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ABSTRACT 

The Convolutional Neural Network (CNN) based solutions are used to identify the nutrient 

deficiencies of the crops based on the color variances of the leaves. However, one of the major 

problems in the CNN based solutions are the lack of ability to explain the results obtained. This 

research is focused on overcoming this challenge by combining the results obtained from CNN 

with TensorFlow Inference Engine to provide humanely understandable results for deficiency 

identification of crops. Therefore, greenhouse lettuce is selected as the crop for the study. 

Greenhouse farming became popular with the technological evolution in the last few decades. 

This aims to provide an optimal nutrient composition to the corps, to protect the crops from 

pests without applying pesticides, and to provide the optimal environmental conditions to the 

corps such as temperature, humidity, etc. Lettuce is one of the mostly consumed vegetable crops 

among the green house crops but facing a yield loss due the nutrient deficiencies. Therefore, 

the early identification of deficiencies becomes crucial. A custom test bed is created to gather 

data/images and using those data/images YOLOv3 object detection model was trained to detect 

Calcium, Nitrogen, and Magnesium nutrient deficiencies of greenhouse lettuce. The results 

demonstrate a mean average precision of 94.38% on training data and 75.53% on custom data. 

The trained weights were combined with the TensorFlow Inference Engine to provide 

explainable results using a local knowledge base of deficiencies. 
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Chapter 1 : Introduction 

1.1 Introduction 

Horticulture has become more than farming with technological evolution in the last few decades 

and Controlled Environment Architecture (CEA) became a popular approach to produce yield 

productively compared to open field production. CEA is defined as a combination of 

engineering, plant science, and computer managed greenhouse control technologies used to 

optimize plant growing systems, plant quality, and production efficiency. The greenhouse is 

one such CEA structure vastly used in the horticultural field with the aim of providing an 

optimal nutrient composition to the corps, to protect the crops from pests without applying 

pesticides, and to provide the optimal environmental conditions to the corps as in temperature, 

humidity, etc. Technavio’s market research analysts have predicted that the greenhouse 

horticulture market will register a Compound Annual Growth Rate (CAGR) of more than 11% 

by 2022 and currently, it is at 10.79% [1]. 

Among all the greenhouse crops, lettuce is the most popular salad vegetable crop around the 

world and consists of vitamins, minerals, and the taste that attract people [2]. Greenhouse 

lettuce is produced in soil-less culture. This procedure refers to the techniques of Hydroponics 

and Aeroponics mainly. In Hydroponics, plants grow in containers with mineral nutrient 

solutions, without soil. The greenhouse associated with this research uses a deep flow technique 

to produce lettuce where a consistent nutrient environment for the roots is provided by the 

flowing solution culture [3].  

1.2 Problem 

Even though the greenhouse is a controlled environment and lettuce is produced in a nutrient 

solution, there can be a production loss due to diseases and nutrient deficiencies and toxicities. 

Some of the diseases and deficiencies generate manifestation in the visible spectrum and some 

have not. Diseases or deficiencies without any visible symptoms can be identified with 

electromagnetic analysis, microscopic analysis, etc. Due to their complexity, and to the extent 

of the literature review of this research, they will not be addressed under this research. The 

diseases with visible symptoms can be identified with remote sensing techniques [4]. Remote 

sensing techniques for disease identification in the visible spectrum will be discussed in the 

next sections.  

Symptoms of nutrient deficiencies of hydroponic lettuce are available in the visible spectrum 

[5]. The identification of nutrient deficiencies using machine vision is a research area where 
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researchers developed various methodologies to detect the defected plants [4], [6]–[8] which 

will be discussed in the literature review section. The methodologies discussed in sited projects 

are not developed in a point of serving the stakeholders of the horticultural society but in a 

theoretical manner where they cannot be applied in a real-life scenario.  

1.3 Problem Domain 

This study is affiliated with some key areas in computer science, including both trending, and     

non-trending. Convolutional Neural Networks, Object Detection, and Explainable AI are some 

of them. This subsection will explain in brief on the mentioned areas to compose the 

background of this study.   

1.3.1 Convolutional Neural Networks 

Artificial Neural Networks (ANN) are developed under the inspiration of the operations of 

biological neural networks. It contains a large number of interconnected operational units called 

neurons. They work collectively and interconnectedly in a distributed manner to learn from the 

input to process and develop the final output. The architecture contains input layers that take 

the input as a vector and distribute it to the second level. The second level contains the hidden 

layers, which take the decisions by learning from the outputs of previous layers to improve the 

final output [9]. Convolutional Neural Networks (CNNs) are similar in fashion to ANNs where 

both categorized under Deep Neural Networks. But the CNNs are developed by reducing the 

number of parameters in ANNs but the neurons of both are self-optimize through learning. In 

contrast to ANNs, CNN’s architecture there are three types of layers as Convolutional, Pooling, 

and Fully connected. Among these three, convolutional layers are the most important and take 

most of the time within the network, but they are also capable of reducing the complexity of 

the network. Currently, CNNs are mainly used in pattern recognition within images, videos, 

and voice. There are a different kinds of implementations of CNNs and they are introduced 

down the line of this research [10].   

1.3.2 Object Detection 

Object detection is one of the fundamental computer vision problems and the task of identifying 

the presence, location (object localization), and type (object classification) of a given object 

within a given image. Object detection is related to many applications like image classification, 

face recognition, human behavior analysis, obstacle avoidance, autonomous driving, etc. [11], 

[12] There are three types of object detection models. Namely, information region selection, 

feature extraction, and classification. Information region selection is the task of finding the 

possible positions of the objects, feature extraction is the reduction of the number of features in 
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an image by combining the existing features and generating new features [13] and the 

classification is separating the given object from all the other objects in the given image and 

representing the information. The evolution of CNNs is closely coupled with object detection 

by improving the performance with leaning complex features within the images. R-CNN, Faster 

R-CNN are models that optimize the classification and bounding box generation [14]. Another 

promising model is YOLO and it detects the objects using fixed-grid regression [15]. Both of 

these models provide real-time and accurate object detection [16]. YOLOv3 is the current 

version of YOLO and will be discussed more in this article [17].      

1.3.3 Explainable Artificial Intelligence (XAI) 

Artificial Intelligence is introduced way back in the 19th century but, the true use and 

importance of AI are started only a few decades ago. The AI methods are currently achieving 

higher levels of performance in solving complex computational tasks and the AI powered 

systems are evolved to an extent that the humane intervention is almost in no need in the 

development and deployment. But the decisions taken and suggested by those AI powered 

systems eventually affect the humans’ lives so, the need of understanding the given and taken 

decisions is made a right [18]. Even though the early stages of AI powered models can be 

explained easily, the latest models developed with systems like Convolutional Neural Networks 

are complex and not interpretable. This makes the system a black box [19]. Explainable AI is 

developed to open up this backbox and allow humans to understand, trust, and manage the 

emerging artificial intelligent models. This explanation is given by Dr. Gunning in [20]. 

According to DARPA [21] (Defense Advanced Research Projects Agency), the term XAI refers 

to the actions to make sure that the AI models are transparent in their actions for the given 

purpose. It also refers to the ability to understand the work logic behind the AI algorithms. So 

the idea behind this concept is that the Artificial Intelligence programs and technologies should 

not be back box systems that people with expert knowledge in that specific field can only 

understand as discussed in the previous paragraph but explaining why and how the model came 

into that decision. 

1.4 Research Contribution 

1.4.1 Goal 

To develop an approach that can identify and explain a set of predefined nutrient deficiencies 

of greenhouse lettuce plants in real-time using image processing techniques and explainable AI 

theories. 
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1.4.2 Aims and Objectives 

To achieve the above goal, there are some objectives that must be covered. These objectives 

can be listed as follows: 

- Review of current methods of identifying the deficiencies of plants related to the 

problem domain. 

- Create an image dataset of greenhouse lettuce plants which is grown on special recipes 

to visualize nutrient deficiencies. 

- Preprocess the collected images with the help of an agronomist. 

- Select deep learning architecture based on Convolutional Neural Networks based on the 

literature review to apply on the dataset. 

- Develop an explainable deficiency identification approach using the selected model.  

1.5 Scope of the study 

Design and implementation of a methodology to automatically identify the nutrient deficiencies 

of greenhouse lettuce using image processing based on user input images and explain the 

solution using explainable AI-related theorems. The reason behind the selection of greenhouse 

lettuce in explains in the literature review section and this research only addresses three 

different nutrient deficiencies of lettuce. They can be explained as follows. 

Calcium - Due to Calcium deficiency, the growth of lettuce is observed as reduced and leaves 

are wavier than normal. Brown or grey lesions has developed starting from leaf margins or tips 

of young leaves. This symptom is called as 'tip-burn'. When the Calcium -deficiency progresses, 

the leaves begin to die from tips and margins inwards. Subsequently, the persistent symptoms 

will spread over the older leaves. 

Nitrogen - Older leaves have the symptoms of N deficiency at first with light green chlorosis. 

This moves to the head and will have light green chlorosis. No head is formed with severe 

Nitrogen deficiency and the growth is restricted. But the leave shape remains normal. 

