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ABSTRACT 

 

Application-level caches can effectively improve the performance of any I/O bound 

applications. However, what needs to be cached in the application caches, should be decided 

by the developers. This holds true for enterprise level application cache implementations such 

as Redis and Memcached. Deciding what to be cached, would not be a straightforward task as 

it might require the knowledge of the system or the business domain, system specifications 

and possible workloads. In this thesis, a lightweight, simple to integrate and Intelligent 

application-level cache framework is proposed, and with the use of the framework, 

application logic can be decoupled from the cache logic. The proposed framework can be 

used in the general case, without limiting to any database centric caches as it mainly considers 

frequency and data size which are readily available in every application considered. The 

framework uses a Support Vector Machine (SVM) classifier model to predict what to cache, 

hence removing much burden from the developers. The framework sits between the 

application and the cache implementation, and handles the extra processing asynchronously 

and automatically, avoiding any overhead added by the extra processing used for the caching 

decision. Since the framework acts as a transparent layer between the application and the 

underline cache, for existing applications which already use a cache, this caching framework 

can be integrated seamlessly. The framework is written in Python and uses a Redis cache as 

underneath cache implementation but can be extended to support any type of cache 

implementation. The proposed framework was evaluated against uniform workloads and non-

uniform workloads, with different cache eviction methods as well as with different time to 

live values. The experimental results show that the performance of the application can be 

improved up to 17% with the use of the proposed model when the specified cache size is 

limited compared to the total size of all the possible cacheable data. 
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CHAPTER 1 
 

INTRODUCTION 
 

Application caches play a vital role in enterprise applications. Since most of the enterprise 

applications use database systems, third party systems, performance gain can be obtained by 

introducing in-memory caches. There are several cache implementations available such as 

Redis[1], Memcached[2], Hazelcast[3]. Caches can be categorized into two main cache types, 

namely static\pre-loading caches, and dynamic\lazy loading caches. Static caches populate the 

cache at the application initialization. Dynamic caches populate the cache on demand. 

 

When cache size is limited, cache removal methods are also important. Popular cache removal 

algorithms can be identified as LRU [4] and LFU[5]. Although implemented caches support 

cache eviction policies, contrast to traditional low-level caches [6] [7] [8], however for all the 

cache implementations mentioned above, what needs to be cached, should be decided by the 

developers. Understanding what needs to be cached is not a straightforward task as developers 

are required to consider the application domain and the application workloads. 

 

For this purpose, developers might use the following approaches. 

 

● No decision making. Everything is added to the cache. Cache removal method decides 

what to be removed if cache size exceeds. 
 

● Pre-defined rules. 

 

First approach is a blind approach and for the second approach developers might need to 

consider the cache request distribution. However, this distribution might vary depending on 

the load of the application and the time. Both these approaches are not the ideal solutions in 

terms of performance and development aspects. 

 
 

1.1 Motivation 
 
 

Ideal solution is to come up with an intelligent caching framework which can automatically 

decide what needs to be cached. This would address the limitations of no decision making and 

pre-defined rules approach. 

 

With this proposed framework, developers only need to focus on the application logic and the 

caching framework will take care of what needs to be cached. Also, with the workloads or 
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spikes of the load that the system might undergo from time to time, the framework would be 

able to adjust accordingly. 

 
 

 

1.2 Statement of the problem 
 

Although there are frameworks which are specific to certain type of domains, currently there 

is no general-purpose caching framework which can be used to automatically decide what 

needs to be cached. This framework should be intelligent enough to adapt to different 

situations such as workload changes. 

 
 

1.3 Research Aims and Objectives 

 

1.3.1  Aim 
 
 

To come up with an general purpose, intelligent caching framework which could 

automatically decide what needs to be cached, so that the performance can be 

improved when there’s a limitation in cache capacity which can be accommodated for 

application considered. 

 

1.3.2  Objectives 

 

1. To implement a caching framework which can be reusable across multiple caches. 

This would enable developers to only focus on application logic, not what needs to 

be cached. 
 

2. Evaluate performance of the cache against the overhead added with the 

framework. 

 
 

 

1.4 Scope 
 

Scope includes a caching framework which can be reusable across multiple caches. 

Functionality will be available via an API (Application Programming Interface). 

Caching framework will take care of what needs to be cached and what needs not to be 

cached. 
 

