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Abstract
The usefulness and feasibility of optimized object detection models in real time applications
for mobile phone and embedded device platforms is analyzed in the research. Such models
will  be useful as the number of mobile devices and IoT devices and the applications are
widely increasing. 

The problem in mobile  hardware platforms is  that  the CPU is not designed to do heavy
operations as PC hardware to conserve power. To achieve real-time detection it is required
for a different model or optimizing and improving the existing model. The objective of the
research  is  to  find  a  solution  which  gives  real-time  performance  without  compromising
accuracy of the results on mobile phones.

Existing object detection techniques were analyzed including Deterministic approaches and
Machine learning models. Through literature review it is found that YOLO machine learning
model can be improved to make it suitable for mobile hardware.

Various  techniques  applied  and  tested  including  model  trimming,  add  redundant  layers,
changing layer sizes and use different tools to compress the trained model. In the results it is
found that combining such techniques improve the performance while not sacrificing much
accuracy.

Tests were done on Mobile Phone and PC hardware with same data set and compared. And
also test with different models on Mobile phone also compared. The results show around 8
times improvement on inference time on mobile devices than using base models.

A proof of concept application created by training the street sign data and used in android
camera  application  to  detect  street  signs  on  real  time.  The  results  show  significant
effectiveness on optimized object detection models on mobile phones.
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Chapter 1: Introduction

1.1. Introduction
In recent years the number of IoT devices used in day to day applications are in several
billions. Advanced semiconductor technologies make it possible to use smaller processing
units  with ability  to  do multiple  G-FLOPS of  calculations.  This  much processing ability
enables many new applications for these kind of devices. There is a considerable amount of
IoT devices that use cameras as a hardware component, which can be used as a sensor to
learn  the environment  and the  data  can be used in  multiple  ways.  For  example,  Drones,
Biometric  Security  cameras,  Surveillance  cameras,  Vehicle  Dash  cams,  Face  recognition
locks etc.

Similar to the development of hardware technologies, in the field of AI also there are several
new  techniques  introduced  in  multiple  fields.  Huge  amount  of  Big  Data  and  powerful
hardware platforms for processing the data allows us to create large Neural Network models
to perform various predictions and operations.

Object detection is one of the application of Computer Vision. When an image with various
objects  with background is  given,  it  is  possible  to  detect  the location  of  the objects  and
classify them to a predefined classes is called object detection. Even though there are several
methods proposed, the methods which use CNN are most efficient in learning new objects in
different domains. CNN is a type of Deep neural network which use Convolution operation in
some layers. Even though CNN operations are  computationally expensive, they are efficient
in learning and generalizing the data set of images. 

IoT devices with camera hardware with enough computational power can be combined with
an Object  detection  model  can  be used  for  various  applications,  Such as  Face detection,
Person tracking drones, Robots which can recognize objects to perform various tasks, Self
Driving vehicles, etc.

1.2. Research Problem
The basic problem with CNN based Object detection models is computational complexity. In
a general purpose CPU an object detection model can perform at an acceptable level, but
most general IoT device’s CPU is not designed for the purpose of computation intensive
tasks.

For example, a Raspberry PI 4 Model B device has Quad core Cortex-A72 CPU, which can
run a  lightweight  operating  system with considerably  high  FLOPS. It  can  be  taken as  a
typical  example  for  a  low powered device  as  it  uses  less  powerful  CPU and there  were
various applications built on top of this hardware platform. When it is applied to a simple
face recognition task the frame rate drops to less than 5 FPS, which is very low for a real time
application. Nowadays mobile phones come with optimized GPU for specific tasks such as



Face detection and recognition, still  it requires high power to operate and not suitable for
continuous operation.

Another issue with such devices are the power-supply. Computationally intensive tasks such
as object detection will require a lot more than usual power supply. If the device is battery
operated, it will become another bottleneck for the usage of such applications. Finding an
optimized  object  detection  model  with  reasonable  accuracy,  which  can  perform  object
detection  with  acceptable  frames  per  seconds  is  crucial  for  real  time  object  detection
applications on IoT devices.

