S

El

E2

For Office Use Only

Masters Project Final Report
(MCS)
2019

Improving the clarity of requirements by generating RCI

Project Titl : : -
roject Title value using Machine Learning

student Name | L. Nijanthan

Registration No.
& Index No. 2017/MCS/055 / 17440552

Supervisor’s

Dr Thilina Halloluwa
Name

For Office Use ONLY

Improving the clarity of requirements by
generating RCI value using Machine
Learning

A dissertation submitted for the Degree of Master of
Computer Science

L. Nijanthan
University of Colombo School of Computing
2019

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any other
university/institute.

To the best of my knowledge it does not contain any material published or written by another person,
except as acknowledged in the text.

Student Name: L. Nijanthan
Registration Number: 2017/MCS/055

Index Number: 17440552

Signature: Date:

This is to certify that this thesis is based on the work of
Mr. L. Nijanthan

under my supervision. The thesis has been prepared according to the format stipulated and is of
acceptable standard.

Certified by:

Supervisor Name: Dr Thilina Halloluwa

Signature: Date:

Acknowledgements

I am using this opportunity to express my gratefulness to everyone who supported me
throughout the master’s individual project. I am grateful for everyone’s advice, guidance and
constructive criticism for the project. I would like to thank my project supervisor Dr. Thilina
Halloluwa, a Lecturer of University of Colombo School of Computing who has supported with

valuable knowledge and vast experience.

Abstract

Requirement Engineering is a key phase in software development, which improves quality and
maintainability of the software. In requirement engineering phase, there are several ways to
measure the quality of the requirement, such as reliability, performance efficiency, security,
maintainability, rate of delivery, testability and usability. Requirement Clarity Index (RCI) is
a quality measure, that can be implemented in a system to reflect level of clarity each
stakeholder has on the project requirements. In other words, RCI used to measure of having
clear understanding on what stakeholder needs is essential for a successful software system
delivery. Accurate identification of RCI will help reduce the ambiguity of requirements which
reduce the rework, and improve maintainability. Measuring RCI value manually requires

higher human involvement, which is expensive, time consuming and subjective.

This research is intended to automate the requirement clarity index generation process using
rule-based machine learning approach. Research has two main phases; (1) a text summarization
phase and (2) requirement quality score analysis phase. Use of text summarization phase,
natural language requirement details are summarized and key aspects of requirement details
get extracted. In requirement quality score analysis phase, scoring is applied to summarized
content, which is generated from text summarization phase, using identified quality factors
from literature survey. Quality score for the factors returned from the quality score analysis
phase. Using the generated quality score and manually computed RCI value, mapping table is
created for rule based RCI generation approach. Mapping table contains range of metric scores
and its related RCI value. Dataset of requirements undergoes into these phases and mapping
table is generated. After generating the mapping table, requirements would be undergoes into
the phases and quality score get computed. According to the quality score, particular range of
quality score is mapped and respective RCI value is returned from the mapping table. With the
help of large set of dataset, this research can produce more significant results for new

requirements.

Table of Contents

ACKNOWLEDGEMENTS ..ottt sisssssessssssstessssssstesssssssssesssssssssesssssssssassssssssnns I
ABSTRACT ...ttt sssse st s ssss s e s s e s as s e e s s s s s e e s s s s s s s e s se s ssnsaeesssssnsaeesessssnnansasssns]
LIST OF FIGUREScoiiiiitititintniciissitcissssnessssssssss s ssssssnscsssssssssessssssssssssessssssaesssssssnsassssssnsnns \"
LIST OF TABLES ...ttt sscssnsesssssntessssssss s s e ssssns e sessssss e s s s ssnsasssessssssasssssssnnaassssssnnans vi
1. INTRODUCTION.....iiiiiitiiiiiiiiniiiiiiniitiissniseiissnteiissssieessssstesisssssssesissssssessssssssessssssssssssssssss 1
1.1, OVERVIEW.....iiiiiiiiniiniiinisnisinsssnssssssssssessssssssessssssssssssssssssssssssssssnsesssssssssassssssssssssesssns 1
1.2, MOTIVATION .iiiiiiiiitinininiiiicisnieinsssssssissssssesssssssssesssssssssessssssssssesssssssnsesssssssssassssssssssssssssns 2
1.3. AIMS AND OBJECTIVEiiiiiiiiniiiiinniieinssnsssssssssssssssssssesssssssssessssssssssssssssssssssssssss 3
B T 0) L PPN 4
2 BACKGROUNDcuuiiiiiiiiiiitiiieiieiiisineeiicssisessssssssssssssssesisssssssesssssssssessssssssssssssssssssesssssssssasens 5
2.1. RELATED WORKcoiiiiiitiintiiiiiniiesisssnieesnssssssssisssssnsesssssssssessssssssssssssssssssesssssssssassssssnsnns 5
2.2, SUMMARY ...ttt issssnse s ssssse s s ssssss s se s sss s e ses s ssns s e sssssssnsesasssssnsenessssssnasnsssssns 10
3. METHODOLOGY ...uiiiiiiiiniiiiiiiniiiiiissiiieiisssieeiissmsseiisssiieiis et st st 12
3.1. INPUT REQUIREMENTuiiiiiiiiiiiiiiniiitiniienieeisssssnseissssssnsesssssssseessssssssesssssssssesssssssssasssssssns 15
3.2. TEXT SUMMARIZATION PHASE........cciiiiiiiiiiiinnicinsnisesssssesnssssssesssssssssessssssss 15
3.3. REQUIREMENT QUALITY SCORE ANALYSIS PHASE.......cccccviiimiiiiiinniiinnnnecnnnneesnnens 16
3.4. MAPPING TABLE GENERATION FROM DATASET........ccocciiiiiiiniiiiiiiniiinncnniecnssneesnnee 17
3.5. GENERATE RCI VALUEcciiiiiiiiiiiiictiitinenicinnsssnssissssssssssssssssssssssssssesssssssssesssssssssasssssssns 18
4. IMPLEMENTATION.coiiitiiiiiiniitiiiiiniieinsenieeisssssnsessssssssessssssssseesssssssssesssssssssesssssssssasssssssns 19
4.1. NATURAL LANGUAGE TEXT PROCESSINGccccovvmiiiiiinniiiniiinnieinnnsiieisssieeismssieee. 19
4.1.1. ANAPHORA RESOLUTIONoiiiiiiiiiiiniiiiniiinnieiissiiiiiissssieiissmieemmssiiesis s s 19
4.1.2. DATA PRE-PROCESSING STEPS........iiiitiiinniinnnicnsnisesssssesnssssesnsssssseessnse 19
4.2. METRIC QUALITY SCORE ANALYSIS ...ccoiiiiiiiiiiiiincniitinniecnnssnsesnsssssessssssssessssnses 19
4.3. MAPPING TABLE GENERATION.......cccocctitiiiinniiiiiiinniiiiinniieinsssniseissssssesisssssseesssssssessssnsss 20
5. EVALUATION ...iiiiiitiiiininnitinnnnseissssssessnsans 22
5.1. PARTITIONING OF DATA USED IN EVALUATIONS APPROACHcocovumiiriiiinnniniicsnnnnens 22

