

A.R.S.P. Rodrigo

2020

Deficiency Identification of

Greenhouse Lettuce using

Explainable AI

Deficiency Identification of

Greenhouse Lettuce using

Explainable AI

A dissertation submitted for the Degree of Master

of Science in Computer Science

A.R.S.P. Rodrigo

University of Colombo School of Computing

2020

i

DECLARATION

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: ARSP Rodrigo

Registration Number: 2017/MCS/070

Index Number: 17440704

________________ ________________

Signature: Date:

This is to certify that this thesis is based on the work of

Mr./Ms. ARSP Rodrigo

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by,

Supervisor Name: Dr. DD Karunaratne

________________ ________________

Signature: Date

14/11/2020

ii

ABSTRACT

The Convolutional Neural Network (CNN) based solutions are used to identify the nutrient

deficiencies of the crops based on the color variances of the leaves. However, one of the major

problems in the CNN based solutions are the lack of ability to explain the results obtained. This

research is focused on overcoming this challenge by combining the results obtained from CNN

with TensorFlow Inference Engine to provide humanely understandable results for deficiency

identification of crops. Therefore, greenhouse lettuce is selected as the crop for the study.

Greenhouse farming became popular with the technological evolution in the last few decades.

This aims to provide an optimal nutrient composition to the corps, to protect the crops from

pests without applying pesticides, and to provide the optimal environmental conditions to the

corps such as temperature, humidity, etc. Lettuce is one of the mostly consumed vegetable crops

among the green house crops but facing a yield loss due the nutrient deficiencies. Therefore,

the early identification of deficiencies becomes crucial. A custom test bed is created to gather

data/images and using those data/images YOLOv3 object detection model was trained to detect

Calcium, Nitrogen, and Magnesium nutrient deficiencies of greenhouse lettuce. The results

demonstrate a mean average precision of 94.38% on training data and 75.53% on custom data.

The trained weights were combined with the TensorFlow Inference Engine to provide

explainable results using a local knowledge base of deficiencies.

iii

ACKNKOWLEDGEMENTS

My deepest gratitude first and foremost, goes to Dr. Damith Karunarathne, my supervisor at

University of Colombo School of Computing (UCSC), for friendly and open-minded

supervision and enabling work on this thesis at the UCSC. Your support and understanding

over these past 12 months have been tremendous and I would like to pay my gratitude for the

guidance provided. Furthermore, I would like to thank Dr. Chamath Keppitiyagama for his

early engagement and the rest of my research evaluation committee for the insightful comments

and hard questions.

My sincere appreciation also extends to Dr. Subha Fernando, my advisor at CodeGen

Internation (Pvt.) Ltd. for the continuous support, guidance, and motivation. I hope that I have

managed to address some of the many precious points that she has raised during the discussions.

This research covered an area where I have very little knowledge, to begin with, so I would like

to recognize the invaluable assistance provided by Mr. Chamil Chinthaka, the Agronomist at

CodeGen International (Pvt.) Ltd. Thank you very much for the assistance given with the

AiGROW greenhouse plant setup, maintenance, and immense knowledge.

It is whole-heartedly appreciated that the resources provided by CodeGen International (Pvt.)

Ltd. and AiGROW for proved monumental support towards the success of this study.

Finally, I wish to show my gratitude towards my colleagues, friends, and family for the ideas,

encouragement, and endless support given to make this study a success.

iv

TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT ... ii

ACKNKOWLEDGEMENTS ..iii

TABLE OF FIGURES .. vi

LIST OF TABLES ..viii

Chapter 1 : Introduction .. 1

1.1 Introduction ... 1

1.2 Problem ... 1

1.3 Problem Domain ... 2

1.3.1 Convolutional Neural Networks... 2

1.3.2 Object Detection ... 2

1.3.3 Explainable Artificial Intelligence (XAI) ... 3

1.4 Research Contribution .. 3

1.4.1 Goal .. 3

1.4.2 Aims and Objectives .. 4

1.5 Scope of the study ... 4

1.6 Summary ... 5

Chapter 2 : Literature Review .. 6

2.1 Introduction ... 6

2.2 Early engagement of deficiency identification of lettuce ... 6

2.3 Lettuce in horticulture ... 6

2.4 Disease identification of greenhouse plants .. 7

2.5 A summary of latest literature .. 8

2.6 Explainable AI in field of research ... 14

2.7 Summary ... 21

Chapter 3 : Methodology .. 22

v

3.1 Introduction ... 22

3.1.1 Problem Representation ... 22

3.2 Dataset Creation .. 22

3.2.1 Experimental Setup and Image Acquisition ... 23

3.2.2 Image Annotation ... 25

3.2.3 Dataset Separation .. 29

3.2.4 Image Augmentation .. 29

3.3 Detection Algorithm ... 33

3.3.1 YOLOv3 Architecture .. 33

3.4 Implementation ... 37

3.4.1 Workstation Setup .. 38

3.4.2 Software and Frameworks .. 38

3.4.3 Experimental parameter setting .. 39

3.4.4 Transfer learning .. 40

3.5 Explainable Model .. 43

Chapter 4 : Evaluation and Results .. 45

4.1 Evaluation Criteria and Datasets ... 45

4.2 The Experimental Results ... 48

4.2.1 Confusion Matrix, IoU, mAP, and F1-score .. 49

4.2.2 Summary .. 52

Chapter 5 : Conclusion ... 53

5.1 Study Conclusion .. 53

5.2 Study Generalization ... 54

5.3 Future Work .. 54

Reference .. 56

vi

TABLE OF FIGURES

Figure 2.1: Concept of Explainable Artificial Intelligence [61] ... 15

Figure 2.2: Template based model generates image relevant and class relevant explanations.

The descriptions are image relevant, and definitions are class relevant. [84] 18

Figure 2.3: The activations of high layer neurons in Guided Backpropagation. a) Given an

input image, the forward pass is performed to an interested layer, then set to zero all

activations except one and propagate back to the image to get a reconstruction. b) Different

methods of propagating back through a ReLU nonlinearity. c) Formal definition of different

methods for propagating a output activation out back through a ReLU unit in layer 1 [86]. .. 19

Figure 3.1: AIGrow Greenhouse at Trace Expert City ... 23

Figure 3.2: Experimental setup with 3 deficient nutrients and controlled 24

Figure 3.3: Calcium deficient lettuce plant .. 24

Figure 3.4: Installing LabelImg on Windows operating sytem with Anaconda framework 26

Figure 3.5: Collection of calcium deficient images prior to annotation process 27

Figure 3.6: Make bounding boxes on all the spots of deficiency in visible and save the classes

using LabelImg tool. ... 27

Figure 3.7: Annotation process console output. XML file with the image name is created for

each annotated image.. 28

Figure 3.8: Left - annotation text files per each image with the same name as image. Right -

Annotation file contains the coordinates of each bounding box of the image against the class

name ... 28

Figure 3.9: Augmented images using bounding-box-augmentation [92] based on imgaug [91]

python library. Each image generates maximum of 10 augmentations according to the above

techniques ... 30

Figure 3.10: Annotation files are also generated with the augmentation process for each image

with the same format .. 30

Figure 3.11: Main python script, voc_to_yolo.py .. 31

Figure 3.12: Python script with conversion functions, convert.py ... 32

Figure 3.13: Left - newly created annotation text files in the same directory as images and

XML files. Right - PascalVOC XML is converted into YOLO text format (<class>

<x_center> <y_center> <width> <height>) ... 32

Figure 3.14: YOLOv3 network architecture [95] ... 34

Figure 3.15: YOLOv3 pipeline architecture ... 35

file:///C:/Users/rodri/OneDrive/Documents/Documents/MCS3203/Thesis/17440704_Draft%20Thesis.docx%23_Toc43542250
file:///C:/Users/rodri/OneDrive/Documents/Documents/MCS3203/Thesis/17440704_Draft%20Thesis.docx%23_Toc43542250
file:///C:/Users/rodri/OneDrive/Documents/Documents/MCS3203/Thesis/17440704_Draft%20Thesis.docx%23_Toc43542250
file:///C:/Users/rodri/OneDrive/Documents/Documents/MCS3203/Thesis/17440704_Draft%20Thesis.docx%23_Toc43542250
file:///C:/Users/rodri/OneDrive/Documents/Documents/MCS3203/Thesis/17440704_Draft%20Thesis.docx%23_Toc43542250
file:///C:/Users/rodri/OneDrive/Documents/Documents/MCS3203/Thesis/17440704_Draft%20Thesis.docx%23_Toc43542251
file:///C:/Users/rodri/OneDrive/Documents/Documents/MCS3203/Thesis/17440704_Draft%20Thesis.docx%23_Toc43542252
file:///C:/Users/rodri/OneDrive/Documents/Documents/MCS3203/Thesis/17440704_Draft%20Thesis.docx%23_Toc43542253

vii

Figure 3.16: “The cell (upper image) containing the center of the ground truth box of an

object is chosen to be the one responsible for predicting the object. In the image, it is the cell

which marked red, which contains the center of the ground truth box (marked yellow)” ~ [95]

 .. 36

Figure 3.17: How the final prediction is given by transforming the detector output [95]........ 37

Figure 3.18: Performance metrics graphical representation [96] ... 42

Figure 3.19: Performance metrics mathematical representation .. 42

Figure 3.20: Loss curve during training process .. 42

Figure 3.21: YOLO loss function taken from version 1 paper [15] ... 43

Figure 3.22: Explainable Architecture ... 43

Figure 4.1: Ecosia is a social business founded in 2009 after a trip around the world forcusing

reforestation .. 45

Figure 4.2: Annotated deficient images in dataset ... 47

Figure 4.3: Bulk downloaded images from web scrape, prior to selection 47

Figure 4.4: Mean Average Precision against the iterations over training dataset along with the

loss curve .. 50

Figure 4.5: Detection output. (a) Calcium deficient, (b) Nitrogen deficient, (c) Magnesium

deficient, and (d) healthy .. 51

viii

LIST OF TABLES

Table 2.1: Summary of resent literature ... 9

Table 2.2: A summary of above literature for each aspect ... 14

Table 3.1: Summary of popular general and fine-grained vision datasets with plants [43] 22

Table 3.2: Initial image dataset .. 25

Table 3.3: Number of annotated samples ... 28

Table 3.4: Separated image dataset into training and testing subsets 29

Table 3.5: Number of images after augmentation .. 33

Table 3.6: Workstation specification summary .. 38

Table 3.7: List of deep learning frameworks with programming languages which can be used

to implement YOLO ... 39

Table 3.8: Sample explanations of the deficiencies identified ... 44

Table 4.1: The separated dataset .. 45

Table 4.2: Number of deficiency and healthy images downloaded from ecosia using web

crawler .. 47

Table 4.3:Summary of popular general and fine-grained vision datasets with plants [43] 48

Table 4.4: Summary of performance test results .. 52

1

Chapter 1 : Introduction

1.1 Introduction

Horticulture has become more than farming with technological evolution in the last few decades

and Controlled Environment Architecture (CEA) became a popular approach to produce yield

productively compared to open field production. CEA is defined as a combination of

engineering, plant science, and computer managed greenhouse control technologies used to

optimize plant growing systems, plant quality, and production efficiency. The greenhouse is

one such CEA structure vastly used in the horticultural field with the aim of providing an

optimal nutrient composition to the corps, to protect the crops from pests without applying

pesticides, and to provide the optimal environmental conditions to the corps as in temperature,

humidity, etc. Technavio’s market research analysts have predicted that the greenhouse

horticulture market will register a Compound Annual Growth Rate (CAGR) of more than 11%

by 2022 and currently, it is at 10.79% [1].

Among all the greenhouse crops, lettuce is the most popular salad vegetable crop around the

world and consists of vitamins, minerals, and the taste that attract people [2]. Greenhouse

lettuce is produced in soil-less culture. This procedure refers to the techniques of Hydroponics

and Aeroponics mainly. In Hydroponics, plants grow in containers with mineral nutrient

solutions, without soil. The greenhouse associated with this research uses a deep flow technique

to produce lettuce where a consistent nutrient environment for the roots is provided by the

flowing solution culture [3].

1.2 Problem

Even though the greenhouse is a controlled environment and lettuce is produced in a nutrient

solution, there can be a production loss due to diseases and nutrient deficiencies and toxicities.

Some of the diseases and deficiencies generate manifestation in the visible spectrum and some

have not. Diseases or deficiencies without any visible symptoms can be identified with

electromagnetic analysis, microscopic analysis, etc. Due to their complexity, and to the extent

of the literature review of this research, they will not be addressed under this research. The

diseases with visible symptoms can be identified with remote sensing techniques [4]. Remote

sensing techniques for disease identification in the visible spectrum will be discussed in the

next sections.

