Dynamic security model for container
orchestration platform

R.G.K.P.Kulathunga
2020

& e ﬁ

"o

Dynamic security model for container
orchestration platform

A dissertation submitted for the Degree of Master of
Science in Computer Science

R.G.K.P.Kulathunga
University of Colombo School of Computing
2020

Declaration Page

The thesis is my original work and has not been submitted previously at this or any other
university/Institute.

To the best of my knowledge it does not contain any material published or written by another person,
except as acknowledged in the text.

Student name : R.G.K.P. Kulathunga
Registration number :2017/MCS/047

Index number 117440471

Signature Date:

This is to certify that this thesis is based on the work of Mr. / Ms. under my supervision. The thesis has
been prepared according to the format stipulated and is of acceptable standard.

Certified by

Supervisor name : Dr Kasun de Zoysa

Signature Date: 2020/11/20

Abstract

With the development of science and technology, people and organizations use widely spread
software applications and huge databases to fulfill their tasks. Those applications and databases
connect with and store more sensitive and personal details belonging to the domain they are address
with. Therefore, a security system is more important in these kinds of situations. When a third-party
user accesses the applications or databases, the security system plays a major role in order to verify
the security.

When consider the security and privacy of application data, the Intrusion Detection System (IDS)
comes into the play. This is a device or software application that uses to monitor a network or
systems malicious activity or policy violations.

Currently, IDS is deployed in the container orchestration platform as the centralized component that
monitor the whole traffic that enter to the system. But there are many problems that can occur in
this existing method. This uses a central point to define the whole security and if the IDS down, it
will affect the security of the entire application. In other words, this can be named as single point
of failure. Moreover, the performance of the IDS can be affected with the usage of centralized
mechanism. This centralized mechanism will lead the application to execute each and every rule set
defined for every application type without depend on a specific type that application belongs to.
This accumulate more processing power and decrease the performance. Other than that, this can
only monitor the traffic when moving to the system and will not be able to monitor the traffic that
moving into the namespaces. If the namespaces are compromised this is not being able to address
that one. So, this approach can only monitor the one place of the traffic flow and will not be able to
detect malicious events occurring at different places at the same time.

This research is focused on introducing a new decentralized model to deploy IDS in a microservice
application for performance improvements. The solution is capable of defining separate rule sets
for each namespace dynamically, and they are only responsible to monitor the application related
to defined namespace only.

Because Kubernetes is one of the most well received container orchestration platform for run the
containers like docker, the Kubernetes container orchestration platform was used to do the
experiment. In order to maintain an uninterrupted service, the Azure Kubernetes Cluster (AKS) was
used.

After deploying the sample containerized web application, Prometheus is used to save the metrics
of data received under CPU usage, Memory usage and network latency categories. Then, the
Grafana GUI applications are used to obtain the graphs and visualize the obtained results.

According to the output, the previous security model Memory usage was 280MB, but with the new
security model Memory usage is only up to 93MB. And, the previous security model CPU usage
was increased up to 6.0 but with the new security model CPU usage is increased only up to 3.6.

Moreover, it can be identified that, there is a performance improvement in the new security model
rather than using the old approaches.

Acknowledgements

| extremely express my sincere gratitude to my supervisor Dr Kasun de Zoysa and Mr.
K.M.Thilakarathne of University of Colombo School of computing for their stimulating guidance,

encouragement, useful suggestions and supervision throughout the course of present work.

| also wish to extend my thanks to all the people including lectures and my colleagues for their
insightful comments and constructive suggestions to improve the quality of this project work. Last
but not the least I express my sincere thanks to all the staff of University of Colombo school of

computing who have patiently extended all sorts of help to accomplish this research work.

Thank you.
R,G.K.P.Kulathunga

17440471(2017/MCS/047)

Contents

(DL =Y o oI - 1= TSRS i
Y o1 1 T OO POP PO U RSO PTOPROPRPRRT i
Yol 4o LT Y] 1=To F=d<T o Y=Y o (PRSP iv
I o) B ST ={ U L PP vi
I o) N I o LT O T VPP USRS PSPPI viii
(@ 0T o} {1 bt VoY e Yo U Tox o Y o I PP PSPPI 1
300 A 1oL o Yo [0 o H TP PR PRSPPI 1
1.2 Problem DefinitioNncoc ittt st e h e s st s n e b ns 3
1.3 MOTIVATION .t ree s 4
1.4 RESEAICh CONTIIDULION . ..cutiiitii ettt ettt et e st e e it e s bt e s bt e e sabeeesbaeesnseesbeeesanes 4
(N Clo T I [o 0] o J=Toru 1YL 5
Yoo o T PPPPRE 5
Chapter 2: Background/Literature Review and RESEarch Gapccccccueeeeuereeieeeiieeeciee e et eree et e eeve e 6
Table 2.1: SUMMAary Of [ILEratUIrE FEVIEWoii ittt e e e stae e e e b e e e eeaseeeeeannaneeean 10
Chapter 3: Research MethodoIOgYccuuiiiiiiiii et e e e eee e e e sbee e e e earaeas 11
N I o] o =T o 1 AN G LY 1P 12
3.1.1 RESEAICH QUESTION ...ttt sttt ettt st s bt bt e me e s e e smeeemneennees 15

R o oY o Yo 1 o= 1114 o] o U U 16
3.2.1. Creating the @NVIFONMENT........oii it eeee e e e tre e e e b ee e e esabee e e senteeeeesnbeeeeennraeas 17

R - | [V 14 o] o OO TP UTUPPORRRRTRT 18
I T B 2 =T U Y g = Y 1 PP 18
3.3, UMV Y e e e e e e e e e e e e e e e e e e e s e s e s e e e e e s e e sesesasasasasasasasasasasassassasasssasasasesassassasanasansaesasenenns 19

(@ T o) T ot H e oY 0T Y =To BT o] [V 4 [o PP PPR 20
Chapter 5: EValuation @nd RESUILScocuiiii ettt tee e e et e e e e eabe e e e e enta e e e eeaaae e e esabeeeeennrenas 30
S U] V7= LY SRR 35
Chapter 6: Conclusion and FULUIE WOTK........eeeii oottt e et e e e e e esrrre e e e e e s e esabeaa e e e e e e e eennnnnns 40
REFEIEINCES ...ttt ettt st sttt e bt e bt e s bt e s at e st e e bt e b e e b e e s beesaeeeat e et e e nbeesanenane e 42
1Y oY 1=Y o Yo [To] YRR
VLY PP PPPPPPPPPPPPPPPPRE 43

List of Figures

Figure 1.1:
Figure 2.1:
Figure 3.1:

Figure 3.2:

Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:

IDS in centralized way

Scalability of the cloud

constructive approach of research

Problem Analysis Setup

ping application CPU usage

Falco CPU usage

Ping application memory usage

Falco memory usage

Sample Falco Rule

Model low-level design

IDS in the centralized way

Deploy the IDS new model

Model low-level design

Design Diagram

Sample Falco rule for web namespace

Sequence Diagram

Research setup in Azure cloud

Sample Falco Rule (PHP application rule)

Monitoring solution to check the performance

Evaluation Setup

Previous security model memory usage of Falco application pods
New security model memory Usage of Falco application pods
Previous security model CPU usage of Falco application pods
New security model CPU usage of Falco application pods
Easy to analyze the impact of area

Security expertise needs to only focus on specific area
vi

Figure 5.8: No single point of failure in this new model and improved the availability
Figure 5.9: Improved the flexibility and scalability of the system

Figure 5.10: Improve the maintainability of the system

Vii

List of Tables

Table 2.1: Summary of literature review

Table 5.2: Evaluation Setup

viii

Chapter 1: Introduction
1.1 Introduction

There are so many security issues occur in the computer systems and there are some methods to
prevent these security issues like firewall, Virtual Private Network (VPN), Intrusion Detection
System (IDS), etc. IDS can be used to monitor the traffic comes to the applications. The
performance of the IDS is different when it applies to the microservices rather than in the monolithic
architecture. This research is focused on introducing the new model to deploy IDS in a microservice

application for performance improvement.