1.3. Motivation
There  are  efficient  CNN based Object  detection  models  available  such as  R-CNN, Fast-
RCNN, Faster R-CNN, SSD, YOLO. There is a considerable amount of research already
done on improving accuracy of the models. Also these models are using CNN as a back bone
for their object detection tasks. But it is not possible to directly run the models on  low end
CPU’s with acceptable performance. 

There  are  object  detection  applications  which  don’t require  high  accuracy  but  real-time
performance is important.  For example,  a vehicle detection IoT based device will receive
continuous frames as input, So it is enough for the application to detect a vehicle in-front in
one of the few frames within a time interval to alert the driver about the vehicle.

An object detection model which can perform faster on these CPU’s without sacrificing much
accuracy will be useful in these kinds of scenarios. By optimizing the models by applying
various techniques to improve the performance it is possible to create an object detection
model which can be used in applications on low end CPU devices.

1.4. Scope of the study
The research  will  mainly  focus  on object  detection  models  for  low level  CPUs,  and the
performance  will  be  compared  with  the  same  model  on  PC  CPU.   As  the  analysis  on
performance and accuracy already done on CPU based devices[1] for the most of machine
learning object detection models with COCO dataset, in this research, the analysis will be
extended to Mobile CPU but only on the selected YOLO v3 model as it is performing well on
PC. 

For  optimization  various  techniques  including  model  trimming,  remove  CNN  layers,
introduce  redundant  connections,  Floating  point  optimizations  will  be  studied  on  small
dataset and the techniques which have significant improvements only will be chosen to train
the whole dataset for evaluation.

Because COCO dataset is large enough with wide range of classes and it is used to compare
other object detection models[1], it will be used as benchmark dataset in this research aswell
for comparing the results with previous analysis.



There is no programming language level optimization will be considered in this research. The
standard Java based Android programming and Python based Tensorflow 2.0 framework will
be mainly used to construct the model and evaluate.



Chapter 2: Review of the Literature

2.1. Introduction
In this chapter literature of the various existing models of object detection architectures and
the  internal  CNN  implementations  are  analyzed  and  their  performance  metrics will  be
compared. Here the main focus of research is on CNN based models because DNN models
easily  outperform  manual  algorithms  in  generalization  and  robustness.  Earlier
implementations  use  manually  designed  feature  extractors  with  some  classifiers  such  as
SVM.  E.g.:  SIFT,  HOG  and  Haar-like.  But  the  issue  with  these  implementations  was
robustness.[4] The models will  not generalize over a wide range of similar  class objects.
Similar objects with different lighting, rotation, scaling, position will reduce the probability
of detecting the object. 

Object detection involves Object classification and Object localization. In an image frame the
model should locate the object from the background and classify the object from a set of
labels.

Usually object detection pipeline involves three stages. 

Informative  Region  Selection: In  an  image  frame  may  contain  several  objects  and
background. The object of interest can be any size and aspect ratio. The naive way of locating
the object is to scan through the frame with multiple aspect ratio windows. The various object
detection models use different strategies to reduce the scanning time.

Feature  Extraction: While  scanning  the  model  should  detect  the  object  in  a  particular
scanning window. To detect we need to extract the visual features of the region and compare
with the actual object classes. 

CNN is another type of feature extractor which solves most of the issues with manual design,
as it is a neural network which can be trained on the domain of objects with various training
examples to generalize the extractor to extract the features from a wide range of different
images.  The  main  issue  with  CNN is  the  computational  complexity.  When  the  network
becomes  deeper  and  deeper  the  number  of  floating-point  operations  will  proportionally
increase. 

Figure 1: General Object detection Pipeline



Classification: The detected object should be classified between different classes. Usually
Support  Vector  Machine,  AdaBoost  and  Deformable  Part-based  Models  are  used  for
classification task.

The time consuming and complex part of the model is Feature extraction. Also, the accuracy
of the model also depends on the same layer. CNN is widely used for this purpose nowadays
in most popular Object detection models.

Different  object  detection  architectures  apply  CNN  in  classification  and  localization  in
different methods. But the core component is still CNN and which decides the performance
of the particular architecture.

