

Enhancing Book Recommendation

with the use of Reviews

P. G. Sudasinghe

2019

2

Enhancing Book Recommendation

with the use of Reviews

A dissertation submitted for the Degree of Master of

Business Analytics

P. G. Sudasinghe

University of Colombo School of Computing

2019

3

1

DECLARATION

The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge, it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: P. G. Sudasinghe

Registration Number: 2018/BA/033

Index Number: 18880331

_____________________ _____________________

Signature: Date:

This is to certify that this thesis is based on the work of Ms. P. G. Sudasinghe under my

supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name:

Signature:

13-9-2021

Date:

13/09/2021

Dr. H. A. Caldera

2

I would like to dedicate this thesis to

my family, friends, colleagues, and teachers who were an immense source of support and

guidance throughout.

3

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Amitha Caldera for his guidance

and support throughout this project, coordinators Dr. Manjusri Wickramasinghe and Dr.

Thilina Halloluwa for their effort in coordinating the Master of Business Analytics program

and Individual Project respectively, and all the lecturers at University of Colombo School of

Computing who have equipped me with the knowledge and skills required to complete this

project.

4

ABSTRACT

Recommendation systems are a major component in current e-commerce websites and

applications. There are many studies carried out to ensure that the best recommendations are

provided to the user and conversion rate is increased. These techniques usually utilize

historical transaction data and user ratings. While most of such websites also provide the

capability to review the products bought by the users, the content of these reviews usually

does not play a major role in recommendations made to the users.

Goodreads is the world’s largest website for readers and book recommendations. A user can

keep track of their reading as well as review, rate and recommend books to other users. Book

recommendations are also made automatically by Goodreads based on the books a user has

already read and rated. As a review is much more expressive than a single rating and tend to

explain the user’s decision for a rating, it is reasonable to expect that incorporating reviews

will improve the recommendation process. This study attempts to address this by combining

sentiment analysis of the user reviews with the recommendation process in Goodreads.

To achieve the above goal, the constructed recommender system utilizes LightFM, a Python

library facilitating popular recommendation algorithms for implicit and explicit feedback.

LightFM enables item and user metadata to be incorporated into traditional matrix

factorization algorithms. The item metadata that is utilized in this scenario are the sentiment

scores obtained through user reviews of each book.

The above recommender system performs better than pure collaborative filtering algorithms

such as k-nearest neighbor and SVD for the same Goodreads dataset as evinced by the better

AUC score of the LightFM model.

5

TABLE OF CONTENTS

DECLARATION ... 1

ACKNOWLEDGEMENTS .. 3

ABSTRACT .. 4

TABLE OF CONTENTS .. 5

LIST OF FIGURES ... 7

LIST OF TABLES .. 8

CHAPTER 1 INTRODUCTION ... 9

1.1 Motivation .. 10

1.2 Statement of the problem ... 11

1.3 Research Aims and Objectives .. 11

1.3.1 Aim ... 11

1.3.2 Objectives ... 11

1.4 Scope .. 12

1.5 Structure of the Thesis ... 12

CHAPTER 2 LITERATURE REVIEW .. 13

2.1 Recommender Systems .. 13

2.1.1 Recommendation Tools and Technologies ... 14

2.1.2 Current Status .. 16

2.1.3 LightFM ... 16

2.2 Sentiment Analysis ... 17

2.2.2 Levels in Sentiment Analysis .. 20

2.2.3 VADER – Valence Aware Dictionary and Sentiment Reasoner 21

2.3 Sentiment Analysis in Recommendation .. 23

CHAPTER 3 METHODOLOGY .. 26

3.1 Workflow .. 26

3.2 Data ... 27

3.2.1 Data Preprocessing .. 29

3.3 Sentiment Analysis ... 29

3.4 Recommendation .. 31

3.4.1 LightFM Model ... 33

3.4.2 LightFM Data Preparation ... 33

6

3.4.2 LightFM Model Creation... 34

3.4.3 Prediction ... 35

CHAPTER 4 EVALUATION AND RESULTS ... 37

4.1 Area Under Curve (AUC)... 37

4.2 Precision@k .. 37

4.3 Recall@k .. 38

4.4 Accuracy of VADER .. 40

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 41

5.1 Conclusion .. 41

5.2 Future Work .. 42

REFERENCES .. 43

APPENDIX A: DATASETS ... 45

APPENDIX B: SOURCE CODE .. 46

7

LIST OF FIGURES

Figure 1: Rating summary of a book in Goodreads ... 11

Figure 2: Types of Sentiment Analysis Approaches .. 19

Figure 3: Three-class accuracy (F1 scores) for each machine trained model (and the corpus it

was trained on) as tested against every other domain context .. 22

Figure 4:Merging ratings and textual reviews can improve data sparsity (Osman, et al., 2019)

 .. 24

Figure 5: Results of experiment for Books domain (Musto, et al., 2017) 25

Figure 6: Workflow .. 26

Figure 7: Example record of Goodreads Interactions ... 27

Figure 8: Ratings distribution ... 28

Figure 9: Example record of Goodreads reviews ... 28

Figure 10: English Reviews .. 29

Figure 11: Sentiment distribution for all reviews ... 30

Figure 12: Sentiment scores and polarity per book .. 31

Figure 13: User-book interactions .. 31

Figure 14: k-NN Based CF - ROC Curve .. 32

Figure 15: SVD ROC Curve ... 33

Figure 16: User ID Mappings ... 34

Figure 17: Parameter Tuning for LightFM model .. 35

Figure 18: Top 10 recommendations for a user .. 36

Figure 19: Precision@k and Recall@k values ... 39

Figure 20: Precision@k and Recall@k values at different 'k' values for larger testing set 39

8

LIST OF TABLES

Table 1: Sentiment Polarity according to VADER .. 30

Table 2: Review texts, sentiment polarity and ratings.. 30

Table 3: LightFM Model parameters ... 35

9

CHAPTER 1

INTRODUCTION

Recommender Systems are software tools and techniques that provide suggestions for items

that may be of interest to a user (Ricci, et al., 2011). These suggestions or recommendations

may relate to various commercial and entertainment decision making processes. For example,

a Recommender Systems (RS) may suggest products to the users of an e-commerce website

such as Amazon, TV shows to users of Netflix, an entertainment provider, or a new book to

users of GoodReads, a book recommendation website.

Recommender Systems came into being as a result of the observation that individuals

regularly depend on recommendations made by others in making routine decisions; a person

may decide on a book to read based on a suggestion from a friend or decide to watch a film

after reading a review by a film critic.

The exponential growth and variety of information available on the Internet and the rapid

introduction of new e-business services frequently overwhelmed users leading to the pressing

need of a way to address this information overload. A RS aims to attempts to solve this by

pointing the users to new or previously unseen items that maybe relevant to the users’ current

task. Information such as the user’s preferences and behaviour are utilized to achieve this

task.

One of the main features in websites and mobile applications mentioned above (Amazon,

Netflix, eBay etc…) is facilitating users to rate and review items they have used.

Recommender Systems utilize these ratings along with other interaction and behaviour data to

come up with and finetune recommendations for the users.

Items are also often reviewed along with their rating by the users explaining the user’s

opinion or sentiment. Sentiment Analysis, also referred to as opinion mining, is the process of

using natural language processing, computational linguistics, and many other techniques to

automate the understanding of sentiments or opinions, often within user-generated content

(UGC) as product reviews. The purpose of this is to understand people’s position, attitude or

opinion towards a certain entity or event and further to classify their polarity (Puschmann &

Powell, 2018).

10

The advent of social media platforms has enabled their ever-increasing number of users to

express their opinions through text, images, video, and audio freely. Consumer websites such

as amazon, eBay and AliExpress and online travel companies like TripAdvisor, Booking.com

and Agoda also facilitate sharing user opinions and ratings of goods and services they

provide. All these have provided a rich and varied resource for sentiment analysis.

One of the most important advantages of sentiment analysis for a business is that it enables

the companies to understand aggregated user feedback. This includes analysis and

understanding customer feedback and target marketing. As a review is a lot more expressive

than a rating, they could be utilized to explain the underlying dimensions of the users’

decision on the rating (Sachdeva & McAuley, 2020).

Taking into account the above uses, if reviews are also taken into account when a suggestion

is made to the user regarding a certain item; be it a book, TV show or a product to purchase;

one may reasonably expect that the recommendation process will improve.

