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ABSTRACT

Word embeddings are an important aspect in Natural Language Processing (NLP)
which tries to find a better representation of a word. One such application of word embedding
is predicting the next word of a given phrase. Mostly word embedding techniques are applied
for high resource languages. Word embeddings done for low resource languages are very rare.
Sinhala language can be considered as a low resource language. Therefore, in this study we

addressed the issue of predicting the next word of given phrase in Sinhala language.

The data for the study were collected from the web and were preprocessed to remove
the noise. The preprocessed data were fed into 3 types of models namely n-gram model, LSTM
model (which builds the word embedding by ignoring the meaning of the word based on its
context, therefore the true meaning of the sentence might get ignored) and RoBERTa model
(which learns the meaning of the word based on its context). Best model has been selected by

comparing the perplexity values.

According to the results obtained among the n-gram models created the tri-gram model
obtained the lowest perplexity value of 502.34. From the LSTM models created the LSTM
model which considered four previous words for the prediction had a better performance
(perplexity: 44.53). From the results obtained for BERT model it can be concluded that
distilBERT model performs better compared to BERTbase model. The lowest perplexity value
for distilBERT model was 3.19 at the epoch 30. Further, it can be concluded that ROBERTa

model is better for language modelling compared to n-gram model and LSTM model.
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CHAPTER 1: INTRODUCTION

1.1 Background of the study

In the modern world computers play a vital role in day today life. From governing the
security and financial aspects of a country to domestic usage, it is very useful. As computers
become more popular people tries to make it more user friendly but however the
communication between humans and computers is not based on human language. Making
computers understand the human language is the goal of computational linguistics. When
considering about computational linguistics, representing words in a human language is a
problem. The earliest attempts performed can be recognized as vector space models and
statistical approaches such as maximum likelihood estimates of the words and using n-grams.
One of the earliest usages of this model is in the field of speech recognition. By using statistical

approaches syntax of the word cannot be captured (only the semantics can be captured).

Therefore, to capture the syntaxes of the words a method named ‘bag-of-words’ were
proposed by S. Harris, where the text is considered as a bag of its words. It will create a
vocabulary and assign each word in the vocabulary a unique index. Each document is then
represented by a vector of length n (n = no of words) with the number of occurrences in each
word. Due to the large size of the vocabulary this will lead to high dimensional feature vectors.
The Term Frequency-Inverse Document Frequency (TF-IDF) method is a variation of bag of
words method. It reweights the frequency vectors with the inverse document frequency of each

word.

According to the literature (Almeida & Xexeo, 2019) word embeddings are ‘dense,
distributed, fixed length word vectors built using word co-occurrence statistics as per
distributional hypothesis’. These vectors can capture relationships between words and their
meanings. However, each word had a particular embedding which was independent of context.
Traditional word embeddings (GloVe and word2Vec) are implemented by ignoring the
meaning of the word based on its context. The problem here is since it ignores the contextual
meaning of the word the original meaning of the sentence may be violated. Therefore, as a
solution the contextual word embedding concept was introduced. It is implemented using
transformer models (mostly based on BERT) and it attempt to model the word semantics based

on its context.



Word embeddings is a good research area which tries to find a better representation of
a word. It can be useful in many Natural Language Processing (NLP) tasks, such as question
answering, word prediction and generating possible sentences. Today word embedding
techniques are applied for high resource languages, but word embeddings done for low

resource languages are very rare.

1.2 Sinhala language

Sinhala is the native language spoken by the Sinhalese people in Sri Lanka, which is
the largest ethnic group in the island. It belongs to the Indo — Aryan group of languages. The
oldest Sinhala script was found in third to second century BCE. Sinhala has its own writing
style which comes from the Indian Brahmi script which contains 60 letters; 18 vowels and 42
consonants (figure 1.1), but only 57 (16 vowels and 41 consonants) are required for writing
spoken Sinhala. In the writing system of Sinhala language the consonants are written with
letters while the vowels are indicated with diacritics (pilla) on those consonants. Sinhala letters
are divided into 2 sets named as ‘sudda Sinhala’ (pure Sinhala) and ‘misra Sinhala’ (mixed

Sinhala) and most of the letters are circular. Sinhala sentences are written from left to right.
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Figure 1-1 Sinhala Alphabet



1.3 Motivation

Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) which
deals with the interaction between the computers and human using the natural language. A
quite amount of research have been done using NLP for English language but NLP tools for

Sinhala are very rare.

Various tasks can be performed using NLP. One such application is word prediction. It
is a word processing feature that suggest the next word while you type a sentence. This facility
can be found in smart phones in the modern world. Google has developed this facility for 102
languages including English language, but so far this facility is not available for Sinhala

language.

1.4 Objective

The objective of this research is to generate a word embedding scheme for Sinhala
language and then to develop a system that can be used to generate the next possible word for

a given phrase and to generate Sinhala sentences. To meet this goal following sub objectives

should be achieved

e Collect a representative corpus of Sinhala text

e Design a word embedding schemes using the dataset and compare them.

e Use proposed contextual embedding scheme to generate the next possible word for a
given phrase.

e Explore the generation of longer sequences such as phrases and sentences using the

proposed embedding.

1.5 Significance

Many upstream Sinhala language processing tasks and applications will be able to use

the propose contextual embedding in order to improve their performance.

1.6 Scope of the project

e Word representations for written Sinhala text will only be considered.

e Only prose of the non-fiction genre will be considered.



1.7 Structure of the dissertation

Chapter 1 introduces the research based on NLP in human languages. Chapter 2 gives
a brief description about few previous works done by other researchers around the world
relevant to this study and about the NLP researches related to Sinhala language. Chapter 3
consists of the theory on which this research was conducted. Chapter 4 provides a clear idea
about how the research was carried out, what instruments and software used and how the model
was trained and tested. Chapter 5 contains the results obtained from the model and analysis of
them. Discussions, limitations and hardships while doing this research are mentioned in chapter
6 with further development ideas. Final chapter contains the conclusion of the study and the

summary.



CHAPTER 2: LITERATURE REVIEW

Human languages are unstructured. To make computer to understand a human language
the concept of NLP was introduced in 1950s. It is a branch of Al which can be used to predict
words, machine translations, chatbox (voice assistants such as Siri and Alexa) etc. Several

studies have been performed for English language using NLP techniques are mentioned below.

One basic requirement for a machine to understand a human language is to understand
its vocabulary. In NLP this can be referred as word embedding. The earliest methods used are
Word2Vec, GloVe and FastText. Word2vec is a word embedding model which is trained using
a feedforward neural network. It has 2 types of architectures namely, Continuous Bag Of
Words (CBOW) and continuous skip-gram model (Mikolov, et al., 2013). In CBOW model it
predicts which is the most likely word in the given context. Therefore, words with equal
likelihood of appearing are considered as the same and occur closer in the dimension space
while in the skip-gram model it predicts the context using the given word. An extension named
FastText was introduced in 2017 to the skip-gram model (Bojanowski, et al., 2017) by
considering the morphology of the words. Using this methodology unknown words also can be
presented in vector form. The GloVe model was introduced by (Pennington, et al., 2014). It is
trained on aggregated global word to word co-occurrence matrix from a given text collection of
text documents. This co-occurrence matrix is decomposed to form denser and expressive vector

representation.