Intrusion detection system can be identified as firewall security mechanism. The firewall shields
the enterprise software from malicious Internet attacks, IDS identifies whether somebody is
attempting to access through the firewall or can breach the firewall security, attempts to get to any
system in the organization, and cautions the system administrator if there is any undesirable action

in the firewall.

Therefore, IDS is a security system that screens network traffic as well as computer systems and
attempts to analyze this traffic for potential unfriendly attacks beginning from outside the

organization and inappropriate utilization of the system or assaults from inside the organization.

Without real-time detection capabilities, attackers and intruders can lurk inside containers in many
forms such as Trojans, malware, ransom, encryption codes. In extreme scenarios spoiling and
infiltrating data is possible. Therefore, IDS is a needful element in container environments and
quantifying the performance of IDS on container orchestration platform is essential in order to

guarantee the seamless operations.

Microservices have become widely popular in recent years, alongside the spread of DevOps
practices and container technologies, such as Kubernetes and Docker [1]. We can observe a
significant increase in the use of the architectural style of microservices since 2014 [2].

Microservices are autonomous components that isolate fine-grained business capabilities. In
addition, a microservice generally operates on its own process and communicates using
standardized interfaces and light protocols [3]. In practice, microservices are widely used by large
web companies, such as Netflix, LinkedIn and Amazon, which may be motivated by the benefits

that microservices bring. For example, the reduced time to bring a new feature into service [3].

The use of microservices has many advantages, such as technological diversity in a single system,
better scalability, increased productivity and ease of deployment [4]. Therefore, these advantages

can improve the maintainability of the software [3].

The goal of microservices is to use autonomous units isolated from each other and to coordinate
them in an infrastructure distributed by a light container technology, such as Docker. Usually, the
adoption of this architectural model also implies the adoption of an agile practice, like DevOps,
which reduces the time between the implementation of a change in the system and the transfer of

this change to the environment of production [3].

It is the fact that, a distributed system is required to work with microservices. The components of a
distributed system are in different networked computers or also known as nodes and communicate
their actions by passing messages. According to Coulouris distributed system is “a system where
the hardware and software components have been installed in geographically dispersed computers
that coordinate and collaborate their actions by passing messages between them [5]. Tanenbaum
and Van Steen have defined a distributed system as “a collection of systems that appears to the
users as a single system”. From Tanenbaum’s definition, it can be conceived that a distributed

system refers to a software system rather than the hardware that are involved in creating the system

[5].

Container technologies such as Docker and Rocket are examples of application containers, designed
to package, isolate, and run applications. This technology provides a faster and better way to deploy

and run applications.

Recently, industry adoption of Docker containers has increased to simplify software deployment.
Almost in parallel, container orchestration middleware such as Docker Swarm, Kubernetes, Mesos,
and OpenShift 3.0 are emerging to support automated container deployment, scaling, and

management.

Docker Swarm (Swarm), Kubernetes, Mesos, and OpenShift 3.x are the most popular container

orchestration systems for running production-level services.

Kubernetes is one of the most well-received container orchestration platforms for run the containers
like docker, rkt etc. Load Balancing and horizontal scalability of containers are some of its features
that makes it a reliable and robust solution in multiple domains such as microservices and internet

of things.

1.2 Problem Definition
Current deployment method of IDS in centralized way

Currently IDS is deployed in the container orchestration platform as the centralized way as below.

Intrusion Detection System

L]
|

Figure 1.1: IDS in centralized way

Below problems are identified since this has been deployed following a centralized approach.

1. Reduction of performance:

Performance of the IDS will be reduced when it deploys in a centralized way. Because, then it needs
to monitor the whole traffic that moving to the system and need to apply all the defined rules for all

applications without depend on the specific application type.

2. Not able to detect malicious events occurring at different places at the same time:

This can only monitor the traffic when moving to the system. But it is not able to monitor the traffic
that moving into the namespaces. If the namespaces are compromised this is not being able to

address that one. So, this approach can only monitor the one place of the traffic flow.

3. Single point of failure:

If the IDS is down, then the whole security of the system is in critical situation.

1.3 Motivation

Computer security systems are more essential for the protection of computing systems and the data
that store or access. So computer security systems help people for their critical business processes,
inventions, researches, jobs, education etc. Most of this information are personal and sensitive

information in day to day life.

The curiosity towards hacking and security systems made me motivate towards this research. Since
| need to introduce more efficient and reliable security model using what | have studied, | have
decided to create a dynamically scalable security model for containerized deployment platform as

a solution for the problem that I have discussed above.

1.4 Research contribution

Container orchestration platforms are used to deploy different services and applications. However,
IDSs are not fine-grained to provide specific application-based intrusion detection. Hence, the IDS
performance get lagged with respect to memory and CPU as network traffic needs to go through

irrelevant signature matching in IDSs. Our main goal of this project to find a solution to improve
4

the network performance by incorporating an application specific IDS solution for containerized

environments.

1.5 Goal and Objectives

The Goal of this study is to introduce a new security model for microservices running platform to
overcome the issues in existing security models.

When consider the goal mentioned above, the following are the objectives that need to be
fulfilled.

Improve performance of the IDS
Security expertise have to focus on specific domain areas only

Easy to analyze the impact of the specific application area (whether a database application,
web application or so on)

To improve the availability of the system, by using a distributed approach
Improve the Maintainability of IDS

Improve the flexibility and scalability of IDS

1.6 Scope

The scope of this research is to Extend the capabilities of Kubernetes container orchestration

platform to categorize applications based on their service.

All Microservices that use for the experiment are deployed in the docker containers that provide

benefits such as modularity, scalability, distributed etc.

Modularizing Falco IDS to cater Intrusion Detection requirements based on the service provided by

the particular container.

Chapter 2: Background/Literature Review and Research Gap

The feature Cgroup was introduced to Linux Operating System Kernel from its Version 2.6.24 in
2007. Which paved the way for Linux Containers [2].Linux namespaces, introduced in the Linux
Kernel version 2.4.19, while similar to cgroups that came after it, is different and complementary

to cgroups.

At a high level, Linux containers such as Docker, LXC can isolate the application running within
the container using the Linux kernel features namespaces and control groups [1]. They are
lightweight virtual machines that uses the host Linux OS Kernel and shares the resources, tools,
dependencies, application code and settings to function. Control groups and security profiles can
apply containers to minimize the attack surface. But since they are using same OS host kernel there
will be a chance of compromising the applications that is not possible in the virtual machines.

Docker is a popular containerization engine(hot-scalable) which wraps an application with its
dependencies that include all to run code, runtime, system tools, system libraries that can be
installed on a VM [1]. This interprets that docker the container does not depend on its run-time
environment. Microservice application are container-based service has the below advantages over

macro-service (VM based services).

Reduce Complexity
Scalability
Easily deployment

Improve the flexibility

AN NN NN

Enhanced Reliability [6] — Hot scale research paper

Platforms such as Tutum[9], Kubernetes[10], Nirmata[11] provide the platform for run the
containerized microservice applications. They have the ability of scale the microservice

applications.

Currently many popular companies such as Google, AWS, and Facebook have been using
containers for more than a decade. When adopting container technologies to the enterprise level

while developing, delivering and deploying many vulnerabilities have been discovered.

