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Abstract 

Sinhala sign language is the primary mode of communication between hearing-

impaired Sri Lankans. Their main difficulty in interacting with the general public is that 

majority of the population do not know how to interpret sign language. This problem 

in communication and level of comprehension is disadvantageous for the hearing and 

speaking impaired. 

For sign languages with a large user base, there are already many projects in place to 

alleviate these problems; but since the sign language user community in Sri Lanka is 

small, there is little effort put into projects and research to come up with solutions for 

this problem. Therefore, the primary objective of this study was to design and develop 

a desktop software application that captures video in real-time of a person using 

Sinhalese fingerspelling sign language, process and identify the gestures based on 

machine learning and interpret the signed hand gestures in the video and output text to 

a screen as words. In order to achieve this task, A dataset was created for the Sinhala 

fingerspelling alphabet to serve as training images for the machine learning process. 

27000+ images were obtained to train 27 hand gestures. After careful consideration, 

Inception, a convolution neural network was selected and trained to interpret the 

images.  

The Graphical User Interface and the underlying code was written in Python with 

Tensorflow acting as the framework which handled the machine learning component. 

In addition to that, to achieve the final objective; various methods of image 

preprocessing, image extraction, skin detail, and background removal techniques were 

also studied. The project intentionally left out any wearable technology or other 3rd 

party appliances to keep the cost to the user as low as possible. Once application 

development was complete, the system was evaluated against 6 individuals with each 

test subject performing 120 tests for hand gesture character recognition resulting in an 

overall accuracy of 95%.  
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Chapter 1 Introduction 
 

The Introduction chapter provides an informative preliminary breakdown of the research 

problem. It defines the research problem, identifies the objectives that must be done to 

overcome the problem, and the scope in which the project should be carried out. 

 

1.1 Problem Definition 

Verbal communication and speech are what sets apart humanity from other beings. Over the 

course of centuries, various human communities have developed innumerable forms of 

communication. Unfortunately, there are people with disabilities who cannot communicate 

verbally or who are hearing impaired. Other means of communication, such as sign language 

and Braille has been developed for their convenience.  

In recent years, there has been an increasing tendency to smoothen the discrepancies in 

communication between languages with varying success. Translation programmes, voice 

recognition and text-to-speech applications have come a long way since their primitive 

beginnings. With this new wave of bridging gaps in communication, Sign language recognition 

software coupled with image processing and Artificial Intelligence, have also seen a surge in 

interest among the computer science community. Sinhala sign language is the main method of 

communication for the hearing and speaking impaired community of Sri Lanka. Their main 

obstacle in interacting with the public is that most of the people do not know how to interpret 

sign language. This problem in communication is disadvantageous for the hearing and speaking 

impaired and helps isolate the two groups even further. Developed countries and in languages 

where there is a large user base, there are many projects in place to lessen these problems; but 

since the sign language user community in Sri Lanka is much smaller than in other countries, 

there has not been much a lot of effort put into projects and research to bridge the gap between 

the two communities.  

Sri Lanka’s research in this area is still in its preliminary stages and a viable application is not 

available for use; granted, there have been several studies and projects conducted for Sinhala 

sign language, but they employ the use of wearable or hand-tracking technology that requires 

extra equipment; which can sometimes, be expensive. 
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Therefore, there is the need to develop a simple, easy to use, and inexpensive system that 

facilitates communication between those who use sign language and those who do not. An ideal 

application would be where one points a mobile phone camera at a signing person and the 

language is instantly converted to speech. We’re not there yet. This project aims to take a step 

in that direction by laying the groundwork needed – a software application that can interpret 

hand gesture signs and convert them to text in real-time. 

 

1.2 Project Objectives 

The main objective of this project is to design and develop a software application that captures 

video in real-time of a person using Sinhalese Fingerspelling sign language, processes the 

frames through a neural network based on machine learning and interpret the signed hand 

gestures in the video and output text to a screen as words. This will create a system that 

interprets Sinhala sign language to text thereby facilitating the communication between a 

hearing-impaired person and someone who does not know sign language. In route to achieving 

the aforementioned objective, the project will also deal with research on the deaf community, 

their sign language usage, the evolution of the hand gestures, and involvement and the role of 

the human interpreter. 

Hence, the other objectives that will be covered include: 

▪ Create an openly available centralized image dataset for Sinhala Finger Spelling hand 

gestures which can be used in future research. 

▪ Research on Sri Lanka’s Hearing-Impaired community, the most commonly used sign 

language system within the community and the difficulties faced when communicating 

with people who do not understand sign language. 

▪ Observe the different variations and expressions in hand gestures specific to Sinhala sign 

language. 

▪ Closely study the average rate of communication via sign language; the proposed solution 

should be able to be on par with the speed of hand gestures and interpret them in real-time. 
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1.3 Project Scope 

Design and implement a standalone desktop application that uses a single camera (web camera) 

to capture and recognize hand gestures of Sinhala Sign Language. The scope of sign language 

recognition is limited to static gestures of the fingerspelling alphabet. 

The application will capture hand gestures as letters and attempt to cluster and recognize them 

as words with the help of a convolutional neural network. Note that, since the language 

recognition is limited to static hand gestures, the words that can be recognized are also limited 

to words that are made up of static hand gestures. In the completed system, User 1 stands in 

view of the camera and communicates with hand gestures; the camera captures the video stream 

and processes the captured frames in real-time using a pre-trained convolutional neural network 

to interpret Sinhala sign language and output their corresponding text to a screen.  

The output text on the screen is read by user 2 (who is not proficient in sign language). Video 

capture, processing and output screen are on the same device e.g. Laptop, Desktop PC. 

Therefore, in this project, the scope is limited to one device only and the communication takes 

place in presence of both the signee and the reader. 

 

 

                                                                                    

 

 

 

1.4 Summary 

The opening chapter discussed the problems faced by the hearing-impaired community, the 

gaps in communications and justified how a project that attempts to bridge the gap could be 

beneficial. The next section proposed a solution for this problem and defined a scope under 

which a project would be carried out. 

Processing 

Video capture 
Screen output 

User 1 User 2 

Figure 1.3.1 Proposed system 
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Chapter 2 Literature Review 
 

2.1 Introduction 

This chapter deals with the background study and past research related to the project domain. 

It starts off with the beginnings of sign language and goes onto describe the development of 

various methods of fingerspelling. The chapter next describes the two main methods of hand 

gesture detection: using sensors and vision-based detection. 

It then details the different approaches and their results taken by past researchers to tackle the 

problem of implementing an automated sign language interpreter. Finally, the section goes 

through approaches by Sri Lankans to attempt to automate the hand gesture recognition process 

and selects the best approach giving justification on why it is chosen. 

 

2.2 Development of Sign Language 

The development of language for communication can be considered as one of the most 

important milestones in human advancement. Linguistics categorize both vocal and sign 

languages as natural languages meaning that they evolved naturally in humans through use and 

repetition without conscious planning or premeditation.[1] 

It is theorized that after humans developed full-fledged vocal languages, the prominence of 

hand gestures and signs to communicate took a secondary role and almost all civilizations used 

vocal languages as their main modes of communication; only when there is an impairment that 

hindered vocal communication did sign language come into use. Hence, sign language usage 

is mainly limited to hearing and speaking impaired. Although sign language is used primarily 

by the deaf and speaking impaired, it is also used by hearing individuals, such as those unable 

to physically speak, and people having trouble with the spoken language due to a medical 

condition or those with deaf family members, such as children of deaf adults. Therefore, 

anywhere communities of deaf people exist, sign languages have developed and evolved over 

time as a convenient means of communication. 
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2.3 Finger Spelling Alphabet 

Eventually, another form of sign language developed called Manually Coded Languages; 

which uses the signs taken from a natural sign language but used according to the grammar of 

the spoken language[2]. These manually coded languages directly follow the grammar and 

syntax of the written form and usually have a specific hand gesture to represent a letter or 

syllable. Unlike the sign languages that have evolved naturally, these manual codes are the 

conscious invention of deaf and hearing educators and have been popularized in schools and 

educated communities.  

Manually coded sign language is often referred to as the fingerspelling alphabet. Fingerspelling 

alphabets, though slower than conventional sign language, is slowly taking prominence within 

the deaf and hearing-impaired communities since fingerspelling is able to give sign language 

the same level of vocabulary and meaning to words and expressions as its written language 

counterpart.  

Sinhala sign language is the main method of communication for the hearing and speaking 

impaired community of Sri Lanka [3]. Natural sign language and more specifically, 

fingerspelling alphabet, in Sri Lanka is heavily influenced by British sign language hand 

gestures.  

 

 

Figure 2.3.1 Sinhala fingerspelling alphabet 
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Why a Sign Language Interpreter is Needed? 

The problem in daily life about communication is disadvantageous for the hearing and speaking 

impaired and helps isolate the two groups even further. According to the Sri Lanka Federation 

of the Deaf, there are over three hundred thousand (300,000+) deaf people in Sri Lanka. 

Moreover, the World Health Organization has revealed that approximately 9% of the 

population in Sri Lanka has a loss of hearing [4]. In developed countries and in places where 

have a large user base, there are many projects in place to alleviate these problems; but since 

the sign language user community in Sri Lanka is much smaller than in other countries, the 

state of research done on this area is still in its early stages. 

However, in recent years, there has been an increasing trend to facilitate the discrepancies in 

communication with varying success, but these projects for Sinhala sign language interpreters 

use wearable or hand-tracking technology that requires extra equipment; which can be 

expensive. Sri Lanka’s research in this area is still in its preliminary stages and a viable 

application is not available for use. Therefore, there is the need to develop a simple, easy to 

use, and inexpensive system that facilitates communication between those who use sign 

language and those who do not.  

 

2.4 Approaches to Hand Gesture Recognition 

Although the objective of this project is to produce a sign language interpreter. Sign language 

recognition is inherently bound with hand gesture recognition. Hence, it is important to 

acknowledge the various methods by which hand gesture recognition is achieved in computer 

systems. With the advent of microcomputers in the 1970s, the processing power of computers 

saw a dramatic increase while the size of computers steadily decreased. This increase in 

processing speed and power allowed people to utilize image processing and recognition 

algorithms at lower costs rather than depending on large mainframes to process data [5]. Over 

the past 30 years, there have been many programs and algorithms developed for processing 

images and extract information from them. Among them, algorithms for facial, voice and (to a 

lesser extent) gesture recognition have been at the forefront of technological researches. 
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As mentioned above, facial and voice recognition has come a long way since its inception. 

There are viable commercial products already available and in use today that recognize faces 

and interprets voice commands.  

Human gesture recognition, on the other hand, is still in its early stages of development and 

therefore, is still very much an open hurdle and an active area of research. In part due to it still 

being an open problem, multiple ways of approaching this issue has been suggested. The 

following sections aim to discuss various approaches by other researchers or projects. 

The projects for gesture and in extension sign language recognition, can be divided into two 

broad categories. A sizable portion of the projects is based on sensors to detect arm or finger 

movement while the other approach uses vision to detect gestures.  

 

 

Let us examine the sensor-based approach first: 

2.5 Sensor Based Gesture Recognition 

Although it is not within the scope of this project to include external peripherals to aid in hand 

gesture recognition, such methods were taken into consideration during the background study 

for the project and are included here for completeness sake. A popular method of data capture 

is by using sensors. Different types of sensors are placed in the hand when the user performs 

the associated gestures and related data is recorded and analysed.  

Examples of such projects include the use of a system based on accelerometers[6]. Here, they 

place accelerometers (coupled with gyro meters for improved accuracy) and with the aid of a 

transmitter, sends data to a computer that passes data through an OCR (Optical Character 

Recognition) which in turn deduces the implied gesture depending on the trajectory of the 

accelerometer movement. Another example of sensor-based gesture recognition is the use of 

sensory gloves[7]. These gloves have fixed gyro or accelerometers attached to them and work 

Hand gesture recognition 

Sensor based recognition 

Vision based recognition 

Figure 2.5.1 two main approaches for hand gesture recognition 
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on similar principles shown above[8]. An interesting example of the use of general-purpose 

devices been adapted for hand gesture recognition is the use of a Nintendo Wii controller[9]. 

 
Figure 2.5.2 - prototype sensory glove 

 

When considering the projects that utilize wearable technology, one research project, a paper 

published in 2016 at the International Conference on Advances in ICT for Emerging Regions 

stands out, partly due to the fact that it deals with Sinhala Sign Language recognition and also 

the fact that it combines several sensors input to formulate its results[10].  

Here, the authors of the paper make use of Myo Gesture Recognition Arm Band[11]. The 

combination of gestural data (surface Electromyography) that measures the muscle activity and 

special data (accelerometer and gyroscope) that measures the hand movements for sign 

recognition produces a much better combination and makes it easier for a training model to 

reach its target quickly. The mapping is done by implementing multiple neural networks under 

supervised machine learning. 

 
Figure 2.5.3 - MYO Armband 
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The authors claim that their method provided a 100% success rate for dependent study and 

94.4% accuracy for an independent study of hand gestures. The main disadvantage of using 

wearable peripherals for gesture recognition is that it hinders hand movement and, in some 

cases, can be expensive to implement. 

 

2.6 Vision based Gesture Recognition 

Vision based approach makes use of an image/video capture device to extract visual 

information for gesture identification. This approach is more complex than measuring hand 

movements with sensor data because image processing of bare hands against a dynamic 

background requires multifaceted algorithms to extract information and is, therefore, more 

sensitive to errors. 