Before 2016 the available word embedding methods were not optimized for sentence
representations. Therefore as a solution for this matter, an estimation of sentence embeddings
was done using Siamese Continuous Bag of Words (Siamese CBOW) model (Kenter, et al.,
2016). Word embeddings were trained using Toronto Book Corpus which contained around 74
million preprocessed sentences, which was made from around 1 billion tokens. The final
vocabulary contains 315,643 words. The tokens which appeared more than 5 times were only
considered. The model was evaluated on 20 datasets from a variety of sources. According to
the results obtained 14 out of 20, Siamese CBOW outperforms a word2vec baseline and a

baseline based on the recently proposed skip-thought architecture.

A continuous-valued word embedding method have been used in (Minih &

Kavukcuoglu, 2013) to capture semantic and syntactic information about words. The word

5



embeddings were learned by training log-bilinear models with noise-contrastive estimation.
The dataset used was the English Wikipedia and a collection of 500 Gutenberg text that form
canonical training data. After performing preprocessing techniques, the dataset consists with
1.5 billion words. To speed up the training only 1 word was predicted. The best results were

shown by learning high dimensional embeddings from a large amount of data.

In (Aurnhammer, et al., 2019) a word prediction for natural sentence reading was
performed using information and theoretic measures (suprisal and next-word entropy). To
overcome the short comings lookahead information gain was introduced. During the study the
information theoretic measures were compared with 3 datasets (ECG, eye tracking and self-
paced). Initial and final words of a sentence, words before comma and words with clitics were
excluded. The data were analyzed using linear mixed effect regression models. According to
the computational results obtained in the predictive processing system, the cost of predicting

outweighs the gains.

A study was performed in (Tien, et al., 2018) to encode the characteristics from set of
word embeddings into a single word embedding. By using this newly created embedding the
similarity between sentences can be learned. Another research (Babu & S, 2020) was done to
find the similar queries or searches using word embeddings. The word embeddings were used

on questions asked on Stack Overflow using the Cosine similarity.

The most popular method for contextual word embedding is the use of BERT
(Bidirectional Encoder Representations from Transformers) model which was developed by
Google in 2018. The first BERT model was created for English language and today Google has
created the BERT model for 104 languages which is named as multilingual BERT (mBERT).
A comparison of the geometry of BERT, ELMo and GPT-2 embeddings were performed in
2020 (Ethayarajh & Kawin, 2020). Some of the findings are mentioned below.

1. The contextualized word representations of the words are anisotropic in all layers and
it is more anisotropic in higher layers.

2. The vector representations of the same word occurrences in different context are non-
identical. In the upper layer these representations are very dissimilar. Therefore, task-
specific representations are produced in upper layers of LSTMs.

3. Stopwords have the most context-specific representations.

4. The context-specificity manifests are different in the 3 models.

5. In ELMO, words in the same sentence are more similar to one another in upper layers.

6



6. In BERT, words in the same sentence are more dissimilar to one another in upper layers.

7. In GPT-2, word representations in the same sentence are no more similar to each other
than randomly samples words.

8. Less than 5% of the variation in a word’s contextualized representations can be
explained using the first component by adjusting the effect of anisotropy.

9. Principle components of contextualized representations in lower layers outperform

GloVe and FastText on many benchmarks.

As mentioned above the mBERT model is only focused on the top 104 languages in
Wikipedia. Therefore, in 2020 a new approach to extend mBERT was proposed (E-mBERT)
so that any unseen language can be accommodate (Wang, et al., 2020). The NER task was
performed for 27 languages out of that 11 languages were not included in mBERT. The
monolingual data of the target language was created using the same procedure in BERT. The
words which appeared on the mBERT vocabulary was filtered out. The encoder and decoder
weights has been extended so that it can work with the new vocabulary. According to the results
obtained (Figure 2-1) it is clear that E-mBERT performs well compared to mBERT irrespective
of the whether the language is present in mBERT or not. Further it can be concluded that E-
mBERT performs well when the language is not present in the mBERT model.

In the same study the E-mBERT model was compared with the bilingual BERT (B-
BERT) model. B-BERT is a model which is trained in the same way as mBERT, but it only
contains 2 languages (English language and the target language). In this study the languages
that are not included in mBERT were considered. According to the results obtained it can be

concluded that E-mBERT has a better performance for most of the languages.
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Figure 2-1 Results obtained from mBERT and E-mBERT models

The BERT model was used to analyze the language style in twitter in Italian language
(Poligano, et al., 2019) which was named as ALBERTo. The dataset included 200 million
tweets in Italian language. The model has been trained using the original BERT model. Model
was evaluated for sentiment analysis for Italian language. According to the results obtained the
system performed well and when the number of epochs of the learning phase of fine tuning

was increased, the results were increased between 7% and 11%.

In (Canete, et al., 2020) a BERT based language model was pretrained on Spanish data.
The data were collected from Wikipedia and some other sources (OPUS project) that contained
Spanish data. The final training corpus contained 3 billion words. The collected corpora were
comparable with the corpora which used in original BERT. The model was trained both for
cased data and uncased data. In the training step each sentence had 10 masks (dynamic
masking) and also Whole-Word Masking (WWM) were used. Larger batches were used for
training when compared to the original BERT. According to the results obtained Spanish BERT
outperform most of the multilingual BERT (mBERT).

The Dutch BERT model (BERTje) was introduced in (de Vries, et al., 2019). the data

consist of Dutch text (taken from books, news corpus and Wikipedia). By considering the
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overall quality of the data the data obtained from twitter were removed. After performing the
necessary pre-processing techniques, the final dataset consists with 2.4 billion tokens. In this
model the pretraining task was modified such as different technique to perform the Masked
Language Model (MLM) task. In this study consecutive words belong to the same word were
masked. 15% of the tokens were masked using this technique. According to the results obtained

for word level NLP tasks the model outperforms the mBERT.

An upgraded version of BERT was released recently which is named as Whole Word
Masking. In 2019 this method was adopted for Chinese BERT (Cui, et al., n.d.), using data
collected from Wikipedia. Further the efficiency of the existing models of Chinese pretrained
models (BERT, ERNIE, BERT-wwm, BERT-wwm-ext, ROBERTa-wwm-ext and RoBERTa-
wwm-ext-large) were also analysed.the models were analysed using 3 datasets namely, CMRC

2018, DRCD and CJRC According to the analysis,

e BERT-wwm shows significant improvements on CMRC 2018 and DRCD.
e ERNIE does not perform well on DRCD.
e Traditional Chinese character are removed from the vocabulary of ERNIE.

e BERT-wwm performs well for CJRC compared to BERT and ERNIE.

In (Ma, et al., 2019) Attention-based multi-layer word embedding model (ALWE) was
used to find the semantic structure of Chinese words. Data were collected from Chinese
Wikipedia and as preprocessing techniques numbers and non-Chinese words were removed.
According to the results obtained on word similarity, word analogy, and text classification, the

proposed model showed a 1% in improvement accuracy compared to all other baselines.

In 2019 (Alsentzer, et al., 2019) the BERT model was implemented in related to bio
medical field namely BioBERT. The dataset used was clinical text with 2 million notes. The
model was trained for 2 types of datasets namely clinical BERT (text from all types of notes)
and discharge summary BERT (only contain information about discharge summaries). The
tensorflow implementation of original BERT model was used for pre-training. From the results
obtained it can be concluded that clinically fine-tuned BioBERT show more performance
compared to general BERT model. The clinical BERT had an accuracy of 82.7%. This model
has some limitations, such as the created model was not experimented with advance model

architectures and the data used only contained ICU data.



