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Abstract 
 
Requirement Engineering is a key phase in software development, which improves quality and 

maintainability of the software. In requirement engineering phase, there are several ways to 

measure the quality of the requirement, such as reliability, performance efficiency, security, 

maintainability, rate of delivery, testability and usability. Requirement Clarity Index (RCI) is 

a quality measure, that can be implemented in a system to reflect level of clarity each 

stakeholder has on the project requirements. In other words, RCI used to measure of having 

clear understanding on what stakeholder needs is essential for a successful software system 

delivery. Accurate identification of RCI will help reduce the ambiguity of requirements which 

reduce the rework, and improve maintainability. Measuring RCI value manually requires 

higher human involvement, which is expensive, time consuming and subjective. 

 
This research is intended to automate the requirement clarity index generation process using 

rule-based machine learning approach. Research has two main phases; (1) a text summarization 

phase and (2) requirement quality score analysis phase. Use of text summarization phase, 

natural language requirement details are summarized and key aspects of requirement details 

get extracted. In requirement quality score analysis phase, scoring is applied to summarized 

content, which is generated from text summarization phase, using identified quality factors 

from literature survey. Quality score for the factors returned from the quality score analysis 

phase. Using the generated quality score and manually computed RCI value, mapping table is 

created for rule based RCI generation approach. Mapping table contains range of metric scores 

and its related RCI value. Dataset of requirements undergoes into these phases and mapping 

table is generated. After generating the mapping table, requirements would be undergoes into 

the phases and quality score get computed. According to the quality score, particular range of 

quality score is mapped and respective RCI value is returned from the mapping table. With the 

help of large set of dataset, this research can produce more significant results for new 

requirements. 
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1. Introduction 

 

1.1. Overview 

 

Requirement Engineering is a process involved in gathering, analyzing, and documenting 

software requirements. This is considered one of the most crucial stages in all of the  software 

development life cycles[1]. In the traditional software development models such as waterfall, 

the complete requirement engineering process has to be conducted before the development[2]. 

However, in more recent models such as Agile[3] and RUP[4] explore a more  iterative and 

team based approach to quickly deliver the software system without completing the entire 

software development tasks in sequence. 

 

In Agile methodology, software system is divided into smaller working components. Those 

components are developed by system development team simultaneously on software 

development phases such as planning, requirement engineering, designing, implementation, 

testing and user acceptance testing[5]. 

 

In requirement engineering phase, the product development team will analyze the requirements 

taken into the iteration. Team will utilize diverse  quality measures to identify the quality of 

the software requirement provided by the stakeholders - Requirement conformance and 

Requirement stability, for example[6]. Requirement clarity index (RCI) is one of such quality 

measures used in agile software development methodology[7]. 

 

RCI is a quality measure, that can be implemented in a system to reflect level of clarity each 

stakeholder has on the project requirements. Having clear understanding on what stakeholder 

needs is essential for a successful software system delivery. RCI is systematic way to determine 

the clarity of requirements. It gives responsibility for each stakeholder to determine their 

understanding on the software requirement. Determining the requirement gaps in the early 

stage of the software development will reduce the rework, and improve maintainability[7]. 
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RCI values can vary from 1 – 5 depending on the clarity of the software requirements. 

Industries and experts follows this standard to measure the clarity of their requirements[8]. 

 

1 No idea (Unware of the requirement). 

2 Vague idea (Aware of the requirement, but the requirement is too vague to start 
considering approaches). 

3 
 

Somewhat clear (Requirement is known, but details are unclear. Major assumptions 
are being made, which if invalid may lead to significant rework). 

4 
 

Clear (Requirement is known, and details are more or less clear. Minor assumptions 
are being made, which if invalid may lead to minor rework). 

5 Perfectly clear (Requirement is known, and details are clear. No more clarifications 
are needed). 

Table 1 - RCI value and description 

 
Human involvement is higher in the current RCI value generation process followed by product 

development team, which is expensive and time consuming. 

 

Main focus of this research is to propose an approach to automatically measure RCI for a given 

requirement with a reasonable accuracy.  

The main research question I am trying to address in this study is as follows 

How to determine the RCI value of a requirement with minimal human interaction ? 

 

1.2. Motivation 
 
Requirement engineering is a key phase of software development life cycle. Analyzing 

requirement requires particular skill set and experience. Measuring the requirement clarity 

index of requirement is one of the process followed by industries to identify the quality of the 

requirement. This process conducted by product team members manually. This manual process 

is very expensive, time consuming, and human error rate is relatively higher. 

 
Motivation to automate this process came cause of the complexity of this process. 

