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ABSTRACT 

Word embeddings are an important aspect in Natural Language Processing (NLP) 

which tries to find a better representation of a word. One such application of word embedding 

is predicting the next word of a given phrase. Mostly word embedding techniques are applied 

for high resource languages. Word embeddings done for low resource languages are very rare. 

Sinhala language can be considered as a low resource language. Therefore, in this study we 

addressed the issue of predicting the next word of given phrase in Sinhala language. 

The data for the study were collected from the web and were preprocessed to remove 

the noise. The preprocessed data were fed into 3 types of models namely n-gram model, LSTM 

model (which builds the word embedding by ignoring the meaning of the word based on its 

context, therefore the true meaning of the sentence might get ignored) and RoBERTa model 

(which learns the meaning of the word based on its context). Best model has been selected by 

comparing the perplexity values. 

According to the results obtained among the n-gram models created the tri-gram model 

obtained the lowest perplexity value of 502.34. From the LSTM models created the LSTM 

model which considered four previous words for the prediction had a better performance 

(perplexity: 44.53). From the results obtained for BERT model it can be concluded that 

distilBERT model performs better compared to BERTbase model. The lowest perplexity value 

for distilBERT model was 3.19 at the epoch 30. Further, it can be concluded that RoBERTa 

model is better for language modelling compared to n-gram model and LSTM model. 
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CHAPTER 1: INTRODUCTION 

1.1  Background of the study 

In the modern world computers play a vital role in day today life. From governing the 

security and financial aspects of a country to domestic usage, it is very useful. As computers 

become more popular people tries to make it more user friendly but however the 

communication between humans and computers is not based on human language. Making 

computers understand the human language is the goal of computational linguistics. When 

considering about computational linguistics, representing words in a human language is a 

problem. The earliest attempts performed can be recognized as vector space models and 

statistical approaches such as maximum likelihood estimates of the words and using n-grams. 

One of the earliest usages of this model is in the field of speech recognition. By using statistical 

approaches syntax of the word cannot be captured (only the semantics can be captured). 

Therefore, to capture the syntaxes of the words a method named ‘bag-of-words’ were 

proposed by S. Harris, where the text is considered as a bag of its words. It will create a 

vocabulary and assign each word in the vocabulary a unique index. Each document is then 

represented by a vector of length n (n = no of words) with the number of occurrences in each 

word. Due to the large size of the vocabulary this will lead to high dimensional feature vectors. 

The Term Frequency-Inverse Document Frequency (TF-IDF) method is a variation of bag of 

words method. It reweights the frequency vectors with the inverse document frequency of each 

word. 

According to the literature (Almeida & Xexeo, 2019) word embeddings are ‘dense, 

distributed, fixed length word vectors built using word co-occurrence statistics as per 

distributional hypothesis’. These vectors can capture relationships between words and their 

meanings. However, each word had a particular embedding which was independent of context. 

Traditional word embeddings (GloVe and word2Vec) are implemented by ignoring the 

meaning of the word based on its context. The problem here is since it ignores the contextual 

meaning of the word the original meaning of the sentence may be violated. Therefore, as a 

solution the contextual word embedding concept was introduced. It is implemented using 

transformer models (mostly based on BERT) and it attempt to model the word semantics based 

on its context. 
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Word embeddings is a good research area which tries to find a better representation of 

a word. It can be useful in many Natural Language Processing (NLP) tasks, such as question 

answering, word prediction and generating possible sentences. Today word embedding 

techniques are applied for high resource languages, but word embeddings done for low 

resource languages are very rare.  

 

1.2 Sinhala language 

Sinhala is the native language spoken by the Sinhalese people in Sri Lanka, which is 

the largest ethnic group in the island. It belongs to the Indo – Aryan group of languages. The 

oldest Sinhala script was found in third to second century BCE. Sinhala has its own writing 

style which comes from the Indian Brahmi script which contains 60 letters; 18 vowels and 42 

consonants (figure 1.1), but only 57 (16 vowels and 41 consonants) are required for writing 

spoken Sinhala. In the writing system of Sinhala language the consonants are written with 

letters while the vowels are indicated with diacritics (pilla) on those consonants.  Sinhala letters 

are divided into 2 sets named as ‘sudda Sinhala’ (pure Sinhala) and ‘misra Sinhala’ (mixed 

Sinhala) and most of the letters are circular. Sinhala sentences are written from left to right. 

 

Figure 1-1 Sinhala Alphabet 
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1.3 Motivation  

Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) which 

deals with the interaction between the computers and human using the natural language. A 

quite amount of research have been done using NLP for English language but NLP tools for 

Sinhala are very rare.  

Various tasks can be performed using NLP. One such application is word prediction. It 

is a word processing feature that suggest the next word while you type a sentence. This facility 

can be found in smart phones in the modern world. Google has developed this facility for 102 

languages including English language, but so far this facility is not available for Sinhala 

language. 

1.4 Objective  

The objective of this research is to generate a word embedding scheme for Sinhala 

language and then to develop a system that can be used to generate the next possible word for 

a given phrase and to generate Sinhala sentences. To meet this goal following sub objectives 

should be achieved 

• Collect a representative corpus of Sinhala text 

• Design a word embedding schemes using the dataset and compare them. 

• Use proposed contextual embedding scheme to generate the next possible word for a 

given phrase. 

• Explore the generation of longer sequences such as phrases and sentences using the 

proposed embedding. 

1.5 Significance 

Many upstream Sinhala language processing tasks and applications will be able to use 

the propose contextual embedding in order to improve their performance. 

1.6 Scope of the project 

• Word representations for written Sinhala text will only be considered. 
• Only prose of the non-fiction genre will be considered. 
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1.7 Structure of the dissertation 

Chapter 1 introduces the research based on NLP in human languages. Chapter 2 gives 

a brief description about few previous works done by other researchers around the world 

relevant to this study and about the NLP researches related to Sinhala language. Chapter 3 

consists of the theory on which this research was conducted. Chapter 4 provides a clear idea 

about how the research was carried out, what instruments and software used and how the model 

was trained and tested. Chapter 5 contains the results obtained from the model and analysis of 

them. Discussions, limitations and hardships while doing this research are mentioned in chapter 

6 with further development ideas. Final chapter contains the conclusion of the study and the 

summary. 
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CHAPTER 2: LITERATURE REVIEW 

Human languages are unstructured. To make computer to understand a human language 

the concept of NLP was introduced in 1950s. It is a branch of AI which can be used to predict 

words, machine translations, chatbox (voice assistants such as Siri and Alexa) etc. Several 

studies have been performed for English language using NLP techniques are mentioned below. 

One basic requirement for a machine to understand a human language is to understand 

its vocabulary. In NLP this can be referred as word embedding. The earliest methods used are 

Word2Vec, GloVe and FastText. Word2vec is a word embedding model which is trained using 

a feedforward neural network. It has 2 types of architectures namely, Continuous Bag Of 

Words (CBOW) and continuous skip-gram model (Mikolov, et al., 2013). In CBOW model it 

predicts which is the most likely word in the given context. Therefore, words with equal 

likelihood of appearing are considered as the same and occur closer in the dimension space 

while in the skip-gram model it predicts the context using the given word. An extension named 

FastText was introduced in 2017 to the skip-gram model (Bojanowski, et al., 2017) by 

considering the morphology of the words. Using this methodology unknown words also can be 

presented in vector form. The GloVe model was introduced by (Pennington, et al., 2014). It is 

trained on aggregated global word to word co-occurrence matrix from a given text collection of 

text documents. This co-occurrence matrix is decomposed to form denser and expressive vector 

representation. 