Magnesium - Older leaves have the symptoms of Mg deficiency at first with yellowing between 

veins and leaf margin discoloration of yellowish orange. If this continues, the yellow leaf zones 

will die but the veins remain green. Growth is incrementally restricted with the severity of the 

deficiency. 
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1.6 Summary 

This research intends to overcome that problem by introducing a hybrid approach to 

convolutional neural networks and expert systems that can be applied to detect deficiencies of 

greenhouse lettuce. However, convolutional neural networks achieving the best performance in 

other research fields are not much applied in horticultural plant deficiency detection because of 

public datasets, but this will not be an issue in this research because of the collaboration of 

AIGrow [22] where the greenhouse has a dedicated sample set to acquire images.   

The next chapter will give a critical review of the research around deficiency identification of 

greenhouse lettuce. 
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Chapter 2 : Literature Review 

2.1 Introduction 

In Chapter 1 an overall picture of the research project was given, by showing the research 

problem, our hypothesis, and the solution. In this chapter, a critical review of the research is 

given in the area deficiency identification of greenhouse plants. For this purpose, the chapter 

has been structured as an early engagement of deficiency identification of lettuce, lettuce in 

horticulture, disease identification of greenhouse plants, a summary of the latest literature, and 

the XAI in fiend of research. The chapter also defines the research problem based on the 

literature review. 

2.2 Early engagement of deficiency identification of lettuce 

As mentioned in the previous section and according to the Medicinal Spices and Vegetables 

from Africa 2017, lettuce is produced worldwide, and is one of the most consumed green leafy 

vegetables in its raw form. It is used not only as a salad vegetable but as medicine [23] and 

research also indicates that lettuce consumption has positive effects on the reduction of 

cardiovascular disease and chronic conditions due to its rich nutrients such as vitamin A, beta-

carotene, folate, and iron content [24]. Because of the importance of this plant, researches are 

conducted in earlier stages as well.  

Identification of nutrient deficiencies of lettuce is discussed in earlier researches using the sand-

culture experiments for open-field production. In 1955, Goodall, Grant Lipp, and Slater 

discussed the application of nitrogen, phosphorus, and potassium fertilizers to lettuce plant soil 

and monitored the deficiencies of plants for the different levels of nutrients [25]. In the 1970s, 

lettuce is started to grow in glasshouses where the crop production can be done throughout the 

year regardless of the seasons. This changes the research approach of deficiency identification. 

This was discussed by Roorda van Eysinga and Smilde K.W, on their research paper, 

Nutritional Disorders in Glasshouse Lettuce [26]. These research papers include soil-based 

lettuce nutrient deficiency and toxicity.  

2.3 Lettuce in horticulture 

With the emerging technology in agriculture and the vast reduction of per capita land 

availability, lettuce is started to grow in Controlled Environments to enable the productivity of 

the crop [3], [27]. Controlled Environment Agriculture (CEA) is a combination of science and 

engineering approaches to overcome the fragility of crop production due to fluctuating open 

field environments. A modern greenhouse operates as a system; therefore, it is also referred to 
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as a Phytomation system, controlled environment plant production system (CEPPS), or 

controlled environment agriculture (CEA). This is elaborated by Shamshiri R. and his 

colleagues in their research paper on urban agriculture [28]. In greenhouses, lettuce is produced 

using a hydroponic system that offered around 11 times higher yield compared to 

conventionally produced lettuce. This was identified in research about lettuce production in 

Yuma, Arizona, USA, and published through “the School of Sustainable Engineering and the 

Built Environment, Arizona State University” [29].  

Hydroponic systems can be developed in different manners, each setup provides a different 

approach to plant nutrient environments and each setup defines the space around the plant which 

is crucial in image processing. These different setups are presented by Sardar and Admane in 

their review paper, “A Review on Plant Without Soil – Hydroponics” [3] and Kaushal Kumar 

and his colleagues in their journal paper “Hydroponics as an advanced technique for vegetable 

production: An overview” [30]. This research uses the Ebb and Flow system [30] or Deep Flow 

Technique [3] to produce lettuce in the greenhouse system. Crop production in the greenhouse 

highly depends on the greenhouse environment. To keep the environment, crop friendly, the 

environmental parameters such as air temperature, humidity, and carbon dioxide concentration 

are monitored and controlled continuously. In addition to this, growing conditions are based on 

humane observation of the plants. This process is cumbersome and labour intensive and mostly 

the humans cannot access every place of the greenhouse.  

2.4 Disease identification of greenhouse plants 

There are many solutions to mitigate crop loss due to diseases, but identifying the disease 

beforehand is a crucial step in this disease management. To overcome this, machine vision is 

applied to monitor plants. For example, Hetzroni, Miles, Engel, and Hammer describe their 

neural network-based classifier to determine lettuce deficiencies in Advances in Space 

Research article in 1994 [31]. It can be identified as the very first article about using deep 

learning on lettuce deficiency detection. In addition to that David and Murat have presented a 

system to monitor the real-time plant stress using a computer vision-based multi-sensor 

platform [32]. Their system is consisting of x y movable sensor system to image acquisition, 

environmental data collection, and distributed processing hierarchy. This can be used in a small 

area but will not be cost-effective with a large greenhouse. They have applied their system to 

monitor calcium deficiency of lettuce and was able to identify the deficiency one day before 

the human vision [6]. Yara, a mineral fertilizer manufacturing company offers details of open 

field and CEA crops including lettuce to Identify and diagnose nutrient deficiencies and there 
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are images and information to learn more about the symptoms and causes and how to control 

or correct the deficiency [33]. 

Current technological enhancements of IoT devices offer a novel approach in identifying plant 

diseases using deep learning. Mohanty, Hughes, and Salathé discuss this approach in their 

research paper on “Using Deep Learning for Image-based Plant Detection” [34]. They have 

used 54306 images of 14 crop species with 26 diseases to train their deep neural network. These 

images were taken from the project Plant Village, an open-access image repository created by 

the same group [35]. This repository does not contain lettuce images hence, the mentioned 

research does not classify lettuce for their deficiencies. Zheng YY and his colleagues present 

“the CropDeep species classification and detection dataset” where they have collected 1,147 

images from 31 different classes with over 49,000 annotated instances. In the same paper, they 

have presented the accuracy of different classification models. The best performing model in 

their results is ResNet50 with 99.81% of average accuracy. This dataset includes four species 

of lettuce but does not provide any information about deficiencies [36]. Greenhouse lettuce is 

not researched under deficiency identification using deep leaning and images, but there are few 

other crops under research. Aravind Krishnaswamy, Raja Purushothaman, and Aniirudh 

Ramesh have presented their approach on “tomato crop disease classification using pre-trained 

deep learning algorithm” [37]. They have used the tomato images from the PlantVillage dataset 

[35] and studied the dataset against pre-trained AlexNet and VGG16net deep learning models. 

Muammer and Davut have also presented their research on “Plant Disease and Pest Detection 

using Deep Learning-based Features” with images of plant diseases common to the Malatya, 

Turkey [38].   

2.5 A summary of latest literature 

The following are the 20 recent literature on deep learning-based disease identification of 

plants. This does not include lettuce but use similar methods in the field.
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 Table 2.1: Summary of resent literature 

Plant Training 

dataset 

Environment Classes Images Min-Max 

per class 

C/D Deep CNN 

architecture 

Training 

strategy 

Evaluation Best 

accuracy 

% 

“A Deep Learning-based Approach for Banana Leaf Diseases Classification”, 2017 [39] 

Banana Own Uncontrolled 3 3700 (1643, 

240, 1817) 

240 - 1813 C LeNet [Le89] FS 80%, 20% 98.61 

“A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition”, 2017 [40] 

Tomato Own  Uncontrolled 10 5000 

Annotated - 

43398 

40 – 2177 

Annotated – 

338 - 18899 

D AlexNet, ZFNet, 

GoogleNet, 

VGG16, ResNet50, 

101, ResNetXt-101 

TL 80%, 10%, 

10% 

85.98 

“Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning”, 2017 [41] 

Maize Own  Uncontrolled 2 1796 768–1028 D Custom three 

stages architecture 

with 5 CNNs 

FS 70%, 15%, 

15% 

96.70 

“Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning”, 2017 [42] 

Apple 
Plant 

Village 

Subset 

Controlled 4 2086 145-1644 C VGG16, VGG19, 

Inception-V3, 

ResNet50 

TL 80%, 20% 90.40 

“Can Deep Learning Identify Tomato Leaf Disease?” 2018 [43] 

Tomato Plant 

Village 

Subset 

Controlled 9 

 

5550 405-814 C AlexNet, 

GoogLeNet, 

ResNet 

TL 80%, 20% 97.28 

“CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture”, 2019 [36] 

Tomato, 

cucumber, 

lettuce, 

cabbage, 

turnip, 

endive, 

rutabaga, 

Crop deep 

dataset 

Controlled 31 31147 

Annotated 

49765 

575-1294 

Annotated 

745-1914 

C & 

D 

VGG16, VGG19, 

SqueezeNet, 

InceptionV4, 

DenseNet121, 

ResNet18, 

ResNet50 

FS 80%, 10%, 

10% 

100 with 

Tomato 

ResNet 
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celery, 

spinach, 

scallion, 

fingered 

citron, winter 

squash, 

pumpkin, 

chili pepper, 

lemon, 

persimmon, 

pawpaw, 

watermelon, 

muskmelon, 

wolfberry 

Faster R-CNN, 

SSD, 

RFB, 

YOLOv2, 

YOLOv3, 

RetNet 

“Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild”, 2018 [44] 

Wheat Dataset 

from [45] 

Uncontrolled 4 8178 1116-3338 C Custom ResNet50, 

ResNet50 

TL 80%, 10%, 

10% 

97.0 

“Deep Learning for Classification and Severity Estimation of Coffee Leaf Biotic Stress”, 2019 [46] 