6. RESULTS AND OBSERVATIONScoiitiiiiitiinniiinniienisssnssssssssnesssssssssesisssssseesssssssees 24

6.1. RESULTSiiiiitininntincnnttcnssnse s ssss e s sss s s s ass s e s s s s sss s e ee s s s s n e s e s snsaesssssssnnanssssssnnans 24
6.2. OBSERVATIONS ...ttt sssssssseesssssssssssssssssssesssssssssassssssssssessssssssssessssssnsans 26
7. CONCLUSION AND FUTURE WORKS.......iiiiitiiinriiinniienssnssssssssessssssssseesssssssees 29
7. CONCLUSION ...oiiiiiiiiiiiiiiiiieiitiiisnieeiisssseiissssieesisssssesisssssteeisssssteesissstieeisssssseessssssee 29
7.2. FUTURE WORKS ...ttt insssssssssssssss s ssssnsessssssssnessssssssssssssssssssssssssssnsans 29
8. APPENDIX Attt ssssssse s sss e s ass s e s s s ssn s e s s s s n e s e s s nn s e s s ssssnnasssssssnnans 31
8.1. RESULTS OF USER STORIESccciiiiiiiiiiiiitiiiiiiiiiniessnnesnsssssessssssssesssssssseesssssssees 31
REFERENCES ...ttt iissiscissssnss s ssssss e sssssssss e sss s ssssaesssssssssesesssssssanssssssnsanssssssns 36

List of Figures

FIGURE 1 - SAMPLE USER STORY FROM JIRA 12
FIGURE 2 - COMPLETE DETAILED DESIGN DIAGRAM 13
FIGURE 3 - HIGH LEVEL DESIGN DIAGRAM 14
FIGURE 4 - DETAILED VIEW OF TEXT SUMMARIZATION PHASE 15
FIGURE 5 - DETAILED VIEW OF REQUIREMENT QUALITY SCORE ANALYSIS PHASE 17
FIGURE 6 - QUALITY SCORE FOR TWENTY REQUIREMENTS WITH RCI 5 20
FIGURE 7 - EVALUATION PLAN APPROACH 23
FIGURE 8 - USER STORY 1 24
FIGURE 9 - SYSTEM OUTPUT OF USER STORY 1 25
FIGURE 10 - USER STORY 2 25

FIGURE 11 - SYSTEM OUTPUT OF USER STORY 2 26

List of Tables

TABLE 1 - RCI VALUE AND DESCRIPTION 2
TABLE 2 - SAMPLE MAPPING TABLE 18
TABLE 3 - RESULTED MAPPING TABLE FROM EVALUATION 24

TABLE 4 - USER STORIES AND GENERATED RCI VALUES 27

Vi

1. Introduction

1.1. Overview

Requirement Engineering is a process involved in gathering, analyzing, and documenting
software requirements. This is considered one of the most crucial stages in all of the software
development life cycles[1]. In the traditional software development models such as waterfall,
the complete requirement engineering process has to be conducted before the development[2].
However, in more recent models such as Agile[3] and RUP[4] explore a more iterative and
team based approach to quickly deliver the software system without completing the entire

software development tasks in sequence.

In Agile methodology, software system is divided into smaller working components. Those
components are developed by system development team simultaneously on software
development phases such as planning, requirement engineering, designing, implementation,

testing and user acceptance testing[5].

In requirement engineering phase, the product development team will analyze the requirements
taken into the iteration. Team will utilize diverse quality measures to identify the quality of
the software requirement provided by the stakeholders - Requirement conformance and
Requirement stability, for example[6]. Requirement clarity index (RCI) is one of such quality

measures used in agile software development methodology[7].

RCI is a quality measure, that can be implemented in a system to reflect level of clarity each
stakeholder has on the project requirements. Having clear understanding on what stakeholder
needs is essential for a successful software system delivery. RCI is systematic way to determine
the clarity of requirements. It gives responsibility for each stakeholder to determine their
understanding on the software requirement. Determining the requirement gaps in the early

stage of the software development will reduce the rework, and improve maintainability[7].

RCI values can vary from 1 — 5 depending on the clarity of the software requirements.

Industries and experts follows this standard to measure the clarity of their requirements|[8§].

1 No idea (Unware of the requirement).

2 Vague idea (Aware of the requirement, but the requirement is too vague to start
considering approaches).

3 Somewhat clear (Requirement is known, but details are unclear. Major assumptions
are being made, which if invalid may lead to significant rework).

4 Clear (Requirement is known, and details are more or less clear. Minor assumptions
are being made, which if invalid may lead to minor rework).

5 Perfectly clear (Requirement is known, and details are clear. No more clarifications
are needed).

Table I - RCI value and description

Human involvement is higher in the current RCI value generation process followed by product

development team, which is expensive and time consuming.

Main focus of this research is to propose an approach to automatically measure RCI for a given
requirement with a reasonable accuracy.
The main research question I am trying to address in this study is as follows

How to determine the RCI value of a requirement with minimal human interaction ?

1.2. Motivation

Requirement engineering is a key phase of software development life cycle. Analyzing
requirement requires particular skill set and experience. Measuring the requirement clarity
index of requirement is one of the process followed by industries to identify the quality of the
requirement. This process conducted by product team members manually. This manual process

is very expensive, time consuming, and human error rate is relatively higher.

Motivation to automate this process came cause of the complexity of this process.
Implementing an automated approach for this complex process will reduce human involvement,
which will minimize human error. Implementing automated approach for this type of complex
process requires large amount of data for accurate results. Using the previously measured RCI
values, future requirement RCI value can be measured, which requires large dataset and

training.

1.3. Aims and Objective

Primary aim of this research is to identify an approach to measure requirement clarity index
value of a given requirement. Intention behind this research is to minimize the human
involvement in measuring the RCI value of the requirement as it may involve a significant
human error. Dataset of natural language requirements and manually captured RCI values of

those requirements is the inputs for this proposing approach.

To achieve the aim of this research, it requires following objectives. Using named entity
recognition[9] and part of speech (POS) tagging input text words are categorized. It is
necessary to identify the anaphora of the sentences before doing the summarization. Anaphora
is a technique to refer back an entity which has been introduced earlier in the text[10].
Anaphora is used to identify repetitive content in the given input text. Identified unique content
inputted into data pre-processing phase to derive summarized content. Summarized content of
the requirement use identified metrics to measure the quality score. Entire dataset undergoes
into above mentioned approach and quality score would be measured, which mapped into
manually captured RCI value. Basically mapping table generated using quality score range and
the RCI values. Future requirement text will be summarized and RCI value will be measured

using the mapping table.

Aims of this research

e Develop an automated intelligent approach to measure RCI value of a given

requirement.

The main aim of the study was achieved by systematically addressing the following objectives.

e Minimize human involvement in measuring RCI value of a requirement.

e Understand how to use suitable text summarization techniques to derive necessary
summarized content of natural language requirement.

e Understand how to implement a quality scoring mechanism to measure the score of
summarized content for identified factors and generate the mapping table.

e Understand how to apply rule-based approach to generate RCI value using mapping

table records.

1.4. Scope

This research project mainly focus on evaluating the requirement clarity index of functional
requirements expressed as user stories[11][12] containing textual description in English (no
other languages). This research mainly focuses on extractive summarization techniques to
extract sentences, and abstractive text summarization technique will be applied on extracted

sentences to build an internal semantic representation of the original content.