2.2. Convolutional Neural Networks
Most of the previous research work done on object detection to measure the accuracy and
performance is General purpose Computers. There is Not enough research work done with
various underlying CNN architectures specifically for CPU based mobile phones. Also, there
is no study on detection models for applications where the real-time performance is crucial
than the accuracy. In this research the study is focused on Object detection models for real
time applications on CPU based mobile phones.

CNN are fundamental building blocks for computer vision applications in Artificial neural
networks. There are two main advantages of using CNN Instead of using a fully connected
network  for  computer  vision  tasks.  CNN’s  use  a small  number  of  parameters  to  learn
compared to  fully  connected  networks  because of  convolutional  operations,  and they  are
immune to translation variances in the input images.

By combining multiple  layers  of CNN blocks  with other layers  such as Activation,  fully
connected and Regularization there are many architectures proposed. Early implementations
such as LeNet-5[5] used to classify handwritten digits use few layers of CNN. By improving
the LeNet-5 model AlexNet[6] was introduced with deep layer architecture. As they shown
the deeper the layer is the accuracy increased. AlexNet has around 61M parameters which
takes  around  249MB  memory  and  do  1.5B  floating  point  operations  per  one  image
classification. GoogleNet[7], VGGNet[8] are some evolutions of CNN with each introduce
some new features. The general trend here is to use deeper layers to make the model learn
more specific features and as a result they give more accurate results.

Instead of adding deep layers, ResNet[9] use residual blocks where they show that making
shortcut connections to the deeper layers, it is easy to train the network and solves issues in
vanishing gradient. DenseNet[10] proposed as an improvement to ResNet with dense shortcut
connections to the forward layers. The residual blocks add more addition operations instead
of multiplication operations the computation cost is not increase as it is happened in adding
deep layers of network. 

As the above proposed architectures mainly concern on accuracy of the model, they didn’t
cover the prediction time and computational complexity of the total network. But in mobile
devices  as they have limited CPU and real-time applications  require  low processing time



there  were  alternative  approaches  proposed.  Usually  the  models  are  trained  on powerful
computers and then the learnt models deployed in mobile devices and used by applications.
To  improve  performance  on  mobile  devices,  it  is  important  to  consider  the  test-phase
efficiency rather than train-phase efficiency.

Flattened CNN[11] take an approach to reduce the redundant filters in the CNN to reduce the
computational cost. Here they replace the 3-dimensional convolution operation with series of
1-dimensional convolution layers to reduce the number of matrix multiplication operations.
Quantized  CNN models  accelerate  and compress  the  network  parameters  by  which  they
achieve better performance in test phase computation.

SqueezeNet[12] combines  three different  approaches  to  reduce the number  of parameters
while  maintaining  the accuracy.  First,  they replace the 3x3 filters  with 1x1 filters  which
effectively reduce the number of parameters by 9 times. Then they decrease the number of
input channels to the convolutional layer through another layer they called squeeze layer.
When the above two strategies try to reduce the parameters, they use delayed downsampling
to preserve the accuracy. Usually in CNN the layers are down sampled by using strides (>1)
in combination with pooling layers. But SqueezeNet paper proposes not to down sample in
the first layers, instead pass the information up to the deep layers and start down sampling in
the end to preserve the accuracy of the network. Through these techniques the SqueezeNet
model was able to be compressed below 0.5Mb and they were able to implement it on FPGA
modules.

XNOR[13] network  uses  binary  numbers  instead  of  floating-point  numbers  in  the
convolution layer operations. When all the operands are in binary the convolutions can be
estimated by XNOR and bitcounting operations.  XNOR Nets can offer accuracy close to
CNN with approximately  58  times  speedup.  Another  advantage  is  the  operations  can  be
efficiently performed on CPU s which is an important factor on Mobile devices as those
doesn’t have powerful GPU s. 

MobileNet[14] is  another  CNN architecture  focused  on  efficient  models  on  Mobile  and
embedded  devices.  This  model  is  based  on  streamlined  architecture  and  makes  use  of
Depthwise separable convolutions. Depthwise separable convolution is a factorized version
of standard convolution layer into a depth-wise convolution and a point-wise convolution.
The main feature of this network is it is easy to tune the network according to the requirement
to match Accuracy-Speed trade-off through the hyper-parameters provided by the model. One
hyper-parameter called the width multiplier, which thin the network uniformly throughout the
layers  which  effectively  control  the  computation  cost  and accuracy.  When  applying  this
parameter at each layer the number of input channels and output channels will reduce by
times. The other parameter  called the resolution multiplier, will reduce the width and height
of the filters and input by a factor. By controlling both parameters, it is easy to create and
compare  the  network  performances  and  choose  the  best  values  according  to  the  various
requirements. 