Both Sentiment Analysis and Recommender systems have been studied thoroughly as

separate areas. There have been several works that explore the possibility of combining these

two areas to achieve better recommendations in the past. These works will be studied, and the

varying results of these approaches will be discussed in depth in the subsequent chapters.

1.1 Motivation

Most Recommender Systems at present generally depend on user ratings and do not consider

reviews. Therefore, the review content is largely underutilized in the recommendation

process.

Goodreads (Amazon.com, 2007) is considered world’s largest site for readers and book

recommendations. At present there are two main methods where a user receives

recommendations for a book. First, the readers (users) can be recommended books explicitly

by their friends. Secondly, there is a separate function that will list recommended books for

the logged in user. This largely depends on the genre the reader has marked as interested in or

the books marked as currently-reading. The automatic recommendation process utilizes this

information and the user ratings of previous books read by the user. However, the reviews a

large number of readers leave are not taken into account when recommending books to

readers.

Goodreads has a scalar rating of 1- 5 stars each rating with the following definitions.

11

1 – “I didn’t like it”

2 – “It was ok”

3 – “liked it”

4 – “really liked it”

5 – “it was amazing”

Each book in Goodreads has a summary of its ratings (Figure 1) and reviews displayed.

Figure 1: Rating summary of a book in Goodreads

A user can rate a book from 1 – 5 and additionally leave a text review as well. As mentioned

earlier, a review is much more expressive and contains a lot more information than a mere

rating and would indicate the readers’ opinion better.

1.2 Statement of the problem

This study attempts to improve book recommendations made to the users with the use of

reviews based on the assumption that reviews contain much more information that may be

useful in the recommendation process. As a mechanism of summarizing the information given

in reviews, sentiment analysis will be used. The resulting sentiment scores will be used to

improve the recommendation process.

1.3 Research Aims and Objectives

1.3.1 Aim

The ultimate goal of this study is to provide a better user experience to the end user by

improving the book recommendations provided.

1.3.2 Objectives

The objective of this study is to first investigate the existing studies conducted in this area

to identify the feasibility of combining sentiment analysis with item recommendation,

12

shortcomings of the existing methods and possible improvements. At this stage the best

recommender system model to incorporate review data is decided.

Secondly, utilizing the knowledge gained from the above study to investigate how user

reviews may help to improve the Recommender Systems and implement a feasible

solution.

Finally, this solution is evaluated, and inadequacies and potential improvements

identified.

1.4 Scope

This study investigates how sentiment analysis of user reviews will augment

recommendations made to the end user. The data utilized in this study are publicly available

at the following URI:

https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home (Wan & McAuley, 2018)

Above datasets contain records of user reviews and ratings that may be used to implement and

test the proposed solution.

The studies conducted by several researchers in this area has provided sufficient proof that

utilizing this method may indeed improve recommendations. These studies and their

outcomes will be summarized in Chapter 2.

VADER (Valence Aware Dictionary and Sentiment Reasoner) is used to perform sentiment

analysis on the book reviews in the first phase of this study. Then, LightFM, a python library

that facilitates building hybrid recommender systems incorporating user and item features will

be used to build a recommender system. The performance of this will be compared against a

few well-known collaborative filtering algorithms to test the assumption that the additional

sentiment features do indeed improve the recommendations.

1.5 Structure of the Thesis

The next chapter of this thesis will contain the literature review of the existing studies done on

the same area as well as discuss the theoretical background of the tools and technologies that

will be used throughout this study. The subsequent chapter will contain the methodology and

implementation details. The next chapters will detail results of the study and its evaluation,

conclusion, and future work respectively.

https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

13

CHAPTER 2

LITERATURE REVIEW

This chapter provides an introduction to the theories and tools used within this study. The first

section will discuss recommender systems and their current status, and the subsequent section

will discuss the progression of sentiment analysis and its current status. Finally, studies that

utilize reviews and their sentiments into the recommendation process will be discussed.

2.1 Recommender Systems

Recommender Systems, also commonly referred to as Recommendation Systems, are

software tools, algorithms and technologies that are used to provide item suggestions to users

of certain systems. Here, “item” is the general term used to denote what the system

recommends to users. They maybe products available for purchase in an e-commerce system,

music available in a streaming service or a news article in a news website. These

recommendations are personalized such that, the set of items suggested differ from user to

user. Recommender systems are extensively used in various domains; for example, e-

commerce (Amazon, Aliexpress, eBay), e-tourism (Tripadvisor, Booking.com, Expedia) and

e-library (Amazon, Goodreads).

Service providers, such as e-commerce websites, will invest in state-of-the-art

recommendation systems for various reasons. In a commercial RS, the most important

function is to increase the sales. In a streaming service such as Youtube or Netflix, the goal is

to increase the number of views; i.e. increase the conversion rate or the number of users that

accept the recommendation and consume an item compared to users simply browsing through

items in the absence of a recommending mechanism (Ricci, et al., 2011). Further advantages

of RSs include increasing user satisfaction, increasing sales of diverse items, increasing user

fidelity, and better understanding or customer needs and requirements.

RS also help users find appropriate items of good quality easily. They may also provide a

context to the suggestions made according to the user’s preferences; for example, Goodreads

will suggest new books to users if the user has read a book of the same genre or marked such

a book as “to read” which denotes an interest in the genre.

For RS to perform its function, three main types of information are generally required.

Items, or the objects to be recommended that may be of varying complexity, value, or utility.

Books, movies, and news are examples for low complexity items while insurance policies,

14

digital cameras and mobile phones are examples of high complexity items.

In order to personalize recommendations, RS also require information about Users, which is

another type of information. Users of an RS can have many diverse characteristics and unique

goals. Information about users’ past behaviour, preferences and characteristics will need to be

represented and manipulated in an appropriate format to gain the best advantage from

Recommendation systems.

Transactions are the interactions between Users and Items. This includes the ratings a user

may give a certain product which will take a variety of forms such as (Schafer, et al., 2007):

1. Numerical ratings (e.g.: 1- 5 stars)

2. Ordinal ratings, such as “strongly agree, agree, neutral, disagree, strongly disagree”

3. Binary ratings in which the user is simply asked to decide if a certain item is good or

bad.

4. Unary ratings only indicate that a user has observed or purchased an item, or otherwise

rated the item positively.

2.1.1 Recommendation Tools and Technologies

To perform recommendation, the recommender systems should first predict if an item would

be of interest to a particular user. In order to achieve this, the system must be capable of

predicting the utility or usefulness of items or comparing the usefulness of several times and

then decide which item needs to be recommended to the user. Various types of recommender

systems have been studied to address this requirement. The taxonomy of recommender

systems explained in (Burke, 2007) and (Ricci, et al., 2011) is listed below.

1. Collaborative Filtering (CF)

In the simplest form (Schafer, et al., 2007) this approach recommends items to a user

that other users with similar interests liked in the past. This only requires past

information about rating profiles of different users. The similarity in interest is

calculated based on the similarity in the rating history of the users.

There are two main approaches to CF. Memory-based or neighborhood-based

approach simply utilizes ratings of other users to predict the target user’s ratings,

whereas model-based methods assume an underlying generative model that explains

the user-item interactions. This approach attempts to identify this model with the use

of machine learning and probabilistic methods.

2. Content-based (CB)

These recommender systems utilize two data sources to make recommendations: the

15

features associated with products and the ratings that a user has given them. Content-

based recommenders only require rating history of the target user. First a model or a

profile on the user interests is created by analyzing a set of documents about the items

that were previously rated by the target user. The recommendation process consists of

matching the attributes of items against the CB recommender systems. In essence, CB

recommender systems treat recommendation as a user-specific classification problem

and learn a classifier for the user's likes and dislikes based on product features.

3. Demographic

A demographic recommender system categorizes and provides recommendations

based on the demographic characteristics such as location, gender, or age of the user.

Recommended products can be produced for different demographic classes, by

combining the ratings of users in those classes. These type of recommender systems

are frequently used in the Marketing domain.

4. Knowledge-based

A knowledge-based recommender recommends items based on inferences about a

user’s needs and preferences. This requires specific domain knowledge about features

of items and how these features meet the users’ needs. Case-based recommender

systems are one subcategory of knowledge-based systems where it estimates how

much the user’s needs match the items using a similarity metric. The other

subcategory, constrain-based recommender systems, depend on the predefined explicit

rules when matching customer requirements and items.

5. Community-based

Also called Social recommender systems, these are based on the observation that

people tend to rely more on recommendations made by friends or family rather than

those made by anonymous individuals. The expansion of social media has raised the

interest on these recommender systems as it is much easier to obtain details about an

individual’s connections through them.