User story format[11]
AS A <TYPE OF USER>, | WANT <SOME GOAL> SO THAT <SOME REASON>

Real world example

As an application user, I want to read FAQs, so I can get quick answers.

2. Background

2.1. Related Work

Requirement Analysis is a relevant application area for a variety of semantic technologies
related to the extraction, disambiguation, and exploitation of knowledge derived from technical
requirement documents. Requirement clarity index is a metric used to identify the ambiguity

of a particular requirement.

Many researchers have done researches related to measuring the quality of a requirement,
identifying ambiguity of the requirement in the early stage of software product development

and automating the requirement quality measuring.

There were many research works has been done related to requirement analysis using

automated requirement tools, machine learning techniques, and natural language processing.

In 2011, Mohammad Ubaidullah Bokhari and Shams Tabrez Siddiqui published a research
paper that proposed software requirements metrics to improve the process of managing
requirements and quality of the product. These metrics identify and measure the necessary
factors that affect software development. Researchers proposed the following metrics to
measure quality requirement which can be used in the requirement analysis phase:-
Requirement traceability metrics, Requirement completeness metrics, Requirement volatility
metrics, and Size metrics. Measuring quality of requirement with these metrics manually is
expensive, time consuming and prone to error. Cause of these limitations, researchers used
automated requirement tools to do the measurement. In this research, researchers came up with
formulas to measure the mentioned metrics[13]. These formulas can be applied to identify

requirement clarity index related metrics and measurements.

In above mentioned research work, researchers have gone through all set of activities followed
in the requirement engineering process and analyze them. Requirement engineering process
includes activities such as problem synthesis, requirement elicitation, requirement analysis and
negotiation, requirements specification, system modelling, requirement verification and
validation, requirement documentation, and requirement management|14]. Researchers were
analyzing software requirement specification activity that came up with two error types which

will affect the quality of the software requirement. Error types known as knowledge errors

caused due to not knowing what the requirement are, and specification errors caused due to

lack of knowledge or experience of specifying requirements.

Furthermore, A. M. Davis and E. E. Mills identified internal attributes, which describe how
requirement should be specified and external attributes, which describe the overall or outer
appearance of software requirement specification (SRS) document and how they affect other
quality related attributes. Internal attributes are Unambiguous, Correct, Complete,
Understandable, Verifiable, Internal consistent, Modifiable, Annotated by relative stability,
Annotated by version, Precise, Traced, Traceable, Not redundant, At the right level of detail,
and Organized[15]. External attributes are achievable, electronically stored, design
independent and reusable. Researchers defined software metrics for these requirement
document attributes to give the overall information about the development product such as cost,

time, and all phase information[16].

These software metrics are defined in a general way to represent the quality requirement
document. Using these extracted metrics, we will be able to derive metrics which will help to

measure requirement clarity index.

Amit Mishra, A. Awal, Joseph Elijah, A. AbdulG, U. M. Gana and I. Rabiu proposed an
automated software requirement analysis to close the understanding gap between user and
system analysis to construct a better architecture to achieve the usability of software. In this
research, researchers came up with a relational database that aimed at capturing user related
information and requirements that were developed on the repository[17]. The output data
repository will be very helpful to identify patterns which can be used as an input to build an

intelligent system to measure the quality of the requirement.

J. Gyorkos proposed an approach to reduce the bad experiences in tracking, understanding and
validating software requirement specifications common to mid-range software development
projects. Researcher used Computer-aided Software Engineering (CASE) tools to show how
extraction, utilization, and interpretation of requirements at the elicitation phase[18]. Using this
approach will be able identify the factors which are not suitable to measure the quality of the

software requirements.

In 2012, M. Nardini, F. Ciambra, F. Garzoli, D. Croce, D. De Cao, and R. Basili proposed a

distributional method to train a kernel based learning algorithm — Support Vector Machine, for

example, as a cost effective approach to validate requirement from text support of requirement

analysis in the design of a complex systems — Naval Combat Systems for example[19].

This research mainly focusing on designing a naval system. During the design, following
phases need to be performed:- domain analysis, elicitation, specification assessment,
negotiation, documentation, and evaluation. Generally, these phases carried out without any
reuse of old analysis performed over previous system[19]. In this scenario, researchers faced a
great challenge in translating user requirements and problem domain described in natural
language into the consistent modelling of the target application. Vagueness and ambiguity are
the main phenomena that make the natural language used to describe user requirements a

challenging task.

Researchers proposed statistical learning methods embedded in a large scale natural language
processing system in support of requirement analysis. Advanced techniques of natural language
processing combined with machine learning such as Statistical Information Extraction and
Textual Entailment is added to the model to improve the applicability on a large scale. They
implemented a requirement analysis system using a machine learning technique according to
their architecture. The system has been applied to a real scenario — Naval Combat System, for
example. They used an empirical evaluation method to evaluate their system functionalities,
such as requirement identification, information extraction, recognition textual entailment[20].
Empirical evaluation method results are derived by observation and experiment instead of
theory, which is one of the suitable evaluation method to evaluate a machine language
model[21]. But the annotated requirements used in this research is not sufficient to fully
evaluate a machine learning model. With the large data set of annotated requirements and

empirical evaluation will improve model results accurate.

In 2018, Tetsuo Tamai and Taichi Anzai proposed an approach to analyze requirements found
in the software requirement specification (SRS) document in terms of their volume, balance,
and structure. Natural language processing and machine learning techniques used to detect and

classify quality requirement sentences[22].

In the above mentioned research, researchers proposed a method for mining quality
requirements in an SRS document. Researchers collected SRS documents that are available on
the web, issued by local governments, and public institutions in Japan. To train and verify their

machine learning model, the labelling has been done manually by authors. Also, they used

7

Japanese morphological analysis since they used Japanese SRS documents as their data set. To
select a suitable machine learning method, they conducted some preliminary experiments,
including a comparison of the conventional multi layered perceptron and convolutional neural
network (CNN). For implementation, they used existing tools called Chainer combined with

Python libraries[23].

They implemented a top level classification between non-functional requirements and
functional requirements. As a result of the tool, researchers introduce a way of categorizing
functional requirements. This classification mechanism will be helpful to find the requirement

clarity index, since RCI value calculated only for functional requirements[24].

Ahmad Mustafa, Wan M. N. Wan Kadir, and Noraini Ibrahim have identified that an effective
way to minimize the ambiguity from the natural language requirement is requirement
boilerplate. Requirement boilerplate is known as requirement template or pattern, have been
part of requirement writing best practice[25]. They proposed an approach to automate the
requirement analysis phase using a language processing tool and proposed a natural language
requirement analysis model. They present an open source General Architecture for Text
Engineering (GATE) framework for automatically checking natural language requirements

against boilerplates for evaluation purpose[26].

An analysis of requirements lexical and syntactic analysis used to identify the vague,
incomplete, and inconsistent requirements, statistical and semantic techniques used to identify
similar or duplicate requirements and lexical and semantic analysis methods used to classify
the non-functional and functional requirements. In the proposed model text extraction,
boilerplates checking, and natural language requirement quality checking steps were taken to

resolve issues of ambiguity, incompleteness, and inconsistency.

This research was using a well-known framework like General Architecture for Text
Engineering (GATE) to diagnose the ambiguity. GATE is Java suite of tools used for many
natural language processing tasks, including information extraction in many natural
languages[27]. Rupp’s boilerplates were used to natural language requirement conformance.
The model proposed by the researchers is for natural requirement analysis which can be used

to come up with a model to measure the quality of the requirements.