The existing  research work done on object  detection  model  performance comparison are
based on different object detection pipeline architectures or an improvement on the existing



pipeline.  The  research  papers  on  different  CNN  architectures  there  are  comparison  on
performance, it is clearly showing the selection of CNN models can greatly impact the Image
processing performance. But There is no considerable performance evaluation work done on
effect of changing the base CNN layers in the CNN based object detection models and also
the performance of particular models on different hardware platforms. 

For example the YOLO v3 model directly uses a CNN back-end which can be replaced with
different  CNN  architectures  such  as  MobileNet,  SqueezeNet  without  modifying  the
functionality. By choosing appropriate back-end models and optimizing their parameters will
improve the performance in low end CPU platforms.

2.3. Object detection architectures
Earlier  models use brute force method to slide through the image and check with a CNN
classifier  weather  it  contains  any required images  in that  particular  region. Then R-CNN
models were introduced (Region proposal CNN) which instead of sliding through the entire
image, the CNN layers were applied only for the proposed regions. The region proposals are
done through some selective search algorithms. 

Based on the number of stages of processing of images the object detection models can be
categorized into two. 

 a) Two stage detection

Here the image is given as input to the network. A part of the model will generate the region
of  interests  (  Possible  rectangle  regions  of  objects).  Another  component  will  process  the
image through CNN and detect the objects. The results will be combined and returned as
output.

RCNN[15], Fast RCNN[16], Faster RCNN[17]  are examples of two stage object detectors.
RCNN based network proposed to use a selective search to extract only a certain number of
regions from the image instead of sliding through the image and checking all frames.

Figure 2: Two stage object detection architecture



Selective search can be implemented through various ways depending on the application. In
the paper they suggested 2000 region proposals. Here the issue with the region proposal is
that it is very slow and also it is not using the image data set to learn the image features and
propose the regions.

As an improvement to R-CNN another network called Fast R-CNN introduced, where the
region proposals are made on extracted features using RoI   pooling layer. At the end the
SoftMax layer will identify the object and generate the bounding box. With this technique
Fast R-CNN becomes significantly faster than the RCNN model.

Faster R-CNN models remove the usage of selective search for region proposals and only use
the single CNN network to generate both Regions and classifications.

 b) Single stage detection

Single stage detectors generate Region of objects and  features through the same CNN layers 
in the same component. 

SSD uses a single pipeline of Convolutional layers combined as a series with various size
feature maps in various layers. At different stages of the layers different aspect ratio object
bounding boxes will be predicted and passed to the output.[18]

Figure 3: Faster R-CNN Object detection model

Figure 4: Single stage object detector architecture



YOLO is another single stage object detection architecture. The difference between SSD is,
that instead of getting the outputs from different layers of CNN, YOLO get the different size
bounding box with different aspect ratios from the final layer of the CNN network.[19]

Instead of a Separate algorithm to propose the region of the network as in R-CNN models,
here YOLO divides the image into regions by a grid, and then the image directly passes
through the CNN blocks. At the last layer in addition to the Class the Region also provided as
the target to learn. Because of a single pass through the convolutional layer it doesn’t take
much time  to  localize  and detect  the  object.  The performance  is  close  to  Real-time  and
acceptable accuracy. There are improvements on YOLO proposed. Mainly by changing the
underlying CNN architecture it directly affects the accuracy and performance of the entire
model. For the implementation YOLO uses a CNN model called Darknet-53Figure 7 which
consists of a series of Convolution layers and Residual connections and at the end it has an
Average Pooling layer.