The changing background is a large barrier in this approach; therefore, most projects have tried 

to confront this issue by subtracting the background from the hand and then applying 

algorithms on the remaining data. An easier route taken by most projects is to use devices such 

as Microsoft’s Kinect or LeapMotion. These modules have built-in capability to track hand 

movements thereby eliminating the need for low-level data extraction. One such project 

published in Sensors scientific Journal in 2015[12], uses Microsoft’s Kinect sensor and applies 

a hierarchical conditional random field (CRF) that recognizes hand signs from the hand 

motions. They obtain a success rate of 90.4%.  

Their focus is on tackling three main problems.  

1 – differentiating between signed and non-signed patterns in the continuous hand-motion 

stream. 

2 – some signs share similar patterns and 3 – each sign begins and ends in a specific hand 

shape. 

Various other projects also use a similar approach when using Kinect to identify gestures[13].  

A recent project involving Sinhala sign language and the Microsoft Kinect has been published 

in GSTF Journal on Computing[14]; in it, the researchers track skeleton points such as 

shoulders, elbows and wrists and try to map them to a gesture dictionary data file.  
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This project does not deal with finger spelling Sinhala sing language and is able to identify 

about 10 words based on gestures. Results show 94% success. 

Yet other projects employ the use of coloured bands on fingers or fingertips. This greatly 

improves the success rate and accuracy of the system but also acts as a deterrent for adoption 

since it requires an extra effort on the users’ end to procure armbands or gloves with coloured 

fingertips. As mentioned earlier, the objective of this project is to produce a simple and easy to 

use inexpensive system. This calls to do away with external peripherals like armbands, gloves 

or Kinects. The next section of the chapter focuses on vision-based approaches that use a simple 

digital camera to extract gesture information. 

Vision based Gesture Recognition – Camera 

Before examining gesture recognition methods by using a camera alone, let us first identify the 

high-level stages involved in recognizing a hand gesture. A vision-based hand gesture 

recognition system can be divided to two components. 

1. Detection 

2. Recognition 

The detection component of the system is responsible for the definition and extraction of visual 

features of the hands. The recognition layer is responsible for the grouping of spatiotemporal 

data which is extracted in the detection component and assigning the result to groups associated 

with a particular class of gesture. 

 

2.7 Detection 

This is the starting point for all vision-based sign language recognition systems. Detection 

isolates the region of interest by segmenting off the corresponding image regions before being 

passed on to the recognition phase.  
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Figure 2.6.1 - Extracting region of interest through filters 

 

There are many ways of extracting this information, but when it comes to hand gesture 

recognition, almost always, the images are sent through a colour filter akin to skin colour and 

subtract the background from the region of interest [15].  

 

2.8 Recognition 

The recognition phase interprets the denotation of the gesture based on posture and position of 

fingers and hand. Recognition of hand gestures, or signed letters as in this case, becomes 

difficult as the vocabulary increases. 

Template matching is a widely used technique in the recognition stage. In pattern recognition, 

the obtained image from detection is matched with an already existing template. The template 

matching process does a pixel-by-pixel comparison of data for the obtained image and of an 

image in a template. The best matching prototype to the obtained image is considered as the 

final result. Template matching requires a certain level of threshold and can be highly skewed 

by the training image data that was used to obtain the template prototype. Therefore, it is crucial 

to carefully calculate the levels of threshold and variance allowed since this leads to errors 

when identifying gestures. Template matching can be implemented and combined with 

different techniques in various ways. Let us consider a few of the more common methods with 

high success rates. 
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Points of Interest 

Mekala et al. [16] make use of neural networks for identification and tracking to translate the 

sign language to a voice/text format. They do this by of Point of Interest (POI) regions or track 

points on the fingertips and center of the palm. The input goes through Gaussian and Median 

filters and finally through a Sobel edge detection filter which helps identify the ‘points of 

interest’ i.e. the fingertips. 

 
Figure 2.6.2 - Mekala et al. Points of Interest 

 

In the final iteration, 55 fingertip elements are collected. Their main concern is to reduce the 

computational strain on the system, admittedly, their system uses less memory but in doing so 

the methodology by which the data is interpreted becomes complex. They claim that they 

achieved a 100% success rate, but it is unclear if the evacuation is based on independent test 

data.  

Centroids 

Pansare et al. [17] interpret American Sign Language with the use of a web camera. In the first 

stage, they capture still images and convert them the binary by using a median filter. Edge 

detection of extracted image using “Sobel” method finds edges using the Sobel approximation 

to the derivative edges at those points where the gradient of input binary image I is maximum. 

The feature vector is formed using centroid given by (Cx, Cy). 

 

Feature matching is done measuring the Euclidian distance between a training image template 

and input image’s feature vector. The resulting vector that gives the least Euclidean distance is 

the gesture. Test results show a success of 90% but is limited in scope to static hand gestures. 
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In the Sri Lankan context, there is a research paper published in 2013 [18] that uses the Centroid 

method. They simplify the approach even further by dividing the processed image of the hand 

to four quadrants; then they obtain the centroid of the area covered by the hand in each quadrant 

and cross-reference it with an existing database of pre-trained data. Test results show a success 

rate of 92% for static hand gestures. 

The centroid method and its variations are straightforward and relatively easy to implement 

hence it is unsurprising that there are many projects using a variant of this approach. One 

drawback of the centroid method is that most sign languages are dynamic and require 

movement, therefore although the Centroid method produces relatively good results there is a 

tradeoff and higher error rate than more vigorous methods like Markov Models 

Markov Models 

Apart from template matching mentioned above, in recent years, Markov Models have seen a 

surge in popularity in recognition systems. One of the earliest applications of Markov Models 

in sign language can be found in the IEEE TPMI Journal of 1998 December issue; Starner and 

Pentland describe[19] a system to recognize hand sign symbols by using a Markov Model. Up 

until that point, most projects focused on using a template matching or neural net approach for 

recognition. 

One of the most promising methods of detection is Hidden Markov Models. It proposes an 

approach by using the Adaboost algorithm to detect the user's hand and a contour-based hand 

tracker is formed combining condensation and partitioned sampling [20]. This approach is 

divided into two main sub-processes named as pre-processing and classification process. The 

classification process uses a model called Discrete Hidden Markov Model (Baum-Welch 

algorithm is used to train). According to the results provided, the average recognition rate of 

Hidden Markov Models is better than other traditional methods with a 93 – 97% success rate. 

LeNet and Convolution Architecture Models 

LeNet, first introduced in 1998 [21], is a popular image recognition model that is used in 

commercial products. Although LeNet requires considerable computing power as the image 

details increase; image pre-processing can help alleviate these hurdles before LeNet is applied. 

Potkins and Philippovich [22] in their research, come up with a modified version of LeNet-5. 

The main disadvantage of LeNet-5 is overfitting in some cases and no built-in mechanism to 
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avoid this. They, therefore, improved the benchmark architecture by adding dropout layers. 

The new version gives results of 93% whereas earlier it was 87%. 

As mentioned above, one major drawback of the earlier convolution neural networks is 

overfitting, Multilayer perceptrons usually mean fully connected networks, that is, each neuron 

in one layer is connected to all neurons in the next layer. This "fully-connectedness" is what 

causes overfitting. Inception was a neural network that was introduced much later at the 

ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14) in a paper titled 

“Going deeper with convolutions” [23]. The main argument from the authors of Inception was 

that regions of interest (relevant parts) inside the image can have large variations in size. 

Therefore, choosing the right kernel size for the convolution process is important.[24] A large 

filter is preferred for information that is spread throughout the image, but a smaller filter size 

may be preferred for more localized details.  

Unlike earlier neural networks which stacked layers (making it computationally intensive), 

Inception was designed to have multiple sized filters at the same level. This makes the network 

“wide” rather than “deeper”. 

 

Figure 2.6.3 Inception has varying filter sizes for the same layer 

Neural networks are generally computationally expensive. With Inception, (and then improved 

in later versions) the authors added an extra 1x1 convolution before larger convolutions to 

reduce the computation cost.  

In 2015, versions 2 and 3 of Inception were published. These new iterations improved upon 

the original by implementing auxiliary classifiers, tackling bottleneck issues. Release of 
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Inception has revived interest in convolution neural networks and is now one of the go to 

machine learning solutions for researchers. 

 

2.9 Selecting an Approach 

As defined in the scope of the project, preference was given to do away with any wearable 

technology and therefore a vision-based approach was selected to identify the gestures. 

Even within the vision-based approach – any external peripherals should not be worn by the 

user. Given that the decision was made to go ahead with a vision-based approach – identifying 

gestures using a neural network was the best solution. 

 

 

Based on the factors mentioned above in section 2.8, and the recent resurgence of convolution 

neural networks, it was decided to use the 3rd version of the Inception model as the training 

mechanism for this project. Another important point that factored into Inception being selected 

is that the project intends to use a pure machine learning-based solution to the task.  

There have been projects and research conducted in Sri Lanka which attempted to use wearable 

technology or pure image processing alone to identify hand gestures but there have been no 

substantial attempts at recognizing Sinhala sign language using Neural Networks. Another 

point of note is that, if this project sees further development, using a model that is well 

established and is seeing continuous support from the community is beneficial for the project. 

One could argue that a large model like Inception would be overkill for a small-scale project 

like detecting hand gestures. But it is also worth noting that, convolution neural networks have 

always been CPU intensive and there is no considerable increase in resource consumption for 

Inception when compared with the other Deep Neural Networks that perform similar tasks.[25] 

Hand gesture recognition 

Sensor based recognition 

Vision based recognition 

Figure 2.9.1 Two main recognition techniques 
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2.10 Summary 

Literature Review Chapter went over the approaches taken by different researchers to solve 

similar problems. It considered the pros and cons of each path and then made the decision to 

use a vision-based approach to detect the gestures and implement Inception v3 – a convolution 

neural network to train and interpret the hand gestures.  

The decision to use this particular model was based on the fact that limited research had been 

done in Sri Lanka for similar projects using neural networks, the fact that Inception has been 

successfully applied for a wide variety of image processing tasks, and partly due to the 

rekindled interest of neural networks within the image processing community.  
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Chapter 3  Methodology 
 

This chapter describes the design architecture and implementation steps of the proposed 

system. It begins with a high-level system diagram and breaks down each component to 

sections and then delves into how each component functions with a detailed description at each 

step. 

 

3.1 High Level System Design 

As outlined in the Project Scope section of the first chapter, the system will have three main 

application components.  

1. Collecting data (images) 

2. Training the network  

3. Final Application which can interpret the hand signs 

 

Camera Stream capture Pre-processing 
Threshold 

Dataset 

Save images to 

dataset 

Main processing unit 

Training 

Training constraints 

Training graph + 

labels 

Predicted text 

Transliterate 

Display 

Figure 3.1.1 High level diagram of the system 
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In the data collecting section of the application, the components shown below come into play. 

The camera captures the images and creates a frame within the image to slice out a region of 

interest. The captured image is then processed for skin detection, background removal and 

smoothing before it is saved in the database. 

A detailed explanation of each subcomponent is given later in the chapter. 

 

 

 

Dataset would comprise of a folder structure described as follows: the main directory would 

be called dataset under dataset directory, there would be sub-directories with the labels for 

each hand gesture. 

 

Camera Stream 

capture 

Pre-processing 
Threshold 

Dataset 

Save images to 

dataset 

Display 

Figure 3.1.2 Creating dataset 
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Figure 3.1.3 Tree command for dataset directory 

 

Figure 3.1.3 shows the directory structure. Note that a, aa, az, b and delete correspond to the 

labels of the hand gestures. A sub-directory would have about 1000 images for each hand 

gesture. In the training phase, the images that were saved to the dataset is trained on the 

inception neural network.  

 

The training module builds a list of training images from the dataset directory. It analyzes the 

subfolders in the dataset directory, splits them into stable training, testing, and validation sets, 

and returns a data structure describing the lists of images for each label and their paths. It also 

sets the number of iterations i.e. the training steps epoch etc. There is no interface for the 

training module; output on the terminal would be adequate to show the training progress, 

validation accuracy and entropy. 

The main arguments to run the training programme would be a string path to a directory 

containing subfolders of images, testing percentage - integer percentage of the images to 

reserve for tests and validation percentage - integer percentage of images reserved for 

validation. 

Dataset 

Training 

Training constraints 

Training graph + 

labels 

Figure 3.1.4 Training 
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A complete list of input arguments is given below: 

--image_dir = Path to folders of labeled images. 

--output_graph = Where to save the trained graph. 

--output_labels = Where to save the trained graph's labels. 

--how_many_training_steps = How many training cycles to run before ending. 

--learning_rate = How large a learning rate to use when training. 

--testing_percentage = What percentage of images to use as a test set. 

--validation_percentage = What percentage of images to use as a validation set. 

--eval_step_interval = How often to evaluate the training results during training and print 

output to the console. 

--bottleneck_dir = Path to cache bottleneck layer values as files. 

--final_tensor_name = The name of the output classification layer in the retrained graph. 

--model_dir = path to the inception model 

--summaries_dir = where logs and training summary is saved. 