Coffee Own Controlled 5 2722 256 - 991 C AlexNet, 

GoogLeNet, 

VGG16 and 

ResNet50 

TL 70%, 15% 

15% 

95.63 

“Deep Learning for Image-Based Cassava Disease Detection”, 2017 [47] 

Cassava Own Uncontrolled 6 2756 309-415 C Inception V3 TL 80%, 10%, 

10% 

93.0 

“Deep Learning for Plant Diseases: Detection and Saliency Map Visualization”, 2018 [48] 

Apple 

Blueberry 

Cherry 

Citrus 

Grape 

Peach 

Pepper 

Potato 

Plant 

Village 

dataset 

Controlled 39 54323 152-5507 C AlexNet, 

DenseNet169, 

Inception v3, 

ResNet34, 

SqueezeNet1-1.1, 

VGG13 

FS - TL 80%, 20% 99.76 
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Raspberry 

Soy 

Strawberry 

Tomato 

“Deep Learning for Tomato Diseases: Classification and Symptoms Visualization”, 2017 [49] 

Tomato Plant 

Village 

subset 

Controlled 9 14828 325-4032 C AlexNet, 

GoogleNet 

FS – TL 80%, 20% 99.18 

“Deep learning models for plant disease detection and diagnosis”, 2018 [50] 

Apple 

Banana 

Blueberry 

Cabbage 

Cantaloupe 

Cassava 

Celery 

Cherry 

Corn 

Cucumber 

Eggplant 

Gourd 

Grape 

Onion 

Orange 

Peach 

Pepper 

Potato 

Pumpkin 

Raspberry 

Soybean 

Squash 

Strawberry 

Tomato 

Watermelon 

Plant 

Village 

Dataset 

Both 58 87848 43-6235 C AlexNet, 

AlexNetOWTBn, 

GoogleNet, 

Overfeat, VGG 

Unspecified 80%, 20% 99.53 

“Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification”, 2016 [51] 
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Apple 

Pear 

Cherry 

Peach 

Grapevine 

Own 

Dataset 

(internet) 

Both 15 4483 

Augmented 

33469 

108-1235 

1347 - 4854 

C CaffeNet TL 30880, 2589 96.3 

“Deep Residual Learning for Tomato Plant Leaf Disease Identification”, 2017 [52] 

Tomato  Plant 

Village 

Subset 

Controlled 10 19742 373-5357 C VGG16 VGG19, 

custom architecture 

FS-TL 80%, 20% 97.53 

“High-Performance Deep Neural Network-Based Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank”, 2018 [53] 

Tomato Own 

dataset 

field 

Uncontrolled 12 8927 40 - 3927 D Custom 

architecture with 

Refinement Filter 

Bank 

TL 80%, 20% 96.25 

“Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks”, 2017 [54] 

Apple Own 

dataset 

Both 4 1053 

Augmented 

13689 

 

182-319 

2366 - 4147 

C AlexNet, 

GoogleNet, ResNet 

20, VGG 16 and 

custom architecture 

FS-TL 10888, 2801 97.62 

“Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification”, 2018 [55] 

Common 

Bean  

Coffee  

Cassava  

Cashew Tree  

Citrus  

Grapevines  

Coconut tree  

Soybean 

Corn  

Cotton 

Suarcane 

Wheat 

Own 

dataset 

Both 56 1383 5-77 C GoogleNet TL 80%, 20% 87.0 

“Solving Current Limitations of Deep Learning Based Approaches for Plant Disease Detection”, 2019 [56] 
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Apple 

Bell pepper 

Cherry 

Grape 

Onion 

Peach 

Potato 

Plum 

Strawberry 

Sugar beets 

Tomato 

Wheat 

Plant 

Disease 

Dataset 

field 42 79265 705 - 3084 D Faster R-CNN 

Faster R-CNN with 

FPN 

Faster R-CNN with 

TDM 

YOLOv3 

SSD513 

RetinaNet 

PlantDiseaseNet 

FS 70%, 20%, 

10% 

93.67 

“Soybean Plant Disease Identification Using Convolutional Neural Network”, 2018 [57] 

Soybean Plant 

Village 

Subset 

Uncontrolled 4 12673 851- 6234 C Custom 

architecture 

FS 70% 10% 

20% 

99.32 

“Using Deep Learning for Image-Based Plant Disease Detection”, 2016 [34] 

Apple 

Blueberry 

Cherry 

Citrus 

Grape 

Peach 

Pepper 

Potato 

Raspberry 

Soy 

Strawberry 

Tomato 

Plant 

Village 

Dataset 

Controlled 38 54306 Not 

mentioned 

C AlexNet, 

GoogLeNet 

FS-TL 80% 20% 99.35 
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Table 2.2: A summary of above literature for each aspect 

Plant 13/20 (65%) did the research for a single plant.  All 20 (100%) were not 

generalized 

Dataset 10/20 (50%) used their own datasets, 8/20 (40%) used Plant Village 

dataset, 1 with Crop Deep dataset, and 1 with Plant Disease dataset 

Environment 9/20 (45%) used images from controlled environment (homogeneous 

backgrounds), 6/20 (30%) used images from uncontrolled environment 

(open field), others (25%) used both 

Classification/ 

detection 

15/20 (75%) used classification only, 3/20 (15%) used detection 

method and others (10%) researched with both 

Deep CNN 

Architecture 

17/20 (85%) used popular CNNs, 3/20 (15%) used custom architectures 

alone, 4/20 (20%) used custom along with popular CNNs 

Training Strategy 14/20 (70%) used transfer learning, 10/20 (50%) trained from scratch, 

5/20 (25%) used both strategies 

Training, Evaluation 8/20 (40%) separated the dataset by training, validation and evaluation. 

12/20 (60%) separated only for training and testing. In addition, 2/20 

(10%) used entirely different dataset for validation. 
 

2.6 Explainable AI in field of research 

In addition to the reasoning mentioned in the problem domain chapter, the following factors 

motivate XAI research. Those are trust, protections against adversarial techniques, detecting 

bias, and regulatory compliances [58]. Among these, the most important driver of interest is 

trust in research in XAI.  To trust an AI model prediction, users need to understand and 

convinced that the predictions are produced for appropriate and valid reasons. Which seeks 

explanations. Once the AI models are implemented as products, they must act in accordance 

with a set of regional, national, or international regulations. AI models must be developed with 

an explainable way to act in accordance with such regulatory requirements. The ability to 

generalize is one of the key requirements of an effective AI model. Generalizing means the AI 

model should be able to perform well on samples that were not included in its training phase. 

In the training phase, models learn the fundamental associative patterns in the training data and 

rely on spurious associations to yield better performance [59]. Giving explanations to the model 

predictions gives a method to identify such false relations and gives a better sense of its 

generalization possibility. The bias of a model can be systematically reinforced with the training 

period, but XAI can help in identifying the bias of the model [60].  

The following figure from DARPA will explain the XAI concept simply. 
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Figure 2.1: Concept of Explainable Artificial Intelligence [61] 

There are many ways to explain the AI models, but in general, explainable modeling can be 

applied along with the entire AI development structure. Specifically, it can be applied prior to 

the model operations (pre-modelling explainability/ante-hoc), during the model operations 

(explainable modelling), and after the classification/detection model operation (post-modelling 

explainability/post-hoc) [62]–[65]. 

There are four main categories of ante-hoc modeling explainability. They are, 

1. Exploratory data analysis methods. 

2. Dataset description of standardization methods. 

3. Explainable feature engineering methods. 

4. Dataset summarization methods.  

The exploratory data analysis is focused on extracting a summary of the main characteristics of 

a dataset. This summary includes various statistical properties of the dataset. These statistics 

include average, mean, range, missing samples, dimensions, etc. Google Facets is one of the 

powerful toolkits dataset property extraction [66]. But, facts and statistics may not enough for 

dataset analyzing [67]. Because of that data representation strategies make up a huge amount 

of the exploratory data analysis methods. Usually, datasets are not released with sufficient 

documentation. Standardization of these datasets can resolve the issues like the misuse of data 

or systemic bias in AI models and ensure communication between the users and creators. There 

are few methods for this standardization including, datasheets for datasets [68], data statements 

[69], and so on. Explainable feature engineering involves understanding the relationship 

between and the importance of input features for given model predictions. Domain specific and 

model based are the two main approaches to achieve this [70]. Domain expert’s knowledge and 
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information identified from exploratory data analysis are used in the domain-specific 

approaches to identify and/or extract features. In contrast, various mathematical models are 

applied in model-based feature engineering approaches to understand the architecture of the 

dataset. Pre-modeling explainability or ante-hoc is a set of methodologies to understand the 

given dataset better before the modeling task. 

Explainable modeling can be achieved from the beginning of the model design so that the model 

can avoid the black box problem and explain itself. This can be achieved by restricting the AI 

model design to a specific set of models. The traditional way is to adopt from a specific AI 

model family which is considered as explainable. This family of models often provide one (or 

more) of the three levels, namely, simulatability, decomposability, and algorithmic 

transparency, of model transparency [71] proposed by Zack Lipton. Linear models, generalized 

additive models, rule sets, decision sets, decision trees, and case-based reasoning methods are 

examples of these families. But simply adopting these families does not guarantee the 

explainability. And also inheriting these models can reduce the performance of the model itself 

in some cases [70].  