6. Hybrid recommender systems

The above discussed types of recommender systems have their advantages and

disadvantages. Hybrid recommender systems were introduced with the intention of

combining the strength of more than one recommender system and eliminating the

16

weaknesses of those when used individually (Bansal, 2019).

There are several ways recommender systems can be combined together; Weighted,

Switching and Mixed Hybrid Recommender Systems are examples for these.

2.1.2 Current Status

Apart from the main types of RS mentioned above, more avenues have been explored to

perfect recommendation further. The following are some of the more recent technologies used

that aims to achieve this objective (Bansal, 2019).

1. Genetic Algorithm Based Recommender Systems (GARS)

Genetic Algorithm is an evolutionary approach utilized for optimizing an objective

function where the selection strategy is applied on the solution candidates to a

particular problem to ensure a better evolving solution. Studies have been carried out

where the Genetic Algorithm is used in recommender systems to optimizing similarity

function and clustering.

2. Deep Learning Based Recommender Systems (DLRS)

Deep learning has proven to be an excellent approach in recommender systems in

recent time due it’s feature learning capabilities, inherent feature extraction and

accuracy. Various deep learning techniques such as multilayer perceptron, deep

factorization, recurrent neural networks, and convoluted neural networks have been

studied and used to construct robust RS.

The drawbacks of DLRS includes the large amount of data that is required and the

“black box” nature of deep learning networks that limits the explainability of the

hidden layers.

2.1.3 LightFM

LightFM (Kula, 2015) is a hybrid matrix factorization model which represents users and items

as latent vectors (embeddings) similar to traditional collaborative filtering models. In addition

to this, similar to a content-based model, it also utilizes linear combinations of embeddings of

content features to describe each product and user. Thus, LightFM combines the advantages

of content-based and collaborative filtering methods to:

1. Perform as well as content-based systems in cold-start and low-density scenarios.

17

2. Performs as well as traditional collaborative filtering methods when interaction data

are available.

When both features and interaction data are available, LightFM performs significantly better

than both CF and CB methods.

 The LightFM model's prediction for user u and item i is given by the dot product of user and

item representations, adjusted by user and item feature biases:

𝑟𝑢𝑖 = 𝑓(𝑞𝑢. 𝑝𝑖 + 𝑏𝑢 + 𝑏𝑖)

Here, 𝑞𝑢 is the latent representation of user u and 𝑝𝑖 is the latent representation of item i.

𝑏𝑢, 𝑏𝑖 refers to the bias terms of user u and item i respectively. The latent representations of

user and item are calculated by the summation of their feature vectors. The model learns user

and item embeddings (latent representations) for user and items such that, they encode user

preference over items using stochastic gradient descent methods.

There are many functions suitable for f such as identity functions or sigmoid function (when

predicting binary data). LightFM implements four loss functions called logistic loss, Bayesian

Personalized Ranking pairwise loss (BPR), Weighted Approximate-Rank Pairwise loss

(WARP) and k-OS WARP.

If the user and item feature sets only contain indicator variables, the LightFM model reduces

to the standard Matrix Factorization model.

2.2 Sentiment Analysis

According to the Cambridge Dictionary, a sentiment can be defined as a thought, an opinion,

or an idea based on a feeling about a situation; or a way of thinking about an entity. Sentiment

Analysis, also known as opinion mining, seeks to understand the sentiment or opinions

expressed in various user generated content (UGC) such as text, audio and video posted

online in platforms such as social media. The purpose of this is to determine people’s position,

attitude or opinion towards a certain entity or event (Puschmann & Powell, 2018) and further

to classify their polarity.

Sentiment analysis is considered a branch of computational linguistics, which, since its

inception in 1950s has been concerned with understanding and machine translation of natural

languages. However, computational sentiment analysis only rose to prominence in early

https://dictionary.cambridge.org/dictionary/english/thought
https://dictionary.cambridge.org/dictionary/english/opinion
https://dictionary.cambridge.org/dictionary/english/idea
https://dictionary.cambridge.org/dictionary/english/based
https://dictionary.cambridge.org/dictionary/english/feeling
https://dictionary.cambridge.org/dictionary/english/situation
https://dictionary.cambridge.org/dictionary/english/thinking

18

2000s. The reason for this was the lack of sufficient and accessible volumes of natural

language data that expressed opinions, sentiments and emotions rather than objective facts

(Puschmann & Powell, 2018). However, the numerous free social media platforms available

now (i.e. Facebook, Twitter, and Instagram) have allowed their users to express their opinions

through text, images, video, and audio easily. Consumer websites such as Amazon, eBay and

AliExpress and online travel companies like TripAdvisor, Booking.com and Agoda also

enable sharing user opinions and ratings of goods and services provided by them. This

provides an abundant resource of data that explains the minds of consumers eliminating one

of the barriers early sentiment analysis techniques had.

Liu and Zhang (Liu & Zhang, 2012) further explain Sentiment analysis as the automatic

identification of the entity, aspect, opinion holder and aspect’s sentiment given a sentiment or

an opinion. Entity is a product, service, an individual, organization or a topic about which is

opinion is made. This is also referred to as the opinion target. An instance or a facet of an

entity is an aspect.

The arrival of Web 2.0 and popularization of social media and its corresponding applications,

as mentioned earlier, allowed millions of users to express their opinions and attitudes about

various topics online. The resulting high-volume, high-variety, and high-velocity data was a

catalyst for the automated sentiment analysis and its popularity at present.

Most well-known brands currently utilize some form of sentiment analysis tool across social

media to gauge the opinions of users. By monitoring social media sites such as Twitter, a

brand could detect sentiments of a certain user-base and react accordingly. Trends could also

be tracked over time easily. By interacting with users proactively and responding to public

opinion favourably would inarguably provide a brand an edge over its competitors.

Sentiment analysis could also aid managers and decision makers of a company in identifying

how their or their competitors’ brand and company reputation evolve over time. Another

advantage is that this will help companies avoid potential public relations issues as real time

sentiment analysis would facilitate identifying these issues sooner.

Perhaps the most important advantage of sentiment analysis for a business is that it enables

the companies to understand aggregated customer feedback. This includes analysis and

understanding Net Promoter Score (a tool that can be used to measure the loyalty of customer

relationships of a business), customer feedback and target marketing. Further, using sentiment

analysis to understand customer queries in an automated manner will increase customer care

efficiency, ultimately leading to less customer dissatisfaction and customer churn.

Tourism is another service industry where sentiment analysis has great potential. Sentiment

analysis on online user generated content has several advantages over the traditional data

19

collection via surveys, interviews and questionnaires. These methods of obtaining customer

opinions have several characteristic disadvantages. Surveys may reflect an inherently positive

assessment due their investment in their travel while questionnaires only capture information

about several pre-determined aspects (Alaei, et al., 2017). Social media sites and mobile

applications such as Instagram, in contrast, present means to gather authentic and unsolicited

opinions of travelers.

2.2.1 Sentiment Analysis Tools and Technologies

There are several techniques and algorithms used in sentiment analysis. The following

diagram (Figure 2) summarizes the current such technologies (Rokade & Kumari D., 2019).

There are two main categories of sentiment analysis; Lexicon Analysis calculates the polarity

(e.g.: positive, negative, or neutral) with the usage of semantic orientation of words or phrases

of a text document. A drawback in Lexicon analysis is that it does not consider the context.

The other category, Machine Learning, involves building models from labelled data on a

specific topic in order to find the orientation of a document belonging to the relevant topic.

Both these methods have been used in a multitude of different domains such as politics,

marketing, health, resulting in varying outcomes.

Figure 2: Types of Sentiment Analysis Approaches

Machine Learning Approach

Supervised learning and unsupervised learning algorithms are utilized to conduct the

sentiment analysis. Supervised learning requires labelled datasets which are then used in

algorithms such as Decision Tree, Support vector machines and Bayesian networks. In

unsupervised approach, such labelled data are not available.

Both these approaches require training and testing datasets. For Supervised learning, the

training dataset contains input feature vectors and their corresponding class labels. A

classification model is developed using this training vector, which is subsequently tested

20

using the testing dataset (Neethu & Rajasree, 2013).

Lexicon-based Approach

Lexicon-based sentiment analysis involves calculating the sentiment from the semantic

orientation of the word of phrases in the text. This is based on the insight that the polarity of a

document can be found with the aid of the polarity of the words that compose the said text.

This approach utilizes sentiment dictionaries or lexicons such as WordNet or SentiWordNet

(Rokade & Kumari D., 2019).

