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ABSTRACT

Insurance companies are one of the most important components of the financial sector for any
country. One of the main challenges faced by insurance companies in current market environment
are the fraud claims, especially in motor insurance domain. The number of fraud claims are
expected to increase in the future, since claim counts are also increasing. Therefore, many
researchers in the motor insurance field around the world are trying to find methods on detecting
fraudulent claims as early by using machine learning algorithms. Motor claims fraud detection is
a complex task since the fraud behavior different for each claim and the detected fraud cases are
much low compared to the normal claims. This research aims to develop a motor insurance fraud
detection model using classification algorithms and proposed a best model by using some
evaluation criteria’s. The research includes in its scope motor claim data from Sri Lanka Insurance.
Dataset contains 30098 claims and out of these claims 3112 claims are labeled as fraudulent.
Dataset is imbalanced since fraud claims also known as positive cases only accounts 10% of total
cases. Past claim data are analyzed with underwriting details. Artificial Neural Network, Random
Forest and XGBoost algorithms are used as the classifiers to detect a claim is fraudulent or not.
These algorithms are analyzed and evaluated by dividing the data set into training, validating and
testing. However, when giving input data of an imbalanced class variable to the machine learning
model, it is biased towards the majority class. Then it misclassified a fraudulent claim as a normal
claim. Oversampling method called Synthetic Minority Oversampling Technique (SMOTE) is
applied along with ensemble models to address this problem. Model performance is evaluated
based on evaluation criteria’s such as recall, precision, f1-score, precision-recall (PR) curve, and
receiver operating characteristics (ROC) curve. Since Random Forest and XGBoost classifier
model contains parameters that need to be decided by the researcher, hyperparameter tuning is also
applied and evaluated. It was found that Random forest and XGBoost models are perform better
compared to neural network model. There were not much difference between random forest
models and XGBoost models, however, Random forest model with tuned hyperparameters
perform slightly better than other models.
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1. INTRODUCTION

1.1. The background of the problem

Vehicle is considered as essential product in today’s world and people give much higher value for
their vehicle safety. So people always tend to buy a vehicle insurance when they purchase a
vehicle. Due to its higher demand, auto insurance is considered as major filed in insurance industry.
However, like other industries frauds are inevitable in auto insurance due to high demand of
claims. A fraud occurs in auto insurance when the customer purposely tries to gets an additional
benefit or advantage over insurance claim which is not due. However unlike other crimes, auto
insurance fraud claims are not visible or detectable. So exact amount of money stolen from fraud
claims are hard to predict. Insurance companies forced to increase its premiums due to the large
amount of money lost in this scenario and it will affect their overall performance of the company.
Due to these reasons researches on fraud claim detection in auto insurance is considered as one of
the most important and interesting research topic in auto insurance industry. There are some fraud
detection methods developed by manually, however due to complexity and undetectable nature,
the success ratio of them are quite low. Therefore, machine learning solutions are more important
in this scenario. If it can implement a machine learning approach for fraud claim detection many
benefit can be obtained like reduce human intervention, identify risky claims early etc,..and it will

results reduction of monetary losses.

1.2.  The Problem Domain

According to the FBI in United States (“Insurance Fraud,” n.d.), the insurance companies collect
more than $1 trillion premium for year. Further it states that cost of insurance fraud is estimated
more than $4 billion per year, which mean on average 4% of insurance premium is lost due to the
insurance frauds. There for most of the insurers in global believe that fraud is number one threat
to the industry.

In this research it is mainly focused on the Sri Lankan insurance industry domain. Therefore, first

it will critically analyze the performance of Sri Lankan Insurance Industry.
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1.2.1. Insurance Domain in Sri Lanka

According to Annual Report 2018 (“IBSL-AR-English-2018-Fullset.pdf,” n.d.) of Insurance
Regulatory Commission of Sri Lanka (IRCSL), it provides relevant legal framework for the
supervision and regulate insurance companies. 25 insurance companies, 63 insurance broker
companies, 44919 insurance agents, 10 individual loss adjusters are providing insurance services
within 773 Grama niladari divisions in 12 divisional secretarial. 9 insurance companies listed in
Colombo Stock Exchange (CSE). 11 insurance companies provide only General insurances, 12
insurance companies only prove life (long term) insurances and 2 insurance companies provide

life and general insurances to people who lives in Sri Lanka.

Status on 'listed/non listed’
insurers

Long Term (14) General (13)

Listed
33%

12

Non Listed
67%

Figure 1.2-1 Insurance Companies Distribution in Sri Lanka

Total assets of insurance industry recorded as Rs. 623,477 Mn in year 2018 and it is 7.18%
improvement. 2018 Gross written premium (GWP) is Rs. 181,506 Mn and it is 10.03% of
improvement compare with year 2017. 8.88% positive gain shows in insurance density and 2.44%

of positive change in penetration as a percentage of GDP.

Premium Income & Growth Rate of the Insurance Industry

LKR million %
100,000
90,000
80,000
70,000

60,000

50,000
40,000
30,000
20,000

BB

2014 2015 2016 2017 (a) 2018 (b)
 Premium income - Long Ternm Insurance Business B Premium income - General Insurance Business

m— Reinsurance Premium Income

Growth Rate-long Term Insurance Business

Growth Rate- General Insurance Business Growth Rate-Reinsurance Premium Income

Figure 1.2-2 insurance Growth by each year
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Total Assets of Insurance Companies

2014 2015 2016 2017 (a) 2018 (b)
Long Term Insurance (LKR milions) 247,061 312,713 345,589 391,890 429,706
General Insurance (LKR millions) 174,588 151,177 173,985 185,583 190,088
Reinsurance (LKR milions) 3,065 3,417 5,755 4,212 3,683
Total (LKR millions) *422 031 | *466,519 | 525,329 | 581,685 | 623,477

* Inter segment transactions have been eliminated

Figure 1.2-3 Total Assets of Insurance Companies

General insurance sector is mostly effected sector in insurance industry. Sub components in the

general insurance are Fire, Motor, health insurance sectors. Around 61% of general insurance total

GWP covered by motor insurance sector. All general insurances are short term insurances. Need

to renew insurance yearly. 6,492,003 general insurance policies issued in 2018 and it i1s5.94% of

growth. In motor insurance section there have two type of insurance policies and call these policies

as 3" party insurance policy and Comprehensive insurance policy. Higher amount of contribution

policy type is motor 3™ party insurance policy and positive growth rate of 14.6. But 7% of negative

growth shown in motor comprehensive policies.

Company —wise Market Share of Gross Written Premium- General Insurance Business for

the year ended 31st December 2018

NITF

9.53% Allianz Gen.

SLIC 18.39%

17.69%

Amana Gen.

Sanasa 1.82%

0.76%

People's
5.29%

Fairfirst
10.82%

Orient (

1.36%

Ceylinco Gen.
17.92%

LOLC Gen.

427% HNB Gen

4.01% Continental

4.49%

Cooperative Gen.
3.65%

Figure 1.2-4 Market Share of General Insurance Companies
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But life insurance is long term insurance policy type. It is shows 12% positive growth rate. 712,013

new long term life policies issued and 10.65% of growth is achieved compared to tear 2017.

3,215,911 life insurance policies are reinforced and growth percentage compared to 2017 is 4.79%.

Company - wise Market Share of Gross Written Premium - Long Term Insurance Business

for the year ended 31st December 2018

Union Life AIA Life
14.00% 15.86%

Allianz Life
1.62%

Softlogic Life
12.46% Amana Life

1.02%

\Arpico

1.73%

SLIC
16.45%

Sanasa
0.67%_
MBSL_— ’
0.08% .“I
LOLC Life LIc |/  Janashakthi Life

3.25% 0.65% 3.75%

Ceylinco Life
22.18%

———__ Cooplife
0.78%
HNB Life
5.50%

Figure 1.2-5 Market Share of Life Insurance Companies

Industry profitability shows Rs. 49,084 Mn drop in 2017 and Rs. 37,017 Mn drop in 2018. Running
modernization projects to enhance efficiency, IFRS 17 implementation, implement wider power

insurance regulatory act, supervision and product developments are underway in the current

situation.

1.2.2. Fraud Claims in Sri Lankan Domain

On a daily basis every insurance company in Sri Lanka gets alerts on possible fraudulent activities

related to claims and underwriting across all portfolios. However, detecting these fraud claims is

not easy as most of them are not straightforward. The domain of this research is mainly focus on

to the motor claims in Sri Lanka as there were not many researches done on this domain. The data

were collected from Sri Lanka Insurance, the largest insurance company in Sri Lanka.
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1.3.  Problem Statement

The continuous fraud claim submission in motor insurance is one of major problem faced by
Insurance companies. Since this is hard to detect it is directly impacted to the financial stability,
trustworthy of customers to the company, target customer base of insurance companies. This study
is to identify what are the major determinants of motor fraud claims and proposed a machine

learning solution for detecting fraud motor claims.
1.4,  Motivation

The research idea is inspired through working at Insurance field for past seven years. It was
observed that there were many manual works are involved in motor claim handling process. The
most common approach for detecting fraud claims depend on human experts. However, this takes
time and effort of the work force which is a huge cost to the insurance company. Therefore, it is
important to have an effective way to identify motor fraud claims and inform to relevant
authorities. It was found that only a few studies concerned with motor fraud detection using
machine learning techniques were done in Sri Lankan context. Therefore, applying machine

learning concepts in Sri Lankan context is one of the main objective in this research.

1.5. Exact Machine Learning Problem

Insurance Companies use manual procedures to detect the motor fraud claims and these existing
methods have low success rate in detecting fraud claims. The most common approach for fraud
detection depends on expert intervention. However Existing method doesn’t have proper
mechanism to identify which attributes are more related to fraud claims. The problem with manual
systems is that creating fraudulent claims list takes time. However, data mining algorithms would
help to solve these problems since they can be trained with data and the model can be improved
over time. This could save insurance companies time and require less human intervention.

Proposed methodology can be used as a machine learning solution for an insurance company.

17




1.6. Scope

This research aims to identify what are the major determinants of motor fraud claims and proposed
a machine learning solution for detecting fraud motor claims. The research includes in its scope
motor claim data in Sri Lanka Insurance. Past claim data will be analyzed with underwriting
details. Those data were imported into Python as a data frame. The imported dataset was separated
into Training, Validating and testing datasets and applied the machine learning algorithm.

1.7. Objectives

The main goal of the research consists on developing affective and accurate machine learning
model which can be used for detecting motor fraud claims. To accomplish it, objectives are

summarized as follows.

e To study and understand about the Motor Fraud Claim Detection.

e To study the different methods used in Motor Fraud Claims.

e To study how the Machine Learning can be used to fraud claim detection.

e To compare and identify different machine learning algorithms for fraud claim detection.

e To research about Random Forest, Extreme Gradient Boosting (XGBoost) and Neural
Networks machine learning classifiers.

e Study different evaluation methods used in classification problems.
e Learn how to use Python programming to implement fraud detection solution.

e To propose machine learning solution to identify a fraud claim with high accuracy.

18




1.8. Document Overview

The chapter 01 of this project covers introduction of insurance fraud detection. It will explain

insurance industry in Sri Lanka, objectives and flow of this project.

Chapter 02 covers the literature survey of insurance fraud detection. It will discuss about history
of fraud detection, different techniques used in fraud detection and previous researches that have
been done on fraud detection. Research articles are summarized with its data mining technique

used in the research.

In chapter 03, it contains the research methodology. It included the detail information regarding

the dataset, preprocessing methods used and data mining techniques used for the research.

Chapter 04 involves in design and implements a models based on Classifiers discussed in chapter
03. Also testing and validating the models will be discussed in this chapter.

Finally, in chapter 05, conclusion and further development of the project will be discussed.
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2. LITERATURE REVIEW

The first section of the literature review discusses the Insurance fraud detection with specially
mention about motor fraud detection. It also contains the review of insurance fraud detection
literature. Section two contains with machine learning techniques and data mining classifiers used

in this research with justification for using them.

2.1. Fraud Claims and Fraudsters

There can be various ways that people commit frauds. The oxford dictionary (“Fraud - Oxford
Reference,” n.d.) defined the fraud as “wrongful of criminal deception intended to result in
financial or personal gain”. Fraud occurs in wide variety of industries. According to the (Ngai et
al., 2011) financial frauds can be summarized as figure 2.1.1. However unlike other industries,
frauds are inevitable in motor insurance due to high demand of claims. According to the Insurance
Information Institute of USA (“Background on: Insurance fraud | III,” n.d.), Insurance fraud claim
is a deliberate deception perpetrated by a customer or agent for the purpose of additional benefit
or advantage which is not due. (Morley et al., n.d.) defined that fraud as ‘‘knowingly making a
fictitious claim, inflating a claim or adding extra items to a claim, or being in any way dishonest
with the intention of gaining more than legitimate entitlement’’. Fraud can be committed at
different points in the claim process by applicants, customers, or professionals like brokers who
provide services to claimants. Insurance agents and employees may also commit insurance fraud.
Common frauds include padding (increasing the amount of the claim by fixed amount), inflating
claims (submits exaggerated or false information), misrepresenting facts on an insurance
application, submitting claims for injuries or damage that never occurred and staging accidents.
According to the Insurance Regulatory Commission of Sri Lanka - Annual Report 2018 (“IBSL-
AR-English-2018-Fullset.pdf,” n.d.), fraud may involve collusion, forgery, intentional omissions,

misrepresentations, or the override of internal controls.

20




[ Financial Fraud }

|

i N Scturlllcﬁ and Other Rcl.u.cd
Sl Commodities Fraud Financial Frand

Bank Fraud

Credit Card Money Aulumuhlll: Crop Imurant: Ht.llthca:t
Fraud L.lund:nng 1nsur,|n ce Fran Frmd lmul.mc: Fraud,

Review Framework of Data Mining Techniques
for Financial Fraud Detection

ap

Neutral Network, Regression Model, Naive Bayes, Decision Trees, Fuzzy Logic, CART. Genetic Algorithm,
k-Nearest Neighbors, Bayesian Belief Networks....

N
G TN G N 1 S S 1

Outlier
Classification Clustering . Prediction Regression Visualization
Detection

[Data Mining Techniques J
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Figure 2.1-1 Financial Fraud Breakdown

There are also many types of fraudster in current motor insurance industry. (Morley et al., n.d.)
classified fraudsters as the opportunist, the amateur and the professional. The opportunist ones
take advantage from a genuine loss to commit fraud, for example, by claiming alongside genuine
losses for items not broken in an accident. The amateur may take a step further to opportunistic
fraudster, for example, submitting a claim in an accident that never took place. The professional,
most serious type of fraudster, takes frauds in both individually and in organized networks, for
example staging claims. Whether these organized networks can be found in all insurance domains
is unclear and very hard. However, there are evidences that they exist in motor insurance and the
potential for the spread of organized networks further. (Phua et al., n.d.) categorized these
fraudsters into three main groups as figure 2.1.2, which are Manager, External Group and
Employee. They explained that traditionally the business is always vulnerable for internal fraud

from its management and employees and in addition it is vulnerable for external fraud.
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Fraudster

Manager External Employee

Average Criminal Organised

Figure 2.1: Hierarchy chart of white-collar crime perpetrators from both
firm-level and community-level perspectives.

Figure 2.1-2 Fraudster Hierarchy view

2.2.  Approaches to detecting potential motor fraud

Insurance fraud detection is very important for insurance companies since it is directly involving
their reputation and financial stability. In simple terms Insurance fraud claim detection is nothing
but distinguishing fraudulent claims from genuine claims. However unlike other crimes, motor
insurance fraud claims are not visible or detectable. So exact amount of money stolen from fraud
claims are hard to predict. (Phuaetal., n.d.) explained that fraud is refers to abuse of organization’s
system without direct legal consequences. Insurance companies forced to increase its premiums
due to the large amount of money lost in this scenario and it will affect their overall performance
of the company.

The responsibility of detecting fraud claims in an insurance company rests with staff at the claims
handling process. Claims handlers are often experienced, but however Insurance companies like
Infinilytics estimates the rate at of fraudulent claims (Health claims specially) are detected are as
low as 10%, suggests that huge numbers of fraudulent cases remain undetected. According to the
Atlas Magazine — Insurance News around the world nearly 54% insurers believe that fraud stand
the number one threat for insurance companies. Cost of fraud has been estimated 10% of the total
claims around the Europe region and according to them this figure is remarkably high in Asian
countries. There should be a mechanism for spotting suspect claims in place, to discriminate
quickly between claims that carry a high level of fraud probability and false positives, that is,

genuine claims that are suspicious to an inexperienced staff member.
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In order to solve fraud claims problem effectively, insurance companies may face many hardships
internally and externally. According to the Atlas magazine (“Insurance fraud detection and cost to
industry,” n.d.) these issues centered around lack of data and inadequate response mechanism. A
survey has showed that main problem that insurance companies face is problems with internal data

quality.