Symptoms of nutrient deficiencies of hydroponic lettuce are available in the visible spectrum

[5]. The identification of nutrient deficiencies using machine vision is a research area where

2

researchers developed various methodologies to detect the defected plants [4], [6]–[8] which

will be discussed in the literature review section. The methodologies discussed in sited projects

are not developed in a point of serving the stakeholders of the horticultural society but in a

theoretical manner where they cannot be applied in a real-life scenario.

1.3 Problem Domain

This study is affiliated with some key areas in computer science, including both trending, and

non-trending. Convolutional Neural Networks, Object Detection, and Explainable AI are some

of them. This subsection will explain in brief on the mentioned areas to compose the

background of this study.

1.3.1 Convolutional Neural Networks

Artificial Neural Networks (ANN) are developed under the inspiration of the operations of

biological neural networks. It contains a large number of interconnected operational units called

neurons. They work collectively and interconnectedly in a distributed manner to learn from the

input to process and develop the final output. The architecture contains input layers that take

the input as a vector and distribute it to the second level. The second level contains the hidden

layers, which take the decisions by learning from the outputs of previous layers to improve the

final output [9]. Convolutional Neural Networks (CNNs) are similar in fashion to ANNs where

both categorized under Deep Neural Networks. But the CNNs are developed by reducing the

number of parameters in ANNs but the neurons of both are self-optimize through learning. In

contrast to ANNs, CNN’s architecture there are three types of layers as Convolutional, Pooling,

and Fully connected. Among these three, convolutional layers are the most important and take

most of the time within the network, but they are also capable of reducing the complexity of

the network. Currently, CNNs are mainly used in pattern recognition within images, videos,

and voice. There are a different kinds of implementations of CNNs and they are introduced

down the line of this research [10].

1.3.2 Object Detection

Object detection is one of the fundamental computer vision problems and the task of identifying

the presence, location (object localization), and type (object classification) of a given object

within a given image. Object detection is related to many applications like image classification,

face recognition, human behavior analysis, obstacle avoidance, autonomous driving, etc. [11],

[12] There are three types of object detection models. Namely, information region selection,

feature extraction, and classification. Information region selection is the task of finding the

possible positions of the objects, feature extraction is the reduction of the number of features in

3

an image by combining the existing features and generating new features [13] and the

classification is separating the given object from all the other objects in the given image and

representing the information. The evolution of CNNs is closely coupled with object detection

by improving the performance with leaning complex features within the images. R-CNN, Faster

R-CNN are models that optimize the classification and bounding box generation [14]. Another

promising model is YOLO and it detects the objects using fixed-grid regression [15]. Both of

these models provide real-time and accurate object detection [16]. YOLOv3 is the current

version of YOLO and will be discussed more in this article [17].

1.3.3 Explainable Artificial Intelligence (XAI)

Artificial Intelligence is introduced way back in the 19th century but, the true use and

importance of AI are started only a few decades ago. The AI methods are currently achieving

higher levels of performance in solving complex computational tasks and the AI powered

systems are evolved to an extent that the humane intervention is almost in no need in the

development and deployment. But the decisions taken and suggested by those AI powered

systems eventually affect the humans’ lives so, the need of understanding the given and taken

decisions is made a right [18]. Even though the early stages of AI powered models can be

explained easily, the latest models developed with systems like Convolutional Neural Networks

are complex and not interpretable. This makes the system a black box [19]. Explainable AI is

developed to open up this backbox and allow humans to understand, trust, and manage the

emerging artificial intelligent models. This explanation is given by Dr. Gunning in [20].

According to DARPA [21] (Defense Advanced Research Projects Agency), the term XAI refers

to the actions to make sure that the AI models are transparent in their actions for the given

purpose. It also refers to the ability to understand the work logic behind the AI algorithms. So

the idea behind this concept is that the Artificial Intelligence programs and technologies should

not be back box systems that people with expert knowledge in that specific field can only

understand as discussed in the previous paragraph but explaining why and how the model came

into that decision.

1.4 Research Contribution

1.4.1 Goal

To develop an approach that can identify and explain a set of predefined nutrient deficiencies

of greenhouse lettuce plants in real-time using image processing techniques and explainable AI

theories.

4

1.4.2 Aims and Objectives

To achieve the above goal, there are some objectives that must be covered. These objectives

can be listed as follows:

- Review of current methods of identifying the deficiencies of plants related to the

problem domain.

- Create an image dataset of greenhouse lettuce plants which is grown on special recipes

to visualize nutrient deficiencies.

- Preprocess the collected images with the help of an agronomist.

- Select deep learning architecture based on Convolutional Neural Networks based on the

literature review to apply on the dataset.

- Develop an explainable deficiency identification approach using the selected model.

1.5 Scope of the study

Design and implementation of a methodology to automatically identify the nutrient deficiencies

of greenhouse lettuce using image processing based on user input images and explain the

solution using explainable AI-related theorems. The reason behind the selection of greenhouse

lettuce in explains in the literature review section and this research only addresses three

different nutrient deficiencies of lettuce. They can be explained as follows.

Calcium - Due to Calcium deficiency, the growth of lettuce is observed as reduced and leaves

are wavier than normal. Brown or grey lesions has developed starting from leaf margins or tips

of young leaves. This symptom is called as 'tip-burn'. When the Calcium -deficiency progresses,

the leaves begin to die from tips and margins inwards. Subsequently, the persistent symptoms

will spread over the older leaves.

Nitrogen - Older leaves have the symptoms of N deficiency at first with light green chlorosis.

This moves to the head and will have light green chlorosis. No head is formed with severe

Nitrogen deficiency and the growth is restricted. But the leave shape remains normal.

Magnesium - Older leaves have the symptoms of Mg deficiency at first with yellowing between

veins and leaf margin discoloration of yellowish orange. If this continues, the yellow leaf zones

will die but the veins remain green. Growth is incrementally restricted with the severity of the

deficiency.

5

1.6 Summary

This research intends to overcome that problem by introducing a hybrid approach to

convolutional neural networks and expert systems that can be applied to detect deficiencies of

greenhouse lettuce. However, convolutional neural networks achieving the best performance in

other research fields are not much applied in horticultural plant deficiency detection because of

public datasets, but this will not be an issue in this research because of the collaboration of

AIGrow [22] where the greenhouse has a dedicated sample set to acquire images.

The next chapter will give a critical review of the research around deficiency identification of

greenhouse lettuce.

6

Chapter 2 : Literature Review

2.1 Introduction

In Chapter 1 an overall picture of the research project was given, by showing the research

problem, our hypothesis, and the solution. In this chapter, a critical review of the research is

given in the area deficiency identification of greenhouse plants. For this purpose, the chapter

has been structured as an early engagement of deficiency identification of lettuce, lettuce in

horticulture, disease identification of greenhouse plants, a summary of the latest literature, and

the XAI in fiend of research. The chapter also defines the research problem based on the

literature review.

2.2 Early engagement of deficiency identification of lettuce

As mentioned in the previous section and according to the Medicinal Spices and Vegetables

from Africa 2017, lettuce is produced worldwide, and is one of the most consumed green leafy

vegetables in its raw form. It is used not only as a salad vegetable but as medicine [23] and

research also indicates that lettuce consumption has positive effects on the reduction of

cardiovascular disease and chronic conditions due to its rich nutrients such as vitamin A, beta-

carotene, folate, and iron content [24]. Because of the importance of this plant, researches are

conducted in earlier stages as well.

Identification of nutrient deficiencies of lettuce is discussed in earlier researches using the sand-

culture experiments for open-field production. In 1955, Goodall, Grant Lipp, and Slater

discussed the application of nitrogen, phosphorus, and potassium fertilizers to lettuce plant soil

and monitored the deficiencies of plants for the different levels of nutrients [25]. In the 1970s,

lettuce is started to grow in glasshouses where the crop production can be done throughout the

year regardless of the seasons. This changes the research approach of deficiency identification.

This was discussed by Roorda van Eysinga and Smilde K.W, on their research paper,

Nutritional Disorders in Glasshouse Lettuce [26]. These research papers include soil-based

lettuce nutrient deficiency and toxicity.

2.3 Lettuce in horticulture

With the emerging technology in agriculture and the vast reduction of per capita land

availability, lettuce is started to grow in Controlled Environments to enable the productivity of

the crop [3], [27]. Controlled Environment Agriculture (CEA) is a combination of science and

engineering approaches to overcome the fragility of crop production due to fluctuating open

field environments. A modern greenhouse operates as a system; therefore, it is also referred to

7

as a Phytomation system, controlled environment plant production system (CEPPS), or

controlled environment agriculture (CEA). This is elaborated by Shamshiri R. and his

colleagues in their research paper on urban agriculture [28]. In greenhouses, lettuce is produced

using a hydroponic system that offered around 11 times higher yield compared to

conventionally produced lettuce. This was identified in research about lettuce production in

Yuma, Arizona, USA, and published through “the School of Sustainable Engineering and the

Built Environment, Arizona State University” [29].

Hydroponic systems can be developed in different manners, each setup provides a different

approach to plant nutrient environments and each setup defines the space around the plant which

is crucial in image processing. These different setups are presented by Sardar and Admane in

their review paper, “A Review on Plant Without Soil – Hydroponics” [3] and Kaushal Kumar

and his colleagues in their journal paper “Hydroponics as an advanced technique for vegetable

production: An overview” [30]. This research uses the Ebb and Flow system [30] or Deep Flow

Technique [3] to produce lettuce in the greenhouse system. Crop production in the greenhouse

highly depends on the greenhouse environment. To keep the environment, crop friendly, the

environmental parameters such as air temperature, humidity, and carbon dioxide concentration

are monitored and controlled continuously. In addition to this, growing conditions are based on

humane observation of the plants. This process is cumbersome and labour intensive and mostly

the humans cannot access every place of the greenhouse.

2.4 Disease identification of greenhouse plants

There are many solutions to mitigate crop loss due to diseases, but identifying the disease

beforehand is a crucial step in this disease management. To overcome this, machine vision is

applied to monitor plants. For example, Hetzroni, Miles, Engel, and Hammer describe their

neural network-based classifier to determine lettuce deficiencies in Advances in Space

Research article in 1994 [31]. It can be identified as the very first article about using deep

learning on lettuce deficiency detection. In addition to that David and Murat have presented a

system to monitor the real-time plant stress using a computer vision-based multi-sensor

platform [32]. Their system is consisting of x y movable sensor system to image acquisition,

environmental data collection, and distributed processing hierarchy. This can be used in a small

area but will not be cost-effective with a large greenhouse. They have applied their system to

monitor calcium deficiency of lettuce and was able to identify the deficiency one day before

the human vision [6]. Yara, a mineral fertilizer manufacturing company offers details of open

field and CEA crops including lettuce to Identify and diagnose nutrient deficiencies and there

8

are images and information to learn more about the symptoms and causes and how to control

or correct the deficiency [33].

Current technological enhancements of IoT devices offer a novel approach in identifying plant

diseases using deep learning. Mohanty, Hughes, and Salathé discuss this approach in their

research paper on “Using Deep Learning for Image-based Plant Detection” [34]. They have

used 54306 images of 14 crop species with 26 diseases to train their deep neural network. These

images were taken from the project Plant Village, an open-access image repository created by

the same group [35]. This repository does not contain lettuce images hence, the mentioned

research does not classify lettuce for their deficiencies. Zheng YY and his colleagues present

“the CropDeep species classification and detection dataset” where they have collected 1,147

images from 31 different classes with over 49,000 annotated instances. In the same paper, they

have presented the accuracy of different classification models. The best performing model in

their results is ResNet50 with 99.81% of average accuracy. This dataset includes four species

of lettuce but does not provide any information about deficiencies [36]. Greenhouse lettuce is

not researched under deficiency identification using deep leaning and images, but there are few

other crops under research. Aravind Krishnaswamy, Raja Purushothaman, and Aniirudh

Ramesh have presented their approach on “tomato crop disease classification using pre-trained

deep learning algorithm” [37]. They have used the tomato images from the PlantVillage dataset

[35] and studied the dataset against pre-trained AlexNet and VGG16net deep learning models.

Muammer and Davut have also presented their research on “Plant Disease and Pest Detection

using Deep Learning-based Features” with images of plant diseases common to the Malatya,

Turkey [38].

2.5 A summary of latest literature

The following are the 20 recent literature on deep learning-based disease identification of

plants. This does not include lettuce but use similar methods in the field.