When we consider the difference between dynamic and static caches, static caches 

entries are populated at the initialization and dynamic cache entries are populated on 

demand. The proposed framework supports dynamic caching which is a harder 

problem. 
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Redis cache will be used as the underneath cache for the caching framework. Redis is 

accepted as one of the best caching solutions by the community and it’s also open 

source. 
 

Although scope is limited to dynamic cache, with minor changes, it should be possible 

to extend the same solution to static caches as well. 
 

When there’s no unlimited capacity (i.e., It’s not possible to cache every possible 

entry), the decision of what to cache does matter. The proposed framework only 

automates the decision-making part while trying to optimize the hit ratio. However, 

the developer still needs to take care of generating\populating\creating a cache entry. 

 

Also, it is assumed that total cache size is a constant so that it does not change due to 

the load of the system. Therefore, adding cache entry might evict existing cache entry. 

Cache eviction is handled by the underneath cache implementation. Therefore, the 

proposed framework will neither enhance the cache eviction nor determine the 

eviction method. 

 

 

1.5 Structure of the Thesis 
 
 

Chapter 2 describes the previous work done in the same research area and discusses 

and reviews those publications critically. It also highlights the research gap which is to 

be addressed by this research. 

 

Chapter 3 describes the problem in detail and how to solve the problem. It also 

describes the deliverables and limitations of the solution. 

 

Chapter 4 describes the findings and the evaluation of the research. Chapter 5 

describes the conclusion and future work. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

This chapter describes the previous work done in the same research area. 
 
 

 

In [9], a cache admission policy is discussed for the caches of search engines. The main 

objective of having an admission policy is to avoid adding queries which might not be hit 

again in the near future. Therefore, the basis of the admission policy is the frequency. To 

decide the frequency, some of the past properties such as past queries and some of the 

properties of the query itself such as no of characters in the query have been used. 

 

Proposed approach is a simple approach which only targets a set of scenarios. The main 

problem to be solved by this approach is that when cache size is limited, adding an infrequent 

entry would evict one or more existing entries which might be more frequent than the newly 

added entry. Above problem could lead to reduction of overall cache hit ratio. Therefore, the 

admission policy is used to avoid adding such infrequent queries to the cache. 

 

However, there could be scenarios where not only the frequency of the cache entry but also 

the size of the cache entry is also important. It would be more beneficial to add more frequent 

and small cache entries than more frequent and large cache entries as it would allow more 

entries to be cached, resulting in a higher overall hit ratio. 

 

[10] introduces a framework to configure caches which can be used by the developers. This 

framework can be used for web applications which use hibernate. With the use of available 

web logs, workload to database access mappings are generated. With the use of colored Petri 

nets, cache configurations are optimized automatically. 

 

Configuring caches would be a tedious task for most of the cases. Developers might need to 

change the cache configuration time to time based on the workloads as well. Also, there can 

be incorrect configuration done by the developers which might go unnoticed at the beginning. 

The proposed framework helps the developers to identify where to configure caches and adds 

them automatically reducing the manual effort required by the developers. 

 

Although the proposed framework identifies where to configure caches in the application 

code, it does not optimize the caches by considering what needs to be cached for each 

configured caches when there’s a limited cache size available. 
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Web caching admission and replacement technique is introduced in [11]. Opposed to heavy 

machine learning techniques, a multinomial logistic regression (MLR) classifier is used as the 

model. The worthiness of the cache entry is classified using the proposed model. The MLR 

model is trained for classifying the web cache's object worthiness. The object worthiness is 

calculated with the use of object properties such as size of the object and the web traffic. 

 

The output of the MLR model is a worthiness class. Worthiness of the cache entries are 

updated or calculated on demand. Based on the worthiness, cache admission and/or cache 

replacement policies are invoked. 

 

This approach is applicable only when a system controls the underneath caching 

implementation so that admission and eviction policies are governed by the system itself. The 

usable scope is narrow when application-level caches are considered as most of the the 

enterprise systems only use existing implemented caches such as Redis. 

 

[12] also proposes a framework which can be used by the developers to identify cacheable 

locations with a minimum effort. The cacheability patterns are based on the runtime 

monitoring of the web applications. The focus of the framework is to reduce the effort 

required by the developers to analyze the cacheable points in the system. 