Problems with internal data quality
Undetected froud in the company
Issues with data protechion ond privacy
Overcoming o silosd srganisatienal principles
Inadequale access o exlernal dala
Insulficient investment from the company

15%
Lack of slandardisalion in dealing with fraud

Ower complicalion with legal procedures
Recruitment of skilled staff

4%
Overcoming the issues of False posifives

Figure 2.2-1 Problems faced by insurance companies

In order to increase the probability of detecting fraudulent claims, insurance companies are moving
to new technologies. Researches on fraud claim detection in motor insurance is considered as one
of the most important and interesting research topic in motor insurance industry. There are some
fraud detection methods developed by manually, however due to complexity and undetectable
nature, the success ratio of them are quite low. Therefore, machine learning solutions are more
important in this scenario. If it can implement a machine learning approach for fraud claim
detection, many benefit can be obtained like reduce human intervention, identify risky claims early
etc, and it will result reduction of monetary losses.
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(Subudhi and Panigrahi, 2018) proposed a new fraud detection methodology for auto insurance
based on an approach named as adaptive synthetic sampling. This is an imbalanced learning
approach which replicates points which are harder to learn rather than easier to learn. The adaptive
synthetic sampling was used to remove the class imbalance in the insurance data. The data set had
33 features which include class label mentioning the claim is fraud or not. The researcher has used
three different supervised classifiers for detecting fraud claims which is namely, Support Vector
Machine, Decision Tree, and Multi-layer perceptron. To get the best classifier model the 10-fold
cross validation method has been used. It was identified that using adaptive synthetic sampling
method, the system has performed far better than imbalanced one. Further it was observed that rate
of detecting fraud claims by using Support Vector Machines or by using Decision Trees is high.
(Dhieb et al., 2019) developed an automated fraud detection method for auto insurance based on
extreme gradient boosting algorithm. The aim of the framework was to predict and classify auto
insurance claims into different fraud types. The performance of the system was evaluated by
comparing other classifiers namely, Decision Tree algorithm, naivebayes and nearest neighbor
algorithm. Features like age of the customer, Gender, marital status, sum insured etc.. were used
to develop the model. Final model classified the claims into three categories namely Invalid kind
of loss, Fraudulent claim amount and No premium but has claim. The results ensured that extreme
gradient boosting algorithm has the best accuracy together with classification of fraud claims into
different types. But when comparing with the training and evaluation time, extreme gradient
boosting algorithm takes more time which need to address.

(Kalvihura, et.al 2020 ) (“AUTO-INSURANCE FRAUD DETECTION,” 2020) proposed a data
preprocessing technique which is feature engineering approach to improve the performance of
prediction model. RFM which is Recency, Frequency, Monetary based features together with
ensemble feature selection technique was used to detecting auto insurance frauds. To capture the
behavior of features from claim toward their fraud, RFM based features were used and the
ensemble feature selection was used to get the best candidate features. Finally Bootstrapped
Random Forest classification was used to classify claims based on the selected candidate features.
To capture relevant behavior analysis for insurance claims the researcher proposed a new feature
engineering methodology call HOBA which categories homogeneous claims into one group.

Initially there were 32 features to select and random forest was used as the stratified ensemble
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classifier. The results showed that the proposed feature ensemble model shows a significant
improvement in the overall performance.

(S. Patil, 2018) conducted a survey on machine learning approaches for detecting insurance claim
frauds. They have disclosed both traditional techniques and some contemporary techniques like
hybrid and ensemble learning. They argued that hybrid models provide flexibility since its uses
different algorithms together and these hybrid models outperformed traditional learning methods.
However, they observed that ensemble learning approaches gaining more importance recently due
to their reliability and flexibility. They discovered that these ensemble learning methods addresses
some common problems in machine learning such as class imbalance, over fitting and concept
drift. Although ensembles are expensive in terms of time and resources, it will be a onetime
investment if it successful to implement.

(Ghorbani and Farzai, 2018) proposed a data mining approach to extract hidden knowledge and
patterns in auto insurance fraud claims. They have select 7 clusters according to the insurance
expert’s suggestions and applied K mean clustering using Euclidean distance as similarity and
dissimilarity measure for fraud claim data. The results showed significant accuracy in comparison
with real statistics. They have succeeded in extracting patterns which can be used to detect fraud
claims in next accident cases.

Apart from the auto insurance there were researches done for detecting fraud claims from other
insurance fields. Although auto insurance claims and health claims are different in fields, they
have some similarities with respect to insurance fraud behavior. (Vineela, et.al 2020) (“Fraud
Detection in Health Insurance Claims using Machine Learning Algorithms,” 2020) has conducted
a research by applying machine learning algorithms on fraud detection in health claims. They have
applied both unsupervised algorithms like K —mean clustering and Hierarchical Clustering and
supervised algorithms like decision trees and regression to identify and classify fraud claims. It
was discovered that Decision Trees — supervised learning method gave the better outcome. In
banking sector Credit card frauds are common and a serious problem. Machine learning algorithms
were used to detect fraud claims even though there were limitations in researches due to
confidentiality. (Randhawa et al., 2018) has done a study on credit card frauds using different
machine learning algorithms. Some standard machine learning models like Naive bayes, support
vector machines, Decision Trees have been applied for a publicaly available data set. The models

were evaluated using individual models and hybrid models; which include adaBoost and majority
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voting combination method. The majority voting based method offered the best performance when
each model was evaluated. (Batra and Kundra, 2019) has proposed a naive bayes classification
approach for fraud detection of insurance claims. Execution time and Accuracy of the model
compared with the voting classifier and it was identified that naive bayes had high accuracy and

low execution time compared to voting classifier.

2.3. Data Mining Techniques in Fraud Detection

Data mining can be recognized as discovering hidden knowledge and patterns from large
databases. Insurance companies provide verity of services and with the development with
technology, their stored databases are growing rapidly. So the data mining techniques can be
applied to discover hidden patterns of fraud claims information in insurance companies. (Ngai et
al., 2011) classified data mining techniques in fraud detection into six different classes.

2.3.1. Classification

The most common mining technique used in fraud detection can be identified as classification.
Classification is the process of define a model that distinguish classes and use it to predict unknown
class label. (Zhang et.al 2011) described that classification can be used to identifying common
features and models that distinguish data classes or concepts. Artificial Neural Networks, Support
Vector Machines, Decision Trees and Naive Bayes are the mostly used classifies in this technique

in fraud detection.

2.3.2. Clustering

Another common data mining technique used in fraud detection is clustering. Clustering is used to
group similar objects where there is no clear idea about the class of the objects. The objects are
clustered such that intra cluster similarity is maximized and inter cluster similarity is minimized.
(Ghorbani and Farzai, 2018) explained that clustering facilitate taxonomy which organization of
objects into classes that group similar events together. Common clustering techniques in fraud

detection can be classified as K-mean, K-nearest neighbor and Self Organize Maps.
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2.3.3. Regression

Regression is another data mining technique that can be identified as a method of fraud detection.
This is a statistical technique which is used to explain the relationship between dependent variable
and independent variables. Since fraud detection can be identified as a binary classification

problem, logit regression is used most often in researches.

2.3.4. Outlier Detection

Outlier or anomaly detection is another data mining technique used in fraud detection. Objects that
have different behaviors from rest of the data are called outliers. According to the (Agyemang et
al., 2006), outlier mining is applied to identifying outliers from huge data repositories. In fraud
detection outlier may indicate fraudulent activity since it is different from rest of the population.
Many data mining algorithms try to minimize the influence the effect of outliers from the data,
however in fraud detection the main objective is to find the outliers which are the fraudulent

activities.
2.4. Summary of Published papers according to Data Mining Techniques

The articles analyzed are summarized into a table. These articles summarized based on the data

mining techniques used for the research.

Table 2.4-1 Summary of Research Articles

Title of Article Technique used Algorithm
Effect of Class Imbalanceness | Classification Support Vector Machine,
in Detecting Automobile Decision
Insurance Fraud(Subudhi and Tree and Multi Layer
Panigrahi, 2018) Perceptron
Fraud Detection in | Clustering
Automobile Insurance using a K-Means

Data Mining(Ghorbani and
Farzai, 2018)

Fraud Detection in Health | Classification and Clustering Decision Trees, Naive
Insurance  Claims  using Bayes, K means
Machine Learning Algorithms
(“Fraud Detection in Health
Insurance  Claims  using
Machine Learning
Algorithms,” 2020)
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Detecting Fraudulent Claims —
A Machine Learning
Approach(“Detecting
Fraudulent Claims - A
machine learning
approch.pdf,” n.d.)

Classification

Generalized Linear
Models (GLM), Gradient
Boosting Machines (GBM,
an

ensemble of decision trees)
and Neural Networks

Decision Support System Classification Genetic  support  vector
(DSS) for Fraud Detection in machines
Health Insurance Claims
Using Genetic Support Vector
Machines (GSVMs)(Sowah et
al., 2019)
Naive Classification Classification Naive Bayes
Approach for Insurance Fraud
Prediction (Batra and Kundra,
2019)
An Efficient Classification | Classification Cost-Sensitive Cosine
Model for Analyzing Skewed Similarity K-Nearest
Data to Detect Frauds in the Neighbor (CoSKNN), K-
Financial Sector modes Imbalance
(Makki, n.d.) Classification

Hybrid  Approach (K-

MICHA)

Research on Integrated
Learning Fraud Detection
Method Based on
Combination Classifier
Fusion

(THBagging)

(Gong et al., 2020)

Classification

tree hybrid bagging

Credit Card Fraud Detection
Using AdaBoost and Majority
Voting (Randhawa et al.,,
2018)

Classification, Regression

Naive Bayes, Decision
Tree, Random Forest, MLP
network, Feed-Forward
Neural Network, Linear
Regression, SVM

Auto-Insurance Fraud
Detection: A Behavioral
Feature Engineering
Approach (“AUTO-
INSURANCE FRAUD
DETECTION,” 2020)

Classification

Random Forest
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Extreme Gradient Boosting
Machine Learning Algorithm
For Safe Auto

Insurance Operations (Dhieb
etal., 2019)

Classification

Extreme Gradient Boosting
Algorithm

2.5.  Summary and Research Gap

This chapter provided an overview of the existing literatures on fraud detection research area. Also

it gives brief explation about different data mining techniques applied in the research domain.

Through this litreture review analysis it was learned that there are many data mining techniques

like classification, regression, clustering and outlier detections were applied in fraud detection

domain with different algorithms. Some new data mining algorithms like XGBoost are applied in

fraud detection domain to optimize the fraud detection rate. However, by analyzing these

literatures it was identified that lack of data which are tag as fraud claims is the biggest challenge

when applying machine learning techniques in this domain. Some researchers have suggested data

imbalance methods to solve this problem, however addressing this insufficient data problem will

be the main research gap in fraud detection domain.
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3. RESEARCH METHODOLOGY

This chapter will present the approaches and techniques that were used to the proposed insurance
fraud detection model. The research methodology is divided into five sections. First the data
preparation is explained with data set description and preprocessing methods used. Then the Fraud
claim detection process will be explained. After that a brief description of data mining algorithms
which will be used in the research will be explained. Then the software tools that will be used in
the research will be explained. Finally, The chapter ends with the model evaluation methods;

which evaluate and measure the model performance will be explained.

3.1. Dataset Description

In this research the dataset was taken from Sri Lanka Insurance motor claims which comprise 19
features and one target variable. It consists of 30100 records in which 26987 are normal clams and
3113 are fraud claims.

Table 3.1-1 Data summary

Paid Claims 26,986

Fraud Claims 3,112

In the data set the attributes can be divided into three categories; personal attributes, Policy
Attributes and Claim Characteristics. Following table shows the description of attributes.
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Table 3.1-2 Attribute Description

Attribute Name

Type

ACCIDENT_TYPPE

Claim Characteristic

TOTAL_LOST

Claim Characteristic

ACCIDENT_MONTH

Policy Characteristic

ACCIDENT_WEEK

Claim Characteristic

ACCIDENT_WEEK_DAY

Claim Characteristic

ACCIDENT_TIME

Claim Characteristic

CLAIM_MONTH

Claim Characteristic

CLAIM_WEEK Claim Characteristic
CLAIM_WEEK_DAY Claim Characteristic
CLAIM_TIME Claim Characteristic
GAP_IN_DAYS

Claim Characteristic

ESTIMATED_AMOUNT

Claim Characteristic

VEHICLE_CATEGORY

Policy Characteristic

PURPOSE_OF USE

Policy Characteristic

MAKE Policy Characteristic
SUM_INSURED Policy Characteristic
PREMIUM Policy Characteristic
STATUS

Policy Characteristic

MONTHS_AS_CUSTOMER

Policy Characteristic

FRAUD_OR_NOT

Class Variable
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3.2.  Motor Fraud Claim Detection Process

When a claim is informed, Claim Department assessed and labeled the claims as normal or
rejected. Reasons for rejected claims could be not paid premiums, expire policies, suspicious
policies or fraud etc... If the claim is a fraud claim, then it will be labeled as ‘Not Consistency’.

However, these rejected and fraud claims are small in number with compared to all the claim

records, due to complexity nature of detecting them. The claim process is summarized as follows.

Other

Not Consistency Delay in Claim Form Expired policies

Figure 3.2-1 SLIC Claim Process
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3.2.1. Motor Fraud Claim Detection Process as a classification problem

Fraud detection process is a the task of identifying a motor claim as a “FRAUD” or “NOT
FRAUD” after comparing it with the already stored similar fraud claims and not fraud claims and
in advance, if the detected claim is a fraud , informing relevant stake holders .

Actually fraud detection is a classification task performed specifically on claims. If we can identify
attributes which are more related to the class variable, some of classification algorithms can be
applied to classify the claim as ‘fraud’ or ‘not fraud’. Following diagram explain the high level

procedure in identifying a fraud claim.

Selection

MOTOR CLAIM |:> Pre Processing I:> Attribute

. Classifier
Claim Database

Classified as “FRAUD” or “NOT”

Figure 3.2-2 High-level architecture for identify a fraud claim
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3.3. Research Process

Raw data will be cleansed and anonymized by applying techniques with categorization and
generalization. After transforming raw data into features, feature selection methods will be applied to
select main features that affect to fraud claims. Also domain knowledge is critical in identify what are
the features that might be relevant for detecting fraud claims and it is assumed that the researcher’s
working experience at Sri Lanka Insurance Corporation as an employee will be helpful to gain thorough
domain knowledge in this area and applied it in several stages.

Motor claim Fraud detection can be viewed as a classification problem. Random Forest, XGBoost and
Acrtificial Neural Network classifiers will be used to detect claims are fraudulent or not and categorized
them into different types of fraud. These algorithms will be analyzed and evaluated by dividing the
data set into training, validating and testing. However, the objective is to propose a machine learning
solution with high accuracy. Therefore model performances will be evaluated and compared by
applying some critical evaluation criteria of recall, precision, ROC curve and training time. Finaly it
is assumed to propose the best model among them using these techniques. The high level architecture

is shown in the following diagram.
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3.4. Fraud Classifier Models

Artificial Neural Network, Random Forest and XGBoost algorithms will be used as classifiers in

this research. A brief description about these classifiers and how it used in fraud detection will be

explained in this section.

3.4.1. Random Forest Classifier

In order to apply random forest classifier, first it should be mentioned about the decision tree

classifier. Decision Tree is a predictive model that is using a set of binary rules to predict a target

value. It can be also used for regression purposes as classification purposes. Decision trees are

relying on partitioning the feature vector over class variable for each feature set. This can be

constructed using a tree structure, which the algorithm takes the form of a tree. Followings are

main components of a decision tree.
e Decision node : single attribute which decide by the algorithm
e Leaf Node : target attribute value
e Edge : Split the feature

e Path : Explainthe final decision

B Root

. Internal node

Figure 3.4-1 Decision Tree Architecture
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In decision tree, different algorithms are used to determine the best splitting feature at a node. ID3
(Iterative Dichotomiser 3) is a simple and efficient algorithm which is used by the decision tree to
make the split. It uses two concepts which is Entropy and Information Gain when creating the
decision tree from top to bottom. Entropy can be viewed as the measure of uncertainty where
higher the entropy, higher the uncertainty. Entropy is used by Information gain to findout what

attribute is the best to split at a node.

The main advantage in Decision tree is its easiness in interpreting the decision rules. Another
advantage is its robustness with regard to outliers in training data. However, its main disadvantage
is overfitting the data which will give unexpected results at the end. Following figure shows a data

set and its constructed decision tree using 1D3 algorithm.

Day |Outlook| Temp. | Humid. | Wind | Play Tennis

D1 Sunny Hot High Weak |No
D2 Sunny Hot High Strong [No
D3 Overcast [Hot High Weak [Yes

D4 Rain __ |Mild _ |High  [Weak |Yes High
D5 Rain Cool Normal [Weak [Yes
D6 Rain Cool Normal |Strong [No

D7 Overcast |Cool Normal [Weak |Yes
D8 sunny _ Mild___ |High __ [Weak [No Outlook Outlook
D9 Sunny Cool Normal [Weak [Yes

TN

D10 Rain Mild Normal |Strong |Yes / mm
D11 Sunny  |Mild Normal |Strong [Yes rd g

D12 Overcast Mild High Strong [Yes - " )

D13 Overcast |Hot Normal |[Weak [Yes A

D14 Rain Mild High Strong [No - \m m R Cool
D15 Sunny Cool Normal |Weak |Yes \ - =

D16 Rain Mild Normal |[Strong [Yes
D17 Sunny Mild Normal |Strong |Yes 7~ )

D18 Overcast |Mild High Strong |Yes M
D19 Overcast [Hot Normal [Weak [Yes

D20 Rain Mild High Strong |No

Figure 3.4-2 Decision Tree Example

By considering the limitations in decision trees, an extension of the decision trees is considered
for classification. Random forest can be considered as such kind of an extension or improvement
of the decision trees. Random forest is an ensemble model which combines the results of different
decision trees to predict the final classification. Random forest also a Bootstrap Aggregating
method, also known as bagging, which can be classified as a combination of homogeneous weak
learner models that learns independently in parallel and then combined for determining the model
average. Random forest models mitigate the overfitting problem encountered in decision trees by

building multiple decision trees and combining them such that final performance of the model is
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improved. Random forest uses boostraping sampling technique which will select training data for

each decision tree with replacement technique. So random forest will utilize boostraping method

by each decision contains different subsets. Also random forest choses only certain number of

features to train each decision tree.