By combining these traditional methods with a complex black-box method, researchers were 

able to develop hybrid models. The deep k-Nearest Neighbors (DkNN) approach is one of the 

examples. It proposes to use K-nearest neighbor (kNN) inference on the hidden representation 

of the training dataset learned through layers of a deep network [72]. The Self-Explaining 

Neural Network (SENN) is another example introduced by David Alvarez-Melis, Tommi S. 

Jaakkola [73]. The SENN is an AI model that is trained to provide a prediction along with the 

corresponding explanation. But there are several limitations to these approaches. Multimodal 

Explanations: Justifying Decisions and Pointing to the Evidence [74] by Dong Huk Park and 

his colleagues requires a training dataset augmented with both visual and textual explanations. 

But the same experiment shows that usage of multi-modal explanations improves predictive 

performance. TED by [75] Michael Hind and colleagues is somewhat similar to the Multimodal 

Explanations. One of the limitations of the above methods is that they assume the dataset is 

containing explainability and the model prediction explanations are more towards human 

understandability.  

The explainability of the model can be also achieved by adjusting the architecture of the AI 

model. This method is mostly focused on deep network architectures. For example, the 

explainable convolutional neural network architecture developed by Quanshi Zhang and the 

team can automatically push representations of higher layer filters to be an object part, as 

opposed to a mixture of patterns [76]. “This Looks Like That” is another example of developing 
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a deep network explainable [77]. It is developed by adding a prototype layer between 

convolutional layers. A preset number of image part prototypes for each class are included in 

the prototype layer. The most relevant parts are captured at each class specific prototype or 

semantic concepts for identifying images of a given class are captured at each class specific 

prototype. Another method of developing a self-explainable AI model is to use regularization. 

Saliency Learning [78] by Reza Ghaeini aims to teach the model to make the right prediction 

for the right reason.  He provides explanation training and ensures that the alignment of the 

model's explanation is with the ground truth explanation. Similarly, Training Differentiable 

Models by Constraining their Explanations [79] will match domain knowledge during training 

so the model predictions will explainable. This approach generalizes much better according to 

the experimental results.  

Currently, the AI models are developed focusing on the prediction performance rather than the 

explainability of the model. Because of that, pre-developed models are much focused on XAI 

literature. Because of that, many post-hoc methods are developed. The Local Interpretable 

Model-agnostic Explanations (LIME) [59] approach explains for an instance prediction of a 

model based on the target, the drivers, the explanation family, and the estimator. The following 

paragraphs will discuss this breakdown of post-hoc Explainability in detail. 

The target specifies the objective of an explainability method. The type, scope, and complexity 

of the target can be different. The target type can be mechanistic, which is used by the model 

creators to understand the model predictions to debug or validate the model [80] or the target 

can be functional, which is used by the outsiders or non-experts to understand the model 

prediction [59]. The scope of the target can be a local prediction [59] otherwise a global 

prediction [81]. Explaining prediction for an instance of a class versus all instances of a class.  

Input features of an AI model are the most common type of drivers to an explanation. But the 

raw input features are not the best but aggregated can be. For example, in an image classifier 

model in this research prediction explanation can be difficult to interpret or expensive to 

compute if they are based on individual pixels. But if the explanation drives on superpixels (a 

contiguous patch of similar pixels) [59] it can be more interpretable and less noisy. The 

explanation drivers include the input features and all other factors with an impact on the AI 

model development. Those factors include training samples, the choice of model architecture, 

choice of the optimization algorithm, or hyperparameter settings. 

As in explainable model design with explainable families, they can also be used as a post-hoc 

explanation. The main objective of an explanation family is its information content can be easily 
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interpretable by the use and the explanations should be complete. There are a number of 

explanation families which can be used in post-hoc explanation modeling. Saliency heatmaps 

(importance scores) are the most common type of explanation families. The more impactful 

drivers have a higher score on each explanation. Another common explanation family is 

decision rules. “if condition then outcome” is the general form of the decision rule. Here, the 

condition is a simple function defined over input features and the outcome represents a 

prediction of an AI model. Decision lists and decision sets are two types of decision rules where 

they are ordered and unordered [82]. Decision trees are quite similar to the decision rules where 

It can be generalized into a set of decision rules. Decision trees are structured as a graph with 

internal nodes representing conditional tests on input features and leaf nodes representing the 

model outcomes. In addition, there can be only one path from the root to leaf in a decision, 

where in decision rules not the case. Dependency plots are another explanation family aiming 

to communicate how the prediction depends on the input.  

One of the most user-friendly explanation families are the verbal explanations. In this method, 

explanations are similar to humane explanations and provided in natural language. Template-

based approaches are used in the beginning hence it is restricted [83]. Newer methods like 

Generating Visual Explanations by Lisa Anne and colleagues based on deep learning methods 

can generate textual augmented visual justifications or explanations [84]. The limitations of this 

method are lack of understandability in model errors and the explanation is based on the 

model’s internal logic. The smallest change to explanation drivers required to change a target 

to a predefined outcome is described as counterfactual explanations. A loss function can be 

defined to favor the smallest change to make model predictions closer to the desired outcome 

with few input features to generate counterfactual explanations.  

 

Figure 2.2: Template based model generates image relevant and class relevant explanations. The descriptions are 

image relevant, and definitions are class relevant. [84] 

Explanation estimation can be mainly described based on their model applicability, and the 

underlying mechanism. Some estimation methods are developed for a specific model 
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architecture, whereas others are developed generally and can be applied to any back-box model. 

For example, the LIME method can be applied to any model if a set of meaningful perturbations 

of inputs can be constructed at least in theory. But some of the methods are model-specific. 

They are both popular and difficult to understand hence targeted towards deep neural networks. 

The four major underline mechanisms are perturbation, proxy, backward propagation, and 

activation optimization. The idea of perturbation mechanisms is as follows. It will generate 

perturbations of desired explanation drivers. Then it will analyze their impact on the given 

target. Finally, it will summarize it using an importance score family of explanation. There are 

main two advantages to this method. They are being not limited to specific model architecture 

and easy to implement. In contrast, the main disadvantage is they are relatively computationally 

expensive [85] and it is a challenge to construct meaningful perturbations of drivers. Another 

commonly used mechanism to generate post-hoc explanations for deep network models is the 

backward propagation. The explanation results are important scores in terms of input features 

of the model. This method starts with the final layer which produces the given target and 

estimates the contribution of the previous layer neurons. This process is repeated backward 

until it reaches the input layer. Some of the most notable backward propagation methods are, 

Guided Backprop (GB) [86], DeepLIFT [87], and Integrated Gradients (IG) [88]. The main 

difference between these methods is the method of estimation of the previous layer 

contribution.  

The proxy mechanism is another post-hoc explanation method applied to replace the complex 

structure of deep neural networks with more simple and explainable methods introduces in later 

Figure 2.3: The iactivations iof ihigh ilayer ineurons iin iGuided iBackpropagation. ia) iGiven ian iinput iimage, 

ithe iforward ipass iis iperformed ito ian iinterested ilayer, ithen iset ito izero iall iactivations iexcept ione iand 

ipropagate iback ito ithe iimage ito iget ia ireconstruction. ib) iDifferent imethods iof ipropagating iback ithrough 

ia iReLU inonlinearity. ic) A iFormal idefinition iof idifferent imethods ifor ipropagating ia ioutput iactivation 

iout iback ithrough ia iReLU iunit iin ilayer i1  [86]. 
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sections such as decision rules and decision trees. Even though the decision trees are simple 

and explainable, when they are generated based on a deep neural network, they can be large, 

hence not explainable. The activation optimization mechanism is mostly in deep models’ inner 

functionality to generate explanations. Explanations from this mechanism are obtained by 

searching for an input pattern that produces maximum or minimum response for an inner 

component of a model as the target. The downside of this is that the input patterns returned with 

this mechanism have high frequency noise. This can be overcome to an extent by adding 

regularization.  

Following is a summary of each modeling stage. 

Pre-modelling explainability/Ante-hoc [63]: 

 Goal: Describe or understand the data used to develop AI models 

 Methods:  

 Exploratory data analysis 

 Dataset description standardization 

 Dataset summarization 

 Explainable feature engineering 

Explainable modeling [64]: 

 Goal: Develop AI models which are explainable within themselves 

 Methods: 

 Adopt explainable model family 

 Hybrid models 

 Joint prediction and explanation 

 Architectural adjustments 

 Regularization 

Post-modelling explainability/Post-hoc [65] 

 Goal: Understand or describe the output of pre-developed AI models 

 Methods: 

 Perturbation mechanism 

 Backward propagation 

 Proxy models 

 Activation optimization 
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2.7 Summary 

This chapter presented a critical review of the research around deficiency identification of 

greenhouse plants. After looking at the mentioned studies the most appropriate approach to 

deficiency identification with explanation is the object detection method. Among all the object 

detection architectures used in the above studies, the most suitable and most promising 

architecture is You Only Look Once (YOLO). The next chapter clarifies the means followed in 

recognizing and applying the best strategies to address this study. 

  



22 
 

Chapter 3 : Methodology 

3.1 Introduction 

In Chapter 2 an overall picture of the research related literature was given, by giving the data 

about the early engagement of deficiency identification of lettuce, lettuce in horticulture, 

disease identification of greenhouse plants, and a summary of the latest literature. The research 

methodology specifies the procedure used to achieve the research goals with the knowledge 

gain from the literature review. This chapter provides a comprehensive overview of the 

methodology behind this research by discussing the dataset creation, algorithm, 

implementation, etc. 