A study was performed using NLP techniques in scientific domain, as a result the BERT
model which trained on scientific text namely SciBERT was released in 2019 (Beltagy, et al.,
2019). It was a pre-trained language model based on BERT. The dataset included 1.14 million
papers from semantic scholar (18% from computer science and 82% from biomedical domain).
4 different versions of SCIBERT was trained using the same configuration and size of the
BERT-base. Improved results can be obtained by finetuning the model. As future work
SCIBERT model can be developed based on the BERT-large model. Table 2-1 will provide a
comparison of the results obtained by SCIBERT with state-of-the-art (SOTA) and BERT-base.

Table 2-1 Comparison of SCIBERT with other models

Data domain No of BERT-base SOTA
datasets
Biomedical 7 SCIBERT For 3 datasets the performance of
outperforms SCIBERT is worst.
Computer 3 SCIBERT SCIBERT achieves new SOTA results
science outperforms on ACL-ARC.
Multiple 2 SCIBERT SCIBERT outperforms for the SciSite
outperforms dataset.

In 2019 a study based on pretraining in BERT was done using 5 different English
language corpora (Liu, et al., 2019). The created model was named as Robustly optimized

BERT approach (RoBERTa). The pretrained model was evaluated using following,

1. The General Language Understanding Evaluation (GLUE): finetuning procedure is
same as the original BERT model. According to the results obtained the ROBERTa
model has a better accuracy compared to BERT model.

2. The Stanford Question Answering Dataset (SQuAD): 2 versions were evaluated. In the
first version it always contains with an answer while the other version some questions
were not answered. From the results it can be concluded that RoOBERTa performs well

for all the data except for 1.
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3. The Reading comprehension from Examiners (RACE): the task is to select the correct
answer for the question using the available 4 options. According to the results

RoBERTa outperforms the standard BERT model.

Sinhala is the native language of Sinhalese people in Sri Lanka. It is a morphologically
rich and low resourced language. Therefore, research work based on NLP techniques for
Sinhala language are very rare compared to English language. According to the resources the
earliest attempt on Sinhala NLP was done by S. Herath in 1991 and also the Language
Technological Research Laboratory of UCSC has been involved in Sinhala language related
NLP research since 2004.

To develop tools for machine translation, spelling/ grammar correction and speech
recognition NLP techniques were used to analyze the Sinhala language (Gallege, n.d.). Data
for the study were collected from LTRL Sinhala corpus, stories by Martin Wickramasinghe
and online newspapers. The data were preprocessed in order to apply NLP algorithms. This
stud y includes Maximum Likelihood Estimates (MLE) on Sinhala Characters, Language
Identification using a Naive Bayes Classifier, Zipf’s Law Behavior, Topic Classification using
Support Vector Machines (SVM) and Language Models. According to the study all NLP

techniques applied produced satisfactory results

In 2020 the first evaluation of different types of word embeddings for Sinhala language
was performed (Lakmal, et al., 2020) using 3 standard word embedding models (Word2Vec,
FastText and GloVe). The methods were evaluated using 2 methods namely intrinsic evaluation
and extrinsic evaluation. The data for the study were collected using common crawl and 2
corpora were created, with and without stopwords. Overall best results were reported for

FastText word embedding with 300 vector dimensions.

A Sinhala question answering system named ‘Mahoshadha’ was created by (Jayakody,
et al., 2015), the first QA system introduced for Sinhala language. The system created have 4
parts namely, document summarizing, document categorizing, question processing and answer
processing. The document summarization was done using SVM classifier. K-nearest neighbour
(KNN) was used for document categorization. The question processing is divided into 2

components as analyzing the question and identifying the answer. The n-gram model was used
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for answer processing. According to the results it has proven that the generated outputs are

accurate.

In 2013 (Karunarathne, et al., 2013) a study was performed to predict Sinhala sentences
in SMS. The objective of this research was to develop an algorithm to reduce the typing effort
and for time saving. The challenging part of this research was it was hard to develop an
algorithm since the SMS writers do not follow language rules. The data were collected for 6
month period from 30 users belongs to 5 categories. The n-gram model was used in this study.
From the results obtained it can be concluded that the developed algorithm has reduced typing

time.

A survey was conducted on publicly available Sinhala NLP tools and research.
According to the survey, the earliest attempt on Sinhala NLP was conducted by (Herath, et al.,
2007). In this study the advanced machine translation capability problem was approached by
examining the Sinhala natural language. A study based on some challenges and opportunities
of using Sinhala language was done by (Nandasara & Mikami, 2016). At this point most of the
studies in Sinhala NLP has been on Optical Character Recognition (OCR). The creation of the

end-to-end Sinhala-to-English translator is the most important project on Sinhala NLP.

As a conclusion the most challenging part in Sinhala related in NLP tasks is collecting
sufficient data (text corpus) because Sinhala text available in the internet is limited. Some
available data cannot be extract because different web sites use different encodings and fonts.
According to the above literature though there are huge number of NLP based implementations
done for Sinhala language, they are in small scale compared with other high resource

languages.
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CHAPTER 3: THEORETICAL FRAMEWORK

3.1 Natural Language processing (NLP)

Human languages are unstructured. When considering 2 or more human languages it
also does not have the same structure. Therefore, in order to make the computers to understand
human languages the concept of NLP was introduced in 1950s by an English mathematician
named Alan Turing (Figure 3.1). In 1950 he published an article named “Computing Machinery
and Intelligence” (Turing, 1950). His experiment was known as “Turing test”, where he tried

to test (whether it’s equal or not) the intelligence behaviour of machines with the human brain.

NLP is a branch of Artificial Intelligence (AI) which help computers to interpret and
understand the human language. The ability of reading speech, hearing speech and the
interpretation of it are also provided by the computers with the use of NLP. Therefore, NLP
can be considered as the science of studying about human languages using computer

technology. Its ultimate goal is to develop computer models for humans.

13



3.2 Text corpus

A corpus can be considered as a large collection of structured set of texts. It may contain
text data in a single language (monolingual corpus) or in multiple languages (multilingual
corpus). A corpus can be used to perform statistical analysis (word frequencies), hypothesis

testing or to validate linguistic rules in a language.

3.3 Text preprocessing

Text preprocessing can be defined as the process of cleaning text data before encoding.
It is the first step to solve an NLP related problem is preprocessing data (text). Such as
removing date formats, white space, stopwords and numbers or converting numbers into words.

Commonly used preprocessing techniques are mentioned below.

3.3.1 Lower casing text data

The idea behind this technique is to convert all the input text into same casing format
so that ‘word’, ‘Word’ and ‘WORD’ are considered in the same way. This technique is needed
when dealing with word frequencies (when calculating TF-IDF vectors), hence same words
will combine together, and duplicates will be removed and therefore correct frequency counts

can be obtained.

3.3.2 Stemming and lematization

Stemming can be considered as reducing the word to their word stem, base or root.
Therefore, the resultant word might be a non-existing word. The goal of lemmatization is to
remove the inflections and map the word to its root form. This will always give a word that

have some dictionary meaning. An example is given below
Troubled > Troubl (stemming)

Troubled - Troubled (lemmatization)

3.3.3 Tokenization

The goal of the tokenization process is to split the given text into smaller pieces named

tokens. Tokens can be considered as words, numbers and punctuation marks.
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3.3.3.1 WordPiece tokenization

WordPiece tokenization can be considered as breaking words into more than 1 sub-
words. This creates a fixed size vocabulary of sub-words, individual characters and words that

best fits the language data. This vocabulary consists with 4 things.