Implementing an automated approach for this complex process will reduce human involvement, 

which will minimize human error. Implementing automated approach for this type of complex 

process requires large amount of data for accurate results. Using the previously measured RCI 

values, future requirement RCI value can be measured, which requires large dataset and 

training. 
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1.3. Aims and Objective 
 
Primary aim of this research is to identify an approach to measure requirement clarity index 

value of a given requirement. Intention behind this research is to minimize the human 

involvement in measuring the RCI value of the requirement as it may involve a significant 

human error. Dataset of natural language requirements and manually captured RCI values of 

those requirements is the inputs for this proposing approach. 

 
To achieve the aim of this research, it requires following objectives. Using named entity 

recognition[9] and part of speech (POS) tagging input text words are categorized. It is 

necessary to identify the anaphora of the sentences before doing the summarization. Anaphora 

is a technique to refer back an entity which has been introduced earlier in the text[10]. 

Anaphora is used to identify repetitive content in the given input text. Identified unique content 

inputted into data pre-processing phase to derive summarized content. Summarized content of 

the requirement use identified metrics to measure the quality score. Entire dataset undergoes 

into above mentioned approach and quality score would be measured, which mapped into 

manually captured RCI value. Basically mapping table generated using quality score range and 

the RCI values. Future requirement text will be summarized and RCI value will be measured 

using the mapping table. 

 
Aims of this research 

 

• Develop an automated intelligent approach to measure RCI value of a given 

requirement. 

 
The main aim of the study was achieved by systematically addressing the following objectives.  

 

• Minimize human involvement in measuring RCI value of a requirement. 

• Understand how to use suitable text summarization techniques to derive necessary 

summarized content of natural language requirement. 

• Understand how to implement a quality scoring mechanism to measure the score of 

summarized content for identified factors and generate the mapping table. 

• Understand how to apply rule-based approach  to generate RCI value using mapping 

table records. 
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1.4. Scope 
 
This research project mainly focus on evaluating the requirement clarity index of functional 

requirements expressed as user stories[11][12] containing textual description in English (no 

other languages). This research mainly focuses on extractive summarization techniques to 

extract sentences, and abstractive text summarization technique will be applied on extracted 

sentences to build an internal semantic representation of the original content. 

 

User story format[11] 

 AS A <TYPE OF USER>, I WANT <SOME GOAL> SO THAT <SOME REASON> 

 

Real world example 

 As an application user, I want to read FAQs, so I can get quick answers. 
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2. Background 
 

2.1. Related Work 
 
Requirement Analysis is a relevant application area for a variety of semantic technologies 

related to the extraction, disambiguation, and exploitation of knowledge derived from technical 

requirement documents. Requirement clarity index is a metric used to identify the ambiguity 

of a particular requirement. 

 
Many researchers have done researches related to measuring the quality of a requirement, 

identifying ambiguity of the requirement in the early stage of software product development 

and automating the requirement quality measuring. 

 
There were many research works has been done related to requirement analysis using 

automated requirement tools, machine learning techniques, and natural language processing. 

 
In 2011, Mohammad Ubaidullah Bokhari and Shams Tabrez Siddiqui published a research 

paper that proposed software requirements metrics to improve the process of managing 

requirements and quality of the product. These metrics identify and measure the necessary 

factors that affect software development. Researchers proposed the following metrics to 

measure quality requirement which can be used in the requirement analysis phase:- 

Requirement traceability metrics, Requirement completeness metrics, Requirement volatility 

metrics, and Size metrics. Measuring quality of requirement with these metrics manually is 

expensive, time consuming and prone to error. Cause of these limitations, researchers used 

automated requirement tools to do the measurement. In this research, researchers came up with 

formulas to measure the mentioned metrics[13]. These formulas can be applied to identify 

requirement clarity index related metrics and measurements. 

 
In above mentioned research work, researchers have gone through all set of activities followed 

in the requirement engineering process and analyze them. Requirement engineering process 

includes activities such as problem synthesis, requirement elicitation, requirement analysis and 

negotiation, requirements specification, system modelling, requirement verification and 

validation, requirement documentation, and requirement management[14]. Researchers were 

analyzing software requirement specification activity that came up with two error types which 

will affect the quality of the software requirement. Error types known as knowledge errors 
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caused due to not knowing what the requirement are, and specification errors caused due to 

lack of knowledge or experience of specifying requirements. 