Once the outputs of each decision tree is collected, the output of each decision tree is aggregated

to for getting the final result using the voting method. Therefore, this method can be classified as

a bagging method since it uses majority voting technique to select the final result. Since Random

forest uses multiple decision trees to predict the results and it uses different subset of data to trained

the model it ensures generalization which improve the efficiency of the model. Following figure

shows building of the random forest from the given dataset.

Random Subset Random Subset Random Subset
Treel Tree2 Treed
> 4 » 4
L | oA ¥ o oA
oA

Figure 3.4-3 Random Forest Architecture

All Trees
Predictions

Tree1
Tree2 :

Tree3d

Random Forest
Predicts
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3.4.2. XGBoost Classifier

Boosting Algorithm

Boosting is also an ensemble learning method which build a strong classifier from multiple weak
classifiers in a model. However, this is a sequential learning model where first it builds a model
from training data and based on that model it builds another model which tries to reduce the errors
present in first model. Every new training data sample contains the elements that were
misclassified by previous model. In this process, for any incorrect misclassified samples are
assigned by larger weights and correctly classified samples are assigned by lower weights.
Boosting will not change the previous model and only corrects the next model by learning from
its mistakes. Boosting is greedy algorithm, therefore it is better to set a stopping criteria like early
stopping or depth of tree in decision tree models to prevent overfitting of data. Boosting algorithms
differs from the bagging algorithms such that boosting algorithms controls both variance and bias
in a model whereas bagging algorithms only controls variance in the model. Following figure

illustrates a boosting algorithm process.

@ - Instance O-Misclassified instances Q,“m‘—Test using Test data Oa-Test using Train data r - Updates dataset with new weights
Train set
Random ° Random O Random Random
[} 1 @
: o ® .O ® e o 6} ® ..
P ) % ® ORPY e o
o 0 .O 0o o £\ - o o
o o Oe ° ep®
L) Yoo .QO g > Qo0 O ® v 0 -
Y v o _° [0o0] [(R%e © *°o| [oB°
® 0 0 ®® ° ° o © ® o . (G2
e © P e~ o 00 ® o O e [) ® 0
o0 ©
[ K J 4 ‘
Test set y p v r \ 4 p A
Wrong Wrong Wrong

Predictions — Predictions — Predictions

Prediction Prediction

| Aggregate all predictions |

Final Prediction

Figure 3.4-5 Boosting Algorithm Process
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Adaptive Boosting

There are two main boosting algorithms applied in machine learning models which are

Adaptive(Ada) Boosting and gradient boosting. In ada boosting it used multiple iterations to build

a strong learner. It iteratively adds weak learners and builds a strong learner. During each iteration

phase, a weak learner is added to the current model, and the weighting vector is adjusted to

misclassified models in previous iterations. The final model has higher accuracy than the previous

weak classifiers. Following figure illustrates the ada boosting formula and its procedure.

Fi(x) = Fi_1(x) + fi(x)

F(i) is current model, F(i-1) is previous model and f(i) represents weak

model

Equation 3.4-1 Adaptive Boosting Formula

Iteration 1

Iteration 2

Iteration 3

Figure 3.4-6 Ada Boosting Process

Final Classifier/Strong
classifier
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Gradient Boosting

Gradient boosting can be called as a generalization of AdaBoost. The main difference in gradient
boosting is that it includes a loss function such that main objective of the algorithm is to minimize
the loss function. It satisfies the objective by adding weak learners using a technique called
gradient descent optimization. Since it uses a differentiable loss functions for minimizing the error,
it can be considered not only for binary classification problems but also for multi class

classification and regression and many more.

Gradient Boosting has three main attributes :
e Weak Learner : Which classify the data. These are mostly random trees however other
classifiers can be used.
e Loss Function : Estimate how best is the model for given data.
e Additive model : Sequential and iterative process for adding decision trees one for each

iteration. Each iteration should reduce the loss function.

Gradient boosting stops splitting the node when it found a negative loss. Therefore, it can overfit
a dataset quickly and optimization methods are used to improve the algorithm by reducing

overfitting.

XGBoosting

Extreme Gradient Boosting, is a supervised learning method which optimized the gradient
boosting algorithm to be highly effective and efficient. It is an optimization technique for gradient
boosting which was proposed by Chen and Guestrin., Decision trees are used as the weak learners
and it allows parallel processing which reduce overfitting and faster than the standard gradient
boosting. Main difference in Gradient boosting and XGBoost is that xgboost splits the trees up to
the maximum depth which specified. Also XGBoost has a cross validation feature, therefore it is
easier to identify boosting count at each run. However, several parameters need tunning to get the

best results with xgboost algorithm.
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XGBoost also has four main features:

Gradient Tree Boosting: The model trains as additive sequence where it optimized the model.
Regularized Learning: Selecting a model using predictive functions by reducing over-fitting.
Shrinkage: To further prevent overfitting shrinkage ecan be used. The Shrinkage technique is
introduced by Friedman in which it scales newly added weights by a factor 1 after each step of
tree boosting. Shrinkage will reduce the influence of each added tree and leaves space for another
tree to improve the prediction.

Column Subsampling: Column subsampling prevents overfitting even more. It also speeds up the

computations of the parallel algorithm.

XGBoost algorithm Parallelizes the tree construction using all of CPU cores of the machine during
training. Also XGBoost is designed to make optimal use of hardware of the machine by allocating
internal buffers in each thread, where the gradient statistics can be stored. The algorithm is
adjustable to use distributed Computing for training very large datasets using a cluster of machines.
In tree learning, the most time-consuming part is sorting the data. XGBoost uses column blocks in
compressed format to reduce the cost of sorting. By considering these performance improvemts,

XGBoost can be considered as one of the fastest machine learning algorithm at present.\

3.4.3. Artificial Neural Network Classifier

An Artificial Neural Network (ANN) is an information processing network that the architecture is
inspired by biological nervous systems. Neural Networks are mostly used because its ability to
learn quickly. They figure out how to perform their functions by their own. It determines their
functions based by inputs. It also has the ability to generalize to the situation. Precisely, it has the
ability to predict outputs for inputs that has not been taught how to deal with.
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A Neural Network has three Layers of units.

Input layer - Raw information that input into Neural Network
Hidden Layers - Connect input and output layers
Output layer - Outputs the predictions

Fraud Detection and Neural Network

A fraud detection system depends on the selected classifier of the system. Actually Neural
Network can be used as a classifier in fraud detection system. It can train to identify a given face
as ‘fraud’ or ‘not’. Some attributes from the dataset can be given to the system and it can be trained

to recognize a claim for the given features.

For a given dataset, the first step is to select a set of features or attributes from the universe of
features that can represent the claim. This feature vector then use as the input vector of the Neural
Network. The Network will be trained such that, if the Network gets another feature vector which
is close to the current vector it will recognize it and output the result ‘1’ otherwise ‘0°. This is a

supervised learning process and back propagation technique can be used in hidden layers.

1% Claim
2" Claim
_> 0
3 Claim Feature Neural
L —_— —

Vector Network - 1
K™ Claim
M®™ Claim

Figure 3.4-8 Fraud Detection in ANN
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When a new claim is considered for classification, the claim is mapped with features. Then the
claim is assign to a feature vector. Then this feature vector is fed into the trained Neural Network.
Neural Network compares the new feature vector with already existing feature vectors. If it

successfully identified, then it outputs ‘1°. Otherwise outputs ‘0’. Following Figure illustrates this

process.

Unknown

Claim

!

- -

(Hl]

% Feature V(M
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) . Claim
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Uy

|
Multilayer Neuraﬂ\lm
;
!

Recognized

as the Fraud or not

Figure 3.4-9 Unknown Claim Classification by ANN
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3.5. Imbalance Problem

Imbalance dataset is a dataset that target classes of the dataset is distributed unequally. When
applying machine learning algorithms for imbalance data set, problems can be created due to
unequal of target class. For example, if accuracy is used when evaluating the model, it will give
much high percentage value since the model will biased towards the majority class of the target
variable. As mentioned in the data description section earlier, dataset for this research is also highly
imbalance. Therefore, it must create a balance dataset from this imbalance data to apply the
machine learning algorithms. There are few techniques used to address the imbalance problem that
are used in practice and they will create an equalize representation of all classes. Following figure

shows the imbalance data set and balance data set after applying a data balancing technique.

Target Class Before and After Over Sampling
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15000 15000
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Figure 3.5-1 Target class before and after Data Balancing

3.5.1. Random Undersampling for balancing data

Undersampling technique removes data from the majority class to reduce the overrepresented gap.
It randomly removes samples (with or without replacement) until the data in the majority class
becomes close to the number of observations in the minority class. However, major disadvantage
of undersampling is that it will be lost significant chunk of the data, which contains valuable
information andas a result, not get significant results.
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3.5.2. Random Oversampling for balancing data
Oversampling can be classified as resampling of the minority class data to equal the of majority
data. Random oversampling makes multiple copies of minority class and increasing the number of

total observations for the minority class.

3.5.3. Creating Synthetic data for balancing (SMOTE)

The problem with repeating the data in random oversampling is that it does not provide any extra
information. However, by creating synthetic data using an algorithm, it will increase the minority
class data and also increase the information about the data. One such technique which is used in
practice is the SMOTE (Synthetic Minority Oversampling technique). This is also a oversampling
technique and it will create synthetic data points for the minority class. For this reseach SMOTE

technique will be applied for balancing the data.

3.6. Performance Evaluation

When building a machine learning model, first the model is trained using the training data then it
tests with the testing data to evaluate model accuracy. However, not only that is enough and it is
important to check the generalization capability of the model. Some evaluation metrics are
available to check the capability but these evaluation metrics are depended on the type of the
problem, for example whether it is a classification or clustering problem or whether it is a balance
or imbalance problem. For this research, it will only consider the evaluation criteria’s related to
the classification problem since the fraud claim detection was identified as a classification

problem.

3.6.1. Confusion matrix

The confusion matrix is constructed using statistics of True Positive-TP, True Negative-TN, False
Positive-FP and False Negative-FN. These statistics are calculated using the of actual and
predicted values. Confusion matrix is the most commonly used evaluation criteria in machine
learning since it is easiness and it can be used to calculate other evaluation criteria’s like accuracy,

recall, precision, etc. This is an 2x2 matrix for binary classification problem as shown in figure.
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PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

POSITIVE (1) TP FN

NEGATIVE (0) FP TN

ACTUAL VALUES

Figure 3.6-1 Confusion Matrix

True Positive (TP) - Actual output is positive and the predicted output is also positive.
False Negative (FN) — Actual output is positive but the predicted output is negative.
False Positive (FP) - Actual output is negative but the predicted output is positive.

True Negative (TN) - Actual output is negative and the predicted output is also negative.

3.6.2. Recall

TP
TP +FN
Equation 3.6-1 Recall equation

Recall =

Recall is the percentage of true positives count to the actual positive count. Actually, recall is how

many of true positives recalled from the true positive count. Recall also called as sensitivity.

For example, consider the claim count of 100 where it contains 20 fraud claims. Suppose a model

identifies 15 fraud claims, only 12 claims were true fraud claims (TP), while rest were normal

claims (FP). Therefore, recall is 12/20.
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3.6.3. Precision
TP
TP 1 FP
Equation 3.6-2 Precision Equation

Precision =

Precision is the fraction of true positive count over the true positives and false positives, which is
shown in equation. In simple terms, precision is how many of the found positive count were true

positives. In the previous example of identifying fraud claims, the precision value is 12/15.

3.6.4. F1 Score

2 * Precision * Recall
F1 score =

Precision + Recall

Equation 3.6-3 F1 Score equation

F1 Score is the harmonic mean of the recall and precision. Its values ranged from 0 to 1, where 0

is considered as weak, and 1 is considered as best.

3.6.5. Area Under Receiver Operating Characteristic curve (ROC)

Area Under Receiver Operating Characteristic curve or ROC is used as most common evaluation
criteria in machine learning. It gives how good a model performs when used at different probability
values. In classification problems default probability threshold is set to 0.5. ROC is a plot between
True positive rate, also called as sensitivity and False Positive Rate. False Positive Rate which can
be calculated as (1-Specificity).

S itivity = e
ensitivity = oo
orocificity — TN
pecificity = TN £ FP

Equation 3.6-4 Sensitivity and Specificity Equations
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Sensitivity and specificity are inversely related such that when decreasing the probability threshold
sensitivity increases and specificity decreases and when increase the threshold, sensitivity
decreases while specificity increases. Area under the curve is calculated from ROC, which is the
probability that a model will rank a randomly chosen positive instance higher than a randomly
chosen negative. Figure shows example of a ROC curve where the orange curve shows the ROC
of the model in which AUC is 0.92 and blue dotted line shows the ROC of a random model in
which AUC is 0.5.
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Figure 3.6-2 ROC Example

3.6.6. Precision Recall Curve

In unbalanced classification problem Precision Recall Curve is more important than ROC curve.
It is based on precision and recall criteria and the plot shows the values of precision and recall at
different probability values. The area under curve can be used to evaluate the performance same

as ROC curve however beat for imbalance problem.
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2-class Precision-Recall curve: AUC=0.78
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Figure 3.6-3 PR Curve Example

3.6.7. Cross Validation

Cross validation is a method to further evaluate a machine learning model for given dataset. The
technique has a parameter K, which identify number of folds where given dataset is to be split into.
Therefore, it is mostly called K-Fold-Cross-Validation since it is used k folds to split the data.
When building a machine learning problem, first the data set is split into a training and a testing
dataset. However, in K Fold CV, the training set is further split into K number of subsets or folds.
Then iteratively the algorithm fit the model K times, each time training the data on K-1 of the folds
and evaluating on the Kth fold which is called the validation dataset.

As an example, when fitting a model with K =5, in first iteration, the training dataset is divide into
5 folds and choose the first fold as a test dataset and remaining folds as a training set. Then train
the model using the last four folds and evaluate on the first The second time the model will be
trained on the first, third, fourth and fifth fold and evaluate on the second fold. The process is
repeated for 3 more times, each time evaluating for a different fold. At the end of training,
performance is averaged for each fold and decide a final validation metric for the model. Following

figure shows how to apply the 5-fold cross validation for a given dataset.
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Figure 3.6-4 Cross validation Example

Experiment 5 |

3.7.  Hyperparameter Tuning

There are two kind of parameters can be found when training a machine learning model, which are
model parameters and hyperparameters. A model parameter can be classified as a configuration
variable that is internal to the model and its value can be estimated from data. They are required
by the model when doing predictions and often saved as part of the learned model. Some examples
of model parameters can be shown as weights of neural networks, support vectors in a SVM model
etc. Hyperparameter is a configuration that is external to the model where its value cannot be
estimated from the training data. Hyperparameters are oftenly used to help estimate the model
parameters and are specified manually by the researcher. Since they are manually set, it is very
important to be rightly tuned the hyperparameters to get the best performance from the model.

Hyperparameter tuning relies on experimental results rather than theoretical assigning, and
therefore the best method to get the optimal settings is to try many different combinations of
parameters and evaluate the performance of each model. However, evaluating each model only on
the training dataset can lead to model overfitting, which is a model perform well for training set
but perform poorly for testing data. Apparently an overfit model may look good for training set
but may useless for real applications. Cross validation technique which discussed previously, can
be applied to tuning the hyperparameters through optimizing for non-overfitting the model. In this
research Random Forest and XGBoost algorithms are having hyperparameters and they will be

tuned using cross validation method.

o1




In hyperparameter tuning, many iterations is performed on the entire K-Fold CV, each time using
different model combinations. Then all of the models will be compared, select the best one, train
it on the full training set, and then evaluate on the testing set. This is a complex process where
each time it needs to assess a different set of hyperparameters by splitting the training data into K
fold and train and evaluate K times. If there are 5 sets of hyperparameters and are using 10 Fold
CV, that represents 50 training iterations. There are two methods which are Grid Search and

Random Search that can be used to simply this process in Python programming environment.

3.7.1. Grid Search for Cross Validation
In grid search method, first need to prepare a list of values of hyperparameters and then search the
best combination based on cross validation score. In grid search only the prelist will be considered

for the search. Grid search will give the best combination but it takes time.

3.7.2. Random Search for Cross Validation

In random search method, it tries random number of combinations from range of possible values.
This is good for testing wide range of values since it reaches a good combination very fast, but
have a disadvantage that it does not guarantee to give the best combination since it selects the
combination randomly. For this research random Search for Cross Validation will be used since

it’s quicly approach to a good combination.