 

Most of these arguments are self-explanatory, few other parameters such as the option to flip 

images, crop or change the brightness of images randomly can also be considered. The final 

application, the one that the end operator uses, should be a GUI. It should have a windowed 

interface, running a standalone desktop application on a single window. The application should 

have a video frame showing the input video, a trackbar or slider to adjust threshold values for 

input and an output showing the Sinhala text. 

 

 

Camera Stream 

capture 

Pre-processing 
Threshold 

Main 

processing unit 

Training graph 

+ labels 

Predicted text 

Transliterate 

Display 

Figure 3.1.5 Setup for the final application 
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Figure 3.1.6 shows how the proposed application would look like after it is complete. The large 

window on the left shows the web camera input with a guidance area to show that the user must 

place the hand within that region for the system to interpret the signs. 

The smaller window on the right shows a masked silhouette of the hand with the background 

removed. It is this area that will be processed by the neural network. There is a slider below 

the small window, it controls an input threshold – for example, if the room is dark and there is 

noise in the background, the user can move the slider/trackbar to change the lighting threshold 

on the mask so that a well-balanced image is  sent for processing. Finally, an output text area 

is displayed below the trackbar which shows the interpreted Sinhala text output. 

 

3.2 Implementation and Components 

Video Capture 

Early in the project scope and design phase, the decision was made to keep using a low-

resolution camera so at to prove that the system is suitable for use without the need for extra 

equipment or in the future if the system is ported to a mobile device, the system will function 

without utilizing much system resources. Therefore, an integrated webcam with a resolution of 

720×1280 (about 0.7 megapixels) able to capture 30 fps was selected.   

The figure below shows an image of a white surface captured by the webcam. Note the amount 

of noise in the picture. Then compare it with figure 3.2.2, an image of the same surface, 

captured at a higher resolution under ambient light conditions.   

Figure 3.1.6 Proposed application wireframe mockup 
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Figure 3.2.2 5MP image of white surface 

 

Also, take note of the white balance of the image. These defects in image capture need to be 

addressed later in the preprocessing stage. The next step was to use define a region of interest, 

an area on the video frame the user would have to place their hand for the system to recognize 

a gesture. 

Figure 3.2.1 0.7MP image of a white surface under ambient conditions 
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Figure 3.2.3 Video capture with region of interest marked 

 

Figure 3.2.3 shows a user making hand gestures within the region of interest. The square on 

screen is about 300x300 pixels – the preferred input size for Inception training images. The 

square was drawn through OpenCV and has no impact on image processing other than acting 

as a guide for the user to show the area to place hand. OpenCV has an inbuilt function to draw 

shapes on screen: 

cv2.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 2)  

  

 

3.3 Pre-processing  

Region of Interest 

Once the region of interest is sliced and extracted from the video frame. It would look 

something like the image shown below in figure 3.3.1 – a 3 channel RGB image with 300 by 

300 pixels and a colour depth of 24 bits. It is on this image that subsequent image processing 

techniques are applied. 
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Figure 3.3.1 Sliced image 

 

Skin Detection 

Skin detection is the process of finding skin coloured pixel regions in a captured frame. Skin 

detection is generally used as a preprocessing step in security cameras, consumer electronics 

and various other instances where humans need to be identified. A skin classifier transforms a 

given pixel into an appropriate colour space and then uses a threshold level to match the pixels 

to the skin area. It groups pixels together and defines a decision boundary for the skin area. 

Researchers have found that RGB performs poorly in skin detection, therefore, most 

researchers suggest the use of other colour spaces such as HSV, HLab or YCrCb [26]. For this 

project, it was decided to use YCrCb as the colour scheme of choice to detect skin, mainly 

because it allowed us to control the thresholds for the Y and Cr components. YcrCb was 

actually developed for digital video and colour television – based on earlier YUV colour space. 

In OpenCV, image data can be converted between colour spaces as shown below: 

img_ycrcb = cv2.cvtColor(img1, cv2.COLOR_BGR2YCR_CB)  

  

Y in YCrCb stands for Luminance. Luminance or Luma is the brightness or intensity 

component of colour. It is similar to the grayscale version of an RGB image. Cr and Cb are the 

red and blue chroma components respectively. By definition, Cb is the blue component relative 

to the green component and Cr is the red component relative to the green component. 
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A section of the high-level design diagram is shown below. During training or when the 

application is being used, the user can change the threshold – i.e. the values of Cr and Cb so 

that the skin is detected, and the other parts of the image are eliminated. 

As stated earlier, the choice of YCbCr depended on the fact that luminance and Chroma red 

value can be manipulated easily. As you can see in figure 15, Chroma red lies on the y-axis 

and a threshold can be set easily where we ask the application to select values for a given range. 

This is a crucial step in preprocessing because it helps identify various skin tones and the 

threshold can be adjusted so that all types fair or dark, under different light conditions, can be 

handled by the application. 

 

Figure 3.3.3 Colour space ofYCrCb [27] 

 

 

 

 

Pre-processing Threshold 

Figure 3.3.2 Input threshold from user controls the 

background removal mask 
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Figure below shows a sliced image that has been converted to the YCrCb colour space. Note 

how the skin tone is clearly distinct from the objects in the background.  

 

Figure 3.3.4 Image in YCrCb colour space 

 

Figure shows how the threshold can be changed by controlling one value of the plane – 

especially for skin tones. 

 

Figure 3.3.5 Colour space on x-y-z plane[28] 

 

Creating a Mask  

In the previous section it was mentioned that one reason for converting RGB to YCbCr colour 

space was because it allowed us to implement thresholds that identify skin tones easily. The 

figure below (fig 3.36) shows the threshold trackbars created to control the colour space levels 

to create the mask to identify skin tones. 
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Figure 3.3.6 Trackbars created in OpenCV show colour space thresholds. 

 

CRn, CBn, CRx and CBx represent the following parameters as shown in the code below.  

 
Figure 3.3.7 Creating the threshold 

 

CRn is the most used parameter since it has the Chroma red parameter – the colour closest to 

Sri Lankan skin tones. 

Once a threshold is identified for the skin tones, a contour can be created to show the outlines 

on the hand. Few examples with varying threshold values for chroma red are shown below: 

 
Figure 3.3.8 CRn 145, 135 and 125 

 

Once the optimum threshold values are selected by the user, the image data is passed on to the 

next section of the preprocessing stage. You’ll note that, in the center image (fig 3.3.8), there 

are some areas outside the hand that the mask has failed to capture even though the user has 

tried to eliminate the background through changing the thresholds. In figure 3.3.9, there are 

several white areas. Usually, the area covered by the hand is the largest contour. The next step 

is to find the largest contour and eliminate the rest. 
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Figure 3.3.9 Largest contour is the hand 

 

The largest contour by area can be found as follows: 

 
Figure 3.3.10 Finding the largest contour 

 

The code snippet above cycles through the contours and fills out the largest contour. There are 

some in-between steps to apply Gaussian blurs and dilation so that the full area of the hand is 

selected to our mask.  

Once the program discovers the largest contour i.e. the hand, it creates a mask and performs a 

bitwise and operation on the original image so that the background is eliminated. The final 

result is given in figure 3.3.11 – it is an 8-bit grayscale image of resolution 299x299. This is 

the image that is used in training or is sent to the main processing unit for identification. 
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Figure 3.3.11 Output from preprocessing 

 

3.4 Creating the Dataset 

Once the preprocessing system was set up, the next step was to create a dataset to train the 

neural network. As mentioned earlier, it was decided to capture a 3-channel grayscale image 

with 300x300 resolution. There are 56 hand gestures in the fingerspelling Sinhala alphabet. 

This 56 gestures include all the standard letters of the alphabet, the common diacritics and 

gestures for rarely used diacritics such as gayanukiththa (ගයනුකිත්ත) ෟ , gæṭa sahita ælapili 

deka  (ගැටය සහිත ඇලපිලි දෙක) ෟ , etc. 

Early in the project, the decision was made to drop the rare and uncommon diacritics from the 

dataset. The scope of the project also limits the hand signs that need to be recognized by the 

system to static gestures only. These limitations were imposed because most of the gestures for 

diacritics and non-static gestures have similar hand poses to those of more commonly used 

letters. For example, the gesture for බ් and භ are almost identical. Their only difference is that, 

භ performs a swivel motion with the hand as it is being gestured. Therefore, it was decided 

that, in order to give a better chance for the system to identify බ් and for the fact that, both 

letters convey the same sound, භ would not be implemented to the system. 

After limiting the dataset to static gestures, 27 different hand gestures remained; hence 28 

subdirectories were created under dataset directory. 27 hand gestures included gestures for a 

‘space’ sign to signal a space between words and a ‘delete’ gesture to signal that the last letter 

on the screen should be removed. An extra directory was added to show the blank frames where 

https://en.wikipedia.org/w/index.php?title=Gayanukitta&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=G%C3%A6%E1%B9%ADa_sahita_%C3%A6lapili_deka&action=edit&redlink=1
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there are no hand gestures. These 28 directories each have 1000 images from 5 different people 

totaling close to 28000 images. 

Hand gesture Label Letter 

 

a අ 

 

aa ආ 

 

az ඇ 

 

i ඉ 

 

u උ 

 

e එ 

 

k ක් 

 

g ග් 

 

j ජ් 
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t ට් 

 

dh ද් 

 

th ත් 

 

d ඩ් 

 

n න් 

 

p ප් 

 

b බ් 

 

m ම් 

 

y ය් 

 

r ර් 
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l ල් 

 

w ව් 

 

s ස් 

 

h හ් 

 

nz ං  

 

ch ච් 

 

space N/A 

 

delete N/A 

 

nothing N/A 
Table 3.4.1 List of trained gestures 

 

Care was taken to make sure that the images were captured from similar devices that are 

expected to be used when running the application. Understandably, if a high-end camera with 
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higher resolution was used – it would have produced much more detailed images, but it was 

decided to capture the training images with the same resolution that Inception Neural Network 

requires as input rather than perform resizing operations. 

Another task that required close attention was the process of capturing images for gestures with 

similar hand gestures. Looking at figure 3.4.1, it is evident that the gestures for ම්, න්, ත් and ස් 

have similar gestures. During the data capture process, the participants made sure that their 

hand positions and finger locations for these letters were placed correctly. 

 
Figure 3.4.1 Note how all these hand gestures are similar 

 

Another important problem when creating the dataset was to avoid turbulent backgrounds. The 

mask does remove the background, but it is always advisable to capture the frames with a plain 

background.  
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For example, the image below has a light bulb in the background, this distorts the pixels on the 

hand area as well and can have a negative impact on the training data. 

 

Through trial and error, it was found that a dim plain background with the hand showing 

minimal shadows yielded the best results. 

 

Table 3.4.3 A good image doesn't have shadows 

 

3.5 Training 

Once dataset was complete, next step in the system implementation process was to train the 

images. For training, another python script was created which acted as a standalone application 

independent of the final app. A GUI wasn’t created since training is not a common/repeated 

Table 3.4.2 Pixels washed out by background light 
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task. The user can start the training programme from the terminal by running the train.py 

Python script. A sample use case is given below. Note how several input arguments are applied 

(the full list of parameters is given in Chapter 3 – High-Level System Design section of this 

report) 

 
Figure 3.5.1 Sample use of train.py 

 

The initial section of the train.py defines the functions and sets up the images.  

Create Image Lists Function 

The first function creates the image lists for training, validation and testing. It builds a list of 

training images from the dataset provided, analyzes them accordingly, builds validation and 

testing sets based on the defined percentages and returns a data structure describing images and 

their corresponding labels. 

 
Figure 3.5.2 Creating image lists 

 

As you can see from the snippet above, create_image_lists() function requires three arguments; 

image_dir path to the image dataset, testing percentage 10% of the images were used for testing 

and validation_percentage again, 10% were used for validation. As mentioned earlier, the 

complete dataset contains 1000 images per label and there are 28 labels which brings the total 

to 28000 images. Next, there is a simple check to verify if there are enough images in the sub 

directories: 
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The most important step of the function is the next few lines of code. It cycles through the 

images in each subdirectory (label) and creates a hash. The hash is used to generate a 

probability value to decide which category (testing, validation or training) the image should go 

to. 

 
Figure 3.5.3 Assigning labels 

 

The returned value is a dictionary containing an entry for each label subdirectory, with images 

split into three categories. 

Get Image Location Function 

This function is used when creating bottleneck files from the images. It inputs the dictionary 

of training images created for each label, the label names assigned for the images, a category 

– test, validate or train, and ind – index integer offset of the image from the beginning. ind 

helps pinpoint an image in the subdirectory. It returns the file system path to an image. 

  
Figure 3.5.4 Get image location 
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Another function with a similar functionality is the get_bottleneck_location() function. It 

returns the path to the list of bottleneck files created during training. 

 
Figure 3.5.5 Contents of a bottleneck image file for reference 

 

Next function of note is the create_graph() function.  

 
Figure 3.5.6 Create_graph function 

 

It reads a saved graph from graph file (graph_def = tf.GraphDef()) and reutrns the graph graph 

file for trained Inception network. 

Bottleneck Files 

Bottlenecks in a neural network help to reduce the number of channels in the network between 

layers. Because Inception uses small sized kernels, the feature representation can increase 

considerably as it passes through each layer. 
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Figure 3.5.7 Creating bottleneck files 

 

It must also be noted that, train.py has provisions to include tensorboard charts. Figure 3.5.8 

shows the code snippet that defines the training summaries data. 