 
Furthermore, A. M. Davis and E. E. Mills identified internal attributes, which describe how 

requirement should be specified and external attributes, which describe the overall or outer 

appearance of software requirement specification (SRS) document and how they affect other 

quality related attributes. Internal attributes are Unambiguous, Correct, Complete, 

Understandable, Verifiable, Internal consistent, Modifiable, Annotated by relative stability, 

Annotated by version, Precise, Traced, Traceable, Not redundant, At the right level of detail, 

and Organized[15]. External attributes are achievable, electronically stored, design 

independent and reusable. Researchers defined software metrics for these requirement 

document attributes to give the overall information about the development product such as cost, 

time, and all phase information[16]. 

 
These software metrics are defined in a general way to represent the quality requirement 

document. Using these extracted metrics, we will be able to derive metrics which will help to 

measure requirement clarity index. 

 
Amit Mishra, A. Awal, Joseph Elijah, A. AbdulG, U. M. Gana and I. Rabiu proposed an 

automated software requirement analysis to close the understanding gap between user and 

system analysis to construct a better architecture to achieve the usability of software. In this 

research, researchers came up with a relational database that aimed at capturing user related 

information and requirements that were developed on the repository[17]. The output data 

repository will be very helpful to identify patterns which can be used as an input to build an 

intelligent system to measure the quality of the requirement. 

 
J. Györkös proposed an approach to reduce the bad experiences in tracking, understanding and 

validating software requirement specifications common to mid-range software development 

projects. Researcher used Computer-aided Software Engineering (CASE) tools to show how 

extraction, utilization, and interpretation of requirements at the elicitation phase[18]. Using this 

approach will be able identify the factors which are not suitable to measure the quality of the 

software requirements. 

 
In 2012, M. Nardini, F. Ciambra, F. Garzoli, D. Croce, D. De Cao, and R. Basili proposed a 

distributional method to train a kernel based learning algorithm – Support Vector Machine, for 
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example, as a cost effective approach to validate requirement from text support of requirement 

analysis in the design of a complex systems – Naval Combat Systems for example[19]. 

 
This research mainly focusing on designing a naval system. During the design, following 

phases need to be performed:- domain analysis, elicitation, specification assessment, 

negotiation, documentation, and evaluation. Generally, these phases carried out without any 

reuse of old analysis performed over previous system[19]. In this scenario, researchers faced a 

great challenge in translating user requirements and problem domain described in natural 

language into the consistent modelling of the target application. Vagueness and ambiguity are 

the main phenomena that make the natural language used to describe user requirements a 

challenging task. 

 
Researchers proposed statistical learning methods embedded in a large scale natural language 

processing system in support of requirement analysis. Advanced techniques of natural language 

processing combined with machine learning such as Statistical Information Extraction and 

Textual Entailment is added to the model to improve the applicability on a large scale. They 

implemented a requirement analysis system using a machine learning technique according to 

their architecture. The system has been applied to a real scenario – Naval Combat System, for 

example. They used an empirical evaluation method to evaluate their system functionalities, 

such as requirement identification, information extraction, recognition textual entailment[20]. 

Empirical evaluation method results are derived by observation and experiment instead of 

theory, which is one of the suitable evaluation method to evaluate a machine language 

model[21]. But the annotated requirements used in this research is not sufficient to fully 

evaluate a machine learning model. With the large data set of annotated requirements and 

empirical evaluation will improve model results accurate. 

 

In 2018, Tetsuo Tamai and Taichi Anzai proposed an approach to analyze requirements found 

in the software requirement specification (SRS) document in terms of their volume, balance, 

and structure. Natural language processing and machine learning techniques used to detect and 

classify quality requirement sentences[22]. 

 
In the above mentioned research, researchers proposed a method for mining quality 

requirements in an SRS document. Researchers collected SRS documents that are available on 

the web, issued by local governments, and public institutions in Japan. To train and verify their 

machine learning model, the labelling has been done manually by authors. Also, they used 
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Japanese morphological analysis since they used Japanese SRS documents as their data set. To 

select a suitable machine learning method, they conducted some preliminary experiments, 

including a comparison of the conventional multi layered perceptron and convolutional neural 

network (CNN). For implementation, they used existing tools called Chainer combined with 

Python libraries[23]. 

 
They implemented a top level classification between non-functional requirements and 

functional requirements. As a result of the tool, researchers introduce a way of categorizing 

functional requirements. This classification mechanism will be helpful to find the requirement 

clarity index, since RCI value calculated only for functional requirements[24]. 