Before 2016 the available word embedding methods were not optimized for sentence 

representations. Therefore as a solution for this matter, an estimation of sentence embeddings 

was done using Siamese Continuous Bag of Words (Siamese CBOW) model (Kenter, et al., 

2016). Word embeddings were trained using Toronto Book Corpus which contained around 74 

million preprocessed sentences, which was made from around 1 billion tokens. The final 

vocabulary contains 315,643 words. The tokens which appeared more than 5 times were only 

considered. The model was evaluated on 20 datasets from a variety of sources. According to 

the results obtained 14 out of 20, Siamese CBOW outperforms a word2vec baseline and a 

baseline based on the recently proposed skip-thought architecture.  

 

A continuous-valued word embedding method have been used in (Minih & 

Kavukcuoglu, 2013) to capture semantic and syntactic information about words. The word 
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embeddings were learned by training log-bilinear models with noise-contrastive estimation. 

The dataset used was the English Wikipedia and a collection of 500 Gutenberg text that form 

canonical training data. After performing preprocessing techniques, the dataset consists with 

1.5 billion words. To speed up the training only 1 word was predicted. The best results were 

shown by learning high dimensional embeddings from a large amount of data.  

In (Aurnhammer, et al., 2019) a word prediction for natural sentence reading was 

performed using information and theoretic measures (suprisal and next-word entropy). To 

overcome the short comings lookahead information gain was introduced. During the study the 

information theoretic measures were compared with 3 datasets (ECG, eye tracking and self-

paced). Initial and final words of a sentence, words before comma and words with clitics were 

excluded. The data were analyzed using linear mixed effect regression models. According to 

the computational results obtained in the predictive processing system, the cost of predicting 

outweighs the gains.  

A study was performed in (Tien, et al., 2018) to encode the characteristics from set of 

word embeddings into a single word embedding. By using this newly created embedding the 

similarity between sentences can be learned. Another research (Babu & S, 2020) was done to 

find the similar queries or searches using word embeddings. The word embeddings were used 

on questions asked on Stack Overflow using the Cosine similarity. 

The most popular method for contextual word embedding is the use of BERT 

(Bidirectional Encoder Representations from Transformers) model which was developed by 

Google in 2018. The first BERT model was created for English language and today Google has 

created the BERT model for 104 languages which is named as multilingual BERT (mBERT). 

A comparison of the geometry of BERT, ELMo and GPT-2 embeddings were performed in 

2020 (Ethayarajh & Kawin, 2020). Some of the findings are mentioned below. 

1. The contextualized word representations of the words are anisotropic in all layers and 

it is more anisotropic in higher layers. 

2. The vector representations of the same word occurrences in different context are non-

identical. In the upper layer these representations are very dissimilar. Therefore, task-

specific representations are produced in upper layers of LSTMs. 

3. Stopwords have the most context-specific representations. 

4. The context-specificity manifests are different in the 3 models. 

5. In ELMO, words in the same sentence are more similar to one another in upper layers. 
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6. In BERT, words in the same sentence are more dissimilar to one another in upper layers. 

7. In GPT-2, word representations in the same sentence are no more similar to each other 

than randomly samples words.  

8. Less than 5% of the variation in a word’s contextualized representations can be 

explained using the first component by adjusting the effect of anisotropy. 

9. Principle components of contextualized representations in lower layers outperform 

GloVe and FastText on many benchmarks. 

As mentioned above the mBERT model is only focused on the top 104 languages in 

Wikipedia. Therefore, in 2020 a new approach to extend mBERT was proposed (E-mBERT) 

so that any unseen language can be accommodate (Wang, et al., 2020). The NER task was 

performed for 27 languages out of that 11 languages were not included in mBERT. The 

monolingual data of the target language was created using the same procedure in BERT. The 

words which appeared on the mBERT vocabulary was filtered out. The encoder and decoder 

weights has been extended so that it can work with the new vocabulary. According to the results 

obtained (Figure 2-1) it is clear that E-mBERT performs well compared to mBERT irrespective 

of the whether the language is present in mBERT or not. Further it can be concluded that E-

mBERT performs well when the language is not present in the mBERT model.  

In the same study the E-mBERT model was compared with the bilingual BERT (B-

BERT) model. B-BERT is a model which is trained in the same way as mBERT, but it only 

contains 2 languages (English language and the target language). In this study the languages 

that are not included in mBERT were considered. According to the results obtained it can be 

concluded that E-mBERT has a better performance for most of the languages. 
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Figure 2-1 Results obtained from mBERT and E-mBERT models 

 

The BERT model was used to analyze the language style in twitter in Italian language 

(Poligano, et al., 2019) which was named as ALBERTo. The dataset included 200 million 

tweets in Italian language. The model has been trained using the original BERT model. Model 

was evaluated for sentiment analysis for Italian language. According to the results obtained the 

system performed well and when the number of epochs of the learning phase of fine tuning 

was increased, the results were increased between 7% and 11%.  

In (Canete, et al., 2020) a BERT based language model was pretrained on Spanish data. 

The data were collected from Wikipedia and some other sources (OPUS project) that contained 

Spanish data. The final training corpus contained 3 billion words. The collected corpora were 

comparable with the corpora which used in original BERT. The model was trained both for 

cased data and uncased data. In the training step each sentence had 10 masks (dynamic 

masking) and also Whole-Word Masking (WWM) were used. Larger batches were used for 

training when compared to the original BERT. According to the results obtained Spanish BERT 

outperform most of the multilingual BERT (mBERT). 

The Dutch BERT model (BERTje) was introduced in (de Vries, et al., 2019). the data 

consist of Dutch text (taken from books, news corpus and Wikipedia). By considering the 
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overall quality of the data the data obtained from twitter were removed. After performing the 

necessary pre-processing techniques, the final dataset consists with 2.4 billion tokens. In this 

model the pretraining task was modified such as different technique to perform the Masked 

Language Model (MLM) task. In this study consecutive words belong to the same word were 

masked. 15% of the tokens were masked using this technique. According to the results obtained 

for word level NLP tasks the model outperforms the mBERT. 

An upgraded version of BERT was released recently which is named as Whole Word 

Masking. In 2019 this method was adopted for Chinese BERT (Cui, et al., n.d.), using data 

collected from Wikipedia. Further the efficiency of the existing models of Chinese pretrained 

models (BERT, ERNIE, BERT-wwm, BERT-wwm-ext, RoBERTa-wwm-ext and RoBERTa-

wwm-ext-large) were also analysed.the models were analysed using 3 datasets namely, CMRC 

2018, DRCD and CJRC According to the analysis, 

• BERT-wwm shows significant improvements on CMRC 2018 and DRCD. 

• ERNIE does not perform well on DRCD. 

• Traditional Chinese character are removed from the vocabulary of ERNIE. 

• BERT-wwm performs well for CJRC compared to BERT and ERNIE. 

In (Ma, et al., 2019) Attention-based multi-layer word embedding model (ALWE) was 

used to find the semantic structure of Chinese words. Data were collected from Chinese 

Wikipedia and as preprocessing techniques numbers and non-Chinese words were removed. 

According to the results obtained on word similarity, word analogy, and text classification, the 

proposed model showed a 1% in improvement accuracy compared to all other baselines.  

In 2019 (Alsentzer, et al., 2019) the BERT model was implemented in related to bio 

medical field namely BioBERT. The dataset used was clinical text with 2 million notes. The 

model was trained for 2 types of datasets namely clinical BERT (text from all types of notes) 

and discharge summary BERT (only contain information about discharge summaries). The 

tensorflow implementation of original BERT model was used for pre-training. From the results 

obtained it can be concluded that clinically fine-tuned BioBERT show more performance 

compared to general BERT model. The clinical BERT had an accuracy of 82.7%. This model 

has some limitations, such as the created model was not experimented with advance model 

architectures and the data used only contained ICU data. 
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 A study was performed using NLP techniques in scientific domain, as a result the BERT 

model which trained on scientific text namely SciBERT was released in 2019 (Beltagy, et al., 

2019). It was a pre-trained language model based on BERT. The dataset included 1.14 million 

papers from semantic scholar (18% from computer science and 82% from biomedical domain). 