 

In this paper, APLCache Framework has been introduced by the authors. The framework is 

implemented in Java and can be integrated with either new applications or existing ones. With 

the use of aspect-oriented programming, system’s method executions are intercepted. 

Collected data is analyzed and the framework is capable of producing recommendations to the 

developers. 

 

For the recommendations following the criterion are used for the decision-making 

considerations. 

 

● Staticity (ST) - Is the data static? 
 

● Changeability(C) - Does the data constantly change? 
 

● Frequency (F) - Is the data frequently requested? 
 

● Shareability (SH) - Is the data user specific? 
 

● Expensiveness (E) - Is the data expensive to compute? 
 

● Large Data (LD) - Is the data size large? 
 

● Large Cache (LC) - Is the cache size large? 
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In the above approach, the decision-making process is a somewhat rigid approach. Thus, 

making changes to the decision-making process would be a tricky task. Also adopting this 

approach for an existing system would be a challenging task as aspect-oriented monitoring 

needs to be established. Also, this could add additional overhead which could potentially 

decrease the overall system performance if not done properly. 

 

[13] proposes a cache configuration automated approach named as SACC which stands for 

Smart Application-level Cache Configuration. In the proposed approach application logic is 

decoupled from the cache logic. Without any manual intervention, caching operations are 

executed automatically. LSTM (long short term memory ) model is used to decide what needs 

to be cached. 

 

This paper proposes a quantifiable method to evaluate cacheability of the objects, in contrast 

to the metrics such as recency and frequency. Cacheability of the data is used to determine 

whether data is suitable for caching. With the use of cacheable data, the LSTM neural 

network is trained so that the model can on the fly predict whether a particular data is suitable 

for caching. By adding a transparent layer between the application and the database, the 

SACC framework removes the requirement of manual cache configuration by the developers. 

 

The given approach is only applicable to database centric applications. However, there can be 

scenarios where cacheable data are generated by complex calculations or hitting some third-

party endpoints. Also, the given approach is a complex approach which might add an 

additional overhead to the system if not implemented properly. Also, there’s no indication of 

the computation overhead added by the proposed framework and might not be suitable for 

CPU bound applications. 

 

[14] identifies two main approaches for application-level caching, reactive approach and 

proactive approach. In the reactive approach data is always cached after it has been requested. 

This would result in a reduced hit ratio of the cache for a certain period of time, due to the fact 

that the first requests of distinct cache keys always produce a cache miss. Proactive approach 

eliminates above limitation as it would prefetch data beforehand by predicting the cacheability 

with the use of a prediction model. 

 

However, as per the authors, no system was found with an approach to cache data proactively. 

It is also identified that the current reactive approaches add a significant complexity in the 

design and implementation, hence the caching solutions with proactive approaches, would be 

 
 
 

6 



more complex than reactive approaches resulting in more effort and reasoning to be done in 

the design and implementation. 

 

According to [15], there are three main benefits of using an application cache. Long-running 

computations can be avoided by using pre-calculated results on the same input, which can 

significantly improve the execution time of the application, allowing the application to 

process more requests per unit time. With the reduced per request time achieved with 

application caches, users will experience more responsiveness and in different workloads such 

as workload spikes, the application would still withstand the workload without disrupting the 

user experience. Application caches potentially reduce application servers and/or the database 

replicas. Due to the reduced resources, overall cost of the application infrastructure would be 

reduced. 

 
 
 
 

2.1 Research Gap Identified 
 

Research done in application caches, can be categorized in two areas mainly. 

 

1. Frameworks that help developers to configure caches. 
 

2. Frameworks when integrated, automatically handles what to cache. 
 
 

 

In first area, application code is searched, or method calls are intercepted to find out where to 

implement caches. 

 

In second area, the existing frameworks have one or more following characteristics. 

 

1. The frameworks use complex algorithms and methods which might not be suitable 

for all the applications. 
 

2. The frameworks act as a transparent layer between application and the cache so that 

the cache misses are also handled by the framework itself. 
 

3. The frameworks are mostly integrated to database centric applications. 
 
 

 

When general purpose cache framework is considered, the following properties are 

more suitable to have. 

 

1. It should be simple enough to integrate to any application including existing 

applications. 
 