 
Ahmad Mustafa, Wan M. N. Wan Kadir, and Noraini Ibrahim have identified that an effective 

way to minimize the ambiguity from the natural language requirement is requirement 

boilerplate. Requirement boilerplate is known as requirement template or pattern, have been 

part of requirement writing best practice[25]. They proposed an approach to automate the 

requirement analysis phase using a language processing tool and proposed a natural language 

requirement analysis model. They present an open source General Architecture for Text 

Engineering (GATE) framework for automatically checking natural language requirements 

against boilerplates for evaluation purpose[26]. 

 
An analysis of requirements lexical and syntactic analysis used to identify the vague, 

incomplete, and inconsistent requirements, statistical and semantic techniques used to identify 

similar or duplicate requirements and lexical and semantic analysis methods used to classify 

the non-functional and functional requirements. In the proposed model text extraction, 

boilerplates checking, and natural language requirement quality checking steps were taken to 

resolve issues of ambiguity, incompleteness, and inconsistency. 

 
This research was using a well-known framework like General Architecture for Text 

Engineering (GATE) to diagnose the ambiguity. GATE is Java suite of tools used for many 

natural language processing tasks, including information extraction in many natural 

languages[27]. Rupp’s boilerplates were used to natural language requirement conformance. 

The model proposed by the researchers is for natural requirement analysis which can be used 

to come up with a model to measure the quality of the requirements. 
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Abinash Tripathy, Ankit Agrawal, and Santanu Kumar Rath did an experiment to observe the 

incomplete and ambiguous software requirement specification (SRS) statement which is 

written by the customers. Researchers proposed an approach to help the analysis phase, 

particularly conducting object oriented analysis by generating class diagrams and all its details 

from the SRS statements. They used object oriented analysis, using natural language processing 

(NLP) techniques to conduct an intelligent analysis[28]. 

 
In this research approach, inputted software requirement specification document will be 

assigned part of speech for each word using a parser. Then stemmed the noun tagged words to 

find the root nouns and duplicate will be removed. List of stemmed nouns with their occurrence 

frequency and candidates for the class name from the list will be generated. XML (Extensible 

Markup Language) will be generated from the list. Generated XML will be converted into XSD 

(XML Schema Definition). The class diagram will be generated from the XSD. In this research 

work measuring the quality of the requirement is not considered. Researchers assumed that the 

inputted requirement is well defined and structured, which is not good assumption to produce 

accurate results. But generating the UML diagram of the requirement will give clear 

understanding to some extent. Natural language processing approach used in this research can 

be used to do the preprocessing of a given natural language requirement. 
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2.2. Summary 
 

Authors (Year) Objective Technology 

Mohammad 

Ubaidullah Bokhari 

and Shams Tabrez 

Siddiqui (2011) 

Propose software requirements 

metrics to improve the process of 

managing requirements and quality 

of the product. 

Survey and Interview based 

A. M. Davis and E. E. 

Mills 

Identify internal attributes, which 

describe how requirement should 

be specified and external attributes. 

Analysis and Survey based 

Amit Mishra, A. Awal, 

Joseph Elijah, A. 

AbdulG, U. M. Gana 

and I. Rabiu 

Propose an automated software 

requirement analysis to close the 

understanding gap between user 

and system analysis 

Survey and Experiment based 

J. Györkös (1994) Propose an approach to reduce the 

bad experiences in tracking, 

understanding and validating 

software requirement specifications 

common to mid-range software 

development projects 

Computer-aided Software 

Engineering (CASE) 

Nardini, F. Ciambra, F. 

Garzoli, D. Croce, D. 

De Cao, and R. Basili 

(2012) 

Propose a distributional method to 

train a kernel based learning 

algorithm – Support Vector 

Machine 

Domain analysis, Elicitation, 

Specification Assessment, 

Negotiation, Documentation, 

and Evaluation 

Ahmad Mustafa, Wan 

M. N. Wan Kadir, and 

Noraini Ibrahim 

Identify an effective way to 

minimize the ambiguity from the 

natural language requirement using 

requirement boilerplate 

General Architecture for Text 

Engineering (GATE) 

framework 

Abinash Tripathy, 

Ankit Agrawal, and 

Santanu Kumar Rath 

Propose an approach to help the 

analysis phase, particularly 

conducting object oriented analysis 

by generating class diagrams and 

all its details from the SRS 

statements. 

Object Oriented Analysis 

(OOA), Natural Language 

Processing (NLP) 

Tetsuo Tamai and 

Taichi Anzai (2018) 

Proposed an approach to analyze 

requirements found in the software 

requirement specification (SRS) 

Chainer combined with 

Python libraries 
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document in terms of their volume, 

balance, and structure. 