YOLO v2 introduced new techniques within the model such as Batch Normalization, High
Resolution Classifier, Anchor boxes, Dimension Priors, Location Predictions to improve the
accuracy while  keeping the performance without  lacking.[20] YOLO v3 improved on v2
model by modifying the feature extractor to darknet-53 CNN model. [1]

In the paper, different frame sizes including 256 x 256, 320 x 320 and 416 x 416 pixel images
are used as input for training and validation. For the COCO dataset the output consists of 80
different classes and for each class 3 bounding boxes with different scale were predicted by
the model.

Figure 5: Single Shot Multi-box Detector

Figure 6: YOLO detector



Figure 7: Darknet53 Architecture

When  comparing  the  Two  stage  detectors  and  Single  stage  detectors[1],  even  though
RetinaNet performs with high accuracy in COCO data-set, it is lacking in object detection
speed.  It  takes  3.8  times  more  seconds  than  YOLO v3.  When  comparing  to  Two stage



detectors (Faster R-CNN) One stage detectors have less accuracy but higher performance,
because the number of computation is significantly lower. 

 c) YOLO Lite

YOLO-lite[21] is an approach to implement an efficient Object detection model for non-GPU
based hardware. The research was mainly done to demonstrate that 

• The shallow networks capability of object detection on non-GPU based platforms

• Batch normalization is not necessary for shallow networks

The research work done on YOLO lite to test the real-time performance are,

1. Image Size: Reducing  the  input  size  will  have  an  effect  on  all  the  layers.  The
changes will have an exponential effect on overall performance. But the accuracy will
reduce as some of the data is lost and not available for the network.

2. Batch Normalization: Batch normalization is taking the output of the previous layer
and normalize it to mean zero variance and standard deviation before applying to the
next layer on each mini batch. As each mini batch have different mean and variance
of ground truth distribution, it is hard for the layers to learn the features (Covariate
shift).  Batch  normalization  helps  to  stabilize  the  network  by  keeping  the  input
distributions in same scale to learn the features quicker while training. It is shown that
Batch normalization has improvements in larger networks on training accuracy.[20]

Smaller networks like YOLO-Lite doesn’t have much issues with covariate shift it
doesn’t  require  Batch  normalization  in  all  the  layers.  Also  it  is  shown  that
feedforward process slows down by the batch normalization calculation significantly
compare to actual neural net calculations.

3. Pruning: Pruning is removing certain weights based on the contribution of that
node to the entire network. It is showing that the number of parameters reduced by 9x
on Alexnet and 13x on VGGnet.[22]



As shown in  Figure 8 the YOLO – Lite  has simple architecture  compared to  YOLO by
removing several complex layers and batch normalization layers.

When YOLO-Lite was compared with other object detection networks, it had around 21 FPS
which is enough for a real-time application even though the accuracy is reduced into 12.26%.

Figure 8: YOLO-Lite architecture

Table 1: YOLO-Lite Performance comparison



Chapter 3: Methodology

3.1. Introduction
The objective of the research work is  to find an efficient object detection artificial intelligent
model which is most suitable for real-time applications in low end CPU based devices. The
object  detection  model  should  be  capable  of  performing  detection  much  faster  than  the
existing models without sacrificing accuracy on the same hardware platform.

As long as the existing models and optimized are evaluated on the same hardware (CPU
based) it is safe to assume the model will behave in a similar way in other CPU based devices
aswell. Even though the performance of the model may depend on CPU architecture such as
Instruction set, number of cores, number of threads used by the model, it doesn’t affect much
on the results as all the models use a single thread and are compiled with the same libraries.

The object detection models which use hard coded search algorithms can be ignored as the
objective is to use the model for more generalized applications, and the hard coded models
are  not  robust  enough to  support  a  wide  range of  applications.  It  will  narrow down the
available object detection models for evaluation to few Two stage and Single stage detection
models.

3.2. Research Questions
The  main  question  analyzed  in  the  research  is,  through  applying  various  optimization
techniques on existing object detection model is it possible to maintain the accuracy without
reducing much while improving the performance on Mobile CPUs. If it can be improved, to
what extend it can be improved and weather it can be applied on real-time applications on
mobile phones. To answer the question through literature review the appropriate model and
data set will be collected and modified in evaluation.

3.3. Object detection model
Based on the analysis on literature review section YOLO based model is most suitable as a
starting point for the current objective because,

 a) Architecture

As shown in Figure 6 the official implementation of YOLO consists of Darknet based CNN
models. The input is an image / frame from a video and the output will be bounding boxes of
object detection and the classification of the object within the area.