1. Whole words
Sub-words occurring in front of a word or in isolation

Sub-words not in front of a word (this is denoted by using ‘##)

ol

Individual characters

This tokenizer first checks whether the whole word is in the vocabulary. If not, it will
divide the word into largest possible sub-words that are in the vocabulary, finally it will
decompose the word into individual characters. Therefore, a word can represent as a collection
of its individual characters. When an out of vocabulary (OOV) word is present it will be
decomposed into sub-words and individual characters so that embeddings can be generated.

Figure 3-2 shows an application of wordpiece tokenization for Sinhala language.
Eg: Possible sub-word tokens for the word ‘embeddings’ will be,
[‘em’, ‘##bed’, ‘#H#ding’, ##s’]

Source: (McCormick, 2020)

[18] tokenizer bert.encode(" axn@ims me@s. ").tokens
[‘en’, "##00D46°, "#Hme’, '»ecse’, *.']

[11] tokenizer_bert.encode("” 22 smed =B, ").tokens
[‘'@®', ‘ew’, '##e’, '#HO, 'a', '#HS', '."]

Figure 3-2 Wordpiece tokenization for Sinhala language
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3.4 Zipf’s law

Zipf’s law was introduced by an American linguist named George Kingsley Zipf. It is
a statistical distribution of words in a linguistic corpus. Zipf’s law states that given a text of
corpus the frequencies of words are inversely proportional to their ranks. According to this law
stop words will have a large portion of occurrences in a dataset. When the words are ranked
according to their frequencies and when the frequency is plotted against the rank the resultant
graph will be a logarithmic curve (when graph is plot on log scale it will result a straight line).

This law can be applied for any natural language.
r.f =k

Where, 1 is the rank of the word, f'is the frequency of the word and k is a constant

3.5 Language models

Language models can be considered as the backbone of NLP. It is a collection of
statistical and probabilistic techniques which can be used to determine the probability of a
given sequence of words occurring in a sentence by analyzing the text data. This can be used
as a basis of a word prediction model. Language models can be used in speech recognition,

machine translation and part of speech tagging.

3.5.1 N-gram models

n-gram model is a statistical language model which assigns probabilities to sentences
and sequences of words given a sequence of n-1 words. It can be used to predict the next word

in a sentence and also for speech recognition.

If the model relies on how often a word occurs without looking at previous words, it is
called as a unigram model. If the model considers only the previous word to predict the current
word, then it is called bigram model. If the model considers the two previous words, then it can
be considered as trigram model, and so on.

C(Wn—l'Wn)

Bigram probability is given by: P(wy,|w,_1) = o
n-1
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3.5.2 LSTM (Long-Short-Term-Memory) model

LSTM is an artificial recurrent neural network (RNN) which was proposed by the
German researchers Sepp Hochreiter and Juergen Schmidhuber in mid 90s. LSTMs helps to
maintain the error that can be propagated through time and layers which allows the recurrent
nets to continue to learn over time steps. In a LSTM information is kept in a gated cell which
can make decisions such as what to store, when to allow writes, reads and deletions. This is
done by the analog gates which are implemented by element wise multiplication using

sigmoids. The analog gates can be differentiable and hence it is suitable for backpropagation.

The behavior of a gate is similar to the nodes in a NN. When a signal is received by the
gate they pass or block the relevant information based on its strength and import. This is done
by filtering their own sets of weights. These weights are adjusted via the learning process of
the recurrent network. Therefore, the cells will learn through an iterative process by making
guesses, backpropagating error and also by adjusting weights via gradient descent. Figure 3-3
shows the flow of information in a cell and how the gates controlled it inside an LSTM. LSTMs
can be used for speech recognition, handwriting recognition and also to make predictions based

on time series data.

N

out
) ou y S
output gating h y %ﬂet St

ouput gate
output squashing h( Sc)

forget gate
y in
- o i é‘-’/'/
input gating g y 2 :—\V{netm

input squashing g(netc) input gate
/ A \
VTC
net,

Figure 3-3 Flow of information in an LSTM model
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3.6 Word embedding

Word embedding is a vector representation of a word, where words with similar
meanings have a similar representation. The vector representation of a word can be considered
as a one-hot encoded vector. (The position of the word where the word exists is represented as
1 and 0 otherwise). The word embedding can be divided into 2 parts as traditional word

embedding and contextual word embedding.

3.6.1 Traditional word embedding

Traditional word embedding is done by ignoring the meaning of the word based on its
context. The disadvantage of the traditional word embedding is that it ignores the contextual
meaning and hence the original meaning of the sentence may be violated. For example,

consider the following sentence,
sriweC A swst ¢ Ood &8s sy dae.

In this sentence the first instance of the word ‘@93’ represent the lamp and the second
instance represent a human feeling. In traditional word embedding only 1 representation is
learnt for the word ‘es®zy’. Common methods used for traditional word embedding are Glove

and word2vec (a statistical method).

3.6.2 Contextual word embedding

Through the careful consideration of the sequence of all the words in the specified
documents, the sequence level semantics are learnt by it. Therefore, in the above example it
will learn the word ‘w3’ based on its context. The most popular method for contextual word

embedding is the use of the BERT model.

3.7 BERT model

BERT stands for Bidirectional Encoder Representations from Transformers. It is a
machine learning algorithm created by Jacob Devlin and his colleagues from Google in 2018.
As the name implies it is designed to pretrain deep bidirectional representations from unlabeled
text data by considering both the left and right context in all layers. Therefore, the pretrained

model can be finetuned by using one additional output layer. The BERT model can be used
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create models based on NLP such as question answering, predic, abstract summarization and

conversational response generation.

The original BERT model was created for English language and comes with 2 pre
trained types namely BERT-base and BERT-large. Both models are trained on a book corpus
with 800M words, and on the English Wikipedia with 2500M words. BERT model uses
WordPiece tokenization strategy to tokenize the words. The BERT model is pretrained for
Masked Language Modelling (MLM) and sentence prediction. Today Google has created the
BERT model for 102 languages (mBERT) such as Arabic, Bengali, Chinese, Hindi and Tamil.
So far Google has not provided this facility for Sinhala language.

3.7.1 Model architecture of BERT
The architecture of the BERT model is built on top of the Transformer encoder.

e BERT-base: 12 layers (transformer blocks), 12 attention heads, and 110M
parameter neural network architecture.
e BERT-large: 24 layers (transformer blocks), 16 attention heads, 340M parameter

neural network architecture.
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Figure 3-4 Architecture of the BERT model
3.7.2 MLM in pre training

Language modelling can be considered as predicting the next word in a given sequence
of words. In MLM without predicting the next token a portion of input tokens are masked
randomly and the masked tokens are predicted. These models tries to understand the

relationship between words. In the BERT model MLM is implemented as follows.
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First 15% of the tokens are chosen randomly so that the masked tokens can be seen

before fine tuning. Then,

e 80% of the time tokens are actually replaced with the token [MASK].
e 10% of the time tokens are replaced with a random token.

e 10% of the time tokens are left unchanged.

3.7.3 Sentence prediction in pre training

This can be considered as a binary classification task. The data can be acquired from

any corpus by splitting it into sentence pairs. BERT model performs this as follows,

e For 50% of the sentence pairs, the second sentence would actually be the next sentence
to the first sentence. The label would be ‘IsNext’
e For the remaining 50%, the second sentence is a random sentence from the corpus. The

label would be ‘NotNext’.