Abinash Tripathy, Ankit Agrawal, and Santanu Kumar Rath did an experiment to observe the
incomplete and ambiguous software requirement specification (SRS) statement which is
written by the customers. Researchers proposed an approach to help the analysis phase,
particularly conducting object oriented analysis by generating class diagrams and all its details
from the SRS statements. They used object oriented analysis, using natural language processing

(NLP) techniques to conduct an intelligent analysis[28].

In this research approach, inputted software requirement specification document will be
assigned part of speech for each word using a parser. Then stemmed the noun tagged words to
find the root nouns and duplicate will be removed. List of stemmed nouns with their occurrence
frequency and candidates for the class name from the list will be generated. XML (Extensible
Markup Language) will be generated from the list. Generated XML will be converted into XSD
(XML Schema Definition). The class diagram will be generated from the XSD. In this research
work measuring the quality of the requirement is not considered. Researchers assumed that the
inputted requirement is well defined and structured, which is not good assumption to produce
accurate results. But generating the UML diagram of the requirement will give clear
understanding to some extent. Natural language processing approach used in this research can

be used to do the preprocessing of a given natural language requirement.

2.2.

Authors (Year)

Mohammad
Ubaidullah Bokhari
and Shams Tabrez
Siddiqui (2011)

A. M. Davis and E. E.
Mills

Amit Mishra, A. Awal,
Joseph Elijah, A.
AbdulG, U. M. Gana
and L. Rabiu

J. Gyorkos (1994)

Nardini, F. Ciambra, F.

Garzoli, D. Croce, D.
De Cao, and R. Basili
(2012)

Ahmad Mustafa, Wan
M. N. Wan Kadir, and

Noraini Ibrahim

Abinash Tripathy,
Ankit Agrawal, and

Santanu Kumar Rath

Tetsuo Tamai and

Taichi Anzai (2018)

Summary

Objective

Propose software requirements
metrics to improve the process of
managing requirements and quality
of the product.

Identify internal attributes, which
describe how requirement should
be specified and external attributes.
Propose an automated software
requirement analysis to close the
understanding gap between user
and system analysis

Propose an approach to reduce the
bad experiences in tracking,
understanding and validating
software requirement specifications
common to mid-range software
development projects

Propose a distributional method to
train a kernel based learning
algorithm — Support Vector
Machine

Identify an effective way to
minimize the ambiguity from the
natural language requirement using
requirement boilerplate

Propose an approach to help the
analysis phase, particularly
conducting object oriented analysis
by generating class diagrams and
all its details from the SRS
statements.

Proposed an approach to analyze
requirements found in the software

requirement specification (SRS)

10

Technology

Survey and Interview based

Analysis and Survey based

Survey and Experiment based

Computer-aided Software

Engineering (CASE)

Domain analysis, Elicitation,
Specification Assessment,
Negotiation, Documentation,
and Evaluation

General Architecture for Text
Engineering (GATE)

framework

Object Oriented Analysis
(OOA), Natural Language
Processing (NLP)

Chainer combined with

Python libraries

document in terms of their volume,

balance, and structure.

Different kind approaches, techniques have been followed and challenges faced by the
researchers to achieve automatic requirement quality measuring was discussed in this chapter.
Based on the previous work, identifying an optimal approach to measure requirement clarity
index is undisclosed. The latter part of this chapter focuses on improving requirement quality

measuring and minimize human involvement.

11

3. Methodology

Requirement engineering process is complex since description provided by the stakeholder
about the requirement is very lengthy. Description provided by the stakeholder can have
necessary and unnecessary information about the requirement. Reading and understanding
lengthy text content requires time, effort and experience. Analysis process highly coupled with
the individual who is doing it, which is a huge drawback for this type of process. The proposing
approach tries to summarize the actual description and extract important factors from it. Below

figure is a sample user story extracted from Jira instance which has three major components.

1. Title of the requirement.
2. Description of the requirement.

3. Attachments related to requirement which is optional.

Title

Daily summary Email Notification

Description

As the product owner or support team, I would like to receive a daily summary report of
issues to priorities fix for the issues. Email template should be in the provided format.
Email body should contain technical configurations details which is required to

investigate the issue.

Attachments

Attached email template

Figure 1 - Sample user story from JIRA

This research is focused on the text in the description section. In the above example,
stakeholder provided email template in separate attachment section. In that situation need to

consider attachment section also.

The main objective of this research is to develop an approach to summarize and extract
important details of the requirement description. This research approach used supervised

learning approach to calculate RCI values. Literature review was used to identify factors which

12

affect quality of the requirements. Came up with this approach by analyzing several supervised

techniques in the literature.

This research methodology has two main phases. Phases are:
e Text Summarization Phase

e Requirement Quality Score Analysis Phase

Following figure is the complete detailed design diagram.

~

Text Summarization Phase

C

Anaphora
Resolution

1

‘ Normalization

‘ Tokenization

Data pre-processing steps

Input

—
Requirement

Lemmatization

‘ Stemming ‘

]

Part Of Speech
(POS) tagging

—

Named Entity
Recognition

N J

Summarised
Content

Figure 2 - Complete Detailed Design Diagram

13

Requirement Quality Score

Analysis Phase

Factors that afftect
Quality of the
Requirement

v

scoring

Implemented
Mechanism

Assign score
according to Factors
of Summarised
Content

- /

Quality Score of the
Summarized Content

4

Mapping Table
Generated from the
Dataset

Generated
RCI value

Following figure is the high level design diagram of the system methodology.

Input
Requirement

Text Summarization
Phase

Summarized
Content

Requirement Quality
Score
Analysis Phase

Quality Score of
Summarized Content

A\ 4

Mapping Table
Generated from the
Dataset

Generated
RCI value

Figure 3 - High Level Design Diagram

14

3.1. Input Requirement

Natural language requirement provided by the stakeholder. Requirement title, requirement

description, and attachments (if any) taken into the system for analysis.

3.2. Text Summarization Phase

This phase has many sub activities to generate summarized content from input requirement.

Following figure is the detailed view of the Text Summarization Phase.

Text Summarization Phase

/ Anaphora \

Resolution

4 N

Normalization Tokenization

Data pre-processing steps

Stemming Lemmatization

- /

A4

Part Of Speech
(POS) tagging

-

Named Entity

& Recognition /

Figure 4 - Detailed View of Text Summarization Phase

Following are the activities of this phase,

Anaphora Resolution is a process of finding the antecedent (Entity to which the anaphor refers)
for an anaphor (Reference that point to the previous item)[29]. Using anaphora resolution
would be able to eliminate repetitive content from the inputted requirement. Anaphora

resolution has different approaches such as rule based, statistical based, and machine learning

15

based. This research project is used rule based and machine learning based approach for the

anaphora resolution.

Data pre-processing steps are used to generate summarized content from the input text.
Following activities carried out to summarize the text content. Tokenization is a process of
chopping the content into pieces called tokens. From this activity certain characters removed
from the content — punctuation, for example[30]. Normalization is process of process of
transforming content into single standard form. For example, the word tomrw, 2morrow should
be transform into tomorrow[31]. Stakeholder may use some raw text in the requirement, those
text should identify and normalized. Stemming and Lemmatization is process of reducing
inflectional and derivational[32] form of word to a common base form. For example,
requirement text can contain different form of word, those forms should be converted into base
form[33]. After conducting above mentioned preprocessing step, content is clean and

unnecessary data is reduced.