The  overall  network  is  simple  and  modular,  as  it  contains  only  CNN  layers  and  Fully
connected  layers.  Figure  7 shows  the  darknet-53  model  used  in  official  YOLO  V3[1]
implementation which consists of a combination of CNN and Residual Connections.  It is
possible to replace with various CNN models and evaluate the performance. Another single



stage detector  SSD contains similar structure but the output depends on several layers of
CNN, which makes it difficult to try with various CNN networks and evaluate. 

 b) Performance

As compared in the YOLO V3 [1, Fig. 3] the accuracy of YOLO v3 is quiet similar to other 
object detection models and at the same time the performance much higher than others. 
Which is a suitable characteristic for the objective of the research.

3.4. Backbone CNN
Choosing an appropriate CNN model for the optimization can be done on comparing various
characteristics  of  the  CNN  networks.  The  main  objective  of  the  research  is  to  get  an
optimized network for real-time applications. The main performance bottleneck of a CNN
model is the number of parameters in the layers, which is directly proportional to the number
of floating point operations on calculating matrix multiplications. By choosing an appropriate
CNN architecture  it  is  possible  to  optimize  the  overall  performance  of  the  entire  object
detection model.

There are multiple parameters which can be changed and optimized to support the objective
of the research.

Number of layers

The depth of the layers has an effect on accuracy and performance, it is important to choose
the right number of layers to balance the accuracy performance trade-off. Usually the more
layers  in  the network,  it  can more generalize  the images  trained,  but  it  will  increase the
number of parameters and require more training data.

Residual Connections

Figure 9: Residual Block in CNN



Residual  connections  /  Bypass  connections  between  CNN layers  help  them to  learn  the
features in the image without adding additional computational parameters. ResNet is a model
which  uses  Residual   connections  in  the  model  to  learn  the  features  in  training  data.
MobileNet  is  another  model  which  makes  use  of  Residual  connections  with  other
optimizations.

 a) Optimized Model

YOLO lite[21] provides an approach to reduce the number of layers in the YOLO model to
support  non-GPU based Neural  Networks.  Similar  approach can  be  used  to  improve the
YOLO model to optimize the network for the Mobile phone CPUs as the main bottleneck of
performance depends on the number of calculations. As real-time applications can trade-off
the accuracy for the inference time of the model, because of the availability of huge input
data, it is possible to shrink the model by removing the layers and introducing the residual
connections to improve the train speed.

 b) Tensorflow Lite Optimizations

Tensorflow  lite  libraries  provide  certain  optimizations  on  the  trained  models  to  support
embedded devices and mobile devices. It allows us to compress the model to a smaller size to
improve the performance without much effect on accuracy. 

Quantization is another technique used in Tensorflow lite to improve the performance on low
end  CPUs.  It  is  done  through  reducing  the  precision  of  floating  point  parameters  and
operations  within  the  model.  FLOPS will  be  increased  by a  considerable  amount  as  the
calculations  can  be  done  in  fewer  cycles  than  directly  using  the  lengthy  floating  point
parameters.

3.5. Data-sets
For the training  of the models  COCO data-set[2] will  be used.  The weights of the base
YOLO model is already available and the optimized model will be trained on the data-set to
learn the weights. COCO is a standard data-set containing 350,000 images with labels and
bounding boxes to support object detection with 80 different commonly used types of objects.

Evaluation will be done on Pascal VOC 2012 data-set[3] as the COCO data-set was already
used to train the networks, it will not give the accurate results on evaluation on the same data-
set.  Pascal VOC 2012 data-set contains 20 classes and around 11000 images  with object
detection annotations.

To evaluate the application another data-set of images will be collected which include street
signs and vehicles. Data-set collection done through recording from the dash-cam and get
images on Google Street View. 

There are mainly two different tools used for data-set preparation.

• Computer Vision Annotation Tool (CVAT)



This tool is best for annotating the video files. It will read the video data and generate
the frames and allow to annotate two frames and interpolate the annotations on the
frames between them. Usually the objects in frames are not changing quickly if the
frames are close enough. It allows to generate a large number of annotated data-set
without much effort.