4 different versions of SCIBERT was trained using the same configuration and size of the 

BERT-base. Improved results can be obtained by finetuning the model. As future work 

SCIBERT model can be developed based on the BERT-large model. Table 2-1 will provide a 

comparison of the results obtained by SCIBERT with state-of-the-art (SOTA) and BERT-base. 

Table 2-1 Comparison of SCIBERT with other models 

Data domain No of 

datasets 

BERT-base   SOTA 

Biomedical 7 SCIBERT 

outperforms 

For 3 datasets the performance of 

SCIBERT is worst. 

Computer 

science 

3 SCIBERT 

outperforms 

SCIBERT achieves new SOTA results 

on ACL-ARC. 

Multiple  2 SCIBERT 

outperforms 

SCIBERT outperforms for the SciSite 

dataset. 

 

In 2019 a study based on pretraining in BERT was done using 5 different English 

language corpora (Liu, et al., 2019). The created model was named as Robustly optimized 

BERT approach (RoBERTa). The pretrained model was evaluated using following, 

 

1. The General Language Understanding Evaluation (GLUE): finetuning procedure is 

same as the original BERT model. According to the results obtained the RoBERTa 

model has a better accuracy compared to BERT model. 

2. The Stanford Question Answering Dataset (SQuAD): 2 versions were evaluated. In the 

first version it always contains with an answer while the other version some questions 

were not answered. From the results it can be concluded that RoBERTa performs well 

for all the data except for 1. 
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3. The Reading comprehension from Examiners (RACE): the task is to select the correct 

answer for the question using the available 4 options. According to the results 

RoBERTa outperforms the standard BERT model. 

 

Sinhala is the native language of Sinhalese people in Sri Lanka. It is a morphologically 

rich and low resourced language. Therefore, research work based on NLP techniques for 

Sinhala language are very rare compared to English language. According to the resources the 

earliest attempt on Sinhala NLP was done by S. Herath in 1991 and also the Language 

Technological Research Laboratory of UCSC has been involved in Sinhala language related 

NLP research since 2004.  

To develop tools for machine translation, spelling/ grammar correction and speech 

recognition NLP techniques were used to analyze the Sinhala language (Gallege, n.d.). Data 

for the study were collected from LTRL Sinhala corpus, stories by Martin Wickramasinghe 

and online newspapers. The data were preprocessed in order to apply NLP algorithms. This 

stud y includes Maximum Likelihood Estimates (MLE) on Sinhala Characters, Language 

Identification using a Naïve Bayes Classifier, Zipf’s Law Behavior, Topic Classification using 

Support Vector Machines (SVM) and Language Models. According to the study all NLP 

techniques applied produced satisfactory results 

In 2020 the first evaluation of different types of word embeddings for Sinhala language 

was performed (Lakmal, et al., 2020) using 3 standard word embedding models (Word2Vec, 

FastText and GloVe). The methods were evaluated using 2 methods namely intrinsic evaluation 

and extrinsic evaluation. The data for the study were collected using common crawl and 2 

corpora were created, with and without stopwords. Overall best results were reported for 

FastText word embedding with 300 vector dimensions. 

A Sinhala question answering system named ‘Mahoshadha’ was created by (Jayakody, 

et al., 2015), the first QA system introduced for Sinhala language. The system created have 4 

parts namely, document summarizing, document categorizing, question processing and answer 

processing. The document summarization was done using SVM classifier. K-nearest neighbour 

(KNN) was used for document categorization. The question processing is divided into 2 

components as analyzing the question and identifying the answer. The n-gram model was used 
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for answer processing. According to the results it has proven that the generated outputs are 

accurate. 

In 2013 (Karunarathne, et al., 2013) a study was performed to predict Sinhala sentences 

in SMS. The objective of this research was to develop an algorithm to reduce the typing effort 

and for time saving. The challenging part of this research was it was hard to develop an 

algorithm since the SMS writers do not follow language rules. The data were collected for 6 

month period from 30 users belongs to 5 categories. The n-gram model was used in this study. 

From the results obtained it can be concluded that the developed algorithm has reduced typing 

time. 

A survey was conducted on publicly available Sinhala NLP tools and research. 

According to the survey, the earliest attempt on Sinhala NLP was conducted by (Herath, et al., 

2007). In this study the advanced machine translation capability problem was approached by 

examining the Sinhala natural language. A study based on some challenges and opportunities 

of using Sinhala language was done by (Nandasara & Mikami, 2016). At this point most of the 

studies in Sinhala NLP has been on Optical Character Recognition (OCR). The creation of the 

end-to-end Sinhala-to-English translator is the most important project on Sinhala NLP.  

As a conclusion the most challenging part in Sinhala related in NLP tasks is collecting 

sufficient data (text corpus) because Sinhala text available in the internet is limited. Some 

available data cannot be extract because different web sites use different encodings and fonts. 

According to the above literature though there are huge number of NLP based implementations 

done for Sinhala language, they are in small scale compared with other high resource 

languages. 
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CHAPTER 3: THEORETICAL FRAMEWORK 

3.1 Natural Language processing (NLP) 

Human languages are unstructured. When considering 2 or more human languages it 

also does not have the same structure. Therefore, in order to make the computers to understand 

human languages the concept of NLP was introduced in 1950s by an English mathematician 

named Alan Turing (Figure 3.1). In 1950 he published an article named “Computing Machinery 

and Intelligence” (Turing, 1950). His experiment was known as “Turing test”, where he tried 

to test (whether it’s equal or not) the intelligence behaviour of machines with the human brain. 

 

 

 

 

 

 

 

 

 

 

NLP is a branch of Artificial Intelligence (AI) which help computers to interpret and 

understand the human language. The ability of reading speech, hearing speech and the 

interpretation of it are also provided by the computers with the use of NLP. Therefore, NLP 

can be considered as the science of studying about human languages using computer 

technology. Its ultimate goal is to develop computer models for humans. 

Figure 3-1 Alan Turing 
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3.2 Text corpus 

A corpus can be considered as a large collection of structured set of texts. It may contain 

text data in a single language (monolingual corpus) or in multiple languages (multilingual 

corpus). A corpus can be used to perform statistical analysis (word frequencies), hypothesis 

testing or to validate linguistic rules in a language.  

3.3 Text preprocessing 

Text preprocessing can be defined as the process of cleaning text data before encoding. 

It is the first step to solve an NLP related problem is preprocessing data (text). Such as 

removing date formats, white space, stopwords and numbers or converting numbers into words. 

Commonly used preprocessing techniques are mentioned below. 

3.3.1 Lower casing text data 

The idea behind this technique is to convert all the input text into same casing format 

so that ‘word’, ‘Word’ and ‘WORD’ are considered in the same way. This technique is needed 

when dealing with word frequencies (when calculating TF-IDF vectors), hence same words 

will combine together, and duplicates will be removed and therefore correct frequency counts 

can be obtained. 

3.3.2 Stemming and lematization 

Stemming can be considered as reducing the word to their word stem, base or root. 