3.1.1 Problem Representation 

The goal of this study is to identify a solution to detect the nutrient deficiencies of greenhouse 

lettuce using image processing methods in real time and give explanations. The solution is 

carried out in three phases. The first phase was creating testbed and the dataset from greenhouse 

images in collaboration with the greenhouse of AIGrow. The second phase is training the 

detector to detect nutrient deficiencies using the collected dataset and evaluating the results 

against the training data. The Final phase is to make the solution to provide explanations to the 

detector results.  

3.2 Dataset Creation 

The common requirement of neural network related studies is the dataset. The dataset is 

depending on the area of the study. In this case, the dataset is plant related. There are many 

accustomed datasets for the plant related studies. As displayed in the literature review section, 

PlantVillage dataset [89] is vastly used in vision studies related to plants. Table 3.1 displays the 

most popular plant image datasets.  

Table 3.1: A summary of common and general image datasets for plants [43] 

Dataset Classes 
Image 

Number 

Annotation 

Samples 

Number 

Comment 

Flowers 102 102 1020 0 

Commonly occurring in the United Kingdom 

are chosen. 40 and 258 images are in each 

class. 

PlantVillage 38 19,298 0 

Images of previously cropped leaves in the 

field and captured by a camera in the 

laboratory 

CUB 200-

2011 
200 5994 0 

General-purpose dataset (not only plants) 

mostly web crawled data 
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Urban Trees 18 14,572 0 

Trees labeled by geo-location and tree species 

located within Pasadena. The dataset includes 

dense aerial and street view imagery 

LeafSnap 185 30,866 0 

high-quality images taken of pressed leaves; 

"typical" images taken by mobile devices 

(iPhones mostly) in outdoor environments 

ImageNet 1000 14,197,122 1,034,908 
general-purpose dataset (not only plants) 

mostly web crawled data 

MS-COCO 80 300,000 
More than 

2,000,000 

general-purpose dataset (not only plants) 

mostly web crawled data 

AI 

Challenge 
61 47,393 0 

general-purpose dataset (not only plants) 

mostly web crawled data 

iNat2017 5089 858,184 561,767 

general-purpose dataset (not 

 only plants) 

mostly web crawled data 

VegFru 70 160,731 0 
vegetables and fruits which has a strong 

association with the daily life 

CropDeep 31 31,147 49,765 

Contains images collected using various 

devices including cameras of IoT, autonomous 

spray robot, autonomous pinking robot and 

also mobile cameras and smartphones in an 

intelligent agricultural monitoring and 

management platform 

 

Hence the study is focused on greenhouse lettuce, it is difficult to use the above datasets because 

none of the open access datasets contain lettuce. Hence there is no acceptable dataset (image 

set) available for lettuce deficiency identification, it is needed to create a suitable dataset (image 

set) with greenhouse lettuce deficiencies.  

3.2.1 Experimental Setup and Image Acquisition 

The lettuce production system was constructed in the AIGrow [22] research greenhouse located 

at the Trace Expert City. The research greenhouse dimensions are 16m L x 8m W x 3.4m H. 

The ridge height is 5.7m. The greenhouse is covered with a double polycarbonate glazing and 

equipped with a Pad and Fan evaporative cooling system. The climate of the greenhouse 

Figure 3.1: AIGrow Greenhouse at Trace Expert City 
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environment is maintained by an automatic climate control system. Figure 3.1 shows an inside 

image of the greenhouse. 

As discussed earlier, the experimental setup was created using the deep flow hydroponic 

technique. It is one of the “Liquid Hydroponics’ method”. Lettuce cultivated in a solution 

culture has its roots immersed in a nutrient solution [3]. The experiment consisted of 28 

containers split into 4 groups or flows. Each flow held 7 lettuce plants. Three of the flows were 

containing treatment nutrient solutions and they are deficient in Calcium, Nitrogen, and 

Potassium and the final flow is controlled. Figure 3.2 shows the experimental setup. 

Initially, all 28 lettuce plants had the control nutrient solution in the root level for 15 days. Then 

the deficient solutions were induced through the flows in the treated plants. The experiment is 

carried out until all the plants show deficiencies. The image acquisition happened once a day at 

8.30 am using a handheld Canon EOS 6D Full Frame DSLR Digital Camera under the 

greenhouse lighting conditions. Figure 3.3 shows an image of calcium deficient lettuce plant. 

Figure 3.2: Experimental setup with 3 deficient nutrients and controlled 

Figure 3.3: Calcium deficient lettuce plant 
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At this point, the tip burn of calcium deficiency is clearly visible. The created image dataset 

consists with 4 main classes. This images collection will be referred as initial image data set in 

coming sections. Table 3.2 shows the initial dataset image classes and umber of images in each 

class. Each image is 3456 x 2304 pixels and had 72 dpi horizontal and vertical resolution. 

Table 3.2: Initial image dataset 

Class Number of Images 

Controlled (Healthy) 

Calcium deficient 

Nitrogen deficient 

Magnesium deficient 

128 

147 

119 

105 

Total Number of Images 499 

  

3.2.2 Image Annotation 

The next step was the annotation process, which labels location on a deficiency symptom in the 

image using a bounding box and generate the corresponding class and location information into 

a text file. In this study, LabelImg [90] was used to annotate and label the images. It is an image 

annotation tool with a GUI and labels object bounding boxes in images. It is written in Python 

and uses Qt for its graphical interface and distributed under MIT license. PASCAL VOC format 

is used to save the annotations as XML files, the same format is used by ImageNet. Other than 

that, it also supports YOLO format. Following guidelines are used in labeling the image dataset.  

1. When an image contains multiple points of deficiencies, each deficiency point should 

be marked out. 

2. When there are overlapped deficiency points in the image, all should be marked and 

enclosed. 

3. Mark deficiencies in an image if it can be identified. 

This study follows the LabelImg installation on Windows operating system with Anaconda 

framework (Figure 3.4). Then the following steps were used to annotate the images. 

Step 1: Predefine the image classes as. 

 Healthy – Class number 0 

 Calcium – Class number 1 

Nitrogen – Class number 2 

Magnesium – Class number 3 
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Step 2: Upload images to the running path after resizing them to 72 dpi which will be effectively 

supported by the YOLOv3 network (Figure 3.5). 

Step 3: Build and annotate each point in of the images (Figure 3.6).  

 

Figure 3.4: Installing LabelImg on Windows operating sytem with Anaconda framework 
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Figure 3.5: Collection of calcium deficient images prior to annotation process 

 

Figure 3.6: Make bounding boxes on all the spots of deficiency in visible and save the classes using LabelImg 

tool.  

This creates a list of annotation text files containing the bounding box points (Figure 3.8). 
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Figure 3.7: Annotation process console output. XML file with the image name is created for each annotated 

image 

     

Figure 3.8: Left - annotation text files per each image with the same name as image. Right - Annotation file 

contains the coordinates of each bounding box of the image against the class name 

As shown in the above figure, calcium deficiency is annotated using multiple bounding boxes 

in the same image. The same goes for the magnesium deficiency, but nitrogen and controlled 

can only be annotated using a single bounding box. The above annotation files are created as 

the PascalVOC XML files. Those files will be converted into YOLO text file format in the next 

steps. The reason for creating the initial annotation files in PascalVOC format is that they can 

be easily augmented using the existing tools. 

Table 3.3: Number of annotated samples 

Class Number of Annotated Samples 

Controlled (Healthy) 

Calcium deficient 

Nitrogen deficient 

Magnesium deficient 

128 

357 

119 

173 

Total Number of Images 777 
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3.2.3 Dataset Separation 

After the annotation and before the augmentation process, the dataset is partitioned into two 

parts; the train, and test sets, based on the deep learning methods. This is also highlighted in the 

literature review section. Most of the experiments presented in that section were used only two 

sets, so this study also uses to data set as training and testing. Hence the number of images in 

each class is different, the following percentages are used in the partitioning process. 80% of 

each class as a training set and 20% remaining of each class is for testing. These empirical 

proportions compensate for the dataset imbalance problem. This step is placed in between the 

annotation and augmentation steps to avoid placing the same image in both data sets. 

Table 3.4: Separated image dataset into two subsets: training and testing 

Class # of Images 

 Training Testing 

Healthy 102 26 

Calcium deficient 117 30 

Nitrogen deficient 95 24 

Magnesium deficient 84 21 

Total 398 101 

 

3.2.4 Image Augmentation 

Once the annotation task was completed, the images were subjected to the augmentation 

process. The augmentation is required because the performance of the deep learning task is 

highly dependent on the data volume. However, the images are limited in this study and have 

only around 500 images. Augmentation techniques are used to increase the number of images 

artificially. In this study, an opensource git hub library, imgaug [91] was used to augment the 

images with the bounding boxes. The advantage of this library is that it creates the annotation 

XML for the augmented image. Following python script based on the above library is used for 

augmentations. Following augmentation techniques are applied against the images with a 

probability of 0.5 if not mention as all images. 