 
Figure 3.5.8 Scalar values for tensorboard 

 

The last function before main begins is the final_ops() function which adds some retrain 

operations to the top layer and defines variables to hold the weights and set up backward pass 

which returns the tensors . 
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Figure 3.5.9 Final_ops function 

 

Now that all the functions needed are defined, let us focus on the major sections of the main 

function.  

First, it sets up the directory paths by calling the functions that were discussed earlier. Next, it 

sets up the pre-trained graph and sets up the lists of all the images according to category. 

 
Figure 3.5.10 Setting up image lists 

 

Next section adds new layers that need to be trained; the add_evaluation_step() function checks 

the accuracy and merges all the summaries. 

 

Then there is a for loop which cycles for the number of training steps that were provided as an 

argument parameter at the beginning (5000 steps). Within the loop, the training step feeds the 

bottlenecks and labeled train image data to the graph. 

Figure 3.5.11 Merge 
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Finally, it writes out the trained graph and the labels with the weights. 

 
Figure 3.5.13 Writing to graph files 

 

One more tweak within the loop is that it prints out the progress of the training as it is in 

progress to the terminal. A sample output is shown below (the complete version of the training 

output can be found in the Appendix):  

 
Figure 3.5.14 Training progress printing to terminal 

 

 

 

 

 

3.6 Tensorboard 

 

As mentioned in the design section of this chapter, the training programme accepts several 

arguments, one of which is the learning rate.  

 

Figure 3.5.12 Writing to summary files 
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Figure 3.6.1 Learning rate 

 

Several learning rates were tried on a sample of training data before settling on a final decision 

of 0.001. 

 
Figure 3.6.2 Training(orange) and validation(blue) accuracy for lrate= 0.0001 

 

 
Figure 3.6.3 Training(orange) and validation(blue) accuracy for lrate=0.01 

 

 

 
Figure 3.6.4 Training(orange) and validation(blue) accuracy for lrate= 2 

 

Note how smaller learning rates lead to a lower accuracy. It is important to have a high learning 

rate but not so high enough that overfitting occurs.  
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The figure below shows the final training of the dataset running for 5000 epochs. Training 

accuracy is shown in orange, and the validation accuracy (as the dataset is being trained – with 

a sample size of 100) was recorded at 50 step intervals, is shown in blue. In a perfect scenario, 

both curves should line up perfectly on top of each other. Based on figure 3.6.5, training 

accuracy is slightly below validation accuracy, especially at the beginning, it shows that there 

is a slight tendency to overfit the labels but given the fact that other learning rates produced 

lower final accuracy or entropy, it was decided that this iteration of the training settings would 

best fit the project. 

 

 
Figure 3.6.5 Accuracy of the final dataset 

 

 

Figure 3.6.6 shows the entropy as the training progressed. The shape of the curve is as expected, 

finally settling on an entropy of 0.054638. 

 

 
Figure 3.6.6 Cross entropy 

 

The changes in weights and biases were also recorded during the training of the dataset. Note 

how the changes can still continue – but if continued, this would negatively impact the network 
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and cause overfitting. Each square on the figures below represents 500 steps. Note how the 

module converges quickly to a high accuracy; this is possible due to transfer learning. Transfer 

learning starts with pre-trained weights. Then, the weights are adjusted as the network trains 

for the new data. 

 
Figure 3.6.7 Changing biases and weights 

 

Figure below shows the spread or the distribution of biases as the training progressed. 

 
Figure 3.6.8 Distribution of biases 
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3.7 Main Processing Unit 

 

As stated in an earlier chapter, the user needs to pose the gesture for a fraction of a second 

before it gets registered in the system. Given that all the processing takes place in an infinite 

while loop (once the application starts) where all the image processing and manipulations take 

place, the programme captures about 15 video frames every second on average.  

The 15 frames per second average depends on the processing power of the computer the 

application is being run on. Out of the frames captured, the programme was designed so that 

every ith frame is sent over to the neural network for processing. 

 
Figure 3.7.1 Loopspeed 

 

In the code snippet above, predict() function is fired only when i is equal to loopspeed. The 

programme goes through i iterations until image data is sent to the neural network for a 

prediction. The i value can be changed through the GUI interface, but it was found 

experimentally that the optimum value for i is seven.  

 

 
Figure 3.7.2 GUI has a trackbar to control the i value 

 

Decreasing i causes the programme to run faster but loses accuracy and increasing i makes the 

user hold the gesture much longer and it starts to lose its real-time potential. SPEED.get() 

function shown in figure 3.7.1 is handled through Tkinter a Python library for Graphical User 

Interfaces. 
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Figure 3.7.3 Conditions within the main processing unit 

 

Full if-else statement for the above code snippet is shown below. Image data is passed on to 

the predict() function and it returns a variable, res_temp and score. 

res_temp holds the predicted character and score is the probability or confidence level with 

which the Inception neural network can identify res_temp. mem is predicted output in the 

previous iteration and note that the variable consecutive needs to be equal to 3 for the res 

variable (predicated character) to be added to the sequence. Therefore, the system must identify 

that the user is holding the same hand gesture for three consecutive iterations within the main 

Pre-processed image data 

If 

i=loopback 

Predict hand gesture predict() 

is this the same 

prediction for 

the 3rd time in a 

row? 

add predicted text to sequence 

yes, i=0 

yes, consecutive=0 

is this the 

same 

prediction as 

the last loop? 

yes, consecutive++ 

Displays image on GUI and loops 

back to beginning of image capture 

and preprocessing 
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processing loop before it gets registered in the sequence and displayed to the screen. This extra 

layer of protection has been added to minimize errors and slow down. Therefore, overall, there 

are two separate controllers that regulate the speed at which gestures are identified.  

I - The first controller checks every ith image frame into the prediction function – this can be 

controlled by the user through a trackbar on the GUI. It controls the overall speed of identifying 

the gestures.  

II - The second controller is fixed. It adds a checkpoint so that a letter is added to the text on 

the screen only if the prediction algorithm has identified the user is holding the same gesture 

for three consecutive frames. These three frames are image frames that the earlier ith frame 

check has allowed in.  

Hence, if the loopback value is 7, and the programme captures 15 frames per second, a user 

will have to hold the same gesture for a minimum of 1 second before the gesture is displayed 

on screen. sequence variable stores the string of characters that the user signs in a session. 

 

 
Figure 3.7.4 Sequence being constructed 

 

Also note that there are provisions for space and delete within the system so that if a user makes 

a mistake, they can remove the last character in the sequence by holding the hand gesture for 

delete. Similarly, there exists a space hand gesture with which a user is able to add spaces 

between the characters when forming sentences.  

predict(), called in the 2nd line of the code snippet above, is a simple straightforward python 

function that inputs image data and returns a predicted gesture and the confidence level. 
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Figure 3.7.5 Predict function 

 

sess.run within the predict function is defined as follows: 

 
Figure 3.7.6 Sess.run 

  

tf.session inputs the image data to the graph and gests the prediction. The function returns a list 

of predictions. predictions is then sorted to get the best predicted gesture label. The returned 

predicted gesture label is added to the sequence and the confidence level – max_score – is sent 

to the GUI for display. Figure 3.7.7 shows how the res (predicted label) and max_score 

(confidence level) are shown on the display. In this example, it shows that the user is holding 

the ක් (k, see table 3.3.1) gesture with a probability of 0.84.  

A detailed explanation of the GUI and display is given in the Graphical User Interface section 

of this chapter. 

 

 
Figure 3.7.7 Res and max_score 

 

 

 

3.8 Transliteration 

 

Transliteration is the process of converting letters of one script to another by swapping letters 

with similar phonetic sounds. During the design process, it was decided that the Sinhala hand 

gestures would be mapped or labeled to the letters of the English alphabet. For example, the 
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Sinhala ‘අ’ is trained and labeled as ‘a’, while ‘ආ’ would be labeled in the neural network as 

‘aa’ and ‘බ්’ would be ‘b’ and so on. 

As shown in the figure below, the main processing unit would identify the image through a 

neural network and create a prediction. These predictions are collected in a variable called the 

sequence. At each iteration, the sequence is passed to a transliteration submodule to convert it 

to Sinhala. 

sinhala = transliterate.convert(sequence) 

  

 

 

Table 3.8.1 illustrates how some of the labels are mapped to Sinhala letters.  

Hand gesture label letter 

 

a අ 

 

aa ආ 

 

az ඇ 

 
e එ 

 

m ම් 
Table 3.8.1 Some gestures, their labels and corresponding text 

ammaa 

Main 

processing unit 
sequence 

Transliterate.convert() 

Display 

අම්මා 

‘a’,‘m‘,’m’,’a’,’a’ 

Figure 3.8.1 Sequence of characters become a word 



 

49 

 

Sinhala fingerspelling alphabet has been designed so that, to sign a particular letter, one might 

have to combine the letter with certain other letter hand signs to get the proper end result. For 

example, to sign අම්මා the hand gestures shown in figure 3.8.2 should be made. Note how ම් 

and ආ gestures are combined to produce the මා sound. 

 
Figure 3.8.2 spelling amma with the sinhala sign language 

 

Hence, as shown in figure 3.8.2, once the user poses the hand gestures, the system captures 

them – predicts the labels, which would be ‘ammaa’ given that අ → a, ම් → m and ආ → aa. 

Once the sequence ammaa is predicted by the network according to the hand gestures, the 

transliteration component kicks in and converts it to the appropriate word අම්මා displayed on 

the output.  

To illustrate another example, let’s say the user wants to spell out the sentence මම දගෙර යනවා. 

Figure 3.8.3 shows one would achieve this.  

 
Figure 3.8.3 A sentence in sign language 

 

The programme would read the first gesture - ම්, identify the image through the neural network 

and assign a label m. The next gesture is අ. The label would now be ma. Similarly, the 

programme would identify the next two images. Now the label would read mama. At each 

iteration, the labels are sent through a transliteration module. Table 3.8.2 shows how the 

transliteration works at each iteration. 
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gesture Label sequence Text seen on 

screen 

 

m ම් 

 

ma ම 

 

mam මම් 

 

mama මම 

 

Mama[space] මම 

 

mama[space]g මම ග් 

 

mama[space]ge මම ගෙ 

 

mama[space]ged මම ගෙද් 

 

mama[space]geda මම ගෙද 

 

mama[space]gedar මම ගෙදර් 

 

mama[space]gedara මම ගෙදර 

Table 3.8.2 Gesture sequence 

Note how when the identified label sequence is mama[space]g and the user pose the next 

gesture as එ, the transliteration changes it to දග, instead of ග්එ. This is achieved through the 

transliteration submodule.  

How the Module Works 

Transliteration module consists of predefined lists. Each list holds characters in English and 

Sinhala in a particular order. For instance, take the list vowels. 

vowels= ["a","i","e","u"… 

  

It has a corresponding list called vowelsUni which contains the Sinhalese equivalent of the 

phonetic English sound. For example, aa is mapped to ආ. 

vowelsUni= ["අ","ඉ","එ","උ"… 

  

When an ‘a’ appears in the sequence, it is replaced to ආ by a for-loop that cycles through the 

vowel list. 
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Figure 3.8.4 Cycles through list of vowels 

 

Similarly, there several other lists which contain various Sinhala diatrics, special cases and 

constants. Let’s examine a slightly complicated replacement: 

 
Figure 3.8.5 List of consonants + hal kireema 

 

In the snippet above, the hal kireema is added to constants. As mentioned earlier, similar to 

vowels list, there is a consonant list as well. 

consonants= ["p","b","m","y… 

consonantsUni= ["ප","බ","ම","ය… 

 

Once the sequence goes through all the for-loops, it should be converted to Sinhala text. The 

text is then returned as variable Sinhala. 

sinhala = transliterate.convert(sequence)   
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Graphical User Interface 

Figure 3.9.1 shows the Graphical User Interface for the developed application. On the left it 

shows the image captured by the web camera. There is a green square overlay which guides 

the user to place the hand within the area for capture.  

 

 
Figure 0.1 The GUI 

 

On the left bottom section of the image you can see an ‘e’ and a ‘score’. ‘e’ represents the label 

of the hand gesture that was just identified by the neural network. Note that, as mentioned in 

the Main Processing Unit section of this chapter, the neural network needs to predict the same 

gesture three times in a row for it to appear in the final text.  The score is self-explanatory, it 

shows the confidence level of the predicted gesture out of one. The label and scores are 

available for information purposes. On the right, there is another frame with a mask applied to 

it. It shows the image that is fed into the neural network for predictions.  

The user can change the threshold on the mask by moving skin mask threshold slider at the 

bottom. Note the differences between figure 3.9.2 – the slider was changed from 138 to 145. 

In the center image (in figure 3.9.2), the system cannot identify the proper hand gesture because 

a proper image is not fed to the neural network. It is the user’s responsibility to make sure that 

the skin threshold masks the background and shows the hand gesture properly. 
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Figure 0.2 Mask under different thresholds 

 

The radio buttons left and right indicate that the application can be used by both left and right-

handers. Selecting the preferred hand flips the image from the webcam so that users can use 

either the left hand or the right to make hand gestures. The vertical slider shown in figure 3.9.3 

controls the speed at which letters are added to the final text screen. 