9

 Table 2.1: Summary of resent literature

Plant Training

dataset

Environment Classes Images Min-Max

per class

C/D Deep CNN

architecture

Training

strategy

Evaluation Best

accuracy

%

“A Deep Learning-based Approach for Banana Leaf Diseases Classification”, 2017 [39]

Banana Own Uncontrolled 3 3700 (1643,

240, 1817)

240 - 1813 C LeNet [Le89] FS 80%, 20% 98.61

“A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition”, 2017 [40]

Tomato Own Uncontrolled 10 5000

Annotated -

43398

40 – 2177

Annotated –

338 - 18899

D AlexNet, ZFNet,

GoogleNet,

VGG16, ResNet50,

101, ResNetXt-101

TL 80%, 10%,

10%

85.98

“Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning”, 2017 [41]

Maize Own Uncontrolled 2 1796 768–1028 D Custom three

stages architecture

with 5 CNNs

FS 70%, 15%,

15%

96.70

“Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning”, 2017 [42]

Apple
Plant

Village

Subset

Controlled 4 2086 145-1644 C VGG16, VGG19,

Inception-V3,

ResNet50

TL 80%, 20% 90.40

“Can Deep Learning Identify Tomato Leaf Disease?” 2018 [43]

Tomato Plant

Village

Subset

Controlled 9

5550 405-814 C AlexNet,

GoogLeNet,

ResNet

TL 80%, 20% 97.28

“CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture”, 2019 [36]

Tomato,

cucumber,

lettuce,

cabbage,

turnip,

endive,

rutabaga,

Crop deep

dataset

Controlled 31 31147

Annotated

49765

575-1294

Annotated

745-1914

C &

D

VGG16, VGG19,

SqueezeNet,

InceptionV4,

DenseNet121,

ResNet18,

ResNet50

FS 80%, 10%,

10%

100 with

Tomato

ResNet

10

celery,

spinach,

scallion,

fingered

citron, winter

squash,

pumpkin,

chili pepper,

lemon,

persimmon,

pawpaw,

watermelon,

muskmelon,

wolfberry

Faster R-CNN,

SSD,

RFB,

YOLOv2,

YOLOv3,

RetNet

“Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild”, 2018 [44]

Wheat Dataset

from [45]

Uncontrolled 4 8178 1116-3338 C Custom ResNet50,

ResNet50

TL 80%, 10%,

10%

97.0

“Deep Learning for Classification and Severity Estimation of Coffee Leaf Biotic Stress”, 2019 [46]

Coffee Own Controlled 5 2722 256 - 991 C AlexNet,

GoogLeNet,

VGG16 and

ResNet50

TL 70%, 15%

15%

95.63

“Deep Learning for Image-Based Cassava Disease Detection”, 2017 [47]

Cassava Own Uncontrolled 6 2756 309-415 C Inception V3 TL 80%, 10%,

10%

93.0

“Deep Learning for Plant Diseases: Detection and Saliency Map Visualization”, 2018 [48]

Apple

Blueberry

Cherry

Citrus

Grape

Peach

Pepper

Potato

Plant

Village

dataset

Controlled 39 54323 152-5507 C AlexNet,

DenseNet169,

Inception v3,

ResNet34,

SqueezeNet1-1.1,

VGG13

FS - TL 80%, 20% 99.76

11

Raspberry

Soy

Strawberry

Tomato

“Deep Learning for Tomato Diseases: Classification and Symptoms Visualization”, 2017 [49]

Tomato Plant

Village

subset

Controlled 9 14828 325-4032 C AlexNet,

GoogleNet

FS – TL 80%, 20% 99.18

“Deep learning models for plant disease detection and diagnosis”, 2018 [50]

Apple

Banana

Blueberry

Cabbage

Cantaloupe

Cassava

Celery

Cherry

Corn

Cucumber

Eggplant

Gourd

Grape

Onion

Orange

Peach

Pepper

Potato

Pumpkin

Raspberry

Soybean

Squash

Strawberry

Tomato

Watermelon

Plant

Village

Dataset

Both 58 87848 43-6235 C AlexNet,

AlexNetOWTBn,

GoogleNet,

Overfeat, VGG

Unspecified 80%, 20% 99.53

“Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification”, 2016 [51]

12

Apple

Pear

Cherry

Peach

Grapevine

Own

Dataset

(internet)

Both 15 4483

Augmented

33469

108-1235

1347 - 4854

C CaffeNet TL 30880, 2589 96.3

“Deep Residual Learning for Tomato Plant Leaf Disease Identification”, 2017 [52]

Tomato Plant

Village

Subset

Controlled 10 19742 373-5357 C VGG16 VGG19,

custom architecture

FS-TL 80%, 20% 97.53

“High-Performance Deep Neural Network-Based Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank”, 2018 [53]

Tomato Own

dataset

field

Uncontrolled 12 8927 40 - 3927 D Custom

architecture with

Refinement Filter

Bank

TL 80%, 20% 96.25

“Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks”, 2017 [54]

Apple Own

dataset

Both 4 1053

Augmented

13689

182-319

2366 - 4147

C AlexNet,

GoogleNet, ResNet

20, VGG 16 and

custom architecture

FS-TL 10888, 2801 97.62

“Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification”, 2018 [55]

Common

Bean

Coffee

Cassava

Cashew Tree

Citrus

Grapevines

Coconut tree

Soybean

Corn

Cotton

Suarcane

Wheat

Own

dataset

Both 56 1383 5-77 C GoogleNet TL 80%, 20% 87.0

“Solving Current Limitations of Deep Learning Based Approaches for Plant Disease Detection”, 2019 [56]

13

Apple

Bell pepper

Cherry

Grape

Onion

Peach

Potato

Plum

Strawberry

Sugar beets

Tomato

Wheat

Plant

Disease

Dataset

field 42 79265 705 - 3084 D Faster R-CNN

Faster R-CNN with

FPN

Faster R-CNN with

TDM

YOLOv3

SSD513

RetinaNet

PlantDiseaseNet

FS 70%, 20%,

10%

93.67

“Soybean Plant Disease Identification Using Convolutional Neural Network”, 2018 [57]

Soybean Plant

Village

Subset

Uncontrolled 4 12673 851- 6234 C Custom

architecture

FS 70% 10%

20%

99.32

“Using Deep Learning for Image-Based Plant Disease Detection”, 2016 [34]

Apple

Blueberry

Cherry

Citrus

Grape

Peach

Pepper

Potato

Raspberry

Soy

Strawberry

Tomato

Plant

Village

Dataset

Controlled 38 54306 Not

mentioned

C AlexNet,

GoogLeNet

FS-TL 80% 20% 99.35

14

Table 2.2: A summary of above literature for each aspect

Plant 13/20 (65%) did the research for a single plant. All 20 (100%) were not

generalized

Dataset 10/20 (50%) used their own datasets, 8/20 (40%) used Plant Village

dataset, 1 with Crop Deep dataset, and 1 with Plant Disease dataset

Environment 9/20 (45%) used images from controlled environment (homogeneous

backgrounds), 6/20 (30%) used images from uncontrolled environment

(open field), others (25%) used both

Classification/

detection

15/20 (75%) used classification only, 3/20 (15%) used detection

method and others (10%) researched with both

Deep CNN

Architecture

17/20 (85%) used popular CNNs, 3/20 (15%) used custom architectures

alone, 4/20 (20%) used custom along with popular CNNs

Training Strategy 14/20 (70%) used transfer learning, 10/20 (50%) trained from scratch,

5/20 (25%) used both strategies

Training, Evaluation 8/20 (40%) separated the dataset by training, validation and evaluation.

12/20 (60%) separated only for training and testing. In addition, 2/20

(10%) used entirely different dataset for validation.

2.6 Explainable AI in field of research

In addition to the reasoning mentioned in the problem domain chapter, the following factors

motivate XAI research. Those are trust, protections against adversarial techniques, detecting

bias, and regulatory compliances [58]. Among these, the most important driver of interest is

trust in research in XAI. To trust an AI model prediction, users need to understand and

convinced that the predictions are produced for appropriate and valid reasons. Which seeks

explanations. Once the AI models are implemented as products, they must act in accordance

with a set of regional, national, or international regulations. AI models must be developed with

an explainable way to act in accordance with such regulatory requirements. The ability to

generalize is one of the key requirements of an effective AI model. Generalizing means the AI

model should be able to perform well on samples that were not included in its training phase.

In the training phase, models learn the fundamental associative patterns in the training data and

rely on spurious associations to yield better performance [59]. Giving explanations to the model

predictions gives a method to identify such false relations and gives a better sense of its

generalization possibility. The bias of a model can be systematically reinforced with the training

period, but XAI can help in identifying the bias of the model [60].

The following figure from DARPA will explain the XAI concept simply.

15

Figure 2.1: Concept of Explainable Artificial Intelligence [61]

There are many ways to explain the AI models, but in general, explainable modeling can be

applied along with the entire AI development structure. Specifically, it can be applied prior to

the model operations (pre-modelling explainability/ante-hoc), during the model operations

(explainable modelling), and after the classification/detection model operation (post-modelling

explainability/post-hoc) [62]–[65].

There are four main categories of ante-hoc modeling explainability. They are,

1. Exploratory data analysis methods.

2. Dataset description of standardization methods.

3. Explainable feature engineering methods.

4. Dataset summarization methods.

The exploratory data analysis is focused on extracting a summary of the main characteristics of

a dataset. This summary includes various statistical properties of the dataset. These statistics

include average, mean, range, missing samples, dimensions, etc. Google Facets is one of the

powerful toolkits dataset property extraction [66]. But, facts and statistics may not enough for

dataset analyzing [67]. Because of that data representation strategies make up a huge amount

of the exploratory data analysis methods. Usually, datasets are not released with sufficient

documentation. Standardization of these datasets can resolve the issues like the misuse of data

or systemic bias in AI models and ensure communication between the users and creators. There

are few methods for this standardization including, datasheets for datasets [68], data statements

[69], and so on. Explainable feature engineering involves understanding the relationship

between and the importance of input features for given model predictions. Domain specific and

model based are the two main approaches to achieve this [70]. Domain expert’s knowledge and

16

information identified from exploratory data analysis are used in the domain-specific

approaches to identify and/or extract features. In contrast, various mathematical models are

applied in model-based feature engineering approaches to understand the architecture of the

dataset. Pre-modeling explainability or ante-hoc is a set of methodologies to understand the

given dataset better before the modeling task.

Explainable modeling can be achieved from the beginning of the model design so that the model

can avoid the black box problem and explain itself. This can be achieved by restricting the AI

model design to a specific set of models. The traditional way is to adopt from a specific AI

model family which is considered as explainable. This family of models often provide one (or

more) of the three levels, namely, simulatability, decomposability, and algorithmic

transparency, of model transparency [71] proposed by Zack Lipton. Linear models, generalized

additive models, rule sets, decision sets, decision trees, and case-based reasoning methods are

examples of these families. But simply adopting these families does not guarantee the

explainability. And also inheriting these models can reduce the performance of the model itself

in some cases [70].

By combining these traditional methods with a complex black-box method, researchers were

able to develop hybrid models. The deep k-Nearest Neighbors (DkNN) approach is one of the

examples. It proposes to use K-nearest neighbor (kNN) inference on the hidden representation

of the training dataset learned through layers of a deep network [72]. The Self-Explaining

Neural Network (SENN) is another example introduced by David Alvarez-Melis, Tommi S.

Jaakkola [73]. The SENN is an AI model that is trained to provide a prediction along with the

corresponding explanation. But there are several limitations to these approaches. Multimodal

Explanations: Justifying Decisions and Pointing to the Evidence [74] by Dong Huk Park and

his colleagues requires a training dataset augmented with both visual and textual explanations.

But the same experiment shows that usage of multi-modal explanations improves predictive

performance. TED by [75] Michael Hind and colleagues is somewhat similar to the Multimodal

Explanations. One of the limitations of the above methods is that they assume the dataset is

containing explainability and the model prediction explanations are more towards human

understandability.

The explainability of the model can be also achieved by adjusting the architecture of the AI

model. This method is mostly focused on deep network architectures. For example, the

explainable convolutional neural network architecture developed by Quanshi Zhang and the

team can automatically push representations of higher layer filters to be an object part, as

opposed to a mixture of patterns [76]. “This Looks Like That” is another example of developing

17

a deep network explainable [77]. It is developed by adding a prototype layer between

convolutional layers. A preset number of image part prototypes for each class are included in

the prototype layer. The most relevant parts are captured at each class specific prototype or

semantic concepts for identifying images of a given class are captured at each class specific

prototype. Another method of developing a self-explainable AI model is to use regularization.

Saliency Learning [78] by Reza Ghaeini aims to teach the model to make the right prediction

for the right reason. He provides explanation training and ensures that the alignment of the

model's explanation is with the ground truth explanation. Similarly, Training Differentiable

Models by Constraining their Explanations [79] will match domain knowledge during training

so the model predictions will explainable. This approach generalizes much better according to

the experimental results.

Currently, the AI models are developed focusing on the prediction performance rather than the

explainability of the model. Because of that, pre-developed models are much focused on XAI

literature. Because of that, many post-hoc methods are developed. The Local Interpretable

Model-agnostic Explanations (LIME) [59] approach explains for an instance prediction of a

model based on the target, the drivers, the explanation family, and the estimator. The following

paragraphs will discuss this breakdown of post-hoc Explainability in detail.