Therefore, the resultant word might be a non-existing word. The goal of lemmatization is to 

remove the inflections and map the word to its root form. This will always give a word that 

have some dictionary meaning. An example is given below 

Troubled → Troubl (stemming) 

Troubled → Troubled    (lemmatization) 

3.3.3 Tokenization  

The goal of the tokenization process is to split the given text into smaller pieces named 

tokens. Tokens can be considered as words, numbers and punctuation marks. 
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3.3.3.1 WordPiece tokenization 

WordPiece tokenization can be considered as breaking words into more than 1 sub-

words. This creates a fixed size vocabulary of sub-words, individual characters and words that 

best fits the language data. This vocabulary consists with 4 things.    

1. Whole words 

2. Sub-words occurring in front of a word or in isolation 

3. Sub-words not in front of a word (this is denoted by using ‘##’) 

4. Individual characters  

This tokenizer first checks whether the whole word is in the vocabulary. If not, it will 

divide the word into largest possible sub-words that are in the vocabulary, finally it will 

decompose the word into individual characters. Therefore, a word can represent as a collection 

of its individual characters. When an out of vocabulary (OOV) word is present it will be 

decomposed into sub-words and individual characters so that embeddings can be generated. 

Figure 3-2 shows an application of wordpiece tokenization for Sinhala language. 

Eg: Possible sub-word tokens for the word ‘embeddings’ will be, 

[‘em’, ‘##bed’, ‘##ding’,’##s’] 

Source: (McCormick, 2020) 

 

Figure 3-2 Wordpiece tokenization for Sinhala language 
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3.4 Zipf’s law 

Zipf’s law was introduced by an American linguist named George Kingsley Zipf. It is 

a statistical distribution of words in a linguistic corpus. Zipf’s law states that given a text of 

corpus the frequencies of words are inversely proportional to their ranks. According to this law 

stop words will have a large portion of occurrences in a dataset. When the words are ranked 

according to their frequencies and when the frequency is plotted against the rank the resultant 

graph will be a logarithmic curve (when graph is plot on log scale it will result a straight line). 

This law can be applied for any natural language. 

𝑟. 𝑓 = 𝑘 

Where, r is the rank of the word, f is the frequency of the word and k is a constant 

3.5 Language models 

Language models can be considered as the backbone of NLP. It is a collection of 

statistical and probabilistic techniques which can be used to determine the probability of a 

given sequence of words occurring in a sentence by analyzing the text data. This can be used 

as a basis of a word prediction model. Language models can be used in speech recognition, 

machine translation and part of speech tagging. 

3.5.1 N-gram models 

n-gram model is a statistical language model which assigns probabilities to sentences 

and sequences of words given a sequence of n-1 words. It can be used to predict the next word 

in a sentence and also for speech recognition. 

If the model relies on how often a word occurs without looking at previous words, it is 

called as a unigram model. If the model considers only the previous word to predict the current 

word, then it is called bigram model. If the model considers the two previous words, then it can 

be considered as trigram model, and so on. 

Bigram probability is given by:  𝑃(𝑤𝑛|𝑤𝑛−1) =  𝐶(𝑤𝑛−1,𝑤𝑛)
𝐶(𝑤𝑛−1)
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3.5.2 LSTM (Long-Short-Term-Memory) model 

LSTM is an artificial recurrent neural network (RNN) which was proposed by the 

German researchers Sepp Hochreiter and Juergen Schmidhuber in mid 90s. LSTMs helps to 

maintain the error that can be propagated through time and layers which allows the recurrent 

nets to continue to learn over time steps. In a LSTM information is kept in a gated cell which 

can make decisions such as what to store, when to allow writes, reads and deletions. This is 

done by the analog gates which are implemented by element wise multiplication using 

sigmoids. The analog gates can be differentiable and hence it is suitable for backpropagation. 

The behavior of a gate is similar to the nodes in a NN. When a signal is received by the 

gate they pass or block the relevant information based on its strength and import. This is done 

by filtering their own sets of weights. These weights are adjusted via the learning process of 

the recurrent network. Therefore, the cells will learn through an iterative process by making 

guesses, backpropagating error and also by adjusting weights via gradient descent. Figure 3-3 

shows the flow of information in a cell and how the gates controlled it inside an LSTM. LSTMs 

can be used for speech recognition, handwriting recognition and also to make predictions based 

on time series data. 

 

 

Figure 3-3 Flow of information in an LSTM model 
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3.6 Word embedding 

Word embedding is a vector representation of a word, where words with similar 

meanings have a similar representation. The vector representation of a word can be considered 

as a one-hot encoded vector. (The position of the word where the word exists is represented as 

1 and 0 otherwise). The word embedding can be divided into 2 parts as traditional word 

embedding and contextual word embedding. 

3.6.1 Traditional word embedding 

Traditional word embedding is done by ignoring the meaning of the word based on its 

context. The disadvantage of the traditional word embedding is that it ignores the contextual 

meaning and hence the original meaning of the sentence may be violated. For example, 

consider the following sentence, 

පන්සලේ තිබු පහන් දැක මලේ සිත පහන් විය. 

In this sentence the first instance of the word ‘පහන්’ represent the lamp and the second 

instance represent a human feeling. In traditional word embedding only 1 representation is 

learnt for the word ‘පහන්’. Common methods used for traditional word embedding are Glove 

and word2vec (a statistical method). 

3.6.2 Contextual word embedding 

Through the careful consideration of the sequence of all the words in the specified 

documents, the sequence level semantics are learnt by it. Therefore, in the above example it 

will learn the word ‘පහන්’ based on its context. The most popular method for contextual word 

embedding is the use of the BERT model. 

3.7 BERT model 

BERT stands for Bidirectional Encoder Representations from Transformers. It is a 

machine learning algorithm created by Jacob Devlin and his colleagues from Google in 2018. 

As the name implies it is designed to pretrain deep bidirectional representations from unlabeled 

text data by considering both the left and right context in all layers. Therefore, the pretrained 

model can be finetuned by using one additional output layer. The BERT model can be used 
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create models based on NLP such as question answering, predic, abstract summarization and 

conversational response generation. 

 The original BERT model was created for English language and comes with 2 pre 

trained types namely BERT-base and BERT-large. Both models are trained on a book corpus 

with 800M words, and on the English Wikipedia with 2500M words. BERT model uses 

WordPiece tokenization strategy to tokenize the words. The BERT model is pretrained for 

Masked Language Modelling (MLM) and sentence prediction. Today Google has created the 

BERT model for 102 languages (mBERT) such as Arabic, Bengali, Chinese, Hindi and Tamil. 

So far Google has not provided this facility for Sinhala language. 

3.7.1 Model architecture of BERT 

The architecture of the BERT model is built on top of the Transformer encoder. 

• BERT-base: 12 layers (transformer blocks), 12 attention heads, and 110M 

parameter neural network architecture. 

• BERT-large: 24 layers (transformer blocks), 16 attention heads, 340M parameter 

neural network architecture.  

 

 

 

 

 

 

Figure 3-4 Architecture of the BERT model 

3.7.2 MLM in pre training  

Language modelling can be considered as predicting the next word in a given sequence 

of words. In MLM without predicting the next token a portion of input tokens are masked 

randomly and the masked tokens are predicted. These models tries to understand the 

relationship between words. In the BERT model MLM is implemented as follows. 
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First 15% of the tokens are chosen randomly so that the masked tokens can be seen 

before fine tuning. Then, 

• 80% of the time tokens are actually replaced with the token [MASK]. 

• 10% of the time tokens are replaced with a random token. 

• 10% of the time tokens are left unchanged. 

3.7.3 Sentence prediction in pre training 

This can be considered as a binary classification task. The data can be acquired from 

any corpus by splitting it into sentence pairs. BERT model performs this as follows, 

• For 50% of the sentence pairs, the second sentence would actually be the next sentence 

to the first sentence. The label would be ‘IsNext’ 

• For the remaining 50%, the second sentence is a random sentence from the corpus. The 

label would be ‘NotNext’. 