However, there are challenges to this approach that arise from the intrinsic complexity of

natural languages. There are many studies carried out in addressing this as well as other

challenges in lexicon-based approaches.

There are two main types of Lexicon-based sentiment analysis: Dictionary-based and Corpus-

based.

1. Dictionary-based Approach

This is the simplest method of lexicon-based sentiment analysis. Polarity is

calculated using the presence of signaling sentiment words, also referred to as

seeds, in the text. The polarity of each word can be determined using predefined

dictionaries which contain positive and negative words and their synonyms and

antonyms. The performance of this sentiment analysis method depends heavily on

the dictionary that will be used.

2. Corpus-based Approach

Unlike in the dictionary-based approach, in addition to a seed list and their

sentiment labels, the context of the words in the form of syntactic patterns, is

available as well. This solves the problem of words with context specific sentiment

orientations that is not addressed in the previous method.

There are two methods in corpus-based analysis: Statistical approach and Semantic

approach. The former determines the polarity of an unknown word by calculating

the relative frequency of co-occurrence with another word as it is observed that

similar opinion words mostly appear together in a corpus and the latter assigns

similar sentiment values to semantically close words.

2.2.2 Levels in Sentiment Analysis

As mentioned earlier, in Sentiment Analysis opinions are classified as positive, negative, or

neutral. This is can be carried out in three levels.

21

1. Document Level

At this level the entire document is considered as a single source or an individual

entity in sentiment analysis. For example, the sentiment of an entire review will be

classified where the document in question is the single review. The biggest challenge

observed within this level of analysis is that not all the sentences of the document may

be subjective. The accuracy depends on how well each sentence is extracted and

individually analyzed.

2. Sentence Level

The documents in the corpus is divided into sentences. This approach involves two

steps; the first is categorizing a sentence as objective and subjective. The former

will have no opinion attached and may contain only factual information. The latter

will contain opinions which may be classified as positive or negative.

The sentence level polarity can be determined using a grammatical syntactic

approach, which takes the grammatical structure into account using part of speech

tags. The same can also be achieved through a semantic approach.

3. Aspect/Feature Level

This level is concerned with identifying aspects of a target entity and estimating

the polarity of each mentioned aspect. This task is further broken down in to two

subtasks. The first is Aspect Extraction, is an information extraction task where

aspects of the entity are identified. This could be achieved by identifying and

filtering highly frequent phrases in the text(document) with the aid of specific

rules or determining the aspects in advance and finding them in the documents.

The next subtask of Aspect Based Sentiment Analysis is sentiment classification.

Once the aspects are identified, the sentiments for each aspect is grouped to arrive

at the final polarity of for that aspect.

This type of sentiment analysis provides the finest degree of sentiment analysis

compared to document level and sentence level analysis

2.2.3 VADER – Valence Aware Dictionary and Sentiment Reasoner

VADER (Gilbert & Hutto, 2014) is a rule-based tool available for text sentiment analysis that

is sensitive to both polarity (positive/negative) and intensity (strength) of emotion. VADER is

22

available in the Natural Language Toolkit (NLTK) package. This can be applied directly to

unlabeled text data which is an added advantage.

This works well on social media style text and also generalizes well to multiple domains. It is

constructed from a generalizable, valence based, human-curated gold standard sentiment

lexicon, thus does not require training data. This sentiment lexicon is sensitive to both polarity

and intensity expressed in text.

Apart from the lexicon, VADER also uses five generalized rules based on grammatical and

syntactic cues that indicate changes to the sentiment intensity, thus incorporating word-order

sensitive relationships between terms. These heuristics include Punctuation which may

increase the magnitude of the sentiment, Capitalization which may emphasize certain words,

Degree modifiers (also known as intensifiers, booster words or degree adverbs) and

Contrastive conjunctions such as ‘but’ which indicates a shift in the sentiment polarity.

Finally, VADER also examines the tri-gram preceding a lexical feature to ensure negations are

also identified correctly.

VADER performs best in three out of the four datasets the authors have used to test the model

as the below set of results show (Figure 3). The authors also claim that this is fast enough to

be used with streaming data and does not severely suffer from a speed-performance tradeoff.

Therefore, it can be assumed that out of the ready-to-use tools available for sentiment analysis

at present, VADER is an excellent choice for sentiment analysis in review data.

Figure 3: Three-class accuracy (F1 scores) for each machine trained model (and the corpus it was trained on) as tested

against every other domain context

23

2.3 Sentiment Analysis in Recommendation

In (Sachdeva & McAuley, 2020), the writers discuss to which extent reviews are useful for

recommendation. They discuss the two approaches reviews have been used in the

recommendation process up to now; as explanations for the recommendations made by the

system or conversely, as ratings are considered much more expressive than a rating, they used

to learn the laten features to perform better Matrix Factorization (MF).

In this study, the writers have used the reviews as text instead of sentiment orientation,

polarity or any other features that maybe extracted from the reviews. They conclude that

while reviews may be considered important in recommendation, in cold start conditions they

serve better as a regularizer rather than as more data to extract better recommendations.

Singh et al in 2011 have presented another research has explored a content-based

recommender system with sentiment analysis to improve recommended movies (Singh, et al.,

2011). This method was applied on a dataset of 2000 movies including the name, description,

genre and 10 user reviews each from IMDB. These collected data was them transformed into

term vectors.

First a content-based filtering was applied to acquire a list of movies that a particular user

may be interested in. The cosine-similarity for the created vectors were calculated and the

movies over a certain threshold were considered for this list. In the next step each movie in

this list has been labelled as positive or negative based on the reviews. The authors have

employed an unsupervised semantic orientation approach that computes sentiment of

documents based on aggregated semantic orientation values of selected opinionated POS tags

in it using Pointwise Mutual Information (PMI). The final recommendations contain only the

movies that were labelled as positive.

This study handles the cold start problem by asking new users information on their interested

genres as creating a vector with that information. The authors claim the hybrid methodology

they have used provided them with recommendations of high accuracy and quality. Further,

the final recommendations tended to also be rated sufficiently high overall.

A similar approach has been introduced in (Osman, et al., 2019) where the authors aim to

eliminate domain sensitivity by elevating contextual information in conventional sentiment

analysis and utilize this in a electronic product recommendation system. The writers believe

that merging ratings with the review data could address the data sparsity problem as well.

24

Figure 4:Merging ratings and textual reviews can improve data sparsity (Osman, et al., 2019)

In this study, the authors have compared a standard collaborative filter recommender system,

a collaborative filter system enhanced with sentiment ratings and a third system that

incorporate contextual sentiment ratings. They have concluded that the recommender system

with contextual sentiment ratings perform best in that domain as it addresses the issue of

ambiguous wording in reviews.

A multi-criteria recommender system that exploits aspect-based sentiment analysis of user’s

reviews combined with collaborative filtering has been introduced in (Musto, et al., 2017).

This study centers on restaurant datasets of several sources such as Yelp and TripAdvisor.

First the aspects and relevant sentiments are extracted from the reviews using a framework

referred to as SABRE (Sentiment Aspect-Based Retrieval). The sentiment scores are

calculated using CoreNLP (which utilizes deep learning techniques) and AFINN which is a

lexicon-based algorithm. These sentiment scores are then considered the ratings given by the

users and utilized in user-based and item-based Collaborative Filtering algorithm to produce

recommendations.

The authors confirm that when tested against several baseline methods, the multi-criteria

method performs better and overcomes issues in single criteria approaches.

A hybrid recommender system that exploits aspect-based sentiment analysis of user’s reviews

combined with collaborative filtering has been introduced in (Musto, et al., 2019). The

reviews ordinarily contain evidence about the aspects of an item that impressed the reviewer.

The authors of this paper have come up with a method to exploit such information to generate

a natural language justification that supports the recommendations provided by the

recommender system that may induce a user to try the said item.

Here for each recommended item, the reviews are analyzed to extract distinguishing aspects

that describe the item. This is achieved through a Part-Of-Speech (POS) tagging algorithm

that extract representative nouns. These aspects are then ranked according to the relevancy

and finally generate the justification utilizing a template-based structure. The results of this

system were evaluated through user study measuring transparency, persuasion, engagement,

trust, and effectiveness. The following figure contain the results of the Review-based method

25

discussed this in paper and a comparison against a different method of justifying

recommendation called ExpLOD.

