated in Figure 2.1 depict the common

challenges according to The World Quality Report 2015-16 that discourage organizations from

TA.

7 | P a g e

An article by Optimus Information (2015) highlights TA challenges as follows,

• Unfeasible estimations such as time saved through TA

• Cost of automation tools and the time spent specializing on them

• Typical QA teams not having sufficient technical knowledge required in scripting

• Availability of a lot of unreliable automation tools with bugs in the current software

market

 Further research on related articles, surveys, questionnaires and other posts supported in

isolating three common challenges in TA.

1. High initial and maintenance cost

TA is a long-term investment for organizations. The initial cost of adopting TA tools

and methods require a significant amount of money. Script maintenance and constant

tool updates can also prove to be costly. However, with time, this cost can be easily

recovered through automation.

2. Lack of skilled resources with technical experience

TA engineers need to be familiar with automation scripting. They should also have

specialized skills using different kinds of automation tools available in the market today.

Most tools available, commercial and open source alike, requires a significant amount

of scripting knowledge (coding) to carry out the functional tests and the testing of

custom controls of the application. It would be optimal for organizations if they could

find a tool, which requires minimal or no coding at all, that can be used by their manual

testers on need basis.

Figure 2.1 Test Automation Challenges (World Quality Report, 2015-2016)

8 | P a g e

3. Lack of reliable automation tools

Since there is no particular standard for a software test automation tool, engineers tend

to use various approaches in developing frameworks for TA. This often results in poor

quality automation tools which are highly unreliable and require a lot of maintenance

effort.

Evidently the TA market needs a tool that would overcome these challenges and promote

automated testing as means of keeping up with the increasing delivery pace of software

applications.

2.1.4 Lack of Technical expertise as a challenge
In addition to the sources mentioned above which highlight the challenges of TA, The World

Quality Report 2014-15 (Muthukrishnan & Margaliot, 2014) highlights that as of 2014, 35%

of the average organizational QA budget is allocated for acquiring and training human

resources. This is because automation tools available in the industry today are complex and

require programming knowledge in designing and developing test cases. (Fecko and Lott,

2002) mentions that TA demands the following set of skills,

a) Ability to utilize TA tools,

b) Software design and development skills,

c) Understanding on the application under test

in order to successfully automate a test case as expected. Upon analyzing the TA tools in the

market, it is notable that most tools agree with Fecko’s observation. Automation tool vendors

often conduct training programs on purchase about using the tool as means of overcoming this

problem. The next section focuses on exploring and evaluating more reliable and efficient

means of overcoming the challenge of technical expertise and skills in automation tools,

particularly in the web application domain, in order to promote TA within the industry.

2.2 Test Automation Approaches

2.2.1 Introduction to Test Automation Approaches
A test automation framework is essentially a combination of a set of tools, concepts and

assumptions that build up an environment for the execution of automated tests. In other words,

9 | P a g e

it is a platform which facilitates the test automation process. There are several approaches to

test automation frameworks today. Some of the common approaches are,

1. Modularity-driven approach

2. Data-driven approach

3. Keyword-driven approach

4. Hybrid approach

These approaches are further investigated and evaluated in order to find the most suitable

approach in order to address the research problem.

2.2.2 Modularity-driven Approach
Modularity-driven approach for test automation is based on the concepts of encapsulation and

abstraction. In order to achieve higher level of modularity, separate test scripts are written for

each separate module of the application that is to be tested (Kelly, 2003). These modules are

then organized in a hierarchical structure similar to what is shown in Figure 2.2 below. This

arrangement ensures that each separate module is independent and modifications carried out

on one module does not affect the other modules.

2.2.3 Data-driven Approach
Originally, test scripts used to have the test input and output values, also known as test data,

hard-coded into them. This led to several problems. For example, a slight change in test data

required modification of the whole script (Laukkanen, 2006). If it was a rather lengthy or

unstructured script this would prove to be difficult. Another problem was that for a slightly

varying data set, separate scripts were needed. This was an unnecessary effort in automation.

Figure 2.2 Architecture of Modularity Driven Approach

10 | P a g e

As a solution for these problems, test data was separated from scripts and are stored in external

data sources such as databases, Excel sheets and CSV files. The execution of tests by reading

data from the external sources are coded in the test script. In this framework approach, scripts

act as drivers that simply retrieve data, execute the code and validate the results against the

outputs that are specified in the external sources (Kelly, 2003). Figure 2.3 presents an example

of an excel file which contains such externalized data.

2.2.4 Keyword-driven Approach

Kelly (2003) notes that this approach for automation frameworks is independent of application

and automation tools on which the automation is carried out. Furthermore, she studies that the

keyword approach is very similar to a manual test case. This means that this approach can be

used by both manual and automation test engineers easily.

First step of keyword-driven approach is to isolate a set of keywords from each test case. Then,

corresponding functionalities are defined for each keyword. This is generally done using an

Excel sheet and function-libraries (Sangave and Nandedkar, 2014). The Excel sheet consists of

a table which represents each manual test case. The function libraries contain the

implementation required to invoke the action represented by a specific keyword using an

automation tool. It is similar but more advanced when compared with the data-driven approach

which is why (Fewster and Graham, 1999) points out keyword-driven approach as a logically

extended version of data-driven automation frameworks. Figure 2.4 illustrates the sample Excel

sheet when using keyword approach for the example shown in Figure 2.3.

Figure 2.3 Sample Test Data File for a calculator program

11 | P a g e

2.2.5 Hybrid Approach
The hybrid approach is the combination of all the approaches mentioned above. Kelly (2003)

mentions that the objective of building such a framework is to put together the benefits of each

individual approach while leaving out the challenges in them. Figure 2.5 expresses the basic

structure of hybrid approach highlighting how each approach is combined,

2.2.6 Comparison of Test Automation Framework Approaches
Following table (Table 2.1) provides a summary of benefits and challenges of each test

automation framework approach discussed above, gathered from various literature sources.

Sources Approach Benefits Challenges

Figure 2.4 Sample table with keywords, UI elements and test data for a calculator program

Figure 2.5 Architecture of the Hybrid Test Automation Framework

12 | P a g e

(Zambelich,

1998);(Kelly, 2003);

(Laukkanen, 2006)

Modularity

-driven

• Scripting can start parallel to

the

development phase because for

functionality changes only the

relevant scripts need to be

updated

• Script maintenance is easier

because of modularity

• High scalability as individual

scripts can be combined to test a

complex system

• Requires technical

proficiency in the

scripting languages

• Extra effort needed

to create separate

test scripts for

varying test data sets

since modular

frameworks have

test data hardcoded

into test scripts

(Fewster and

Graham, 1999);

(Nagle, 2000);

(Pettichord, 2003);

(Kelly, 2003);

(Laukkanen, 2006);

(Javvaji et al.,

2011);

Data-

driven

• A single test script can be

utilized for varying sets of data

since test data is retrieved from

external sources

• Reduction of overall test script

count due to above benefit and

thereby increasing

maintainability

• Test data can be prepared in

the

design phase itself

•Editing scripts is easier since

all

the variables and test data reside

externally, the script acts only as

a driver

• Need to implement

different driver

scripts to process

different sets of test

data

•Initial setup

requires

technical skills

(Nagle, 2000);

(Pettichord, 2003)

(Kelly, 2003)

Keyword

driven

• No technical skills required to

use keywords

• Maintenance cost is less

• Test scripts get

lengthier and more

complex than when

13 | P a g e

(Laukkanen, 2006);

(Pradhan, 2011);

• A single keyword can be used

across multiple test scripts, so

the code is reusable.

• Independent of automation

tools and applications under test

using data-driven

approach because

functionality

libraries

should be defined

(Nagle, 2000);

(Kelly, 2003);

Hybrid

• Combination of all approaches

provide the combined benefits

and mitigated challenges in each

of the individual approaches

• Less error prone

•Hybrid frameworks

tend to be more

complex due to the

combination of

modular, data -

driven and keyword-

driven architectures

Table 2.1 Benefits and Challenges of Test Automation Approaches

2.2.7 Evaluation of approaches
Kelly (2003) and Laukkanen (2006) theorizes that modularity is vital for a test automation

framework for improved maintainability and scalability. Proper organization of test cases in a

hierarchical manner would indeed contribute to a more organized and maintainable test suite.