The target specifies the objective of an explainability method. The type, scope, and complexity

of the target can be different. The target type can be mechanistic, which is used by the model

creators to understand the model predictions to debug or validate the model [80] or the target

can be functional, which is used by the outsiders or non-experts to understand the model

prediction [59]. The scope of the target can be a local prediction [59] otherwise a global

prediction [81]. Explaining prediction for an instance of a class versus all instances of a class.

Input features of an AI model are the most common type of drivers to an explanation. But the

raw input features are not the best but aggregated can be. For example, in an image classifier

model in this research prediction explanation can be difficult to interpret or expensive to

compute if they are based on individual pixels. But if the explanation drives on superpixels (a

contiguous patch of similar pixels) [59] it can be more interpretable and less noisy. The

explanation drivers include the input features and all other factors with an impact on the AI

model development. Those factors include training samples, the choice of model architecture,

choice of the optimization algorithm, or hyperparameter settings.

As in explainable model design with explainable families, they can also be used as a post-hoc

explanation. The main objective of an explanation family is its information content can be easily

18

interpretable by the use and the explanations should be complete. There are a number of

explanation families which can be used in post-hoc explanation modeling. Saliency heatmaps

(importance scores) are the most common type of explanation families. The more impactful

drivers have a higher score on each explanation. Another common explanation family is

decision rules. “if condition then outcome” is the general form of the decision rule. Here, the

condition is a simple function defined over input features and the outcome represents a

prediction of an AI model. Decision lists and decision sets are two types of decision rules where

they are ordered and unordered [82]. Decision trees are quite similar to the decision rules where

It can be generalized into a set of decision rules. Decision trees are structured as a graph with

internal nodes representing conditional tests on input features and leaf nodes representing the

model outcomes. In addition, there can be only one path from the root to leaf in a decision,

where in decision rules not the case. Dependency plots are another explanation family aiming

to communicate how the prediction depends on the input.

One of the most user-friendly explanation families are the verbal explanations. In this method,

explanations are similar to humane explanations and provided in natural language. Template-

based approaches are used in the beginning hence it is restricted [83]. Newer methods like

Generating Visual Explanations by Lisa Anne and colleagues based on deep learning methods

can generate textual augmented visual justifications or explanations [84]. The limitations of this

method are lack of understandability in model errors and the explanation is based on the

model’s internal logic. The smallest change to explanation drivers required to change a target

to a predefined outcome is described as counterfactual explanations. A loss function can be

defined to favor the smallest change to make model predictions closer to the desired outcome

with few input features to generate counterfactual explanations.

Figure 2.2: Template based model generates image relevant and class relevant explanations. The descriptions are

image relevant, and definitions are class relevant. [84]

Explanation estimation can be mainly described based on their model applicability, and the

underlying mechanism. Some estimation methods are developed for a specific model

19

architecture, whereas others are developed generally and can be applied to any back-box model.

For example, the LIME method can be applied to any model if a set of meaningful perturbations

of inputs can be constructed at least in theory. But some of the methods are model-specific.

They are both popular and difficult to understand hence targeted towards deep neural networks.

The four major underline mechanisms are perturbation, proxy, backward propagation, and

activation optimization. The idea of perturbation mechanisms is as follows. It will generate

perturbations of desired explanation drivers. Then it will analyze their impact on the given

target. Finally, it will summarize it using an importance score family of explanation. There are

main two advantages to this method. They are being not limited to specific model architecture

and easy to implement. In contrast, the main disadvantage is they are relatively computationally

expensive [85] and it is a challenge to construct meaningful perturbations of drivers. Another

commonly used mechanism to generate post-hoc explanations for deep network models is the

backward propagation. The explanation results are important scores in terms of input features

of the model. This method starts with the final layer which produces the given target and

estimates the contribution of the previous layer neurons. This process is repeated backward

until it reaches the input layer. Some of the most notable backward propagation methods are,

Guided Backprop (GB) [86], DeepLIFT [87], and Integrated Gradients (IG) [88]. The main

difference between these methods is the method of estimation of the previous layer

contribution.

The proxy mechanism is another post-hoc explanation method applied to replace the complex

structure of deep neural networks with more simple and explainable methods introduces in later

Figure 2.3: The iactivations iof ihigh ilayer ineurons iin iGuided iBackpropagation. ia) iGiven ian iinput iimage,

ithe iforward ipass iis iperformed ito ian iinterested ilayer, ithen iset ito izero iall iactivations iexcept ione iand

ipropagate iback ito ithe iimage ito iget ia ireconstruction. ib) iDifferent imethods iof ipropagating iback ithrough

ia iReLU inonlinearity. ic) A iFormal idefinition iof idifferent imethods ifor ipropagating ia ioutput iactivation

iout iback ithrough ia iReLU iunit iin ilayer i1 [86].

20

sections such as decision rules and decision trees. Even though the decision trees are simple

and explainable, when they are generated based on a deep neural network, they can be large,

hence not explainable. The activation optimization mechanism is mostly in deep models’ inner

functionality to generate explanations. Explanations from this mechanism are obtained by

searching for an input pattern that produces maximum or minimum response for an inner

component of a model as the target. The downside of this is that the input patterns returned with

this mechanism have high frequency noise. This can be overcome to an extent by adding

regularization.

Following is a summary of each modeling stage.

Pre-modelling explainability/Ante-hoc [63]:

 Goal: Describe or understand the data used to develop AI models

 Methods:

 Exploratory data analysis

 Dataset description standardization

 Dataset summarization

 Explainable feature engineering

Explainable modeling [64]:

 Goal: Develop AI models which are explainable within themselves

 Methods:

 Adopt explainable model family

 Hybrid models

 Joint prediction and explanation

 Architectural adjustments

 Regularization

Post-modelling explainability/Post-hoc [65]

 Goal: Understand or describe the output of pre-developed AI models

 Methods:

 Perturbation mechanism

 Backward propagation

 Proxy models

 Activation optimization

21

2.7 Summary

This chapter presented a critical review of the research around deficiency identification of

greenhouse plants. After looking at the mentioned studies the most appropriate approach to

deficiency identification with explanation is the object detection method. Among all the object

detection architectures used in the above studies, the most suitable and most promising

architecture is You Only Look Once (YOLO). The next chapter clarifies the means followed in

recognizing and applying the best strategies to address this study.

22

Chapter 3 : Methodology

3.1 Introduction

In Chapter 2 an overall picture of the research related literature was given, by giving the data

about the early engagement of deficiency identification of lettuce, lettuce in horticulture,

disease identification of greenhouse plants, and a summary of the latest literature. The research

methodology specifies the procedure used to achieve the research goals with the knowledge

gain from the literature review. This chapter provides a comprehensive overview of the

methodology behind this research by discussing the dataset creation, algorithm,

implementation, etc.

3.1.1 Problem Representation

The goal of this study is to identify a solution to detect the nutrient deficiencies of greenhouse

lettuce using image processing methods in real time and give explanations. The solution is

carried out in three phases. The first phase was creating testbed and the dataset from greenhouse

images in collaboration with the greenhouse of AIGrow. The second phase is training the

detector to detect nutrient deficiencies using the collected dataset and evaluating the results

against the training data. The Final phase is to make the solution to provide explanations to the

detector results.

3.2 Dataset Creation

The common requirement of neural network related studies is the dataset. The dataset is

depending on the area of the study. In this case, the dataset is plant related. There are many

accustomed datasets for the plant related studies. As displayed in the literature review section,

PlantVillage dataset [89] is vastly used in vision studies related to plants. Table 3.1 displays the

most popular plant image datasets.

Table 3.1: A summary of common and general image datasets for plants [43]

Dataset Classes
Image

Number

Annotation

Samples

Number

Comment

Flowers 102 102 1020 0

Commonly occurring in the United Kingdom

are chosen. 40 and 258 images are in each

class.

PlantVillage 38 19,298 0

Images of previously cropped leaves in the

field and captured by a camera in the

laboratory

CUB 200-

2011
200 5994 0

General-purpose dataset (not only plants)

mostly web crawled data

23

Urban Trees 18 14,572 0

Trees labeled by geo-location and tree species

located within Pasadena. The dataset includes

dense aerial and street view imagery

LeafSnap 185 30,866 0

high-quality images taken of pressed leaves;

"typical" images taken by mobile devices

(iPhones mostly) in outdoor environments

ImageNet 1000 14,197,122 1,034,908
general-purpose dataset (not only plants)

mostly web crawled data

MS-COCO 80 300,000
More than

2,000,000

general-purpose dataset (not only plants)

mostly web crawled data

AI

Challenge
61 47,393 0

general-purpose dataset (not only plants)

mostly web crawled data

iNat2017 5089 858,184 561,767

general-purpose dataset (not

 only plants)

mostly web crawled data

VegFru 70 160,731 0
vegetables and fruits which has a strong

association with the daily life

CropDeep 31 31,147 49,765

Contains images collected using various

devices including cameras of IoT, autonomous

spray robot, autonomous pinking robot and

also mobile cameras and smartphones in an

intelligent agricultural monitoring and

management platform

Hence the study is focused on greenhouse lettuce, it is difficult to use the above datasets because

none of the open access datasets contain lettuce. Hence there is no acceptable dataset (image

set) available for lettuce deficiency identification, it is needed to create a suitable dataset (image

set) with greenhouse lettuce deficiencies.

3.2.1 Experimental Setup and Image Acquisition

The lettuce production system was constructed in the AIGrow [22] research greenhouse located

at the Trace Expert City. The research greenhouse dimensions are 16m L x 8m W x 3.4m H.

The ridge height is 5.7m. The greenhouse is covered with a double polycarbonate glazing and

equipped with a Pad and Fan evaporative cooling system. The climate of the greenhouse

Figure 3.1: AIGrow Greenhouse at Trace Expert City

24

environment is maintained by an automatic climate control system. Figure 3.1 shows an inside

image of the greenhouse.

As discussed earlier, the experimental setup was created using the deep flow hydroponic

technique. It is one of the “Liquid Hydroponics’ method”. Lettuce cultivated in a solution

culture has its roots immersed in a nutrient solution [3]. The experiment consisted of 28

containers split into 4 groups or flows. Each flow held 7 lettuce plants. Three of the flows were

containing treatment nutrient solutions and they are deficient in Calcium, Nitrogen, and

Potassium and the final flow is controlled. Figure 3.2 shows the experimental setup.

Initially, all 28 lettuce plants had the control nutrient solution in the root level for 15 days. Then

the deficient solutions were induced through the flows in the treated plants. The experiment is

carried out until all the plants show deficiencies. The image acquisition happened once a day at

8.30 am using a handheld Canon EOS 6D Full Frame DSLR Digital Camera under the

greenhouse lighting conditions. Figure 3.3 shows an image of calcium deficient lettuce plant.

Figure 3.2: Experimental setup with 3 deficient nutrients and controlled

Figure 3.3: Calcium deficient lettuce plant

25

At this point, the tip burn of calcium deficiency is clearly visible. The created image dataset

consists with 4 main classes. This images collection will be referred as initial image data set in

coming sections. Table 3.2 shows the initial dataset image classes and umber of images in each

class. Each image is 3456 x 2304 pixels and had 72 dpi horizontal and vertical resolution.

Table 3.2: Initial image dataset

Class Number of Images

Controlled (Healthy)

Calcium deficient

Nitrogen deficient

Magnesium deficient

128

147

119

105

Total Number of Images 499

3.2.2 Image Annotation

The next step was the annotation process, which labels location on a deficiency symptom in the

image using a bounding box and generate the corresponding class and location information into

a text file. In this study, LabelImg [90] was used to annotate and label the images. It is an image

annotation tool with a GUI and labels object bounding boxes in images. It is written in Python

and uses Qt for its graphical interface and distributed under MIT license. PASCAL VOC format

is used to save the annotations as XML files, the same format is used by ImageNet. Other than

that, it also supports YOLO format. Following guidelines are used in labeling the image dataset.

1. When an image contains multiple points of deficiencies, each deficiency point should

be marked out.

2. When there are overlapped deficiency points in the image, all should be marked and

enclosed.

3. Mark deficiencies in an image if it can be identified.

This study follows the LabelImg installation on Windows operating system with Anaconda

framework (Figure 3.4). Then the following steps were used to annotate the images.

Step 1: Predefine the image classes as.

 Healthy – Class number 0

 Calcium – Class number 1

Nitrogen – Class number 2

Magnesium – Class number 3

26

Step 2: Upload images to the running path after resizing them to 72 dpi which will be effectively

supported by the YOLOv3 network (Figure 3.5).

Step 3: Build and annotate each point in of the images (Figure 3.6).

Figure 3.4: Installing LabelImg on Windows operating sytem with Anaconda framework

27

Figure 3.5: Collection of calcium deficient images prior to annotation process

Figure 3.6: Make bounding boxes on all the spots of deficiency in visible and save the classes using LabelImg

tool.