2. The framework should not handle cache misses so that data retrieval is decoupled 
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from the cache framework. This would allow cache framework to be integrated to 

any kind of data retrieval not only to database retrievals. 
 

3. Performance of the framework should be equal in every scenario not only in 

database centric applications. 

 

 

By filling above three gaps, this research is expected to come up with a simple, easy 

to implement and integrate, general purpose, intelligent caching framework. 
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CHAPTER 3 
 

PROBLEM ANALYSIS 
 

Since currently caches are coupled with application logic, when a cache is integrated into a 

system, developers are required to implement what needs to be cached. However, when a 

cache and application logic are decoupled from each other, there needs to be transparency 

between both. Otherwise, there will be additional coupling added when a cache framework is 

integrated to a system. 

 
 

Just adding another layer between the application and the cache would not be sufficient. As it 

would only add an overhead to the system. There needs to be a significant improvement when 

a caching framework is integrated. The best way to achieve that would be to have an 

increased hit ratio with/without a reduced cache size. As an example, when everything is 

cached, the hit ratio would be 20% and after integration with a framework, if the hit ratio can 

be increased to 30%, it would be beneficial for the overall application performance. 

 
 

However, getting an increased hit ratio would not be an easy task as the system behavior and 

workloads can be changed overtime. One option would be to analyze history patterns (search 

patterns) of the system and configure the system accordingly. But this task would need to be 

done for each cache separately considering the context of cache usage. Also, when complex 

frameworks are integrated to the application, although it would increase the hit ratio of the 

cache, with the overhead added, there might not be a significant performance improvement. 

 
 

 

Currently there is no general-purpose simple framework which can be used to automatically 

decide what needs to be cached and can be integrated to any application without putting in 

much effort. 
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METHODOLOGY 
 

To make caches decoupled from the application logic, the proposed caching framework 

should be between the cache and the application. 

 

High level diagram of how the proposed framework would work in a real-world application is 

shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : High Level Design of the Solution 
 
 

 

As shown above, if the framework is integrated, the application needs to go through the 

caching framework for any cache operations such as read cache and write cache. When the 

caching framework receives a read request, it will forward that request to the actual cache and 

return the results to the application in a synchronous way. When a caching framework 

receives a write request, it will return a response to the application whether the write request 

is accepted and asynchronous writes to the actual cache if cache entry needs to be added. 

(Reduced weight of the arrow between caching framework and Redis cache indicates that 

only a portion of the write requests received by the framework are sent to the Redis cache.) 

 

However, the caching framework does not handle the cache miss scenario. When a cache miss 

is found, the application needs to handle how to load data and the caching framework assumes 

that all externally loaded data will be fed back to the caching framework. This is to reduce the 

coupling of the caching framework to the application. 
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Figure 2 : High-level Architectural Design 
 
 

 

As shown in the above diagram, the caching framework consists of four major components. 

 

1. Write Queue 
 

This is used to asynchronously process write requests and reduce the overhead added 

to the application by the caching framework. The write requests from the application 

will be added to the write queue and will be processed by the Coordinator module. 

 
2. Coordinator Module 

 
Coordinator module accepts any read cache requests and will retrieve the results via 

Redis connector module. This module is also responsible for processing write queue 

entries. When processing a queue entry, the decision-making module is invoked by the 

coordinator module to decide whether to cache or not.As the prediction model, 

Support Vector Machines (SVM) is used. If it needs to be cached, the coordinator 

module adds those via the Redis connector module. 

 
 

 

3. Redis Connector 
 

This module handles actual communication to Redis cache. 

 

4. Decision-making module 
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Since decision making of adding a cache entry is the main part of the framework, 

determining what should be cached is the key part of the project. Although a cache 

entry is the most recently added entry, if it is unlikely to retrieve that cache entry again 

in the future, there is no meaning of adding that cache entry. So there needs to be a 

worthiness limit which can be used to determine the decision. Therefore, the 

worthiness limit (boundary which needs to be exceeded by a cache entry to be eligible 

to be added to the cache) of adding a cache entry should be determined by the 

framework from time to time. 
 

As a cacheability quantization method, frequency and size of the entry is used. Current 

cacheability is predicted with the use of previous 10 windows frequency and the data 

size. The objective is to maximize cache utilization. To achieve that, it is logical to 

cache high frequency and small size data. To decide on the optimal frequency 

boundary and data size boundary, the following three models are used. 