Also the tool support exporting the annotations in VOC standard format which can be
directly used for training the model in Tensorflow.

• Visual Object Tagging Tool (VOTT)

VOTT  is  useful  when  annotating  the  individual  images.  It  support  copy  one
annotation to another and lock the annotation so it is easy to annotate class by class
without  drawing  bounding  boxes  each  time.  VOTT  also  supports  VOC  format
annotation export which can be directly used for training.

After exporting the annotations and images in the VOC format it is required to split the data
set for training and validation. During the training the data-set divided into 80% training and
20% validation images.

3.6. Model Preparation
YOLO V3 model implementation of Tensorflow V2 was used as a Base model. The pre-
trained weights already available with the DarkNet paper. Optimized YOLO V3 model is
implemented by removing the Convolutional blocks by reducing the number of layers similar
to Mobile-net.

To train the model the VOC format dataset needs to be converted to Tensorflow records
(Protobuf format). Dataset is shuffled and divided into train and validation set and fed into
the model for training.  Tensorboard is used for visualizing the training progress as it can
provide the error/accuracy based on the training set  and validation  set  on each Epoch of
training.

While training the model weights are saved into checkpoints so the training can be continued
into several iterations without starting from the beginning.

3.7. Training
For the evaluation the per-trained base model (COCO data-set) was trained on VOC data-set
and the Optimized model also trained on VOC data-set. VOC data-set divided into three sets
Training, Validation, Testing. Training and Validation image sets were used for training the
model  and Test  data-set  used in the evaluation of the model.  Test set  only contains  100
images and the rest of the images are divided into 80% and 20% for training.

When pre-trained weights are used, the accuracy will start from a higher value than starting
from a random weights. Also the models were optimized quickly compared to a fresh-model.



To avoid overfitting training of the model stopped when validation accuracy start to reduce
while training accuracy continue to reduce.

Adam  optimizer[23] was  used  for  training  which  has  certain  advantages  than  other
optimizers. It is a combination of two optimizers

• Adaptive Gradient Algorithm (AdaGrad)

• Root Mean Square Propagation (RMSProp)

Adam optimizer  make use of the second moments  of gradients  than the first  moment of
gradient (Mean) to regulate the learning rate to speed up the optimization.

Optimized models were saved with weights for evaluating the models based on test data-set.
Then the trained models were converted into Tensorflow-lite format by Tensorflow converter
tool. This tool will optimize the model by improving the node graphs and changing the way
floating point operations are done. The output is a tflite file which can be used on Mobile
platforms with Tensorflow Lite libraries.

 a) Hardware and Tools

For training the dataset it is required to have high performance CPU and GPU. A PC with
Intel Core i7-6700 CPU and NVIDIA GeForce RTX 2070 Graphics Card will be used for
Training the data-set. Tensorflow 2.1 with GPU Support will be used to create the models.
Tensorflow lite will be used to optimize the models for Mobile phones.

3.8. Evaluation

 a) Parameters

Model  Size  and  Parameters: The  number  of  operations  is  directly  proportional  to  the
number of parameters in the network. Direct comparison of parameter sizes will give overall
computational cost metric. 

Accuracy:   After  creating  the  CNN  model  run  random  test  samples  through  various
architectures (MobileNet, SqueezeNet, etc) and compare with the results with the proposed
architecture.  Mean  Average  Precision  (mAP)  is  one  of  the  metrics  which  measures  the
accuracy  of  an  object  detection  model.  It  can  measure  the  accuracy  of  detected  object
location in with the labeled data-set.

Performance: With the same data-set by providing a series of images and log the average
time taken can be a measure of speed of computation of the network. It  can be done on
various hardware platforms such as CPU, GPU, Mobile CPU and will be used to compare
how the parameter changes depending on hardware on various models. The output of the
evaluation can be ultimately expressed number of frames/images per second, which gives an
idea on how the model will perform on video streams on mobile applications. 



 b) Approach

Evaluating the level of optimization will be done by experiments on the optimized model and
compare the results with existing models. The evaluation of optimized neural network model
for object detection will be done on three levels. 