3.7.3. Hyperparameters tuning in Random Forest

First it is better to identify the hyperparameters used in Random Forest classifier in Python
Environment. Following figure shows the available hyperparameters.
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In [59]: from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(random state = 42)
from pprint import pprint

print(’Parameters currently in use:\n")
pprint(rf.get_params())

Parameters currently in use:

{"bootstrap': True,
'ccp_alpha': 0.0,

"criterion': 'mse’,
'max_depth’: None,
'max_features': ‘auto’,

'max_leaf nodes': None,
'max_samples': None,
‘min_impurity_decrease’': 0.0,
‘'min_impurity split': None,
‘min_samples leaf': 1,
‘min_samples_split': 2,
‘'min_weight fraction_leaf': o.@,
'n_estimators': 1ee,
'n_jobs': None,

'oob_score': False,
'random_state': 42,
'verbose': @,

‘'warm_start': False}

Figure 3.7-1 Random Forest Hyperparameters

However, for this research hyperparameter tuning is performed only for following
hyperparameters with 3-fold cross validation since they are considered as most important

parameters for the model.

e n_estimators - Number of trees in the forest
e max_features - Maximum number of features considered for splitting a node

e max_depth - Maximum number of levels in each decision tree

3.7.4. Hyperparameters Tuning in XGBoost

Following are the hyperparameters used in the XGBoost classifier in Python environment.
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In [19]: from xgboost import XGBClassifier
xgb = XGBClassifier(random_state = 42)
from pprint impert pprint

|print('PaParetEPs currently in use:\n')
pprint (xgb.get_params())

Parameters currently in use:

{'base_score': None,
'booster': None,
'colsample_bylevel': None,
'colsample_bynode’: None,
'colsample_bytree': MNone,
'gamma': None,

'gpu_id': MNone,
'importance_type': "gain’,
'interaction_constraints': None,
'learning_rate': MNone,
'max_delta_step’: None,
"max_depth': None,
'min_child_weight': MNone,
'missing': nan,
'monotone_constraints': None,
'n_estimators': 108,
'n_jobs': MNone,

"num_parallel tree': None,
'objective': 'binary:logistic’,
'random_state': 42,
'reg_alpha': None,
'reg_lambda': MNone,
'scale_pos_weight': Mone,
'subsample': None,
"tree_method': None,
'use_label encoder': True,
'validate_parameters': None,
'verbosity': None}

Figure 3.7-2 XGBoost Hyperparameters

For this research, hyperparameter tuning is performed only for following hyperparameters with 3-

fold cross validation since they are considered as most important parameters for the model.

e learning_rate - Step size used to prevent overfitting. Range is [0,1].

e max_depth - Maximum depth of the tree.

e min_child_weight - Minimum sum of weights of all observations required in a child. It

will also control the overfitting.

e gamma - Minimum loss reduction which required to make a split at a node.

e colsample bytree - Fraction of columns to be randomly sampled for each tree.
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3.8.  Programming Environment

Python Programming environment is used to implement the methods and processes which
discussed earlier in this chapter.
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4. IMPLEMENTATION AND RESULTS

This chapter will present the implementation of the methods discussed in the methodology chapter
with data preparation, feature selection, model building and evaluation the models. The
implementation and results chapter is divided into five sections. First the data preparation is
explained with missing value imputation and encoding used to encode the string variables. Then
the feature selection implementation will be carried out. After that model building with random
forest, XGBoost and Artifitial Neural Network will be discussed. Finally, the chapter ends with

the model evaluation by comparing the built model metrics.

4.1. Data Description

Dataset is the integral part of this research since it uses machine algorithms to build the models.
The dataset which was mentioned in the methodology chapter, is uploaded to the python
environment for further analysis. The figure shows the snapshot of the dataset in python
environment.

In [2]; | import pandas as pd

In [15]: data = pd.read csv("Final Data set v3.csv")

In [16]: data.head()

Out[16]: ACCIDENT_TYPPE TOTAL_LOST ACCIDENT_MONTH ACCIDENT_WEEK ACCIDENT_WEEK_DAY ACCIDENT_TIME CLAIM_MONTH CLAIM_WEEK CLAIM_WE
0 ACCIDENT NORMAL 5 18 2 Afternoon 8 34
1 ACCIDENT NORMAL 3 1 3 Early Morning 4 17
2 ACCIDENT NORMAL 10 42 4 Night 1 45
3 ACCIDENT NORMAL 9 ) 3 Morning 9 28
4 ACCIDENT NORMAL 1 45 4 Late Night 1 4

Figure 4.1-1 Dataset snapshot

The dataset contains 30098 motor claim records out of which only 3112 are fraudulent claims.
Thefore the dataset is highly imbalanced as the positive class accounts for only 10.3% of the total

claims. The imbalanced class distribution can be visualized in a figure below.
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Figure 4.1-2 Pie Chart of distribution of Fraud claims

4.1.1. Missing values Imputation

Distribution of Frauds

=]

After uploading the dataset, each feature is examined for missing values. Since missing values can

misclassify the machine learning models, it is important to analyze missing data and correct them

using suitable imputation method. Following figure shows which features contained missing

values.

In [16]:

out[16]:

Figure 4.1-3 Attributes with Null values

data.isnull().any()

ACCIDENT _TYPPE
TOTAL_LOST
ACCIDENT_MONTH
ACCIDENT_WEEK
ACCIDENT_WEEK_DAY
ACCIDENT_TIME
CLAIM_MONTH
CLAIM_WEEK

CLAIM WEEK_DAY
CLAIM_TIME
GAP_IN_DAYS
ESTIMATED_AMOUNT
VEHICLE_CATEGORY
PURPOSE_OF_USE
MAKE

SUM_INSURED
PREMIUM

STATUS

MONTHS_AS CUSTOMER
FRAUD_OR_NOT
dtype: bool

False
True
False
False
False
True
False
False
False
False
False
False
True
True
False
True
True
True
True
False
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Missing values can be replaced with mode of the feature, ‘No Category’ type for string variables
and 0 for numerical values. Following missing value imputation methods applied for each feature

with missing values.

In [19]: # missing value treatment using fillna

data['TOTAL_LOST'].fillna(data[ 'TOTAL_LOST'].mode()[@], inplace = True)
data[ "ACCIDENT TIME'].fillna('NO', inplace = True)

data['cLAIM TIME'].fillna('NO', inplace = True)

data['VEHICLE CATEGORY'].fillna('NO', inplace = True)

data[ 'PURPOSE OF USE"].fillna('NO CATEGORY', inplace = True)

data[ "MAKE'].fillna( 'NO CATEGORY', inplace = True)

data[ 'SuM_INSURED'].fillna(®, inplace = True)
data[ "PREMIUM'].fillna(@, inplace = True)
data[ "STATUS"].fillna( 'NO CATEGORY', inplace
data[ "MONTHS_AS_CUSTOMER'].fillna(e, inplace

True)
True)

Figure 4.1-4 Missing value Imputation

After applying missing value imputation, the dataset is further checked for missing values and

confirmed no missing values are available in data.

In [20]: data.isnull().any()

Out[20]: ACCIDENT_TYPPE False
TOTAL_LOST False
ACCIDENT_MONTH False
ACCIDENT_WEEK False
ACCIDENT_WEEK_DAY False
ACCIDENT_TIME False
CLAIM_MONTH False
CLATM_WEEK False
CLATM_WEEK_DAY False
CLATM_TIME False
GAP_IN_DAYS False
ESTIMATED_AMOUNT False
VEHICLE_CATEGORY False
PURPOSE_OF _USE False
MAKE False
SUM_INSURED False
PREMIUM False
STATUS False
MONTHS_AS_CUSTOMER False
FRAUD_OR_NOT False
dtype: bool

Figure 4.1-5 Checking for null values
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4.1.2. String Variables Encoding

First it is important to recognized the string variables in the dataset. Following figure shows the

method applied in python to recognize the string variables.

In [22]: cat_data = data.select dtypes(include=[‘object’]).copy()

In [23]: cat_data.head()

t[23]:
o ACCIDENT_TYPPE TOTAL_LOST ACCIDENT_TIME CLAIM_TIME VEHICLE_CATEGORY PURPOSE_OF_USE MAKE STATUS
0 ACCIDENT NORMAL Afternoon Morning Dual Purpose Private TOYOTA Mr
1 ACCIDENT NORMAL Early Morning Evening Car Private Person  MITSUBISHI Mrs
2 ACCIDENT NORMAL Night Mormning Car Private Person MITSUBISHI Mrs
3 ACCIDENT NORMAL Morning Afterncon Car Private Person TOYQTA Prof
4 ACCIDENT NORMAL Late Night Afternoon Car Private Person TOYQTA Prof

Figure 4.1-6 String Variables

When building machine learning models, all features should be in numerical form. Therefore, it is
important to convert string variables into numerical variables by applying a suitable method.
Python has a method which convert categorical string variables into numerical type and it is

applied for the data set. Following figures shows the applied method and dataset after encoding.

In [25]: data.ACCIDENT_TYPPE = pd.Categorical(data.ACCIDENT TYPPE).codes
data.TOTAL_LOST = pd.Categorical(data.TOTAL_LOST).codes
data.ACCIDENT_TIME = pd.Categorical(data.ACCIDENT_TIME).codes
data.CLAIM TIME = pd.Categorical(data.CLAIM TIME).codes
data.VEHICLE_CATEGORY = pd.Categorical(data.VEHICLE_CATEGORY).codes
data.PURPOSE_OF_USE = pd.Categorical(data.PURPOSE_OF USE).codes
data.MAKE = pd.Categorical(data.MAKE).codes
data.STATUS = pd.Categorical(data.STATUS).codes

In [26]: data.head()

ozl ACCIDENT_TYPPE TOTAL_LOST ACCIDENT MONTH ACCIDENT_WEEK ACCIDENT_WEEK DAY ACCIDENT_TIME CLAIM_MONTH CLAIM_WEEK CLAIM_WE
0 0 0 5 18 2 v & #
1 0 0 3 1 3 ! + 7
2 0 0 10 42 4 g n 4
3 0 0 9 36 3 4 ¢ *
4 0 0 11 45 4 & i +

In [24]: data.shape

out[24]: (3e@98, 20)

Figure 4.1-7 Categorical Variable Encoding
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4.2. Feature Selection

Feature selection gives most important features which is relates with class variables. Model
effiency and run time can be improved by removing unwanted features from the dataset. K best

method and Heatmap is used to select the best features from the dataset.

4.2.1. Heatmap for Feature Selection
Heatmap plots the correlation between variables in a visualization graph. It highlights the

correlations in bold colour if it exists.

Heat Map for Correlations o

ACCIDENT_TYPPE
TOTAL_LOST
ACCIDENT_MONTH
ACCIDENT_WEEK
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GAP_IN_DAYS
ESTIMATED_AMOUNT
VEHICLE_CATEGORY
PURPOSE_OF_USE
MAKE

SUM_INSURED
PREMIUM

STATUS
MONTHS_AS_CUSTOMER
FRAUD _OR_NOT

MAKE
PREMIUM
STATUS

CLAIM_TIME

TOTAL_LOST
CLAIM_WEEK
GAP_IN_DAYS
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ACCIDENT_TIME
CLAIM_WEEK_DAY
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SUM_INSURED

FRAUD_OR_NOT
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ESTIMATED _AMOUNT
VEHICLE_CATEGORY
MONTHS_AS_CUSTOMER

Figure 4.2-1 Heatmap for Correlations

By looking at the Heatmap, it can be identified some features which are more important to the
class variable of Fraud. The features with dark colours can be identified as most important

variables for the class variables.
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4.2.2. Feature Selection using K Best Method

K best method is a famous method for selecting features for given dataset. It uses Chi square
statistics to compare select features from weak features. Following figure shows how the feature

selection using K best method was applied in python environment and finally selected features.

In [29]: best features = SelectkBest(score func = chi2, k =10)
model = best features.fit(x,y)
scores = pd.DataFrame(model.scores )

columns = pd.DataFrame(x.columns)
featurescores = pd.concat ([columns, scores], axis=1)

featurescores.columns = ["Features","Score"]
print(featurescores.nlargest(10, 'Score'))

Features Score
15 SUM_INSURED 4.38411le+@9
11 ESTIMATED AMOUNT 6.88883%e+07
16 PREMIUM 6.724303e+07
18 MONTHS_AS CUSTOMER 2.196569e+@4
12 VEHICLE CATEGORY 5.148025e+83
17 STATUS 2.360111e+83
5 ACCIDENT TIME 1.321434e+03
13 PURPOSE_OF_USE 1.209039%e+83
14 MAKE 4.595788e+02
10 GAP_IN DAYS 1.830553e+02

Figure 4.2-2 K Best Method for feature selection

Ten features were selected by applying K Best method and heatmap criteria’s. These features will
be used to construct machine learning models explained in the methodology chapter. Following
table shows the selected features.
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Table 4.2-1 Selected Features from feature selection

Variable Type
SUM_INSURED FEATURE
ESTIMATED_AMOUNT FEATURE
PREMIUM FEATURE
MONTHS_AS CUSTOMER | FEATURE
VEHICLE_CATEGORY FEATURE
STATUS FEATURE
ACCIDENT_TIME FEATURE
PURPOSE_OF_USE FEATURE
MAKE FEATURE
GAP_IN_DAYS FEATURE

FRAUD_OR_NOT

CLASS

4.3. Random Forest Models

Random Forest is the first classifier that will be used to build a machine learning model in this

research. Three different models which are Default model, Oversampling with SMOTE and

hyperparameter tuned model will be constructed and will be evaluated by using different

evaluation metrics.

4.3.1. Default Model - No Oversampling or hyperparameter Tuning

Table 4.3-1 Evaluation metrics for Random Forest Default Model

Class Precision Recall F1-Score Support
0 0.95 1 0.98 8074

1 0.98 0.59 0.73 956
Average 0.97 0.79 0.85 9030
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Figure 4.3-1 Confusion Matrix for Random Forest Default Model

First the model was built without any oversampling or hyperparameter tuning. The model perform

well for normal claims, however, the performance is not satisfactory when dealing with fraudulent

class, where the recall and f1 score were 0.59 and 0.73. This can be expected since the dataset is

imbalanced.
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Figure 4.3-2 ROC Curve and PR Curve for Random Forest Default Model
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ROC AUC (area under receiver operating characteristic curve) value is 0.88 and it gives an idea
that model is good, however PR AUC (area under precision recall curve) and value 0.76, which is

shown in figure is not very good. This can be expected since the dataset is imbalance.

4.3.2. Oversampling with SMOTE

The dataset is rearrange using the oversampling method SMOTE, which is used to solve the
imbalance problem in the dataset. The figure shows the before and after training and test dataset
distribution by applying SMOTE.

Training Dataset - Target Class Before and After Over Sampling

20000 20000
12911.0 188150 18864.0

17500 17500
15000 15000
12500 12500
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Figure 4.3-3 Training set - Target class before and after SMOTE

Test Dataset - Target Class Before and After Over Sampling
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Figure 4.3-4 Testing set - Target class before and after SMOTE
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Model Building after SMOTE Oversampling

After oversampling with SMOTE, random forest model was built and performance metrics are

evaluated.

Table 4.3-2 Evaluation Metrics for Random Forest with SMOTE

Class Precision Recall F1-Score Support
0 0.93 0.98 0.95 8070

1 0.97 0.92 0.95 8121
Average 0.95 0.95 0.95 16191

o TBIT -
- 7507 i
0 1

Figure 4.3-5 Confusion Matrix for Random Forest with SMOTE

Random Forest performed well in classifying the positive class, when oversampling with SMOTE

was used, which is shown in table. In fraud claim class, Recall and f1 scores are increased as 0.97,

0.92 and 0.95, which can be considered as improvement from previous.
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Figure shows a ROC curve in which ROC AUC is 0.99, which is very good and PR curve as shown
in figure, gives AUC 0.99 which also suggest model is good for after considering the imbalance

problem.

Cross Validation

from sklearn.model selection import cross val score

rfc cv_score cv=10,

cross _val score(model o, X, Y,

scoring='roc_ auc')

print ("Mean AUC Score - Random Forest: ", rfc cv score.mean())

The Random Forest model with SMOTE oversampling is further validate using cross validate
technique. For cross validating the model 10-fold cross validation is used and mean AUC score
was calculated and the execution code is shown above. Mean AUC is recorded as 0.86104 which

shows the random forest model is good.
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4.3.3. Hyperparameter Tuning

Three hyperparameters of the random forest model which are n_estimators, max_features and
max_depth was tuned using random search method. Following results received for tuned hyper

parameters.

Best values for the hyperparameters are:
e 'n_estimators': 1000
e 'max_features’ ‘auto’

e 'max_depth": 80

Random Forest Model for tuned hyperparameters

Table 4.3-3 Evaluation Metrics for Random Forest with Hyperparameter tuning

Class Precision Recall F1-Score Support
0 0.93 0.98 0.95 8070

1 0.98 0.92 0.95 8121
Average 0.95 0.95 0.95 16191

o Tae3 _
- T304 _
(1] 1

Figure 4.3-6 Confusion Matrix for Random Forest with Hyperparameter tuning

=== Mean AUC Score ===

Mean AUC Score - Random Forest:

0.8666534674781788




By looking at the evaluation criteria’s only precision is increased by 0.1 percent compared to the
previous model. Mean AUC calculated after 10-fold cross validation and it is also slightly

increased by 0.05comapred to previous model.

4.4, XGBoost models

XGBoost is the second classifier that will be used to build a machine learning model in this
research. Same as Random Forest, three different models which are Default model, Oversampling
with SMOTE and hyperparameter tuned model will be constructed and will be evaluated by using

different evaluation metrics.

4.4.1. Default Model - No Oversampling or hyperparameter Tuning

Table 4.4-1 Evaluation Metrics for XGBoost with Default model

Class Precision Recall F1-Score Support
0 0.96 1 0.98 8074

1 0.95 0.64 0.76 956
Average 0.96 0.82 0.87 9030
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Figure 4.4-1 Confusion Matrix for XGBoost with Default Model
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XGBoost model was built without any oversampling or hyperparameter tuning. Similar to Random

Forest model, XGBoost model performed well in classifying the normal claims, without

oversampling as can see with precision, recall and f1 scores of 0.96, 1 and 0.98 respectively as

shown in table. This can be expected since the data includes an imbalanced class. However similar

to random forest, the performance is not satisfactory when dealing with fraudulent class, where

the recall and f1 score were 0.64 and 0.76.
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Figure 4.4-2 ROC and PR Curve for XGBoost with Default Model
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ROC AUC value is 0.88 and it gives an idea that model is good, however PR AUC value is 0.77,

which is shown in figure is not very good. This can be expected since the dataset is imbalance.