Microservices that deploy in the containers have a lot of security issues. One of them is when the
application is running inside the container, it needs to interact with the Linux kernel which act as
the host and if it is not limited, the container can be compromised. Other than that, the attacker can
lurk in to the other containers in the separate namespaces and can compromise the whole container
orchestration platform[3]. There are some methods to solve this issue and OS-level virtualization
provides the Linux kernel security profiles such as SE Linux, App Armor to minimize the issue[4].

In SE Linux model, the kernel manages and enforces all the access controls over objects, not over
their owners. Such as; write policies for enforcement, multi-level security enforcement, multi
category security enforcement, etc. Other than that, in SE Linux model everything is controlled by
labels. In there, every file/directory, process and system objects has a label. These solutions can

fulfill the static security of the container orchestration platform.

Intrusion Detection system is the perfect solution for the network-based security aspect. It is running
in a Linux microservices application container environment. Running in a Linux microservices
application container environment is much different than running in a monolithic application
environment. IDS running in the docker container and how the performance has been affected with
the different security perspective web, database is systematically measured [1]. According to that,
IDS running in the containers are effective than applying them in traditional networks. But, IDS is
using the same centralized deployment approach that is used previously, the limitation of this
analysis is that measures were taken only on the IDS container without considering the impact on
orchestration platform. Further, another analysis has measured the performance of the IDS based
on the functionality, strategy and deployment model as an application without considering the

containerized IDS using auto scaling features.

In Network intrusion detection system following major limitations are identified [5].

1. Latency — Need to inspect and blocking action on each network packet

2. Resource Consumption — Usually consume significant resources for some rules
3. Inflexible network configurations — NIPDS are static and not able to automatically

reconfigure the networking system and pointed only for specific traffic

There are more deployment design patterns can be used in container based distributed applications
other than the centralized approach that previously described. These patterns can be applied
according to the scenario to get better performances of them. They are; single container design
pattern, sidecar design pattern, ambassador design pattern, adapter design pattern, etc. In single
container design pattern, it needs to use to when the container has single responsibility, but if the
system needs to fulfill more than one responsibility it needs to use the sidecar design pattern. But
according to our scenario IDS needs to work as a proxy for each application pods. It transfers the
responsibility to distribute the network load, retries, or monitoring etc. So best design patter for our
scenario is the ambassador design pattern [6].

Scalability is the main aspects when working with the micorservice applications. There are different
aspects when working with the elasticity such as definition, metrics, tools. Cloud computing
provides the capabilites to scale the computing resources up or down without service interruption.

This will provide the scalbility with the different metrics, resource availablility, start up time, etc

[4].

W

3 L, @ :
Ny,) /w r% [

client \\\ s \“/ Fa\c\mty % ;/ ¥
% e \:\:jg i ‘ ///\’;/ Facility Node

ﬁ - i
/ N Load Balancing Server ,/‘ {
clen // N N, = g Facility Node

client

Figure 2.1: Scalability of the cloud

Container based operating system virtualization scalability has a high perfomance alternative to the
hypervisors [7]. Linux virtual server provides the better isolation and the superior system efficiency
than the hypervisor technology, such as Xen and VM ware. So deploying the IDS in the container
based is more scalable than running it in the VM.

Existing network intrusion detection system are monolithic and centralized; therefore, they have
limited scalability and responsiveness. So, there are solutions like distributed packet processing and
software defined networking control to provide an efficient IDS. But still there are limitation such

as;

e SDN based system is the amount of work IDS need to do to check the fields of every packet

for all of the applications.

e Bottleneck of the system

Following are the issues identified relevant to the research area
1. Micro services that deploy in containers have security issues
2. IDS performance
3. Scalability of cloud computing
4. Design Patterns in distributed system

5. IDS deploy as the Distributed System

Problem

Performance of the intrusion detection when running
in conventional networks as compared to container
networks.

When containers are communicating with the Linux
Kernel each one should be isolated.

System is getting out of resources from DOS attack

Different aspects of elasticity, such as definition,
metrics, tools and existing solutions.

Container-based Operating System Virtualization
Scalability than the High-performance Alternative to
Hypervisors

Good deployment methodologies for container-
based distributed systems

Existing NIDPS are monolithic/centralized, and
hence they are very limited in terms of scalability and
responsiveness

Solution

IDS running in the containers are effective than the
similarly run in the traditional networks[2].

Linux kernel security profiles introduced such as
SElinux and App armor|[8].

Use the SELinux model, in contrast, the kernel
manages and enforces all of the access controls over
objects, not over their owners[8].

In cloud computing provides the capability to scale
computing resources up or down without service
interruption[9].

Linux-Vserver provides better isolation and the
superior system efficiency than the hypervisors
technology Xen and VMware[9].

These patterns can be applied according to the
scenarios to get the better performance. Single
container design pattern, sidecar design pattern,
ambassador design pattern, adapter design pattern,
etc[6].

Distributed packet processing, and centralized
Software Defined Networking (SDN) control, to
provide an efficient and extensible NIDPS[10].

Table 2.1: Summary of literature review

10

Chapter 3: Research Methodology

The constructive approach has been used when completing the research. First, the real-world
problem has been identified and extract the experiments and strategies followed by previous
researches from the literature review in order to meet the objectives of the research. Then, by

studying the existing solutions further to find out the new solution.

Complete Research Result

Real world
—Walidation Task 2.——— » colution to the

Does the result help to solve Practical problem

the practical problem? T

Real world
practical problem

. Research setting
Research seting _ 55ati0n Task 1——» colufion to

idealized problem noes the result helpto jdealized problem

solve the idealized
problem?
Research product
= (technique, method,

model, system, _.)

Figure 3.1: constructive approach of research

11

3.1 Problem Analysis

Application
Namespace

Application

Monitoirng
Namespace

Application

kube-state
Mmerics
Falco
Prometheus Namespace

Grafana

Falco Pod

Falco Pod

/

We have started to evolve the Falco IDS after done some initial investigation of analyzing the CPU

Figure 3.2: Problem Analysis Setup

usage of the Falco application respect to the sample ping application. The Falco IDS is defined with
a sample rule set with respect to the sample ping application we are using in the analysis. The

obtained results, which led to initiate the research are mentioned below.

The above Figure 3.2 Ping Application deployed into the application namespace and Falco
application was installed into the Falco namespace for monitor the traffic flowing to the system.
Then the behavior of the CPU and memory usage of the Falco pod was measured using the Grafana
dashboard deployed inside the Monitoring namespace. This was the sample test did to analyze the
problem.

12

Figure 3.3: ping application CPU usage

The above Figure 3.3 describes how the CPU usage of the sample ping application changed with
the increasing load on the same ping application.

Figure 3.4: Falco CPU usage

13

The above Figure 3.4 describes how the CPU usage of Falco IDS changed with the increasing

load on the ping application.

According to the Figure 3.4 CPU usage of the Falco IDS increases with the traffic flow of the

sample ping application.

- BB Kubernetes Pod Resources - Y7

ping =

Memory Working Set

Figure 3.5: Ping application memory usage

The above Figure 3.5 represents how the memory usage of the ping application is increasing respect

to the load applied on the sample ping application.

14

49 - B ZoomOut ¥ @lLlast1hour &

Cpu Usage

Figure 3.6: Falco memory usage

The above Figure 3.6 describes how the memory usage of Falco IDS changed with the increasing
load on the ping application.

According to the Figure 3.6 memory usage of the Falco IDS increases with the traffic flow of the

sample ping application.

Accordingly, the CPU usage and memory usage of sample ping application and the Falco IDS is
checked against the traffic flow to the ping application and noticed that both memory usage and the

CPU usage are increases with the traffic flow.

3.1.1 Research Question

Based on the facts identified from the above experiment, the following are identified as the research

questions which we are going to find the solution.

- How the performance of IDS affects the system?
- Isthere a way to improve the performance of the IDS in centralized environment?