 

A. 50-50 model:- frequency of the value >= 99th percentile of frequency or ( 

frequency >= frequency mean & data size <= data size mean ) , labeled as 

cacheable. More data is to be flagged as cacheable, hence high aggressive 

caching. 
 

B. 75-25 model:- frequency of the value >= 99th percentile of frequency or ( 

frequency >= frequency of 75th percentile & data size <= data size of 25th 

percentile ) , labeled as cacheable. Less data is to be flagged as cacheable, 

hence moderate aggressive caching. 
 

C. 90-10 model:- frequency of the value >= 99th percentile of frequency or ( 

frequency >= frequency of 90th percentile & data size <= data size of 10th 

percentile ) , labeled as cacheable. Lesser data is to be flagged as cacheable, 

hence low aggressive caching. 

 
 

 

Three SVM models will be trained for the above three models and will be evaluated to 

determine the optimal model to be used. 
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CHAPTER 4 
 

EVALUATION AND RESULTS 
 

 

Evaluation is based on two main hypotheses which are, 
 

1) Is the cacheability prediction model an accurate model to be used? 
 

2) Can the proposed model improve performance of a system when integrated? 
 

 

To measure the accuracy of the model, it is required to evaluate the training model attributes 

such as precision, recall and accuracy. To evaluate the performance improvement, it is 

required to run performance tests against a system with and without the framework. Since 

there are three model variations, both the evaluations (accuracy and performance) are done for 

each variation separately.   

The dataset for the experiment was an online retail dataset[16]. This dataset is from UCI 

website which is a reputed Machine Learning Repository.70% of the dataset was used for 

training purposes and 30% of the data set was used for evaluation purposes. Following 

approaches were taken to test above-described hypotheses. 

 

To evaluate the accuracy of the model tests were carried out for the test data set. 

 

Table 1: Accuracy of the models 
 

 Precision  Recall  Accuracy 

        

Model 0  1 0  1  
        

50-50 Model 0.93  0.81 0.84  0.86 0.87 

        

75-25 Model 0.91  0.77 0.89  0.80 0.86 

        

90-10 Model 0.91  0.76 0.98  0.42 0.9 

        

 

As per the above table it can be seen that all three variations converge quite well and the 90-

10 model has the highest overall accuracy. Also, performance of the framework was evaluated 

under following configurations: 

 

1) No cache 
 

2) Caching each data 
 

3) with the proposed model. 
 

Evaluation is based on the throughput of the different cache configurations and the baseline is 

considered as the throughput performance of the No cache configuration. 
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For the experiment, JMeter tool [17], was used to carry out the performance tests. All the 

cache configurations including proposed three SVM models were evaluated against uniform 

and non-uniform workloads, LFU and LRU cache eviction methods and different time to live 

values for cache entries. All the tests were run on the same computer which has an Intel i7-

6500U CPU @2.50GHz and 8.00 GB RAM. 

 

Figure 3 and Figure 4 show the performance and the hit ratio results obtained for the models 

under the uniform workload with least frequently used (LFU) eviction for high TTL values ( 

TTL > sample test run ) and Figure 5 and Figure 6 show the performance and the ratio results 

obtained for the models under the uniform workload with least recently used (LRU) eviction 

for high TTL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Performance under Uniform workload, LFU eviction and high TTL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Hit ratio under Uniform workload, LFU eviction and high TTL 
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Figure 5: Performance under Uniform workload, LRU eviction and high TTL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Hit ratio under Uniform workload, LRU eviction and high TTL 
 
 
 
 
 
 
 

 

As per the above figures, irrespective of the eviction method, the performance and the hit ratio 

of the models are higher than cache all configuration, under uniform workload, when the 

cache capacity is below 15%. Also, the performance of the models is higher when the LFU 

method is used as the eviction method than the LRU method. 
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Figure 7 and Figure 8 show the performance and the hit ratio results obtained for the models 

under the non-uniform workload with least frequently used (LFU) eviction for high TTL 

values and Figure 9 and Figure 10 show the performance and the hit ratio results obtained for 

the models under the non-uniform workload with least recently used (LRU) eviction for high 

TTL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Performance under Non-Uniform workload, LFU eviction and high TTL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Hit ratio Non-Uniform workload, LFU eviction and high TTL 
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Figure 9: Performance under Non-Uniform workload, LRU eviction and high TTL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10: Hit ratio under Non-Uniform workload, LRU eviction and high TTL 
 
 
 
 

 

As per the above figures, irrespective of the eviction method, the performance and the hit ratio 

of the models are higher than cache all configuration, under non-uniform workload as well, 

when the cache capacity is below 17%. Also, the performance of the models is almost the 

same for both eviction methods. 