4.4.2. Model Building with SMOTE Oversampling

SMOTE oversampling method was applied for the dataset and XGBoost model was built and

performance metrics are evaluated. The same combination of fraud claims and normal claims

which applied in Random Forest will be used in here also.
Table 4.4-2 Evaluation Metrics for XGBoost with SMOTE

Class Precision Recall F1-Score Support
0 0.90 0.97 0.93 8070
1 0.96 0.89 0.93 8121
Average 0.93 0.93 0.93 16191
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Figure 4.4-3 Confusion Matrix for XGBoost with SMOTE

Oversampling improves the XGBoost model and performed well in classifying the positive class,
which is shown in table with Recall and F1 score values are improved. In the case of the positive

class, the precision. Recall and f1 scores are increased as 0.96, 0.89 and 0.93.
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ROC curve: AUC=0.92 2-class Precision-Recall curve: AUC=0.94
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Figure 4.4-4 ROC and PR Curve for XGBoost with SMOTE

Figure shows a ROC curve in which ROC AUC is 0.92, which is good and PR curve as shown in
figure, gives AUC 0.94 which also suggest model is good for after considering the imbalance

problem.

Cross Validation

from sklearn.model selection import cross val score
from sklearn.metrics import classification report,

confusion matrix

xgb cv_score = cross val score (model o, X, v, cv=10,

scoring='roc_ auc')

print ("Mean AUC Score - XGBoost: ", xgb cv score.mean())

Mean AUC Score - XGBoost: 0.8691560119342394

The XGBoost model with SMOTE oversampling is further validate using cross validate technique.

For cross validating the model 10-fold cross validation is used and mean AUC score was calculated
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and the execution code is shown above. Mean AUC is recorded as 0.869156 which shows the

XGBoost model is improved.

4.4.3. Model with Hyperparameter Tuning

Following are the hyperparameter values of the XGBoost model which is tuned using random

search method.

Best values for the hyperparameters are:

¢ 'min child weight': 1,

e 'max depth':
e 'learning rate':
e 'gamma':

0.4,

15,

0.15,

e 'colsample bytree': 0.3

XGBoost Model with tuned hyperparameters

Table 4.4-3 Evaluation Metrics for SGBoost with Hyperpaarameter Tuning

Class Precision Recall F1-Score Support
0 0.91 0.98 0.94 8070

1 0.98 0.91 0.94 8121
Average 0.94 0.94 0.94 16191
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Figure 4.4-5 Confusion Matrix for SGBoost with Hyperpaarameter Tuning

=== Mean AUC Score ===
Mean AUC Score - Random Forest: 0.8684413010847196

Compared to the model without hyperparameter tuning, recall and F1 score are increased by 0.2
and 0.1 percent respectively. However, Mean AUC calculated after 10-fold cross validation and it

is not changed significantly compared to previous model.

4.4.4. Features Importance to the model by XGBoost

Apart from building an efficiency model, XGBoost algorithm also can be used to select features
that are more important to the model. XGBoost can be used to select features by counting the
number of times each feature is split on boosting trees in the model, and then visualizing the result
as a bar graph. 1 will visualize how many times they appear by ordering them in descending order.

Following figure shows the feature importance of final XGBoost model.
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Ordering of features by importance to the model learnt
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Figure 4.4-6 Important Features for the XGBoost model

45. Neural Network Models

Acrtificial Neural Network is the last classifier that will be used to build a machine learning model
in this research. Two different models which are Default model and Oversampling with SMOTE

will be constructed and will be evaluated by using different evaluation metrics.

45.1. Default Model - No Oversampling

A multilayer perceptron Neural Network model is used since this is a binary classification model
and multilayer perceptron work well for binary classification. ‘relu’ Activation function is used
for hidden layer since it is most common one for classification problems. Dense layers, which is

fully connected layer is used to connect layers.
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Table 4.5-1 Evaluation Metrics for Neural Network with Default model

Class

Precision

Recall

F1-Score

Support

0

0.95

0.99

0.97

8074

1

0.9

0.54

0.68

956

Average

0.92

0.77

0.82

9030

0

Figure 4.5-1 Confusion Matrix for Neural Network with Default Model
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Neural Network mdoel was built without any oversampling with 3 hidden layers. Similar to

Random Forest model and XGBoost model, Neural Network is performed well in classifying the

normal claims, without oversampling as can see with precision, recall and f1 scores of 0.95, 0.99

and 0.97 respectively as shown in table. However, the performance is not satisfactory when dealing

with fraudulent class, where the recall and f1 score were 0.54 and 0.68.
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Figure-4.5-2 ROC and PR Curve for Neural Network with Default Model
ROC AUC value is 0.77 and PR AUC value is 0.74, which is shown in figure is not very good.

4.5.2. Model Building with SMOTE Oversampling
SMOTE oversampling method was applied for the dataset and Neural Network model was built
and performance metrics are evaluated. The same combination of fraud claims and normal claims

which applied in Random Forest and XGBoost will be used in here also.

Table 4.5-2 Evaluation Metrics for Neural Network with SMOTE

Class Precision Recall F1-Score Support
0 0.68 1 0.81 8070

1 1 0.52 0.69 8121
Average 0.84 0.76 0.75 16191
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Figure 4.5-3 Confusion Matrix for Neural Network with SMOTE

Oversampling not improves the neural Network model and is not performed well in classifying the

positive class, which is shown in table and confusion matrix.

ROC curve: AUC=0.76
2-class Precision-Recall curve: AUC=0.88
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Figure 4.5-4 ROC and PR Curve for Neural Network with SMOTE

Figure shows a ROC curve in which ROC AUC is 0.76, and PR curve as shown in figure, gives

AUC 0.88. ROC Performance is not in the model compared to previous model.
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4.6. Result Summary

Following table summarizes fraud claim class prediction (Positive class) evaluation for each model
build in this research.

Figure 4.6-1 Overall Summary of models

e .. F1 PR Model
Classifier Method Precision | Recall Score ROC AUC | Time
Default 0.98 0.59 0.73 0.88 0.76 g'eSC
5.59
SMOTE 0.97 0.92 0.95 0.99 0.99 Sec
Random Forest
Hyperparameter |, oq 002 |095 |099 |0g9 |1332
Tuning Sec
Default 0.95 064 |076 |088 |077 ée?f
2.99
SMOTE 0.96 0.89 0.93 0.92 0.94 Sec
XGBoost
Hyperparameter |, gg 001 |094 |092 |o09a [405
Tuning Sec
Artificial Neural | Default 0.9 054 1068 | 077 |074 | 387
Network SMOTE 1 0.52 0.69 0.76 0.88 6.94

Table shows that Random forest model and XGBoost model perform well compared to Neural
Network model when considering all evaluation criterias. This Shows Ensemble models are well
suited in Motor claim fraud detection area since their ability to covert the weak learners to strong
learners.

Also When comparing the random forest model and there is not much different in each model, but
random forest model with tuned parameters are slightly ahead with rest of the models. Therefore,
it can be concluded that Random forest model with tuned hyperparameters and oversampled by
SMOTE is best model that can be used to implement a Fraud detection system.
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5. Conclusion and Recommendations

The thesis is constructed to predict whether the motor claim is fraud or not by using a machine
learning model. The data used for this research is from Sri Lanka Insurance motor claim unit and
it contained 26985 of normal claims and 3112 of fraud claims. Data cleansing and feature selection
methods such as K best method and Heatmap are used to develop the final dataset. The final dataset
presents 10 feature variables and 1 class variable. Three types of classifiers which are Random
Forest, XGBoost and Neural Network classifiers are used to build models from the dataset. First
the default models are constructed and evaluated. However, since the dataset is highly imbalanced,
Oversampling method called Synthetic Minority Oversampling Technique (SMOTE) is used to
remove the unbalanceness of the dataset. Random forest and XGBoost contains hyperpaters nd
therefore hyperparameters are also tuned using cross validation technique called random search.
Altogether, eight models are constructed and evaluated using precision, recall, F1score, ROC, PR
Score and Model run time.

It was found that Random forest and XGBoost models are perform better compared to neural
network model. There was not much difference between random forest models and XGBoost
models, however, Random forest model with tuned hyperparameters perform slightly better than
other models.

As a conclusion it can clearly see that ensemble models like random forest model and XGboost
model perfrom better in predicting motor fraud claims, which shows the importance of converting

weak learners to strong learners by ensembling techniques.

79




6. REFERENCES

Agyemang, M., Barker, K., Alhajj, R., 2006. A comprehensive survey of numeric and symbolic
outlier mining techniques. Intell Data Anal 10, 521-538. https://doi.org/10.3233/IDA-
2006-10604

AUTO-INSURANCE FRAUD DETECTION: A BEHAVIORAL FEATURE ENGINEERING
APPROACH, 2020. . J. Crit. Rev. 7. https://doi.org/10.31838/jcr.07.03.23

Background on:  Insurance  fraud | NI [WWW  Document], nd. URL
https://www.iii.org/article/background-on-insurance-fraud (accessed 9.13.21).

Batra, B., Kundra, S., 2019. Naive Classification Approach for Insurance Fraud Prediction 8, 5.

Detecting Fraudulent Claims - A machine learning approch.pdf, n.d.

Dhieb, N., Ghazzai, H., Besbes, H., Massoud, Y., 2019. Extreme Gradient Boosting Machine
Learning Algorithm For Safe Auto Insurance Operations, in: 2019 IEEE International
Conference on Vehicular Electronics and Safety (ICVES). Presented at the 2019 IEEE
International Conference on Vehicular Electronics and Safety (ICVES), IEEE, Cairo,
Egypt, pp. 1-5. https://doi.org/10.1109/ICVES.2019.8906396

Fraud - Oxford Reference [Www Document], n.d. URL
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095833457
(accessed 9.13.21).

Fraud Detection in Health Insurance Claims using Machine Learning Algorithms, 2020. . Int. J.
Recent Technol. Eng. 8, 2999-3004. https://doi.org/10.35940/ijrte.E6485.018520
Ghorbani, A., Farzai, S., 2018. Fraud Detection in Automobile Insurance using a Data Mining

Based Approach 8, 8.

Gong, J., Zhang, H., Du, W., 2020. Research on Integrated Learning Fraud Detection Method
Based on Combination Classifier Fusion (THBagging): A Case Study on the Foundational
Medical Insurance Dataset. Electronics 9, 894. https://doi.org/10.3390/electronics9060894

IBSL-AR-English-2018-Fullset.pdf, n.d.

Insurance fraud detection and cost to industry [WWW Document], n.d. URL https://www.atlas-
mag.net/en/article/insurance-fraud-detection-and-cost-to-industry (accessed 9.13.21).

Insurance Fraud [WWW Document], n.d. . Fed. Bur. Investig. URL https://www.fbi.gov/stats-
services/publications/insurance-fraud (accessed 9.13.21).

Makki, S., n.d. An Efficient Classification Model for Analyzing Skewed Data to Detect Frauds in
the Financial Sector 175.

Morley, N.J., Ball, L.J., Ormerod, T.C., n.d. How the detection of insurance fraud succeeds and
fails 19.

Ngai, EW.T., Hu, Y., Wong, Y.H., Chen, Y., Sun, X., 2011. The application of data mining
techniques in financial fraud detection: A classification framework and an academic review
of literature. Decis. Support Syst. 50, 559-569. https://doi.org/10.1016/.dss.2010.08.006

Phua, C., Lee, V., Smith, K., Gayler, R., n.d. A Comprehensive Survey of Data Mining-based
Fraud Detection Research 14.

Randhawa, K., Loo, C.K., Seera, M., Lim, C.P., Nandi, A.K., 2018. Credit Card Fraud Detection
Using AdaBoost and Majority Voting. IEEE Access 6, 14277-14284.
https://doi.org/10.1109/ACCESS.2018.2806420

S. Patil, K., 2018. A Survey on Machine Learning Techniques for Insurance Fraud Prediction.
HELIX 8, 4358-4363. https://doi.org/10.29042/2018-4358-4363

80




Sowah, R.A., Kuuboore, M., Ofoli, A., Kwofie, S., Asiedu, L., Koumadi, K.M., Apeadu, K.O.,
2019. Decision Support System (DSS) for Fraud Detection in Health Insurance Claims
Using Genetic Support Vector Machines (GSVMs). J. Eng. 2019, 1-109.
https://doi.org/10.1155/2019/1432597

Subudhi, S., Panigrahi, S., 2018. Effect of Class Imbalanceness in Detecting Automobile Insurance
Fraud, in: 2018 2nd International Conference on Data Science and Business Analytics
(ICDSBA). Presented at the 2018 2nd International Conference on Data Science and
Business Analytics (ICDSBA), IEEE, Changsha, pp. 528-531.
https://doi.org/10.1109/ICDSBA.2018.00104

81




7. Appendix

7.1. Data Preparation Codes and Results from Jupyter Notebook for Python

I In [4]: import pandas as pd
In [12]: data = pd.read_csv("Final Data set v3 New.csv")

In [13]: |data.head()

Out[13]: ACCIDENT_TYPPE TOTAL_LOST ACCIDENT MONTH ACCIDENT WEEK ACCIDENT WEEK DAY ACCIDENT TIME CLAIM_MONTH CLAIM WEEK CLAIM_WE
0 ACCIDENT NORMAL 5 18 2 Afternoon 8 34
1 ACCIDENT NORMAL 3 1 3 Early Moming 4 17
2 ACCIDENT NORMAL 10 42 4 Night 1 45
3 ACCIDENT NORMAL 9 36 3 Morning 9 38
4 ACCIDENT NORMAL n 46 4 Late Night 1 4

In [14]: data.shape

Out[14]: (30098, 28)

In [16]: data.isnull().any()

Out[16]: ACCIDENT_TYPPE False
TOTAL_LOST True
ACCIDENT_MONTH False
ACCIDENT_WEEK False
ACCIDENT_WEEK_DAY False
ACCIDENT_TIME True
CLATM_MONTH False
CLATM_WEEK False
CLATM_WEEK_DAY False
CLATM_TIME False
GAP_IN_DAYS False
ESTIMATED_AMOUNT False
VEHICLE_CATEGORY True
PURPOSE_OF_USE True
MAKE False
SUM_INSURED True
PREMIUM True
STATUS True
MONTHS_AS_CUSTOMER True
FRAUD OR_NOT False
dtype: bool

Tn [23]: data_new = data.copy()

In [24]: data_new.head()

Out[24]: ACCIDENT_TYPPE TOTAL_LOST ACCIDENT_MONTH ACCIDENT WEEK ACCIDENT WEEK_DAY ACCIDENT_TIME CLAIM_MONTH CLAIM WEEK CLAIM_WE
0 ACCIDENT NORMAL 5 18 2 Afternoon 8 34
1 ACCIDENT NORMAL 3 1 3 Early Moring 4 17
2 ACCIDENT NORMAL 10 12 4 Night 1 45
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In [19]:

In [20]:

Qut[28]:

In [28]:

# missing value treatment using fillna

data[ 'TOTAL_LOST'].fillna(data[ ' TOTAL_LOST'].mode()[@], inplace = True)
data[ 'ACCIDENT_TIME'].fillna('NO', inplace = True)

data[ 'CLAIM TIME'].fillna('NO", inplace = True)

data[ 'VEHICLE_CATEGORY'].fillna('NO', inplace = True)

data[ 'PURPOSE_OF_USE'].fillna('NO CATEGORY', inplace = True)

data[ "MAKE'].fillna('NO CATEGORY', inplace = True)

data[ 'SUM_INSURED'].fillna(@, inplace = True)
data[ "PREMIUM'].fillna(@, inplace = True)
data[ 'STATUS'].fillna('NO CATEGORY', inplace
data[ "MONTHS_AS CUSTOMER'].fillna(®, inplace

True)
True)

data.isnull().any()

ACCIDENT_TYPPE False
TOTAL_LOST False
ACCIDENT_MONTH False
ACCIDENT_WEEK False
ACCIDENT_WEEK_DAY False
ACCIDENT_TIME False
CLAIM_MONTH False
CLATM_WEEK False
CLAIM_WEEK_DAY False
CLATM_TIME False
GAP_IN_DAYS False
ESTIMATED_AMOUNT False
VEHICLE_CATEGORY False
PURPOSE_QF _USE False
MAKE False
SUM_INSURED False
PREMIUM False
STATUS False
MONTHS_AS_CUSTOMER False
FRAUD_OR_NOT False
dtype: bool

cat_data.head()

plt.style.use(’fivethirtyeight')
plt.rcParams['figure.figsize'] = (15, 8)

sns.countplot(data[ ' ACCIDENT_MONTH'])
plt.title('ACCIDENT MONTH', fontsize = 20)

plt.xticks(rotation = 9@)
plt.show()
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In [21]: |data_new2 = data.copy()

In [22]: cat_data = data.select_dtypes(include=['object']).copy()

In [23]: cat_data.head()

Out[23]: ACCIDENT TYPPE TOTAL LOST ACCIDENT TIME CLAIM TIME VEHICLE CATEGORY PURPOSE OF USE MAKE STATUS
0 ACCIDENT NORMAL Afternoon Morning Dual Purpose Private TOYOTA Mr
1 ACCIDENT NORMAL Early Morning Evening Car Private Person  MITSUBISHI Irs
2 ACCIDENT NORMAL Night Morning Car Private Person  MITSUBISHI Mrs
3 ACCIDENT NORMAL Morning Afternoon Car Private Person TOYOTA Prof
4 ACCIDENT NORMAL Late Night Afternoon Car Private Person TOYOTA Prof