- What is the best way to improve the performance in centralized environment?

Other than the above, the following can be identified as the concerns of the IDS in centralized

environment.

15

- Is there a performance improvement in terms of memory and CPU consumption of modularized

IDSs in the new approach?

- Are the performance improvements gain through new IDS approach integrated to orchestration

platform useful for domain experts?

3.2. Proposing Solution

There are number of good Intrusion detection systems which can be used for this research.
“OSSEC(Open Source Host Based Intrusion Detection System Security)” is for host based intrusion
detection system, “Snort” for the network intrusion prevention and network intrusion detection
system and “Strace” is for the monitor linux kernel system calls are some of intrusion detection

systems that are focused on specific tasks .

But Falco Intrusion detection system is used here because it provides the combine task of snort,

ossec and strace systems.

Falco is the CNCF included project that can be used for the container security[10] and it supports
the monitoring of the activities inside a running container. Further, Sysdig falco facilitates capturing
all the container host to container and container to container system calls and it defines the highly

granular rules in a standard format.

Change the deployment method of Falco IDS in several times by improving the new component
created for Falco IDS and accordingly CPU and memory were analyzed. Then, compared this new

approach result with the old approach to analyze the performance improvement.

Old approach Falco was installed using the pre-defined rule set and that Rules are defined in the
“/etc/falco/falco_rules.yaml” file.

16

ro: container
condition: container.id != host

macro: spawned_process
ndition: evt.type = execve and evt.dir=<

rule: run_shell in container
desc: a shell was spawned by a non-shell program in a container. Container entry

condition: container and proc.name = bash and spawned process and proc.pname exi
output: "Shell spawned in a container other than entrypoint (user=%user.name con
priority: WARNING

Figure 3.7: Sample Falco Rule

Web application rule set was used for the experimental setup of the previous approach. Then, the
load test was done for the web application and the memory and CPU metrics of the Falco IDS
were gathered for evaluation.

New component falco-operator was installed when setting up the experiment for the new
approach and it will extend the Kubernetes API to create the FalcoRule dynamically.

Those rules can be created and applied for the namespaces in the runtime of the Falco IDS. The
similar load test procedure was used here as previous approach.

At the both experiments, Variables of number of pods, ruleset and load tests were remained
constant.

3.2.1. Creating the environment

Kubernetes container orchestration platform was used to do the experiment. Because Kubernetes is
one of the most well received container orchestration platform for run the containers like docker,
rkt etc. Load Balancing and horizontal scalability of containers are some of its features that makes

it a reliable and robust solution in multiple domains such as microservices and internet of things.

Azure Kubernetes Cluster (AKS) was used because on-prem Kubernetes cluster needs to maintain.
If the cluster is getting down during the experiment because of any reason that can be affected to

result of the experiment. AKS cluster is maintaining by the Azure. Therefore, it is reliable.

17

Sample containerized web application deployed. Then to save the metrics used the Prometheus

database and visualized deployed the Grafana applications.

3.3 Evaluation

From the metrics gathered by the experimental results memory and CPU with the new approach
has been reduced compare to the old approach. From the survey selected the convenient sample
that has the good idea about the IDS usage.

3.3.1. Result Analysis

Analysis from the results gathered new security model of the IDS has been improved the

performance than the old approach.

A summary of the obtained results is as follows.

Alertmanager

Pugh
< Adaris

Pull
Metrics

- Kube-state-metrcs
- Nodes Cadvisor

et L L L LR St e L L Ll R

—
Persistent
volume
__________ - for metnc
storage
Kubernetes
Nodes

Figure 3.8: Model low-level design

18

Gather the data set of CPU and memory of a microservice application which is deployed inside a

container orchestration platform that is not straight forward.
Therefore, the kube-state-metrics application was installed and used to gather the data set.

Cadvisor was gathered the metrics from the Kubernetes API server that exposing the metrics from
the Kubernetes application pod level. It installed default with the Kubernetes. Kube-state-metric
application gather the metrics from the Cadvisor that installed default with the Kubernetes.
Prometheus is gathering all the CPU, memory of the applications from the kube-state-metrics. The
CPU and memory metrics of the load testing web applications and Falco intrusion detection system

was gathered by the experiment.

3.3.2. Survey
A survey is done to make sure the objectives of the research is expected. This survey is done using
a convenient sample. The sample is selected from the expertise in the IT industry related to security.

From the result of the survey proved that below expected objectives has been achieved.
Security expertise have to focus on specific domain areas only

Easy to analyze the impact of the specific application area (whether a database application,

web application or so on)
To improve the availability of the system, by using a distributed approach
Improve the Maintainability of IDS

Improve the flexibility and scalability of IDS

19

Chapter 4: Proposed Solution

Lot of companies are using different methodologies to secure their application from hackers. IDS
is providing runtime security for the applications. Some IDS have minimal performance and some

of them have reduced the performance due to the deployment model.

Currently, IDS is deployed in the container orchestration platform as the centralized way. This IDS
security system checks all the traffic that comes from an outer environment. It checks all the rules
although it is necessary or not. As an example, if we use a web-based application, it is sufficient to
check rules for web-based applications. But this IDS checks all the applications such as web

application, database application, multimedia application etc.

—I— l-‘ Router

Firewall

S 6555

Figure 4.1: IDS in the centralized way

Above Figure 4.1 presents the high-level overview of the approach used in earlier systems, which

is identified through the conducted literature review. Accordingly, the traffic is flowing from the

20

internet to the application through firewall. Then the IDS sits between the firewall and the

application/system.

In this approach, IDS includes rules respect to all the applications in the system and whole traffic

needs to monitor with each rule defined for each application.

ID5taskl

-I:L.J
ng
105 task 2

L” R i =N !ﬂ' Router
[

ID5task4d

Firewall
IDS tasks

Distributed 1D5

Figure 4.2: Deploy the IDS new model

The above Figure 4.2 represents the proposed model IDS. It monitors the traffic when they are
moving to the namespaces database, web etc. It doesn’t monitor the whole traffic respect to the all

rules. IDS rules deployed as the distributed way according to the category of the applications.

21

Based on the findings from the literature review and the experiment we have proposed the below

solution.
Web name space
Web APP2
Web rule]
Web APPL
L DS '
DB name space
.| DBAPP1L
DB rule]
1 oBaee2

Figure 4.3: Model low-level design

We propose a new method for deploy security applications for container orchestration platform.

The approach is to design a security model based on decentralizing the traffic monitoring for
intrusions according to the application categories in relevant namespaces. Namespaces can vary

how the security engineer or person who is responsible define the whole system.
For example, if the system is defined as namespaces such as web, databases, storage, etc. Web
namespace includes web applications Nginx, php, etc. The database includes MongoDB, Redis,

Elasticsearch, etc.

The proposing solution can define the separate rule sets for each namespace. They are only

responsible to monitor the traffic moving to the relevant namespace.

22

The new approach to design the model based on the idea that has been divided into two parts. Falco
security application that define the ruleset and Falco operator application that is watching the

creation of new rule and force it to only monitor the relevant namespace.

2. Differentiate the proposed solution with the existing solution

In the approaches used before, there is only one part of the application. Falco security application
rules can be only defined for the whole system. So, Falco application should monitor whole traffic
respect to all the rules that moving the system. As an instance, Falco application needs to apply the

database rule for web application traffic as well.

Kubemnetes container orchestration platform
Web Namespace

Web app1 sve ————— = = = Web app1

- »

- -y WebiDS _ - - - =>» Web app1

Rule

r = = = 3 Web app?