 

 
Figure 0.3 Text Speed trackbar 

 

Increasing the value of the slider makes the system recognize gestures faster but can lead to 

errors if the system snaps a picture while the gesture is being changed. The text areas below 

the masked image frame show sequence of labels returned from the neural network before and 

after transliteration. 
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Figure 0.4 Closer view of text output 

 

In figure 3.9.4, you can see that the user is halfway through trying to gesture the sentence මම 

දගෙර යනවා. The user has already gestured mama ge and is now gesturing ෙ.  

As you can see, the white text area shows the predicted labels of the text before transliteration. 

Although the white text area is not strictly required to be displayed on the end user’s display, 

it can act as a guiding step when fingerspelling Sinhala gestures. The darker window with green 

text shows the final version of the text in Sinhala. While there is a hand gesture that imitates 

the backspace key (deletes the last singed letter from the text sequence) the user can also press 

the Clear button to reset the text boxes and erase all letters on screen to start over. 
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Chapter 4  Results and Evaluation 
 

 

4.1 Introduction 

This chapter explains the evaluation stage of the developed system. It goes through the 

evaluation criteria, justifies the choice of criteria, selection of test subjects, presents the results 

and finally performs a result analysis. Whenever a project or research is conducted, it is 

important to test the final solution against the proposed objectives because the science 

community does not accept solutions/theories that have not been tested. Therefore, it is 

important to come up with a proper evaluation strategy in such a way that it doesn’t skew or 

influence the test results in favour of the proposition. 

 

4.2 Evaluation Criteria 

 

The objective of this project was to recognize the gestures of the Sinhala fingerspelling 

alphabet and in extension to identify and form text/words on screen. In order to achieve this 

task, the system was trained to identify 28 labels (27gestures + nothing label when there is no 

gesture) and then transliterate those labels to Sinhala text. Therefore, two tests are needed; one 

to test the accuracy of labels identified and the other to construct words/sentences. 

Next important feature would be the test subjects. People have different hand sizes; hence 6 

test subjects were selected so that there was an even spread on age and gender. These 6 subjects 

were not used to obtain images for the training dataset. The initial plan was to have a higher 

sample size so that more test data can be collected but due to distancing and travel restrictions 

imposed during the testing and evaluation phase of the project, the sample size was limited to 

6 individuals. Finally, light also plays a very important role when identifying hand gestures. 

The dataset includes hand gestures that are well lit. It would be interesting to see how well the 

system fares when the ambient light in the captured images change. 

 

 



 

56 

 

To summarize, there are two main tests: test letters and sentences/words. These two tests in 

turn need to be performed under various light conditions by an independent test group. 

 

Single label/ letter Words/sentences 

ම, ෙ, න, ආ, etc. 
දගෙර, සියලු මිනිසුන් නිෙහස්ව උපත ලබා ඇත, 

etc. 

  

 

 

4.3 Alphabet Character Evaluation  

The test environment was set up so that the user was holding the hand at about 0.75 m from the 

web camera. The background behind the posed hand gesture was a plain wall with no features. 

The following table shows the results for 6 individuals. Each test subject held the gesture for 

20 attempts. A gesture was considered as a success if the intended gesture’s corresponding 

letter appeared on the screen and a failure if any other letter was interpreted. 

Therefore, each person attempted the same gesture 10 times giving a total of 60 gestures per 

label/letter. It took about 2 minutes to cycle through the 27 gestures once. So, it took around 

25 - 30 minutes for a person to cycle through the hand gesture alphabet 10 times.  

 

Test scenario A – a well-lit room with a fluorescent bulb. White hue. Minimal shadows on 

the hand 

 

Test scenario B – room with ambient daylight coming in through a window, since the light 

source forms a side of the room, the hand gestures were illuminated from a side and formed 

shadows on the skin. 
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The table below shows the test results for the 6 test subjects for each gesture in an artificially 

lit environment. The room was illuminated with fluorescent light with a white hue (similar to 

where the training image dataset was collected). 

 

Gesture 

Number of 

attempts 

Number of 

successful 

attempts 

Number of 

failed attempts 

Success rate in 

% 

අ 60 60 0 100 

ආ 60 59 0 100 

ඇ 60 60 0 100 

ඉ 60 58 2 96.7 

උ 60 60 0 100 

එ 60 59 1 98.3 

ක් 60 60 0 100 

ග් 60 59 1 98.3 

ජ් 60 56 4 93.3 

ට් 60 59 1 98.3 

ද් 60 57 3 95 

ත් 60 45 15 75 

ඩ් 60 59 1 98.3 

න් 60 49 11 81.7 

ප් 60 60 0 100 

බ් 60 59 1 98.3 

ම් 60 47 13 78.3 

ය් 60 58 2 96.7 

ර් 60 58 2 96.7 

ල් 60 60 0 100 

ව් 60 60 0 100 

ස් 60 58 2 96.7 

හ් 60 60 0 100 

ෟ  60 60 0 100 

ච් 60 60 0 100 

[space] 60 58 2 96.7 

[delete] 60 60 0 100 

Total 1620 1558 61 96.2333 
Table 4.3.1 Scenario A 

 

It is also worth mentioning that the 20 gestures were divided as 10 gesture with the left hand 

and 10 with the right. 
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The same procedure was repeated in an environment with ambient daylight (not direct 

sunlight). The results are given below: 

 

Gesture 

Number of 

attempts 

Number of 

successful 

attempts 

Number of 

failed attempts 

Success rate in 

% 

අ 60 60 0 100 

ආ 60 60 0 100 

ඇ 60 59 1 98.3 

ඉ 60 57 3 95 

උ 60 59 1 98.3 

එ 60 57 3 95 

ක් 60 60 0 100 

ග් 60 57 3 95 

ජ් 60 54 6 90 

ට් 60 59 1 98.3 

ද් 60 56 4 93.3 

ත් 60 43 17 71.7 

ඩ් 60 58 2 96.7 

න් 60 39 21 65 

ප් 60 59 1 98.3 

බ් 60 58 2 96.7 

ම් 60 45 15 75 

ය් 60 56 4 93.3 

ර් 60 55 5 91.7 

ල් 60 60 0 100 

ව් 60 59 1 98.3 

ස් 60 55 5 91.7 

හ් 60 58 2 96.7 

ෟ  60 60 0 100 

ච් 60 60 0 100 

[space] 60 58 2 96.7 

[delete] 60 58 2 96.7 

Total 1680 1579 101 93.76667 
Table 4.3.2 Scenario B 

 

Before we analyze the results, it must be emphasized that the accuracy of the system was 

measured on the final output from the system.  

In the methodology chapter of this report, it was stated that for a character to appear on the 

output screen, it must have been predicted by the neural network for three consecutive cycles. 

Hence, there may have been instances (even in situations where the accuracy is 100%) the 
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system predicts අ in cycle one, බ් in cycle two, and then records අ in the next three cycles, it 

will still be output as අ, hence will be a successful attempt. 

It is worth noting that most of the characters reach a 100% accuracy rate. The accuracy rate of 

the gesture attempts in a well-lit room where the hand received balanced illumination from all 

directions is 96.4% and the accuracy rate for gestures in natural daylight is 93.6%.  

For comparison, the below image shows a hand gesture in the two testing situations: 

 

 
Figure 4.3.1 Hand gesture used for Test A 

 

 
Figure 4.3.2 Hand gesture used for Test B 

 

 

Figure 4.3.2, the hand is illuminated from one direction only and causes shadows on the skin. 
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Table below shows the summary of the test results combined: 

 

Gesture 

Number 

of 

attempts 

A B 
total - 

success 
A B 

total - 

fail 

Success 

rate in 

% 

අ 120 60 60 120 0 0 0 1 

ආ 120 60 60 120 0 0 0 1 

ඇ 120 60 59 119 0 1 1 0.99167 

ඉ 120 58 57 115 2 3 5 0.95833 

උ 120 60 59 119 0 1 1 0.99167 

එ 120 59 57 116 1 3 4 0.96667 

ක් 120 60 60 120 0 0 0 1 

ග් 120 59 57 116 1 3 4 0.96667 

ජ් 120 56 54 110 4 6 10 0.91667 

ට් 120 59 59 118 1 1 2 0.98333 

ද් 120 57 56 113 3 4 7 0.94167 

ත් 120 45 43 88 15 17 32 0.73333 

ඩ් 120 59 58 117 1 2 3 0.975 

න් 120 49 39 88 11 21 32 0.73333 

ප් 120 60 59 119 0 1 1 0.99167 

බ් 120 59 58 117 1 2 3 0.975 

ම් 120 47 45 92 13 15 28 0.76667 

ය් 120 58 56 114 2 4 6 0.95 

ර් 120 58 55 113 2 5 7 0.94167 

ල් 120 60 60 120 0 0 0 1 

ව් 120 60 59 119 0 1 1 0.99167 

ස ් 120 58 55 113 2 5 7 0.94167 

හ ් 120 60 58 118 0 2 2 0.98333 

ෟ  120 60 60 120 0 0 0 1 

ච් 120 60 60 120 0 0 0 1 

[space] 120 58 58 116 2 2 4 0.96667 

[delete] 120 60 58 118 0 2 2 0.98333 

Total 3240 1559 1519 3078 61 101 162 0.95  

Table 4.3.3 Summary of results 
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The gestures for ත්, න් and ම් have a considerably low success rate than the rest, removing these 

three gestures from the test results yields: 

 

 

Accuracy of the complete dataset 
Accuracy when ත්, න් and ම් are removed 

from the results 

Well-lit 

environment 

Ambient 

daylight 

Well-lit 

environment 
Ambient daylight 

Average 96.23457 93.76543 98.47222 96.66667 

Median 98.33333 96.66667 99.16667 96.66667 

Std. 

Deviation 6.755697 8.934622 1.898173 2.989515 
Table 4.3.4 Removing low achieving results 

 

The overall accuracy of the system was 95%. 

Before moving on to the next section of the analysis. It must also be mentioned that 10% of the 

dataset was also used to test the accuracy of training as soon as the training ended. Based on 

the training dataset, the system has an accuracy of 99.6%. 

 

4.4 Confidence level Analysis 

As shown in figure 4.4.1, the system calculates a probability, or the confidence of the prediction 

made. During testing, the confidence level of the output was also stored in a separate file. 

 
Figure 4.4.1 Changing code to print confidence level 

  

The application code was modified as shown above so it would print out the confidence level 

of the labels for each hand gesture frame captured. After testing was complete, the confidence 

values were collected in a spreadsheet for further evaluation and analysis. Full spreadsheet 

consists of 27 sheets with each sheet containing 3240 data points giving a total of 90720 values 

for the entire testing process. The list is quite extensive and important sections of the data 

collected are included in the appendix section of this report.  
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Figure 4.4.2 shows a part of the spreadsheet for the data collected for the label a or gesture අ.  

 

 
Figure 4.4.2 Confidence level data 

 

Recall that (refer table 4.3.3) hand gesture අ received a 100% accuracy rate for both testing 

environments. Let us take a closer look at their predicted probability levels. 
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Table 4.4.1 shows a section of the results for 2 test subjects with 10 trials (full result sheet has 

been attached in the Appendix section of this report). 

අ 
Well-lit 

environment 
Ambient 

daylight 

1 0.73403 0.92985 

2 0.94421 0.41314 

3 0.89021 0.63036 

4 0.9559 0.49279 

5 0.91173 0.67728 

6 0.96359 0.74348 

7 0.96168 0.72028 

8 0.9839 0.80346 

9 0.45152 0.47433 

10 0.77338 0.6473 

1 0.94119 0.60143 

2 0.95147 0.60754 

3 0.90038 0.63586 

4 0.61521 0.50082 

5 0.63101 0.73256 

6 0.77892 0.74868 

7 0.88977 0.43602 

8 0.9694 0.48957 

9 0.98643 0.61305 

10 0.93055 0.45372 
Table 4.4.1 Confidence level data for ‘a’ 

 

In test scenario A, when trial 1 gives a confidence level of 0.73403, this means that the neural 

network predicts that the hand gesture in the captured frame is an අ with a probability of 0.73. 

Note how, although both scenarios yield the same accuracy rate, the probability of test scenario 

A is generally higher than that of B, the room illuminated with ambient daylight.  

The following table (4.4.2) shows a summary of the results for various gestures under the two 

testing conditions. 