1 Compare the object detection performance of Optimized model with the Base model
on a PC CPU.

2 Compare the object detection inference time of Optimized model and Base model on
a PC CPU after Tensorflow-lite graph optimizations.

3 Compare the object detection inference time of Optimized model and Base model on
a Mobile CPU after Tensorflow-lite graph optimizations.

The performance of the object detection model depends on two factors

• Inference time:  How fast an image can be evaluated by the detection model.

Calculating the inference time can be done by applying several standard images with
different image sizes through Object detection models and calculate the time it take to
evaluate the image. 

Log the time between start and end of each evaluation and get an average time.

• Accuracy: How accurate the object detection model detect the objects in the image.

Mean Average Precision ( mAP score) is the standard way to evaluate the accuracy of
object detection models.

mAP score will depend on two factors

◦ Detecting the existence of the object ( Classification ) 

◦ Determine the location of the object ( Localization)

Usually  the  accuracy  doesn’t  depend  on  the  CPU’s  as  all  the  CPU’s  perform  the
multiplications in the same way. So it is not needed to evaluate the accuracy changes  in the
third step as it doesn’t provide any additional measures. 

Even though Tensorflow-lite graph optimizations doesn’t change the model parameters but it
change the precision of calculations, it also has some effect on accuracy of the results. The
changes on optimizations can be measured by comparing the results of Step 1 and Step 2.

The  base  model  performance  provide  a  ground  truth  values  and  the  optimized  model
performance can be used to calculate the percentage of improvement of optimization of the
model to be used on a less powerful CPU. In this research the main concern is inference time
of the model as it is the main factor to decide on real time performance. Without reducing
much accuracy if the model can evaluate the image in less inference time, it will indicate the
optimization of real-time application usage of the model.



Chapter 4: Results

4.1. Introduction
As described in the evaluation plan, the models deployed on relevant hardware and tested
with datasets. Tests done on hardware while other processes stopped as much as possible to
reduce interference on results. Experiments done multiple times to make sure the results are
not varying largely. Inference time is directly logged and the accuracy is calculated using the
standard mAP equation.

4.2. Experiment Results

 a) PC CPU

PC with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz was used for evaluating the 
performance on a PC environment.

The Base model and Optimized model (before and after converting to lite format) were tested
on PC CPU with the VOC test data. Test consist 100 image samples, with 20 classes.

Model mAP score

Base model 56.1

Optimized model 32.4

Table 2: Accuracy - PC CPU

Model Inference Time

Base model 877 ms

Optimized model 202 ms

Table 3: Inference Time - PC CPU

 b) Mobile CPU

Huawei Y9 mobile with Octa-core CPU (4x2.2 GHz Cortex-A73 & 4x1.7 GHz Cortex-A53) 
was used for evaluating the results.

Both base and optimized model were tested on Mobile phone, by uploading sample data-set 
to the mobile phone.

Model Inference Time



Base model TF-Lite format 5611 ms

Optimized model TF-Lite format 751 ms

Table 4: Inference Time - Mobile CPU

4.3. Findings
From the results, When comparing the performance of the optimized model with base model,
It shows around 4 times improvement in inference time with a reduction of 23.7 mAP score.
When testing on Mobile phone the inference time improved by 7.47 times. The optimized
model doesn’t show any difference on mAP score compare to PC evaluation as expected. 



Chapter 5: Discussion

5.1. Introduction
With the optimized model it is possible to achieve around 1.33 FPS detection rate with 416 x
416 size frames from the camera video-stream. Experiment results show that the optimized
model is able to achieve a real-time performance for mobile applications which require object
detection where the frame rate is critical and the reduced accuracy is tolerated.

5.2. Future Research
In this research the scope is limited only to YOLO which is one of the Single Stage Detector
model. As SSD is another Single Stage model the optimization technique can be applied there
aswell and the results can be compared.

As current results are obtained on Mobile phone CPU, it can be extended by modifying the
android to use Mobile phone GPU for inference to evaluate the performance.

5.3. Conclusion
As the results shows the significant improvement on the object detection performance can be
used in  various  real-time applications.  Without  many large  scale  changes  in  the  original
object detection model parameters, it is possible to optimize for Mobile phones
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