Web app2

- === Controller ===

IDS Operalor |- Eicd DB

DB Namespace

DB app1
.~ » DB app1svc

DB app1
=Ly DB IDS

Rue !
I

DB app2
" <» DB app1 svc

DB app2

Metwork Traffic --- 3

IDS operator feedback =~ m—p-

Figure 4.4: Design Diagram
23

The proposing solution is to introduce the new component IDS-operator. When the IDS operator
installs in the Kubernetes container orchestration platform, it will extend the Kubernetes API.
Likewise, a new API is introduced as FalcoRule. Using that API can create the rules for specific

namespaces, such as; web application, DB application, etc.

Traffic will flow from internet to the system and controller will forward the traffic to relevant
namespace. IDS operator will listen to IDS behavior. When traffic flow through each namespace,
the IDS operator will feed the IDS to apply the rules for the traffic that moving to the relevant

namespace.

As an instance when the traffic moving to the web namespace IDS operator feeds the IDS to check

the below rule.

apiversion: “"kakulk.falco.io/wlalphal™

kind: "FalcoRule”

metadata:
name: “bash”
namespace: "web"

spec:
rule: shell in container
desc: notice shell activity within a container
condition: container.id != host and proc.name = bash
output: shell in a container

Figure 4.5: Sample Falco rule for web namespace

24

Users of the system IDS life cycle handler Container Orchestration

platform
Security IDS/Pilot Containerization
Expertise/User deployment platform

Deploy the IDS-pilot
application

2 Watching for
creation the new

A

Define the rule set

for the namespace
Setup the Falco

application to check

A

the rules in specific
namespace

R

Figure 4.6: Sequence Diagram

The above Figure 4.5 includes the new proposed solution application flow to identify usage of the
new approach.

Security of the system is defined by the security experts. At that time, he/she can define the
applications category of the whole system and separate with each other. As an instance web

application into the one namespace and DB application into the DB namespace.
25

So, each namespace web, DB can define the security separately because of they are isolated with
each other. DB ruleset can define by the database security expert and web database security can

define by the web application security expertise. They are not conflict with each other.

After installation of the Falco-ids-operator it will watch the creation of the Falco security rules and
do the needful to monitor the traffic across namespaces.

Falco is a good Intrusion detection system that most companies currently use[10]. It has the
capability to detect the security vulnerability of the applications in run time that deploy in the
container orchestration platform like Kubernetes, Mesos etc. This can detect anomalous activity in
hosts and containers. Rules can be defined for securing the database, web application etc. and rules
built using tcpdump packet capture like syntax.

Currently, Falco is deployed in a centralized way in the container orchestration platform as
previously described. All the rules need to be written separately for different application types, such
as; database applications and web applications. In the existing systems, As an example database,

web etc. In existing systems, Falco IDS can’t define the rules according to their category.

In the proposed system, Falco IDS can be deployed according to the category of applications. This

will increase the performance by not checking all the rules at once.

As the solution for the identified problem, a new component called falco-operator has been
developed. There are a variety of components in Kubernetes deployment, services etc. This one is

created as a new kind ids-operator to create new rules according to the application category.

Ids-operator component will monitor the traffic by listening to Kubernetes API. For an example,
when the new rules are created for the category ‘database’, it will automatically apply if the database
category uses the term of Kubernetes namespace. The namespace of the Kubernetes helps to

separate the application sets from each other according to their characteristics.

Further, the ids-operator guides Falco applications to monitor the traffic when traffic only moves to

the relevant namespaces, such as; database, web, etc.

26

The ids-operator is using the capability of Kubernetes container orchestration platform deployed in
Microsoft Azure AKS. AKS is easily managing and deploying containerized applications. So that,
it will reduce the effect of the performance in the application by container orchestration platform
parameters with the use of added firewall capability using Network Security Group (NSG). NSG is
working as a firewall for the system and that prevents hackers from hacking into the system. This
system created as the virtual private server; therefore, this could not be accessed from the public

and the load should be provided only for testing for the research purpose.

= Microsoft Azure P Search resources, services, and docs (G+/) T 0 & 72 © kasun.kulalhunga@ifsv:;s. ‘5‘

Home > Resource groups

Resource groups « [+ kakulk-es-helm-cluster » X

Resource group

+ Add €8¢ Manage view ~ --° |ﬁ ISearch (Ctrl+/) | « + Add == Editcolumns il Delete resource group () Refresh Export to CSV s Open query Voo
‘ Kokl | [Overview / Essentials
g . Subscription (change) Deployments
Activity log . N ’
Name 1 & activiy lag RAD - INFRA INAT 3 Succeeded

[*#) kakulk-es-helm-cluster MR Access control (1AM) Subscription 1D

d5e57fba-13c2-4480-bac9-d7b45f808af5
L J Tags
(78] MC_kakulk-es-helm-cluster_kakulk-es-h... ***
Tags (change)
Settings Click here to add tags
Quickstart ‘ Filter by name... ‘ Type ==all X Location == all X Ry Add filter
2 Deploy
& Deployments .
’ Showing 1to 2 of 2 records. || Show hidden types O No grouping v ‘ | List view ~
B rpolicies
- ["] Name T Type T4 Location Ty
32 Properties
B Locks [& kekulk-es-helm-chart Kubernetes service UK West
D H,. kakulk-ids-operator Network security group West Europe

Cost Management

Cost analysis
Ed Cost alerts (preview)
i Budgets

Advisor recommendations

Figure 4.7: Research setup in Azure cloud

The Falco IDS has the rules to monitor the traffic and it has different rule sets for different
application types, such as; database, web etc. So, the security expertise can focus on specific domain

areas and it will avoid unnecessary checks on the data packets, and it will improve the performance.

Cloud-Native Security Hub is providing the sample rules that can be applied for different kinds of
applications. Sample rules can be found below.
27

Considering anv inbound network connection suspect

- ule: Unexpected inbound connection php _fpm

desc: Detect anv inbound connection amriving at php fpm

condition: inbound and evt rawres >= () and app php fpm

output: Unexpected inbound connection arriving at php_fpm (command=2%gproc_cmdline
pid=%proc.pid connection="fd name user="ouser name %container info

image="bcontainer.image)

priority: NOTICE

Figure 4.8: Sample Falco Rule (PHP application rule)

Analyze the performance of the system, and generate the evaluation results under CPU, memory
and network latency categories. The Prometheus, Grafana is used to monitor the metrics changes

with the time and to generate the evaluation result.

The Kube-state-metrics service is used to gather the metrics. It is a simple service that listens to the
Kubernetes API server and generates metrics in the objects. Prometheus is collecting data from the

kube-state-metrics service and can show in the Grafana.
The IDS-operator is used to extend the APl in Kubernetes. It uses the operator SDK, a software

development kit that can be used to extend the API in Kubernetes using the Helm package

manager underlying GO language.

28

Alertmanager

O

1
1 '
] '
| '
] '
' ' Push
- ‘% | -
: '
] '
])
] '
' [
1 '
| ' Pull
1l ' Metrics Datasource
: . » ' N
| : - Kube-state-metrics
- ' - Nodes Cacvisor
: - Prometheus Grata
'
: '
1 '
| [
1 '
] '
' |
| ' Persistent
' ' volume
' 2 for metric
"""""" storage
Kubernetes
Nodes

Figure 4.9: Monitoring solution to check the performance

IDS-operator provides an API to create the ids-operator component using Kubernetes commands.
After IDS-operator integrates to the Kubernetes API. Any developer can create the ids-operator
component in the Kubernetes cluster. That ids-operator is watching and monitoring of rule creation.
If we create the rule for the web application namespace ids-operators component, set up the rules
in the Falco IDS applications to monitor the web application rules when traffic moves to any

application in web namespaces.