Part Of Speech (POS) Tagging is a process of categorizing the word in the content according
to a particular part of speech, based on its definition and context[34]. Which is an important
step in this phase. Identifying the category of the word according to the context improves the
quality of text summarization. From the POS tagging, relationship between the words also can
be identified. Some word in English has two different meaning according the place it used. In

that case, identifying the category according to the context helps understand the sentence.

Named Entity Recognition is an algorithm which used extract information from unstructured
text content and categorized/classified into groups. For example, United States of America is
classified into Country. From named entity recognition, named entities are identified from the
text content. In this research, identifying named entities gives a clear idea to summarize content

in the requirement. Summarized text content is created from the input unstructured requirement.

3.3. Requirement Quality Score Analysis Phase

In this phase, summarized content is taken as input and quality score of the summarized content
is outputted. Following figure is the detailed view of Requirement Quality Score Analysis

Phase.

16

Requirement Quality Score
Analysis Phase

4 N

Factors that afftect
Quality of the
Requirement

A 4

Implemented
scoring
Mechanism

A 4

Assign score
according to Factors
of Summarised
Content

Figure 5 - Detailed View of Requirement Quality Score Analysis phase

From the literature survey identified Factors that affect Quality of the Requirement are used
to measure the quality of the requirement. There is a Scoring Mechanism implemented to
assign score for the factors according to the impact, those factors made to quality of the
requirement. From the scoring mechanism scores are assigned to the identified factors from the
summarized content. Quality score of the summarized content is outputted from the

Requirement Quality Score Analysis Phase.

3.4. Mapping Table Generation from Dataset

Collected dataset contains requirement title, unstructured description and manually captured
RCI value. Dataset of unstructured requirement description is passed into text summarization
phase and requirement quality score analysis phase. Score generated from the quality score
analysis phase is mapped according to its manually captured RCI value. Mapping table contains
range of quality score and respective RCI value for that score range. Following table is a

example mapping table structure,

17

Quality Score Range RCI

0-19 1
20-40 2
41-59 3
60-79 4
80-100 5

Table 2 - Sample Mapping Table

3.5. Generate RCI value

RCI value is generated with help of mapping table according to its quality score of the input

requirement.

18

4. Implementation

This research project implementation has three main sections such natural language text

processing, metric quality score analysis and mapping table generation.

4.1. Natural Language Text Processing

Dataset of requirement contains requirement title, description and manually computed RCI
values, collected from the company which follows agile methodology. In this section
requirement title and description processed and summarized content is generated. Following

are the text processing steps used in this research project.

4.1.1. Anaphora Resolution

In this section, all the pronouns in the title and description are resolved and resolved text

replaced in the input requirement. Stanford CoreNLP library is used to achieve this processing.

Following is the example of this step
e Input - Amal is an undergraduate student. He is currently in second semester.

e Output - Amal is an undergraduate student. Amal is currently in second semester.

4.1.2. Data Pre-Processing Steps

In data pre-processing section, input text is processed and uniformed text get generated. Tag
values, html string, special characters and white spaces are removed from the text. Furthermore,
processed text is normalized and standard form of text is generated. Generated text is undergoes
into named entity recognition step and categorized and classified into groups. Pre-processed

text is outputted from this step and inputted to metric quality score analysis section.

4.2. Metric Quality Score Analysis

This step takes pre-processed unified text as an input and returns quality scores for the
identified factors. Factors which affect requirements known as statement count, word count,

word list count, list count and noun count. Scores and rating is assigned for each factors and

19

cumulated score is returned from this phase. This score used to populate mapping table which

is the key aspect of this research project.

factors

Cumulated Quality Score = Z Factor Score
i

e Example
Quality Score = Proper Sentence Score + Listing Score + Proper Word Score

Implemented model can be expandable to add more factors, which is very important improve
the end result. With more number of factors we are able measure accurate quality score of the

requirement string. Computed score used to populate the mapping table.

4.3. Mapping Table Generation

Mapping table is the key aspect of this research project. Mapping table contains range of quality
score and respective RCI value of it. Quality score of the requirements with same RCI values
grouped and data is formed to generate the graph. Following graph is a sample quality score of

twenty requirements with RCI value 5.

Quality Score
100

90
80
70
60
50
40
30
20

10

0 5 10 15 20 25
Figure 6 - Quality score for twenty requirements with RCI 5

20

With the plotted graph, system automatically identify the metric quality score range. System
skips the outliers and get the values which has frequent occurrence for the range detection.

System follows this approach for all the RCI values and populate the mapping table.

After generating the mapping table with entire dataset, new requirement’s quality score is
mapped with mapping table and respective RCI value is returned. Rule based approach is
followed in this research to identify the RCI value. With the huge dataset of requirements, we

are able extract most accurate quality score range for the RCI values.

21

5. Evaluation

This research project contains two main phases; the text summarization phase and the
requirement quality score analysis phase. In the text summarization phase, natural language
requirement is converted into summarized content. Requirement quality score analysis phase,

using the implemented scoring mechanism summarized content is scored for identified factors.

Evaluation plan of a natural language processing system must be designed to address the issues
related to specific task. Evaluation must identify all system elements that can figure as
performance factors. Partitioning of data used is widely used evaluation approach for natural

language processing systems

5.1. Partitioning of Data used in Evaluations Approach

This research project follows partitioning of data used in evaluations approach for the
evaluation. Key element of this approach is collected dataset of requirements with manually
measured RCI values. In this approach dataset is partitioned into two disjoint subsets such as
training data and test data. Training data is known as input to the system. Training dataset is
used to build the model. In this research, using the training dataset of requirements are taken
in text summarization phase and requirement quality score analysis phase. Natural language
requirement of this dataset is used to build the scoring mechanism in the requirement quality
score analysis phase. Training dataset RCI values are not taken into the output of the system.
Test data is used to evaluate the system’s performance after development of the system. Using
test dataset RCI value, system performance is measured. For example, after completing the
system implementation test dataset is inputted to the system for evaluation process. System
generates the RCI value using the research process and test dataset RCI values are used to

assess the result.

22

Complete Dataset

v

Training Data
(Approx 70%)

4

)

Text Summarization
Phase

h 4

Requirement Quality

Score Analysis Phase

._

J

|

Quality Score
of the Requirement

|

Mapping Table

v

Test Data
(Approx 30%)

"~

)

Text Summarization
Phase

Score Analysis Phase

Requirement Quality

.

Quality Score
of the Requirement

RCI Value

Figure 7 - Evaluation Plan Approach

Based on the partitioning data evaluation approach, dataset is partitioned into two disjoint

dataset. Approximately seventy percentage of the data records considered as training data and

rest of the data records considered as test data.

23

6. Results and Observations

This chapter briefly explains the results of the evaluation followed in the research project and

observations of the results.

6.1. Results

Based on the selected evaluation approach, quality scores are calculated and plotted for range
identification. Using the quality score ranges system generates the mapping table. Following

table show the generated mapping table for partitioned training dataset.