3.7.4 Finetuning of the BERT model 

BERT has a huge neural network architecture which has around 100M to 300M 

parameters. Therefore, training the BERT model on a small dataset might result in overfitting. 

As a solution for this problem a BERT model which was trained on a huge dataset is used. The 

process of training the pretrained BERT model with a smaller dataset is known as model 

finetuning. 

3.8 mBERT model 

As mentioned earlier BERT model was built for English language. Therefore, a model 

which can accommodate many languages was introduced named as mBERT. This model was 

trained using 104 languages (see appendix A). All the data were collected from Wikipedia. 

Languages which had a less amount of data were oversampled and languages with large amount 

of data were under-sampled.    

When training on many languages without using a separate vocabulary a shared 

vocabulary was used for all the languages. This will save space and the model will learn the 

root structure of language and the underlying structure.  
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3.9 RoBERTa model 

RoBERTa model is an optimized BERT pre-training approach which was developed 

by researches at Facebook and Washington university. This model was trained using 5 

datasets namely, book corpus, English Wikipedia dataset, CC news, open web text and 

stories. It is almost similar to the original BERT architecture. The changes done to improve 

the results of the BERT architecture are as follows, 

• The next sentence prediction is removed: When it is removed it slightly improves the 

performance. 

• Training was done with bigger batch sizes and longer sequences: The BERT model 

was trained for 1M steps with batch size of 256 sequences. The RoBERTa model was 

trained for 125 steps with 2K sequences and 31K steps with 8K sequences of batch 

size. When using large batches MLM objective and end task accuracy was improved.  

• Masking pattern was changed dynamically: In the BERT model a single static mask 

was used. In the RoBERTa model training data was duplicated and masked 10 times, 

each time with different mask strategy. This was performed over 40 epochs. (4 epochs 

had the same mask). This method can be considered as a dynamic masking strategy.  

 

3.10 Evaluating language models 

3.10.1 Perplexity measure 

Perplexity measures how a probability model or a probability distribution predicts a 

given test sample. A language model can be consider as a probability distribution of a set of 

sentences. Therefore, the most common method for evaluating a language model can be 

consider as measuring the perplexity value. Low perplexity value indicates a better model. 

Perplexity can be defined in various ways. Popular methods are mentioned below, 

1. Inverse probability of the test set, normalized by the number of words 

𝑃𝑃(𝑊) =  √
1

𝑃(𝑤1, 𝑤2, … , 𝑤𝑛

𝑛
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2. Using cross entropy: cross entropy is the average number of bits need to encode a 

word. Therefore, the number of words that can be encoded with those bits is known as 

perplexity. 

𝑃𝑃(𝑊) = 2𝐻(𝑊) = 2− 1
𝑁 log2 𝑃(𝑤1,𝑤2,…,𝑤𝑛) 

3. As a weighted branching factor 

3.10.2 Accuracy measure 

Accuracy measures the number of correct predictions made by the model. In a language 

model there are only 2 possible predictions, either correct prediction or wrong prediction. 

Therefore, the accuracy measure can be computed as follows. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑜 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
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CHAPTER 4: METHODOLOGY 

4.1 Data collection 

Data for the study were collected by scraping Sihala websites such as sinhala.news.lk, 

adaderana.lk and www.newsfirst.com. Open datasets available on Git Hub were also used 

(contained data extracted from Silumina paper, neth news, hiru news, blog data and film 

subtitles). The detailed description of the dataset is given in section 4.2.2. 

4.2 Method description 

 

Figure 4-1 Method 

 

A detailed description of Figure 4-1 is given below 
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4.2.1 Data pre-processing 

The data collected for the study contained with noise. Therefore, to have clean dataset 

following steps were performed as preprocessing techniques 

• Date formats: when observing the dataset, the news items contained with date formats. 

All the dates were in the form of YYYY/MM/DD or YY/MM/DD. Therefore, these 

were removed using regular expressions. 

• There were non-Sinhala text (English and Tamil) in between Sinhala text. These were 

also removed using regular expressions. 

• All Numbers were replaced using ‘num’ key word using regular expressions (this will 

include decimal numbers, percentage numbers, and numbers which contains commas 

in between them). 

• Changing word boundaries of some words. 

ගියා ය → ගියාය 

අතර වූ → අතරවූ 

• Finally stemming/ lemmatization was performed. Sinhala words were stemmed using 

the ‘Sinhala stem dictionary’ which was created by the Language Resource 

Technological Laboratory at University of Colombo School of Computing. This 

contains 27000+ Sinhala words with their stems. 

අංකද → අංක 

අංකය → අංක 

අංකයක් → අංක 

• Extra spaces were removed using regular expressions. 

• Unrecognized characters were removed by using manual preprocessing techniques. 

4.2.2 Creating the corpus 

After performing the preprocessing steps all files were combined as a single text file by 

using ‘glob’ function. The data were tokenized, and only the Sinhala characters were 

considered when creating the corpus (punctuation marks were omitted). This was achieved by 

using the command ‘re.compile(u'[^\u0D80-\u0DFF]', re.UNICODE)‘. Duplicate words were 

removed by using ‘list(set(tokens))‘. Finally the words were sorted in the alphabetical order by 

using the command ‘sorted(tokens)’. A detailed description of the created corpus is given in 

Table 4-1. 
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Table 4-1 Text distribution according to the source 

Data source No of words No of unique words No of sentences 

News paper 7,607,714 377,616 442,781 

Blog data 463,277 67,595 37,862 

Wikipedia  1,107,508 108,484 73,196 

Common Crawl 108,569,473 3,907,507 7,542,008 

 

4.2.3 Analysing the pre-processed dataset 

To find the Zipf’s law behavior of the dataset the dataset was tokenized as mentioned 

in section 4.2.2. Then the count of each word was calculated using ‘[(w, tokens.count(w)) for 

w in tokens]’ command. The word list was then sorted with respective to their frequency using 

the command, ‘sorted(counts,key=lambda l:l[1], reverse=True)’  and then  A list was created 

to store the rank. As the next step the log values of the rank and the respective frequency was 

calculated using ‘math’ library (the first value of both lists were dropped as it contained the 

frequency count of the empty spaces). Finally log(frequency) against log(rank) was plotted. 

This was achieved as follows,  

r = [math.log(x) for x in rank] 

f = [math.log(x) for x in frq] 

r1 = r[1:-1] 

f1 = f[1:-1] 

plt.plot(f1,r1) 

plt.title("Zipf's Law Behavior") 

plt.xlabel("log(rank)") 

plt.ylabel("log(frequency)") 

 

The most frequent unigram, bigram and trigram in the dataset was found using the n-

gram model. This was done by using the ngrams in nltk library.  
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4.2.4 Creating the n-gram model 

The n-gram model was created using the CMU toolkit. A description of the toolkit and 

the steps followed are given below. 

4.2.4.1 CMU toolkit 

The CMU toolkit is a statistical language modelling toolkit which was released in 1994. 

It is a set of Unix software tools which can be used for language modelling work. (Clarkson & 

Rosenfeld, 2000). The usage of the toolkit is illustrated in Figure 4.2. 

 

Figure 4-2 Usage of the toolkit 

4.2.4.2 Building the n-gram model 

As the first step the vocabulary file will be created. This is done by using the following tools. 

• Text2wfreq: This computes the number of occurrences for each word in the given 

text. 

• Wfreq2vocab: This will turn the list into a vocab file (the file will contains the 

most common 20000 words). 
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The next step is to construct the language model. First the training set is converted to a list of 

id n-grams. This was done using the following code. 