 
 

 

Figure 11 shows the performance of each model with different cache capacity, against the 

time to live value of the cache entries. The higher TTL values would facilitate higher 

performance of all three models. 
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Figure 11 : Performance against Time to Live 
 
 

 

Overall, the performance of the models is high due to the increased hit ratio of the models 

when compared to cache all scenarios. However, when hit ratios are almost same, cache all 

configuration works better due to the additional overhead added by the proposed framework. 

Additionally, when 90-10 model is considered, the performance and the hit ratio get flatten. 

This is due to the underutilization of the cache capacity as 90-10 model decides to cache very 

a smaller number of entries. 
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CHAPTER 5 
 

CONCLUSION AND FUTURE WORK 
 

Application caches play a vital role in today’s enterprise software industry as it could be 

beneficial to integrate more and more caches to obtain a higher throughput, low latency, and 

low infrastructure cost. However, when configuring the caches, developers are required to 

have in-depth knowledge of the domain and possible workloads. Also, when there’s a 

limitation on the cache size which can be accommodated for a particular cache, cache 

utilization should be at the optimal level to have the maximum effect of introducing a cache. 

There are already available for general purpose cache eviction methods such as least recently 

used and least frequently used, however there’s no general-purpose method for determining 

the validity of cache admission. 
 

This thesis proposes a general purpose, intelligent caching framework which is based on the 

most recent frequency and data size. Since these metrics are readily available for any system 

and with the simplicity of the overall design, the proposed model would be a good candidate 

for a smooth integration for any existing system. The main idea behind the proposed 

framework is that the cache utilization can be improved by only adding entries which would 

potentially have a higher frequency and lower cache entry size. By adding only potentially 

high frequency cache entries, it would remove cache pollution as much as possible and 

improve the overall hit ratio. By only adding lower sized cache entries, increased number of 

cache entries would be accommodated in the cache for a particular time hence there would be 

maximum utilization of the allowed cache capacity. 
 

The proposed framework uses a support vector machine classifier (SVM classifier) to 

automatically decide what to be cached. To minimize the overhead added with the framework, 

the cache retrievals are blindly done, and cache additions are done asynchronously. However, 

all the additions are evaluated for the cacheability decision hence some of the entries would 

not be added to the cache which would limit the cache pollution as much as possible. 
 

There are three major parts in the proposed approach, a simple cacheability identification 

technique, a SVM model to automatically decide what to cache and a general-purpose caching 

framework which can be integrated to new or existing systems without much effort. The 

cacheability identification method introduces a general-purpose quantitative approach for 

simply determining what to be cached by looking at an already existing dataset. Since the 

cacheability identification method uses frequency and data size, cacheability for a given 

dataset can be easily determined. Based on the cacheability flagged dataset, a support vector 

machine is trained for cacheability decision. Support vector machine model is such that it only 
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uses previous ten windows frequency and cache entry size. By only considering recent 

windows only, it would allow the model to indirectly consider recency as well. 
 

Three variations of the cacheability identification techniques (90-10, 75-25, 50-50 models) 

were evaluated for its accuracy of learning and performance against uniform and non-uniform 

workloads as well as for different time to live values. The overall accuracy of all three models 

is more than 85% hence models converge well in all three variations. Experiments were 

carried out for testing the performance of the caching framework for three different variations 

above, keeping the no cache configuration as the baseline. The results show that the proposed 

framework would improve the throughput up to 17% compared to traditional cache all 

configuration, when the cache capacity (the average number of cache entries can be 

accommodated out of all possible cache entries, for a given time) is under 15%. 
 