29

Chapter 5: Evaluation and Results

This research is carried out to develop a new approach to run the Intrusion Detection System in

container orchestration platform. Hence this approach and the concept has to be evaluated with the
respective audience. Because the project evaluation is a process used to determine whether the
design and delivery of a project were effective and whether the proposed outcomes were met.
Therefore, the opinions of IT professionals Software Engineers, Software Architects, Security
Experts, Team Leads were considered for the evaluation criteria since they have a good

understanding of the security aspects of Software.

Monitering namespace Litmus namespace

(T (-)

Kube-state-metrics
[Chaos-operator

Prometheus T

Grafana

N J - J

Mginx namespace

Falco namespace

(¢) 4 A

Nginx -

Falco Qperator

Chaos-engine 9

Falco.pod

MNginx-chaos-runner

A / N J

Figure 5.1: Evaluation Setup

30

According to the above Figure 5.1 the evaluation setup included with 4 namespaces and they are

mentioned below with a simple definition.

1. Nginx Namespace — Install web applications in this setup Nginx
2. Falco Namespace — Falco IDS application
3. Litmus Namespace — Load Test application

4. Monitoring Namespace — Output the monitoring metrics memory/CPU of the applications

For the performance evaluation of the new model did some comparison with the previous approach

using the same setup.

First, set up the container orchestration platform in Azure Kubernetes Cluster inside the virtual
private server to prevent from accessing by public. As the firewall using the Network Security

Group (NSG) in the Azure cloud to minimize the vulnerabilities by closing the unnecessary ports.

Then, run the applications in the platform. The web applications were deployed to the web
namespace ‘ns’ and the database applications were deployed to the namespace ‘db’. Then, apply
the rules for both web and database applications. For the web applications used the PHP-FPM

Falco rules set and for database application used the Redis Falco rule.

Chaos litmus application used to perform the load testing on the applications. By using this
application, the load applying on the application CPU and memory can be changed.

The kube-state-metrics application is deployed in the container orchestration platform to collect
the CPU, memory and network metrics from the applications and they are stored in the
Prometheus time-series database and generate the graphs by using the Grafana GUI application

which is connected to Prometheus database.
In the new model, the deployment rules are created using the Falco Rule component API that
created for the Kubernetes. When deploying Falco-IDS, the rules are set up automatically for each

namespace in Falco applications.

31

5.1 Evaluation Result

Evaluation is done respect to the memory usage and CPU usage with the both setups with previous

model and new model of the IDS deployment.

Figure | Security | Load Test | No Load Applied | CPU | Memory
Model Application | of Test Rules Usage | Usage(Maximum)
web | Metrics
pods
Figure | Previous | Web 2 Memory | Web/DB X 280 MB
5.2
Figure | Previous | Web 2 CPU Web/DB 6.0 X
53
Figure | New Web 2 Memory | Web/DB X 93 MB
5.4
Figure | New Web 2 CPU Web/DB X
55 3.6

Table 5.2: Evaluation Setup

32

According to the output, the previous security model Memory usage was 280MB, but with the
new security model Memory usage is only up to 93MB. And, the previous security model CPU
usage was increased up to 6.0 but with the new security model CPU usage is increased only up to
3.6.

Moreover, it can be identified that, there is a performance improvement in the new security model
rather than using the old approaches.

& Kubernetes Pods (Prometheus) -

pace default~ podname *

300 Mil

100 Mil

13:40 13:50

== {pod_name="falco-d2gwk?} ==

Figure 5.2: Previous security model memory usage of Falco application pods

The above Figure 5.2 represents the memory usage of the Falco applications deployed in the
previous model. When do the load test for the web application memory and number of pods are
using 2 in all scenarios. Memory is increased up to the 280MB in this case. Because Falco

application apply web, db both rules for traffic flowing to the web application.

33

& Kubernetes Pods (Prometheus) -

namespace default~ podname %«

92.0 Mil
91.5Mil

o1.0Mil |

90.0 Mil
16:36 16:38 16:42 2 8 X 52 16:56 16:58 17:00 17:02 17:04 17:06 17:08 17:10 1712 17:14 1716 1718 17:20

— {pod_name="fo1-falco-operator-falco-jwébt’} — -

Figure 5.3: New security model memory Usage of Falco application pods

This above Figure 5.3 represents the memory usage of the Falco applications deployed in the new
model. When do the load test for the web application memory and number of pods are using 2 in

all scenarios. Memory is increased only up to the 93MB in this case. Because with new approach

Falco application does not apply the DB rules for traffic flowing to the web application.

& Kubernetes Pods (Prometheus) -

default »

30
16:52 16:54 16:56

== (pod_name="fo1-falco-operator-falco-29w4t} ==

Figure 5.4: Previous security model CPU usage of Falco application pods

34

This above Figure 5.4 represents the CPU usage of the Falco applications deployed in the previous
model. When do the load test for the web application CPU and number of pods are using 2 in all
scenarios. CPU is increased up to the 6.0 in this case. Because Falco application apply web, DB
both rules for traffic flowing to the web application.

& Kubernetes Pods (Prometheus) ~

namespace default

2020-05-16 13:14:15
= {pod_name="falco-xqfmg": 0.610
13:20 13:30 : 14:20 14:30

= {pod_name="falco-xqfmg’}

Figure 5.5: New security model CPU usage of Falco application pods

This above Figure 5.5 represents the CPU usage of the Falco applications deployed in the previous
model. When do the load test for the web application CPU and number of pods are using 2 in all
scenarios. CPU is increased up only to the 3.5 in this case. Because with new approach Falco

application doesn’t apply the db rules for traffic flowing to the web application.

5.2 Survey

The survey has been done for the IT professionals who are working in different companies with IT
security expertise. There are 5 questions included in the survey and each question has 4 answers.
These 5 main questions have counted for the final results and each question can get a maximum of

4 marks. Here is the mark categorization for the 4 answers.

35

Answer Mark

Strongly Yes 4
Yes 3
Maybe 2
No 1

According to the results obtained from the survey, the detailed summary of each question can be
listed down as below. According to the summary of each question, we can clearly get an idea

about the result of the survey.

The output extracted from the all results obtained from the survey are stated below.

Easy to analyze the impact of the specific area

Security expertise need to only focus only on the specific area

No single point of failure in this new model and it improves the availability of the system

New solution will improve the flexibility and scalability of the system

o > W e

New solution will improve the maintainability of the system

Count of Easy to analyze the impact of the specific area(web, database)?
21 Reponses

May Be
14.3%

Strongly Yes
33.3%

Yes
52.4%

Figure 5.6: Easy to analyze the impact of area

36

This above Figure 5.6 proves that users are mostly agree new system is easy to analyze the impact

of the area with the system is categorized into the separate security areas web, database etc.

Count of Security expertise need to only focus on their specified area using this new solution?
21 Responses

No

4.8%
Strongly Yes
4.8%

Yes, May Be
4.8%

May Be
23.8%

Yes
61.9%

Figure 5.7: Security expertise needs to only focus on specific area

This above Figure 5.7 most users are agreed upon this. So, this represents the security experts can
focus on specific areas when defining the system. That will improve the strength of the security of

each section the system web, database etc.

37

Count of No single point of failure in this new model. So it improves the availability of the
system?
21 Responses

May Be
19.0%

Strongly Yes
57.1%

Yes
23.8%

Figure 5.8: No single point of failure in this new model and improved the availability

This above Figure 5.8 represents with new approach no single point of failure in this model and can
mostly agree on the availability will be improve with the new model.

Count of This new solution will improve the flexibility and scalability of the system?
21 Responses

May Be
9.5%

Strongly Yes
38.1%

Yes
52.4%

Figure 5.9: Improved the flexibility and scalability of the system

38

This above Figure 5.9 represents the flexibility and scalability of the system will be improve the
new approach

Count of This new solution will improve the maintainability of security of the system?
21 Responses

May Be
9.5%

Yes
33.3%

Strongly Yes
57.1%

Figure 5.10: Improve the maintainability of the system

This above Figure 5.10 represents the maintainability of the system will be improve the new
approach.