Tn [25]: data.ACCIDENT_TYPPE = pd.Categorical(data.ACCIDENT_TYPPE).codes
data.TOTAL_LOST = pd.Categorical(data.TOTAL_LOST).codes
data.ACCIDENT_TIME = pd.Categorical(data.ACCIDENT_TIME).codes
data.CLATM_TTME = pd.Categorical(data.CLATM_TIME).codes
data.VEHTCLE_CATEGORY = pd.Categaorical (data.VEHTCLE_CATEGORY).codes
data.PURPOSE_OF_USE = pd.Categorical(data.PURPOSE_OF_USE).codes
data.MAKE = pd.Categorical (data.MAKE).codes
data.STATUS = pd.Categorical(data.STATUS). codes

In [26]: data.head()

Out[26]: ACCIDENT_TYPPE TOTAL_LOST ACCIDENT MONTH ACCIDENT WEEK ACCIDENT WEEK DAY ACCIDENT_TIME CLAIM_MONTH CLAIM WEEK CLAIM_WE
0 0 0 5 18 2 1] 8 34
1 0 0 3 1 3 1 4 17
2 0 0 10 42 4 6 " 45
3 0 0 9 36 3 4 9 38
4 0 0 11 46 4 3 1 4

In [24]: data.shape

Outl247: (30098. 20)

Tn [29]: best features = SelectKBest(score func = chi2, k =18)
model = best_features.fit(x,y)
scores = pd.DataFrame(model.scores_)

columns = pd.DataFrame(x.columns)

featurescores = pd.concat ([columns, scores], axis=1)
featurescores.columns = ["Features","Score"]
print(featurescores.nlargest(18, 'Score'))

Features Score
15 SUM_TINSURED 4.304111e+@9
11 ESTIMATED_AMOUNT 6.88883%e+07
16 PREMIUM 6.7243@3=+@7
18 MONTHS_AS_CUSTOMER 2.196569e+04
12 VEHICLE_CATEGORY 5.148025e+@3
17 STATUS  2.360111e+@3
5 ACCIDENT_TIME 1.321434e+@3
13 PURPOSE_OF_USE 1.209039e+03
14 MAKE 4.595788e+02
ie GAP_TN_DAYS 1.838553e+82

In [36]: plt.rcParams['figure.figsize'] = (15, 19)
sns.heatmap(data.corr(), cmap = 'copper')
plt.title('Heat Map for Correlations', fontsize = 28)
plt.show()




In [36]: plt.rcParams['figure.figsize'] = (15, 18)

sns.heatmap(data.corr(), cmap = 'copper')
plt.title('Heat Map for Correlstions’, fontsize = 20)
plt.show()

Heat Map for Correlations
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7.2.

Random Forest Model codes and Results

In [39]: impert warnings

warnings.filterwarnings('ignore’)

# for some basic operations
import numpy as np

import pandas as pd

import joypy

# for visualizations
import matplotlib.pyplot as plt

import seaborn as sns
from pandas import plotting
from pandas.plotting impert parallel coordinates

# for interactive visualizations

import plotly

import plotly.offline as py

from plotly.offline import init_notebook_mode, iplot
import plotly.graph_objs as go

from plotly import tools

init_notebook _mode(connected = True)

import plotly.figure_factory as ff

# for animated visualizations

from bubbly.bubbly import bubbleplot
import plotly_express as px

data = pd.read_csv("Final Data set v5.csv")

In [55]: from datetime import datetime

In [56]:

def timer(start_time= None):

if not start_time:
start_time = datetime.nou()
return start_time

elif start_time:
thour, temp_sec = divmod((datetime.now()-start_time).total_ seconds(), 3608)
tmin, tsec = divmod(temp_sec, 60)
print('\n Time taken: %i hours %i minutes and %s seconds.' % (thour, tmin, round(tsec,2)))

x data.iloc[:,0:10]
y = data.iloc[:, -1]
#y = df.iloc[:, -1]

from sklearn.model_selection impert train_test_split

# iam diving the data set into trainset and test set

from sklearn.ensemble import RandomForestClassifier

from imblearn.ensemble import BalancedRandomForestClassifier
from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from numpy import *

np.random.seed(123)
x_train,x_test,y train,y test=train_test split(x,y,test_size=@8.3)

start_time = timer(None)
model = RandomForestClassifier()

model.fit(x_train, y_train)

y_pred_rf = model.predict(x_test)

o e 7F = et predRe mrale(ee ez, =00
print("Training Accuracy: ", model.score(x_train, y train))
print('Testing Accuarcy: ', model.score(x_test, y test))
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% e @ e e mree
plt.rcParams[’figure.figsize'] = (5, 5)
cm = confusion_matrix(y_test, y_pred_rf)
sns.heatmap(cm, annot = True, cmap =
plt.show()

nter', fmt=".0f")

Training Accuracy: ©.9998576839491172
Testing Accuarcy: ©.9549280177187154

precision recall fl-score  support

o 9.95 1.09 @.98 8074

1 9.98 @.5% 8.73 956

accuracy 9.95 9030
macro avg 9.97 8.79 9.85 9030
weighted avg 0.96 .95 8.95 903@

Time taken: @ hours @ minutes and 3.8 seconds.

- 8000

1000

In [41]: from sklearn.metrics import average_precision_score, auc, roc_curve, precision_recall_curve

In [42]: from matplotlib import pyplot

ns_probs = [8 for _ in range(len(y_test))]
1r_probs = model.predict proba(x_test)
I s = T preEia, 0

# calculate roc curves
ns_fpr, ns_tpr, _ = roc_curve(y_test, ns_probs)
1r fpr, 1lr_tpr, _ = roc_curve(y_test, lr probs)

roc_auc_rf = auc(lr_fpr, lr_tpr)

# plot the roc curve for the model

pyplot.plot(ns_fpr, ns_tpr, linestyle='--')

pyplot.plot(lr_fpr, lr tpr, lw=l, label='{} curve (AUC = {:8.2f})'.format('RF',roc_auc_rf))

# axis labels

pyplot.xlabel('False Positive Rate')

pyplot.ylabel('True Positive Rate')

plt.title('ROC curve: AUC={8:6.2f}'.format(
roc_auc_rf))

# show the legend

pyplot.legend()

# show the plot

pyplot. show()
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In [43]: from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt
average_precision = average_precision score(y_test, y_score_rf)
print(‘Average precision-recall score RF: {}'.format{average_precision))
precision, recall, _ = precision_recall curve(y test, y_score_rf)

pr_auc_rf = auc{ recall,precision)

plt.

plt.

plt.
.ylabel( Precision”)
.ylim([e.a, 1.85])

plt.
plt.

plt
plt

step(recall, precision, celor="b", alpha=8.2,
where="post’)
fill between(recall, precision, step='post’', alpha=0.2,
color="b")

xlabel(*Recall"')

wlim([@.2, 1.2])
title("2-class Precision-Recall curve: AUC={2:0.2f]} .format(

pr_auc_rf))

2-class Precision-Recall curve: AUC=0.76

1 -\\

Precison
e
a

a2

In [57]: from sklearn.ensemble import RandomForestClassifier
from imblearn.over_sampling import SMOTE

np.random.seed(123)

¥_resample, y_resample = SMOTE().fit_resample(x, y)

*_train2, x_test2, y_train2, y_test2 = train_test_split(x_resample, y_resample, test size = @.3, random_state

start_time = timer(None)

model o = RandomForestClassifier()
model o.fit(x train2, y train2)

y_pred = model_o.predict(x_test2)
y_score_rf = model_o.predict_proba(x_test2)[:,-1]

print("Training Accuracy: ", model_o.score(x_train2, y_train2))
print( Testing Accuarcy: ', model_o.score(x_test2, y_test2))

# classification report
cr = classification_report(y_test2, y_pred)
print{cr)

timer(start_time)

# confusion matrix

cm = confusion_matrix(y test2, y pred)
plt.rcParams['figure.figsize'] = (5, 5)

sns.heatmap(cm, annot = True, cmap = ‘winter®,fmt=".8f")
plt.shou()

0)
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In [45]:

In [46]:

Training Accuracy: @.9999478685362768
Testing Accuarcy: @.9501574949045766

precision recall fl-score  support

e @.93 8.98 .95 ge7e

1 @.97 2.92 .95 8121

accuracy 8.95 16191
Macro avg @.85 2.85 .95 16191
weighted avg @.95 9.95 ©.95 16191

Time taken: @ hours @ minutes and 5.59 seconds.

- 7000
- 8000
- 5000
4000
000
2000
000
o 1

fig, (ax1, ax2) = plt.subplots(1l, 2,figsize=(18,4.5))
fig.subplots_adjust({bottom=0.1@, left=0.1@, top = ©.98@, right=1.08)
fig.suptitle(' Training Dataset - Target Class Before and After Over Sampling', fontsize
sns.set_palette("bright")
sns.countplot(y_train, ax=axl)
axl.margins(2.1)
axl.set_facecolor("#elddbf™)
for p in axl.patches:
axl.annotate('{:.1f}'.format(p.get_height()), (p.get_x()+0.1, p.get_height()+5@))
sns.set_palette("bright")
sns.countplot(y_train2, ax=ax2)
ax2.margins(@.1)
ax2.set_facecolor("#elddbf™)
for p in ax2.patches:
ax2.annotate("{:.1f}" .format(p.get_height()), (p.get x()+8.1, p.get_height()+5a))
sns.set_style('dark")

e

Training Dataset - Target Class Before and After Over Sampling
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fig, (axl, ax2) = plt.subplots(l, 2,figsize-(18,4.5))
fig.subplots_adjust(bottom-0.10, left-0.1@, top - ©.908, right-1.80)
fig.suptitle(' Test Dataset - Target Class Before and After Over Sampling’, fontsize = 20)
sns.set_palette("bright™)
sns.countplot(y_test, ax=ax1)
axl.margins(@.1
ax1.set_facecolor( #elddbf")
for p in axl.patches:
axl.annotate(’{:.1f}" .format(p.get_height()), (p.get_x()+8.1, p.get_height()+58))
sns.set_palette("bright")
sns.countplot(y_test2, ax=ax2)
ax2.margins(0.1)
ax2.set_facecolor( #elddbf")
for p in ax2.patches:
ax2.annotate('{:.1f}" .format(p.get_height()), (p.get_x()+8.1, p.get_height()+58))
sns.set_style('dark')

Test Dataset - Target Class Before and After Over Sampling
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In [47]:

In [48]:

out[45]:

ns_probs = [@ for _ in range(len(y_test2))]
1r_probs = model_o.predict_proba(x_test2)
1r_probs = lr_probs[:, 1]

1r_probs

# calculate roc curves
ns_fpr, ns_tpr, _ = roc_curve(y_test2, ns_probs)
1r_fpr, lr_tpr, _ = roc_curve(y_test2, lr_probs)

roc_auc_rf = auc(lr_fpr, lr_tpr)
# plot the roc curve for the model
pyplot.plot(ns_fpr, ns_tpr, linestyle=
pyplot.plot(lr_fpr, lr_tpr, lw=1, label='{} curve (AUC = {:@.2f})'.format('RF',roc_auc_rf})
# axis labels
pyplot.xlabel('False Positive Rate")
pyplot.ylabel('True Positive Rate')
plt.title('ROC curve: AUC={@:0.2f}".format(
roc_auc_rf))
# show the Legend
pyplot.legend()
# show the plot
pyplot.show()

ROC curve: AUC=0.99
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average_precision = average_precision_score(y_test2, y_score_rf)
print( Average precision-recall score RF: {}'.format(average_precision))
precision, recall, _ - precision_recall_curve(y_test2, 1r_probs
pr_auc_rf = suc(recall, precision )
plt.step(recall, precision, color='b', alpha-.2

where="post")
plt.fill_between(recall, precision, step='post', alpha=0.2

color="b")
plt.xlabel('Recall®)
plt.ylabel(‘Precision’)
plt.ylim([@.8, 1.85])
plt.xlim([@.@, 1.85])
plt.title('2-class Precision-Recall curve: AUC={@:@.2f}'.format(
pr_auc_rf))

Average precision-recall score RF: ©.9893823083150644
Text(8.5, 1.0, '2-class Precision-Recall curve: AUC=0.99")

2-class Precision-Recall curve: AUC=0.99

N

Precision

Recall
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In [42]: from sklearn.model_selection import cross_val score
from sklearn.metrics import classification_report, confusion_matrix

rfc_cv_score = cross_val_score(model_o, x, y, cv=18, scoring='roc_suc')

print("Mean AUC Score - Random Forest: ", rfc_cv_score.mean())

Mean AUC Score - Random Forest: @.8618441587874878

In [26]: |from sklearn.medel_selection import RandomizedSearchCv
# number of trees in random forest
n_estimators = [int(x) for x im np.linspace(start = 208, stop = 200@, num = 18)]
# number of features at every split
max_features = ["auto’, 'grt']

# max depth
max_depth = [int(x) for x in np.linspace(18@, 508, num = 11)]
max_depth.append(None)
# create random grid
random_grid =
‘n_estimators': [10@,208,300,1000],
"max_features': max_features,
‘max_depth® :[80,9@,168,110]

# Random search of parameters

rfc_random = RandomizedSearchCv(estimator = model o, param_distributions = random_grid, n_iter = 10@, cv = 3, verbose=2, random_:
# Fit the model

rfc_random.fit(x_train2, y_train2)

# print results

print{rfc_random.best_params_)

Fitting 2 folds for each of 22 candidates, totalling 96 fits
{'n_estimators': 10@@, 'max_features': 'auto', 'max_depth': 8@}

In [58]: start_time = timer(None)

model_o = RandomForestClassifier(n_estimators=1000, max_depth=88, max_features='auto')
model o.fit(x train2, y train2)

y_pred = model_o.predict(x_test2)
y_score_rf - model_o.predict_proba(x_test)[:,-1]

print("Training Accur *, model_o_score(x_train2, y_train2))
print('Testing Accuarcy: ', model o.score(x test2, y_test2))
rfc_cv_score = cross_val_score(model o, x, y, cv=10, scoring='roc_suc')

assification report
cr - classification_repert(y_test2, y_pred)
print(cr)

timer(start_time)

# confusion matrix
cm = confusion_matrix(y_test2, y_pred)
plt.rcParams[ Figure.figsize'] = (5, 5)

sns.heatmap(cm, annot - True, cmap - 'winter’,fmt=".0f")
plt.shou()

print("\n")

print(" lean AUC Score =

print("Mean AUC Score - Random Forest: ", rfc_cv score.mean())

Training Accuracy: @.39994706@5362768
Testing Accusrcy: @.9503427838276079

precision  recall fl-scors  suppert
] 2.93 @.98 9.95 8e7a

1 8.98 8.92 8.95 8121

accuracy 8.95 16191
macro avg @.95 @8.95 2.95 16191
weighted avg @.95 @.85 9.95 16191

Time taken: @ hours 7 minutes and 13.32 seconds.

- 7000

@00

- 3000
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In [59]:

Mean AUC Score ===
Mean AUC Score - Random Forest: @.8666534674781788

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(random_state = 42)
from pprint import pprint

print('Parameters currently in use:\n")
pprint(rf.get_params())

Parameters currently in use:

{'bootstrap': True,

'ccp_alpha': @.@,
‘criterion': 'mse’,
'max_depth': None,
'max_features': 'auto’,

'max_leaf_nodes’: Mone,
'max_samples”: Hone,
'min_impurity decrease’': 0.8,
‘'min_impurity split': None,
'min_samples_leaf’: 1,
'min_samples_split': 2,
'min_weight_fraction_leaf': @.8,
'n_estimators’: 16@,
'n_jobs': Mone,

'oob_score': False,
‘random_state’: 42,
'verbose': @,

'warm_start': False}
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7.3. XGBoost Codes and Results

In [3]:

In [1]:

pip install xgboost
Collecting xgboostNote: you may need to restart the kernel to use updated packages.

WARNING: You are using pip wersion 21.1.1; howsver, version 21.2.4 is available.
You should consider upgrading via the 'C:\Users\Administrator\AppData\Local\Programs\Python\Python38\python.exe -m pip install
--upgrade pip’ command.