However, a modularity-driven approach alone would not address the problem discussed in this

research. Because the model would not have separate test scripts and page objects classes

(methods) for modules as the model is focusing the script less automation. Furthermore,

Laukkanen (2006) suggests that data-driven scripts support easy maintenance of a framework.

Also, it allows the flexibility and variance of test data which is important in functional testing.

Observingly, integration of modularity-driven and data-driven approaches together would

result in a much better test automation framework with increased

benefits. Yet clearly, the research problem would remain unexplored in the resulting

framework.

Nagle (2000) studies that the keyword-driven approach is best suited for testers with low

programming skills. He elaborates that this approach can be adopted irrespective of the

automation tool used in executing the test scripts. In contrast however, programming skills are

necessary to define function libraries for the keywords used in test case development. Also

14 | P a g e

comparing Figure 2.3 and Figure 2.4 it can be noted that the same test case requires more test

steps in keyword-driven approach, thus additional effort in preparing test cases in required.

Laukkanen (2006) however agrees with Nagle and points out that although the initial effort and

cost is high in keyword-driven approach, test case modifications are relatively easier and this

increases the flexibility and reusability of test scripts thus proving this approach to be quite

beneficial. Therefore, a hybrid framework which integrates all three approaches as depicted in

Figure 2.5 is concluded as the solution to the problem pertaining to the research. A framework

that is modular, data driven and having keyword driven capabilities would have a complex

architecture. But it would fulfill the initial requirement of TA ideally. The organized structure

due to modularity and increased maintainability will add to requiring low programming skills

giving the test engineers more time to focus on actually testing the application rather than

designing and developing test cases.

2.3 Test Automation Techniques

2.3.1 Scripting Techniques
Scripting is the process of test script creation, that is, the conversion of a manual test case into

a test script in order to automate a particular scenario. Figure 2.6 provides a sample test case to

validate the Google login page with valid username and password.

Figure 2.6 Sample Test Case (Software Testing Help, 2012)

15 | P a g e

There are several techniques used in the industry today by different test automation tools for

scripting purposes. The two common techniques are,

1. Capture and Replay method

2. Manual Programming

2.3.1.1 Capture and Replay method
The tools which utilize capture and replay method are used to record every action made by a

user automating a test case on screen. Every mouse movement, click and keystroke are captured.

These events are stored as a script for playback later. Selenium IDE (Seleniumhq.org, 2016) is

a conventional tool which uses this technique in order to develop test cases. Figure 2.7

illustrates the developed script for the sample test case in Figure 2.6 using Selenium IDE.

Figure 2.7 Selenium IDE Firefox plugin (Left) and the developed test case (Right)

The advantages and disadvantages of capture and replay method are discussed in Table 2.2

below.

Advantages Disadvantages

• Easy to use

• Mistakes during recording require re-

capturing the whole scenario

• No programming skills required

• Not flexible since it is not data-driven, one

script applies to only one test case

16 | P a g e

• Facilitates fast script development

• Script maintenance is difficult because of

low modularity

 • Scripts are strongly coupled with

application interface

Table 2.2 Advantages and Disadvantages of Capture and Replay method

2.3.1.2 Manual Programming

Manual programming method is the development of test scripts by utilizing conventional

programming means. This is the most widely used technique by automation tools. Laukkanen

(2006) studies several different language categories used in script development.

1. System Programming Languages-Ex: Java, C++

2. Scripting Languages-Ex: Visual Basic, Python, Ruby

3. Shell Scripts-Ex: Bash

4. Vendor scripts-Ex: JRuby – A Java implementation of Ruby (Jruby.org, 2016)

Selenium Web Driver (Seleniumhq.org, 2016) is a web automation tool that uses manual

programming methodology. It has several different implementations using several

programming languages. Figure 2.8 presents the test script for the test case in Figure 2.6

developed using the Java implementation of Selenium Web Driver.

Figure 2.8 Test Script for Selenium Web Driver

17 | P a g e

The advantages and disadvantages of manual programming technique of TA are discussed in

Table 2.3 below.

Advantages Disadvantages

• High maintainability

• Requires programming skills

• Flexible scripts since test data can be

parameterized for a data driven approach

• Scripting is more time consuming and

requires extra effort

• Can introduce logical structures such as

conditions and loops into test scripts

Table 2.3 Advantages and Disadvantages of Manual Programming

2.3.2 Evaluation of Techniques
Capture and replay method and manual programming technique when compared are both

individual mechanisms that deliver test scripts for the purpose of TA. Capture and replay

method is clearly the easier technique out of the two when considering usability and

adoptability. Also, it directly provides a solution to the problem addressed in this research, lack

of technical expertise for TA. Laukkanen (2006) points out that capture and replay also appeals

to the web domain with strict delivery timelines because scripting is much faster than

programming methods. However, capture and replay method also has its challenges as

expressed in Table 2.2

Figure 2.9 Evolution of Cost with Time of Capture and Replay and Manual Programming techniques (Leotta et
al.,2013)

18 | P a g e

When considering cost and time efficiency of these two methods, (Leotta et al., 2013) presents

an interesting observation as indicated in Figure 2.9. This graph was deduced through an

empirical assessment carried out by Leotta in 2013 as discussed in the paper Capture-Replay

vs. Programmable Web Testing: An Empirical Assessment during Test Case Evolution.

According to the graph, the initial cost of manual programming is higher than that of capture

and replay. This is agreeable since scripting efforts, acquiring skilled programmers and initial

setting up of manual programming environments would cost a considerable amount of money.

However, Leotta et al. notes that over time, manual programming is more beneficial due to

flexibility and high maintainability. Also, the reusability of test scripts saves a lot of time in

comparison to capture and replay where each test case needs to be recorded again and again

for varying test data which is very time consuming and tedious. Another benefit of manual

programming is the applicability of logical structures in the code. Leotta et al. suggests that

this is useful in testing complex web applications.

Therefore, arguably manual programming is more efficient than capture and replay in long

term. Despite this, manual programming does not apply to the problem explored through this

research since programming skills are required for TA when using this technique.

2.4 Natural Language Processing
A test automation framework which can process natural language texts describing the test case

input by the user, extract test steps from that data and generate test scripts corresponding to the

extracted test steps has been suggested as a solution for the research problem. Therefore, in

order to process texts input to the application and extract events, a natural language processing

component is essential.

Natural Language Processing (NLP) is defined by (Hirschberg and Manning, 2015) as means

of utilizing computational techniques in order to understand, learn and produce content in

natural language. Its’ goal is to bridge the gap between human and computer interfaces.

2.4.1 Approaches in NLP
The two major approaches in NLP based on text analysis methods employed have been

discussed below.

2.4.1.1 Classical NLP Approach
The classical NLP approach is also known as rule-based NLP. In Classical NLP approach, a

machine executes a set of rules set by a human being or a language expert, in order to determine

meaning of texts (Bhattacharyya, 2012). The rules are guided by linguistics, lexicography and

19 | P a g e

knowledge of language. Experts anticipate all possible grammatical occurrences in a language

and set rules based on them.

For example, if NP = noun phrase, N = noun, ADJ = adjective, PP= prepositional phrase and

P= preposition following rules can be defined by using the given test scenario below,

Test Scenario

Below test scenario is the sample test case to define the NLP rules.

Navigate to Login Page

Enter valid Username as XX

Enter valid Password as XX

Click on Login Button

a. NP => N (A noun phrase can be a noun)

Ex: Button

b. NP => ADJ + N (A noun phrase can be an adjective and a noun)

Ex: Login Button

c. NP => N + PP (A noun phrase can be a noun and a prepositional phrase)

Ex: Username as XX

d. PP => P + NP (A prepositional phrase can be a preposition and noun phrase)

Ex: as XX

2.4.1.2 Statistical NLP Approach
The statistical approach is a data-driven machine learning approach for NLP. It employs

corpora to perform linguistic analysis on natural language. A corpus is a collection of textual

data (Language.worldofcomputing.net, 2016) used as a source by the statistical approach. They

provide extensive descriptions of the language. Some examples of English corpora available

that are used in NLP are,

• Google Books Ngram Corpus

• American National Corpus

• British National Corpus

20 | P a g e

• Brown Corpus

• International Corpus of English

• Oxford English Corpus

An important concept in relation to statistical NLP is Annotations. Annotating is the labeling

of texts to increase meaning and value (Bhattacharyya, 2012). The labeling of each word with

information such as noun, verb, city, name and many other forms increases the meaning of the

sentence. Annotation relates to similar as well as more complex levels of labeling text in order

to enrich its value.