3.7.4 Finetuning of the BERT model

BERT has a huge neural network architecture which has around 100M to 300M
parameters. Therefore, training the BERT model on a small dataset might result in overfitting.
As a solution for this problem a BERT model which was trained on a huge dataset is used. The
process of training the pretrained BERT model with a smaller dataset is known as model

finetuning.

3.8 mBERT model

As mentioned earlier BERT model was built for English language. Therefore, a model
which can accommodate many languages was introduced named as mBERT. This model was
trained using 104 languages (see appendix A). All the data were collected from Wikipedia.
Languages which had a less amount of data were oversampled and languages with large amount

of data were under-sampled.

When training on many languages without using a separate vocabulary a shared
vocabulary was used for all the languages. This will save space and the model will learn the

root structure of language and the underlying structure.
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3.9 RoBERTa model

RoBERTa model is an optimized BERT pre-training approach which was developed
by researches at Facebook and Washington university. This model was trained using 5
datasets namely, book corpus, English Wikipedia dataset, CC news, open web text and
stories. It is almost similar to the original BERT architecture. The changes done to improve

the results of the BERT architecture are as follows,

o The next sentence prediction is removed: When it is removed it slightly improves the

performance.

o Training was done with bigger batch sizes and longer sequences: The BERT model
was trained for 1M steps with batch size of 256 sequences. The RoOBERTa model was
trained for 125 steps with 2K sequences and 31K steps with 8K sequences of batch

size. When using large batches MLM objective and end task accuracy was improved.

e Masking pattern was changed dynamically: In the BERT model a single static mask
was used. In the ROBERTa model training data was duplicated and masked 10 times,
each time with different mask strategy. This was performed over 40 epochs. (4 epochs

had the same mask). This method can be considered as a dynamic masking strategy.

3.10 Evaluating language models

3.10.1 Perplexity measure

Perplexity measures how a probability model or a probability distribution predicts a
given test sample. A language model can be consider as a probability distribution of a set of
sentences. Therefore, the most common method for evaluating a language model can be
consider as measuring the perplexity value. Low perplexity value indicates a better model.

Perplexity can be defined in various ways. Popular methods are mentioned below,

1. Inverse probability of the test set, normalized by the number of words

n\/ 1
PP(W) =

P(wyi,wy, ..., Wy
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2. Using cross entropy: cross entropy is the average number of bits need to encode a

word. Therefore, the number of words that can be encoded with those bits is known as
perplexity.
PP(W) = 2HW) = 2771082 P(wiwz.n)

3. As a weighted branching factor

3.10.2 Accuracy measure

Accuracy measures the number of correct predictions made by the model. In a language
model there are only 2 possible predictions, either correct prediction or wrong prediction.

Therefore, the accuracy measure can be computed as follows.

no of correct predictions

Accuracy =
y total no of predictions
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CHAPTER 4: METHODOLOGY

4.1 Data collection

Data for the study were collected by scraping Sihala websites such as sinhala.news.lk,
adaderana.lk and www.newsfirst.com. Open datasets available on Git Hub were also used
(contained data extracted from Silumina paper, neth news, hiru news, blog data and film

subtitles). The detailed description of the dataset is given in section 4.2.2.

4.2 Method description

Input text data
Analyze the | Pre-processing | Create corpus
dataset data
v
Apply to ngram Apply to LSTM Apply to BERT

model | model

Analyzing and

validating

Figure 4-1 Method

A detailed description of Figure 4-1 is given below
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4.2.1

Data pre-processing

The data collected for the study contained with noise. Therefore, to have clean dataset

following steps were performed as preprocessing techniques

4.2.2

Date formats: when observing the dataset, the news items contained with date formats.
All the dates were in the form of YYYY/MM/DD or YY/MM/DD. Therefore, these
were removed using regular expressions.

There were non-Sinhala text (English and Tamil) in between Sinhala text. These were
also removed using regular expressions.

All Numbers were replaced using ‘num’ key word using regular expressions (this will
include decimal numbers, percentage numbers, and numbers which contains commas
in between them).

Changing word boundaries of some words.

Bwo @ 2 Bwow

em0 g 2 oy

Finally stemming/ lemmatization was performed. Sinhala words were stemmed using
the ‘Sinhala stem dictionary’ which was created by the Language Resource
Technological Laboratory at University of Colombo School of Computing. This
contains 27000+ Sinhala words with their stems.

GG P G

oD D Gom

DLW D Gow

Extra spaces were removed using regular expressions.

Unrecognized characters were removed by using manual preprocessing techniques.

Creating the corpus

After performing the preprocessing steps all files were combined as a single text file by

using ‘glob’ function. The data were tokenized, and only the Sinhala characters were

considered when creating the corpus (punctuation marks were omitted). This was achieved by

using the command ‘re.compile(u'["\uOD80-\uODFF]', re.UNICODE)*. Duplicate words were

removed by using ‘list(set(tokens))‘. Finally the words were sorted in the alphabetical order by

using the command ‘sorted(tokens)’. A detailed description of the created corpus is given in

Table 4-1.
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Table 4-1 Text distribution according to the source

Data source No of words No of unique words
News paper 7,607,714 377,616

Blog data 463,277 67,595

Wikipedia 1,107,508 108,484

Common Crawl 108,569,473 3,907,507

4.2.3 Analysing the pre-processed dataset

To find the Zipf’s law behavior of the dataset the dataset was tokenized as mentioned
in section 4.2.2. Then the count of each word was calculated using ‘[(w, tokens.count(w)) for
w in tokens]’ command. The word list was then sorted with respective to their frequency using
the command, ‘sorted(counts,key=lambda l:I[1], reverse=True)’ and then A list was created
to store the rank. As the next step the log values of the rank and the respective frequency was
calculated using ‘math’ library (the first value of both lists were dropped as it contained the

frequency count of the empty spaces). Finally log(frequency) against log(rank) was plotted.

This was achieved as follows,

r = [math.log(x) for x in rank]
f = [math.log(x) for x in frqg]
rl = r[l:-1]

f1 = f£[1:-1]

plt.plot(fl,rl)
plt.title("Zipf's Law Behavior")
plt.xlabel ("log(rank)")

plt.ylabel ("log(frequency)")

The most frequent unigram, bigram and trigram in the dataset was found using the n-

gram model. This was done by using the ngrams in nltk library.
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4.2.4 Creating the n-gram model

The n-gram model was created using the CMU toolkit. A description of the toolkit and

the steps followed are given below.

4.2.4.1 CMU toolkit

The CMU toolkit is a statistical language modelling toolkit which was released in 1994.
It is a set of Unix software tools which can be used for language modelling work. (Clarkson &

Rosenfeld, 2000). The usage of the toolkit is illustrated in Figure 4.2.

Id N-gram

Language
Model

Y

Figure 4-2 Usage of the toolkit

4.2.4.2 Building the n-gram model
As the first step the vocabulary file will be created. This is done by using the following tools.

e Text2wfreq: This computes the number of occurrences for each word in the given
text.
e Wfreg2vocab: This will turn the list into a vocab file (the file will contains the

most common 20000 words).
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The next step is to construct the language model. First the training set is converted to a list of

id n-grams. This was done using the following code.

'cat Train.txt | text2idngram -n 2 -vocab Train.vocab -buffer 100 -

temp /tmp > Train.id2gram

The -n 2 indicates the 2-gram model. The amount of data to grab (in MB) by the program is
specified by the -buffer option. Next the id n-gram will be converted into a binary language

model file. This is done as follows.