 50% iof iall iimages i- iHorizontally iflip 

 20% iof iall iimages i- iVertically iflip 

 Crop iby i-5% ito i10% iof iimage iheight/width 

 Scale ito i80 ito i120% iof iimage isize, iindividually iper iaxis 

 Translate iimages iby i-20 ito i+20 ipercent 
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 Rotate iimages iby i-45 ito i+45 idegrees 

 Shear iimages iby i-16 ito i+16 idegrees 

 Execute i0 ito i5 iof ithe ifollowing i(less iimportant) iaugmenters iper iimage 

o Convert iimages iinto itheir isuperpixel irepresentation 

o Sharpen iimages 

o Emboss iimages 

o Add igaussian inoise ito iimages 

 

 

Figure 3.9: Augmented images using bounding-box-augmentation [92] based on imgaug [91] python library. 

Each image generates maximum of 10 augmentations according to the above techniques 

 

Figure 3.10: Annotation files are also generated with the augmentation process for each image with the same 

format 

Hence iYOLO iis inot isupporting ithe iPascalVOC iAnnotation iXML ifiles, ithe ifiles iare 

iconverted iinto iYOLO itext ifile iusing ithe ifollowing ipython iscript. iThis icode iis icreated iusing 

i“Joseph iRedmon's ivoc_label.py” [92] iand iMuhammad iYounus’s “convert_voc_to_yolo.py” 

[93]. 
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Figure 3.11: Main python script, voc_to_yolo.py 
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Figure 3.12: Python script with conversion functions, convert.py 

  

Figure 3.13: Left - newly created annotation text files in the same directory as images and XML files. Right - 

PascalVOC XML is converted into YOLO text format (<class> <x_center> <y_center> <width> <height>) 
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Following table contains the number of images after going through the annotation and 

augmentation process. 

Table 3.5: Number of images after augmentation 

Class Number of Augmented Images 

 Training Testing 

Healthy 897 224 

Calcium deficient 911 228 

Nitrogen deficient 878 219 

Magnesium deficient 770 193 

Total 3456 864 

 

3.3 Detection Algorithm 

As described in the literature review chapter, many classification algorithms and detection 

algorithms are available for plant deficiency identification. These deep learning algorithms vary 

from each other based on their basics used in the algorithm design and deficiency identification 

approach. After the critical review of the literature as presented in the previous chapter, version 

three of the You only look once, or YOLO object detection algorithm is selected for this study. 

This section will describe the architecture of the algorithm. 

3.3.1 YOLOv3 Architecture 

Most of the detection systems use classifiers underline to perform detection. these systems take 

a classifier for that object and evaluate it at various locations and scales in a test image to detect 

an object. More recent algorithms like R-NN use region proposal methods to generate potential 

bounding boxes on an image then run the classifier on those bounding boxes. Once the 

classification is done, post processing refines the bounding boxes. This process is somewhat 

complex. YOLO solves the object detection problem as a simple regression problem where a 

single convolutional network simultaneously predicts multiple bounding boxes and class 

probabilities for those boxes. Few advantages of this system are first, it is fast because of the 

simple pipeline. Second, when making predictions, it reasons globally about the image. It sees 

the entire image during training and test time in contrast to sliding window and region proposal-

based techniques, so it implicitly encodes contextual information about classes as well as their 

appearance. Finally, it learns to derive the representations of objects so it is less likely to beak 

on unexpected inputs [15]. 
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This study is based on the third iteration of YOLO over the years and the underline architecture 

of it is called Darknet. Initially, YOLOv2 used a 30-layer custom architecture of darknet. 

YOLOv3 architecture is still missing some of the important elements like residual blocks, skip 

connections, and upsampling, which are now mandatory in most of the highly used AI 

algorithms. YOLO v3 corrected those missing elements and uses a variant of Darknet, which 

initially was a 53-layer network trained on ImageNet. 53 more layers are added onto it for the 

task of detection resulting a 106-layer fully convolutional underlying architecture.  

Following diagram created by Ayoosh Kathuria for his blog post on What’s new in YOLO v3 

posted on towardsdatascience website. 

 

Figure 3.14: YOLOv3 network architecture 

YOLOv3 architecture is explained in Figure 3.15. (A) model pipeline with an input image size 

of 416×416 pixels. This returns 3 types of feature maps as outputs. They are 13×13×69, 

26×26×69, and 52×52×69 respectively. (B) the basic element of YOLOv3, Darknet conv2D 

BN Leaky ("DBL" for short), is created with one convolution layer, one batch normalization 

layer, and one leaky Relu layer. (C) two "DBL" structures following with one "add" layer leads 

to a residual-like unit ("ResUnit" for short); (D) several "ResUnit" with one zero padding layer 

and "DBL" structure forward generates a residual-like block, "ResBlock" in short; (E) some 

detection results with YOLOv3 approach, resize the 732×574 images to 416×416 size as input. 

Convolutional layers are the only layers used to make YOLO an FCN (Fully Convolutional 

Network). Pooling is not used inside the network in any form, and downsampling of the feature 

maps is also done by using a convolutional layer. Usually pooling leads to a loss of low-level 

features and the convolutional layer downsampling prevents that. The newer architecture 
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includes upsampling and residual skip connections. The most noticeable or important feature 

of YOLOv3 is that there are three different scales of detection. YOLOv3 being a fully 

convolutional network makes it not dependent on the input image size. However, in practice, 

input images should not be on varying input sizes because various problems that only appear 

once the algorithm is implemented. As stated earlier, YOLOv3 detects the object by applying 

a 1×1 detection kernel at three different places in the network on feature maps of three different 

sizes. 

 

Figure 3.15: YOLOv3 pipeline architecture 

The composition of the detection kernel is as follows. 

1 ×  1 ×  (𝐵 × (5 +  𝐶) ) 

In the above algorithm, “B” is the number of bounding boxes can predict on a cell on the feature 

map, “5” is the summation of the object confidence and 4 bounding box attributes, and “C” 

indicates the number of classes of the detection problem. The height and width of the feature 
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map produced by this kernel are similar to the previous feature map and detection attributes are 

placed along with the depth on the newly generated feature map as explained above. 

The network downsamples the image using the stride of the network. Stride is the number of 

pixels shifts over the input matrix. Generally, the outputs of the layers are smaller than the input 

of the layers in the network and that factor makes stride of any layer in the network. For 

example, if the stride is 32 in the network, then an input image of size 416×416 will result in a 

13×13 output in size. As explained in the previous paragraph YOLO uses a convolutional layer 

with 1×1 convolution to predict objects. The first output of the layers is a feature map. The size 

of the final prediction map has the same size as the feature map before the final layer because 

the 1×1 convolutions are used to predict. In YOLO v3, each cell can predict the same number 

of bounding boxes using this prediction map. If the center of a detecting object falls in the 

receptive field of a cell that object is predicted by that cell of the feature map through one of its 

bounding boxes.  

 

Figure 3.16: “The cell (upper image) containing the center of the ground truth box of an object is chosen to be 

the one responsible for predicting the object. In the image, it is the cell which marked red, which contains the 

center of the ground truth box (marked yellow)” ~ [94] 

As described earlier the three prediction scales downsample the image to the dimensions of 32, 

16, and 8 respectively. Throughout the first 81 layers, network downsamples the image to 

produce the first detection at 82nd layer by having a stride of 32 at layer 81. As the above 

example, a 1×1 detection kernel is used to made detection. The resulting feature map has 
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dimensions of 13×13×255. Then, the second detection is made at the 94th layer, yielding a 

detection feature map with dimensions of 26×26×255. The final of the scales is at the 106th 

layer, and the resulting feature map has dimensions of 52×52×255. 

The result of the detection is a set of bounding boxes around the prediction. Predicting the width 

and height of the bounding box leads to unstable gradients during training. Because of that, the 

detectors have a pre-defined default set of bounding boxes called anchors, and the detectors are 

offset to them. Then the bounding box is predicted by applying the transforms. The following 

formulae describe how the network output is transformed to obtain bounding box predictions. 

 

bx, by, bw, bh are the x, y center co-ordinates, and the width and height of the prediction. cx and 

cy are the top-left coordinates of the grid. tx, ty, tw, th are the network outputs. pw and ph are 

anchors dimensions for the box. The following image shows how to apply a log-space transform 

to the output to predict the dimensions of the bounding box and then multiplying with an anchor. 

 

Figure 3.17: How the final prediction is given by transforming the detector output. 

According to the three scales described in previous paragraph, there can be 10647 bounding 

box predictions ([13x13] + [26x26] + [52x52] = 10647). YOLO will reduce the boxes using 

thresholding by object confidence and non-maximum suppression methods [95]. 

3.4 Implementation 

Based on the literature review, the implementation of a detection system requires a hardware 

setup and a set of software and frameworks to support the development. 
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3.4.1 Workstation Setup 

This section explains the hardware selection for the study. It is a known fact that the high 

performing hardware is required for the calculation tasks in Machine Learning Algorithms, 

libraries. 

Most of the common machine learning algorithms including neural networks cannot be 

parallelly trained. This makes that they have to train on a single processor. Simple MLPs can 

run in a viable amount of time using a single processor, it is not feasible to train a large 

Convolutional Neural Network on a personal laptop or even a personal computer with a decent 

processing unit. Graphical processing units (GPUs) are used to overcome this challenge of 

training large neural networks. GPUs are good at performing large amounts of simple 

operations at the same time with their numerous processor cores and they provide the best 

memory bandwidth while having almost no drawback due to latency via thread parallelism 

against the CPU. Most of the neural network operations can be identified as simple matrix 

operations, and GPUs are able to run these small operations parallelly in their thousands of core 

to faster the training process of the model. 

Therefore, the study used a workstation with the specifications that are summarized in the 

following table. 