 Advantages Disadvantages

Classical NLP • Based on linguistic theories

• Requires rules to be pre-

defined

• Suitable for languages with

limited theories

• Exceptions in human

language cannot be handled

• Computational resources

are not essential

• Costly to maintain

• Easier error analysis • Difficult to extend

 • Disambiguation issues

Statistical NLP • Linguistic knowledge not

required

• Computational resources

essential

• Maintenance is easier • Difficult error analysis

• Reduce cost of human

resources

• Requires large collections

of textual data

Table 2.4 Comparison of advantages and disadvantages of classical and statistical NLP ((Farrús et al., 2012))

Table 2.4 presents a comparison of the two approaches of NLP (Farrús et al., 2012). Both

approaches have their own benefits as well as challenges. Classical NLP appeals to a test

automation framework because test cases follow a certain language pattern on which rules can

be defined.

The keyword-driven approach for automation frameworks uses a similar technique as Classical

NLP. It identifies that each test step consists of Action, UI element and Test Data. Accordingly,

rules such as (a) A test set can be an action and a target, (b) a target can be a UI element and

Test Data, can be set.

21 | P a g e

In contrast, annotations used in statistical NLP are a simpler way of defining the structure of a

test step and maintenance and extension of statistical approach is easier. Therefore, statistical

approach is considered best suited for an NLP based test automation framework. However

classical approach will be considered when necessary in defining rules for higher accuracy.

2.4. 2 Natural Language Processing Technologies

There are many NLP libraries available with varying functionalities depending on the tasks

performed by them. Two of the most common general NLP libraries are,

1. Stanford CoreNLP - A collection of NLP tools based on Java that are able to perform

different tasks, developed at Stanford (Stanfordnlp.github.io, 2016)

2. Apache OpenNLP - A Java based library that uses machine learning techniques to perform

common NLP tasks (Opennlp.apache.org, 2016)

Table 2.7 presents the comparison of Stanford CoreNLP and Apache OpenNLP libraries in

relation to different criteria (Karlin, 2012) that are used to determine the best tool for NLP

integration in the proposed solution.

Tools/Criteria OpenNLP CoreNLP

Programming Language Java Java

Approach Statistical Statistical

Performance

Higher performance less

time and resource

consumption

Lower performance relative

to OpenNLP

Programming Effort High Low

Documentation Support
Not as much as

CoreNLP
Available abundantly

NLP Tasks

Sentence Disambiguation Yes Yes

Word Tokenization Yes Yes

P-O-S tagging Yes Yes

Table 2.5 Comparison of CoreNLP and OpenNLP

Upon comparison of the two NLP libraries, it is noted that both are capable of performing the

required NLP tasks for the system and that the implementations of both systems are based on

22 | P a g e

Java. However, despite the fact that Karlin (2012) points out that OpenNLP has higher

performance relative to CoreNLP, he also notes that the lines of code required to implement

the same functionality in OpenNLP is higher than that of CoreNLP, thus the programming

effort required by OpenNLP is higher. Furthermore, documentation for CoreNLP is readily

available therefore it is easier to adopt and implement. In contrast however, documentation

regarding training data and models in available mostly for OpenNLP. Therefore, the author

confirms that both libraries are best suited for separate tasks and therefore both would be

considered during implementation.

2.4.3 Natural Language Processing Tasks
There are various NLP tasks are used for analyzing and understanding natural language texts.

The tasks pertaining to the suggested solution are discussed below.

2.4.3.1 Sentence Boundary Disambiguation
Sentence Boundary Disambiguation (SBD) is the task of separating natural language texts into

separate sentences. In order to determine the end of a sentence a binary classifier technique is

used with two Boolean outputs true and false stating if it is the end of the sentence or not. These

binary classifiers can be implemented using rules, regular expressions or machine learning. The

simplest classifier used for this is a Decision Tree. Figure 2.10 illustrates a simple decision tree

to determine end of sentence (EOS).

Decision trees are often implemented using a statistical approach where the structure is learned

through machine learning from a training corpus.

Figure 2.10 Decision Tree to determine EOS

23 | P a g e

2.4.3.2 Word Tokenization
Tokenization is the isolation of a sentence into parts known as tokens. A token is a collection

of characters that are grouped in order to form a meaningful unit (Manning et al., 2008). A type

is an element from the vocabulary. A type is distinct whereas tokens are stated as the

occurrences of types in a text or corpus.

2.4.3.3 Part of Speech Tagging
Part of Speech (POS) tagging is a task where each word, or rather token, is assigned a tag which

indicates its part of speech in the sentence or semantic information

(Language.worldofcomputing.net, 2016). The same word can be a noun, verb or adjective

given the context in which it is used. POS tagging is used to distinguish this information. This

task is carried out by programs known as POS taggers. Figure 2.11 depicts the classification of

POS tagger models based on approach.

2.4.4 Evaluation
Upon reviewing the two main approaches in NLP, it was clear that the statistical approach has

shown to be more beneficial in addressing the research problem as the linguistic knowledge is

not required. However, if the need arises for specific rule definitions, classical NLP approach

will be considered.

Several tasks of NLP will contribute to extracting actions from text input by users in natural

language. Sentence segmentation will be used in separating individual test steps and word

Figure 2.11 Classification of POS tagging models (Kumawat,2015)

24 | P a g e

tokenization and POS tagging will be applied to separate each word as a token and determine

the target, UI element and test data from each test step. The stochastic approach of POS tagging

is favored over rule-based approach because defining rules is time consuming and the time

constraint on this research should be considered. However, the author observes that the

available text corpora will not be sufficient in processing test steps through POS tagging

therefore a text corpus with more suited tags for the TA domain should be trained to a tagger.

The technologies most suitable for this will be discussed in the next section.

2.5 Technologies

2.5.1 Web Automation Frameworks and Tools

When considering web automation there are several tools and frameworks available in the

software market today. Table 2.6 presents a comparison between three popular web automation

technologies ((Kaur and Gupta, 2013); (Gupta et al., 2015); (Monier and El-mahdy, 2015)).

Table 2.5 presents the parameters using which the tools will be compared.

Parameter Explanation

Cost Initial cost of tool

Language Scripting languages supported by the tool

Platform Support Operating systems supported by the tool

Browser Support Browsers that can be automated using the tool

Data-Driven

Framework

Data sources supported by tool as a data-driven

framework

Technical Expertise Programming skills required for scripting or not

Ease of Use Previous experience required in utilizing the tool

Table 2.5 Explanation of comparison parameters

Tools/Parameter Selenium Quick Test

Professional (QTP)

TestComplete

Cost Open Source Commercial Tool Commercial Tool

Language Ruby, Java, Python,
Php, JavaScript

VBScript

VBScript, C#,
JavaScript

Platform Support Windows, Mac

Windows Only

Windows 7 and
Higher

25 | P a g e

Browser Support Google Chrome,
Mozilla Firefox, IE,
Opera

Google Chrome,

Mozilla
Firefox, IE

Google Chrome,
Mozilla Firefox, IE,
Opera

Data-Driven

Framework

Excel, CSV

Excel, Text files,

XML, DB files
Excel, CSV, SQL

Technical Expertise Required Partially Required

Ease of Use Experience Required Required Experience Required

Table 2.6 Comparison of Selenium, QTP and TestComplete

Considering the three web automation tools compared in Table 2.6 above, Selenium, QTP and

TestComplete, Selenium is the only open source framework available. Therefore, acquiring

Selenium for development purposes would be easier. Also compared with the other two tools,

Selenium additionally supports Mac OS as a platform. All three tools support the major

browsers however QTP is not supported in Opera browser. None of the tools support natural

language scripting. When ease of use is considered QTP seems a better option than the other

two. However, since Selenium is more beneficial in every other way and also considering the

fact that Selenium is an easily extendable framework because it is open source, Selenium is

ideal as the foundation automation framework for web applications in the suggested solution

for execution of generated test scripts.