Quality Score Range RCI
23 —46 1
4758 2
59 -69 3
70 - 78 4
79 - 100 5

Table 3 - Resulted Mapping Table from evaluation

System calculate the quality score of the new requirement and map the calculated score with
mapping table RCI value and returns it. System evaluate the mapping table using partitioned
dataset and verify whether RCI value returned from the system is correct or not.

Following are some sample user stories and its RCI values

User Story 1

Title

Ability to re-label the active checkbox on the study object.

Description

As a User, I should be able to re-label the 'Active' checkbox on the Study object to 'Sync to iPad',
so-as to reduce confusion and increase intuitiveness of the Study functionality. In the Studies page
On the Study page, there is a checkbox called 'Active'. Functionally, this is used to control which
Studies get synced to the iPad. This causes some degree of confusion because there is also a 'Status'
picklist on the Study page which contains a list value called 'Active’. Users wonder what the
difference is between populating the Status field with a value of Active, and the checking the Active

checkbox.

RCI Value - 5

Figure 8 - User story 1

24

In the above mentioned user story (User story 1) manually calculated RCI value is 5, which
mean requirement is perfectly clear to start the implementation. Following is the output RCI

value generated from the implemented system.

POST http://localhost:5000/rci Params Save

M Body @ Code
form-data x-www-form-urlencoded ® raw binary JSON (application/json)

1-{

2 "title": "Ability to re-label the active checkbox on the study object.",

3 "description":"As a User, I should be able to re-label the 'Active' checkbox on the Study object to 'Sync to
iPad', so-as to reduce confusion and increase intuitiveness of the Study functionality. In the Studies
page On the Study page, there is a checkbox called 'Active'. Functionally, this is used to control which
Studies get synced to the iPad. This causes some degree of confusion because there is also a 'Status'
picklist on the Study page which contains a list value called 'Active'. Users wonder what the difference
is between populating the Status field with a value of Active, and the checking the Active checkbox."

4 1}

Body 4) Status: 200 OK Time: 3898 ms
Pretty JSON 5 Save Response

1-{

2 rci"p S

3 1

Figure 9 - System output of User story 1

In above mentioned scenario manually calculated RCI value and generated RCI value is same,

since this user story has more details and clear explanation of the feature to be implemented.

User Story 2
Title
Remove the fields Category and Activity Type from the Territory Reasons Page.

Description
As a DevOps Admin [want to remove the fields Category and Activity Type from the '"Time off
Territory Reasons' page as these fields are not relevant to Sales users when a new TOT Reason is

created

RCI Value - 3

Figure 10 - User story 2

25

In this example (User story 2), RCI value is 3 which means requirement is somewhat clear.
This scenario requirement is known, but details are unclear. Major assumptions are being made,

which if invalid may lead to significant rework. Following the output from the system.

POST http://localhost:5000/rci Params Save

m Body ® Code

form-data x-www-form-urlencoded ® raw binary JSON (application/json)

1-{

2 "title": "Remove the fields Category and Activity Type from the Territory Reasons Page",

3 "description":"As a DevOps Admin I want to remove the fields Category and Activity Type from the 'Time off

Territory Reasons' page as these fields are not relevant to Sales users when a new TOT Reason is created"
4 1}
Body (4) Status: 200 OK Time: 82 ms

Pretty JSON =) Save Response
I It

2 rci 2

3 %

Figure 11 - System output of User story 2

In this scenario the manual RCI value and system generated RCI value is different. System
identify this requirement as RCI value 2 requirement, which means requirement is an unclear
idea, since this requirement has many number of keywords which is related to the domain. If a
requirement contains many number of the domain specific keywords manual RCI calculation
is relatively easier than automatic RCI calculation. Reducing the domain specific keywords as

much as possible this the requirement can improve the RCI value of the requirement.
6.2. Observations

Following table contains some of the user stories (randomly chosen ten user stories) from data
set, manually configured RCI values, system generated RCI values and percentage error.

Percentage error of the value calculated with below formula.

| Approximate Value — Exact Value |
Percentage Error = * 100 %
| Exact Value |

26

In this scenario Approximate value is Generated RCI and Exact value is Manual RCI

ID User story title

10

Update supported git version

documentation

Show bookmarks in changesets
view
When I search on the 'Parent

Link' field, I want to see the

sum of original estimate

Show 'Complete Sprint' button

when 'Hide menus' is enabled

Add 'Cancel' button to add-on

installation

As a Rapid Board user I would
like to be able to configure
Quick Filters by shuffling
through existing filters in JIRA

Allow to order groups in the
groups screen in

Administration mode

Updated Look and Feel for

anonymous users

Provide Support for Proxies

using NTLM Authentication

HipChat client for Linux
doesn't correctly scale for

display

Manual

RCI

Generated

RCI

Table 4 - User stories and generated RCl values

27

Percentage Error

25%

0%

0%

25%

0%

0%

50%

0%

0%

0%

From the above mentioned table we are able to see some observations on the results. Randomly
took ten user stories from the data set compared the system generated RCI with manually
calculated RCI. Seventy percentage (70%) (7 out of 10 user stories) of the results are accurate.
Screenshot of results are in appendix section. Average error percentage of the result is 33.33%.
With the large number of the results we are able calculate accurate error percentage and system
success rate. Thirty percentage (30%) of user stories have different RCI values since the lack
of domain knowledge in the system. When developer or a technical person manually computing
the RCI, person has clear domain knowledge of the requirement and keywords in the
requirement, but when we automating that type of scenario in this case returns different RCI
value, since system doesn’t have domain knowledge. If we think the system as a new person
who has no prior knowledge of the software application or requirement, then that person won’t
be able understand and implement the requirement. That is the major reason of getting the

thirty percentage (30%) of user stories have different RCI value.

Following are the results for the randomly chosen 200 user stories.
e Number of user stories randomly chosen — 200
e Accurate RCI value generated user stories — 174
e Different RCI value generated user stories — 26

e Success rate in percentage — (174/200) * 100 = 87%

As we can see in the results, success rate is increased from 70% to 87%. As sample size increase

success rate is increasing.

28

7. Conclusion and Future Works

This chapter explains the outcome of the research work and future works to expand and

improve the existing problems.

7.1. Conclusion

Requirement Clarity Index (RCI) is one of the quality measure to identify the requirement
quality. Current approach followed in calculating RCI value requires more time and human
involvement. There are several number of the researches have been done related to automating
requirement quality measuring. Still there are some gaps for improvement in the area of
requirement quality measuring. This research focus on identifying the research gaps in existing
approaches and generating requirement clarity index automatically with improved

methodology.

This research primarily focused on automating one of the software requirement quality measure
known as requirement clarity index generation. So this research has fetched past understanding
on requirement quality measuring and automating. In this research natural language
requirement is summarized using text summarization techniques which returns summarized
content with keywords are extracted. Quality score is assigned to the extracted keywords with
the help of identified factors in the literature survey. The result of these approaches return a
mapping table which helps to measure the requirement clarity index value for future

requirements.

7.2. Future Works

There are plenty of software quality measures and metrics are available to measure quality of
the requirement and which requires significant human involvement. This research was
primarily focused on generating requirement clarity index which is one of the software quality
measure used in the industries. Still the approach followed in this research can be extensible to
cater other requirement quality measure generation. For huge set of data, there is a performance
bottle neck in the mapping table generation. Improvement in the performance of the mapping
table generation can be implemented in the future. Identifying more factors which affect the

quality of the requirement will improve the scoring mechanism accuracy.