Figure 5: Results of experiment for Books domain (Musto, et al., 2017)

As the above studies show, it can be expected that integrating reviews and sentiments

expressed in reviews are more likely to improve the performance of the recommender system

than otherwise. All the above discussed research suggests further experimentation and study

utilizing different datasets of different domains as future work.

Therefore, utilizing such a method in book recommendations is worth investigating and one

can optimistically expect better recommendation results.

26

CHAPTER 3

METHODOLOGY

This chapter contains the design process and methodologies employed in the attempt to

enhance recommendations with review information. This will detail the data acquisition and

processing, sentiment analysis and finally the construction of the recommendation system.

3.1 Workflow

The process followed throughout this study is shown in Figure 6.

Figure 6: Workflow

The data used in this study is first cleaned and processed before a preliminary exploratory

data analysis is performed. The nature of available data and its attributes are detailed in the

subsequent sections of this chapter. Then, non-English reviews are removed, and sentiment

scores are calculated that yields a dataset of user-book interactions, book metadata including

sentiment scores for each book.

27

After investigating suitable recommendation algorithms, LightFM is selected as the most

appropriate tool for this study due to its ability to feed item feature information to the

recommendation model. The dataset obtained in the preceding steps are used to create a

LightFM model which is then used to make recommendations.

The final step of this study evaluates the created model to observe its advantages over existing

pure collaborative filtering methods and identify the future improvements that could be made.

3.2 Data

This study utilizes a publicly available dataset which contain user interaction, user review and

book metadata information from Goodreads (Wan & McAuley, 2018). The dataset is

categorized into several genres for ease of handling. This study will utilize the data in the

Poetry category.

Goodreads Poetry dataset has 3 separate data files: information on books (metadata of items),

user interactions with books, and review information.

Interactions

Figure 7: Example record of Goodreads Interactions

Interaction dataset contains 2701068 interactions between readers and poetry books and is in

JSON format(Figure 7). The following variables are available in interactions:

'user_id', 'book_id', 'review_id', 'is_read', 'rating', 'review_text_incomplete',

'date_added', 'date_updated', 'read_at', 'started_at'

Read interactions: 1281024

Non-zero ratings : 1197248

is_read == True : 1281024

is_read == False : 1420044

Read but unrated (is_read = True and rating = 0) books: 83776

28

A summary of ratings of all books and books marked as read are depicted in Figure 8. In this

study only interactions with non-zero ratings are considered.

Figure 8: Ratings distribution

Reviews

This dataset contains 154555 records, each with a review for a poetry book. The following

attributes are available.

['user_id', 'book_id', 'review_id', 'rating', 'review_text', 'date_added', 'date_updated', 'read_at',

'started_at', 'n_votes', 'n_comments']

The reviews may be of any language.

Figure 9: Example record of Goodreads reviews

Book Metadata

The metadata contains all relevant details about books. Each book is identified by a unique

‘book_id’. In addition to book_id, the following data are also available:

['isbn', 'text_reviews_count', 'series', 'country_code', 'language_code', 'popular_shelves', 'asin',

'is_ebook', 'average_rating', 'kindle_asin', 'similar_books', 'description', 'format', 'link', 'authors

', 'publisher', 'num_pages', 'publication_day', 'isbn13', 'publication_month', 'edition_informatio

n', 'publication_year', 'url', 'image_url', 'ratings_count', 'work_id', 'title', 'title_without_series']

29

3.2.1 Data Preprocessing

As mentioned above, the book reviews made by the users may be of any language. As only

English reviews are utilized for this study, non-English reviews have to be filtered out.

Langdetect (Danlik, 2021) python tool was used in order to recognize non-English text in the

reviews and filter them out. This is a python implementation of Nakatani Shuyo's language-

detection library (Nakatani, 2010). This tool can identify 49 languages with 99.8% accuracy.

The experiments conducted by the creators claim that this could identify English language

with 100% precision, which recommends this tool as an adequate approach to filter out non-

English reviews from the dataset.

At the conclusion of this step, 110244 reviews were identified as English.

Figure 10: English Reviews

3.3 Sentiment Analysis

The next step in the process is to perform sentiment analysis on the English reviews acquired

in the previous step. This was performed with the use of VADER tool available in NLTK that

was earlier described in Chapter 2.

VADER sentiment analyzer outputs four scores given a text; positive, negative, neutral, and

compound. The compound score calculated by summing the valence scores of each word in

the lexicon, adjusted according to the rules and then normalizing this sum between -1 and +1.

-1 is the extreme negative while +1 is the extreme positive. A text can be classified as either

positive, negative, or neutral according to the below criterion:

https://github.com/shuyo/language-detection
https://github.com/shuyo/language-detection

30

Sentiment Polarity Condition

Positive compound score >= 0.05

Neutral (compound score > -0.05) and (compound score < 0.05)

Negative compound score <= -0.05

Table 1: Sentiment Polarity according to VADER

As the below pie chart (Figure 11) shows, majority of the reviews were positive, i.e., the

sentiment score calculated by VADER is larger than 0.05.

Table 2 depicts a sample of the reviews available in the Goodreads Poetry dataset along with

the calculated compound sentiment intensity, the polarity. The rating corresponding to this

review is also listed there.

Figure 11: Sentiment distribution for all reviews

Review Text compound sentiment rating

I have three younger siblings and we grew up w... 0.9766 positive 5

This is my favorite collection of poetry. 0.4588 positive 5

I just reread this play for a class I am takin... 0.9062 positive 5

This ain't a book with to die for characters, ... 0.9702 positive 5

This is why kids don't like to read. -0.2755 negative 1

Odysseus is such an arrogant, power-hungry man... -0.4939 negative 3

Beyond the Words is an anthology of poetry and... 0.9973 positive 4

Thoughts of a Pure Mind by Calvin Bland is a c... 0.9326 positive 0

Table 2: Review texts, sentiment polarity and ratings

After sentiment scores per review are calculated, the average sentiment score per book was

calculated. Figure 12 shows the calculated compound scores per each book available in the

Book Metadata dataset.

31

Figure 12: Sentiment scores and polarity per book

At the end of this step, the dataset contains 265072 user-book interactions and metadata on

5667 books. Each user has at least rated 20 books, while each book is rated by at least 20

users. Each user is identified by “user_id” (e.g.: ‘561130041c7cbc45193e38b5cd9eea83’) and

each book is identified by “book_id” which is an integer value (Figure 13).

Figure 13: User-book interactions

3.4 Recommendation

In the studies conducted up to now, various researchers have tried different methods in

combining sentiment polarity or sentiment scores and recommendation algorithms. As

detailed in Chapter 2, more researchers have suggested that using additional information such

as sentiments tend to work better when they are used alongside interaction and rating data,

instead of relying purely on sentiment data.

There are many recommendation algorithms that have been introduced in the past few years.

In this study, the focus is to identify if output of the above sentiment analysis step could be

utilized to improve recommendation of books.

As a benchmark, two simple recommendation systems were created using K-Nearest

32

Neighbor and SVD based Collaborative Filtering algorithms, available in Surprise Python

library (Hug, n.d.) using the interactions dataset. No additional features were considered here.

k-NN Collaborative Filtering

Using a k-NN CF approach (surprise.prediction_algorithms.knns.KNNBasic), an item-based

recommender system was created. In k-NN collaborative filtering algorithm the prediction for

a particular user u and item i is calculated with the use of similarity between two items.

Here sim(i,j) refers to the cosin similarity between item i and j and 𝑟𝑢𝑗 is the rating user u has

given item j.

The best parameters that minimized the RMSE were k = 33 and min_k =3. Here k is the

maximum number of neighbors taken into account for aggregation, while min_k is the

minimum number of neighbors considered. If there are not enough neighbors, the prediction is

set to the global mean of all ratings. The ROC curve and the AUC score of 0.61 are depicted

in Figure 14.

Figure 14: k-NN Based CF - ROC Curve

SVD Collaborative Filtering

The second recommender system that was created was based on the SVD algorithm available

in Surprise (Hug, n.d.) under Matrix Factorization-based algorithms, which yielded the below

ROC curve and an AUC value of 0.6 (Figure 14) for the minimum RMSE value of 0.82.

In SVD CF, the prediction for 𝑟𝑢�̂� is calculated as follows:

33

Here, μ is the average rating of all items. Terms 𝑏𝑢 and 𝑏𝑖 are the bias terms for user u and

item i, where each refers to the average ratings given by user u and average rating of item i

minus μ respectively. 𝑞𝑖 and 𝑝𝑢 represents each item and user.

The AUC score of this CF algorithm was 0.6 as depicted in Figure 15.