 

 
Different kind approaches, techniques have been followed and challenges faced by the 

researchers to achieve automatic requirement quality measuring was discussed in this chapter. 

Based on the previous work, identifying an optimal approach to measure requirement clarity 

index is undisclosed. The latter part of this chapter focuses on improving requirement quality 

measuring and minimize human involvement. 
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3. Methodology 
 
Requirement engineering process is complex since description provided by the stakeholder 

about the requirement is very lengthy. Description provided by the stakeholder can have 

necessary and unnecessary information about the requirement. Reading and understanding 

lengthy text content requires time, effort and experience. Analysis process highly coupled with 

the individual who is doing it, which is a huge drawback for this type of process. The proposing 

approach tries to summarize the actual description and extract important factors from it. Below 

figure is a sample user story extracted from Jira instance which has three major components. 

 
1. Title of the requirement. 

2. Description of the requirement. 

3. Attachments related to requirement which is optional. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This research is focused on the text in the description section. In the above example, 

stakeholder provided email template in separate attachment section. In that situation need to 

consider attachment section also. 

 
The main objective of this research is to develop an approach to summarize and extract 

important details of the requirement description. This research approach used supervised 

learning approach to calculate RCI values. Literature review was used to identify factors which 

Title 

Daily summary Email Notification 

 

Description 

As the product owner or support team, I would like to receive a daily summary report of 

issues to priorities fix for the issues. Email template should be in the provided format. 

Email body should contain technical configurations details which is required to 

investigate the issue. 

 

Attachments 

Attached email template 

Figure 1 - Sample user story from JIRA 
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affect quality of the requirements. Came up with this approach by analyzing several supervised 

techniques in the literature. 

 
This research methodology has two main phases. Phases are: 

• Text Summarization Phase 

• Requirement Quality Score Analysis Phase 

 
Following figure is the complete detailed design diagram. 

 
Figure 2 - Complete Detailed Design Diagram 
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Following figure is the high level design diagram of the system methodology. 

 

 
 

Figure 3 - High Level Design Diagram 
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3.1. Input Requirement 
 
Natural language requirement provided by the stakeholder. Requirement title, requirement 

description, and attachments (if any) taken into the system for analysis. 

 

3.2. Text Summarization Phase 
 
This phase has many sub activities to generate summarized content from input requirement. 

Following figure is the detailed view of the Text Summarization Phase. 

 

 
Figure 4 - Detailed View of Text Summarization Phase 

Following are the activities of this phase, 

 

Anaphora Resolution is a process of finding the antecedent (Entity to which the anaphor refers) 

for an anaphor (Reference that point to the previous item)[29]. Using anaphora resolution 

would be able to eliminate repetitive content from the inputted requirement. Anaphora 

resolution has different approaches such as rule based, statistical based, and machine learning 
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based. This research project is used rule based and machine learning based approach for the 

anaphora resolution. 

 
Data pre-processing steps are used to generate summarized content from the input text. 

Following activities carried out to summarize the text content. Tokenization is a process of 

chopping the content into pieces called tokens. From this activity certain characters removed 

from the content – punctuation, for example[30]. Normalization is process of process of 

transforming content into single standard form. For example, the word tomrw, 2morrow should 

be transform into tomorrow[31]. Stakeholder may use some raw text in the requirement, those 

text should identify and normalized. Stemming and Lemmatization is process of reducing 

inflectional and derivational[32] form of word to a common base form. For example, 

requirement text can contain different form of word, those forms should be converted into base 

form[33]. After conducting above mentioned preprocessing step, content is clean and 

unnecessary data  is reduced. 

 
Part Of Speech (POS) Tagging is a process of categorizing the word in the content according 

to a particular part of speech, based on its definition and context[34]. Which is an important 

step in this phase. Identifying the category of the word according to the context improves the 

quality of text summarization. From the POS tagging, relationship between the words also can 

be identified. Some word in English has two different meaning according the place it used. In 

that case, identifying the category according to the context helps understand the sentence. 

 
Named Entity Recognition is an algorithm which used extract information from unstructured 

text content and categorized/classified into groups. For example, United States of America is 

classified into Country. From named entity recognition, named entities are identified from the 

text content. In this research, identifying named entities gives a clear idea to summarize content 

in the requirement. Summarized text content is created from the input unstructured requirement. 