29

Current practice in the evaluation approach is to randomly split the data into approximately
seventy percentage for training data and thirty percentage for test data. This practice of
partitioning data leads to some issues such as class imbalance and sample representation issue.
Since this approach has some issues, this research project use different variation of partitioning

of data approach which semi-random data partitioning.

In semi-random data partitioning approach, data partitioning is done randomly on the basis of
the original dataset towards getting a training dataset and a test dataset. In this approach,
original dataset is divided into number of subsets, with each subset containing a class instance.

Within each subset data partitioning into training and test datasets is done randomly.

So the future works are opened on additional metric enablement, current quality scoring

mechanism, mapping table generation and evaluation approach.

30

8. Appendix A

8.1. Results of user stories

e User story 1

POST http://localhost:5000/rci Params Save

Authorization Headers (1) Body @ Pre-request Script Tests

Code

form-data x-www-form-urlencoded ~ ® raw binary JSON (application/json)
1~ |

2 "title": "Update supported git version documentation",

3 "description":"As a user, I should be able to view updated supported git version
documentation and I leave existing git 1.8.1.5 as deprecated (exclamation mark)
explaining that there are several known problems related to using this version of git.
New supported version should be 2.8."

4 }

Body Cookies Headers (4) Test Results Status: 200 OK Time: 4844 ms
Pretty Raw Preview JSON 5 Save Response
Tl
2 "rci": 5
N

e User story 2

POST http://localhost:5000/rci Params Save

Authorization Headers (1) Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded @ raw binary JSON (application/json)

1~ ({

2 "title": "Show bookmarks in changesets view.",

3 "description":"As a user, I should be able to see bookmarks in changesets view, it is
possible to push and pool bookmarks to the repository. This means that one might be
interested in viewing bookmarked branches as well as pulling a specific bookmark. It
would be nice to show bookmarks in the changeset view together with branches and tags."

K 3

Body Cookies Headers (4) Test Results Status: 200 OK Time: 121 ms
Pretty Raw Preview JSON 5 Save Response
1- 9
2 "rci": 5
3 1

31

e User story 3

POST Vv http://localhost:5000/rci Params m Save Vv

Authorization Headers (1) Body ® Pre-request Script Tests Code

form-data x-www-form-urlencoded @ raw binary JSON (application/json) Vv

1~ |

2 "title": "When I search on the 'Parent Link' field, I want to see the sum of original
estimate",

3 "description":"As a Jira user, I want Jira to show the sum of the original estimate when
searching for issues using the field 'Parent Link', in the search view."

4 %

Body Cookies Headers (4) Test Results Status: 200 0K Time: 84 ms
Pretty Raw Preview JSON v = Q Save Response
1~ {

2 "rci": 2
3 1

e User story 4

POST Vv http://localhost:5000/rci Params m Save V

Authorization Headers (1) Body @ Pre-request Script Tests Code

form-data x-www-form-urlencoded @ raw binary JSON (application/json) Vv

1~ |{

2 "title": "Show 'Complete Sprint' button when 'Hide menus' is enabled",

3 "description":"'Complete sprint' is not visible when 'hide menus' is available. This is
counter-intuitive because 'complete sprint' is a critical control: without, you cannot
move on to the next sprint.”

4 %

Body Cookies Headers (4) Test Results Status: 200 0K Time: 104 ms
Pretty Raw Preview JSON Vv 5 Q Save Response
1+ {

2 "rci": 5

3 1

32

e User story 5

POST http://localhost:5000/rci Params Save

Authorization Headers (1) Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
1~ |{
2 "title": "Add 'Cancel' button to add-on instalaltion",
3 "description":"NOTE: This suggestion is for *JIRA Cloud*. Using *JIRA Server*? [See the

corresponding suggestionlhttp://jira.atlassian.com/browse/JRASERVER-59666] . {panel}h3.
Problem Definition Sometimes, when enabling an add-on it takes a long time before the
installation is completed. In these cases, admins are not allowed to install any other
add-on in the meantime. It would be good to have a *Cancel* button so the admin can
actually choose if they want to wait that long to have the add-on or they'd prefer to
add a different one instead. h3. Suggested Solution Add a *Cancel* button to the
'Install add-on' dialog. h3. Workaround Support will need to restart the site to make
this process stop."

G

Body Cookies Headers (4) Test Results Status: 200 OK Time: 238 ms
Pretty Raw Preview JSON 5 C Save Response
1~ {
2 "rci: 1
3 3}

e User story 6

POST http://localhost:5000/rci Params Save

Authorization Headers (1) Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
1-|{
2 "title": "As a Rapid Board user I would like to be able to configure Quick Filters by
shuffling through existing filters in JIRA",
3 "description":"(coming from a dedicated customer:) In Rapid Board configuration, there is

the possibility to add Quick Filters that will show up as buttons in Plan and Work Mode:
lquick filters.png! Would it be possible to go through my existing filters rather than
having to copy and paste the JQL query?"

4 %

Body Cookies Headers (4) Test Results Status: 200 OK Time: 116 ms
Pretty Raw Preview JSON 5 Save Response
1~ 4
2 "rci": 5
3 1

33

e User story 7

POST http://localhost:5000/rci Params Save

Authorization Headers (1) Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
1~ |{
2 "title": "Allow to order groups in the groups screen in Administration mode",
3 "description":"In Administration mode in the screen of managing the groups allow to order

the 1list of the groups by clicking in the top of the columns group name, count of users,
name of Permission Schemes."

G

Body Cookies Headers (4) Test Results Status: 200 OK Time: 76 ms
Pretty Raw Preview JSON 5 Iy Save Response
1~ {
2 "rci: 1
3 3}

e User story 8

POST http://localhost:5000/rci Params Save

Authorization Headers (1) Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
1-|{
2 "title": "Updated Look and Feel for anonymous users",
3 "description":"NOTE: This suggestion is for *Confluence Cloud*. Using *Confluence Server*?

[See the corresponding suggestionlhttp://jira.atlassian.com/browse/CONFSERVER-32458].
{panel} From Sebastian Napoli (sebastian.napoli@nrg-edge.com) Specifically, the use case
I am concerned about is where we provide access via an anonymous user for a particular
space. We want our clients to have access to product documentation via an anonymous
user link and would like to not have our clients be able to view changes, tools menu,
child pages etc. Is there a plan at all to provide the ability to hide this
functionality for anonymous users? "

4 %

Body Cookies Headers (4) Test Results Status: 200 0K Time: 234 ms
Pretty Raw Preview JSON 5 Save Response
1~ 4
2 "rci": 1
3 31

34

e User story 9

POST http://localhost:5000/rci Params Save

Authorization Headers (1) Body @ Pre-request Script Tests

Code
form-data x-www-form-urlencoded @ raw binary JSON (application/json)

1~ |{

2 "title": "Provide Support for Proxies using NTLM Authentication",

3 "description":"According to the for version 2.7 or greater of the plugin manager, NTLM
Authentication is not supported and may bring issues to customers who use it. One of
them is the challenge to access the Atlassian Marketplace through the UPM to browse add
-ons, which can be a big show-stopper for customers who intend to purchase add-ons and
use them to do their duties. Workaround: The only known workaround is to implement in
between the application and the NTLM Proxy, which is a component that adds the needed
authentication on the fly so the connection does not hang at a Proxy level."