Figure 15: SVD ROC Curve

3.4.1 LightFM Model

As described in Chapter 2, LightFM is a Python library that facilitates combining CF filtering

approach with item and user feature to provide better recommendations. As the sentiment

score per each book could be considered a feature of a book, in this study, sentiment scores

would be utilized.

To create a model, first the required user item interaction data and item features must be

created in a way that LightFM model understands. The subsequent sections of this chapter

will explain how this is done in detail.

3.4.2 LightFM Data Preparation

LightFM requires the user item interactions to be in the form of a numpy.float32 coo_matrix

of shape [n_users, n_items]. User and item features should be in the form of a numpy.float32

csr_matrix of shape [n_items, n_item_features].

To obtain these types of interaction and feature matrixes, LightFM has provided a class called

Dataset. Once a Dataset object is created, fit() method is used to create user/item_id and

feature mappings. The build_interactions() and build_item_features() methods available in

34

this class will be used to create the interaction and feature matrices as desired.

To obtain item_features in this study, books and their relevant sentiment scores are provided

to the Dataset.

LightFM creates inner user and item IDs to be utilized in training, testing and predictions.

These user id and item id mappings can also be obtained from the Dataset class. These inner

IDs are of type numpy.int32. Figure 16 depicts the user id mappings converted to a dataframe

object.

Data obtained as above is then be split into Training, Testing and Validation datasets using the

random_train_test_split function provided by LightFM. This method does not ensure that all

items and users with interactions in the test set also have interactions in the training set.

Figure 16: User ID Mappings

3.4.2 LightFM Model Creation

LightFM model has the following parameters that could be set upon initialization. A few

important parameters are listed below.

Parameter Description Best Parameter Value

no_components the dimensionality of the feature

latent embeddings.

93

learning_schedule one of (‘adagrad’, ‘adadelta’). ‘adagrad’

loss one of (‘logistic’, ‘bpr’, ‘warp’,

‘warp-kos’): the loss function.

‘warp’

learning_rate initial learning rate for the adagrad

learning schedule. rate initial learning

rate for the adagrad learning schedule.

0.004797

35

item_alpha L2 penalty on item features 5.071e-05

max_sampled maximum number of negative

samples used during WARP fitting

8

Table 3: LightFM Model parameters

To obtain the model with the best AUC score, the above hyperparameters have to be properly

tuned. Figure 17 shows the output of such a process. The best values obtained in this study are

also available in the Best Parameter Value column in the table above (Table 3).

Further, as the best AUC value is 88.4%, it appears to be better than the simple k-NN and

SVD based collaborative filtering recommender systems that were created with Surprise.

Figure 17: Parameter Tuning for LightFM model

This LightFM model can be saved using Python’s Pickle module, to be deployed in a

production environment and make predictions. LightFM also provides capability to add new

item, user and interaction data using fit_partial() function that makes LightFM even easier to

utilize in production and improve recommendation further.

3.4.3 Prediction

After the model is created, it can be used to make predictions. The predict() function will

return the recommendation scores defined by the user inputs. In this study, a prediction will

be made for a single user. As the predict function requires the inner IDs of user and items, the

user and item mappings obtained with the Dataset object is utilized here.

As the output of the predict method does not differentiate between already read books, they

are first filtered out. The prediction will then contain the books the given user will likely be

interested in as depicted in Figure 18.

36

Figure 18: Top 10 recommendations for a user

37

CHAPTER 4

EVALUATION AND RESULTS

Recommender systems can be evaluated with the use of metric-based methods or human

judgement methods. As the study is utilizing already available data, this proposed

recommender system is evaluated on its accuracy using metric based methods.

LightFM library provides several methods that can be utilized to measure the performance of

the created model. The following sections explains these further.

4.1 Area Under Curve (AUC)

ROC Curve or Receiver Operator Characteristic curve is a graph that plots the False Positive

Rate against the True Positive Rate. The area under this curve is called the AUC score. In

recommendation systems, AUC measures the quality of overall ranking. AUC can be

interpreted as the probability that a randomly chosen positive example is ranked higher than a

randomly chosen negative example. The closer AUC score is to 1, the more accurate the

ordering given by the model is.

LightFM provides evaluation methods to calculate the AUC; the best score obtained in this

study is 88.4% (0.884). This is higher than the AUC scores of both k-NN and SVD

recommender systems that were used for comparison. Therefore, it can be said that the

LightFM model with sentiment scores as features performs much better than pure

collaborative filtering methods for this dataset.

4.2 Precision@k

Precision@k (precision at k) gives the faction of known positives in the first k positions of the

ranked list of results. A perfect score is 1. LightFM precision_at_k function returns a numpy

array containing precision@k scores for each user.

e.g.: [0. 0. 0. 0. 0.2 0. 0. 0.1 0.1 0.1 0. 0. 0. 0.1 0. 0.1 0. 0. 0.2 0.]

The mean of this array is taken as the precision@k value. If there are no interactions for a

given user, then the returned precision will be 0.

38

This measure does not consider the overall ranking but only focuses on the ranking quality of

the top k of the list. Therefore, this measure is highly dependent on the data. For example, if

there is only one positive item for a particular user at k = 5, the maximum score for that user

for precision@k will be 0.2. For the validation dataset used in this study; the precision@10

value ranged from 0.0 to 0.6 for each user. Out of 6451 users only 2362 users had precisions

above 0, which indicates that the remaining 4089 did not have any interactions for precision

to be measured.

For the LightFM model created in this study,

when k = 10

Precision@10 for the train dataset = 0.28

Precision@10 for the test dataset = 0.05

Precision@10 for the validation set = 0.05

4.3 Recall@k

Recall at k is the number of positive items in the first k positions of the ranked list of

recommended results divided by the number of positive items in the test period. In other

words, recall@k is the proportion of relevant items found in the top k recommendations. A

perfect score is 1.0. Similar to precision_at_k, LightFM’s recall_at_k also returns a numpy

array containing recall@k scores for each user. If there are no interactions for a given user

having items in the test period, the returned recall will be 0.

For the LightFM model created in this study:

when k = 10

Recall@10 for the train dataset = 0.10

Recall @10 for the test dataset = 0.13

Recall @10 for the validation set = 0.14

39

According to the Figures 19 and 20, Precision tends to be higher for smaller k values; highest

value being 0.05 when k is 1. Recall value tends to increase with the k value going up to 0.28

when k is 50.

While both precision@k and recall@k value appear to be rather low, one reason for this

maybe the sparsity of the data. While it was ensured that each user had rated at least 20 books

in the initial dataset, when splitting this dataset into three separate sets (80%, 10%, 10%)

using train_test_split() no special consideration was taken to ensure that each user had

interactions in all three datasets. This assumption is further proven by the fact that when

testing the model with 20% of the dataset (while 80% is set aside for training), the

precision@k improved.

Figure 19: Precision@k and Recall@k values

Figure 20: Precision@k and Recall@k values at different 'k' values for larger testing set

40

4.4 Accuracy of VADER

From the sentiment analysis performed with VADER, out of 110244 reviews, 8335 reviews

which had a rating of 5 or 4 (which corresponds to “It was amazing”, “I really liked it”) were

classified as “negative”. Number of reviews which had a rating of 1 (“I didn’t like it”) but

classified as “positive” were 1017.

It may indicate that approximately 8.4% of the sentiment polarity were miscalculated. The

accuracy of the sentiment polarity calculation can be deduced as 91.6%.

However, further in-depth analysis with human intervention is needed to verify or refute this,

as it is possible that even with a positive rating, the reader may have described some negative

aspects of the book in the review, or vice versa.

As elaborated in detail above, the results of this study indicate that interaction data combined

with sentiment intensity scores of reviews could be used to improve recommendation process.

The possible improvements to this study and conclusions on the results that are obtained will

be discussed in the next chapter.

41

CHAPTER 5

CONCLUSION AND FUTURE WORK

Both recommendation algorithms and sentiment analysis techniques are used in abundance in

various applications at present. The study presented in this report, attempts to combine the

two approaches to obtain better recommendations for the user as a way of improving the

services provided to the user. This chapter contains the conclusions arrived at, at the end of

this study and the possible future work that may further improve and attest that sentiment

analysis could in fact be of use in recommendations.

5.1 Conclusion

At the sentiment analysis phase of this study, VADER proved to have 91% accuracy which

may provide us with reasonable confidence that the sentiment scores calculated for each

review, and subsequently each book are in fact correct. In the initial publication on VADER

(Gilbert & Hutto, 2014), authors claimed fairly good F1 scores for Tweets (Posts on Twitter),

Movie and Product reviews and New York Times articles as well which is another indication

for the reasonable accuracy of the sentiment analysis results.