'idngram21lm -idngram Train.id2gram -vocab Train.vocab -n 4 -

binary Train.2gram.binlm -cutoffs 2 -witten bell

The cutoff value of 2-gram is set to 2, hence the counts less than 2 will be discarded. The
Witten-Bell discounting is also specified. Finally, the perplexity of the test dataset is calculated

using the evallm tool.

4.2.5 Creating the LSTM model

The steps for creating the LSTM model are mentioned below

4.2.5.1 Creating the dataset

The preprocessed dataset was loaded and was tokenized. Then the list of tokens were
arranged into sequences and it was saved to a text files. In this study several models were
created based on the sequence length. (Ilen_2 is based on 2 previous words: Figure 4-3, len_4

is based on 4 previous words and so on)

Sened 6236560353 B3 Dwgd
6293636033253 353Rd wI®N
AB aDod ©BIME 6B

©BH 62 953

ce @3 BHEA

Figure 4-3 Part of the dataset of len 2
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4.2.5.2 Encoding the created sequences

When feeding the sequences to the embedding layer it should be fed in the form of
integer values. Therefore, each word was mapped to an unique integer value. This was done
using the Tokenizer class available in Keras. The tokenizer was trained on the training dataset.

Then by using the fit Tokenizer the training sequences were encoded to a list of integers.

4.2.5.3 Creating input sequences and output elements

The input(x) and output(y) were created by using array slicing. The output should be
converted to an integer to a vector of 0 values, one for each word in the vocabulary with a 1 to
indicate the specific word at the index of the words integer value (one hot encoding). This can

be achieved by using to_categorical( ) function available in Keras library.

4.2.5.4 Building the model

LSTM recurrent network was used as the model. The model was created using two
LSTM hidden layers with 100 memory cells. The size of the embedding vector space was set
to 50. In interpreting the features extracted from the sequence, a dense fully connected layer
consisting of 100 neurons which is connected to the LTSM hidden layer is used. The next word
is predicted by the output layer with the help of a single vector which has the size of the
vocabulary. The probability of the output vector is governed by the words in the vocabulary.
To make sure that the outputs have the features of normalized probabilities, a softmax

activation function is used.

Model was compiled using categorical cross entropy and the optimizer used was Adam.
The model was trained for 50 epochs with the batch size of 64. Finally, accuracy and perplexity

measures were obtained. A summary of the created model is showed in Figure <>.
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Model: "sequential”

Layer (type) Output Shape Param #
enbedding (Embedding)  (None, 2, 50) 077000
1stm (LSTM) (None, 2, 100) 60400
1stm_1 (LSTM) (None, 100) 30400
dense (Dense) (None, 10@) 16108
dense_1 (Dense) (None, 19548) 1873548

Total params: 3,101,448
Trainable params: 3,101,448
Non-trainable params: @

Figure 4-4 Summary of the created model for 2_len
4.2.6 Creating the BERT model

The steps for creating the BERT model are described below

4.2.6.1 Training the tokenizer

The tokenizer was initialized using the ByteLevelBPETokenizer function available at
huggingface ‘tokenizers’ library. It was trained on the entire training data set using some

special tokens,

e [UNK]: This represents unknown tokens which is not in the vocabulary and cannot
convert into an ID, hence it is set to this token.

e [S]: This represents the start token.

e [PAD]: This is used for padding.

e [/S]: This is the end token.

e [MASK]: The token used for masking values. Used in MLM.

The vocab_size was set to 52000 and the min_frequency was 2. Results obtained from

the tokenizer are showed in the Figure 4-2
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e = tokenizer.encode("z¢c 2@ amn.")
print('Encoded string:’, (e.tokens))

d = tokenizer.decode(e.ids)
print('Decoded string:', d)

Encoded string: ['39ha9™ ', 'G39.39.', 'Ga9239+a-G', '3a-1.']
Decoded string: ¢ 28 wsmda.

Figure 4-5 Results from the ByteLevelBPETokenizer

The created tokenizer will generate 2 files namely,

1. Merges.txt: which contains the merged tokenized sub strings.

2. Vocab.json: which contains the indices of the tokenized sub strings.

4.2.6.2 Building the model

Two separate models were created. The configuration of the 1% model will be based on
the DistilIBERT transformer structure. Therefore, the model will have 12 attention heads and 6
layers. The 2™ model configuration was based on the BER Tbase structure. Hence it will have
12 attention heads and 12 layers. In both models the vocabulary size was set to 52000. The
model configuration can be initialized by using the ‘RobertaConfig’ function available at

transformers library. Then the created configuration will be initialized for language modelling.

4.2.6.3 Creating the training dataset

The corpus size of the training set was 5.8M words. The training dataset was tokenized
with the tokenizer created and it was feed in the form of line by line for batch training with the

block size of 64.

4.2.6.4 Data collator

The next step will be defining the data collator. It will take samples from the dataset
and collate them into batches. The batched samples will be initialized for MLM by setting mlm
= True. The mlm_probability value was set to 0.15. This value will determine the percentage

of tokens masked during the pretraining process.
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4.2.6.5 Initializing the trainer and pretraining the model

The trainer was initialized using the previously mentioned information (the model
configuration, dataset and the data collator) along with the training arguments (number of
training epochs and the batch size). Finally the model was trained using the trainer.train( )

function.

4.2.6.6 Testing the model

The model can be tested by using the FillMaskPipeline with the use of the pretrained
model and the trained tokenizer. This will return the top 5 predictions with their probability

values. The accuracy values and perplexity values were obtained.
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CHAPTER 5: EVALUATION AND RESULTS

5.1 Zipf’s law behaviour

The highest 10 words in the sorted list are given in the Table 5-1

Table 5-1 Highest frequent words

Rank Word Frequency
1 ©o® 72077
2 O 64961
3 & 59433
4 @B 56072
5 ) 48677
6 »0 44340
7 #md 44021
8 O 41400
9 %0 37261
10 DE 34678

The graph of the Zipf’s law behaviour is shown in Figure 5-1

Zipf's Law Behavior

12 1

10 1

log(frequency)
o

0 2 4 6 8 10
log(rank)

Figure 5-1 Zipf's law behaviour of the dataset
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From Table 5-1 it can be concluded that the highest most frequent words represent the
stopwords of the Sinhala language. According to the above graph (Figure 5-1) it can be
observed that the line is approximately linear on log-log plot. Therefore, it can be concluded

that the collected dataset follows the Zipf’s law behaviour.

5.2 Frequent words in the dataset

The frequent bigrams and trigrams were compute using the ngram model. The results are

showed in Figure 5-2 and Figure 5-3.

Most common Bigrams

I 6766
0@, 'axnd' I—— 7135
DS, '@ — 7629

Bigram

gd, '20 I 12897
@3, 'Gozo' I 15926

0 5000 10000 15000 20000

Count

Figure 5-2 Most common bigrams

Most common Trigram
"B, 'B00a B, 'gecrcs’ I 1585

'dB', 'Gomv', 'Bewed' I 1589
'"¥2508s8, 'ee®x8enc,.. I 1703

Trigram

w0, 'gF, '90' N 2477
©®', '0x','80' I 3516
0 500 1000 1500 2000 2500 3000 3500 4000

Count

Figure 5-3 Most common trigrams
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5.3 Results from n-gram model

Four n-gram models were created using the CMU toolkit (for n = 2, 3, 4 and 5). The
models were trained using the training set and the perplexity values were obtained using the
test set. In all 4 model the cut off value was set to 2. The perplexity values obtained are given

in Table 5-2.