!cat Train.txt | text2idngram -n 2 -vocab Train.vocab -buffer 100 -

temp /tmp > Train.id2gram 

 

The -n 2 indicates the 2-gram model. The amount of data to grab (in MB) by the program is 

specified by the -buffer option. Next the id n-gram will be converted into a binary language 

model file. This is done as follows. 

!idngram2lm -idngram Train.id2gram -vocab Train.vocab -n 4 - 

binary Train.2gram.binlm -cutoffs 2 -witten_bell 

 

The cutoff value of 2-gram is set to 2, hence the counts less than 2 will be discarded. The 

Witten-Bell discounting is also specified. Finally, the perplexity of the test dataset is calculated 

using the evallm tool. 

4.2.5 Creating the LSTM model 

The steps for creating the LSTM model are mentioned below 

4.2.5.1 Creating the dataset 

The preprocessed dataset was loaded and was tokenized. Then the list of tokens were 

arranged into sequences and it was saved to a text files. In this study several models were 

created based on the sequence length. (len_2 is based on 2 previous words: Figure 4-3, len_4 

is based on 4 previous words and so on) 

 

Figure 4-3 Part of the dataset of len_2 
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4.2.5.2 Encoding the created sequences 

When feeding the sequences to the embedding layer it should be fed in the form of 

integer values. Therefore, each word was mapped to an unique integer value. This was done 

using the Tokenizer class available in Keras. The tokenizer was trained on the training dataset. 

Then by using the fit Tokenizer the training sequences were encoded to a list of integers. 

4.2.5.3 Creating input sequences and output elements 

The input(x) and output(y) were created by using array slicing. The output should be 

converted to an integer to a vector of 0 values, one for each word in the vocabulary with a 1 to 

indicate the specific word at the index of the words integer value (one hot encoding). This can 

be achieved by using to_categorical( ) function available in Keras library. 

4.2.5.4 Building the model 

LSTM recurrent network was used as the model. The model was created using two 

LSTM hidden layers with 100 memory cells. The size of the embedding vector space was set 

to 50. In interpreting the features extracted from the sequence, a dense fully connected layer 

consisting of 100 neurons which is connected to the LTSM hidden layer is used. The next word 

is predicted by the output layer with the help of a single vector which has the size of the 

vocabulary. The probability of the output vector is governed by the words in the vocabulary. 

To make sure that the outputs have the features of normalized probabilities, a softmax 

activation function is used.  

Model was compiled using categorical cross entropy and the optimizer used was Adam. 

The model was trained for 50 epochs with the batch size of 64. Finally, accuracy and perplexity 

measures were obtained. A summary of the created model is showed in Figure <>. 
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Figure 4-4 Summary of the created model for 2_len 

4.2.6 Creating the BERT model 

The steps for creating the BERT model are described below 

4.2.6.1 Training the tokenizer 

The tokenizer was initialized using the ByteLevelBPETokenizer function available at 

huggingface ‘tokenizers’ library. It was trained on the entire training data set using some 

special tokens, 

• [UNK]: This represents unknown tokens which is not in the vocabulary and cannot 

convert into an ID, hence it is set to this token. 

• [S]: This represents the start token. 

• [PAD]: This is used for padding. 

• [/S]: This is the end token. 

• [MASK]: The token used for masking values. Used in MLM. 

The vocab_size was set to 52000 and the min_frequency was 2. Results obtained from 

the tokenizer are showed in the Figure 4-2 
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Figure 4-5 Results from the ByteLevelBPETokenizer 

 

The created tokenizer will generate 2 files namely, 

1. Merges.txt: which contains the merged tokenized sub strings. 

2. Vocab.json: which contains the indices of the tokenized sub strings. 

4.2.6.2 Building the model 

Two separate models were created. The configuration of the 1st model will be based on 

the DistilBERT transformer structure. Therefore, the model will have 12 attention heads and 6 

layers. The 2nd model configuration was based on the BERTbase structure. Hence it will have 

12 attention heads and 12 layers. In both models the vocabulary size was set to 52000. The 

model configuration can be initialized by using the ‘RobertaConfig’ function available at 

transformers library. Then the created configuration will be initialized for language modelling.  

4.2.6.3 Creating the training dataset 

The corpus size of the training set was 5.8M words. The training dataset was tokenized 

with the tokenizer created and it was feed in the form of line by line for batch training with the 

block_size of 64. 

4.2.6.4 Data collator 

The next step will be defining the data collator. It will take samples from the dataset 

and collate them into batches. The batched samples will be initialized for MLM by setting mlm 

= True. The mlm_probability value was set to 0.15. This value will determine the percentage 

of tokens masked during the pretraining process.  
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4.2.6.5 Initializing the trainer and pretraining the model 

The trainer was initialized using the previously mentioned information (the model 

configuration, dataset and the data collator) along with the training arguments (number of 

training epochs and the batch size). Finally the model was trained using the trainer.train( ) 

function. 

4.2.6.6 Testing the model 

The model can be tested by using the FillMaskPipeline with the use of the pretrained 

model and the trained tokenizer. This will return the top 5 predictions with their probability 

values. The accuracy values and perplexity values were obtained. 
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CHAPTER 5: EVALUATION AND RESULTS 

5.1 Zipf’s law behaviour 

The highest 10 words in the sorted list are given in the Table 5-1 

Table 5-1 Highest frequent words 

Rank Word Frequency 

1 මේ 72077 

2 බව 64961 

3 ඒ 59433 

4 ඇති 56072 

5 සහ 48677 

6 කර 44340 

7 අතර 44021 

8 වන 41400 

9 හා 37261 

10 කළ 34678 

 

The graph of the Zipf’s law behaviour is shown in Figure 5-1 

 

Figure 5-1 Zipf's law behaviour of the dataset 
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From Table 5-1 it can be concluded that the highest most frequent words represent the 

stopwords of the Sinhala language. According to the above graph (Figure 5-1) it can be 

observed that the line is approximately linear on log-log plot. Therefore, it can be concluded 

that the collected dataset follows the Zipf’s law behaviour.    

5.2 Frequent words in the dataset 

The frequent bigrams and trigrams were compute using the ngram model. The results are 

showed in Figure 5-2 and Figure 5-3.  

 

Figure 5-2 Most common bigrams 

 

 

Figure 5-3 Most common trigrams 
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5.3 Results from n-gram model 

Four n-gram models were created using the CMU toolkit (for n = 2, 3, 4 and 5). The 

models were trained using the training set and the perplexity values were obtained using the 

test set. In all 4 model the cut off value was set to 2. The perplexity values obtained are given 

in Table 5-2. 

 

Table 5-2 Perplexity values of n-gram models 

Model  Perplexity  

2-gram  692.62 

3-gram 502.34 

4-gram 683.92 

5-gram 686.13 

 

According to the results in Table 5-2 the trigram model has a better performance with 

a perplexity value of 502.34. All the other models have a perplexity value in the range of 680 

-690. Among the models created the bigram model has a poor performance (perplexity 692.62).  

According to the theory of n-gram model, when the ‘n’ value increases the models 

should perform better (perplexity values should be decreased when the value of ‘n’ increases). 

In general, a language has long distance dependencies and also when ‘n’ increases model does 

not contain sufficient data. Therefore, the above mentioned points might be a possible reason 

for high perplexity values obtained for 4-gram and 5-gram models.   
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5.4 Results from LSTM model 

The perplexity values (showed in Table 5-3) for the created LSTM models were calculated 

using the cross entropy method. 