This creates a list of annotation text files containing the bounding box points (Figure 3.8).

28

Figure 3.7: Annotation process console output. XML file with the image name is created for each annotated

image

Figure 3.8: Left - annotation text files per each image with the same name as image. Right - Annotation file

contains the coordinates of each bounding box of the image against the class name

As shown in the above figure, calcium deficiency is annotated using multiple bounding boxes

in the same image. The same goes for the magnesium deficiency, but nitrogen and controlled

can only be annotated using a single bounding box. The above annotation files are created as

the PascalVOC XML files. Those files will be converted into YOLO text file format in the next

steps. The reason for creating the initial annotation files in PascalVOC format is that they can

be easily augmented using the existing tools.

Table 3.3: Number of annotated samples

Class Number of Annotated Samples

Controlled (Healthy)

Calcium deficient

Nitrogen deficient

Magnesium deficient

128

357

119

173

Total Number of Images 777

29

3.2.3 Dataset Separation

After the annotation and before the augmentation process, the dataset is partitioned into two

parts; the train, and test sets, based on the deep learning methods. This is also highlighted in the

literature review section. Most of the experiments presented in that section were used only two

sets, so this study also uses to data set as training and testing. Hence the number of images in

each class is different, the following percentages are used in the partitioning process. 80% of

each class as a training set and 20% remaining of each class is for testing. These empirical

proportions compensate for the dataset imbalance problem. This step is placed in between the

annotation and augmentation steps to avoid placing the same image in both data sets.

Table 3.4: Separated image dataset into two subsets: training and testing

Class # of Images

 Training Testing

Healthy 102 26

Calcium deficient 117 30

Nitrogen deficient 95 24

Magnesium deficient 84 21

Total 398 101

3.2.4 Image Augmentation

Once the annotation task was completed, the images were subjected to the augmentation

process. The augmentation is required because the performance of the deep learning task is

highly dependent on the data volume. However, the images are limited in this study and have

only around 500 images. Augmentation techniques are used to increase the number of images

artificially. In this study, an opensource git hub library, imgaug [91] was used to augment the

images with the bounding boxes. The advantage of this library is that it creates the annotation

XML for the augmented image. Following python script based on the above library is used for

augmentations. Following augmentation techniques are applied against the images with a

probability of 0.5 if not mention as all images.

 50% iof iall iimages i- iHorizontally iflip

 20% iof iall iimages i- iVertically iflip

 Crop iby i-5% ito i10% iof iimage iheight/width

 Scale ito i80 ito i120% iof iimage isize, iindividually iper iaxis

 Translate iimages iby i-20 ito i+20 ipercent

30

 Rotate iimages iby i-45 ito i+45 idegrees

 Shear iimages iby i-16 ito i+16 idegrees

 Execute i0 ito i5 iof ithe ifollowing i(less iimportant) iaugmenters iper iimage

o Convert iimages iinto itheir isuperpixel irepresentation

o Sharpen iimages

o Emboss iimages

o Add igaussian inoise ito iimages

Figure 3.9: Augmented images using bounding-box-augmentation [92] based on imgaug [91] python library.

Each image generates maximum of 10 augmentations according to the above techniques

Figure 3.10: Annotation files are also generated with the augmentation process for each image with the same

format

Hence iYOLO iis inot isupporting ithe iPascalVOC iAnnotation iXML ifiles, ithe ifiles iare

iconverted iinto iYOLO itext ifile iusing ithe ifollowing ipython iscript. iThis icode iis icreated iusing

i“Joseph iRedmon's ivoc_label.py” [92] iand iMuhammad iYounus’s “convert_voc_to_yolo.py”

[93].

31

Figure 3.11: Main python script, voc_to_yolo.py

32

Figure 3.12: Python script with conversion functions, convert.py

Figure 3.13: Left - newly created annotation text files in the same directory as images and XML files. Right -

PascalVOC XML is converted into YOLO text format (<class> <x_center> <y_center> <width> <height>)

33

Following table contains the number of images after going through the annotation and

augmentation process.

Table 3.5: Number of images after augmentation

Class Number of Augmented Images

 Training Testing

Healthy 897 224

Calcium deficient 911 228

Nitrogen deficient 878 219

Magnesium deficient 770 193

Total 3456 864

3.3 Detection Algorithm

As described in the literature review chapter, many classification algorithms and detection

algorithms are available for plant deficiency identification. These deep learning algorithms vary

from each other based on their basics used in the algorithm design and deficiency identification

approach. After the critical review of the literature as presented in the previous chapter, version

three of the You only look once, or YOLO object detection algorithm is selected for this study.

This section will describe the architecture of the algorithm.

3.3.1 YOLOv3 Architecture

Most of the detection systems use classifiers underline to perform detection. these systems take

a classifier for that object and evaluate it at various locations and scales in a test image to detect

an object. More recent algorithms like R-NN use region proposal methods to generate potential

bounding boxes on an image then run the classifier on those bounding boxes. Once the

classification is done, post processing refines the bounding boxes. This process is somewhat

complex. YOLO solves the object detection problem as a simple regression problem where a

single convolutional network simultaneously predicts multiple bounding boxes and class

probabilities for those boxes. Few advantages of this system are first, it is fast because of the

simple pipeline. Second, when making predictions, it reasons globally about the image. It sees

the entire image during training and test time in contrast to sliding window and region proposal-

based techniques, so it implicitly encodes contextual information about classes as well as their

appearance. Finally, it learns to derive the representations of objects so it is less likely to beak

on unexpected inputs [15].

34

This study is based on the third iteration of YOLO over the years and the underline architecture

of it is called Darknet. Initially, YOLOv2 used a 30-layer custom architecture of darknet.

YOLOv3 architecture is still missing some of the important elements like residual blocks, skip

connections, and upsampling, which are now mandatory in most of the highly used AI

algorithms. YOLO v3 corrected those missing elements and uses a variant of Darknet, which

initially was a 53-layer network trained on ImageNet. 53 more layers are added onto it for the

task of detection resulting a 106-layer fully convolutional underlying architecture.

Following diagram created by Ayoosh Kathuria for his blog post on What’s new in YOLO v3

posted on towardsdatascience website.

Figure 3.14: YOLOv3 network architecture

YOLOv3 architecture is explained in Figure 3.15. (A) model pipeline with an input image size

of 416×416 pixels. This returns 3 types of feature maps as outputs. They are 13×13×69,

26×26×69, and 52×52×69 respectively. (B) the basic element of YOLOv3, Darknet conv2D

BN Leaky ("DBL" for short), is created with one convolution layer, one batch normalization

layer, and one leaky Relu layer. (C) two "DBL" structures following with one "add" layer leads

to a residual-like unit ("ResUnit" for short); (D) several "ResUnit" with one zero padding layer

and "DBL" structure forward generates a residual-like block, "ResBlock" in short; (E) some

detection results with YOLOv3 approach, resize the 732×574 images to 416×416 size as input.

Convolutional layers are the only layers used to make YOLO an FCN (Fully Convolutional

Network). Pooling is not used inside the network in any form, and downsampling of the feature

maps is also done by using a convolutional layer. Usually pooling leads to a loss of low-level

features and the convolutional layer downsampling prevents that. The newer architecture

35

includes upsampling and residual skip connections. The most noticeable or important feature

of YOLOv3 is that there are three different scales of detection. YOLOv3 being a fully

convolutional network makes it not dependent on the input image size. However, in practice,

input images should not be on varying input sizes because various problems that only appear

once the algorithm is implemented. As stated earlier, YOLOv3 detects the object by applying

a 1×1 detection kernel at three different places in the network on feature maps of three different

sizes.

Figure 3.15: YOLOv3 pipeline architecture

The composition of the detection kernel is as follows.

1 × 1 × (𝐵 × (5 + 𝐶))

In the above algorithm, “B” is the number of bounding boxes can predict on a cell on the feature

map, “5” is the summation of the object confidence and 4 bounding box attributes, and “C”

indicates the number of classes of the detection problem. The height and width of the feature

36

map produced by this kernel are similar to the previous feature map and detection attributes are

placed along with the depth on the newly generated feature map as explained above.

The network downsamples the image using the stride of the network. Stride is the number of

pixels shifts over the input matrix. Generally, the outputs of the layers are smaller than the input

of the layers in the network and that factor makes stride of any layer in the network. For

example, if the stride is 32 in the network, then an input image of size 416×416 will result in a

13×13 output in size. As explained in the previous paragraph YOLO uses a convolutional layer

with 1×1 convolution to predict objects. The first output of the layers is a feature map. The size

of the final prediction map has the same size as the feature map before the final layer because

the 1×1 convolutions are used to predict. In YOLO v3, each cell can predict the same number

of bounding boxes using this prediction map. If the center of a detecting object falls in the

receptive field of a cell that object is predicted by that cell of the feature map through one of its

bounding boxes.

Figure 3.16: “The cell (upper image) containing the center of the ground truth box of an object is chosen to be

the one responsible for predicting the object. In the image, it is the cell which marked red, which contains the

center of the ground truth box (marked yellow)” ~ [94]

As described earlier the three prediction scales downsample the image to the dimensions of 32,

16, and 8 respectively. Throughout the first 81 layers, network downsamples the image to

produce the first detection at 82nd layer by having a stride of 32 at layer 81. As the above

example, a 1×1 detection kernel is used to made detection. The resulting feature map has

37

dimensions of 13×13×255. Then, the second detection is made at the 94th layer, yielding a

detection feature map with dimensions of 26×26×255. The final of the scales is at the 106th

layer, and the resulting feature map has dimensions of 52×52×255.

The result of the detection is a set of bounding boxes around the prediction. Predicting the width

and height of the bounding box leads to unstable gradients during training. Because of that, the

detectors have a pre-defined default set of bounding boxes called anchors, and the detectors are

offset to them. Then the bounding box is predicted by applying the transforms. The following

formulae describe how the network output is transformed to obtain bounding box predictions.

bx, by, bw, bh are the x, y center co-ordinates, and the width and height of the prediction. cx and

cy are the top-left coordinates of the grid. tx, ty, tw, th are the network outputs. pw and ph are

anchors dimensions for the box. The following image shows how to apply a log-space transform

to the output to predict the dimensions of the bounding box and then multiplying with an anchor.

Figure 3.17: How the final prediction is given by transforming the detector output.

According to the three scales described in previous paragraph, there can be 10647 bounding

box predictions ([13x13] + [26x26] + [52x52] = 10647). YOLO will reduce the boxes using

thresholding by object confidence and non-maximum suppression methods [95].

3.4 Implementation

Based on the literature review, the implementation of a detection system requires a hardware

setup and a set of software and frameworks to support the development.

38

3.4.1 Workstation Setup

This section explains the hardware selection for the study. It is a known fact that the high

performing hardware is required for the calculation tasks in Machine Learning Algorithms,

libraries.

Most of the common machine learning algorithms including neural networks cannot be

parallelly trained. This makes that they have to train on a single processor. Simple MLPs can

run in a viable amount of time using a single processor, it is not feasible to train a large

Convolutional Neural Network on a personal laptop or even a personal computer with a decent

processing unit. Graphical processing units (GPUs) are used to overcome this challenge of

training large neural networks. GPUs are good at performing large amounts of simple

operations at the same time with their numerous processor cores and they provide the best

memory bandwidth while having almost no drawback due to latency via thread parallelism

against the CPU. Most of the neural network operations can be identified as simple matrix

operations, and GPUs are able to run these small operations parallelly in their thousands of core

to faster the training process of the model.

Therefore, the study used a workstation with the specifications that are summarized in the

following table.

Table 3.6: Workstation specification summary

Machine Type Desktop Workstation

CPU Intel Core i3-7300 2 Cores 4 Threads 4.00 GHz

RAM 16 GB

GPU GeForce GTX 1060 6 GB 1280 NVIDIA CUDA Cores

Operating System Ubuntu 18.04

3.4.2 Software and Frameworks

The operating system chosen is an Ubuntu 18.04 Linux distribution, as it is freely available and

as it is the primary supported operating system of the Darknet and TensorFlow. To utilize the

GPU’s capabilities, the libraries CUDA 10.0 and cuDNN 7.4 were installed. Before installing

the framework OpenCV 3.4.0 was also installed.

There are various deep learning frameworks capable of creating, training, and using YOLOv3.

These frameworks vary in speed, abstraction level, modifiability, and creation of new layers.

Table 3.7 lists various frameworks along with their programming language. While preferences

39

may vary, web research concludes that there is no single best network. Darknet framework was

selected because of its high abstraction level, which makes network architecture definition,

solver, and application relatively easy. It is fast, easy to install, and supports CPU and GPU

computation [95].