 

3.3. Requirement Quality Score Analysis Phase 
 
In this phase, summarized content is taken as input and quality score of the summarized content 

is outputted. Following figure is the detailed view of Requirement Quality Score Analysis 

Phase. 
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Figure 5 - Detailed View of Requirement Quality Score Analysis phase 

 
From the literature survey identified Factors that affect Quality of the Requirement are used 

to measure the quality of the requirement. There is a Scoring Mechanism implemented to 

assign score for the factors according to the impact, those factors made to quality of the 

requirement. From the scoring mechanism scores are assigned to the identified factors from the 

summarized content. Quality score of the summarized content is outputted from the 

Requirement Quality Score Analysis Phase. 

 

3.4. Mapping Table Generation from Dataset 
 
Collected dataset contains requirement title, unstructured description and manually captured 

RCI value. Dataset of unstructured requirement description is  passed into text summarization 

phase and requirement quality score analysis phase. Score generated from the quality score 

analysis phase is mapped according to its manually captured RCI value. Mapping table contains 

range of quality score and respective RCI value for that score range. Following table is a 

example mapping table structure, 
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Quality Score Range RCI 
0 – 19 1 
20 – 40 2 

41 – 59 3 
60 – 79 4 
80 – 100 5 

Table 2 - Sample Mapping Table 

 

3.5. Generate RCI value 
 
RCI value is generated with help of mapping table according to its quality score of the input 

requirement. 
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4. Implementation 
 
This research project implementation has three main sections such natural language text 

processing, metric quality score analysis and mapping table generation. 

 

4.1. Natural Language Text Processing 
 
Dataset of requirement contains requirement title, description and manually computed RCI 

values, collected from the company which follows agile methodology. In this section 

requirement title and description processed and summarized content is generated. Following 

are the text processing steps used in this research project. 

 

4.1.1. Anaphora Resolution 
 
In this section, all the pronouns in the title and description are resolved and resolved text 

replaced in the input requirement. Stanford CoreNLP library is used to achieve this processing. 

 
Following is the example of this step 

• Input - Amal is an undergraduate student. He is currently in second semester. 

• Output - Amal is an undergraduate student. Amal is currently in second semester. 

 

4.1.2. Data Pre-Processing Steps 
 
In data pre-processing section, input text is processed and uniformed text get generated. Tag 

values, html string, special characters and white spaces are removed from the text. Furthermore, 

processed text is normalized and standard form of text is generated. Generated text is undergoes 

into named entity recognition step and categorized and classified into groups. Pre-processed 

text is outputted from this step and inputted to metric quality score analysis section. 

 

4.2. Metric Quality Score Analysis 
 
This step takes pre-processed unified text as an input and returns quality scores for the 

identified factors. Factors which affect requirements known as statement count, word count, 

word list count, list count and noun count. Scores and rating is assigned for each factors and 
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cumulated score is returned from this phase. This score used to populate mapping table which 

is the key aspect of this research project. 

 

Cumulated	Quality	Score	 = 2 345678	9578:
;<=>?@A

B

 

 
• Example 

 
CD4EF6G	9578: = H87I:8	9:J6:J5:	9578: + 	LFM6FJN	9578: + H87I:8	O78P	9578:	 

 
Implemented model can be expandable to add more factors, which is very important improve 

the end result. With more number of factors we are able measure accurate quality score of the 

requirement string. Computed score used to populate the mapping table. 

4.3. Mapping Table Generation 
 
Mapping table is the key aspect of this research project. Mapping table contains range of quality 

score and respective RCI value of it. Quality score of the requirements with same RCI values 

grouped and data is formed to generate the graph. Following graph is a sample quality score of 

twenty requirements with RCI value 5. 

 

 
Figure 6 - Quality score for twenty requirements with RCI 5 
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With the plotted graph, system automatically identify the metric quality score range. System 

skips the outliers and get the values which has frequent occurrence for the range detection. 

System follows this approach for all the RCI values and populate the mapping table. 

 

After generating the mapping table with entire dataset, new requirement’s quality score is 

mapped with mapping table and respective RCI value is returned. Rule based approach is 

followed in this research to identify the RCI value. With the huge dataset of requirements, we 

are able extract most accurate quality score range for the RCI values. 
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5. Evaluation 
 
This research project contains two main phases; the  text summarization phase and the 

requirement quality score analysis phase. In the text summarization phase, natural language 

requirement is converted into summarized content. Requirement quality score analysis phase, 

using the implemented scoring mechanism summarized content is scored for identified factors. 