Downloading xghboost-1.4.2-py3-none-win_smdé4.whl (37.8 ME)
Requirement already satisfied: numpy in c:\users\administrator\eppdata\lecaliprogramsipython\python3g\lib\site-packages (from x
gboost) (1.21.2)
Requirement already satisfied: scipy in c:\users\administratoriappdata‘localiprogramsipython\python3g\lib\site-packages (from x
gboost) (1.7.1)
Installing collected packages: xgboost
successfully installed xgboost-1.4.2

import warnings
warnings.filterwarnings( ignore’)

# for some basic operations
import numpy as np

import pandas as pd

import joypy

# for visualizations
import matplotlib.pyplot as plt

import seaborn as sns
from pandas import plotting
from pandas.plotting import parallel coordinates

# for interactive visualization

import plotly

import plotly.offline as py

from plotly.offline import init notebook mode, iplot
import plotly.graph_cbjs as go

from plotly import tools
init_notebook_mode(connected = True)

import plotly.figure_factory as ff

# for animated viswvalizations
from bubbly.bubbly import bubbleplot
import plotly_express as px

dsta = pd.read_csv("Final Data set v5.csv")
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In [11]: from datetime import datetime

def timer(start_time= None):

if not start_time:
start_time = datetime.now()
return start_time

elif start_time:
thour, temp_sec = divmod((datetime.now()-start_time).total_seconds(), 368@)
tmin, tsec - divmod(temp_sec, 60)
print('\n Time taken: %i hours %i minutes and ¥s seconds.’ % (thour, tmin, round(tsec,2)))

In [12]: |x = data.iloc[:,8:18]
= data.iloc[:, -1]
¥y = df.iloc[:, -1]

=<

from sklearn.model_selection import train_test_split

from xgboost import XGBClassifier

from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val score
from sklearn.metrics import roc_curve, auc

from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score

from numpy import *

np.random.seed(123

# diving the data set into trainset and test set
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=8.3)

start_time = timer(None)
model = XGBClassifier()

model.fit(x_train, y_train)
y_pred xgb - model.predict{x_test)
y_score_xgb = model.predict_proba(x_test)[:,-1]

print{"Tri

ing Accuracy » model.score(x_train, y_train))
ng Accuarcy: ', model.score(x_test, y_test))

# making a classification report
cr = classification_report(y_test, y_pred_xgb)
print(cr)

timer(start_time)

model.fit(x_train, y_train)
y_pred_xgb - model.predict(x_test)
y_score_xgb = model.predict_proba(x_test)[:,-1]

print("Training Accuracy: ", model.score(x_train, y_train))
print('Testing Accuarcy: ', model.score(x_test, y_test))

# making o classification report
cr = classification_report(y_test, y_pred_xgh)
print(cr)

timer(start_time)

# making o confusion matrix
plt.rcParams['figure.figsize'] = (5, 5)

cm = confusion_matrix(y_test, y_pred_xgb)

sns.heatmap(cm, annot = True, cmap = 'winter’, fmt=".8f")
plt.shou()

[13:48:50] WARNING: C:/Users/Administrator/workspace/xgboost-winéd release 1.4.8/src/learner.cc:1095: Starting in XGBoost 1.3.
@, the default evalustion metric used with the objective 'binary:logistic' was changed from ‘error’ to 'logloss’. Explicitly se
t eval_metric if you'd like to restore the old behavior.

Training Accuracy: 8.9737991266375546

Testing Accuarcy: @.958250276854928

precision  recall fl-score  support
e 8.96 1.00 2.98 Ba74

1 2.95 2.64 e.76 256

accuracy 2.96 9038
macro avg 8.96 a.82 e.87 EE)
weighted avg 2.96 2.96 2.85 Se39

Time tsken: @ hours @ minutes and 1.58 seconds.
- B000

- 7000




In [7]:

In [8]:

out[&]:

from matplotlib import pyplot

ns_probs = [@ for _ in range(len(y_test))]
1r_probs = madel.predict_proba(x_test)
1r_probs = 1lr_probs[:, 1]

1r_probs

# calculate roc curves
ns_fpr, ns_tpr, _ = roc_curve(y_test, ns_probs)

1r_fpr, lr_tpr, _ = roc_curve(y_test, lr_probs)

roc_auc_xgb = auc(lr fpr, 1r_tpr)
# plot the rac curve for the model
pyplot.plot(ns_fpr, ns_tpr, linestyle="--")
pyplot.plot({lr_fpr, 1lr_tpr, lw=1, label="{} curve (AUC = {:0.2f})'.format('RF',roc_auc_xgb))
# axis Labels
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
plt.title('ROC curve: AUC={e:0.2f} .format(
roc_auc_rf))
# show the Legend
pyplot.legend()
# show the plat
pyplot.show()
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from sklearn.metrics import precision_recall curve
import matplotlib.pyplot as plt
from sklearn.metrics import average precision_score, auc, roc_curve, precision_recall curve

average_precision = average_precision_score(y_test, y_score_xgb)
print('Average precision-recall score RF: {}'.format(average_precision))
precision, recall, _ = precision_recall_curve(y_test, y_score_xgb)
pr_auc_xgb = auc{ recall,precision)
plt.step(recall, precision, color='b', alpha=9.2,
where="past")
plt.fill_between(recall, precision, step='post', alpha=8.2,
color="b")
plt.xlabel( Recall")
plt.ylabel( Precision’)
plt.ylim([@.8, 1.@5])
plt.xlim([@.2, 1.8])

plt.title('2-class Precision-Recall curve: AUC={0:0.2f}".format(
pr_auc_xgb))

Average precision-recall score RF: @.7750171582547667

Text(2.5, 1.8, '2-class Precision-Recall curve: AUC=8.77")

2-class Precision-Recall curve: AUC=0.77
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In [13]:

In [14]:

from imblearn.over_sampling import SMOTE

np.random.seed(123)

x_resample, y resample = SMOTE().fit_resample(x, y)

®_train2, x_test2, y_train2, y_test2 = train_test_split(x_resample, y resample, test_size = @.3, random_state = @)
start_time = timer(None)

model_o = XGBClassifier()
model_o.fit(x_train2, y_train2)

y_pred = model o.predict(x_test2)
y_score_xgb = model o.predict_proba(x_test2)[:,-1]

print("Training Accuracy: ", model o.score(x train2, y train2))
print('Testing Accuarcy: ", model_o.score(x_test2, y_test2))

# classification report

cr = classification_report(y_test2, y_pred)
print(cr)

timer(start_time)

# confusion matrix

cm = confusion_matrix{y test2, y pred)

plt.rcParams[ 'figure.figsize'] = (5, 5)

sns.heatmap(cm, annot = True, cmap = 'winter’',fmt=".8f")
plt.show()

[13:49:42] WARNING: C:/Users/Administrator/workspace/xgboost-wing4_release_1.4.8/src/learner.cc:1095: Starting in XGBoost 1.3.
8, the default evaluation metric used with the objective 'binary:logistic® was changed from 'error’ to "logloss®. Explicitly se
t eval_metric if you'd like to restore the old behavior.

Training Accuracy: @.9529103470181847

Testing Accuarcy: ©.92921%9370028332

precision recall fil-score  support

e 2.9a @.97 ©.93 8078

1 @.96 @.89 .93 8121

GCCUracy .93 16191
macro avg @.93 8.93 .93 16191
weighted avg 8.93 @.93 8.93 16191

Time taken: @ hours @ minutes and 2.99 seconds.

1000

fig, (ax1, ax2) = plt.subplots(l, 2,figsize=(18,4.5))
fig.subplots_adjust(bottom=08.1@, left-2.10, top = @.208, right=1.2@)
fig.suptitle(' Target Class Before and After Over Sampling®', fontsize = 28)
sns.set_palette("bright™)
sns.countplot(y_train, ax=axl)
axl.margins(@.1)
axl.set_facecolor("#zlddbf")
for p in axl.patches:
axl.annotate('{:.1f}"'.format(p.get_height()), (p.get_x()+0.1, p.get_height()+5@))
sns.set_palette("bright™)
sns.countplot(y_train2, ax=ax2)
ax2.margins(@.1)
ax2.set_facecolor("#elddbf™)
for p in ax2.patches:
ax2.annotate('{:.1f}"' .format(p.get_height()), (p.get_x()+0.1, p.get_height()+5@))
sns.set_style('dark")
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In [15]:

ns_probs = [@ for _ in range(len(y_test2))]
1r_probs - model.predict_proba(x_test2)
1r_probs = 1r_probs[:, 1]

1r_probs

# calculate roc curves
ns_fpr, ns_tpr, _ - roc_curve(y_test2, ns_probs)
1r_fpr, Ir_tpr, _ = roc_curve(y_test2, lr_probs)

roc_auc_xgb = suc(lr_fpr, lr_tpr)
# plot the roc curve for the mode
pyplot.plot(ns_fpr, ns_tpr, linestyle='--')
pyplot.plot(lr_fpr, lr_tpr, lu=1, label='{} curve (AUC = {:8.2f})'.formst('RF',roc_auc_xgb))
# axis labels
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
plt.title('ROC curve: AUC={@:8.2f}'.format(
roc_auc_xgb))
# show the Legend
pyplot.legend()
# show the plot
pyplot.shou()

ROC curve: AUC=0.92
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In [16]: average_precision = average precision_score(y_test2, lr probs)
print(Average precision-recall score RF: {}'.format(average_precision))
precision, recall, _ - precision_recall_curve(y_test2, lr_probs)
pr_auc_xgb = auc( recall,precision )
plt.step(recall, precision, color='b', alpha=e.2

In [16]: average_precision - aversge precision_score(y_test2, 1r_probs)

print(‘Average precision-recall score RF: {}'.format(average precision))

precision, recall, _ = precision_recall_curve(y_ test2, lr_probs)

pr_auc_xgb - suc( recall,precision )

plt.step(recall, precision, color='b', alpha=8.2,
where="post’)

plt.fill_between(recall, precision, step='post’, alpha=8.2,

color="b")

plt.xlabel( Recall’)

plt.ylabel(‘Precision’)

plt.ylim([@.8, 1.95])

plt.xlim([@.@, 1.85])

plt.title('2-class Precision-Recall curve: AUC={8:@.2f}'.format(
pr_auc_xgb))

Average precision-recall score RF: ©.94072991634991688

Out[16]: Text(@.5, 1.8, '2-class Precision-Recall curve: AUC=0.94")

2-class Precision-Recall curve: AUC=0.94
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in p1/]:

In [54]:

In [55]:

mport warnings
warnings.filterwarnings( ignore’)

from sklearn.model_selection import cross_val score

from sklearn.metrics import classification_report, confusion_matrix

xgb_cv_score - cross_val_score(model o, x, y, cv=19, scoring='rac_suc')

print("Mean AUC Score - XGBoost: ", xgb_cv_score.mean(})

[13:55:48] WARMING: C:/Users/Administrator/workspace/xgboost-wingd release 1.4.
@, the default evaluation metric used with the objective 'binary:logistic' was
t eval_metric if you'd like to restore the old behavior.

[13:55:50] WARNING: C:/Users/Administrator/workspace/xgboost-uing4_release_1.4.
@, the default evaluation metric used with the objective 'binary:logistic’ was
t eval metric if you'd like to restore the old behavior.

[13:55:52] WARMING: C:/Users/Administrator/werkspace/xgboost-wingd release 1.4.
@, the default evaluation metric used with the objective 'binary:logistic' was
t eval_metric if you'd like to restore the old behavior.

[13:55:54] WARNING: C:/Users/Administrator/workspace/xgboost-uins4_release_1.4.
@, the default evalustion metric used with the objective 'binary:logistic’ was
t eval metric if you'd like to restore the old behavior.

[13:55:56] WARNING: C:/Users/Administrator/workspace/xgboost-uing4_release_1.4.
@, the default evaluation metric used with the objective 'binary:logistic' was
t eval_metric if you'd like to restore the old behavior.

[13:55:58] WARNING: C:/Users/Administrator/workspace/xgboost-uing4_release_1.4.
@, the default evalustion metric used with the objective 'binary:logistic’ was
t eval metric if you'd like to restore the old behavior.

[13:56:80] WARNING: C:/Users/Administrator/workspace/xgboost-uing4_release_1.4.
@, the default evaluation metric used with the objective 'binary:logistic' was
t eval_metric if you'd like to restore the old behavior.

[13:56:81] WARNING: C:/Users/Administrator/workspace/xgboost-uing4_release_1.4.
@, the default evalustion metric used with the objective 'binary:logistic’ was
t eval metric if you'd like to restore the old behavior.

[13:56:83] WARNING: C:/Users/Administrator/workspace/xgboost-uing4_release_1.4.
@, the default evaluation metric used with the objective 'binary:logistic' was
t eval_metric if you'd like to restore the old behavior.

[13:56:85] WARNING: C:/Users/Administrator/workspace/xgboost-uing4_release 1.4.
@, the default evalustion metric used with the objective 'binary:logistic’ was
t eval metric if you'd like to restore the old behavior.

Mean AUC Score - XGBoost: ©.8591560119342394

random_grid - {
*learning_rate’ : [0.05,8.1,0.15,0.2,8.25,6.3]
‘max_depth’ : [3,4,5,6,8,108,12,15],
‘min_child weight" : [1,3,5,7],
‘gamma’ : [€.9,0.1,0.2,8.3,8.4],
‘colsample_bytree' : [@.3,8.4,8.5,0.7]

from sklearn.model_selection import RandomizedSearchCV

# Remdmm commeh Af mamamatane

In [55]: from sklearn.model_selection import RandomizedSearchCV

# Random search of parameters
xgb_random = RandomizedSearchCV(estimator = model_o, param_distributions = random_grid, n_iter = 5, cv = 3, verbose=2, random_st:
# Fit the model
xgb_random.fit(x_train2, y_train2)
# print results
print(xgb_random.best_params_)

@/srcflearner.cc:1095: Starting in
changed from 'error’ to 'logloss’'.

@/src/learner.cc:1095: Starting in
changed from 'error' to 'logloss'.

@/sr¢flearner.cc:1095: Starting in
changed from ‘error’ to 'logloss'.

@/src/learner.cc:1095: Starting in
changed from 'error’ to 'logloss’.

@/srcflearner.cc:1895: Starting in
changed from 'error’ to 'logloss’.

@/src/lesrner.cc:1095: Starting in
changed from ‘error’ to "logloss’.

@/srcflearner.cc:1895: Starting in
changed from 'error’ to 'logloss’.

@/src/lesrner.cc:1095: Starting in
changed from ‘error’ to "logloss’.

@/srcflearner.cc:1095: Star‘ting in
changed from 'error’ to 'logloss’.

@fsrc/learner.cc:1095: Starting in
changed from ‘error’ to "logloss’.

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

Fitting 3 folds for each of 5 candidates, totalling 15 fits

[16:1@:11] WARNING: C:/Users/Administrator/workspace/xgboost-winé4_release_1.4.@/src/learner.cc:1895: Starting in XGBoost 1.3.
@, the default evaluation metric used with the objective 'binary:logistic’ was changed from 'error’ to 'logloss'. Explicitly se
t eval_metric if you'd like to restore the old behavior.

{'min_child weight': 1, 'max_depth': 15, 'learning rate': .15, 'gamma': ©.4, 'colsample bytree': 8.3}

xgb_random.best_estimator_

xg8Classificr(base_score=8.5, booster='gbtree', celsample bylevel=l,

colsample_bynode=1, colsample_byiree=9.3, gamms=0.4, gpu_id=-1,
importance_type='gain’, interaction_constraint:
learning_rate=@.15, max_delts_step=8, max depth=15,
min_child_weight=1, missing=nan, monotane_constraints='()",
n_estimators=18@, n_jobs=8, num_parallel_tree=1, randem_state=8,
reg_alpha=e, reg lambde=l, scale_pos weight=1, subsample=1,
tree_method="exact’, validate_parameters=1, verbosity=None)

In [18]: start_time = timer(None)

model_o - XGBClassifier(base_score=0.5, booster='ghtree', colsample_bylevel-1,
colsample_bynode=1, colsemple bytres=8.3, gamma=0.4, gpu_id=-1,
importance_type='gain', interaction_constraints="",
learning_rate=0.15, max_delta_step-@, max_depth=15,
min_child_weight=1, missing=nan, monotens_constraints='()",
n_estimators=100, n_jobs=8, num_parallel_tree-=1, random_state=g,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
tree_method='exact', validate_parameters=1, verbosity=None)

model_o.fit(x_train2, y_train2)

y_pred = model_o.predict(x_test2)

y_score_xgb - model_o.predict_proba(x_test)[:,-1]

print("Training Accuracy: ", model o.score(x_train2, y_train2))
print('Testing Accuarcy: ', model o.score(x test2, y test2))
xgb_cv_score = cross_val_score(model_o, x, y, cv-18, scoring='roc_auc'}

assification report
cr = classification_report(y_test2, y_pred)
print(cr)

timer(start_time)
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In [18]:

start_time = timer(None)

model_o = XGBEClassifier(base_score=8.5, booster='gbtree', colsample_bylevel=1,
colsample bynode=1, colsample bytree=2.3, gamma=8.2, gpu id=-1,
importance_type='gain’, interaction_constraints="",
learning_rate=0.15, max_delta_step=0, max_depth=15,
min_child_weight=1, missing=nan, monotone_constraints="()",
n_estimators=18@, n_jobs=8, num_parallel tree=1, random_state=@,
reg_alpha=08, reg_lambda=1, scale_pos_weight=1, subsample=1,
tree_method="exact', validate_parameters=1, verbosity=None)

model_o.fit(x_train2, y_train2)

y_pred = model o.predict(x_test2)

y_score_xgb = model_o.predict_proba(x_test)[:,-1]

print("Training Accuracy: ", model_o.score(x_train2, y_train2))
print('Testing Accuarcy: ', model_o.score(x_test2, y_test2))
xgb_cv_score = cross_val_score(model o, x, y, cv=18, scoring="roc_suc')

# classification report
cr = classification report(y test2, y pred)
print(cr)

timer(start_time)

# confusion matrix

cm = confusion_matrix(y test2, y_pred)
plt.rcParams[ ' Figure.figsize'] = (5, 5)

sns.heatmap(cm, annot = True, cmap = 'winter’,fmt=".0f")
plt.show()

print(*\n")
print(" Mean AUC Score
print("Mean AUC Score - Random Forest:

» ¥gb_cv_score.mean())

[14:17:41] WARNING: C:/Users/Administrator/workspace/xgboost-wing4_release 1.4.8/src/lesrner.cci1095: Starting in
@, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error’ to 'logless’.
t ewal_metric if you'd like to restore the old behavior.

Training Accuracy: @.39467%5838958151

Testing Accuarcy: ©.9420665801988759

[14:17:47] WARNING: C:/Users/Administrator/workspace/xgboost-uins4_release_1.4.8/src/learner.cc:1895: Starting in
@, the default evaluation metric used with the objective 'binary:logistic' was changed from ‘error’ to 'logloss'.
t eval metric if you'd like to restore the old behavior.