Table 3.7: List of deep learning frameworks with programming languages which can be used to implement

YOLO

Framework Programming Language

Darknet C, CUDA

Tensorflow Python

Pytorch Python, C++, CUDA

OpenCV C/C++

When working with Darknet only the configurations are changed and most of the related work

like dataset preparation is done using python scripts.

3.4.3 Experimental parameter setting

Once the data set is prepared, YOLOv3 configuration files were created namely .data, . names,

and .cfg. .data file includes the following content.

classes = 4

train = data/train.txt

valid = data/test.txt

names = data/deficiency.names

backup = backup/

classes: the number of class in the data set

train: train file path

test: test file path

names: class names file

backup: path to store generated weight files

The deficiency.names looks like as follows. Every category is defined on a new line, and the

line number is the category number in label text files created earlier in the dataset preparation.

Healthy

Calcium

Nitrogen

Magnesium

40

The yolov3.cfg file from pjreddie.com was used for training configurations which include three

yolo layers. As a traditional method, each object is to be trained for at least 2000 iterations.

Hence, the dataset was trained for 8000 iterations as there are 4 classes to train. The values of

batch and subdivisions were set to 24 and 8 respectively for optimal training speed. The width

and height values were set at 416 each for optimum speed and better accuracy of detection. The

number of filters used in the convolution layer was set to 27 as the value is dependent on the

total number of classes.

batch=24, indicates that for every training step 24 images are used.

subdivisions=8, the batch is divided by 8 to decrease GPU VRAM requirements.

filters=27, this is calculated from 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 5) × 3

classes=4, the number detection categories

max_batches=8000, 2000 iterations per each object over 4 objects

3.4.4 Transfer learning

The total amount of time required to train the network with the above configurations was

approximately 9-10 hours. The weights thus generated after 8000 iterations were used to carry

out detections and analyzing the performance. Once before the training is started, the network

architecture was displayed as follows.

41

42

The parameters used for testing the completeness of the model are mAP, IoU, and f1 score.

Mean Average Precision (mAP) is the mean value of average precisions and Intersection Over

Union (IoU) is the average intersect over union of objects and detections for a certain threshold

and f1 score depends on the precision and recall and can be calculated based on confusion

matrix.

Figure 3.18: Performance metrics graphical representation [96]

Figure 3.19: Performance metrics mathematical representation

Performance charts will be shown in the evaluation and result section. Following chart visualize

the loss during training.

Figure 3.20: Loss curve during training process

43

Above curve is generated based on the following loss function by Darknet itself.

Figure 3.21: YOLO loss function taken from version 1 paper [15]

The generated model weights are used to combine with the explainable model in the next

section and these weights are selected based on the evaluation results which will be discussed

in the evaluation and result section.

3.5 Explainable Model

As discussed in the literature review section, explainability is added to a model to provide an

understanding of the result derived by that model to the end-users. They may have the

knowledge of the subject domain of this study but may not have the knowledge of how the

convolutional neural networks work and it is not necessary for them to have the knowledge

related to convolutional neural networks to understand this study but need a method to return

the results in a domain specific manner.

To achieve this goal based on the literature review one of the most user-friendly explanation

families, the verbal explanations are used because the explanations are usually provided in

natural language form which are like humane explanations.

Figure 3.22: Explainable Architecture

44

The interaction interface can be a Mobile application or a server application that takes the input

as an image which is evaluated against the YOLOv3 model, which was trained in the previous

section. The classes are pre-defined in the TensorFlow application is written on Java

TensorFlow Classifier Class.

The knowledge base is created with the help of an Agronomist and online knowledge sources

such as YARA [33]. Each of the class has a verbal explanation like humane explanations in the

inference engine to provide based on the detector results. As an example,

Table 3.8: Sample explanations of the deficiencies identified

Deficiency Class Sample Explanation

Calcium Due to Calcium deficiency, the growth of lettuce is observed as reduced

and leaves are wavier than normal. Brown or grey lesions has

developed starting from leaf margins or tips of young leaves. This

symptom is called as 'tip-burn'. When the Calcium -deficiency

progresses, the leaves begin to die from tips and margins inwards.

Subsequently, the persistent symptoms will spread over the older

leaves.

Nitrogen Older leaves have the symptoms of N deficiency at first with light green

chlorosis. This moves to the head and will have light green chlorosis.

No head is formed with severe Nitrogen deficiency and the growth is

restricted. But the leave shape remains normal.

Magnesium Older leaves have the symptoms of Mg deficiency at first with

yellowing between veins and leaf margin discoloration of yellowish

orange. If this continues, the yellow leaf zones will die but the veins

remain green. Growth is incrementally restricted with the severity of

the deficiency.

45

Chapter 4 : Evaluation and Results

Evaluating deficiency identification implies, evaluating the deep neural network itself. This

research uses the YOLOv3 (You Only Look Once version 3) object detection algorithm based

on fully convolutional neural networks. So, the evaluation of the trained algorithm is performed

on the testing datasets.

4.1 Evaluation Criteria and Datasets

Based on the literature review, the dataset is separated into 80% (training) 20% (testing) subsets

as mentioned in Table 4.1 Dataset Separation the dataset is separated into training and testing

subsets prior to the augmentation to avoid the same image in both datasets.

Table 4.1: The separated dataset

Class Number of Images Augmented Images

 Training Testing Training Testing

Healthy 102 26 897 224

Calcium deficient 117 30 911 228

Nitrogen deficient 95 24 878 219

Magnesium deficient 84 21 770 193

Even though the above dataset is separated, the images are taken in similar conditions and

similar backgrounds. To overcome this issue and as the second step of validating the model, a

web scraped dataset was used. The images were downloaded using the following web scraper

written in NodeJS (JavaScript). Images were scraped from the ecosia.org, a search engine based

in Berlin, Germany, that donates 80% or more of its profits to nonprofit organizations that focus

on reforestation. Search results are simpler than google, so it is easy to download.

Figure 4.1: Ecosia is a social business founded in 2009 after a trip around the world forcusing reforestation

46

These images were not subjected to any augmentation. Among those images, the best 100

images of each deficiency and healthy were selected to validate the model. Figure 4.2 shows a

sample set of annotated images.

The Table 4.2 contains and Figure 4.3 shows the bulk downloads of the images and selection.

47

Table 4.2: Number of deficiency and healthy images downloaded from ecosia using web crawler

Class Total bulk downloaded images Selected images

Controlled 193 100

Calcium deficient 172 100

Nitrogen deficient 158 100

Magnesium deficient 135 100

Figure 4.2: Annotated deficient images in dataset

Figure 4.3: Bulk downloaded images from web scrape, prior to selection

As explained in the 3.2 Dataset Creation of this study, there are several available general fine-

grained datasets for image classifications. Table 4.3 shows the most popular and freely available

datasets via the internet. From those datasets, PlantVillage and CropDeep datasets include

lettuce images, but they have only the lettuce related disease images but neither of them includes

nutrient deficiency images that can be used for classification in this study. Hence the model

was not validated against a public dataset.

48

Table 4.3:Summary of popular general and fine-grained vision datasets with plants [43]

Dataset Classes
Image

Number

Annotation

Samples

Number

Comment

Flowers 102 102 1020 0

The flowers chosen are flowers commonly

occurring in the United Kingdom. Each class

consists of between 40 and 258 images.

PlantVillage 38 19,298 0

contains only images of leaves that are

previously cropped in the field and captured

by a camera in the laboratory

CUB 200-

2011
200 5994 0

general-purpose dataset (not only plants)

mostly web crawled data

Urban Trees 18 14,572 0

trees labeled by geo-location and tree species

located within Pasadena. The dataset includes

dense aerial and street view imagery

LeafSnap 185 30,866 0

high-quality images taken of pressed leaves;

"typical" images taken by mobile devices

(iPhones mostly) in outdoor environments

ImageNet 1000 14,197,122 1,034,908
general-purpose dataset (not only plants)

mostly web crawled data

MS-COCO 80 300,000
More than

2,000,000

general-purpose dataset (not only plants)

mostly web crawled data

AI

Challenge
61 47,393 0

general-purpose dataset (not only plants)

mostly web crawled data

iNat2017 5089 858,184 561,767

general-purpose dataset (not

 only plants)

mostly web crawled data

VegFru 70 160,731 0
vegetables and fruits which are closely

associated with the daily life of everyone

CropDeep 31 31,147 49,765

mages are collected by various equipment

including cameras of IoT, autonomous spray

robot, autonomous pinking robot, mobile

cameras and smartphones in an intelligent

agricultural monitoring and management

platform

4.2 The Experimental Results

The performance evaluation is carried out while training as well against the testing dataset from

the separated images of the original dataset. The following values are the performance metrics

obtained on the training dataset.

49

4.2.1 Confusion Matrix, IoU, mAP, and F1-score

A confusion matrix is a summary that gives the prediction results on a detection problem. The

number of correct as well as a number of incorrect predictions is summarized with counted

values and broken-down class by class. This is the key to the confusion matrix. The confusion

matrix shows the ways in which the defined model is confused when it makes predictions. It

gives insight not only into the errors being made by a detector but also more importantly the

types of errors that are being made. These counts are made in reference to the number of

annotations/bounding boxes in images.

For Calcium (ClassId = 0), TP = 2186, FP = 16

For Nitrogen (ClassId = 1), TP = 928, FP = 64

For Magnesium (ClassId = 2), TP = 713, FP = 89

For Healthy (ClassId = 3) TP = 871, FP = 17

For confidence threshold 0.25, the average Intersection over Union is 90.10%

For IoU threshold of 0.5, that is 50%, the mean average precision 94.38%

For confidence threshold 0.25, the F1-score (the harmonic mean(average) of the precision and

recall) is 0.97

Figure 4.4 visualize the mean average precision of the model throughout the training process

over the training image iterations.

50

Figure 4.4: Mean Average Precision against the iterations over training dataset along with the loss curve

Once the training is completed, the weights were chosen to test the model based on the above-

mentioned parameters and by the following graph, the best accuracy model achieved is 94.38%

and the loss is minimum at the 8000.

The following values are the performance metrics obtained on the testing dataset.

Following figure shows the results of the testing. (a) is classified as Calcium deficient, (b) is classified

as Nitrogen deficient, (c) is classified as Magnesium deficient, and (d) is healthy.

51

(a)

(b)

(c)

(d)

Figure 4.5: Detection output. (a) Calcium deficient, (b) Nitrogen deficient, (c) Magnesium deficient, and (d)

healthy

As the next step of evaluation, the web crawled dataset is tested against the model and the

following are the results.

52

4.2.2 Summary

The performance results from the training, testing on own data, and testing on web crawled data

can be summarized into following table.

Table 4.4: Summary of performance test results

 Training Testing - Own Testing - Web

 AP TP FP AP TP FP AP TP FP

Calcium 99.30 2186 16 91.20 259 19 81.17 83 14

Nitrogen 93.80 928 64 82.60 221 28 73.40 77 21

Magnesium 86.92 713 89 78.13 156 34 69.33 69 28

Healthy 97.50 871 17 89.91 202 22 79.01 80 15

mAP 94.38 85.46 75.73

TP 4698 838 309

FP 186 103 78

FN 119 73 63

Precision 0.96 0.89 0.80

Recall 0.98 0.92 0.83

F1-score 0.97 0.90 0.81

As seen from the above table the performance of the model with the same dataset as the training

data is having the best mean average precision and the least value is the web crawled dataset.

The reason behind this is that the model is already trained with the training data and the features

are already extracted based on them and the study’s own testing dataset is a separation on the

training dataset hence have similar backgrounds and similarly featured as in the training dataset.

But as for the web crawled dataset, it has a collection of images with different color gradients,

contrasts, and sizes. This may cause this decrement in performance.

When comparing the classes against the same dataset, the difference in performance values can

be seen among them. Calcium has the overall best performance values. The reason is that the

maximum number of images in the dataset is related to calcium and the maximum number of

annotations is also related to calcium. Tip burn symptom of the calcium makes that there as

multiple bounding boxes in the same image and there are multiple positions of symptoms in the

same image. In contrast, Nitrogen and Magnesium symptoms are spread throughout the plant,

so the bounding box covers the entire plant. This makes a smaller number of bounding boxes

for these two classes. Finally, the healthy class also have better performance than Nitrogen and

Magnesium and lesser performance than Calcium.

53

Chapter 5 : Conclusion

With the improvements of horticultural lettuce production, greenhouses, one of the major

controlled environmental architectures, are vastly used with the aim of providing an optimal

nutrient composition to the corps, to protect the crops from pests without applying pesticides,

and to provide the optimal environmental conditions to the corps as in temperature, humidity,

etc. Even though the greenhouse is a controlled environment and lettuce is produced in a

nutrient solution, there can be a production loss due to nutrient deficiencies. Some of the

deficiencies generate manifestation in the visible spectrum. There are many solutions to

mitigate the crop loss due to nutrient deficiencies, but identifying the deficiency beforehand is

a crucial step in this deficiency management. To overcome this, machine vision is applied to

monitor plants. There are multiple approaches for this task as discussed in the literature review,

but the current limitation is the lack of explanation of results in a humane understandable

method.