Table 5-2 Perplexity values of n-gram models

Model Perplexity
2-gram 692.62
3-gram 502.34
4-gram 683.92
5-gram 686.13

According to the results in Table 5-2 the trigram model has a better performance with
a perplexity value of 502.34. All the other models have a perplexity value in the range of 680
-690. Among the models created the bigram model has a poor performance (perplexity 692.62).

According to the theory of n-gram model, when the ‘n’ value increases the models
should perform better (perplexity values should be decreased when the value of ‘n’ increases).
In general, a language has long distance dependencies and also when ‘n’ increases model does
not contain sufficient data. Therefore, the above mentioned points might be a possible reason

for high perplexity values obtained for 4-gram and 5-gram models.
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5.4 Results from LSTM model

The perplexity values (showed in Table 5-3) for the created LSTM models were calculated

using the cross entropy method.

Table 5-3 Perplexity values of the LSTM models

Sequence length Perplexity value
Len 2 55.81
Len 4 44.53
Len 6 48.66
Len 8 80.56

From Table 5-3 it can be concluded that the LSTM model performs better when the
sequence length is 4. The perplexity values increase after the sequential length is 4. This
behaviour is very similar to the results obtained from the n-gram models. (In the n-gram model

when is ‘n’ is greater than 3 the model starts to deviate from the standard theory)

5.5 Results from the BERT model

Two variations of BERT models (distilBERT: 6 layers and 12 attention heads,
BERTbase: 12 layers and 12 attention heads) were created. The training corpus size was 6.4M
and the testing corpus size was 2M. Both models were trained for 40 epochs. Finally the
perplexity values and accuracy values for word prediction were calculated. The calculated

perplexity values are given in Table 5-4.
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Table 5-4 Perplexity values of the created BERT models

No of epochs  Perplexity value: distilBERT Perplexity value: BERT base

10 14.5 15.71
20 3.45 16.45
30 3.19 20.85
40 8.72 23.21

The comparison of the perplexity values of the 2 models are showed in Figure 5-4.

Perplexity Values

254 "* distilBERT
+— BERTbase o
20.0 A

17.5 1
»
1501 ,

12.5 A

Value

10.0 1
75 1

5.0 1
. .
2 5 L T T T T
10 15 20 25 30 35 40
No of Epochs

Figure 5-4 Comparison of the perplexity values in BERT model

According to figure 5-4 it can be concluded that the perplexity values for BERTbase
model is higher than distilBERT model. When analysing the results of BERTbase model it can
be seen that the perplexity values increases with the no of epochs (15.71 to 23.21). In the
variation line of distilBERT the lowest perplexity value can be found when the model reached
30 epochs (value: 3.19). According to the theory of perplexity it is said that when the perplexity
value is low the language model is better. Therefore, it can be concluded that distilBERT model

has a better performance compared to BERTbase model.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

This study was based on word prediction in Sinhala language using word embedding
methods. To achieve the goal three models were used namely ngram model. LSTM model and
RoBERTa model. Sinhala is a low resource language therefore, finding a reasonable size of
text corpora was a challenge. Most of the text related preprocessing techniques are for English
language hence some of the preprocessing steps were done manually which was very time

consuming.

When considering the results from n-gram model and LSTM model it can be concluded
that when the value of ‘n’ increases the model deviates from the standard theory. Possible
reason for this is lack of examples in the dataset when n is high. According to the results
obtained, among the n-gram models created the tri-gram model obtained the lowest perplexity
value 0f 502.34. From the LSTM models created the LSTM model which considered 4 previous
words for the prediction had a better performance (perplexity: 44.53) compared to the other
LSTM models created.

When training the ROBERTa model the huge challenge was feeding the data to the
model because of memory capacity available in Google Colab. Therefore, the training data was
divided into sub parts and was fed to the model. The training time for 1 epoch was around 3-4
hours. From the results it was found that the distiIBERT model is more accurate when
compared to BERTbase model. Further it can be concluded that the RoOBERTa model have

good performance compared to the n-gram model and LSTM model.

In a language there can be many meaningful words that can be used for a given mask
and hence calculating accuracy is not a better idea. Various methods can be used to improve
this study such as by feeding more data to the model, by performing more preprocessing

techniques (removing stop words of the Sinhala language, spell checking the words).

The methodology presented in this research can be naturally extended for other
languages also. Further this research can be extended to generate sentences in Sinhala language,

question answering and also to predict the next sentence in a given phrase.
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APPENDIX

Afrikaans

Armenian

-Basque

Bishnupriya
Manipuri

Burmese

Chinese
(Simplified)
Czech

Estonian

Georgian

Haitian

Icelandic

Ttalian

Kazakh

Latvian

Luxembourgish

Malayalam

Appendix A: languages trained on mBERT

Albanian

Asturian

Bavarian

Bosnian

Catalan

Chinese
(Traditional)
Danish

Finnish

German

Hebrew

Ido

Japanese

Kirghiz

Lithuanian

Macedonian

Marathi
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Arabic

Azerbaijani

Belarusian

Breton

Cebuano

Chuvash

Dutch

French

Greek

Hindi

Indonesian

Javanese

Korean

Lombard

Malagasy

Minangkabau

Aragonese

Bashkir

Bengali

Bulgarian

Chechen

Croatian

English

Galician

Gujarati

Hungarian

Irish

Kannada

Latin

Low Saxon

Malay

Mongolian



Nepali Newar Norwegian Norwegian
(Bokmal) (Nynorsk)

Occitan Persian Piedmontese Polish

(Farsi)

Portuguese Punjabi Romanian Russian

Scots Serbian Serbo- Sicilian
Croatian

Slovak Slovenian South Spanish
Azerbaijani

Sundanese Swahili Swedish Tagalog

Tajik Tamil Tatar Telugu

Thai Turkish Ukrainian Urdu

Uzbek Vietnamese Volapiik Waray-Waray

Welsh West Frisian Western Yoruba
Punjabi

Appendix B: Codes

Code for pre-processing
import re

def preprocess(infile, outfile):
""" This will preprocess the given text """

regl = '[0=-91{4}.*%2[0-91{2}.*2[0-91{2}.*2[0-9]1{2}.*2[0-

91{2}.*2[0-9]1{2}.*2"

reg2 = re.compile (u'[*\u0D80-\uODFF"num"]', re.UNICODE)

fl = open(infile, 'r', encoding = 'utf-8")
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txt = fl.read()

txt = re.sub(regl,'', txt) # Removing date formats

txt = re.sub('[A-Za-z]',"'',txt) # Removing English characters
txt = re.sub('\d+', 'num', txt) # Replacing digits

sentences = txt.split('.") # Spliting data to obtain sentences

f2 = open(outfile, 'w', encoding = 'utf-8'")

for sentence in sentences:

words = sentence.split ()

word = [reg2.sub('', w) for w in words] # Extracting Sinhala
characters

sentence = ' '.join (word)

f2.write (sentence)
f2.write('.\n")
f2.close ()

fl.close()

Code for n-gram calculation

import nltk, re, string, collections

from nltk.util import ngrams

def ngram(infile):

mwirwn

This will find the most common uni, bi and tri gram in the
dataset """

f = open(infile,'r', encoding = 'utf-8")

data = f.read()

f.close()

tokens = nltk.word tokenize (data) # Extract only the sinhala words
regex = re.compile (u'[*\u0D80-\uODFF]', re.UNICODE)

tokens = [regex.sub('', w) for w in tokens]
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bi = ngrams (tokens, 2) # Bi gram
bi freqg = collections.Counter (bi)
tri = ngrams (tokens, 3) # Tri gram

tri freq = collections.Counter (tri)

print ("Most common bigrams') # Top 10 bi grams
print (bi freqg.most common (10))

print ("\n")

print ("Most common trigrams') # Top 10 tri grams

print (tri freqg.most common (10))