Out of three variations, 90-10 model which labeled cacheable data for training when the 

frequency of the value >= 99th percentile of frequency or frequency >= frequency of 90th 

percentile and data size <= data size of 10th percentile, shows higher throughput in most cases 

compared to other two variations. Also, that same model has the highest overall accuracy 

when compared to other two models. But, the 90-10 model does not perform well when cache 

capacity is beyond 15% because the model is underutilizing the cache capacity. However, 

beyond this capacity ‘cache all’ configuration performs better in almost all the cases. 

Considering all above, it can be concluded that when cache capacity is less than 15%, 90-10 

model can be selected among three variations and it would improve the overall throughput up 

to 17%, compared to traditional cache all configurations. 
 

With the proposed work, there are some unanswered questions like whether it is possible to 

improve the accuracy of the model so that the precision and recall can be improved as SVM 

model used for the framework is only trained for default parameters. Also, would more 

lightweight classifiers with lees accuracy improve the overall performance by reducing the 

overhead added when deciding what to be cached? To address above questions, as future 

works, it would be worth investigating whether SVM model can be further improved to have a 

higher accuracy. In addition to that it would be worth investigating other lightweight 

classifiers such as Logistic Regression or Random Forest Regression, to determine whether 

using those classifiers overall throughput is improved or not. 
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APPENDICES 
 

Appendix A: Results 
 

    Performance   Hit Ratio  

Eviction Load Expire 
        

        

Method Type Time Cache 50-50 75-25 90-10 Cache 50-50 75-25 90-10 

   All Model Model Model All Model Model Model 
           

  No         
LFU Uniform Expiry 1.176 1.221 1.249 1.336 9.00% 10.00% 11.00% 19.00% 

           

  No         
LFU Uniform Expiry 1.372 1.428 1.437 1.506 22.00% 23.00% 24.00% 28.00% 

           

  No         
LFU Uniform Expiry 1.444 1.508 1.557 1.491 29.00% 29.00% 31.00% 30.00% 

           

  No         
LFU Uniform Expiry 1.616 1.625 1.609 1.565 32.00% 33.00% 33.00% 31.00% 

           

  No         
LFU Uniform Expiry 1.900 1.822 1.786 1.580 43.00% 41.00% 40.00% 31.00% 

           

  No         
LRU Uniform Expiry 1.108 1.136 1.249 1.226 10.00% 11.00% 12.00% 17.00% 

           

  No         
LRU Uniform Expiry 1.387 1.447 1.535 1.504 24.00% 25.00% 29.00% 30.00% 

           

  No         
LRU Uniform Expiry 1.621 1.614 1.569 1.580 32.00% 32.00% 33.00% 31.00% 

           

  No         
LRU Uniform Expiry 1.702 1.664 1.661 1.547 36.00% 33.00% 38.00% 29.00% 

           

  No         
LRU Uniform Expiry 2.068 1.882 1.849 1.535 47.00% 44.00% 42.00% 31.00% 

           

 Non- No         
LFU Uniform Expiry 1.038 1.118 1.100 1.155 12.00% 10.00% 11.00% 18.00% 

           

 

Non- No 

        

         
LFU Uniform Expiry 1.186 1.210 1.259 1.268 22.00% 22.00% 24.00% 28.00% 

           

 Non- No         
LFU Uniform Expiry 1.223 1.308 1.353 1.390 28.00% 29.00% 30.00% 33.00% 

           

 Non- No         
LFU Uniform Expiry 1.368 1.392 1.408 1.395 33.00% 32.00% 34.00% 34.00% 

           

 Non- No         
LFU Uniform Expiry 1.666 1.502 1.521 1.402 45.00% 40.00% 40.00% 34.00% 

            



 Non- No         
LRU Uniform Expiry 1.038 1.146 1.149 1.172 10.00% 14.00% 11.00% 17.00% 

           

 Non- No         
LRU Uniform Expiry 1.209 1.267 1.272 1.329 22.00% 27.00% 27.00% 30.00% 

           

 Non- No         
LRU Uniform Expiry 1.369 1.439 1.425 1.401 29.00% 33.00% 33.00% 33.00% 

           

 Non- No         
LRU Uniform Expiry 1.455 1.505 1.501 1.412 34.00% 37.00% 37.00% 34.00% 

           

 Non- No         
LRU Uniform Expiry 1.693 1.648 1.588 1.401 46.00% 45.00% 43.00% 34.00% 

           

 Non-          
LFU Uniform 5 min 1.063 1.117 1.125 1.147 11.00% 13.00% 13.00% 18.00% 