5.1 Study Conclusion

In this study, YOLOv3 is used to detect the deficiencies of greenhouse lettuce because it has

good detection speed and good detection results according to the literature review. In addition

to that, the detector takes the first step of the explanation model by providing the bounding

boxes of the deficiency. This helps to understand the result in a way. Hence there is a need of a

dataset for detector model training, the literature review was carried out for finding a dataset

but as explained the publicly available fine-grained datasets do not include lettuce deficiency

images. Because of that, an experimental setup was created in AiGROW greenhouse with the

help of an Agronomist to acquire images with deficiency symptoms. The deficiency images

were acquired for lettuce calcium, nitrogen and magnesium deficiencies along with a control

setup for healthy plants. The acquired images were annotated, and the annotated images were

subjected to the augmentation process to grow the dataset. Before the augmentation, the dataset

was separated to training and testing subsets as for the testing dataset to be used in the first step

of evaluation of the model. This process is explained in 3.2 Dataset Creation Section of Chapter

3.

The YOLOv3 model was trained on top of the Darknet framework, which is an open source

neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU

and GPU computation. As explained in 3.4 Implementation section of Chapter 3, Darknet was

compiled on specific hardware setup and YOLOv3 was trained using transfer learning methods

where the weights were pre-trained weights for the convolutional layers by Darknet. The

54

training mAP achieved 94.38% and the loss was stabilized in 8000 iterations. The testing was

carried out on the own dataset and another dataset was created using a web crawler as described

in 4.1 Evaluation Criteria and Datasets section of Chapter 4. The separated testing dataset

achieved an mAP of 85.15% while the web crawled test dataset settled on 75.73%.

As the explainable architecture, the weights generated from the model training was combined

with the TensorFlow Inference engine for Java and generated the final output with explanation

based on the detector output.

5.2 Study Generalization

This research is focused to overcome the challenge of explaining the nutrient deficiencies

identified using Convolutional Neural Networks. The study combines the results obtained from

the object detector with the TensorFlow inference engine to provide humane understandable

results for deficiency identification of crops. This research studied this concept using

greenhouse lettuce as the plant.

The solution can be generalized to use in any kind of crop which has nutrient deficiencies with

the symptoms available in the visible spectrum. The weights from the trained neural network

can only be used to identify the similar images which were trained. In this case, the neural

network is trained to identify the Calcium, Nitrogen, and Magnesium nutrient deficiencies of

lettuce but the same wights can be used to identify other crops with visually similar nutrient

deficiencies. The accuracy may lower than the accuracy with lettuce.

To gain the best results out of the same network, it should be trained with other images related

to desired deficiencies and the weight must be obtained to combine with the inference engine.

The knowledge base should be updated to support the additional classes added to the neural

network so that the inference engine can return the explanations for those classes as well.

The next subsection will explain how the increase the accuracy and escape the bound of the

visible spectrum. But the generalization is valid with all the extensions discussed in the final

section.

5.3 Future Work

The model was providing quite good results for calcium deficiency and healthy lettuce, but

nitrogen and magnesium were not quite good. The reason was identified as a lack of enough

training material. Few extensions can be carried out regarding this study to expand and make it

more efficient and accurate.

55

One of the most constructive extensions is to expand the dataset with new images not focusing

on a single lettuce variety but multiple varieties of the same deficiency setups. This can provide

the features to identify deficiencies of multiple varieties of lettuce.

The next extension is to capture images using an IR camera. Even though the colored images

visualize the symptoms of tip burn clearly, the color changes and color patches are not much

visible in the RGB spectrum of the images, because of that the annotation task was quite

difficult to point the deficiency symptom.

Finally, other pre-trained weights of YOLOv3 on darknet can be used to train the model.

56

Reference

[1] “Global Greenhouse Horticulture Market 2018-2022,” Technavio.
https://www.technavio.com/report/global-greenhouse-horticulture-market-analysis-share-
2018 (accessed Sep. 19, 2019).

[2] M. Hasan, A. K. M. M. Tahsin, M. N. Islam, M. Ali, and J. Uddain, “Growth and Yield of Lettuce
(Lactuca Sativa L.) Influenced As Nitrogen Fertilizer and Plant Spacing,” IOSR J. Agric. Vet. Sci.,
vol. 10, pp. 62–71, Jun. 2017, doi: 10.9790/2380-1006016271.

[3] M. Sardare, “A REVIEW ON PLANT WITHOUT SOIL - HYDROPONICS,” Int. J. Res. Eng. Technol.,
vol. 02, pp. 299–304, Mar. 2013, doi: 10.15623/ijret.2013.0203013.

[4] J. G. Arnal Barbedo, “Digital image processing techniques for detecting, quantifying and
classifying plant diseases,” SpringerPlus, vol. 2, no. 1, Dec. 2013, doi: 10.1186/2193-1801-2-660.

[5] N. Mattson and T. Merrill, “Nutrient Deficiencies in Hydroponic Lettuce,” p. 10.
[6] D. Story, M. Kacira, C. Kubota, A. Akoglu, and L. An, “Lettuce calcium deficiency detection with

machine vision computed plant features in controlled environments,” Comput. Electron. Agric.,
vol. 74, no. 2, pp. 238–243, Nov. 2010, doi: 10.1016/j.compag.2010.08.010.

[7] D. Story and M. Kacira, “Design and implementation of a computer vision-guided greenhouse
crop diagnostics system,” Mach. Vis. Appl., vol. 26, no. 4, pp. 495–506, May 2015, doi:
10.1007/s00138-015-0670-5.

[8] C. Bock, G. Poole, P. E. Parker, and T. Gottwald, “Plant Disease Severity Estimated Visually, by
Digital Photography and Image Analysis, and by Hyperspectral Imaging,” Crit. Rev. Plant Sci.,
vol. 29, Mar. 2010, doi: 10.1080/07352681003617285.

[9] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” ArXiv E-Prints,
Nov. 2015.

[10] S. Albawi, T. Abed Mohammed, and S. ALZAWI, “Understanding of a Convolutional Neural
Network,” Aug. 2017, doi: 10.1109/ICEngTechnol.2017.8308186.

[11] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks,” Neural Inf. Process. Syst., vol. 25, Jan. 2012, doi: 10.1145/3065386.

[12] Z. Yang and R. Nevatia, “A Multi-Scale Cascade Fully Convolutional Network Face Detector,”
ArXiv160903536 Cs, Sep. 2016, Accessed: Jan. 19, 2020. [Online]. Available:
http://arxiv.org/abs/1609.03536.

[13] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis.,
vol. 60, no. 2, pp. 91–110, Nov. 2004, doi: 10.1023/B:VISI.0000029664.99615.94.

[14] R. Girshick, “Fast R-CNN,” ArXiv150408083 Cs, Sep. 2015, Accessed: Jan. 19, 2020. [Online].
Available: http://arxiv.org/abs/1504.08083.

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time
Object Detection,” ArXiv150602640 Cs, May 2016, Accessed: Jan. 19, 2020. [Online]. Available:
http://arxiv.org/abs/1506.02640.

[16] Z.-Q. Zhao, P. Zheng, S. Xu, and X. Wu, “Object Detection with Deep Learning: A Review,”
ArXiv180705511 Cs, Apr. 2019, Accessed: Jan. 19, 2020. [Online]. Available:
http://arxiv.org/abs/1807.05511.

[17] S.-H. Tsang, “Review: YOLOv3 — You Only Look Once (Object Detection),” Medium, Mar. 20,
2019. https://towardsdatascience.com/review-yolov3-you-only-look-once-object-detection-
eab75d7a1ba6 (accessed Jan. 19, 2020).

[18] B. Goodman and S. Flaxman, “European Union regulations on algorithmic decision-making and
a ‘right to explanation,’” AI Mag., vol. 38, no. 3, pp. 50–57, Oct. 2017, doi:
10.1609/aimag.v38i3.2741.

[19] D. Castelvecchi, “Can we open the black box of AI?,” Nature, vol. 538, pp. 20–23, Oct. 2016, doi:
10.1038/538020a.

[20] A. B. Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
Opportunities and Challenges toward Responsible AI,” ArXiv191010045 Cs, Dec. 2019,
Accessed: Jan. 19, 2020. [Online]. Available: http://arxiv.org/abs/1910.10045.

57

[21] D. Gunning, “DARPA’s explainable artificial intelligence (XAI) program,” Mar. 2019, pp. ii–ii, doi:
10.1145/3301275.3308446.

[22] “AiGrow - CodeGen,” AiGrow - CodeGen International. https://aigrow.lk/ (accessed Jan. 20,
2020).

[23] J. A. K. Noumedem, D. E. Djeussi, L. Hritcu, M. Mihasan, and V. Kuete, “Chapter 20 - Lactuca
sativa,” in Medicinal Spices and Vegetables from Africa, V. Kuete, Ed. Academic Press, 2017, pp.
437–449.

[24] M. Koudela and K. Petříková, “Nutrients content and yield in selected cultivars of leaf lettuce
(Lactuca sativa L. var. crispa),” Hortic. Sci., vol. 35 (2008), no. No. 3, pp. 99–106, Aug. 2008, doi:
10.17221/3/2008-HORTSCI.

[25] D. W. Goodall, A. G. Lipp, and W. G. Slater, “Nutrient Interactions and Deficiency Diagnosis in
the Lettuce,” Aust. J. Biol. Sci., vol. 8, no. 3, pp. 301–329, 1955, doi: 10.1071/bi9550301.

[26] J. P. N. L. Roorda van Eysinga and K. W. Smilde, Nutritional disorders in glasshouse lettuce.
1971.

[27] Hydroponic Lettuce Handbook. .
[28] R. Shamshiri et al., “Advances in greenhouse automation and controlled environment

agriculture: A transition to plant factories and urban agriculture,” Int. J. Agric. Biol. Eng., vol. 11,
Jan. 2018, doi: 10.25165/j.ijabe.20181101.3210.

[29] G. L. Barbosa et al., “Comparison of Land, Water, and Energy Requirements of Lettuce Grown
Using Hydroponic vs. Conventional Agricultural Methods,” in International journal of
environmental research and public health, 2015, doi: 10.3390/ijerph120606879.

[30] N. Sharma, S. Acharya, K. Kumar, N. Singh, and O. Chaurasia, “Hydroponics as an advanced
technique for vegetable production: An overview,” J. Soil Water Conserv., vol. 17, pp. 364–371,
Jan. 2019, doi: 10.5958/2455-7145.2018.00056.5.

[31] A. Hetzroni, G. E Miles, B. A. Engel, P. Hammer, and R. X Latin, “Machine vision monitoring of
plant health,” Adv. Space Res. Off. J. Comm. Space Res. COSPAR, vol. 14, pp. 203–12, Dec. 1994,
doi: 10.1016/0273-1177(94)90298-4.

[32] D. Story and M. Kacira, “Design and implementation of a computer vision-guided greenhouse
crop diagnostics system,” Mach. Vis. Appl., vol. 26, no. 4, pp. 495–506, May 2015, doi:
10.1007/s00138-015-0670-5.

[33] “Yara UK.” https://www.yara.co.uk/ (accessed Sep. 20, 2019).
[34] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning for Image-Based Plant

Disease Detection,” Front. Plant Sci., vol. 7, 2016, doi: 10.3389/fpls.2016.01419.
[35] D. P. Hughes and M. Salathe, “An open access repository of images on plant health to enable

the development of mobile disease diagnostics,” ArXiv151108060 Cs, Nov. 2015, Accessed: Sep.
19, 2019. [Online]. Available: http://arxiv.org/abs/1511.08060.

[36] Y.-Y. Zheng, J.-L. Kong, X.-B. Jin, X.-Y. Wang, T.-L. Su, and M. Zuo, “CropDeep: The Crop Vision
Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture,” Sensors,
vol. 19, no. 5, Mar. 2019, doi: 10.3390/s19051058.

[37] A. K. Rangarajan, R. Purushothaman, and A. Ramesh, “Tomato crop disease classification using
pre-trained deep learning algorithm,” Procedia Comput. Sci., vol. 133, pp. 1040–1047, Jan.
2018, doi: 10.1016/j.procs.2018.07.070.

[38] M. Türkoğlu and D. Hanbay, “Plant disease and pest detection using deep learning-based
features,” Turk. J. Electr. Eng. Comput. Sci., vol. 27, no. 3, pp. 1636–1651, May 2019.

[39] J. Amara, B. Bouaziz, and A. Algergawy, “A Deep Learning-based Approach for Banana Leaf
Diseases Classification,” in BTW, 2017.

[40] A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, “A Robust Deep-Learning-Based Detector for Real-
Time Tomato Plant Diseases and Pests Recognition,” Sensors, vol. 17, no. 9, Sep. 2017, doi:
10.3390/s17092022.