Code for calculating perplexity in n-gram model: Using toolkit

# CMU toolkit should be downloaded using http://www.speech.cs.cmu.ed
u/SLM/toolkit documentation.html
# Creating the wvocab

!cat Train.txt | text2wfreq | wfreg2vocab -top 20000 > Train.vocab

# Building the model
!'cat Train.txt | text2idngram -n 2 -vocab Train.vocab -buffer 100 -
temp /tmp | \

idngram2lm -idngram Train.id2gram -vocab Train.vocab -n 2 \

-binary TrainZgram.binlm -cutoffs 2 -witten bell

# Computing the perplexity

'echo "perplexity -text Test.txt" | evallm -binary Train.Z2gram.binlm

Code for Zipf’s law

import nltk
import re
import matplotlib.pyplot as plt

import math
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f = open('DATA FINAL.txt','r',encoding = 'utf-8")

content = f.read()
f.close()
tokens = nltk.word tokenize (content)

# get only sinhala unicode charactors
regex = re.compile (u'[*\u0D80-\uODFF]', re.UNICODE)

tokens = [regex.sub('', w) for w in tokens]

# Obtaining the frequency and sorting
frequency = {}

for word in tokens:

count = frequency.get (word, 0)
frequency[word] = count + 1
frequency = {key:value for key,value in frequency.items/() }
frequency = sorted (frequency.items (), key=lambda X: x[17,

reverse=True)

# Printing the most frequent words in the dataset
top 10 = list (frequency) [1:11]

print (top 10)

# Plotting
frg = [c for (w,c) in frequency][l:-1]

rank = list(range(l,len(frqg)+1))

r [math.log(x) for x in rank]

f

[math.log(x) for x in frqg]
plt.plot (f, r)
plt.title("Zipf's Law Behavior")

plt.xlabel ("log(rank)")
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plt.ylabel ("log(frequency)")

Code for LSTM model

# Reading data

f = open('gdrive/MyDrive/train.txt', 'r', encoding = 'utf-8-sig')
sents = f.readlines{()

f.close()

data = ""

for 1 in sents:
data = ' '. join(sents)

data = data.replace('.\n', ' ")

# Getting tokens
tokens = data.split ()

number of unique tokens = len(set (tokens))

sequence length = 2

# organize into sequences of tokens of input words plus one output w
ord
length = sequence length + 1
sequences = list ()
for i in range(length, len(tokens)):
seq = tokens[i-length:i]
line = ' '.join(seq)

sequences.append (line)

# saving the tokens to file
def save doc(lines, filename):
data = '\n'.join(lines)
file = open(filename, 'w')
file.write (data)

file.close()
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out file = 'gdrive/MyDrive/lstm/data2 sequences.txt'

save doc (sequences, out file)

# load the file

def load doc(filename) :
file = open(filename, 'r')
text = file.read()
file.close ()

return text

in file = 'gdrive/MyDrive/lstm/data8 sequences.txt'
doc = load doc(in file)

lines = doc.split('\n")

# Perplexity calculation

from tensorflow.keras import backend as K

def perplexity(y true, y pred):
cross_entropy = K.categorical crossentropy(y true, y pred)

return K.pow (2.0, cross_entropy)

# integer encode sequences of words

from keras.preprocessing.text import Tokenizer
tokenizer = Tokenizer ()
tokenizer.fit on texts(lines)

sequences = tokenizer.texts to sequences(lines)

# vocabulary size

vocab size = len(tokenizer.word index) + 1

import numpy as np
from tensorflow.keras.utils import to categorical
# separating input and output

sequences(0 = np.array(sequences)
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for 1 in sequencesO:
£f=1[-1]
X.append(1[:1])
y.append (l[-11])
y = to categorical(y, num classes=vocab size)

seq length = np.asarray(X) .shape[0]

X = np.array (X)

y = np.array(y)

from pickle import dump

from keras.preprocessing.text import Tokenizer
from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Embedding

from keras.layers import Dropout

model = Sequential ()

model.add (Embedding (vocab size, 50, input length=sequence length))
# LSTM hidden layers with 100 memory cells each.
model.add (LSTM (100, return sequences=True))

model.add (LSTM(100))

model.add (Dense (100, activation='relu'))
model.add (Dense (vocab size, activation='softmax'))

print (model.summary())

model.compile (loss="'categorical crossentropy', optimizer='adam', met
rics=["'accuracy',perplexity])

history = model.fit (X, y, validation split=0.3, batch size=64, epoch
s=50) .history
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Code for BERT tokenizer

# Installing the libraries
'pip install git+https://github.com/huggingface/transformers

'pip install tokenizers

from tokenizers import BytelevelBPETokenizer
# Initialize a tokenizer

tokenizer = BytelLevelBPETokenizer ()

paths = ['gdrive/MyDrive/Train/Train.txt']

# Customize training
tokenizer.train(files=paths, vocab size=52 000, min frequency=2,
special tokens=|
"<s>",
"<pad>",
"< /s>",
"[UNK]",
"<mask>",

1)

# Saving the tokenizer to the directory

tokenizer.save model ("gdrive/MyDrive")

Code for BERT model

#Installing the libraries
!pip install git+https://github.com/huggingface/transformers

'pip install tokenizers

from tokenizers.implementations import BytelLevelBPETokenizer

# Loading the created Tokenizer
tokenizer = BytelevelBPETokenizer (

"gdrive/MyDrive/dMl/vocab.json",
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"gdrive/MyDrive/dMl/merges.txt",

#Defining the model configuration
from transformers import RobertaConfig
config = RobertaConfig(

vocab size=52 000,

max position embeddings=514,

num attention heads=12,

num hidden layers=6,

type vocab size=1

#Reloading the tokenizer and initializing the model
from transformers import LineByLineTextDataset

from transformers import RobertaTokenizerFast

tokenizer = RobertaTokenizerFast.from pretrained("gdrive/MyDrive/dM1

", max len=512)

from transformers import RobertaForMaskedLM

model = RobertaForMaskedLM(config=configqg)

#Building the dataset
dataset = LineByLineTextDataset (

tokenizer,

tokenizer

file path ='gdrive/MyDrive/Train/2.txt"',
block size=128,
)
#Data collator
from transformers import DataCollatorForLanguageModeling
data collator=DataCollatorForLanguageModeling (tokenizer=tokenizer, m

Im=True, mlm probability=0.15)

#Initializing the trainer
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from transformers import Trainer, TrainingArguments
training args = TrainingArguments (output dir='gdrive/MyDrive/dM1l', o
verwrite output dir=True,
num train epochs=3,
per device train batch size=32,
save steps=10 000,

save total limit=2,

trainer = Trainer (
model=model,
args=training args,
data collator=data collator,

train dataset=dataset,

#Training and saving the model
trainer.train ()

trainer.save model ('gdrive/MyDrive/dM1")

#Language modelling

from transformers import pipeline
fill mask=pipeline (
'fill-mask',

model="'gdrive/MyDrive/M1"',

tokenizer='gdrive/MyDrive/M1"'

fill mask('<mask> 9eeRO0 Buws')
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