[14:17:50] WARNING: C:/Users/Administrator/workspace/xgboost-wing4_release_1.4.8/src/learner.cc:1095: Starting in
@, the default evaluation metric used with the objective 'binary:logistic’ was changed from 'error’ to 'logless’.
t ewal_metric if you'd like to restore the old behavior.

[14:17:53] WARNING: C:/Users/Administrator/workspace/xgboost-wing4_release_l.4.@/src/lesrner.cc:1095: Starting in
@, the default evaluation metric used with the objective 'binary:logistic' was changed from ‘error’ to 'logloss’.
t ewval metric if you'd like to restore the old behavior.

t eval metric if you'd like to restore the old behavior.

precision  recall fl-score  suppert
2 2.91 @.98 @.%4 ge7e

1 2.98 2.91 .24 8121

accuracy @.94 16191
macro avg 2.94 2.94 .24 16191
weighted avg 8.94 @.94 @.94 16191

Time taken: @ hours minutes and 48.5 seconds.

000

|- @000

1000

Mean AUC Score ===
Mean AUC Score - Random Forest: @.8684413010847196

In [71]: fig = plt.figure(figsize = (14, 9))

ax = fig.add subplot(111)
colours = plt.cm.Setl(np.linspace(@, 1, 9))

ax = xgb.plot_importance(model_o, height = 1, color = colours, grid = False, \
show_values = False, importance_type = ‘weight’, ax = ax);
for axis in ['top’, ‘bottom’, "left’, ‘right’]:
ax.spines[axis].set_linewidth(2)

ax.set_xlabel( ' importance score’, size = 16);

ax.set_ylabel('features', size = 16);

ax.set_yticklabels(ax.get_yticklabels(), size = 12);

ax.set_title('Ordering of features by importance to the model learnt’, size = 20);

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se

XGBoost 1.3.
Explicitly se
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In [71]:

In [19]:

In [ 1

= Mean AUC Score =
Mean AUC Score - Random Forest: @.8684413010847196

fig = plt.figure(figsize = (14, 3))
ax = fig.add_subplot(111)
colours = plt.cm.Setl(np.linspace(®, 1, 2))
ax = xgb.plot_importance(model o, height = 1, colar = colours, grid = False, \
show_values = False, importance_type = 'weight’, ax = ax);
for axis in ['top','bottom’,left’,'right']:
ax.spines[axis].set_linewidth(2)
ax.set_xlabel('importance score', size = 16);
ax.set_ylabel('features', size = 16);

ax.set_yticklabels{ax.get_yticklabels(), size = 12);
ax.set_title('Ordering of features by importance to the model learnt', size = 28);

Ordering of features by importance to the model learnt

ESTIMATED_AMOUNT
SUM_INSURED
PREMIUM

MONTHS_AS_CUSTOMER

GAP_IN_DAYS

features

MAKE

ACCIDENT_TIME

PURPOSE_OF_USE

VEHICLE_CATEGORY

STATUS

g

4000 6000
importance score

g

from xgboost import XGBClassifier
xgh = XGBClassifier(random state = 42)
from pprint import pprint

print('Parameters currently in use:\n')
perint (xgh.get_params())

Parameters currently in use:

{'base_scors’: None,
'booster': Mone,
"colsample_bylevel': None,
‘colsample_bynode®
‘colsample_bytres
‘gamma': None,
"gpu_id': Nene,
‘importance_type’: ‘gain’,
‘interaction_constraints’: None,
‘learning_rate': None,
'mex_delta_step': Nene,
‘max_depth': Mone,
‘min_child_weight': None,
‘missing’: nan,
‘monotone_constraints’: None,
‘n_sstimastors’: 100,

'n_jobs": None,
‘num_parallel_tree': None,
"objective': "binary:logistic',
‘random_state’: 42,
‘reg_alpha': Mone,
‘reg_lambda’: Nene,
"scale_pos_weight': Hone,
‘subsample’: Mone,
‘tree_method': None,
‘use_label_encoder': True,
"validate_parameters': Hone,
‘verbosity': Mone}

10000
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7.4. Neural Network Codes and results

In [19]:

# IMPORTING REQUIRED MODULES
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

In [20]: # NEURAL NETWORKS MODULES
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import Standardscaler
from sklearn.neural_network import MLPClassifier
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import Gaussianhg

In [21]: # KERAS MODULES
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
from keras.callbacks import Callback
import kerss.backend as kb
import tensorflow as tf

In [22]: from datetime import datetime

def timer(start_time= None):

if not start_time:
start_time = datetime.now()
return start_time

elif start_time:
thour, temp_sec = divmod((datetime.now()-start_time).total_seconds(), 360@)
tmin, tsec = divmod(temp_sec, 69)
print(‘\n Time taken: ¥i hours %i minutes and ¥s seconds.' % (thour, tmin, round(tsec,2)))

In [23]: data - pd.read_csv("Final Data set

In [24]: data.head()

Out[24]: SUM_INSURED ESTIMATED_AMOUNT PREMIUM MONTHS_AS_CUSTOMER VEHICLE_CATEGORY STATUS ACCIDENT_TIME PURPOSE_OF_USE MAKE GA
0 1000000 481100 851485 86 3 3 0 10 35
1 3000000 800000 5400000 72 2 4 1 13 24
2 3000000 5000000 5400000 55 2 4 6 13 24
3 750000 37050.0 4792.85 134 2 7 4 13 35
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In [25]: |# SETTING UP THE TRAINING AND TESTING SETS
np.random. seed(123)

x = data.iloc[:,8:10]
y = data.iloc[:, -1]

In [26]: x_train,x test,y train,y test=train test split(x,y,test size=0.3)

In [27]: from keras.models import Sequential
from keras.layers import Dense, Dropout

model = Sequential([
Dense(units=20, input_dim - x_train.shape[1], activation='relu’},
Dense(units=24,activation="relu'),
Dropout(@.5),

Dense(units=24,activatio
Dense(1, activation='sigmoid')

model . summary ()

Model: "sequential 3"

Layer (type) Output Shape Param #
dense_11 (Dense) (None, 2@) 220
dense_12 (Dense) (None, 24) 564
dropout_3 (Dropout) (None, 24) @
dense_13 (Dense) (None, 28) 560
dense_14 (Dense) (None, 24) 504
dense_15 (Dense) (None, 1) 5

Total params: 1,753
Trainable params: 1,753
Non-trainable parsms: @

In [28]:
start_time = timer(None)
model . compile(optinizer="adam’, loss='binary_cros /', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=3@, cpochs:
timer(start_time)
Epoch 1/5
21@68/21068 [ ] - 1=z 34us/step - loss: 1575.3485 - accuracy: @.8925
In [28]:

start_time = timer(None)
model . compile(optimizer="adam’', loss='binary_cross
model.fit(x_train, y_train, batch_size=3@, epochs=5)

), metrics=['accuracy'])

timer(start_time)

Epoch 1/5
21068/21088 [ ] - 1s 24us/step - loss: 1575.3485 - accuracy: 2.8925
Epoch 2/5

21868/21068 [ ] - 1s 28us/step - loss: 154.5537 - accuracy: @.313@
Epoch 3/5

21068/21068 [ 1 - 1s 3@us/step - loss: 19.8526 - accuracy: 9.8711
Epoch 4/5

21065/21068 [ 1 - 1s 33us/step - loss: 2.798@ - accuracy: ©.9356
Epoch 5/5

21068/21868 [ 1 - 1= 32us/step - loss: 8.9680 - accuracy: 0.9222

Time taken: @ hours @ minutes and 3.87 seconds.

In [29]: score = model.evaluate(x_test, y_test)
print('Test Accuracy: {:.2f}¥\nTest Loss: {}'.format(score[1]*108,score[8]))
9030/9030 [ ] - @5 13us/step

Test Accuracy: 94.58%
Test Loss: 63.52941647906986

In [30]: from sklearn.metrics import confusion_matrix, classification_report
y_pred = model.predict(x_test)
y_test = pd.DataFrame(y_test)

assification report
cr = classification_report(y test, y_pred.round())
print(cr)

g @ confusion matrix
plt.rcParams|'figure.figsize'] = (5, 5)
em = confusion_matrix(y_test, y_pred.round())

sns.heatmap(cm, annot = True, cmap = ‘winter’, fmt=".&
plt.shou()

precision  recall fl-score support

=} a.95 8.99 8.97 8074

1 a.98 8.54 8.68 956
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# making a classification report
classification_report(y_test, y_pred.round())

# making a confusion matrix

plt.rcParams[ figure.figsize'] = (5, 5)

cm = confusion_matrix(y_test, y_pred.round())
sns.heatmap(cm, annot = True, cmap = 'winter’, fmt=".6f")
plt.shou()

precision recall fl-score  support

-] @.95 @.99 2.57 3a74
1 @.98 @.54 8.63 956

BCCUrECY e.24 Se3ie

macro avg 9.92 e.77 e.82 Se3ie
weighted avg 2.94 @.94 2.%4 gse3e

- 2000

1000

In [31]: from sklearn.metrics import roc_curve, auc

from matplotlib import pyplot

ns_probs = [@ for _ in range(len(y_test))]
1r_probs = model.predict(x_test).ravel()

# calculate roc curves
ns_fpr, ns_tpr, _ = roc_curve(y_test, ns_probs)

1r_fpr, lr_tpr, _ = roc_curve(y_test, lr_probs)

roc_auc_rf = auc(lr_fpr, lr_tpr)

# plot the roc curve for the model

pyplot.plot{ns_fpr, ns_tpr, linestyle="-

pyplot.plot{lr_fpr, lr_tpr, lw=1, labe

# axis labels

pyplot.xlabel( False Positive Rate')

pyplot.ylabel('Trus Posit

plt.title('ROC cur: A
roc_auc_rf))

# show the Legend

pyplot.legend()

# show the plot

pyplot.show()

s
d

)

curve (AUC = {:9.2f})".format("RF’,roc_auc_rf))

' format(

ROC curve: AUC=0.77

10 RF curve (AUC = 0.77) .

08

o
3

TFue Positive Rate
=
=

02 e

004~
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In [22]: from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt
from sklearn.metrics import average_precision_score, auc, roc_curve, precision_recall_curve

y_score_ANN = model.predict(x_test).ravel()
average_precision = average_precision_score(y_test, y score_ANN)

print('Average precision-recall score Al

: {}'.format(average_precision))
precision, recall, _ = precision_recall curve(y_test, y_score_ANN)

pr_auc_ANN = auc( recall,precision)
plt.step(recall, precision, color='b"
where="post")
plt.fill_between(recall, precision, step="post', alpha=0.2,
color="6")

, alpha=@.2,

plt.xlabel{'Recall’)

plt.ylabel('Precision')

plt.ylim([@.@, 1.85])

plt.xlim([@.8, 1.8])

plt.title('2-class Precision-Recall cur
pr_auc_ANN) )

AuC={@:8.2f}".format(

Average precision-recall score ANN: ©.6817715388308678
Out[32]: Text(@.5, 1.8, '2-class Precision-Recall curve: AUC=@.74")

2-class Precision-Recall curve: AUC=074

Precision

Recall

In [33]: from imblearn.over_sampling import SMOTE
np.random. seed(123)

x_resample, y_resample = SMOTE().fit_resample(x, y)

In [34]: x_train2, x_test2, y_train2, y_test2 = train_test_split(x_resample, y_resample, test_size = ©.3, random_state = )

model = Sequential([
Dense(units=28, input_dim
Dense(units=24,activatior
Dropout(2.5),
Dense(units=28,activatiol
Dense(units=24,activatior
Dense(1, activation-'sigmoid’)

train2.shape[1], sctivation='relu'},

)
medel . summary ()

Model: “"sequential 4"

Layer (type) Output Shape Param #
dense_16 (Dense) (None, 28) 220
dense_17 (Dense) (None, 24) 564
dropout_4 (Dropout) (None, 24) @
dense_18 (Dense) (None, 28) 568
dense_19 (Dense) (None, 24) 564
dense_20 (Dense) (None, 1) 25

Total params: 1,753
Trainable params: 1,753
Non-trainable params: @

In [35]: start_time = timer(None)
model . compile(optimizer="adam’, loss='binary_cressentropy’, metrics=['accuracy'])
model.fit(x_train2, y_train2, batch_size-38, epoch

timer(start_time)

Epoch 1/5

37779/37779 [ 1 - 1s 37us/step - loss: 4332.520@ - accuracy: 8.6777
Epoch 2/5

37772/37779 [ 1 - 1s 233us/step - loss: 175.1594 - accuracy: ©.6712
Epoch 3/5

37779/37779 [ 1 - 1s 32us/step - loss: 18.4851 - accuracy: 8.6435
Epoch 4/5

37779/37779 [ 1 - 1s 34us/step - loss: 8.6283 - accuracy: ©.7621
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Model: “sequential_4"

Layer (type) Output Shape Param #
dense_16 (Dense) (Mone, 2@) 220
dense_17 (Dense) (Mone, 24) 584
dropout_4 (Dropout) (Mone, 24) )
dense_18 (Dense) (Mone, 2@) 500
dense_19 (Dense) (Mone, 24) 504
dense_20 (Dense) (Mone, 1) 25

Total params: 1,753
Trainable params: 1,753
Non-trainable params: @

In [35]: start_time = timer(None)

model . compile(optimizer="adam’, loss='binary_crossentropy’, metrics=

model.fit(x_train2, y_train2, batch_size=3@, epochs=5)

timer(start_time)

Epoch 1/5
37778/37779 [ 1 - 1s 37us/step - loss:
Epoch 2/5
37779/37779 [ 1 - 1s 33us/step - loss:
Epoch 3/5
37778/37779 [ ] - 1s 32us/step - loss:
Epoch 4/5
37778/37779 [ 1 - 1s 3dus/step - loss:
Epoch 5/5
37779/37779 [ 1 - 1s 33us/step - loss:

Time taken: @ hours @ minutes and 6.94 seconds

In [36]: from sklesrn.metrics import confusion_matrix, classification_report

In [36]:

In [37]:

y_pred = model.predict(x_test2)
y_test = pd.DataFrame(y_test2)

# making a classification report
cr = classificstion_report(y_test2, y_pred.round())
print(er)

from sklearn.metrics import confusion_matrix, classification_report
y_pred = model.predict(x_test2)
y_test = pd.DataFrame(y_test2)

# making a classification report
cr = classification_report(y_test2, y_pred.round()}
print{cr)

# making a confusion matrix
plt.rcParams['figure.figsize'] = (5, 5)

cm = confusion matrix(y test2, y pred.round())
sns.heatmap({cm, annot = True, cmap = 'winter’, fmt=".0f")
plt.show()

precision recall fl-score  support

=] a.68 1.80 8.81 8a7e
1 1.00 8.52 8.59 8121

accuracy e.76 16191

macro avg 2.84 2.76 .75 16191
weighted avg a.84 a8.76 8.75 16191
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ns_probs = [@ for _ in range(len(y_test))]

1r_probs - model.predict (x_test2).ravel()

['accuracy'])

4332.520@ - accuracy: @8.6777
175.1594 - accuracy: 9.671@
18.4851 - accuracy: 9.6435
©.6283 - accuracy: 8.7621

©.5498 - accuracy: 0.7651
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In [37]:

In [38]:

ns_probs = [8 for _ in range(len(y_test))]
1r_probs = model.predict(x_test2).ravel()

# calculate roc curves
ns_fpr, ns_tpr, _ = roc_curve(y_test2, ns_probs)

1r_fpr, lr_tpr, _ = roc_curve(y test2, lr_probs)

roc_auc_ANN = auc(lr_fpr, 1lr_tpr)

# plot the roc curve for the model

pyplot.plot(ns_fpr, ns_tpr, linestyle='

pyplot.plot{lr_fpr, lr_tpr, lu-1, labe

# axis Labels

pyplot.xlabel('False Positive Rate')

pyplot.ylabel('True Positive Rate')

plt.title("ROC curve: AUC={@:0.2f}".format(
roc_auc_ANN))

# show the Legend

pyplot.legend()

# show the plot

pyplot.show()

{} curve (AUC = {:8.2f})'.format('RF’,roc_auc_ANN))

ROC curve: AUC=076

10 RF curve [AUC = 0.76)

Fue Positive Rate

0o o2 04 06 08 10
False Positive Rate

from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt
from sklearn.metrics import average_precision_score, auc, roc_curve, precision_recall_curve

y_score_ANN = model.predict(x_test2).ravel()
average_precision = average_precision_score(y_test2, y_score ANN)

print(‘Average precision-recall score ANN: {}'.formst(average_precision})
precision, recall, _ - precision_recall_curve(y_test2, y_score_ANN)
pr_auc_ANN = auc( recall,precision)

plt.step(recall, precision, color='b', alpha=2.2,

plt

plt.
plt.

plt

plt.
plt.

where="post"
.fi11_between(recall, precision, step='post’, alpha=9.2,
color="b")

xlabel (*Recall’)
ylabel('Precision’)

.ylim([@.8, 1.85])

xlim([0.0, 1.8])

title('2-class Precision-Recall curve: AUC={0:0.2f}".format(

pr_auc_ANN})
Aversge precision-recall score ANN: ©.7635897062589686
Text(8.5, 1.8, '2-class Precision-Recall curve: AUC=8.38")

2-class Precision-Recall curve: AUC=0.88

Precision
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7.5. Final Dataset

Microsoft Excel
Worksheet
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