Table 3.6: Workstation specification summary 

Machine Type Desktop Workstation 

CPU Intel Core i3-7300 2 Cores 4 Threads 4.00 GHz 

RAM 16 GB 

GPU GeForce GTX 1060 6 GB 1280 NVIDIA CUDA Cores 

Operating System Ubuntu 18.04 

 

3.4.2 Software and Frameworks 

The operating system chosen is an Ubuntu 18.04 Linux distribution, as it is freely available and 

as it is the primary supported operating system of the Darknet and TensorFlow. To utilize the 

GPU’s capabilities, the libraries CUDA 10.0 and cuDNN 7.4 were installed. Before installing 

the framework OpenCV 3.4.0 was also installed. 

There are various deep learning frameworks capable of creating, training, and using YOLOv3. 

These frameworks vary in speed, abstraction level, modifiability, and creation of new layers. 

Table 3.7 lists various frameworks along with their programming language. While preferences 
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may vary, web research concludes that there is no single best network. Darknet framework was 

selected because of its high abstraction level, which makes network architecture definition, 

solver, and application relatively easy. It is fast, easy to install, and supports CPU and GPU 

computation [95]. 

Table 3.7: List of deep learning frameworks with programming languages which can be used to implement 

YOLO 

Framework Programming Language 

Darknet C, CUDA 

Tensorflow Python 

Pytorch Python, C++, CUDA 

OpenCV C/C++ 

 

When working with Darknet only the configurations are changed and most of the related work 

like dataset preparation is done using python scripts. 

3.4.3 Experimental parameter setting 

Once the data set is prepared, YOLOv3 configuration files were created namely .data, . names, 

and .cfg. .data file includes the following content. 

classes = 4 

train = data/train.txt  

valid = data/test.txt  

names = data/deficiency.names  

backup = backup/ 
 

classes: the number of class in the data set 

train: train file path 

test: test file path 

names: class names file 

backup: path to store generated weight files 

The deficiency.names looks like as follows. Every category is defined on a new line, and the 

line number is the category number in label text files created earlier in the dataset preparation. 

Healthy 

Calcium 

Nitrogen 

Magnesium  
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The yolov3.cfg file from pjreddie.com was used for training configurations which include three 

yolo layers. As a traditional method, each object is to be trained for at least 2000 iterations. 

Hence, the dataset was trained for 8000 iterations as there are 4 classes to train. The values of 

batch and subdivisions were set to 24 and 8 respectively for optimal training speed. The width 

and height values were set at 416 each for optimum speed and better accuracy of detection. The 

number of filters used in the convolution layer was set to 27 as the value is dependent on the 

total number of classes. 

batch=24, indicates that for every training step 24 images are used. 

subdivisions=8, the batch is divided by 8 to decrease GPU VRAM requirements. 

filters=27, this is calculated from 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑐𝑙𝑎𝑠𝑠𝑒𝑠 +  5) × 3 

classes=4, the number detection categories 

max_batches=8000, 2000 iterations per each object over 4 objects 

3.4.4 Transfer learning 

The total amount of time required to train the network with the above configurations was 

approximately 9-10 hours. The weights thus generated after 8000 iterations were used to carry 

out detections and analyzing the performance. Once before the training is started, the network 

architecture was displayed as follows. 
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The parameters used for testing the completeness of the model are mAP, IoU, and f1 score. 

Mean Average Precision (mAP) is the mean value of average precisions and Intersection Over 

Union (IoU) is the average intersect over union of objects and detections for a certain threshold 

and f1 score depends on the precision and recall and can be calculated based on confusion 

matrix. 

 

Figure 3.18: Performance metrics graphical representation [96] 

 

Figure 3.19: Performance metrics mathematical representation 

Performance charts will be shown in the evaluation and result section. Following chart visualize 

the loss during training. 

 

Figure 3.20: Loss curve during training process 
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Above curve is generated based on the following loss function by Darknet itself. 

 

Figure 3.21: YOLO loss function taken from version 1 paper [15] 

The generated model weights are used to combine with the explainable model in the next 

section and these weights are selected based on the evaluation results which will be discussed 

in the evaluation and result section. 

3.5 Explainable Model 

As discussed in the literature review section, explainability is added to a model to provide an 

understanding of the result derived by that model to the end-users. They may have the 

knowledge of the subject domain of this study but may not have the knowledge of how the 

convolutional neural networks work and it is not necessary for them to have the knowledge 

related to convolutional neural networks to understand this study but need a method to return 

the results in a domain specific manner.  

To achieve this goal based on the literature review one of the most user-friendly explanation 

families, the verbal explanations are used because the explanations are usually provided in 

natural language form which are like humane explanations.  

 

Figure 3.22: Explainable Architecture 



44 
 

The interaction interface can be a Mobile application or a server application that takes the input 

as an image which is evaluated against the YOLOv3 model, which was trained in the previous 

section. The classes are pre-defined in the TensorFlow application is written on Java 

TensorFlow Classifier Class. 

The knowledge base is created with the help of an Agronomist and online knowledge sources 

such as YARA [33]. Each of the class has a verbal explanation like humane explanations in the 

inference engine to provide based on the detector results. As an example, 

Table 3.8: Sample explanations of the deficiencies identified 

Deficiency Class Sample Explanation 

Calcium Due to Calcium deficiency, the growth of lettuce is observed as reduced 

and leaves are wavier than normal. Brown or grey lesions has 

developed starting from leaf margins or tips of young leaves. This 

symptom is called as 'tip-burn'. When the Calcium -deficiency 

progresses, the leaves begin to die from tips and margins inwards. 

Subsequently, the persistent symptoms will spread over the older 

leaves. 

Nitrogen Older leaves have the symptoms of N deficiency at first with light green 

chlorosis. This moves to the head and will have light green chlorosis. 

No head is formed with severe Nitrogen deficiency and the growth is 

restricted. But the leave shape remains normal. 

Magnesium Older leaves have the symptoms of Mg deficiency at first with 

yellowing between veins and leaf margin discoloration of yellowish 

orange. If this continues, the yellow leaf zones will die but the veins 

remain green. Growth is incrementally restricted with the severity of 

the deficiency. 

  

  



45 
 

Chapter 4 : Evaluation and Results 

Evaluating deficiency identification implies, evaluating the deep neural network itself. This 

research uses the YOLOv3 (You Only Look Once version 3) object detection algorithm based 

on fully convolutional neural networks. So, the evaluation of the trained algorithm is performed 

on the testing datasets. 

4.1 Evaluation Criteria and Datasets 

Based on the literature review, the dataset is separated into 80% (training) 20% (testing) subsets 

as mentioned in Table 4.1 Dataset Separation the dataset is separated into training and testing 

subsets prior to the augmentation to avoid the same image in both datasets. 

Table 4.1: The separated dataset 

Class Number of Images Augmented Images 

 Training Testing Training Testing 

Healthy 102 26 897 224 

Calcium deficient 117 30 911 228 

Nitrogen deficient 95 24 878 219 

Magnesium deficient 84 21 770 193 

Even though the above dataset is separated, the images are taken in similar conditions and 

similar backgrounds. To overcome this issue and as the second step of validating the model, a 

web scraped dataset was used. The images were downloaded using the following web scraper 

written in NodeJS (JavaScript). Images were scraped from the ecosia.org, a search engine based 

in Berlin, Germany, that donates 80% or more of its profits to nonprofit organizations that focus 

on reforestation. Search results are simpler than google, so it is easy to download. 

 

Figure 4.1: Ecosia is a social business founded in 2009 after a trip around the world forcusing reforestation 
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These images were not subjected to any augmentation. Among those images, the best 100 

images of each deficiency and healthy were selected to validate the model. Figure 4.2 shows a 

sample set of annotated images. 

The Table 4.2 contains and Figure 4.3 shows the bulk downloads of the images and selection. 
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Table 4.2: Number of deficiency and healthy images downloaded from ecosia using web crawler 

Class Total bulk downloaded images Selected images 

Controlled 193 100 

Calcium deficient 172 100 

Nitrogen deficient 158 100 

Magnesium deficient 135 100 

 

 

Figure 4.2: Annotated deficient images in dataset 

 

Figure 4.3: Bulk downloaded images from web scrape, prior to selection 

As explained in the 3.2 Dataset Creation of this study, there are several available general fine-

grained datasets for image classifications. Table 4.3 shows the most popular and freely available 

datasets via the internet. From those datasets, PlantVillage and CropDeep datasets include 

lettuce images, but they have only the lettuce related disease images but neither of them includes 

nutrient deficiency images that can be used for classification in this study. Hence the model 

was not validated against a public dataset. 
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Table 4.3:Summary of popular general and fine-grained vision datasets with plants [43] 

Dataset Classes 
Image 

Number 

Annotation 

Samples 

Number 

Comment 

Flowers 102 102 1020 0 

The flowers chosen are flowers commonly 

occurring in the United Kingdom. Each class 

consists of between 40 and 258 images. 