Average confidence level is calculated based on 60 trials for each gesture under each scenario 

and median is included within brackets to get an idea of the skew. 
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label Scenario A Scenario B 

a 
(0.88999) 
0.816693 

(0.621705) 
0.617576 

aa 
(0.879015) 
0.850812 

(0.943045) 
0.939192 

az 
(0.93244) 
0.896735 

(0.974445) 
0.933362 

b 
(0.88012) 
0.810612 

(0.633485) 
0.64153 

ch 
(0.755935) 
0.745422 

(0.83252) 
0.809287 

d 
(0.87682) 
0.839078 

(0.737105) 
0.666603 

dh 
(0.64103) 
0.66874 

(0.60305) 
0.576401 

e 
(0.86892) 
0.780689 

(0.722605) 
0.69205 

g 
(0.93919) 
0.903865 

(0.895285) 
0.868847 

h 
(0.903085) 
0.877452 

(0.893685) 
0.895393 

j 
(0.69634) (0.26165) 

0.663489 0.272398 

k 
(0.772815) (0.645565) 

0.722163 0.631054 

u 
(0.91052) (0.835785) 

0.860502 0.792225 
Table 4.4.2 Confidence level data for other labels 

 

Except for a few gestures, the general trend is that scenario A has a higher probability of 

predicting the correct gesture. The chart below shows that test scenario A gives an average 

confidence level of 0.789 while scenario B gives a confidence level of only 0.71. 
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Figure 4.4.3 Change in confidence level between test scenarios 

 

While the confidence levels vary between the two testing scenarios, that does not necessarily 

mean that inaccurate gestures were predicted. To illustrate this, let’s extract the 8th attempt of 

a test subject trying to pose for the gesture label j (ජ්). 
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The data for the attempt is shown below: 

ජ් j 0.21189 

ය් y 0.20984 

ල් l 0.10992 

ත් th 0.05844 

ක් k 0.0481 

[delete] delete 0.04475 

ඩ් d 0.04033 

ච් ch 0.03578 

ස් s 0.02767 

න් n 0.02385 

ව් w 0.02081 

ට් t 0.02058 

අ a 0.0182 

ප් p 0.01667 

[space] space 0.01624 

ම් m 0.01529 

උ u 0.01341 

බ් b 0.01098 

ද් dh 0.01022 

[nothing] nothing 0.00908 

එ e 0.00821 

ෟ  nz 0.00624 

ඉ i 0.0062 

ඇ az 0.0059 

ආ aa 0.00491 

හ් h 0.00294 

ග් g 0.00201 

ර් r 0.00155 

Table 4.4.3 Confidence level data for label ‘j’ 

 

The system predicts that the user is holding a pose ජ් with a probability of 0.212 – which can 

seem as if it is low and almost surpassed by the next best-predicted pose of ය් which is 0.209  
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 but looking at the poses for both gestures we do see that they are similar in shape and finger 

placement and hence an individual may easily pose gestures that are slightly off causing the 

system to give a low confidence score. This trend is seen throughout the testing process, and a 

confusion matrix was created to demonstrate this point even further. 

We can summarize the results in a confusion matrix: 

 
Figure 4.4.6 Confusion matrix 

 

Figure 4.4.5 Similar gestures 
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A normalized confusion matrix was also prepared but it doesn’t convey the data prperly since 

the disparity between maximum and minimum is too large. 

 

 
Figure 4.4.7 Normalized confusion matrix 
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4.5 Word Evaluation 

The most frequently used letter in English is the letter ‘e’ if we select 100 characters from 

English words at random – the letter ‘e’ would be there in 12 of them. In Sinhala, the most 

commonly used letter is ය. [29] 

Note how the Sinhala letter frequencies are much lower than that of English ( partly because 

Sinhala has a larger alphabet). Considering the frequency of occurrence of the letters and the 

limited number of gestures available, the participants were given words and phrases to sign 

through the system. The main goal of this test was to measure how well the users adapted to 

the system. The time the users took to sign a set of words correctly was measured. If the test 

subjects made a mistake, they could go back and erase those characters from the text by posing 

the delete’ sign but this would make them slower and therefore increase the time to complete 

the test. 

Users were given words and phrases from a Sinhala schoolbook and asked to gesture them 

correctly – the list of phrases is given below.  

Phrase/sentence 
The number of gestures required to 

sign the phrase (including space) 

අපි පාඩම් කරමු 16 

අර බලන්න මල් හරි ලස්සනයි 29 

දසල්ලම් දගෙරක් හෙලා 21 

අලුත් අවුරුදු කැවිලි 19 

ඇදතක්  බරට රත්තර  21 

Table 4.5.1 List of phrases to sign 

 

Each user (there were 3) was asked to sign the same phrase 3 times. Results are given below: 

Figure 4.5.1 Sinhala letter frequency 
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Phrase/sentence 
Gestures 

required 

Test user 1 

 (time in s) 

Test user 2 

(time in s) 

Test user 3 

(time in s) 

අපි පාඩම් කරමු 16 62 54 67 60 58 57 70 65 60 

අර බලන්න මල් හරි ලස්සනයි 29 108 105 112 104 118 115 106 114 112 

දසල්ලම් දගෙරක් හෙලා 21 79 71 68 75 70 77  72 68 70 

අලුත් අවුරුදු කැවිලි 19  60 65 61 57 67 57 55 58 59 

ඇදතක්  බරට රත්තර  21 75 71 73 78 71 76 79 77 78 

Table 4.5.2 Results of word phrase test 

 

Phrase/sentence 
Average time to make a successful 

gesture 

අපි පාඩම් කරමු 3.84 

අර බලන්න මල් හරි ලස්සනයි 3.81 

දසල්ලම් දගෙරක් හෙලා 3.43 

අලුත් අවුරුදු කැවිලි 3.15 

ඇදතක්  බරට රත්තර  3.59 

Table 4.5.3 Average time for a gesture 

 

Table 4.5.3 shows the average time taken by the system to register a successful gesture. Note 

that the timer started at the beginning user starts posing and stopped only after the correct 
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complete phrase had appeared on the screen. This means that there may have been cases where 

the user was holding the ‘delete’ gesture because the system identified a wrong character.  

However, the system takes about 3.56 seconds per gesture which means the user can convey 

about 17 gestures per minute. This time can be improved by changing the text speed slider on 

the GUI, once a user is comfortable with the system, the user may be able to push the system 

to 20 characters per minute. 

 

 

4.6 Summary 

Results and Evaluation chapter showed that the Design implemented in the Methodology 

chapter was successful and functioning. It showed the accuracy levels and statistics which can 

be used in the next chapter to come to conclusions about the overall state of the project. 
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Chapter 5  Conclusion and Future Work 
 

Main objective of this project was to design and develop a software application that captures 

video in real-time of a person using Sinhalese Fingerspelling sign language, processes the 

frames through a neural network based on machine learning and interpret the signed hand 

gestures in the video and output text to a screen as words. To achieve this goal, a considerable 

amount of time was spent in researching about the deaf community in Sri Lanka, their sign 

language usage, the evolution of the hand gestures and involvement, and the role of the human 

interpreters.  

Languages, hand movements and gestures of other sign languages were also studied – 

especially American sign language and the Arabic sign language which have similar gestures 

to the Sinhala fingerspelling alphabet. Although there have been several attempts at using 

image processing to interpret Sinhala sing language all these methods contained only 10-15 

hand gestures and used wearable technology such as Kinect, armbands or coloured gloves. This 

project took the status quo a few steps further by expanding the interpreted gestures to include 

27 gestures and added the ability to form complete sentences while all other previous Sinhala 

interpretation systems had character recognition and rudimentary word clustering. A dataset 

was also created for machine learning in order to train the system. The dataset included 27000+ 

images. Inception neural network was selected in part due to the resurgence of interest in deep 

learning in the last decade and for its versatility and accuracy in image processing. Another 

motivation for selecting a neural network was that previous Sinhala sign language projects 

hadn’t utilized its potential and try out how well Inception fares given that Sinhala has a larger 

pool size of hand gestures. 

The Python based application developed uses the web camera of a PC or laptop to capture 

video stream. 
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Figure 4.6.1 Application in use 

 

A screen recording of the system being used can be seen via the link:  

 https://youtu.be/hMzOWYjWFzI 

 

Overall, the results showed a high accuracy of 95%. The recognition accuracy could have been 

higher if it wasn’t for the gestures ම්, න් and ත් which scored a combined rate of around 70% 

due to those gestures being similar to each other thereby resulting in lowered predictability of 

those gestures. 

The project reached its objectives on what it set out to do. From its inception, the project was 

aimed at improving the current research/projects done in this area based on Sinhala sign 

language. This project expanded the scope by including more hand gestures, using Inception 

through machine learning and removing expensive wearable equipment.  

 

5.1 Interpreting Results 

The system achieved an overall accuracy of 95% for character recognition. It has an average 

speed of 17 signs per minute (including diacritics – note that, most characters comprise of 2 

hand gestures).  

There was no observable difference in accuracy when posing hand signs with the left or right 

hands – this is likely due to the fact that the training programme was designed to flip images 

horizontally during training. 

https://youtu.be/hMzOWYjWFzI
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Distinct hand gestures achieved very high success rates while gestures that had similar finger 

placement or hand shape fared poorly. One reason for this is that Sinhala has a larger character 

set than most other languages and therefore has similar gestures with subtle variations. Another 

reason is that the camera used for training and testing has a very low resolution and pixel 

density (0.7 MP), hence the image and in extension the features of the cropped area containing 

light and dark features of the skin are of poor quality; the system cannot extract and interpret 

these results correctly. 

 

 

 

Note how in the figure above, the finger positions are almost the same except for the position 

of the thumb, these two gestures represent two characters. Results show that they have a low 

accuracy rate. It is likely that on most occasions, the system doesn’t pick up on the small 

variations. 

The way a person holds a hand gesture also matters for the accuracy of the results. Most 

gestures such as ල්, ව් or ප් still managed to achieve high accuracy even though test subjects 

held slight variations of the intended hand gesture (changes in the angle of fingers, hand rotated 

slightly, etc.) but for ambiguous signs such as ම් or න්, a slight variation amplified the error and 

lead to incorrect predictions.  

The system separates the skin tones from the background and creates a mask around the hand 

that cuts off any pixels from the background that interferes with the prediction. A plain 

background was used for testing. As long as the background does not have any object similar 

in colour to the user’s skin tone, the system can mask them out. It was noted that there is a clear 

difference in the success rate of gesture recognition when the lighting changes. Reproducing 

the lighting conditions that were there when images were captured for the training dataset 

Figure 5.1.1 Distorted images from similar gestures 
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yields the best results. Changing the lighting changes how the hand is illuminated – this 

changes the shadows on the skin which in turn affects the success probability of the gesture 

prediction. 

Among the factors outlined, the issue with lighting can be considered the biggest deterrent to 

a successful prediction. If the hand is illuminated too brightly, the image gets washed out and 

pixel information for skin areas is redundant. On the other hand, if the image is too dark, the 

web camera shifts the white balance automatically can cause a shift in the pixel values. 

 

 

5.2 Difficulties and Limitations 

As mentioned above, the biggest limitation of the system was that it wasn’t very adaptive to 

changing light conditions which caused a 2% drop in accuracy when testing environments were 

changed. There was a counter mechanism in place – the trackbar – to change the skin mask 

threshold but it only changed the threshold of values once the image had already been captured 

and therefore was limited in what it could do. It is not possible to change the white balance or 

any settings on the web camera since a generic camera found in laptops was used. One way to 

mitigate this issue is to illuminate the room well or train the image dataset under various 

lighting conditions.  

Another unforeseen problem encountered during testing is that, when the web camera operates 

for a long time, the area around the sensors heat up and cause a slight distortion (shift in red 

pixel values) of the images which can have a negative effect on the predictions, especially since 

the red shift can cause skin colour to change on the image. Using a higher-grade web camera 

would have solved this issue but since the project scope was specifically defined to use a simple 

web camera – it was decided to not make any changes to the equipment. 

 

 

5.3 Future Work 

The scope of the project was covered; however, there are few key areas which can be improved 

further. The current system identifies 27 static gestures, this can be expanded further to include 

detection of hand gestures with motion. 
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From its inception, the idea was to build a foundation or a baseline from which future projects 

can build on. The current application is a standalone desktop app based on Python; in the future, 

this can (and should) move to a web-based application so that two parties can communicate 

over the Internet. Taking another step forward, the application can be deployed on a phone and 

the text component eliminated altogether and be replaced by a voice recognition technology. 