G

Body Cookies Headers (4) Test Results Status: 200 OK Time: 149 ms
Pretty Raw Preview JSON ~ 5 C Save Response
1~ {

2 "rci": 4

3 1

e User story 10

POST Vv http://localhost:5000/rci Params Save

Authorization Headers (1) Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
1~ |{
2 "title": "HipChat client for linux doesn't correctly scale for display”,
3 "description":"I have my linux box setup to scale everything x2 so that its not tiny on this
retina display. HipChat is the only app that seems to fail to scale."
4 3
Body Cookies Headers (4) Test Results Status: 200 0K Time: 149 ms
Pretty Raw Preview JSON 5 Iy Save Response
e[
2 "rci": 4
3 31

35

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

“Software Engineering | Requirements Engineering Process,” GeeksforGeeks, Jun. 17,
2018. https://www.geeksforgeeks.org/software-engineering-requirements-engineering-

process/ (accessed May 15, 2020).

“Traditional vs. Agile Software Development Method: Which One is Right for Your
Project? - DZone Agile,” dzone.com. https://dzone.com/articles/traditional-vs-agile-

software-development-method-w (accessed Jan. 19, 2020).

“What is AGILE? - What is SCRUM? - Agile FAQ’s,” Cprime.
https://www.cprime.com/resources/what-is-agile-what-is-scrum/ (accessed May 15,

2020).

“RUP (Rational Unified Process) Definition.” https://techterms.com/definition/rup
(accessed May 15, 2020).

“SDLC - Agile Model - Tutorialspoint.”
https://www.tutorialspoint.com/sdlc/sdlc_agile model.htm (accessed Oct. 06, 2019).

S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, “Software engineering metrics for COTS-
based systems,” Computer, vol. 34, no. 5, pp. 44-50, 2001, doi: 10.1109/2.920611.

M. Rathnayake, “Project Management Online : RCI (Requirements Clarity Index),”
Project Management Online, Dec. 14, 2014.
http://pmonlineweb.blogspot.com/2014/12/rci-requirements-clarity-index.html
(accessed Jan. 19, 2020).

K. V.J. Padmini, “USE OF SOFTWARE METRICS IN THE AGILE SOFTWARE
DEVELOPMENT PROCESS,” p. 101.

Natural language processing of semitic languages. New York: Springer, 2014.

E. D. Liddy, “Anaphora in natural language processing and information retrieval,” Inf.
Process. Manag., vol. 26, no. 1, pp. 39-52, Jan. 1990, doi: 10.1016/0306-
4573(90)90008-P.

36

[11] M. Cohn, “User Stories and User Story Examples by Mike Cohn,” Mountain Goat
Software. https://www.mountaingoatsoftware.com/agile/user-stories (accessed Jan. 18,

2020).

[12] “User Stories: An Agile Introduction.”

http://www.agilemodeling.com/artifacts/userStory.htm (accessed Oct. 05, 2019).

[13] M. N. Hoda and Bharati Vidyapeeth’s Institute of Computers Applications and
Management, Eds., Proceedings of the 5th National Conference on Computing for
Nation Development (10th - 11th March, 2011) INDIACom-2011: held in New Delhi.
New Delhi: Bharati Vidyapeeth’s Institute of Computer Applications and Management
(BVICAM), 2011.

[14] R. R. Sud and J. D. Arthur, “Requirements Management Tools A Qualitative

Assessment,” p. 19.

[15] A. M. Davis, Software requirements: objects, functions, and states, Rev. Englewood

Cliffs, N.J: PTR Prentice Hall, 1993.

[16] E. E. Mills, “SEI Curriculum Module SEI-CM-12-1.1 December 1988,” p. 43.

[17] A. Mishra, A. Awal, J. Elijah, and A. AbdulG, “Automation of Requirement Analysis in
Software Engineering,” Int. J. Recent Innov. Trends Comput. Commun., vol. 5, no. 5, p.

16.

[18] J. Gyorkos, “Measurements in software requirements specification process,”
Microprocess. Microprogramming, vol. 40, no. 10—12, pp. 893—-896, Dec. 1994, doi:
10.1016/0165-6074(94)90063-9.

[19] M. Nardini, F. Ciambra, F. Garzoli, D. Croce, D. D. Cao, and R. Basili, “3.1.2 Machine
Learning technologies for the Requirements Analysis in Complex Systems,” INCOSE
Int. Symp., vol. 22, no. 1, pp. 371-385, Jul. 2012, doi: 10.1002/j.2334-
5837.2012.tb01343 x.

[20] P. Resnik and J. Lin, “11 Evaluation of NLP Systems,” p. 26.

37

[21] D. N. Chin, “Empirical Evaluation of User Models and User-Adapted Systems,” p. 14.

[22] T. Tamai and T. Anzai, “Quality Requirements Analysis with Machine Learning:,” in
Proceedings of the 13th International Conference on Evaluation of Novel Approaches to
Software Engineering, Funchal, Madeira, Portugal, 2018, pp. 241-248, doi:
10.5220/0006694502410248.

[23] “Chainer — A flexible framework of neural networks — Chainer 7.1.0 documentation.”

https://docs.chainer.org/en/stable/ (accessed Jan. 18, 2020).

[24] “Lean Agile Metrics for Scaled Agile Systems.”
http://www.methodsandtools.com/archive/leanagilemetrics.php (accessed Jul. 06, 2019).

[25] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Requirement boilerplates:
Transition from manually-enforced to automatically-verifiable natural language
patterns,” in 2014 IEEE 4th International Workshop on Requirements Patterns (RePa),
Karlskrona, Sweden, Aug. 2014, pp. 1-8, doi: 10.1109/RePa.2014.6894837.

[26] A. Mustafa, “Automated Natural Language Requirements Analysis using General
Architecture for Text Engineering (GATE) Framework,” vol. 9, no. 3, p. 5.

[27] H. Cunningham, K. Humphreys, R. Gaizauskas, and Y. Wilks, “GATE: a general
architecture for text engineering,” in Proceedings of the fifth conference on Applied

natural language processing Descriptions of system demonstrations and videos -,

Washington, DC, 1997, p. 29, doi: 10.3115/974281.974299.

[28] A. Tripathy, A. Agrawal, and S. K. Rath, “Requirement Analysis using Natural

Language Processing,” p. 10.

[29] K. M. Seddik and A. Farghaly, “Anaphora Resolution,” in Natural Language
Processing of Semitic Languages, 1. Zitouni, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 247-277.

[30] “Tokenization.” https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
(accessed Jan. 20, 2020).

38

[31] “Normalization (equivalence classing of terms).” https://nlp.stanford.edu/IR-
book/html/htmledition/normalization-equivalence-classing-of-terms-1.html (accessed

Jan. 20, 2020).

[32] G. Booij, “Inflection and Derivation,” in Encyclopedia of Language & Linguistics,
Elsevier, 2006, pp. 654—661.

[33] “Stemming and lemmatization.” https://nlp.stanford.edu/IR-
book/html/htmledition/stemming-and-lemmatization-1.html (accessed Jan. 20, 2020).

[34] “5. Categorizing and Tagging Words.” https://www.nltk.org/book/ch05.html (accessed
Jan. 20, 2020).

39