 

Table 5-3 Perplexity values of the LSTM models 

Sequence length Perplexity value 

Len_2 55.81 

Len_4 44.53 

Len_6 48.66 

Len_8 80.56 

 

From Table 5-3 it can be concluded that the LSTM model performs better when the 

sequence length is 4. The perplexity values increase after the sequential length is 4. This 

behaviour is very similar to the results obtained from the n-gram models. (In the n-gram model 

when is ‘n’ is greater than 3 the model starts to deviate from the standard theory) 

 

5.5 Results from the BERT model 

Two variations of BERT models (distilBERT: 6 layers and 12 attention heads, 

BERTbase: 12 layers and 12 attention heads) were created. The training corpus size was 6.4M 

and the testing corpus size was 2M. Both models were trained for 40 epochs. Finally the 

perplexity values and accuracy values for word prediction were calculated. The calculated 

perplexity values are given in Table 5-4. 

 

 



 

36 
 

Table 5-4 Perplexity values of the created BERT models 

No of epochs Perplexity value: distilBERT Perplexity value: BERT base 

10 14.5 15.71 

20 3.45 16.45 

30 3.19 20.85 

40 8.72 23.21 

 

The comparison of the perplexity values of the 2 models are showed in Figure 5-4. 

 

Figure 5-4 Comparison of the perplexity values in BERT model 

According to figure 5-4 it can be concluded that the perplexity values for BERTbase 

model is higher than distilBERT model. When analysing the results of BERTbase model it can 

be seen that the perplexity values increases with the no of epochs (15.71 to 23.21). In the 

variation line of distilBERT the lowest perplexity value can be found when the model reached 

30 epochs (value: 3.19). According to the theory of perplexity it is said that when the perplexity 

value is low the language model is better. Therefore, it can be concluded that distilBERT model 

has a better performance compared to BERTbase model.   
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

This study was based on word prediction in Sinhala language using word embedding 

methods. To achieve the goal three models were used namely ngram model. LSTM model and 

RoBERTa model. Sinhala is a low resource language therefore, finding a reasonable size of 

text corpora was a challenge. Most of the text related preprocessing techniques are for English 

language hence some of the preprocessing steps were done manually which was very time 

consuming. 

When considering the results from n-gram model and LSTM model it can be concluded 

that when the value of ‘n’ increases the model deviates from the standard theory. Possible 

reason for this is lack of examples in the dataset when n is high. According to the results 

obtained, among the n-gram models created the tri-gram model obtained the lowest perplexity 

value of 502.34. From the LSTM models created the LSTM model which considered 4 previous 

words for the prediction had a better performance (perplexity: 44.53) compared to the other 

LSTM models created. 

When training the RoBERTa model the huge challenge was feeding the data to the 

model because of memory capacity available in Google Colab. Therefore, the training data was 

divided into sub parts and was fed to the model. The training time for 1 epoch was around 3-4 

hours. From the results it was found that the distilBERT model is more accurate when 

compared to BERTbase model. Further it can be concluded that the RoBERTa model have 

good performance compared to the n-gram model and LSTM model. 

In a language there can be many meaningful words that can be used for a given mask 

and hence calculating accuracy is not a better idea. Various methods can be used to improve 

this study such as by feeding more data to the model, by performing more preprocessing 

techniques (removing stop words of the Sinhala language, spell checking the words). 

The methodology presented in this research can be naturally extended for other 

languages also. Further this research can be extended to generate sentences in Sinhala language, 

question answering and also to predict the next sentence in a given phrase. 
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APPENDIX 
 

Appendix A: languages trained on mBERT 

• Afrikaans • Albanian • Arabic • Aragonese 

• Armenian • Asturian • Azerbaijani • Bashkir 

• -Basque • Bavarian • Belarusian • Bengali 

• Bishnupriya 

Manipuri 

• Bosnian • Breton • Bulgarian 

• Burmese • Catalan • Cebuano • Chechen 

• Chinese 

(Simplified) 

• Chinese 

(Traditional) 

• Chuvash • Croatian 

• Czech • Danish • Dutch • English 

• Estonian • Finnish • French • Galician 

• Georgian • German • Greek • Gujarati 

• Haitian • Hebrew • Hindi • Hungarian 

• Icelandic • Ido • Indonesian • Irish 

• Italian • Japanese • Javanese • Kannada 

• Kazakh • Kirghiz • Korean • Latin 

• Latvian • Lithuanian • Lombard • Low Saxon 

• Luxembourgish • Macedonian • Malagasy • Malay 

• Malayalam • Marathi • Minangkabau • Mongolian 
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• Nepali • Newar • Norwegian 

(Bokmal) 

• Norwegian 

(Nynorsk) 

• Occitan • Persian 

(Farsi) 

• Piedmontese • Polish 

• Portuguese • Punjabi • Romanian • Russian 

• Scots • Serbian • Serbo-

Croatian 

• Sicilian 

• Slovak • Slovenian • South 

Azerbaijani 

• Spanish 

• Sundanese • Swahili • Swedish • Tagalog 

• Tajik • Tamil • Tatar • Telugu 

• Thai • Turkish • Ukrainian • Urdu 

• Uzbek • Vietnamese • Volapük • Waray-Waray 

• Welsh • West Frisian • Western 

Punjabi 

• Yoruba 

 

Appendix B: Codes 

Code for pre-processing 

import re 

def preprocess(infile, outfile): 

    """ This will preprocess the given text """ 

    reg1 = '[0-9]{4}.*?[0-9]{2}.*?[0-9]{2}.*?[0-9]{2}.*?[0-
9]{2}.*?[0-9]{2}.*?' 

    reg2 = re.compile(u'[^\u0D80-\u0DFF"num"]', re.UNICODE) 

     

    f1 = open(infile, 'r', encoding = 'utf-8') 
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    txt = f1.read() 

    txt = re.sub(reg1,'',txt)       # Removing date formats 

    txt = re.sub('[A-Za-z]','',txt) # Removing English characters 

    txt = re.sub('\d+','num', txt)  # Replacing digits 

    sentences = txt.split('.')      # Spliting data to obtain sentences 

     

    f2 = open(outfile, 'w', encoding = 'utf-8') 

    for sentence in sentences: 

        words = sentence.split() 

        word = [reg2.sub('', w) for w in words] # Extracting Sinhala 
characters 

        sentence = ' '.join(word) 

        f2.write(sentence) 

        f2.write('.\n') 

    f2.close() 

    f1.close() 

 

Code for n-gram calculation 

import nltk, re, string, collections 

from nltk.util import ngrams 

 

def ngram(infile): 

    """ This will find the most common uni, bi and tri gram in the 
dataset """ 

    f = open(infile,'r',  encoding = 'utf-8') 

    data = f.read() 

    f.close() 

    tokens = nltk.word_tokenize(data) # Extract only the sinhala words 

    regex = re.compile(u'[^\u0D80-\u0DFF]', re.UNICODE) 

    tokens = [regex.sub('', w) for w in tokens] 
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    bi = ngrams(tokens, 2) # Bi gram           

    bi_freq = collections.Counter(bi) 

    tri = ngrams(tokens, 3) # Tri gram 

    tri_freq = collections.Counter(tri) 

     

    print('Most common bigrams') # Top 10 bi grams  

    print(bi_freq.most_common(10)) 

    print('\n') 

    print('Most common trigrams') # Top 10 tri grams 

    print(tri_freq.most_common(10)) 

 

Code for calculating perplexity in n-gram model: Using toolkit 

# CMU toolkit should be downloaded using http://www.speech.cs.cmu.ed

u/SLM/toolkit_documentation.html 

# Creating the vocab 

!cat Train.txt | text2wfreq | wfreq2vocab -top 20000 > Train.vocab 

 