           

 Non-          
LFU Uniform 5 min 1.170 1.216 1.264 1.231 24.00% 24.00% 26.00% 23.00% 

           

 Non-          
LFU Uniform 5 min 1.338 1.342 1.371 1.218 30.00% 31.00% 32.00% 23.00% 

           

 Non-          
LFU Uniform 5 min 1.407 1.437 1.417 1.215 32.00% 35.00% 35.00% 23.00% 

           

 Non-          
LFU Uniform 5 min 1.582 1.508 1.456 1.238 45.00% 41.00% 37.00% 23.00% 

           

 Non-          
LRU Uniform 5 min 1.036 1.158 1.153 1.164 11.00% 14.00% 15.00% 19.00% 

           

 Non-          
LRU Uniform 5 min 1.141 1.335 1.308 1.218 25.00% 28.00% 28.00% 23.00% 

           

 Non-          
LRU Uniform 5 min 1.348 1.442 1.415 1.185 32.00% 34.00% 33.00% 22.00% 

           

 Non-          
LRU Uniform 5 min 1.502 1.495 1.456 1.178 37.00% 37.00% 36.00% 22.00% 

           

 

Non- 

         

          
LRU Uniform 5 min 1.759 1.617 1.494 1.171 48.00% 43.00% 37.00% 22.00% 

           

 Non-          
LFU Uniform 10 Min 1.046 1.083 1.096 1.132 10.00% 12.00% 14.00% 19.00% 

           

 Non-          
LFU Uniform 10 Min 1.215 1.135 1.274 1.169 24.00% 25.00% 26.00% 25.00% 

           

 Non-          
LFU Uniform 10 Min 1.344 1.384 1.378 1.283 31.00% 32.00% 32.00% 28.00% 

            
 

 

II 



 Non-          
LFU Uniform 10 Min 1.487 1.285 1.449 1.253 35.00% 34.00% 35.00% 27.00% 

           

 Non-          
LFU Uniform 10 Min 1.641 1.376 1.511 1.240 45.00% 40.00% 40.00% 26.00% 

           

 Non-          
LRU Uniform 10 Min 1.084 1.039 1.112 1.138 11.00% 13.00% 14.00% 15.00% 

           

 Non-          
LRU Uniform 10 Min 1.282 1.329 1.266 1.327 24.00% 29.00% 29.00% 28.00% 

           

 Non-          
LRU Uniform 10 Min 1.376 1.421 1.459 1.451 32.00% 34.00% 35.00% 34.00% 

           

 Non-          
LRU Uniform 10 Min 1.490 1.472 1.489 1.518 37.00% 38.00% 38.00% 38.00% 

           

 Non-          
LRU Uniform 10 Min 1.781 1.634 1.556 1.649 48.00% 44.00% 41.00% 45.00% 

           

 Non-          
LFU Uniform 15 Min 1.053 1.134 1.142 1.172 9.00% 13.00% 14.00% 19.00% 

           

 Non-          
LFU Uniform 15 Min 1.226 1.272 1.296 1.328 24.00% 25.00% 26.00% 29.00% 

           

 Non-          
LFU Uniform 15 Min 1.380 1.393 1.401 1.347 31.00% 31.00% 32.00% 31.00% 

           

 Non-          
LFU Uniform 15 Min 1.470 1.442 1.467 1.348 35.00% 34.00% 35.00% 31.00% 

           

 Non-          
LFU Uniform 15 Min 1.681 1.559 1.570 1.311 44.00% 40.00% 42.00% 30.00% 

           

 Non-          
LRU Uniform 15 Min 1.030 1.109 1.132 1.168 11.00% 13.00% 15.00% 21.00% 

           

 Non-          
LRU Uniform 15 Min 1.208 1.270 1.311 1.296 24.00% 27.00% 30.00% 29.00% 

           

 

Non- 

         

          
LRU Uniform 15 Min 1.378 1.405 1.438 1.281 32.00% 34.00% 35.00% 30.00% 

           

 Non-          
LRU Uniform 15 Min 1.531 1.483 1.494 1.304 37.00% 38.00% 38.00% 30.00% 

           

 Non-          

LRU Uniform 15 Min 1.712 1.584 1.568 1.301 48.00% 45.00% 42.00% 30.00%  
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