 
Evaluation plan of a natural language processing system must be designed to address the issues 

related to specific task. Evaluation must identify all system elements that can figure as 

performance factors. Partitioning of data used is widely used evaluation approach for natural 

language processing systems 

 

5.1. Partitioning of Data used in Evaluations Approach 
 
This research project follows partitioning of data used in evaluations approach for the 

evaluation. Key element of this approach is collected dataset of requirements with manually 

measured RCI values. In this approach dataset is partitioned into two disjoint subsets such as 

training data and test data. Training data is known as input to the system. Training dataset is 

used to build the model. In this research, using the training dataset of requirements are taken 

in text summarization phase and requirement quality score analysis phase. Natural language 

requirement of this dataset is used to build the scoring mechanism in the requirement quality 

score analysis phase. Training dataset RCI values are not taken into the output of the system. 

Test data is used to evaluate the system’s performance after development of the system. Using 

test dataset RCI value, system performance is measured. For example, after completing the 

system implementation test dataset is inputted to the system for evaluation process. System 

generates the RCI value using the research process and test dataset RCI values are used to 

assess the result. 

 



 
23 

 
 
 

   
Figure 7 - Evaluation Plan Approach 

 
Based on the partitioning data evaluation approach, dataset is partitioned into two disjoint 

dataset. Approximately seventy percentage of the data records considered as training data and 

rest of the data records considered as test data. 
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6. Results and Observations 
 
This chapter briefly explains the results of the evaluation followed in the research project and 

observations of the results. 

6.1. Results 
 

Based on the selected evaluation approach, quality scores are calculated and plotted for range 

identification. Using the quality score ranges system generates the mapping table. Following 

table show the generated mapping table for partitioned training dataset. 

 
Quality Score Range RCI 
23 – 46 1 
47 – 58 2 

59 – 69 3 
70 – 78 4 
79 – 100 5 

Table 3 - Resulted Mapping Table from evaluation 

 
System calculate the quality score of the new requirement and map the calculated score with 

mapping table RCI value and returns it. System evaluate the mapping table using partitioned 

dataset and verify whether RCI value returned from the system is correct or not. 

Following are some sample user stories and its RCI values 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

User Story 1 

Title 

Ability to re-label the active checkbox on the study object. 

Description 

As a User, I should be able to re-label the 'Active' checkbox on the Study object to 'Sync to iPad', 

so-as to reduce confusion and increase intuitiveness of the Study functionality. In the Studies page 

On the Study page, there is a checkbox called 'Active'. Functionally, this is used to control which 

Studies get synced to the iPad. This causes some degree of confusion because there is also a 'Status' 

picklist on the Study page which contains a list value called 'Active'. Users wonder what the 

difference is between populating the Status field with a value of Active, and the checking the Active 

checkbox. 

 

RCI Value - 5 

Figure 8 - User story 1 
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In the above mentioned user story (User story 1) manually calculated RCI value is 5, which 

mean requirement is perfectly clear to start the implementation. Following is the output RCI 

value generated from the implemented system. 

 

 
Figure 9 - System output of User story 1 

In above mentioned scenario manually calculated RCI value and generated RCI value is same, 

since this user story has more details and clear explanation of the feature to be implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

User Story 2 

Title 

Remove the fields Category and Activity Type from the Territory Reasons Page. 

 

Description 

As a DevOps Admin I want to remove the fields Category and Activity Type from the 'Time off 

Territory Reasons' page as these fields are not relevant to Sales users when a new TOT Reason is 

created 

 

RCI Value - 3 

Figure 10 - User story 2 
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In this example (User story 2), RCI value is 3 which means requirement is somewhat clear. 

This scenario requirement is known, but details are unclear. Major assumptions are being made, 

which if invalid may lead to significant rework. Following the output from the system. 

 
Figure 11 - System output of User story 2 

In this scenario the manual RCI value and system generated RCI value is different. System 

identify this requirement as RCI value 2 requirement, which means  requirement is an unclear 

idea, since this requirement has many number of keywords which is related to the domain. If a 

requirement contains many number of the domain specific keywords manual RCI calculation 

is relatively easier than automatic RCI calculation. Reducing the domain specific keywords as 

much as possible this the requirement can improve the RCI value of the requirement. 

6.2. Observations 
 

Following table contains some of the user stories (randomly chosen ten user stories) from data 

set, manually configured RCI values, system generated RCI values and percentage error. 

Percentage error of the value calculated with below formula. 