2.6 Related Work
Studies related to using natural language for programming have been carried out by many

researchers in the domain. Thummalapenta et.al (2011) presents a conceptual system that can

analyze stylized English test steps to generate test scripts. They have used the Stanford NLP

POS tagger to identify separate tuples containing action, UI element and test data to generate

code. Adding to that research Madhavan (2014) presents a similar approach however the POS

tagging in his system is done through a custom trained model and therefore does not require

stylized English unlike the previous system by Thummalapenta. Madhavan’s system is capable

of processing natural language test steps and generate test scripts. A constraint noted in his

system however is the object mapping module. A user should input an additional set of data

mapping each object with an action. This is extra effort in developing scripts and can be time

consuming.

More recently, Testsigma Inc presented Testsigma which is a SaaS, AI-Driven test automation

software for Web and Mobile applications to achieve continuous testing with Shift-left

26 | P a g e

approach. Testsigma helps the web and mobile dependent businesses to reduce the cost of

software quality and to continuously release their great quality software products faster.

Testsigma uses NLP to build stable and reliable tests faster and speed-up the execution and

maintenance of automated tests. Testsigma is built to address some of the problems with

existing automation testing tools, like huge initial time and cost, slow test development, high

execution time and costs, high maintenance efforts, less automation coverage and longer

payback time.

As in the customer review report 2021, customers have faced some issues while using the

Testsigma tool such as their in-built custom commands breaks, sometimes application is slow

and freezes and users cannot copy the test steps from one scenario and paste in another scenario.

Testsigma is not provided any view to see the Generated Script from the test scenario and

directly focus the test execution. However, TA tools should facilitate the QA engineers to

understand the view and generated script before the test execution. This view will display the

executable code that has been generated by the model which corresponds to the test steps that

have been entered by the user.

27 | P a g e

 – METHODOLOGY

3.1 Design

3.1.1 Development Methodology
For the selection of a proper development methodology, existing methodologies like waterfall,

prototyping, agile and rapid application development (RAD) have been taken into

consideration. Although waterfall model is commonly used as a software development

methodology it has the disadvantage of not being able to return to a previous phase in the

Software Development Life Cycle (SDLC) once the development process surpasses that

particular phase. In this research project it is important to have the capability of traversing back

and forth the SDLC in order to integrate new features for the framework as required to optimize

efficiency. Therefore, waterfall model is inconvenient for this project. Moreover, when using

the waterfall model, a fully functioning prototype can be obtained only at the end of the SDLC.

Rapid Application Methodology is not applicable since a strong design and development team

is unavailable for this project. In agile, development takes place as iterations of short time

frames typically a week or two known as sprints. At the end of each sprint a few fully

functioning features are added to the prototype. Combined sprints produce the end result. Agile

is capable of adapting to change which in this project can be feedback received regarding the

product.

However, time allocated for this research is insufficient to schedule sprints for development.

Therefore, agile is not considered as the best option for a development methodology for this

project. In contrast however, prototyping is a suitable development methodology since several

prototypes can be obtained during the SDLC which is convenient for this research since

prototypes are necessary to obtain expert feedback on the product. The author views this

methodology as the most suitable development methodology since it adds flexibility to traverse

the SDLC as desired in order to optimize the product while delivering multiple functional

prototypes for evaluation purposes. Figure 3.1 outlines the progression of prototype model.

28 | P a g e

3.2 High Level Design

Figure 3.1 : Prototype Model (Learnwithkamal.wordpress.com, 2017)

Figure 3.2 High level Architecture for proposed solution

29 | P a g e

Figure 3.2 illustrates the high-level design which is an overall overview of the proposed

solution outlining the relation between individual modules, data structures and data flow. The

solution has been designed based on one tier architecture.

One tier architecture consists of all its elements, namely the presentation layer, business layer

and data layer installed on the same location. This architecture was chosen for the solution

since it is easier to implement and therefore the cost of maintenance and deployment is low.

Issues related to complexity and compatibility are also minimized through this approach. Such

applications are known as fat or thick client applications.

1. Presentation Layer

The presentation layer comprises of the Graphical User Interface. It will be used by a QA

Engineer to interact with the system. It should provide the user with means of creating, editing

test scripts, generating and executing automation scripts and viewing execution result reports.

The graphical user interface needs to conform to the functional requirements that follow,

A user should be able to:

• generate a test script by entering test steps and saving them

• execute any generated automation script in the execution environment

• view and filter reports based on date and time

• upload UI object data which contains UI locators into a new or existing object repository

(object repository is excel sheet which consists the UI locators to relevant objects)

• edit an existing test script

• delete an existing test script

The above requirements have been taken into consideration when designing the GUI of the

solution.

Additionally, usability aspects namely how the system is easy to use for a user have been

considered and incorporated as a non-functional requirement of the GUI.

The main UI of the system consists of three components,

a) Scenario Tab

This component provides the text editor for the user to enter test steps in English. There is list

of predefined commands. The list consists of commands such as Open, Type and Click. Open

30 | P a g e

command is similar to “GoToURL” command in selenium. Usually in UI automation the

respective url needs to be launched. And other main events in UI automation are clicking

elements and entering the texts. Click event consists of buttons, checkboxes, radio buttons and

links. Predefined ‘Click’ command will cover all of these and ‘Type’ command will cover the

text entering.

Sample test scenario example

Open url https://www.linkedin.com/home

Type email as abc@email.com

Type password as 12345

Click button signIn

The “Upload Object Data” button will allow a user to upload an excel sheet which conforms

to a specific format consisting of object data such as xpath locators and locator names. Object

Data component in figure3.2 uploads the object data into Natural Language Processing module.

The format of the excel sheet will be decided during implementation. In order to promote ease

of use, the uploaded UI information will be displayed beside the editor for the user to refer to

when entering test steps. The “Generate” button is placed for a user to convert the plain text

input into executable automation steps.

Figure 3.3 GUI of the Main UI

https://www.linkedin.com/home
mailto:abc@email.com

31 | P a g e

The created test scripts and locator information will be saved in JSON format in a text file.

Since the solution is a rich client application a database has not been integrated to avoid

complexity.

b) Generated Script Tab

This tab will display the executable code that has been generated by the model which

corresponds to the test steps that have been entered by the user. “Execute” button will be added

to execute the code to generate a result report.

c) Execution Reports Tab

The execution reports tab will consist of a list of a list of reports corresponding to each

generated script. The reports will be generated in HTML format, which can be viewed using

any browser, so that more graphical content can be included and the report can be shared among

the QA team.

2. Business Layer

The business layer consists of three separate modules,

Figure 3.4 Sequence Diagram for Create/Update Test Script

32 | P a g e

• Natural Language Processing Module

This module will process the test steps entered by the QA Engineer in English and identify the

actions, keywords and UI elements in each statement by isolating nouns and verbs using a

natural language processing library.

Processing of text for this framework consists of two stages, separating sentences as individual

test steps and then identifying the pre-specified keywords which are verbs would be considered

as actions. Nouns which would be considered as UI elements and test data. Figure 3.5 presents

an overview of the text processing algorithm in the NLP module.

The text input is primarily divided into separate sentences using sentence boundary

disambiguation technique in natural language processing. The decision tree involved in

separation of sentences has been previously discussed under section 2.4.2.1. The separated

sentences are then separated into words using word tokenization technique. Subsequently, part

of speech (POS) tags will be assigned to the tokens. The verbs in each sentence will be extracted

to determine the action and the corresponding automation command for the action. Once the

automation command has been decided, disambiguating UI elements and test data from the

nouns in the sentence is achieved using a domain specific implementation of a decision tree

algorithm.

The design of the Statement entity (user input) has been based on the template design pattern

as shown in Figure 3.6. The build method which will be overridden in each subclass that

implements the Statement super class will consist of the statement specific identification

algorithm to extract data from the tokenized text.

Figure 3.5 Text Processing Algorithm in NLP Module

33 | P a g e

Figure 3.6 Template Design Pattern for Statement class

The final output of the NLP module is a list of statement objects containing the extracted data.

• Script Generation Module

Script Generation module consists of the logic to generate test commands based on the

keywords and actions identified by the NLP module to produce an executable automation

script. Test commands are Selenium wrapped and can be executed using a Selenium

framework.