Hence, the hand gestures would be converted to speech in real-time. 
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Appendix 

 

Training output to terminal: 

 

Step: 0, Train accuracy: 20.0000%, Cross entropy: 3.259764, Validation accuracy: 7.0% (N=100) 
Step: 50, Train accuracy: 82.0000%, Cross entropy: 2.387794, Validation accuracy: 83.0% (N=100) 
Step: 100, Train accuracy: 94.0000%, Cross entropy: 1.796941, Validation accuracy: 94.0% (N=100) 
Step: 150, Train accuracy: 98.0000%, Cross entropy: 1.409656, Validation accuracy: 89.0% (N=100) 
Step: 200, Train accuracy: 95.0000%, Cross entropy: 1.158465, Validation accuracy: 95.0% (N=100) 
Step: 250, Train accuracy: 93.0000%, Cross entropy: 0.911820, Validation accuracy: 98.0% (N=100) 
Step: 300, Train accuracy: 98.0000%, Cross entropy: 0.721095, Validation accuracy: 97.0% (N=100) 
Step: 350, Train accuracy: 96.0000%, Cross entropy: 0.693118, Validation accuracy: 96.0% (N=100) 
Step: 400, Train accuracy: 96.0000%, Cross entropy: 0.591889, Validation accuracy: 97.0% (N=100) 
Step: 450, Train accuracy: 100.0000%, Cross entropy: 0.479280, Validation accuracy: 98.0% (N=100) 
Step: 500, Train accuracy: 98.0000%, Cross entropy: 0.478022, Validation accuracy: 94.0% (N=100) 
Step: 550, Train accuracy: 99.0000%, Cross entropy: 0.374854, Validation accuracy: 95.0% (N=100) 
Step: 600, Train accuracy: 100.0000%, Cross entropy: 0.373101, Validation accuracy: 98.0% (N=100) 
Step: 650, Train accuracy: 99.0000%, Cross entropy: 0.308552, Validation accuracy: 100.0% (N=100) 
Step: 700, Train accuracy: 97.0000%, Cross entropy: 0.441026, Validation accuracy: 95.0% (N=100) 
Step: 750, Train accuracy: 96.0000%, Cross entropy: 0.370755, Validation accuracy: 99.0% (N=100) 
Step: 800, Train accuracy: 100.0000%, Cross entropy: 0.309538, Validation accuracy: 98.0% (N=100) 
Step: 850, Train accuracy: 98.0000%, Cross entropy: 0.307917, Validation accuracy: 96.0% (N=100) 
Step: 900, Train accuracy: 98.0000%, Cross entropy: 0.296353, Validation accuracy: 96.0% (N=100) 
Step: 950, Train accuracy: 99.0000%, Cross entropy: 0.262363, Validation accuracy: 99.0% (N=100) 
Step: 1000, Train accuracy: 100.0000%, Cross entropy: 0.257949, Validation accuracy: 97.0% (N=100) 
Step: 1050, Train accuracy: 99.0000%, Cross entropy: 0.209571, Validation accuracy: 99.0% (N=100) 
Step: 1100, Train accuracy: 98.0000%, Cross entropy: 0.288907, Validation accuracy: 98.0% (N=100) 
Step: 1150, Train accuracy: 98.0000%, Cross entropy: 0.266357, Validation accuracy: 99.0% (N=100) 
Step: 1200, Train accuracy: 100.0000%, Cross entropy: 0.200622, Validation accuracy: 98.0% (N=100) 
Step: 1250, Train accuracy: 98.0000%, Cross entropy: 0.219140, Validation accuracy: 98.0% (N=100) 
Step: 1300, Train accuracy: 99.0000%, Cross entropy: 0.199692, Validation accuracy: 97.0% (N=100) 
Step: 1350, Train accuracy: 100.0000%, Cross entropy: 0.170689, Validation accuracy: 98.0% (N=100) 
Step: 1400, Train accuracy: 99.0000%, Cross entropy: 0.187579, Validation accuracy: 99.0% (N=100) 
Step: 1450, Train accuracy: 98.0000%, Cross entropy: 0.170079, Validation accuracy: 99.0% (N=100) 
Step: 1500, Train accuracy: 99.0000%, Cross entropy: 0.159585, Validation accuracy: 100.0% (N=100) 
Step: 1550, Train accuracy: 100.0000%, Cross entropy: 0.144855, Validation accuracy: 100.0% (N=100) 
Step: 1600, Train accuracy: 98.0000%, Cross entropy: 0.192853, Validation accuracy: 100.0% (N=100) 
Step: 1650, Train accuracy: 100.0000%, Cross entropy: 0.168094, Validation accuracy: 100.0% (N=100) 
Step: 1700, Train accuracy: 99.0000%, Cross entropy: 0.182677, Validation accuracy: 97.0% (N=100) 
Step: 1750, Train accuracy: 98.0000%, Cross entropy: 0.156971, Validation accuracy: 100.0% (N=100) 
Step: 1800, Train accuracy: 100.0000%, Cross entropy: 0.151367, Validation accuracy: 99.0% (N=100) 
Step: 1850, Train accuracy: 100.0000%, Cross entropy: 0.116089, Validation accuracy: 99.0% (N=100) 
Step: 1900, Train accuracy: 99.0000%, Cross entropy: 0.135607, Validation accuracy: 99.0% (N=100) 
Step: 1950, Train accuracy: 100.0000%, Cross entropy: 0.143743, Validation accuracy: 100.0% (N=100) 
Step: 2000, Train accuracy: 99.0000%, Cross entropy: 0.158373, Validation accuracy: 99.0% (N=100) 
Step: 2050, Train accuracy: 100.0000%, Cross entropy: 0.151496, Validation accuracy: 99.0% (N=100) 
Step: 2100, Train accuracy: 100.0000%, Cross entropy: 0.130377, Validation accuracy: 98.0% (N=100) 
Step: 2150, Train accuracy: 100.0000%, Cross entropy: 0.120119, Validation accuracy: 98.0% (N=100) 
Step: 2200, Train accuracy: 99.0000%, Cross entropy: 0.130551, Validation accuracy: 100.0% (N=100) 
Step: 2250, Train accuracy: 99.0000%, Cross entropy: 0.151680, Validation accuracy: 99.0% (N=100) 
Step: 2300, Train accuracy: 100.0000%, Cross entropy: 0.086753, Validation accuracy: 100.0% (N=100) 
Step: 2350, Train accuracy: 100.0000%, Cross entropy: 0.131505, Validation accuracy: 100.0% (N=100) 
Step: 2400, Train accuracy: 100.0000%, Cross entropy: 0.104784, Validation accuracy: 100.0% (N=100) 
Step: 2450, Train accuracy: 100.0000%, Cross entropy: 0.098050, Validation accuracy: 99.0% (N=100) 
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Step: 2500, Train accuracy: 98.0000%, Cross entropy: 0.150031, Validation accuracy: 99.0% (N=100) 
Step: 2550, Train accuracy: 99.0000%, Cross entropy: 0.108533, Validation accuracy: 100.0% (N=100) 
Step: 2600, Train accuracy: 100.0000%, Cross entropy: 0.115816, Validation accuracy: 99.0% (N=100) 
Step: 2650, Train accuracy: 100.0000%, Cross entropy: 0.130321, Validation accuracy: 99.0% (N=100) 
Step: 2700, Train accuracy: 100.0000%, Cross entropy: 0.101081, Validation accuracy: 98.0% (N=100) 
Step: 2750, Train accuracy: 100.0000%, Cross entropy: 0.126274, Validation accuracy: 100.0% (N=100) 
Step: 2800, Train accuracy: 99.0000%, Cross entropy: 0.099647, Validation accuracy: 100.0% (N=100) 
Step: 2850, Train accuracy: 96.0000%, Cross entropy: 0.127849, Validation accuracy: 99.0% (N=100) 
Step: 2900, Train accuracy: 98.0000%, Cross entropy: 0.125995, Validation accuracy: 100.0% (N=100) 
Step: 2950, Train accuracy: 100.0000%, Cross entropy: 0.089759, Validation accuracy: 99.0% (N=100) 
Step: 3000, Train accuracy: 100.0000%, Cross entropy: 0.093581, Validation accuracy: 99.0% (N=100) 
Step: 3050, Train accuracy: 100.0000%, Cross entropy: 0.079845, Validation accuracy: 99.0% (N=100) 
Step: 3100, Train accuracy: 100.0000%, Cross entropy: 0.079974, Validation accuracy: 99.0% (N=100) 
Step: 3150, Train accuracy: 100.0000%, Cross entropy: 0.068420, Validation accuracy: 100.0% (N=100) 
Step: 3200, Train accuracy: 100.0000%, Cross entropy: 0.098370, Validation accuracy: 99.0% (N=100) 
Step: 3250, Train accuracy: 100.0000%, Cross entropy: 0.085931, Validation accuracy: 100.0% (N=100) 
Step: 3300, Train accuracy: 100.0000%, Cross entropy: 0.100596, Validation accuracy: 100.0% (N=100) 
Step: 3350, Train accuracy: 99.0000%, Cross entropy: 0.096771, Validation accuracy: 98.0% (N=100) 
Step: 3400, Train accuracy: 100.0000%, Cross entropy: 0.084662, Validation accuracy: 100.0% (N=100) 
Step: 3450, Train accuracy: 100.0000%, Cross entropy: 0.097025, Validation accuracy: 100.0% (N=100) 
Step: 3500, Train accuracy: 100.0000%, Cross entropy: 0.081127, Validation accuracy: 99.0% (N=100) 
Step: 3550, Train accuracy: 100.0000%, Cross entropy: 0.080972, Validation accuracy: 98.0% (N=100) 
Step: 3600, Train accuracy: 99.0000%, Cross entropy: 0.107662, Validation accuracy: 99.0% (N=100) 
Step: 3650, Train accuracy: 100.0000%, Cross entropy: 0.090089, Validation accuracy: 100.0% (N=100) 
Step: 3700, Train accuracy: 99.0000%, Cross entropy: 0.070255, Validation accuracy: 100.0% (N=100) 
Step: 3750, Train accuracy: 100.0000%, Cross entropy: 0.074071, Validation accuracy: 99.0% (N=100) 
Step: 3800, Train accuracy: 100.0000%, Cross entropy: 0.078690, Validation accuracy: 100.0% (N=100) 
Step: 3850, Train accuracy: 100.0000%, Cross entropy: 0.080332, Validation accuracy: 97.0% (N=100) 
Step: 3900, Train accuracy: 100.0000%, Cross entropy: 0.070877, Validation accuracy: 99.0% (N=100) 
Step: 3950, Train accuracy: 99.0000%, Cross entropy: 0.100446, Validation accuracy: 99.0% (N=100) 
Step: 4000, Train accuracy: 99.0000%, Cross entropy: 0.098909, Validation accuracy: 100.0% (N=100) 
Step: 4050, Train accuracy: 100.0000%, Cross entropy: 0.075109, Validation accuracy: 100.0% (N=100) 
Step: 4100, Train accuracy: 100.0000%, Cross entropy: 0.072808, Validation accuracy: 98.0% (N=100) 
Step: 4150, Train accuracy: 99.0000%, Cross entropy: 0.088094, Validation accuracy: 99.0% (N=100) 
Step: 4200, Train accuracy: 100.0000%, Cross entropy: 0.054614, Validation accuracy: 100.0% (N=100) 
Step: 4250, Train accuracy: 99.0000%, Cross entropy: 0.069433, Validation accuracy: 100.0% (N=100) 
Step: 4300, Train accuracy: 100.0000%, Cross entropy: 0.077343, Validation accuracy: 99.0% (N=100) 
Step: 4350, Train accuracy: 100.0000%, Cross entropy: 0.057777, Validation accuracy: 99.0% (N=100) 
Step: 4400, Train accuracy: 100.0000%, Cross entropy: 0.097548, Validation accuracy: 100.0% (N=100) 
Step: 4450, Train accuracy: 98.0000%, Cross entropy: 0.098741, Validation accuracy: 99.0% (N=100) 
Step: 4500, Train accuracy: 100.0000%, Cross entropy: 0.060563, Validation accuracy: 100.0% (N=100) 
Step: 4550, Train accuracy: 99.0000%, Cross entropy: 0.086611, Validation accuracy: 100.0% (N=100) 
Step: 4600, Train accuracy: 100.0000%, Cross entropy: 0.066047, Validation accuracy: 100.0% (N=100) 
Step: 4650, Train accuracy: 100.0000%, Cross entropy: 0.045480, Validation accuracy: 100.0% (N=100) 
Step: 4700, Train accuracy: 97.0000%, Cross entropy: 0.120958, Validation accuracy: 100.0% (N=100) 
Step: 4750, Train accuracy: 100.0000%, Cross entropy: 0.049715, Validation accuracy: 100.0% (N=100) 
Step: 4800, Train accuracy: 100.0000%, Cross entropy: 0.052880, Validation accuracy: 100.0% (N=100) 
Step: 4850, Train accuracy: 99.0000%, Cross entropy: 0.107312, Validation accuracy: 100.0% (N=100) 
Step: 4900, Train accuracy: 100.0000%, Cross entropy: 0.080551, Validation accuracy: 100.0% (N=100) 
Step: 4950, Train accuracy: 98.0000%, Cross entropy: 0.073019, Validation accuracy: 100.0% (N=100) 
Step: 4999, Train accuracy: 100.0000%, Cross entropy: 0.054638, Validation accuracy: 99.0% (N=100) 
Final test accuracy = 99.6% (N=2908)  
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Confusion Matrix for test results: 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

 අ ආ ඇ ඉ උ එ ක් ග් ජ් ට් ද් ත් ඩ් න් ප් බ් ම් ය් ර් ල් ව් ස් හ් ෟ  ච් 

sp
ac

e 

d
el

 

අ 120               2            

ආ  120  2                        

ඇ   119 1       1                 

ඉ    115  2                      

උ     119   4                  2  

එ    2  116    2                  

ක්       120                     

ග්        116                    

ජ්         110                   

ට්      2    118                  

ද්           113  3      7         

ත්            88  4    4    1      

ඩ්         1  6  117               

න්            18  88   28     3      

ප්               119        2     

බ්                117     1       

ම්            6  28   92     3      

ය්         9         114         2 

ර්                   113         

ල්     1               120        

ව්   1                  119       

ස්            8    1      113      

හ්               1        118   2  

ෟ                         120    

ච්                         120   

[spac
e] 

                         116  

[dele

te] 
                 2         118 
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    a  aa az b ch d delete dh e g h i j k l m n nothing 

te
st

-1
 s

ce
n

e 
A

 

  1 0.29849  0.00207 0.0338 0.06833 0.0027 0.061 0.00313 0.0046 0.01977 0.00034 0.00258 0.00176 0.23315 0.00325 0.005 0.00135 0.07123 0.01214 

  2 0.51983  0.00228 0.00593 0.10239 0.00109 0.0134 0.00146 0.00148 0.015 0.00078 0.00609 0.0031 0.03511 0.0072 0.00342 0.00133 0.02155 0.07864 

  3 0.37989  0.0045 0.00922 0.09125 0.00192 0.00664 0.01002 0.00099 0.03016 0.00081 0.02116 0.00457 0.04101 0.00263 0.00844 0.0021 0.04272 0.15035 