[41] C. DeChant et al., “Automated Identification of Northern Leaf Blight-Infected Maize Plants from
Field Imagery Using Deep Learning,” Phytopathology, vol. 107, no. 11, pp. 1426–1432, 2017,
doi: 10.1094/PHYTO-11-16-0417-R.

58

[42] G. Wang, Y. Sun, and J. Wang, “Automatic Image-Based Plant Disease Severity Estimation Using
Deep Learning,” Computational Intelligence and Neuroscience, 2017.
https://www.hindawi.com/journals/cin/2017/2917536/ (accessed Oct. 12, 2019).

[43] K. Zhang, Q. Wu, A. Liu, and X. Meng, “Can Deep Learning Identify Tomato Leaf Disease?,”
Advances in Multimedia, 2018. https://www.hindawi.com/journals/am/2018/6710865/
(accessed Oct. 12, 2019).

[44] A. Picon, A. Alvarez-Gila, M. Seitz, A. Ortiz Barredo, J. Echazarra, and A. Johannes, “Deep
convolutional neural networks for mobile capture device-based crop disease classification in
the wild,” Comput. Electron. Agric., Apr. 2018, doi: 10.1016/j.compag.2018.04.002.

[45] A. Johannes et al., “Automatic plant disease diagnosis using mobile capture devices, applied on
a wheat use case,” Comput. Electron. Agric., vol. 138, pp. 200–209, Jun. 2017, doi:
10.1016/j.compag.2017.04.013.

[46] J. Esgario, R. Krohling, and J. Ventura, Deep Learning for Classification and Severity Estimation
of Coffee Leaf Biotic Stress. 2019.

[47] A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg, and D. P. Hughes, “Deep
Learning for Image-Based Cassava Disease Detection,” Front. Plant Sci., vol. 8, Oct. 2017, doi:
10.3389/fpls.2017.01852.

[48] “Deep Learning for Plant Diseases: Detection and Saliency Map Visualisation,”
springerprofessional.de. https://www.springerprofessional.de/en/deep-learning-for-plant-
diseases-detection-and-saliency-map-visu/15829084 (accessed Oct. 12, 2019).

[49] M. Brahimi, B. Kamel, and A. Moussaoui, “Deep Learning for Tomato Diseases: Classification
and Symptoms Visualization,” Appl. Artif. Intell., pp. 1–17, May 2017, doi:
10.1080/08839514.2017.1315516.

[50] K. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” Comput.
Electron. Agric., vol. 145, pp. 311–318, Feb. 2018, doi: 10.1016/j.compag.2018.01.009.

[51] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic, “Deep Neural Networks
Based Recognition of Plant Diseases by Leaf Image Classification,” Computational Intelligence
and Neuroscience, 2016. https://www.hindawi.com/journals/cin/2016/3289801/ (accessed
Oct. 06, 2019).

[52] H. Agh Atabay, “Deep Residual Learning for Tomato Plant Leaf Disease Identification,” J. Theor.
Appl. Inf. Technol., vol. 95, pp. 6800–6808, Dec. 2017.

[53] A. F. Fuentes, S. Yoon, J. Lee, and D. S. Park, “High-Performance Deep Neural Network-Based
Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank,” Front. Plant
Sci., vol. 9, Aug. 2018, doi: 10.3389/fpls.2018.01162.

[54] L. Bin, Y. Zhang, D. He, and Y. Li, “Identification of Apple Leaf Diseases Based on Deep
Convolutional Neural Networks,” Symmetry, vol. 10, p. 11, Dec. 2017, doi:
10.3390/sym10010011.

[55] J. Barbedo, “Impact of dataset size and variety on the effectiveness of deep learning and
transfer learning for plant disease classification,” Comput. Electron. Agric., vol. 153, pp. 46–53,
Oct. 2018, doi: 10.1016/j.compag.2018.08.013.

[56] M. Arsenovic, M. Karanovic, S. Sladojevic, A. Anderla, and D. Stefanovic, “Solving Current
Limitations of Deep Learning Based Approaches for Plant Disease Detection,” Symmetry, vol.
11, no. 7, p. 939, Jul. 2019, doi: 10.3390/sym11070939.

[57] S. Wallelign, M. Polceanu, and C. Buche, “Soybean Plant Disease Identification Using
Convolutional Neural Network,” in FLAIRS-31, Melbourne, United States, May 2018, pp. 146–
151, Accessed: Oct. 15, 2019. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
01807760.

[58] “The Why of Explainable AI,” Element AI. https://www.elementai.com/news/2019/the-why-of-
explainable-ai (accessed Feb. 10, 2020).

[59] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’: Explaining the Predictions of
Any Classifier,” ArXiv160204938 Cs Stat, Aug. 2016, Accessed: Mar. 10, 2020. [Online].
Available: http://arxiv.org/abs/1602.04938.

[60] A. Datta, S. Sen, and Y. Zick, “Algorithmic Transparency via Quantitative Input Influence:,” p. 20.

59

[61] “Explainable Artificial Intelligence.” https://www.darpa.mil/program/explainable-artificial-
intelligence (accessed Feb. 10, 2020).

[62] K. Sokol and P. Flach, “Explainability Fact Sheets: A Framework for Systematic Assessment of
Explainable Approaches,” Proc. 2020 Conf. Fairness Account. Transpar., pp. 56–67, Jan. 2020,
doi: 10.1145/3351095.3372870.

[63] B. Khaleghi, “The How of Explainable AI: Pre-modelling Explainability,” Medium, Aug. 15, 2019.
https://towardsdatascience.com/the-how-of-explainable-ai-pre-modelling-explainability-
699150495fe4 (accessed Feb. 10, 2020).

[64] B. Khaleghi, “The How of Explainable AI: Explainable Modelling,” Medium, Aug. 03, 2019.
https://towardsdatascience.com/the-how-of-explainable-ai-explainable-modelling-
55c8c43d7bed (accessed Feb. 10, 2020).

[65] B. Khaleghi, “The How of Explainable AI: Post-modelling Explainability,” Medium, Aug. 03, 2019.
https://towardsdatascience.com/the-how-of-explainable-ai-post-modelling-explainability-
8b4cbc7adf5f (accessed Feb. 10, 2020).

[66] “Facets - Visualizations for ML datasets.” https://pair-code.github.io/facets/ (accessed Feb. 11,
2020).

[67] “Same Stats, Different Graphs | Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems.” https://dl.acm.org/doi/abs/10.1145/3025453.3025912 (accessed Mar.
02, 2020).

[68] T. Gebru et al., “Datasheets for Datasets,” ArXiv180309010 Cs, Mar. 2020, Accessed: Mar. 02,
2020. [Online]. Available: http://arxiv.org/abs/1803.09010.

[69] E. M. Bender and B. Friedman, “Data Statements for Natural Language Processing: Toward
Mitigating System Bias and Enabling Better Science,” Trans. Assoc. Comput. Linguist., vol. 6, pp.
587–604, 2018, doi: 10.1162/tacl_a_00041.

[70] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Interpretable machine learning:
definitions, methods, and applications,” Proc. Natl. Acad. Sci., vol. 116, no. 44, pp. 22071–
22080, Oct. 2019, doi: 10.1073/pnas.1900654116.

[71] Z. C. Lipton, “The Mythos of Model Interpretability,” ArXiv160603490 Cs Stat, Mar. 2017,
Accessed: Mar. 02, 2020. [Online]. Available: http://arxiv.org/abs/1606.03490.

[72] N. Papernot and P. McDaniel, “Deep k-Nearest Neighbors: Towards Confident, Interpretable
and Robust Deep Learning,” ArXiv180304765 Cs Stat, Mar. 2018, Accessed: Mar. 03, 2020.
[Online]. Available: http://arxiv.org/abs/1803.04765.

[73] D. Alvarez-Melis and T. S. Jaakkola, “Towards Robust Interpretability with Self-Explaining Neural
Networks,” ArXiv180607538 Cs Stat, Dec. 2018, Accessed: Mar. 03, 2020. [Online]. Available:
http://arxiv.org/abs/1806.07538.

[74] D. H. Park et al., “Multimodal Explanations: Justifying Decisions and Pointing to the Evidence,”
ArXiv180208129 Cs, Feb. 2018, Accessed: Mar. 03, 2020. [Online]. Available:
http://arxiv.org/abs/1802.08129.

[75] M. Hind et al., “TED: Teaching AI to Explain its Decisions,” ArXiv181104896 Cs, Jun. 2019,
Accessed: Mar. 03, 2020. [Online]. Available: http://arxiv.org/abs/1811.04896.

[76] Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable Convolutional Neural Networks,”
ArXiv171000935 Cs, Feb. 2018, Accessed: Mar. 04, 2020. [Online]. Available:
http://arxiv.org/abs/1710.00935.

[77] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin, “This Looks Like That: Deep Learning for
Interpretable Image Recognition,” ArXiv180610574 Cs Stat, Dec. 2019, Accessed: Mar. 04, 2020.
[Online]. Available: http://arxiv.org/abs/1806.10574.

[78] R. Ghaeini, X. Z. Fern, H. Shahbazi, and P. Tadepalli, “Saliency Learning: Teaching the Model
Where to Pay Attention,” ArXiv190208649 Cs, Apr. 2019, Accessed: Mar. 04, 2020. [Online].
Available: http://arxiv.org/abs/1902.08649.

[79] A. S. Ross, M. C. Hughes, and F. Doshi-Velez, “Right for the Right Reasons: Training
Differentiable Models by Constraining their Explanations,” ArXiv170303717 Cs Stat, May 2017,
Accessed: Mar. 04, 2020. [Online]. Available: http://arxiv.org/abs/1703.03717.

60

[80] G. Alain and Y. Bengio, “Understanding intermediate layers using linear classifier probes,”
ArXiv161001644 Cs Stat, Nov. 2018, Accessed: Mar. 04, 2020. [Online]. Available:
http://arxiv.org/abs/1610.01644.

[81] B. Kim et al., “Interpretability Beyond Feature Attribution: Quantitative Testing with Concept
Activation Vectors (TCAV),” ArXiv171111279 Stat, Jun. 2018, Accessed: Mar. 04, 2020. [Online].
Available: http://arxiv.org/abs/1711.11279.

[82] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, D. Pedreschi, and F. Giannotti, “A Survey Of
Methods For Explaining Black Box Models,” ArXiv180201933 Cs, Jun. 2018, Accessed: Mar. 04,
2020. [Online]. Available: http://arxiv.org/abs/1802.01933.

[83] M. Core, H. Lane, M. Lent, D. Gomboc, S. Solomon, and M. Rosenberg, “Building Explainable
Artificial Intelligence Systems.,” Jan. 2006.

[84] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell, “Generating Visual
Explanations,” ArXiv160308507 Cs, Mar. 2016, Accessed: Mar. 04, 2020. [Online]. Available:
http://arxiv.org/abs/1603.08507.

[85] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Towards better understanding of gradient-
based attribution methods for Deep Neural Networks,” ArXiv171106104 Cs Stat, Mar. 2018,
Accessed: May 03, 2020. [Online]. Available: http://arxiv.org/abs/1711.06104.

[86] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for Simplicity: The All
Convolutional Net,” ArXiv14126806 Cs, Apr. 2015, Accessed: Mar 03, 2020. [Online]. Available:
http://arxiv.org/abs/1412.6806.

[87] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning Important Features Through Propagating
Activation Differences,” ArXiv170402685 Cs, Oct. 2019, Accessed: Mar 03, 2020. [Online].
Available: http://arxiv.org/abs/1704.02685.

[88] M. Sundararajan, A. Taly, and Q. Yan, “Gradients of Counterfactuals,” ArXiv161102639 Cs, Nov.
2016, Accessed: May 03, 2020. [Online]. Available: http://arxiv.org/abs/1611.02639.

[89] “PlantVillage Dataset.” https://kaggle.com/emmarex/plantdisease (accessed Sep. 29, 2019).
[90] darrenl, tzutalin/labelImg. 2020.
[91] “imgaug — imgaug 0.4.0 documentation.” https://imgaug.readthedocs.io/en/latest/ (accessed

Jan. 21, 2020).
[92] “pjreddie/darknet,” GitHub. https://github.com/pjreddie/darknet (accessed Jan. 21, 2020).
[93] 262588213843476, “convert pascal voc dataset to yolo format,” Gist.

https://gist.github.com/M-Younus/ceaf66e11a9c0f555b66a75d5b557465 (accessed Jan. 21,
2020).

[94] A. Kathuria, “What’s new in YOLO v3?,” Medium, Apr. 29, 2018.
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b (accessed Dec. 10,
2019).

[95] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” p. 6.
[96] “AlexeyAB/darknet,” GitHub. https://github.com/AlexeyAB/darknet (accessed Nov. 12, 2019).