From the output of the survey is clear that with the new approach objectives of the research were
accomplished.

39

Chapter 6: Conclusion and Future Work

6.1 Conclusion

Based on the results gathered from the experiment and survey, the CPU usage and the memory
usage of the new security model is decreased by a considerable amount when comparing with the
security models introduced and used before.

Therefore, the objective of the research, the performance improvement of the IDS deployed in the
container orchestration platform is accomplished. As well, able to achieve the below goals by

analyzing the outcome of the survey.

1. Security expertise must focus on specific domain areas only

2. Easy to analyze the impact of the specific area (such as database, web application)
3. No Single point of failure in this model. So, it improves the availability of the
system

4. Improve the Maintainability

5. Flexibility and scalability of the system

As the outcome of this research, a new model is introduced to achieve the security in microservice
world and that will pave a path to introduce new deployment strategies match with the
containerization. Now a days, most of the IT applications are moving to the microservice
architecture that paves a path to the DevOps concepts with Docker and Kubernetes technologies. In
new world of containerization, security aspects of the applications need to move into a different
path by using the scalability and model of deployment. So, the compatible deployment pattern and
the capability of the containerized world have been used in order to improve the performance of the
proposed solution to achieve the security.

6.2 Limitation

This research is only conducted for Docker containers and Kubernetes container orchestration
platform.

40

6.3 Future Work

IDS security model can be deploy in the application level for future improvements. If the IDS move
to the application level that will improve the flexibility, scalability and availability of the IDS.
Scalability of the IDS can be improved according to CPU, memory, latency metrics of the
application. That should be different from one application to another as their application type, such
as; database, web, storage, etc. Rules can be defined according to the application and it can be

automatically deployed when the application is ready to start.

41

References

[1] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti, “Foggy: A Platform for
Workload Orchestration in a Fog Computing Environment,” 2017 IEEE Int. Conf. Cloud
Comput. Technol. Sci. CloudCom, pp. 231-234, Dec. 2017.

[2] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes, and J. N. de Souza,
“Elasticity in cloud computing: a survey,” Ann. Telecommun. - Ann. Télécommunications,
vol. 70, no. 7-8, pp. 289-309, Aug. 2015.

[3] K. A. Scarfone and P. M. Mell, “Guide to Intrusion Detection and Prevention Systems
(IDPS),” National Institute of Standards and Technology, Gaithersburg, MD, NIST SP 800-
94, 2007.

[4] M. Shelar, S. Sane, and V. Kharat, “Enhancing Performance of Applications in Cloud using
Hybrid Scaling Technique,” Int. J. Comput. Appl., vol. 143, no. 2, pp. 43-48, Jun. 2016.

[5] A. Hickman, “Container Intrusions: Assessing the Efficacy of Intrusion Detection and
Analysis Methods for Linux Container Environments,” p. 32, 2018.

[6] “login_1410_02-bottomley.pdf.” .

[7] “Enterprise Container Platform,” Docker. [Online]. Available: https://www.docker.com/.
[Accessed: 25-Nov-2019].

[8] S. Soltesz and M. E. Fiuczynski, “Container-based Operating System Virtualization: A
Scalable, High-performance Alternative to Hypervisors,” p. 13.

[9] B. Burns and D. Oppenheimer, “Design patterns for container-based distributed systems,” p.
6.

[10] “Production-Grade Container Orchestration - Kubernetes.” [Online]. Available:
https://kubernetes.io/. [Accessed: 25-Nov-2019].

[11] “Kubernetes Deployment, Enterprise Kubernetes, Containerization.” .

[12] A.S.Abed, T.C. Clancy, and D. S. Levy, “Applying Bag of System Calls for Anomalous
Behavior Detection of Applications in Linux Containers,” 2015 IEEE Globecom Workshop GC
Wkshps, pp. 1-5, Dec. 2015.

[13] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, “SnortFlow: A OpenFlow-Based
Intrusion Prevention System in Cloud Environment,” in 2013 Second GENI Research and
Educational Experiment Workshop, Salt Lake, UT, USA, 2013, pp. 89-92.

[14] T. Xing, Z. Xiong, D. Huang, and D. Medhi, “SDNIPS: Enabling Software -Defined
Networking based intrusion prevention system in clouds,” in 10th International Conference
on Network and Service Management (CNSM) and Workshop, Rio de Janeiro, Brazil, 2014,
pp. 308-311.

42

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://kubernetes.io/
https://kubernetes.io/

Appendices

Survey
Questions Responses @

Dynamic Scalable Container Orchestration
Platform for Container Orchestration Platform

This questionnaire is a part of the research material for my master thesis. It would be a great pleasure if you
could fill out this questionnaire

* Target Audience: Software Engineer / Software Architects / Security Experts / Team Leads

* Description:

There is a new solution for the deplay the IDS in the Container Orchestration Platform. Not like the centralized
model previously used. It has the capability to deploy the IDS in a distributed way. Please install the solution
using the URL that mentioned and fill the answers by comparing the new systems with the previous one.
ProjectRepoURL - hitps://github.com/Kasunkulathunga/IDS-pilot.git

Email address *

Valid email address

This form is collecting email addresses. Change settings

What is your current workplace? ©

Short answer text

What is your designation? *

Short answer text

43

This new solution will improve the maintainability of security of the system? *

Strongly Yes
Yes
May Be

No

This new solution will improve the flexibility and scalability of the system? *

Strongly Yes
Yes
May Be

No

Security expertise need to only focus on their specified area using this new solution? *

Strongly Yes
Yes
May Be

No

44

Easy to analyze the impact of the specific area(web, database)? *

Strongly Yes
Yes
May Be

Mo

Mo single point of failure in this new model. So it improves the availability of the system? *

Strongly Yes
Yes
May Be

Mo

45

52, {uong 21 Afwong gy 21 s9f Afvong| wewugy)omes| wmmylopq| weoyemSgnrmeeted] 7047 (707SIG

52, {uong)) 2] dmong saf ffwong| mewdng swAsig pedeg| oo g gRate] (] (707616

52}, {fuong 2, Among Rp sy dong 52y, fuong B P oo emaE) 0(RpRm| G L] (107SS
ouis g Jomag | asodedg mmRade:)

521 Awong) i 21 dfmong 52, Awong By ol oY | 65T 070781
Es_m_ﬁw saum Esamaﬁaﬁ%ma.msug

52 {uong 2] Afwong) 2] dmong agiey| e amagos| pr7wdeyEodg| oo RS RppRAR RN CETT (70TSIG

52 {uong 2] Afwong gy) 52, {uong RATR opiq woo SRy se| 071 0707616
A0S 107G

521 Awong) i g Rf oemmpy| g sdey 09 TR)P 05T 020051 G

YoiRy

52y, Afwong)))9 52}, Awong adg (LT | oo e gsmsemRESg| 77T (707516
dpsa] fmoag| - sadopoa] wofy

52}, fuong o degy Ry sy dong 52}, fuong BAA 7| oo ooeieSmyafy BRI 711 07076116

2RAOS JOTg

46

B Eiu Y 2] R wudg sopupay| oy TR 3] (70791
TONEWOITY YI0MRRN| DOrRMmo] Sy

s3], fgwong s2], Agwong s3] guong s2] [guong S {Bwong| JeUiER amA0g| SUORHIOS UMY woy e qrexrmesd) 781 0700916

s3], fgwong 2L =)y s2] [guong 52, {guong 5| 2magoq swamn)| oo pemE7mnqudeRsepn) 6781 0707916