  4 0.81128  0.00019 0.00456 0.04747 0.00034 0.01423 0.00104 0.00032 0.00095 0.00026 0.00186 0.00032 0.01092 0.00052 0.00129 0.00105 0.04653 0.0197 

  5 0.60824  0.00126 0.01046 0.04996 0.00272 0.0099 0.00465 0.00106 0.00765 0.00036 0.01041 0.00137 0.02484 0.00237 0.00753 0.00078 0.0369 0.08943 

  6 0.88667  0.00008 0.00138 0.03379 0.00009 0.00399 0.00042 0.00075 0.0023 0.00022 0.0001 0.00027 0.00382 0.00032 0.00027 0.00082 0.0393 0.00187 

  7 0.90674  0.00005 0.00057 0.02795 0.00007 0.0012 0.00219 0.00009 0.00064 0.00002 0.00049 0.00005 0.0027 0.00009 0.00042 0.00314 0.02448 0.0023 

  8 0.798  0.00065 0.00401 0.01487 0.00183 0.00306 0.00902 0.0002 0.00157 0.00021 0.00161 0.00109 0.00662 0.00047 0.00642 0.00073 0.03271 0.00709 

  9 0.69596  0.00098 0.00822 0.03294 0.00238 0.00841 0.00982 0.00053 0.00815 0.00044 0.00183 0.00225 0.01979 0.00081 0.00313 0.00198 0.07172 0.01676 

  10 0.76733  0.00044 0.00311 0.04427 0.00122 0.00587 0.00801 0.00033 0.00102 0.00009 0.00075 0.00065 0.00583 0.00019 0.00196 0.00307 0.06274 0.00339 

te
st

-2
 s

ce
n

e 
A

 

  1 0.81993  0.00019 0.00191 0.01946 0.00025 0.0029 0.00621 0.00016 0.00243 0.00005 0.00037 0.00029 0.00811 0.00005 0.00063 0.00092 0.05094 0.00301 

  2 0.73582  0.0001 0.00168 0.00872 0.00024 0.00338 0.01641 0.00008 0.00132 0.00004 0.00023 0.00013 0.00325 0.00003 0.00042 0.00958 0.07804 0.00222 

  3 0.9058  0.00004 0.00048 0.02936 0.00005 0.00079 0.00149 0.00005 0.00121 0.00001 0.00004 0.00008 0.00347 0.00002 0.00016 0.00029 0.02325 0.00125 

  4 0.92602  0.00009 0.0006 0.02616 0.0001 0.00099 0.00254 0.0001 0.00087 0.00001 0.0001 0.00008 0.00651 0.00005 0.00096 0.00034 0.00614 0.00104 

  5 0.97059  0.00002 0.00057 0.01371 0.00002 0.00163 0.00049 0.00006 0.00035 0 0.00001 0.00002 0.00117 0.00001 0.0001 0.00041 0.00285 0.00047 

  6 0.8956  0.00003 0.0004 0.00971 0.00011 0.00116 0.00379 0.00001 0.00044 0.00001 0.00009 0.00004 0.00182 0.00001 0.00019 0.00093 0.02624 0.00074 

  7 0.88725  0.00004 0.0004 0.03345 0.00008 0.00082 0.00205 0.00015 0.00146 0.00001 0.00002 0.00007 0.00589 0.00002 0.00022 0.00037 0.04261 0.00057 

  8 0.91182  0.00005 0.00033 0.01725 0.00003 0.00059 0.00199 0.00003 0.00069 0.00002 0.00009 0.00007 0.00441 0.00004 0.00027 0.00078 0.02633 0.00085 

  9 0.90407  0.00007 0.00142 0.01629 0.0001 0.00905 0.00122 0.00021 0.00166 0.00002 0.00006 0.0001 0.02226 0.00004 0.00168 0.00036 0.01134 0.0024 

  10 0.87391  0.0001 0.00149 0.03668 0.00009 0.00405 0.00208 0.0001 0.00097 0.00002 0.00003 0.00015 0.00721 0.00004 0.0006 0.00081 0.04452 0.00141 

te
st

-3
 s

ce
n

e 
A

 

  1 0.73403  0.00005 0.00326 0.02186 0.0002 0.00316 0.00029 0.0001 0.00015 0.00008 0.00031 0.00007 0.00019 0.00008 0.00009 0.00331 0.1934 0.00105 

  2 0.94421  0.00001 0.0002 0.03493 0.00002 0.00017 0.00009 0.00004 0.00004 0.00001 0.00004 0.00001 0.00004 0.00003 0.00001 0.00066 0.00711 0.00036 

  3 0.89021  0.00004 0.00323 0.08014 0.00009 0.00088 0.00007 0.00007 0.00025 0.00001 0.00008 0.00005 0.0002 0.00011 0.00011 0.00035 0.01172 0.00069 

  4 0.9559  0.00001 0.00061 0.0184 0.00007 0.00018 0.00008 0.00005 0.00022 0.00003 0.00003 0.00003 0.00009 0.00006 0.00002 0.0002 0.01139 0.00031 

  5 0.91173  0.00006 0.00077 0.07194 0.00004 0.00032 0.00009 0.00022 0.00039 0.00002 0.00007 0.00003 0.00005 0.00012 0.00005 0.00053 0.00236 0.00059 

  6 0.96359  0.00001 0.00022 0.01761 0.00007 0.0001 0.00024 0.00004 0.00011 0.00002 0.00004 0.00003 0.00005 0.00005 0.00002 0.00026 0.00285 0.00025 

  7 0.96168  0 0.00006 0.02096 0.00001 0.00007 0.00006 0.00002 0.00007 0.00001 0 0.00001 0.00001 0.00001 0 0.00019 0.00958 0.00004 

  8 0.9839  0 0.00034 0.01203 0.00001 0.00064 0.00003 0.00004 0.00001 0.00001 0.00001 0 0.00006 0.00001 0.00003 0.00006 0.0006 0.00015 

  9 0.45152  0.00095 0.00102 0.32665 0.00024 0.00136 0.00438 0.00095 0.00095 0.00025 0.00359 0.001 0.0004 0.00064 0.00035 0.00629 0.02199 0.00418 

  10 0.77338  0.00014 0.00041 0.09614 0.00008 0.00092 0.00188 0.00022 0.00035 0.00004 0.00032 0.00011 0.00042 0.00009 0.00009 0.00363 0.06376 0.00082 

te
st

-4
 s

ce
n

e 
A

 

  1 0.94119  0.00001 0.00011 0.03793 0.00001 0.0001 0.0001 0.00001 0.00003 0 0.00003 0.00001 0.00007 0.00002 0.00002 0.00016 0.00544 0.00015 

  2 0.95147  0.00002 0.00133 0.01301 0.00005 0.00214 0.00016 0.00006 0.00008 0.00003 0.00012 0.00003 0.00017 0.00006 0.00016 0.00135 0.00862 0.00063 

  3 0.90038  0.00005 0.00212 0.06101 0.00007 0.00184 0.00027 0.00023 0.00029 0.00003 0.00005 0.00005 0.00017 0.00004 0.00008 0.00065 0.00943 0.00065 

  4 0.61521  0.00019 0.00235 0.1901 0.00009 0.00054 0.00132 0.00013 0.00127 0.00002 0.00029 0.00028 0.00059 0.00008 0.0001 0.00148 0.0789 0.00087 

  5 0.63101  0.00023 0.00093 0.18209 0.00014 0.00028 0.00151 0.00015 0.00042 0.00002 0.00036 0.0001 0.0002 0.00011 0.00007 0.00216 0.05329 0.00049 

  6 0.77892  0.00016 0.0035 0.08212 0.00012 0.00591 0.00097 0.00398 0.0028 0.00015 0.00044 0.00031 0.00194 0.00068 0.00055 0.00252 0.03233 0.00187 

  7 0.88977  0.00003 0.00508 0.05029 0.0002 0.005 0.00011 0.00058 0.00022 0.00003 0.00008 0.00009 0.00066 0.00026 0.00013 0.00027 0.02878 0.00079 

  8 0.9694  0.00003 0.0013 0.01018 0.00011 0.00102 0.00021 0.00012 0.00009 0.00001 0.00012 0.00003 0.00031 0.00009 0.00029 0.0001 0.0054 0.00059 

  9 0.98643  0 0.00005 0.00915 0.00001 0.00007 0.00006 0.00001 0.00001 0 0.00002 0 0.00003 0.00001 0.00002 0.00004 0.0008 0.0001 

  10 0.93055  0.00003 0.00437 0.02507 0.00008 0.00741 0.00012 0.0005 0.00066 0.00002 0.00004 0.00006 0.0062 0.00022 0.00081 0.00008 0.00854 0.00177 

te
st

-5
 s

ce
n

e 
A

 

  1 0.85408  0.00018 0.0002 0.08834 0.00009 0.00061 0.00375 0.00031 0.00071 0.00004 0.00039 0.00022 0.00128 0.00018 0.00065 0.00157 0.00264 0.00186 

  2 0.94152  0.00009 0.00016 0.03241 0.00009 0.00034 0.00103 0.00011 0.00035 0.00002 0.00029 0.00006 0.00051 0.00009 0.00028 0.00035 0.00187 0.00101 

  3 0.93115  0.00009 0.00014 0.0406 0.00006 0.00037 0.00063 0.00008 0.00025 0.00003 0.00046 0.00019 0.00031 0.00012 0.00017 0.00087 0.00117 0.00124 

  4 0.87876  0.00017 0.00031 0.0416 0.00011 0.00047 0.00337 0.00013 0.00027 0.00006 0.00068 0.00011 0.00018 0.00007 0.00019 0.00208 0.00222 0.00274 

  5 0.91023  0.00007 0.00042 0.06084 0.00006 0.00024 0.00065 0.00005 0.00017 0.00003 0.00043 0.00012 0.00015 0.00006 0.00009 0.00069 0.0006 0.00094 



 

84 

 

  6 0.9296  0.00012 0.00026 0.03009 0.00013 0.0004 0.00142 0.0002 0.00027 0.00006 0.00081 0.00009 0.00016 0.00016 0.00015 0.00134 0.00228 0.00142 

  7 0.89456  0.00007 0.00026 0.04376 0.00004 0.00025 0.00128 0.00008 0.00021 0.00002 0.00049 0.00009 0.00011 0.00007 0.00007 0.00113 0.00171 0.00132 

  8 0.67069  0.00023 0.00041 0.05979 0.00012 0.00045 0.00242 0.00009 0.00043 0.00009 0.00235 0.00024 0.00015 0.00016 0.0001 0.00605 0.00426 0.00331 

  9 0.77935  0.00038 0.00072 0.04044 0.00019 0.00053 0.00533 0.00013 0.00081 0.00012 0.00167 0.00047 0.00032 0.0002 0.00011 0.01104 0.00395 0.00286 

  10 0.77515  0.00006 0.00011 0.1369 0.00004 0.00013 0.00252 0.00008 0.00092 0.00002 0.0001 0.00009 0.0002 0.00006 0.00005 0.00225 0.00418 0.00078 

te
st

-6
 s

ce
n

e 
A

 

  1 0.96541  0.00001 0.00004 0.02009 0.00001 0.0001 0.00061 0.00004 0.00017 0.00001 0.00003 0.00003 0.00015 0.00002 0.00003 0.00031 0.00118 0.00024 

  2 0.91846  0.00001 0.00006 0.02087 0.00001 0.00004 0.00024 0.00001 0.00013 0 0.00003 0.00002 0.00003 0.00002 0.00001 0.00039 0.00094 0.00027 

  3 0.907  0.0001 0.0001 0.01661 0.00006 0.00029 0.00507 0.00005 0.00037 0.00005 0.00051 0.00007 0.00009 0.00007 0.00016 0.00436 0.00216 0.00103 

  4 0.96808  0.00001 0.00004 0.0111 0.00002 0.0001 0.00039 0.00001 0.00008 0.00001 0.00004 0.00002 0.00002 0.00002 0.00001 0.00093 0.00132 0.0002 

  5 0.97567  0.00002 0.00009 0.00957 0.00004 0.00016 0.00042 0.00003 0.00016 0.00001 0.00002 0.00003 0.00008 0.00002 0.00002 0.00035 0.00187 0.00024 

  6 0.96629  0.00001 0.00008 0.01193 0.00003 0.00006 0.00055 0.00005 0.00017 0.00002 0.00003 0.00005 0.00003 0.00002 0.00001 0.00121 0.00143 0.00018 

  7 0.96277  0.00002 0.00007 0.01283 0.00002 0.00007 0.00058 0.00003 0.00017 0.00001 0.00004 0.00003 0.00004 0.00001 0.00001 0.00094 0.00179 0.00024 

  8 0.96706  0.00001 0.00005 0.00594 0.00002 0.00006 0.00062 0.00002 0.00015 0.00001 0.00004 0.00002 0.00004 0.00002 0.00001 0.00117 0.00213 0.00017 

  9 0.91334  0.00001 0.00007 0.0634 0.00001 0.00005 0.00018 0.00002 0.00022 0.00001 0.00003 0.00004 0.00004 0.00002 0.00001 0.00026 0.00146 0.00021 

  10 0.95044  0.00001 0.00007 0.03177 0.00002 0.00008 0.00021 0.00003 0.00012 0.00001 0.00002 0.00002 0.00004 0.00002 0.00002 0.00019 0.00083 0.00023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