The list of statements output by the NLP module is taken in as input by the script generation

module.

This list can consist of statements such as Open, Type and Click. These statements are then

converted into executable commands by mapping them with a predefined template. The UI

object data uploaded by the user is separately mapped to another template and generated as an

object page. The format of these templates will be decided during implementation. The

generated script is then integrated into an automation framework which acts as the runtime for

generated automation scripts. Sequence diagram corresponding to generate automation script

is shown in Figure 3.7;

34 | P a g e

• Execution and Reporting Module

This module handles automation script execution using Selenium test automation framework

for web applications. A result report will also be generated for each execution by this module.

Selenium, as discussed in 2.4.1 is a web automation model that can easily be extended.

Therefore, the execution and reporting functionalities will be handled by an automation

framework that will be built on top of Selenium. This automation model will act as the core of

the proposed solution. The following features have been taken into consideration when

designing the model,

• Execution of automation scripts

During execution, the model has to extract data from generated automation commands and pass

it to the Selenium framework by creating a Selenium command object. Dynamic creation of

web elements and resolution of xpath locators should also be handled during execution.

• Error handling during execution

Errors during execution such as xpath locator mismatches, time out errors and element not

found errors need to be handled.

• Report generation

Report should be generated during execution containing details of every test step executed and

the corresponding pass or fail status.

Figure 3.7 Sequence Diagram for Generate Automation Project

35 | P a g e

The proposed architecture for the automation framework developed as the execution and

reporting module is presented below in Figure 3.8

The technologies used in the automation framework will be justified during implementation.

The sequence diagram pertaining to automation script execution is presented in Figure 3.9.

Figure 3.8 Proposed Automation Framework Architecture of Executing and Reporting Module

36 | P a g e

Figure 3.9 Sequence Diagram for Execute Automation Script

37 | P a g e

3. Data Layer

Data Description

Script Data Script data consists of test scripts created by users and automation

scripts generated by the model.

Object Data The UI element data such as xpath locators and locator names are

saved as Object data.

Report Data The execution time, name of script, results of each test step for each

execution is saved as a report under Report data.

Other Data Other data consists of static raw data required for the generation of

automation scripts such as the text corpus used to process user input

test steps.

Table 3.1 Data Sources in the Data layer

38 | P a g e

3.3 Component and Deployment Diagrams

Figure 3.10 Component Diagram of proposed test automation model for web application

39 | P a g e

Figure 3.11 Deployment Diagram of proposed test automation model for web application

40 | P a g e

MVC architecture has been used in order to separate business logic from the views

facilitating the re-use of logic throughout the application.

Since the framework is required to be modular and flexible as pointed out in the requirement

specification, usage of MVC ensures inter-relation between components in the code base are

minimized. Models, views and controllers are independent of each other and therefore new

classes as well as new operations to the existing classes can be introduced as future

enhancements with minimum impact on the existing system.

Table 3.2 provides details as to how each class contributes to the system as a whole.

Class Name Description

Models

Context
This class inserts and retrieves test scripts to and from the

data source

TestScript
TestScript class represents the test script entity. It will

retrieve locator information to create a TestScript object.

Locator
Locator represents the UI element locator entity. It consists

of name and locator attributes.

Views

Main

Main view contains the file menu, test case tree and three

tabbed

views. By default, Editor view is selected.

GeneratedView
Generated view consists of the generated automation script to

be viewed by a user.

Reporter
Reports generated after execution will be displayed in the

Reporter view.

Editor

The Editor view consists of a text area for the user to enter

test steps. It also consists of a table which displays object

locator data uploaded by the user.

Controllers

Editor
Editor controller handles the building of object locator table

using the Excel sheet uploaded by the user.

41 | P a g e

Generator

Generator controller will handle extraction of test data and

locator information from the plain text scenario input by the

user to generate automation script.

MainViewController
Main View Controller handles the loading if the test case tree

and loading and saving of test cases.

Reporter
Reporter controller loads reports from the Context model and

builds Reporter view.

GeneratedView

Generated View Controller handles the execution of

generated

automation scripts and reporting functions.

Table 3.2 Description of class diagram of proposed solution

3.4 Implementation

3.4.1 Development Environment
A discussion of the development environment within which the implementation of the solution

was carried out follows,

3.4.1.1 Eclipse IDE
Programming of the solution was mainly done in Java. Existing Java development

environments have been taken into consideration with the aim of determining a suitable

Integrated Development Environment (IDE). The selected IDE should at a minimum support

Java, JavaFX and Maven for the development purposes of the proposed solution. Eclipse,

Netbeans and IntelliJ IDEA are the three most commonly used Java IDEs. All three IDEs

provide an editor for coding and debugging and an IntelliSense feature for code completion.

Code refactoring to obtain quality code is also possible using any of the three IDEs mentioned.

In comparison with the other two, Eclipse has a large number of plugins readily available

making it very versatile and customizable (Lifewire, 2017). Netbeans has better database

support owing to the fact that it has multiple database drivers integrated within the IDE.

However, since the solution has no database feature, that advantage of Netbeans is not

applicable. Features of IntelliJ such as smart code completion and code refactoring are

appealing to a developer. Nevertheless, Eclipse has been chosen as the IDE that would be used

due to its extendibility via plugins and also since the developer is more conversant in Eclipse

than the other two IDEs stated.

42 | P a g e

3.4.1.2 JavaFX Scene Builder
JavaFX has been chosen over Swing to implement the user interface of the application due to

its many advantages. JavaFX has many improvements such as the ability to develop markup

interfaces using FXML and beautify them by applying CSS. It also supports MVC pattern so

that the views can be separated from models and controllers as indicated in the design of the

proposed solution. Scene Builder by Oracle is a tool that allows quick and easy implementation

of JavaFX application UIs with minimum amount of coding (Oracle.com, 2017).

3.4.2 Implementation of Graphical User Interface
The GUI of the application has been developed according to its proposed design. Requirements

of the GUI were taken into consideration during the design phase and a mockup of the main UI

was drafted. The implemented GUI is presented in Figure 3.11.

The UI elements were placed for easier navigation and on-screen instructions were added to

increase usability of application. The “Scenario” tab is open by default. A text area has been

provided for the user for scripting purposes. The “Generated Script” tab view is presented in

Figure 3.12

Figure 3.12 Main view of the application

43 | P a g e

Figure 3.13 Generated Script View

The generated code has been beautified using hilite.me API for display purposes. Incorrect

mappings can be re-mapped using the table provided next to the editor and regenerated.

“Execution Reports” tab view consists of the execution reports. The HTML reports have been

displayed using a JavaFX web view.

Data Storage

Data such as user input test steps, generated scripts, UI element locator information and report

details need to be saved in a suitable format. The following figure illustrates a sample JSON

file that contains a test script,

44 | P a g e

3.4.3 Implementation of the Natural Processing Module
The proposed solution processes test steps input by the user in natural language and convert

them into commands in order to generate a script which is executable. As the final step a project

containing one or more scripts will be generated as output. The following Figure 3.14 illustrates

the steps involved in this process.

Figure 3.15 Steps involved in the project generation

The implementation of the natural language processing module which carries out the initial

text processing task is discussed below.

Pre-Process Data

Figure 3.14 JSON of Test Script

45 | P a g e

As discussed in Literature Review chapter both Stanford CoreNLP and Apache OpenNLP have

their own advantages. However, considering the time constraints CoreNLP was chosen as the

NLP library that would be usedfor the implementation of the NLP module due to the

comparatively low programming effort that needs to be put in for its implementation. Primarily,

the user input text is separated into sentences and the sentences are separated into words using

Stanford NLP Parser. Consequently, the part of speech value for each token in the sentence is

assigned using the Stanford POS tagger. Figure 3.15 shows the code snippet corresponding to

this task.

The xpath data related to UI object locators are to be provided as a separate excel sheet by the

user.

This excel is also read in as raw data. A sample excel sheet containing UI object locators is

provided in Figure 3.15. The raw data is stored in an object map with the locator and xpath as

key value pairs.