With the results of the recommendation model presented in the preceding chapter, it may be

rationally concluded that sentiment scores can be used as additional features in the

recommendation process and that hybrid models do have an advantage over pure

collaborative filtering methods provided by packages such as Surprise. The overall model and

rankings provided by the LightFM model are better than that of pure collaborative filtering

methods as proven by the Area Under the Curve (AUC) scores of both approaches.

However, the final model did not present high precision@k and recall@k scores for test and

validation datasets. As mentioned in the previous chapter, while the initial dataset contained

books and users that had at least 20 interactions per entity, no especial effort was given to

ensure users had interactions in training and testing sets when splitting the dataset for testing

and training. As the LightFM document itself claims, this may create a partial cold-start

problem. While the item features in the form of sentiment scores may slightly alleviate this

problem, this does not seem to be enough to provide higher precision and recall scores for top

k items.

42

5.2 Future Work

One of the biggest challenges in Natural Language Processing thereby sentiment analysis is

the constant evolution of natural languages. As languages evolves quickly with English

language acquiring words from other languages and non-standard or unofficial forms of

words (e.g.: Internet slang), lexicons will have to updated frequently. This is especially true of

the latter as most reviewers, be it for products, movies, or books, tend to use Internet slang

fairly often unlike professional critics.

Therefore, one obvious future enhancement to the approach discussed in this thesis is using

more sophisticated sentiment analysis algorithms to calculate sentiment scores. This method

would have to allow for constantly evolving languages, as well as other ubiquitous words,

phrases that is used on the Internet. The latter may also include emojis, GIF (Graphics

Interchange Format) and image reactions in reviews.

Another future enhancement for this study will be to include more features per book and

measure the precision and recall values. Such features can be extracted from the book

metadata available in the same source listed in Appendix A (UCSD Book Graph - (Mengtin,

2017)). Attributes such as Language Code, Authors, and Publication Year are a few examples

for the possible features.

In this study only the overall sentiment was calculated. Further investigations in to whether

Aspect Based sentiments could be utilized in this approach may also yield interesting results.

This will require selecting the best aspects to be used in the LightFM item features as well.

To further verify the results presented in the study and improve the performance further, this

approach will need to be tested for larger datasets as this study is only conducted for the

poetry books. Utilizing more data, ideally for books of different genres, will solidify the

findings of this study. The genre or genres of the books of the new dataset can also be utilized

as another feature of books.

In this study only items features have been included in the LightFM models. As another

improvement, it is also possible to add user features to further personalize recommendations.

43

REFERENCES

Alaei, A. R., Becken, S. & Stantic, B., 2017. Sentiment analysis in tourism: Capitalising on

Big Data. Journal of Travel Research, 58(2), p. 175–191.

Amazon.com, 2007. Goodreads. [Online]

Available at: https://www.goodreads.com

[Accessed 20201].

Bansal, S., 2019. A Study of Recent Recommender System Techniques. International Journal

of Knowledge and Systems Science, 10(2), pp. 13-41.

Burke, R., 2007. Hybrid web recommender systems. In: P. Brusilovsky, A. Kobsa & W.

Nejdl, eds. The Adaptive Web. Lecture Notes in Computer Science. s.l.:Springer, Berlin,

Heidelberg, pp. 377-408.

Danlik, M., 2021. langdetect 1.0.9. [Online]

Available at: https://pypi.org/project/langdetect

[Accessed 2021].

Gilbert, E. & Hutto, C. J., 2014. VADER: A Parsimonious Rule-Based Model for Sentiment

Analysis of Social Media Text.. s.l., The AAAI Press.

Hamilton, W. L., Clark , K. & Lesko, J., 2016. Inducing Domain-Specific Sentiment Lexicons

from Unlabeled Corpora.

Hug, N., n.d. Surprise - A Python scikit for recommender systems. [Online]

Available at: http://surpriselib.com/

[Accessed 2021].

Kula, M., 2015. Metadata Embeddings for User and Item Cold-start Recommendations.

CoRR, Volume abs/1507.08439.

Liu, B. & Zhang, L., 2012. A Survey of Opinion Mining and Sentiment Analysis. In: Mining

Text Data. s.l.:s.n., pp. 415-463.

McAuley, J. & He, R., 2016. Ups and downs: Modeling the visual evolution of fashion trends

with one-class collaborative filtering. WWW.

44

Mengtin, W., 2017. Goodreads Datasets. [Online]

Available at: https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

[Accessed 2020].

Musto, C., de Gemmis, M., Semeraro, G. & Lops, P., 2017. A Multi-criteria Recommender

System Exploiting Aspect-based Sentiment Analysis of Users' Reviews. Como Italy, s.n.

Musto, C., Lops, P., de Gemmis, M. & Semeraro, G., 2019. Justifying Recommendations

through Aspect-based Sentiment Analysis of Users Reviews. Larnaca Cyprus, s.n.

Nakatani, S., 2010. Language Detection Library for Java. s.l.:s.n.

Neethu, M. S. & Rajasree, R., 2013. Sentiment analysis in twitter using machine learning

techniques. Tiruchengode, India, s.n., pp. 1-5.

Osman, N. A., Noah, S. A. M. & Darwich, M., 2019. Contextual Sentiment Based

Recommender System to Provide Recommendation in the Electronic Products Domain.

International Journal of Machine Learning and Computing, 9(4).

Puschmann, C. & Powell, A., 2018. Turning Words Into Consumer Preferences: How

Sentiment Analysis Is Framed in Research and the News Media. Social Media + Society.

Ricci, F., Rokach, L. & Shapira, B., 2011. Recommender Systems Handbook. s.l.:Springer

New York Dordrecht Heidelberg London.

Rokade, P. P. & Kumari D., A., 2019. Business intelligence analytics using sentiment

analysis-a survey. International Journal of Electrical and Computer Engineering (IJECE),

9(1), pp. 613-620.

Sachdeva, N. & McAuley, J., 2020. How Useful are Reviews for Recommendation? A Critical

Review and Potential Improvements. Virtual Event, China, ACM SIGIR.

Schafer, J. B., Frankowski, D., Herlocker, J. & Sen, S., 2007. Collaborative Filtering

Recommender Systems. Springer-Verlag, Berlin Heidelberg.

Singh, V. K., Mukherjee, M. & Kumar , G., 2011. Combining a Content Filtering Heuristic

and Sentiment Analysis for Movie Recommendations. Bangalore, Springer, Berlin,

Heidelberg.

Wan, M. & McAuley, J., 2018. Item Recommendation on Monotonic Behavior Chains.

Vancouver, Association for Computing Machinery, p. 86–94.

45

APPENDIX A: DATASETS

Poetry

Download Links:

▪ goodreads_books_poetry.json.gz (36,514 books)

▪ goodreads_interactions_poetry.json.gz (2,734,350 interactions)

▪ goodreads_reviews_poetry.json.gz (154,555 detailed reviews)

Books

Download Links:

Complete book graph: goodreads_books.json.gz

Author Information: goodreads_book_authors.json.gz

Work Information: goodreads_book_works.json.gz

Book Series: goodreads_book_series.json.gz

Fuzzy Book Genres: gooreads_book_genres_initial.json.gz

Shelves

Download Links:

▪ Complete *229m* interactions in 'csv' format (~4.1g): goodreads_interactions.csv