9]) =) 2] 9| meudRamag| Gopmpa e woy Jew ncuepues| §1:9] 0707916

)) gl sy 2] saf Affvong| ampappryvomg| swogmos afoueay| woo e revEIRRAn| /191 0207016

=) sa], Awong =) =) saf Afwong| seaurde amaypg mady| woopemBaeemmsry| (091 0707916

aqfeyy) =) 2] 9| RawErg amagg ESIL | o0 et R EXPSIUOES | 1 0700916

)¢) =) 2] fffuong)4 et somos| wod pemE emuERSES | 75/ 0707916
ARAJOSJOMRS| AJQOW PRy

i =1 =1 g feg RJ| RUGTRAPS SO []| - wov D {11 070091

gl sy Agong 2 9 9 A ml PRI 600091k
208 Jomag (1Ad) mRSAS 1 eA0l]

=1 =1 =1 =1 R| R 108 mov e eoostpoeoy 5] 0707916

] g iy iy | I L waulyl seopue]| woveusgelmmRp (577 7071
0SSy en)) BT g

52, fwong s2], Awong ag feyy =) 52, Afwong| seawmug () omag wency Sopyg| woue gt 607 000751

Figure 4. feedback results

47

Sample Data Set

Table 2 Previous security model memory evaluation results

Series Time Value (Byte)
2020-05-

{pod_name="falco-d2gwk"} 16T13:09:30+05:30 80474112
2020-05-

{pod_name="falco-d2gwk"} 16T13:09:45+05:30 81690624
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:00+05:30 82632704
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:15+05:30 83697664
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:30+05:30 84516864
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:45+05:30 85577728
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:00+05:30 86425600
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:15+05:30 87359488
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:30+05:30 88281088
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:45+05:30 89104384
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:00+05:30 90390528
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:15+05:30 91275264
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:30+05:30 92086272
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:45+05:30 92897280
2020-05-

{pod_name="falco-d2gwk"} 16T13:13:00+05:30 93900800
2020-05-

{pod_name="falco-d2gwk"} 16T13:13:15+05:30 94707712
2020-05-

{pod_name="falco-d2gwk"} 16T13:13:30+05:30 95838208
2020-05-

{pod_name="falco-d2gwk"} 16T13:13:45+05:30 96804864
2020-05-

{pod_name="falco-d2gwk"} 16T13:14:00+05:30 97681408

48

Series

{pod_name="falco-d2gwk"}

Table 3 Previous security model CPU evaluation results

Time
2020-05-
16T13:07:15+05:30

Value

0.744305566

{pod_name="falco-d2gwk"}

2020-05-
16T13:07:30+05:30

0.785075973

{pod_name="falco-d2gwk"}

2020-05-
16T13:07:45+05:30

0.716502128

{pod_name="falco-d2gwk"}

2020-05-
16T13:08:00+05:30

1.107246258

{pod_name="falco-d2gwk"}

2020-05-
16T13:08:15+05:30

1.98157146

{pod_name="falco-d2gwk"}

2020-05-
16T13:08:30+05:30

0.753293558

{pod_name="falco-d2gwk"}

2020-05-
16T13:08:45+05:30

0.75488978

{pod_name="falco-d2gwk"}

2020-05-
16T13:09:00+05:30

0.750753126

{pod_name="falco-d2gwk"}

2020-05-
16T13:09:15+05:30

0.724851516

{pod_name="falco-d2gwk"}

2020-05-
16T13:09:30+05:30

0.766547355

{pod_name="falco-d2gwk"}

2020-05-
16T13:09:45+05:30

0.743863202

{pod_name="falco-d2gwk"}

2020-05-
16T13:10:00+05:30

0.728313307

{pod_name="falco-d2gwk"}

2020-05-
16T13:10:15+05:30

0.745508841

{pod_name="falco-d2gwk"}

2020-05-
16T13:10:30+05:30

0.829524722

{pod_name="falco-d2gwk"}

2020-05-
16T13:10:45+05:30

0.74088622

{pod_name="falco-d2gwk"}

2020-05-
16T13:11:00+05:30

0.764260186

{pod_name="falco-d2gwk"}

2020-05-
16T13:11:15+05:30

0.699229879

{pod_name="falco-d2gwk"}

2020-05-
16T13:11:30+05:30

0.805247479

{pod_name="falco-d2gwk"}

2020-05-
16T13:11:45+05:30

0.67386475

{pod_name="falco-d2gwk"}

2020-05-
16T13:12:00+05:30

0.757419552

{pod_name="falco-d2gwk"}

2020-05-
16T13:12:15+05:30

0.746782925

49

Table 4 New security model memory evaluation results

Series Time Value (Byte)
2020-05-

{pod_name="falco-d2gwk"} 16T13:09:30+05:30 80474112
2020-05-

{pod_name="falco-d2gwk"} 16T13:09:45+05:30 81690624
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:00+05:30 82632704
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:15+05:30 83697664
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:30+05:30 84516864
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:45+05:30 85577728
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:00+05:30 86425600
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:15+05:30 87359488
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:30+05:30 88281088
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:45+05:30 89104384
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:00+05:30 90390528
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:15+05:30 91275264
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:30+05:30 92086272
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:45+05:30 92897280
2020-05-

{pod_name="falco-d2gwk"} 16T13:13:00+05:30 93900800
2020-05-

{pod_name="falco-d2gwk"} 16T13:13:15+05:30 94707712
2020-05-

{pod_name="falco-d2gwk"} 16T13:13:30+05:30 95838208
2020-05-

{pod_name="falco-d2gwk"} 16T13:13:45+05:30 96804864
2020-05-

{pod_name="falco-d2gwk"} 16T13:14:00+05:30 97681408
2020-05-

{pod_name="falco-d2gwk"} 16T13:14:15+05:30 98926592
2020-05-

{pod_name="falco-d2gwk"} 16T13:14:30+05:30 99344384
2020-05-

{pod_name="falco-d2gwk"} 16T13:14:45+05:30 100597760

50

Table 5 New security model CPU evaluation results

Series Time Value (Cores)
2020-05-

{pod_name="falco-d2gwk"} 16T13:07:15+05:30 0.744305566
2020-05-

{pod_name="falco-d2gwk"} 16T13:07:30+05:30 0.785075973
2020-05-

{pod_name="falco-d2gwk"} 16T13:07:45+05:30 0.716502128
2020-05-

{pod_name="falco-d2gwk"} 16T13:08:00+05:30 1.107246258
2020-05-

{pod_name="falco-d2gwk"} 16T13:08:15+05:30 1.98157146
2020-05-

{pod_name="falco-d2gwk"} 16T13:08:30+05:30 0.753293558
2020-05-

{pod_name="falco-d2gwk"} 16T13:08:45+05:30 0.75488978
2020-05-

{pod_name="falco-d2gwk"} 16T13:09:00+05:30 0.750753126
2020-05-

{pod_name="falco-d2gwk"} 16T13:09:15+05:30 0.724851516
2020-05-

{pod_name="falco-d2gwk"} 16T13:09:30+05:30 0.766547355
2020-05-

{pod_name="falco-d2gwk"} 16T13:09:45+05:30 0.743863202
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:00+05:30 0.728313307
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:15+05:30 0.745508841
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:30+05:30 0.829524722
2020-05-

{pod_name="falco-d2gwk"} 16T13:10:45+05:30 0.74088622
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:00+05:30 0.764260186
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:15+05:30 0.699229879
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:30+05:30 0.805247479
2020-05-

{pod_name="falco-d2gwk"} 16T13:11:45+05:30 0.67386475
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:00+05:30 0.757419552
2020-05-

{pod_name="falco-d2gwk"} 16T13:12:15+05:30 0.746782925
2020-05-

{pod_name="falco-d2gwk"}

16T13:12:30+05:30

0.784317139

51