Extract Test Steps and Build Commands

A custom domain specific identification algorithm has been designed to extract actions, UI

elements and test data separately. Actions are used to determine events such as Click and Type

in UI automation. The algorithm extracts the verbs from the tokenized output returned by the

POS tagger, matches the verb with a corresponding automation command and creates an

Figure 3.16 Code Snippet of Pre-Processing Data

Figure 3.17 Sample Excel Sheet containing location information

46 | P a g e

instance of the command using the remaining data. Following the determination of the

automation command which corresponds to a single sentence, the disambiguation and

identification of UI elements and test data is handled by the ‘build’ method overridden in each

subclass of the ‘Statement’ super class. Only three types of commands have been implemented

as subclasses for the prototype due to time and resource constraints. The implementation of the

extracting algorithms in these classes have been implemented by taking their application in the

test automation domain into consideration.

• Open Statement

The Open Statement performs the UI action of launching a given web page. It can consist of

only

one UI element which provides the address of the web page. The pseudo code to extract the UI

element from an Open Statement is shown in Figure 3.17,

Figure 3.18 Pseudo Code for Open Statement

47 | P a g e

The Java implementation of the above pseudo code is included within the “build” method of

Open Statement as follows,

•Type Statement

The Type Statement performs the UI action of typing text in a text field or text area in the web

interface. It can consist of an UI element which provides the xpath locator of the text field and

test data which is the content that needs to be typed in the given text field. The pseudo code to

extract this information from a tokenized sentence is shown in Figure 3.20

Figure 3.19 Build method implementation of Open Statement

48 | P a g e

In the above pseudo code, first the token list is traversed to find the UI element by matching

each word with the Object map till a match is found. Once the UI element is determined, the

token list is split into two using a preposition. The split half without the UI element is then

traversed to find a noun which is considered as test data. A partial code snippet of the

implementation of the above pseudo code in the “build” method of the Type Statement is given

below,

• Click Statement

Figure 3.20 Pseudo Code for Type Statement

Figure 3.21 Build method implementation of the Type Statement

49 | P a g e

The Click Statement fires a click on a given UI element. It consists of one UI element. The

pseudo code of the Click Statement is depicted in Figure 3.22,

The pseudo code of the Click Statement is similar to the one implemented in the Open

Statement.

Instead of the URL, the noun identified in this token list is considered as the UI element. The

code snippet corresponding to the implementation of the above pseudo code follows,

Figure 3.23 Build method implementation of the Click Statement

Figure 3.22 Pseudo Code for Click Statement

50 | P a g e

3.4.4 Implementation of Script Generation Module
Two templates have been designed for script generation and object page generation using

Apache Velocity template standards. Apache Velocity is a Java based template engine which

allows referencing of Java objects within the template itself. The template used for script

generation is shown below in Figure 3.23

Figure 3.24 Script template designed using Apache velocity templates

The list of statements output from the NLP module is passed as a parameter to the template

engine which will traverse the list and generate the line corresponding to the name of each

statement in the list using the “attributes” property of the “Statement” object. The code snippet

presented in Figure 3.25 contains the implementation of the initialization of Velocity engine

and automation script generation using the above template.

51 | P a g e

Similarly, the following template in Figure 3.26 has been used for the generation of object

data page which belongs to a test script.

Figure 3.26 Object page template designed using Apache Velocity templates

This page is generated using the object map which contains object data uploaded by the user.

The generated scripts and object pages are integrated into the automation framework which

exists as a project within the application folder.

Figure 3.25 Code Snippet for velocity engine initialization

52 | P a g e

3.4.5 Implementation of Executing and Reporting Module
The automation framework above contains the implementation of the execution and reporting

module of the solution. It has been developed according to the proposed architecture in 3.4.4.

Primarily, Apache Ant have been used for the purpose of building and compiling the

“Automation” project which contains the generated scripts. The core of this module is

contained within the “ExecutionHelper” class which extends “SeleniumTestBase” in the

“org.runtime” package. The “ExecutionHelper” class initializes the web driver and reporting

engine in preparation for execution using TestNG annotations (Figure 3.27). TestNG has been

used for this purpose due to its many benefits. It provides annotations to specify tasks that

needed to be completed before and after test execution. Additionally, it generates HTML

reports of the execution (Toolsqa.com, 2017).

Subsequent to the initialization, the content annotated with “@Test” annotation, which in this

case is the content of the generated script, is executed by TestNG. The generated script contains

Selenium wrapped command methods which will fire UI events on the web interface. The

purpose of the wrapper method is optimized error handling and result reporting. If an exception

occurs, a retry country has been specified to define the retry attempts before failing a command.

The wrapper methods of the three commands that have been implemented in this prototype,

Open, Type and Click are included in the “SeleniumTestBase” class. Figure 3.28 provides a

code snippet of the implementation of the wrapper method for Type command.

Figure 3.27 Web driver configuration and report initialization using TestNG

53 | P a g e

3.5 System Testing

3.5.1 Functional Testing
Table 3.3 provides the list of functional requirements along with their implementation and test

status.

Requirement Implementation Status Test Status

Create test script Implemented Tested

Generate automation project

from test scripts

Implemented Tested

Execute automation script Implemented Tested

Generate result report Implemented Tested

View result report of

executed script

Implemented Tested

Upload object data to

repository

Implemented Tested

Edit test script Implemented Tested

Figure 3.28 Code snippet for Type command wrapper method

54 | P a g e

Delete test script Implemented Tested

Table 3.3 Implementation and Test Status of Functional

3.5.2 Non-Functional Testing

The non-functional testing of the system was carried out using either quantitative testing or

qualitative testing approach as required.

Usability Testing (Qualitative)

Requirement Implementation Status Test Status

Create test script in natural language. Implemented Tested

Display execution results clearly. Implemented Tested

Should give clear indication of errors and other

notifications.

Implemented Tested

Table 3.4 Implementation and test status of Usability Testing

As indicated in table 3.4, three non-functional requirements pertaining to the usability of the

solution have been implemented and tested. Usability testing was carried out qualitatively since

it is a measure of quality therefore quantitative values cannot be obtained.

Accuracy Testing (Quantitative)

Accuracy is an important requirement since the solution depends greatly on its accuracy level.

Once a user has input plain text test steps, it is important that the solution is capable of mapping

it to an appropriate automation command. In order to determine the accuracy of the natural

language test step conversion to executable statements, test steps that conform to each of the

three commands that have been implemented were tested separately since they have separate

statement specific data extraction algorithms implemented as presented in Table 3.5,

Statement No of Test

cases

No of Test cases

passed

Accuracy (%)

Open Statement 30 27 90%

Type Statement 30 25 83%

Click Statement 30 24 80%

Overall Accuracy 84.33%

Table 3.5 Accuracy of the test results

55 | P a g e

 - EVALUATION AND RESULTS

4.1 Evaluation Criteria
The evaluation of the developed solution will be carried out based on pre-determined criteria

as

presented in below table.

Criteria Description

Approach The efficiency of addressing the problem and relevance of solution needs

to be discussed with the aim of evaluating the approach taken to resolving

the research problem.

Design and

Architecture

The design and architecture of the solution needs to be evaluated to

determine if it is correct and suitable.

Impact

The impact of the provided solution on the problem domain and its effect

on existing solutions has to be evaluated.

Usability

The usability of the provided solution by users with no technical

background as well as experienced users needs to be evaluated.

Enhancements

Enhancements that can be made in order to improve the efficiency, impact

and usability of the solution provided needs to be identified through

evaluation.

Table 4.1 Evaluation criteria of developed model

4.2 Evaluation Methodology
The model was presented to stakeholders and domain experts for direct hands on experience

and feedback was obtained regarding the model provided with relevance to the research

problem, its effectiveness and drawbacks. The feedback received contributes to determining

the impact, efficiency and usability of the provided solution.

4.3 Evaluation by Users
The prototype was presented to 30 evaluators who were associated with the QA domain having

different amounts of experience in the industry and different levels of technical expertise for

evaluation. Also, Testsigma tool was given to evaluators to compare the prototype with the

tool. An Online Questionnaire based on the evaluation criteria that was pre-determined was

conducted following the prototype demonstration.

56 | P a g e

Online Questionnaire

Question Purpose of including the question in the

survey

How many years of experience do

you have related to web application

testing?

To get an understanding about the subjects of

the survey and estimate the reliability and

accuracy of their answers based on

experience.