PlantVillage 38 19,298 0 

contains only images of leaves that are 

previously cropped in the field and captured 

by a camera in the laboratory 

CUB 200-

2011 
200 5994 0 

general-purpose dataset (not only plants) 

mostly web crawled data 

Urban Trees 18 14,572 0 

trees labeled by geo-location and tree species 

located within Pasadena. The dataset includes 

dense aerial and street view imagery 

LeafSnap 185 30,866 0 

high-quality images taken of pressed leaves; 

"typical" images taken by mobile devices 

(iPhones mostly) in outdoor environments 

ImageNet 1000 14,197,122 1,034,908 
general-purpose dataset (not only plants) 

mostly web crawled data 

MS-COCO 80 300,000 
More than 

2,000,000 

general-purpose dataset (not only plants) 

mostly web crawled data 

AI 

Challenge 
61 47,393 0 

general-purpose dataset (not only plants) 

mostly web crawled data 

iNat2017 5089 858,184 561,767 

general-purpose dataset (not 

 only plants) 

mostly web crawled data 

VegFru 70 160,731 0 
vegetables and fruits which are closely 

associated with the daily life of everyone 

CropDeep 31 31,147 49,765 

mages are collected by various equipment 

including cameras of IoT, autonomous spray 

robot, autonomous pinking robot, mobile 

cameras and smartphones in an intelligent 

agricultural monitoring and management 

platform 

 

4.2 The Experimental Results 

The performance evaluation is carried out while training as well against the testing dataset from 

the separated images of the original dataset. The following values are the performance metrics 

obtained on the training dataset.  
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4.2.1 Confusion Matrix, IoU, mAP, and F1-score 

A confusion matrix is a summary that gives the prediction results on a detection problem. The 

number of correct as well as a number of incorrect predictions is summarized with counted 

values and broken-down class by class. This is the key to the confusion matrix. The confusion 

matrix shows the ways in which the defined model is confused when it makes predictions. It 

gives insight not only into the errors being made by a detector but also more importantly the 

types of errors that are being made. These counts are made in reference to the number of 

annotations/bounding boxes in images. 

For Calcium (ClassId = 0), TP = 2186, FP = 16 

For Nitrogen (ClassId = 1), TP = 928, FP = 64 

For Magnesium (ClassId = 2), TP = 713, FP = 89 

For Healthy (ClassId = 3) TP = 871, FP = 17 

For confidence threshold 0.25, the average Intersection over Union is 90.10% 

For IoU threshold of 0.5, that is 50%, the mean average precision 94.38% 

For confidence threshold 0.25, the F1-score (the harmonic mean(average) of the precision and 

recall) is 0.97 

Figure 4.4 visualize the mean average precision of the model throughout the training process 

over the training image iterations. 
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Figure 4.4: Mean Average Precision against the iterations over training dataset along with the loss curve 

Once the training is completed, the weights were chosen to test the model based on the above-

mentioned parameters and by the following graph, the best accuracy model achieved is 94.38% 

and the loss is minimum at the 8000. 

The following values are the performance metrics obtained on the testing dataset. 

 

Following figure shows the results of the testing. (a) is classified as Calcium deficient, (b) is classified 

as Nitrogen deficient, (c) is classified as Magnesium deficient, and (d) is healthy. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.5: Detection output. (a) Calcium deficient, (b) Nitrogen deficient, (c) Magnesium deficient, and (d) 

healthy 

As the next step of evaluation, the web crawled dataset is tested against the model and the 

following are the results. 
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4.2.2 Summary 

The performance results from the training, testing on own data, and testing on web crawled data 

can be summarized into following table. 

Table 4.4: Summary of performance test results 

  Training Testing - Own Testing - Web 

  AP TP FP AP TP FP AP TP FP 

Calcium 99.30 2186 16 91.20 259 19 81.17 83 14 

Nitrogen 93.80 928 64 82.60 221 28 73.40 77 21 

Magnesium 86.92 713 89 78.13 156 34 69.33 69 28 

Healthy 97.50 871 17 89.91 202 22 79.01 80 15 

                 

mAP 94.38 85.46 75.73 

TP 4698 838 309 

FP 186 103 78 

FN 119 73 63 

Precision 0.96 0.89 0.80 

Recall 0.98 0.92 0.83 

F1-score 0.97 0.90 0.81 

As seen from the above table the performance of the model with the same dataset as the training 

data is having the best mean average precision and the least value is the web crawled dataset. 

The reason behind this is that the model is already trained with the training data and the features 

are already extracted based on them and the study’s own testing dataset is a separation on the 

training dataset hence have similar backgrounds and similarly featured as in the training dataset. 

But as for the web crawled dataset, it has a collection of images with different color gradients, 

contrasts, and sizes. This may cause this decrement in performance.  

When comparing the classes against the same dataset, the difference in performance values can 

be seen among them. Calcium has the overall best performance values. The reason is that the 

maximum number of images in the dataset is related to calcium and the maximum number of 

annotations is also related to calcium. Tip burn symptom of the calcium makes that there as 

multiple bounding boxes in the same image and there are multiple positions of symptoms in the 

same image. In contrast, Nitrogen and Magnesium symptoms are spread throughout the plant, 

so the bounding box covers the entire plant. This makes a smaller number of bounding boxes 

for these two classes. Finally, the healthy class also have better performance than Nitrogen and 

Magnesium and lesser performance than Calcium.  
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Chapter 5 : Conclusion  

With the improvements of horticultural lettuce production, greenhouses, one of the major 

controlled environmental architectures, are vastly used with the aim of providing an optimal 

nutrient composition to the corps, to protect the crops from pests without applying pesticides, 

and to provide the optimal environmental conditions to the corps as in temperature, humidity, 

etc. Even though the greenhouse is a controlled environment and lettuce is produced in a 

nutrient solution, there can be a production loss due to nutrient deficiencies. Some of the 

deficiencies generate manifestation in the visible spectrum. There are many solutions to 

mitigate the crop loss due to nutrient deficiencies, but identifying the deficiency beforehand is 

a crucial step in this deficiency management. To overcome this, machine vision is applied to 

monitor plants. There are multiple approaches for this task as discussed in the literature review, 

but the current limitation is the lack of explanation of results in a humane understandable 

method. 

5.1 Study Conclusion 

In this study, YOLOv3 is used to detect the deficiencies of greenhouse lettuce because it has 

good detection speed and good detection results according to the literature review. In addition 

to that, the detector takes the first step of the explanation model by providing the bounding 

boxes of the deficiency. This helps to understand the result in a way. Hence there is a need of a 

dataset for detector model training, the literature review was carried out for finding a dataset 

but as explained the publicly available fine-grained datasets do not include lettuce deficiency 

images. Because of that, an experimental setup was created in AiGROW greenhouse with the 

help of an Agronomist to acquire images with deficiency symptoms. The deficiency images 

were acquired for lettuce calcium, nitrogen and magnesium deficiencies along with a control 

setup for healthy plants. The acquired images were annotated, and the annotated images were 

subjected to the augmentation process to grow the dataset. Before the augmentation, the dataset 

was separated to training and testing subsets as for the testing dataset to be used in the first step 

of evaluation of the model. This process is explained in 3.2 Dataset Creation Section of Chapter 

3. 

The YOLOv3 model was trained on top of the Darknet framework, which is an open source 

neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU 

and GPU computation. As explained in 3.4 Implementation section of Chapter 3, Darknet was 

compiled on specific hardware setup and YOLOv3 was trained using transfer learning methods 

where the weights were pre-trained weights for the convolutional layers by Darknet. The 
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training mAP achieved 94.38% and the loss was stabilized in 8000 iterations. The testing was 

carried out on the own dataset and another dataset was created using a web crawler as described 

in 4.1 Evaluation Criteria and Datasets section of Chapter 4. The separated testing dataset 

achieved an mAP of 85.15% while the web crawled test dataset settled on 75.73%. 

As the explainable architecture, the weights generated from the model training was combined 

with the TensorFlow Inference engine for Java and generated the final output with explanation 

based on the detector output. 

5.2 Study Generalization 

This research is focused to overcome the challenge of explaining the nutrient deficiencies 

identified using Convolutional Neural Networks. The study combines the results obtained from 

the object detector with the TensorFlow inference engine to provide humane understandable 

results for deficiency identification of crops. This research studied this concept using 

greenhouse lettuce as the plant.  

The solution can be generalized to use in any kind of crop which has nutrient deficiencies with 

the symptoms available in the visible spectrum. The weights from the trained neural network 

can only be used to identify the similar images which were trained. In this case, the neural 

network is trained to identify the Calcium, Nitrogen, and Magnesium nutrient deficiencies of 

lettuce but the same wights can be used to identify other crops with visually similar nutrient 

deficiencies. The accuracy may lower than the accuracy with lettuce.  

To gain the best results out of the same network, it should be trained with other images related 

to desired deficiencies and the weight must be obtained to combine with the inference engine. 

The knowledge base should be updated to support the additional classes added to the neural 

network so that the inference engine can return the explanations for those classes as well. 

The next subsection will explain how the increase the accuracy and escape the bound of the 

visible spectrum. But the generalization is valid with all the extensions discussed in the final 

section. 

5.3 Future Work 

The model was providing quite good results for calcium deficiency and healthy lettuce, but 

nitrogen and magnesium were not quite good. The reason was identified as a lack of enough 

training material. Few extensions can be carried out regarding this study to expand and make it 

more efficient and accurate. 
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One of the most constructive extensions is to expand the dataset with new images not focusing 

on a single lettuce variety but multiple varieties of the same deficiency setups. This can provide 

the features to identify deficiencies of multiple varieties of lettuce. 

The next extension is to capture images using an IR camera. Even though the colored images 

visualize the symptoms of tip burn clearly, the color changes and color patches are not much 

visible in the RGB spectrum of the images, because of that the annotation task was quite 

difficult to point the deficiency symptom.  

Finally, other pre-trained weights of YOLOv3 on darknet can be used to train the model. 
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