# Building the model 

!cat Train.txt | text2idngram -n 2 -vocab Train.vocab -buffer 100 -

temp /tmp | \ 

   idngram2lm -idngram Train.id2gram -vocab Train.vocab -n 2 \ 

   -binary Train2gram.binlm -cutoffs 2 -witten_bell 

 

# Computing the perplexity 

!echo "perplexity -text Test.txt" | evallm -binary Train.2gram.binlm 

Code for Zipf’s law 

import nltk 

import re 

import matplotlib.pyplot as plt 

import math  
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f = open('DATA_FINAL.txt','r',encoding = 'utf-8') 

content = f.read() 

f.close() 

tokens = nltk.word_tokenize(content) 

 

# get only sinhala unicode charactors 

regex = re.compile(u'[^\u0D80-\u0DFF]', re.UNICODE) 

tokens = [regex.sub('', w) for w in tokens] 

 

# Obtaining the frequency and sorting 

frequency = {} 

for word in tokens: 

    count = frequency.get(word,0) 

    frequency[word] = count + 1 

 

frequency = {key:value for key,value in frequency.items()} 

frequency = sorted(frequency.items(), key=lambda x: x[1], 
reverse=True)  

 

# Printing the most frequent words in the dataset 

top_10 = list(frequency)[1:11] 

print(top_10) 

 

# Plotting  

frq = [c for (w,c) in frequency][1:-1] 

rank = list(range(1,len(frq)+1)) 

r = [math.log(x) for x in rank] 

f = [math.log(x) for x in frq] 

plt.plot(f,r) 

plt.title("Zipf's Law Behavior") 

plt.xlabel("log(rank)") 
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plt.ylabel("log(frequency)") 

 

Code for LSTM model 

# Reading data 

f = open('gdrive/MyDrive/train.txt', 'r', encoding = 'utf-8-sig') 

sents = f.readlines() 

f.close() 

 

data = "" 

for i in sents: 

    data = ' '. join(sents) 

data = data.replace('.\n', ' ') 

 

# Getting tokens 

tokens = data.split() 

number_of_unique_tokens = len(set(tokens)) 

 

sequence_length = 2 

 

# organize into sequences of tokens of input words plus one output w

ord 

length = sequence_length + 1 

sequences = list() 

for i in range(length, len(tokens)): 

    seq = tokens[i-length:i] 

    line = ' '.join(seq) 

    sequences.append(line) 

 

# saving the tokens to file 

def save_doc(lines, filename): 

  data = '\n'.join(lines) 

  file = open(filename, 'w') 

  file.write(data) 

  file.close() 
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out_file = 'gdrive/MyDrive/lstm/data2_sequences.txt' 

save_doc(sequences, out_file) 

 

# load the file 

def load_doc(filename): 

  file = open(filename, 'r') 

  text = file.read() 

  file.close() 

  return text 

  

in_file = 'gdrive/MyDrive/lstm/data8_sequences.txt' 

doc = load_doc(in_file) 

lines = doc.split('\n') 

 

# Perplexity calculation 

from tensorflow.keras import backend as K 

 

def perplexity(y_true, y_pred): 

    cross_entropy = K.categorical_crossentropy(y_true, y_pred) 

    return K.pow(2.0, cross_entropy) 

 

# integer encode sequences of words 

from keras.preprocessing.text import Tokenizer 

tokenizer = Tokenizer() 

tokenizer.fit_on_texts(lines) 

sequences = tokenizer.texts_to_sequences(lines) 

 

# vocabulary size 

vocab_size = len(tokenizer.word_index) + 1 

 

import numpy as np 

from tensorflow.keras.utils import to_categorical 

# separating input and output 

sequences0 = np.array(sequences) 
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y = [] 

X = [] 

for l in sequences0: 

  f = l[-1] 

  X.append(l[:1]) 

  y.append(l[-1]) 

y = to_categorical(y, num_classes=vocab_size) 

seq_length = np.asarray(X).shape[0] 

 

X = np.array(X) 

y = np.array(y) 

 

from pickle import dump 

from keras.preprocessing.text import Tokenizer 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from keras.layers import Embedding 

from keras.layers import Dropout 

 

model = Sequential() 

model.add(Embedding(vocab_size, 50, input_length=sequence_length)) 

# LSTM hidden layers with 100 memory cells each.  

model.add(LSTM(100, return_sequences=True)) 

model.add(LSTM(100)) 

model.add(Dense(100, activation='relu')) 

model.add(Dense(vocab_size, activation='softmax')) 

print(model.summary()) 

 

model.compile(loss='categorical_crossentropy', optimizer='adam', met

rics=['accuracy',perplexity]) 

history = model.fit(X, y, validation_split=0.3, batch_size=64, epoch

s=50).history 
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Code for BERT tokenizer 

# Installing the libraries 

!pip install git+https://github.com/huggingface/transformers 

!pip install tokenizers 

 

from tokenizers import ByteLevelBPETokenizer 

# Initialize a tokenizer 

tokenizer = ByteLevelBPETokenizer() 

 

paths = ['gdrive/MyDrive/Train/Train.txt'] 

 

# Customize training 

tokenizer.train(files=paths, vocab_size=52_000, min_frequency=2,  

                special_tokens=[ 

    "<s>", 

    "<pad>", 

    "</s>", 

    "[UNK]", 

    "<mask>", 

]) 

 

# Saving the tokenizer to the directory 

tokenizer.save_model("gdrive/MyDrive") 

 

Code for BERT model 

#Installing the libraries 

!pip install git+https://github.com/huggingface/transformers 

!pip install tokenizers 

 

from tokenizers.implementations import ByteLevelBPETokenizer 

 

# Loading the created Tokenizer 

tokenizer = ByteLevelBPETokenizer( 

    "gdrive/MyDrive/dM1/vocab.json", 
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    "gdrive/MyDrive/dM1/merges.txt", 

) 

 

#Defining the model configuration 

from transformers import RobertaConfig 

config = RobertaConfig( 

    vocab_size=52_000, 

    max_position_embeddings=514, 

    num_attention_heads=12, 

    num_hidden_layers=6, 

    type_vocab_size=1 

) 

 

#Reloading the tokenizer and initializing the model 

from transformers import LineByLineTextDataset 

from transformers import RobertaTokenizerFast 

 

tokenizer = RobertaTokenizerFast.from_pretrained("gdrive/MyDrive/dM1

", max_len=512) 

 

from transformers import RobertaForMaskedLM 

model = RobertaForMaskedLM(config=config) 

 

#Building the dataset 

dataset = LineByLineTextDataset( 

    tokenizer = tokenizer, 

    file_path ='gdrive/MyDrive/Train/2.txt',  

    block_size=128, 

) 

#Data collator 

from transformers import DataCollatorForLanguageModeling  

data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, m

lm=True, mlm_probability=0.15) 

 

#Initializing the trainer 
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from transformers import Trainer, TrainingArguments 

training_args = TrainingArguments(output_dir='gdrive/MyDrive/dM1', o

verwrite_output_dir=True, 

                                  num_train_epochs=3, 

                                  per_device_train_batch_size=32, 

                                  save_steps=10_000, 

                                  save_total_limit=2, 

                                   

) 

 

trainer = Trainer( 

    model=model, 

    args=training_args, 

    data_collator=data_collator, 

    train_dataset=dataset, 

)  

 

#Training and saving the model 

trainer.train() 

trainer.save_model('gdrive/MyDrive/dM1') 

 

#Language modelling 

from transformers import pipeline 

 

fill_mask=pipeline( 

    'fill-mask', 

    model='gdrive/MyDrive/M1', 

    tokenizer='gdrive/MyDrive/M1' 

) 

 

fill_mask('<mask> ඉමෙනීමට ගියා') 
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