Which testing approaches are you

familiar with?

Adding to reliability to ensure that the

answers provided are unbiased and valid.

If you are familiar with automated testing,

what would you say is the greatest

challenge/s in conventional test automation?

Focusing on collecting the respondents’

opinion regarding the challenges of test

automation that have been previously

identified and any additional challenges

he/she would like to specify

What is your preferred web application test

automation solution?

To clarify the current validity of Selenium in

the test automation domain and to gather

information regarding better frameworks that

may exist and are currently being used in the

industry.

What is the scripting technique used in

the solution mentioned above?

To identify the current level of technical

experience expected in test script creation.

Would you prefer a framework which

interprets manual test steps in natural

language (English) to generate test scripts for

web application test automation?

To estimate the respondents’ willingness to

adopt the proposed solution.

Do you know of any tool or

framework which provides the above

functionality?

To identify existing solutions that the

subjects of the survey consider as similar

solutions in addition to the ones that have

already been identified.

If 'Yes' Please list here

Have you tried Testsigma (NLP based

automation tool) before?

What is the most user-friendly application?

57 | P a g e

In which tool can you do the scripting easily?

To identify that which tool allows to script

easily.

What is the most user friendly

application?

To clarify from which tool user can do the

functions easily or what is the most usability

tool

Is it good to show the generated

automation script to user?

To clarify the new feature is important to

users.

What is the best tool based on the

performance?

To estimate that which tool is performed

well.

Any enhancements needed? To get the enhancements for future work

Table 4.2 Online Questionnaire

4.4 Quantitative Evaluation
In order to evaluate the solution quantitatively, three QA engineers with approximately the

same level of technical expertise and experience in the industry were chosen at random. One

QA engineer was provided with the prototype. The second QA engineer was asked to use their

general approach in web application test automation, using Selenium framework. Third QA

engineer was provided the Testsigma automation tool. All were provided with the same manual

scenario as follows,

The time taken by the QA Engineer was less than 5 minutes. All he had to do was copy the

scenario provided into the editor, capture the relevant UI object to compose the excel sheet that

needs to be uploaded and click “Generate” followed by “Execute”. The QA Engineer who used

the Testsigma took 7-8 minutes since the tool is not providing the copy and paste the test steps

from other tests he had to type the scenario and capture the UI elements. The QA Engineer on

Figure 4.1 Manual Automation Scenario

58 | P a g e

the other hand took between 12-15 minutes for the automation of this simple scenario using

Selenium since he had to write the code for automation in addition to capturing UI elements.

This test was repeated for two other scenarios which yielded similar results. Also, it is very

user friendly. The above scenario was automated with only four steps. Therefore, it can be

quantitatively proved that the provided solution has a positive effect in test automation.

4.5 Critical Evaluation of the System
The proposed solution was to address the research problem of requiring specifically trained

human resources with a considerable amount of technical expertise in the domain of test

automation in web applications. The intention of the solution is to provide a less technical

framework to act as the middle man between a QA Engineer and the automation platform. This

way the cost and time spent on training resources in test automation is reduced and automation

is encouraged as a beneficial mean of testing web applications.

The requirements for the solution were gathered directly from the stakeholders of the system

themselves and also by studying a number of literatures works related to the problem domain.

This paved way to developing solution which directly addresses the problem. The design was

based on the research which was originally carried out regarding tools and techniques that are

to be applied to increase the efficiency and effect. The noted drawback in the architecture was

making it a thick client application instead of a web application. As observed in latter stages it

would have been better if the solution was a web application which would have been even more

beneficial with regards to time and resource saving when automating web applications.

The prototype has been developed as proof of concept that the proposed solution will efficiently

address the problem in question. The relevance of the solution was validated by experts who

agreed the solution was an interesting approach to handle the research problem. The core

functionalities of the prototype include creation of test scripts in English, generation of

automation scripts and the execution of automation scripts to obtain result reports. This

framework is easier to use in comparison with the conventional method of test automation in

web applications which requires a certain amount of coding on the user’s behalf whereas this

framework only requires plain English text as input. English is highly opted over code an input

by any user of the system and therefore the issue of technical knowledge has been directly

addressed. Also, the GUI of the framework is clear and simple therefore usability is guaranteed.

Generated automation scripts can be executed repeatedly by making slight changes to data and

therefore requires less scripting effort by a QA Engineer which is very convenient in saving

59 | P a g e

time. Furthermore, the performance of the prototype decided based on the time taken to

generate an automation script has yielded satisfactory results. Accuracy has room for

improvement if the POS tagger is trained with larger text corpuses containing more sample

data. Overall however, as a proof of concept, this approach can be further explored as a

potential solution to address the research problem by integrating the suggested improvements.

4.6 Results
Developed prototype and Testsigma tool were given to 30 QA Engineers and collected the

responses via the Online Questionnaire.

Participants of the survey were coming from different levels in the industry such as QA

Engineer, Senior QA Engineer, Associate QA Lead, QA Lead, Senior QA Lead, Senior Test

Automation Engineer and Senior Test Automation Lead. More coding, maintenance the

automation code, Reliability of the automation code and cost of the time are common issues of

test automation identified through the survey. Since the problems they were facing in the test

automation, 66.3 % of the participants agreed that they prefer to have a framework which

interprets the manual test steps in natural language (English) to generate test scripts for web

application test automation.

Through the survey identified that NLP based test automation platforms are not very much

popular as 76.7 of the participants % didn’t know about such kind of tools or platforms.

Script Generated View is the new module added to prototype that is not exists in Testsigma

tool. 100% of the participants are agreed that it is very important to have in the model. Then

we can thoroughly evaluate that the new feature is more effective.

83.3% of are told that it is very easy to script with new model rather than the Testsigma because

editor allows to copy and paste the scenarios.

Survey has been included some nonfunctional related scenarios such user – friendliness,

performance. 56.7% of participants are told that proposed model is more user friendly than

Testsigma and 62.1% of are determined that model is performed well than the Testsigma.

60 | P a g e

 - CONCLUSION AND FUTURE WORK

5.1 Problems and Challenges Encountered
Since the domain of test automation has been a recent topic of interest in the software industry

researching on the problem domain was not very difficult. However, finding the optimum

solution for the research problem which would adequately address the research problem was a

challenge. The solution provided had to be efficient, effective with a high level of usability. To

factor in all those to a single solution was the initial challenge faced during this research project.

Another problem faced was how plain English would be processed to generate Selenium code.

NLP was considered for this purpose however; an NLP library alone was not sufficient.

Therefore, an algorithm was designed to convert test steps extracted by the NLP library into

Selenium wrapped automation commands. Lack of a domain specific text corpus was another

problem faced.

When using the POS tagging, Stanford POS tagger was used for the purpose of assigning part

of speech tags to each word or token input by the user. However, the English tag set used by

the POS tagger by default, which is provided by the Penn Treebank site, is unable to assign the

correct part of speech values for statements that are generally used in the test automation

domain. As an example, in the statement “Type username in textbox”, if properly tokenized,

‘type’ should be a verb, however the general POS tagger assigns NN which stands for noun to

‘type’. Therefore, as a solution, the POS tagger model was specifically trained using a custom

corpus defined sssby the developer which contains a few sample statements which are generally

used in test automation.

A user may type in synonyms of the verbs as actions. For example, “launch”, “navigate” are

all synonyms of the verb “open”. These words need to be correctly mapped to the

corresponding command. For this purpose, a dictionary synonym has been compiled. It consists

of a command which represents the action and the list of synonyms. If an immediate match is

not found, the synonym dictionary will be traversed to find the action that corresponds to the

noun. If a match is not found in the synonym map, then the user is prompted to perform the

matching task. Once the user maps a word to the corresponding command the word is added to

the synonym dictionary as a synonym.

61 | P a g e

5.2 Learning Outcomes
Both technical and soft skills were improved as outcomes of the research project. They can be

listed as follows,

• Soft skills such as critical thinking, problem solving, time management and creativity

was improved.

• Programming skills using technologies such as Java, Java FX, Selenium and TestNG.

• Techniques used in text processing such as POS tagging using Stanford NLP library

was studied.

• Training of a POS tagger using specified text corpus was practiced.