▪ User IDs: user_id_map.csv

▪ Book IDs: book_id_map.csv

Reviews

▪ Complete 15.7m reviews (~5g): goodread_reviews_dedup.json.gz

▪ Review subset (~1.38m reviews) with parsed spoiler tags:

goodreads_reviews_spoiler.json.gz

▪ Spoiler subset with original review text: goodreads_reviews_spoiler_raw.json.gz

https://drive.google.com/uc?id=1H6xUV48D5sa2uSF_BusW-IBJ7PCQZTS1
https://drive.google.com/uc?id=17G5_MeSWuhYnD4fGJMvKRSOlBqCCimxJ
https://drive.google.com/uc?id=1FVD3LxJXRc5GrKm97LehLgVGbRfF9TyO
https://drive.google.com/uc?id=1LXpK1UfqtP89H1tYy0pBGHjYk8IhigUK
https://drive.google.com/uc?id=19cdwyXwfXx_HDIgxXaHzH0mrx8nMyLvC
https://drive.google.com/file/d/1TLmSvzHvTLLLMjMoQdkx6pBWon-4bli7/view?usp=sharing
https://drive.google.com/uc?id=1op8D4e5BaxU2JcPUgxM3ZqrodajryFBb
https://drive.google.com/uc?id=1ah0_KpUterVi-AHxJ03iKD6O0NfbK0md
https://drive.google.com/open?id=1zmylV7XW2dfQVCLeg1LbllfQtHD2KUon
https://drive.google.com/uc?id=15ax-h0Oi_Oyee8gY_aAQN6odoijmiz6Q
https://drive.google.com/uc?id=1CHTAaNwyzvbi1TR08MJrJ03BxA266Yxr
https://drive.google.com/uc?id=1pQnXa7DWLdeUpvUFsKusYzwbA5CAAZx7
https://drive.google.com/uc?id=196W2kDoZXRPjzbTjM6uvTidn6aTpsFnS
https://drive.google.com/uc?id=1NYV4F1WGJg6QbV0rOSXi6Y1gFLwic94a

46

APPENDIX B: SOURCE CODE

Identifying English Reviews with Langdetect

from langdetect import detect, DetectorFactory

df = pd.read_json('../input/poetry-reviews/goodreads_reviews_poetry.json', lines=True)

for index, row in df.iterrows():
 try:
 if (detect(str(row['review_text'])[0:200]) != 'en'):
 df.drop(index, inplace=True)
 except Exception:
 df.drop(index, inplace=True)
df.to_csv('English_reviews.csv',index=False)

Sentiment Analysis with VADER

from nltk.sentiment.vader import SentimentIntensityAnalyzer
import pandas as pd

df["compound"] = 0
df["neg"] = 0
df["neu"] = 0
df["pos"] = 0

sid = SentimentIntensityAnalyzer()

for index, row in df.iterrows():
 try:
 scores = sid.polarity_scores(row['review_text'])
 df.loc[index,'compound'] = scores["compound"]
 df.loc[index,'neg'] = scores["neg"]
 df.loc[index,'neu'] = scores["neu"]
 df.loc[index,'pos'] = scores["pos"]
 except Exception:
 pass

df.to_csv("sentiment_scores.csv", index=False)

47

Data preparation for LightFM

class DataPrep:
 def __init__(self):
 pass

 def generate_feature_list(self, dataframe, features_name):

 """
 Generate features list for mapping

 Parameters

 dataframe: Dataframe
 Pandas Dataframe for Books.
 features_name : List
 List of feature columns name avaiable in dataframe.

 Returns

 List of all features for mapping
 """
 features = dataframe[features_name].apply(lambda x: ','.join(x.map(str)), axis=1)
 features = features.str.split(',')
 features = features.apply(pd.Series).stack().reset_index(drop=True)

 return features

 def create_features(self, dataframe, features_name, id_col_name):
 """
 Generate features that will be ready for feeding into lightfm

 Parameters

 dataframe: Dataframe
 Pandas Dataframe which contains features
 features_name : List
 List of feature columns name avaiable in dataframe
 id_col_name: String
 Column name which contains id of the item e.g.: "book_id"

 Returns

 Pandas Series
 A pandas series containing process features
 that are ready for feed into lightfm.
 The format of each value
 will be (user_id, ['feature_1', 'feature_2', 'feature_3'])
 """

 features = dataframe[features_name].apply(lambda x: ','.join(x.map(str)), axis=1)
 features = features.str.split(',')
 features = list(zip(dataframe[id_col_name], features))
 return features

 def get_all_feature_data(self, metadata, interactions ,features_name, id_col_name,):

 """
 Generate lighfm data for trainig the model

 Parameters

 metadata: Dataframe
 Pandas Dataframe containing item features
 interactions: Dataframe
 Pandas Dataframe containing user-item interactions
 features_name : List

48

 List of feature columns name avaiable in dataframe.
 id_col_name: String
 The item_id column name
 Returns

 List of all features for mapping
 """
 book_sentiments = metadata[metadata.book_id.isin(interactions.book_id)]

 features_list = self.generate_feature_list(book_sentiments, features_name)
 book_features = self.create_features(book_sentiments, features_name, id_col_name)

 dataset = Dataset(user_identity_features=False)
 dataset.fit(interactions['user_id'].unique(),
 book_sentiments['book_id'].unique(),
 item_features=features_list)

 lightfm_item_features = dataset.build_item_features(book_features)

 interactions = list(zip(interactions.user_id,
 interactions.book_id,
 interactions.rating))

 lightfm_interactions, lightfm_weights = dataset.build_interactions(interactions)

 user_id_mapping = pd.DataFrame(list(dataset.mapping()[0].items()),
columns=['user_id', 'inner_uid'])
 item_id_mapping = pd.DataFrame(list(dataset.mapping()[2].items()),
columns=['book_id', 'inner_iid'])

 return lightfm_item_features, lightfm_interactions, lightfm_weights,
user_id_mapping, item_id_mapping

Hyperparameters

def sample_hyperparameters():
 """
 possible hyperparameter choices.
 """
 while True:
 yield {
 "no_components": np.random.randint(80, 120),
 "learning_schedule": np.random.choice(["adagrad"]),
 "loss": np.random.choice(["warp"]),
 "learning_rate": np.random.exponential(0.001),
 "item_alpha": np.random.exponential(0.0005),
 "max_sampled": np.random.randint(5, 10),
 "num_epochs": np.random.randint(10,200)
 }

def random_search(train, test, item_features, weights, num_threads, num_samples):
 """
 Create a lighfm model given the hyperparameters, evaluates AUC score and returns
the
 best score, model and hyperparameters

 Parameters

 train: output of a train_test_split() method or a coo_matrix
 test: output of a train_test_split() method or a coo_matrix
 item_features : csr_matrix containing item_features
 weights: weights matrix
 num_threads: number

49

 num_samples: number
 Returns

 best score, model and hyperparameters
 """
 for hyperparams in itertools.islice(sample_hyperparameters(), num_samples):
 print(hyperparams)
 num_epochs = hyperparams.pop("num_epochs")

 model = LightFM(**hyperparams)
 model.fit(train,
 item_features=item_features, sample_weight=weights,
 epochs=num_epochs, num_threads=num_threads, verbose=True)
 score = auc_score(model, test, train_interactions=train, num_threads=num_threads,
item_features=item_features).mean()
 hyperparams["num_epochs"] = num_epochs

 yield (score, hyperparams, model)

Create and Train Model

model = LightFM(no_components=93,
 learning_schedule= 'adagrad',
 loss='warp',
 learning_rate=0.004797,
 item_alpha=5.071235338644859e-05,
 max_sampled=8)
model.fit(train,
 item_features=lightfm_item_features, sample_weight=train_weight,
 epochs=91, num_threads=2, verbose=True)

Making Recommendations

class MakeRecommendations:
 """
 Make prediction given model and user ids
 """
 def __init__(self, lightfm_model,
 books,
 item_features,
 interactions,
 user_id_mapping,
 item_id_mapping):
 self.model = lightfm_model
 self.books = books
 self.item_features = item_features
 self.interactions = interactions
 self.user_id_map = user_id_mapping
 self.item_id_map = item_id_mapping

 def _filter_already_read_books(self, user_id):
 """Drop books already read(rated) by the user_id"""

 read_book_ids = self.interactions.loc[self.interactions['user_id'] ==
user_id,'book_id']
 books_for_prediction =
self.item_id_map.loc[~self.item_id_map['book_id'].isin(read_book_ids.tolist())]

 return books_for_prediction

 def make_recommendations_per_user(self, user_ids, num_prediction=5, num_threads=1):

 inner_uid = self.user_id_map[(self.user_id_map['user_id'] ==
user_ids)].inner_uid.values[0]

50

 #get books already not read by the user.
 books_for_prediction = self._filter_already_read_books(user_ids)

 score = self.model.predict(
 int(inner_uid),
 books_for_prediction['inner_iid'].values.tolist(),
 item_features=self.item_features)

 books_for_prediction = books_for_prediction.copy()
 books_for_prediction['recommendation_score'] = score
 books_for_prediction = books_for_prediction.sort_values(by='recommendation_score',
ascending=False)[:num_prediction]

 print("User {} may be interested in the following books".format(user_ids))
 books_for_prediction =
self.books.loc[self.books['book_id'].isin(books_for_prediction['book_id'])][['title']]
 print(books_for_prediction.to_markdown(index=False))

 return books_for_prediction