 

H:85:J64N:	Q8878 =
|	Approximate	Value − Exact	Value	|

|	Exact	Value	| ∗ 100	% 
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In this scenario Approximate value is Generated RCI and Exact value is Manual RCI 

ID User story title Manual 

RCI 

Generated 

RCI 

Percentage Error 

1 Update supported git version 

documentation 

4 5 25% 

2 Show bookmarks in changesets 

view 

5 5 0% 

3 When I search on the 'Parent 

Link' field, I want to see the 

sum of original estimate 

2 2 0% 

4 Show 'Complete Sprint' button 

when 'Hide menus' is enabled 

4 5 25% 

5 Add 'Cancel' button to add-on 

installation 

1 1 0% 

6 As a Rapid Board user I would 

like to be able to configure 

Quick Filters by shuffling 

through existing filters in JIRA 

5 5 0% 

7 Allow to order groups in the 

groups screen in 

Administration mode 

2 1 50% 

8 Updated Look and Feel for 

anonymous users 

1 1 0% 

9 Provide Support for Proxies 

using NTLM Authentication 

4 4 0% 

10 HipChat client for Linux 

doesn't correctly scale for 

display 

2 2 0% 

Table 4 - User stories and generated RCI values 
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From the above mentioned table we are able to see some observations on the results. Randomly 

took ten user stories from the data set compared the system generated RCI with manually 

calculated RCI. Seventy percentage (70%) (7 out of 10 user stories) of the results are accurate. 

Screenshot of results are in appendix section. Average error percentage of the result is 33.33%. 

With the large number of the results we are able calculate accurate error percentage and system 

success rate. Thirty percentage (30%) of user stories have different RCI values since the lack 

of domain knowledge in the system. When developer or a technical person manually computing 

the RCI, person has clear domain knowledge of the requirement and keywords in the 

requirement, but when we automating that type of scenario in this case returns different RCI 

value, since system doesn’t have domain knowledge. If we think the system as a new person 

who has no prior knowledge of the software application or requirement, then that person won’t 

be able understand and implement the requirement. That is the major reason of getting the 

thirty percentage (30%) of user stories have different RCI value. 

 

Following are the results for the randomly chosen 200 user stories. 

• Number of user stories randomly chosen – 200 

• Accurate RCI value generated user stories – 174 

• Different RCI value generated user stories – 26 

• Success rate in percentage – (174/200) * 100 = 87% 

 

As we can see in the results, success rate is increased from 70% to 87%. As sample size increase 

success rate is increasing. 
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7. Conclusion and Future Works 
 
This chapter explains the outcome of the research work and future works to expand and 

improve the existing problems. 

 

7.1. Conclusion 
 
Requirement Clarity Index (RCI) is one of the quality measure to identify the requirement 

quality. Current approach followed in calculating RCI value requires more time and human 

involvement. There are several number of the researches have been done related to automating 

requirement quality measuring. Still there are some gaps for improvement in the area of 

requirement quality measuring. This research focus on identifying the research gaps in existing 

approaches and generating requirement clarity index automatically with improved 

methodology. 

 

This research primarily focused on automating one of the software requirement quality measure 

known as requirement clarity index generation. So this research has fetched past understanding 

on requirement quality measuring and automating. In this research natural language 

requirement is summarized using text summarization techniques which returns summarized 

content with keywords are extracted. Quality score is assigned to the extracted keywords with 

the help of identified factors in the literature survey. The result of these approaches return a 

mapping table which helps to measure the requirement clarity index value for future 

requirements. 

 

7.2. Future Works 
 
There are plenty of software quality measures and metrics are available to measure quality of 

the requirement and which requires significant human involvement. This research was 

primarily focused on generating requirement clarity index which is one of the software quality 

measure used in the industries. Still the approach followed in this research can be extensible to 

cater other requirement quality measure generation. For huge set of data, there is a performance 

bottle neck in the mapping table generation. Improvement in the performance of the mapping 

table generation can be implemented in the future. Identifying more factors which affect the 

quality of the requirement will improve the scoring mechanism accuracy. 
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Current practice in the evaluation approach is to randomly split the data into approximately 

seventy percentage for training data and thirty percentage for test data. This practice of 

partitioning data leads to some issues such as class imbalance and sample representation issue. 

Since this approach has some issues, this research project use different variation of partitioning 

of data approach which semi-random data partitioning. 

 
In semi-random data partitioning approach, data partitioning is done randomly on the basis of 

the original dataset towards getting a training dataset and a test dataset. In this approach, 

original dataset is divided into number of subsets, with each subset containing a class instance. 

Within each subset data partitioning into training and test datasets is done randomly. 

 

So the future works are opened on additional metric enablement, current quality scoring 

mechanism, mapping table generation and evaluation approach. 
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8. Appendix A 
 

8.1. Results of user stories 
 

• User story 1 

 

• User story 2 
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• User story 3 

 

• User story 4 
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• User story 5 

 

• User story 6 
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• User story 7 

 

• User story 8 
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• User story 9 

 

• User story 10 
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