• Extensive knowledge regarding test automation in general and more specifically in the

web

application domain was obtained.

• Documentation skills regarding report writing of a research project was developed

• Algorithm design and implementation skills were sharpened.

• Critical evaluation based on qualitative and quantitative measures was studied.

5.3 Limitations of the Solution
This solution has been designed as a thick client application. Therefore, it has to be individually

installed to each user’s system. This is a limitation of the system. Since the prototype was

developed for proof of concept purposes, a database has not been integrated. Database

integration leads to added complexity. However, if the solution is to be converted to a web

application, a database needs to be integrated in place of the JSON files that currently store

data. Also, the scope of the solution was initially limited to test automation in web applications.

It cannot be applied to mobile web and mobile native applications.

5.4 Future Enhancements
The feedback received by external evaluators and the critical evaluation of the system lead to

the

determination of improvements that can be made to the provided solution for better outcomes.

Accordingly, the following enhancements have been suggested for this solution,

• Integration of an Object Spy

• Integrate more selenium commands

62 | P a g e

5.4.1 Integration of an Object Spy
An object spy is an object capturing tool used in test automation for the purpose of extracting

XPaths and another locator information from an UI element through a single click. Although

there are many object capturing tools available in the software market today, it would be easier

if the object spy feature is integrated into the application. In that manner a user would be able

to populate the object data table in the application by using the object spy feature itself instead

of using a separate tool to capture XPaths and create an excel to be uploaded to the system.

The object spy module will be added to the high-level design as shown below,

5.4.2 Integrate more selenium commands

Selenium framework supports for multiple commands to interact with the elements. Open,

Type, Click commands have been already implemented in the prototype and most of the

element events can be captured from these commands. Other than that, there are several

commands in selenium framework such as Wait, Element Disabled, Element Enabled, Element

Displayed. By adding those commands user can develop more advanced scenarios

Figure 5.1 Updated High-Level Architecture Diagram

i | P a g e

 APPENDICES

Appendix A: Summary of Online Questionnaire Responses

Figure 6.2 Results of Q03 in Questionnaire

Figure 6.1 Results of Q02 in Questionnaire

ii | P a g e

Figure 6.3 Results of Q05 in Questionnaire

Figure 6.4 Results of Q06 in Questionnaire

Figure 6.5 Results of Q07 in Questionnaire

iii | P a g e

Figure 6.6 Results of Q08 in Questionnaire

Figure 6.7Results of Q09 in Questionnaire

Figure 6.8 Results of Q10 in Questionnaire

iv | P a g e

Figure 6.9 Results of Q11 in Questionnaire

Figure 6.10 Results of Q12 in Questionnaire

Figure 6.11 Results of Q13 in Questionnaire

v | P a g e

Appendix B: Interviewee Background Status

Figure 6.12 Interviewee Background Status

vi | P a g e

Appendix C: User Manual

C.1 Create New Test Script

a. Click file menu and click New Test Case.

b. Enter new name and click OK (make sure name is unique)

c. A new test script will be added as follows,

vii | P a g e

C.2 Write Scenario and upload Object Excel file.

a. Write/Script your scenario in text area.

b. Create an excel file

Note: The first row should have two columns (locator, XPath).

Fill your objects logical name in locator column and xpath of object in xpath column.

Note: make sure logical name is not included whitespaces

c. Upload excel file to editor using button Object Excel. Uploaded Object Data will be

displayed in table.

Note: locator names included in the scenario should match the locator names uploaded in the

excel file.

viii | P a g e

d. Click File menu and click Save to save the selected test script

C.3 Script Generation and Execution

a. After writing scenario and uploading object excel file click generate button in Scenario tab

and user will be redirected to Generated Script tab.

b. Generated code will be displayed in Generated Script tab.

ix | P a g e

c. After mapping verb with commands click regenerate otherwise click button execute and

choose the browser (default will be chrome browser) to start the execution

C.4 View Reports

x | P a g e

sa. Go to the Execution Reports tab to view reports for selected test scenario.

b. Select a report from drop down. Refresh will update the report list to latest.

xi | P a g e

REFERENCES

[1] Bhattacharyya, P., 2012. Natural Language Processing [Accessed 22 Oct. 2020].

[2]. Burnstein, I., 2003. Practical software testing. N. Y. Springer [Accessed 09 Sep. 2020].

[3] Farrús, M., Costa-jussà, M., Mariño, J., Fonollosa, J., 2012. STUDY AND

COMPARISON OF RULE-BASED AND STATISTICAL CATALAN-SPANISH

MACHINE TRANSLATION SYSTEMS [Accessed 23 Feb. 2021].

[4] Fecko, M., Lott, C., 2002. Lessons learned from automating tests for operations support

system. Software—Practice Exp. Arch [Accessed 20 Dec. 2020].

[5] Fewster, M., Graham, D., 1999. Software test automation.

[6] Gupta, S., Kumar, S., Saxena, C., 2015. Review Paper on Comparison of Automation

Testing Tools Selenium and QTP. MIT Int. J. Comput. Sci. Inf. Technol.

[7] Hirschberg, J., Manning, C., 2015. Advances in natural language processing.

[8] Javvaji, N., Sathiyaseelan, A., Selvan, U.M., 2011. Data Driven Automation Testing of

Web Application using Selenium [Accessed 22 Dec. 2020].

[9] Karlin, I., 2012. An Evaluation of NLP Toolkits for Information Quality Assessment.

Master Linnaeus Univ [Accessed 15 Sep. 2020].

[10] Kaur, H., Gupta, D., 2013. Comparative Study of Automated Testing Tools: Selenium,

Quick Test Professional and TestComplete. Int. J. Eng. Res. Appl [Accessed 20 Dec. 2020].

[11] Kelly, M., 2003. Choosing a test automation framework [Accessed 08 Feb. 2021].

[12] Language.worldofcomputing.net, 2016.

[13] Laukkanen, P., 2006. Data-Driven and Keyword-Driven Test Automation Frameworks.

Data-Driven Keyword-Driven Test Autom. Framew [Accessed 22 Oct. 2020].

[14] Leotta, M., Clerissi, D., Ricca, F., Tonella, P., 2013. Capture-replay vs. programmable

web testing: An empirical assessment during test case evolution. 20th Work. Conf. Reverse

Eng. WCRE.

[15] Manning, C., Raghavan, P., Schü tze, H., 2008. Introduction to information retrieval. N.

Y. Camb. Univ. Press [Accessed 20 Dec. 2020].

[16] Monier, M., El-mahdy, M., 2015. Evaluation of automated web testing tools. Int. J.

Comput. Appl. Technol. Res [Accessed 08 Feb. 2021].

[17] Nagle, C., 2000. Design for Test Automation. URL

http://safsdev.sourceforge.net/DataDrivenTestAutomationFrameworks.htm

[18] Opennlp.apache.org, 2016. Apache OpenNLP - Welcome to Apache OpenNLP.

[19] Pettichord, B., 2003. Deconstructing GUI Test Automation. URL

https://www.prismnet.com/~wazmo/papers/deconstructing_gui_test_automation.pdf

[Accessed 22 Dec. 2020].

xii | P a g e

[20] Pradhan, L., 2011. User Interface Test Automation and its Challenges in an Industrial

Scenario [Accessed 22 Oct. 2020].

[21] Rankin, C, 2002. The Software Testing Automation Framework. IBM Syst. J. p.126

[Accessed 15 Jan. 2021].

[22] Sangave, V., Nandedkar, V., 2014. A review on Automating Test Automation. Int. J.

Adv. Res. Comput. Sci. Manag. Stud. pp.79-86.

[23] Seleniumhq.org, 2016. Selenium Documentation — Selenium Documentation [Accessed

25 Dec. 2020].

[24] Stanfordnlp.github.io, 2016. Stanford CoreNLP – a suite of core NLP tools | Stanford

CoreNLP [Accessed 27 Sep. 2020].

[25] Torkar, R., 2006. Towards automated software Testing Techniques, classifications and

frame works. Blekinge Inst. Technol. Swed.

[26] Zambelich, K., 1998. Totally data-driven automated testing. URL

http://www.oio.de/public/softwaretest/Totally-Data-Driven-Automated-Testing.pdf

[Accessed 14 Jan. 2021].

