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ABSTRACT  
 

 

Blind navigation has become a challenging task in the present. Blind people cannot detect and 

avoid obstacles similar to the people with good vision and they need guidance to avoid such 

obstacles. The white cane is the most widely used device by many blind navigators to detect and 

avoid obstacles. But with the limited reachability of the white cane, it is not possible to detect all 

the potential threats to the navigator. Therefore, the white cane is not an adequate aid to navigate 

safely. To secure the safe and independent navigation of the blind people, more insights of their 

current surroundings must be provided. This study proposes a novel approach for obstacle detection 

based on deep learning to assist in blind navigation.  

 

In this study, a prototype was developed using deep neural networks (DNN) for obstacle detection 

and distance estimation due to real-time performance and high accuracy of DNNs.  To train the 

DNN for obstacle detection data was gathered using a simulation environment. The output of the 

obstacle detection model was used to estimate the distance of the obstacles. The final result by 

combining the feedback of obstacle detection and distance estimation is communicated to the user 

via audio queues. The prototype system is deployed in a smartphone and the real-time video stream 

captured through the smartphone camera is processed to detect obstacles. To train the DNN for 

obstacle detection SSD MobileNet Architecture was used and the data to train the DNN was 

generated using a simulation environment. To estimate the distance of the detected obstacles, DNN 

based MonoDepth algorithm was used.  

 

The mean average precision (mAP) value of all the classes of the DNN for obstacle detection 

reached more than 70%. Higher accuracy and a higher speed for obstacle detection can be achieved 

by the system prototype but there is a latency when estimating distance. The usability and the 

effectiveness of the prototype system exceeded 65% according to the feedback from the usability 

evaluation. 
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CHAPTER 1 
 

1. Introduction   

 

1.1 Overview    
 

According to the statistics of the World Health Organization (WHO), the number of visually 

impaired persons are estimated to be 1.3 billion, of whom 36 million are blind in 2018. By 2019 a 

total of 2.2 billion people suffers from some form of visual impairment [1]. According to these 

statistics, the blind and visually impaired community is increasing yearly. 

 

Engaging in day-to-day activities without hazel is an extremely difficult task for a visually impaired 

/ blind person. It becomes more difficult when it requires traveling through unfamiliar locations 

without a close companion to assist them along the way. Guide dogs are used in assisting visually 

impaired persons, but it is not easy to get a trained animal due to the high cost. Furthermore, 

traveling in familiar environments without help could also be challenging since the dynamic 

situations along the way cannot be predicted earlier, and responding to those situations in real-time 

is not possible for a blind person. Blind people navigate without a clear visual map about the 

obstacles in their path. Therefore, it is not possible to take precautions to avoid such obstacles 

similar to a normal person with good vision. This study focuses on improving the independent 

navigation of the blind and ensuring their safety while navigating. 

 

1.2 Problem Statement 
 

 

The white cane is the most commonly used assistive device by the blind community for their 

navigation. It is being used to detect and avoid obstacles that could collide with them along the 

way. But when considering the rapidly changing surroundings in the present, putting all the trust 

in the white cane does not ensure the safe independent navigation of the blind people. Furthermore, 

the limited reachability of the white cane reduces the possibility of detecting potential threats to 

the blind navigator. Considering the above limitations of the white cane, a solution that improves 

the safety and ability of independent navigation by providing more insights about the current 

environment is very convenient and useful for the blind community. 
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Replacing the white cane with a different assistive device is not a practical solution for many blind 

users since it is also an indicator for informing others about the blind navigator. Although there are 

white canes available with advanced technologies, they can be very expensive. Therefore, 

introducing a solution for blind navigation that can co-use with a white cane and inexpensive can 

be extremely helpful for blind people. Furthermore, to be used in blind navigation, the assistive 

methods and solutions must be accurate to guide and be convenient to use while navigating. 

 

 

1.3 Background 

  
In recent years many researchers have focused on the topic of blind navigation and proposed many 

approaches to accomplish safe navigation with obstacle detection/avoidance, distance estimation, 

and providing feedback [2]-[5]. Detecting obstacles is a major area of blind navigation and 

calculating the distance to obstacles and giving necessary feedback to avoid them also are important 

features of a blind navigation system.  

 

Most of the existing outdoor navigation systems use GPS (Global Positioning System) technology 

for localization [6]-[8]. But their low accuracy and signal loss issues have made such systems 

unreliable to be used by the blind people. Major drawbacks in GPS systems are the inability of 

giving any feedback on moving obstacles and the inability of giving information on the obstacles 

near the user [9]. Hence such systems are not useful in assisting the blind.  

 

Computer vision-based approaches, named ETAs (Electronic Travel Aids) are proposed in recent 

years [10]-[13]. ETAs should be reliable, affordable, and light. Electronic Travel Aid (ETA) named 

"EyeCane”, is designed in [14] which translates point-distance information into auditory and tactile 

cues. According to [15], a wearable obstacle avoidance ETA survey, ETAs giving audio feedback 

and tactile feedback are identified as Echolocation, Navbelt, vOICe and Tactile Handle. 

 

Dynamic and static obstacle detection plays an important role when guiding the blind and research 

has been carried out to discover efficient obstacle detection methodologies [2]-[4].  These existing 

systems have adapted vision-based techniques by using Monocular cameras, Stereo-cameras, 

RGB-D cameras, Time-of-flight (TOF), etc. and other sensors such as Ultrasonic sensors, SONAR, 

LIDAR, etc. to capture the environment and the relevant obstacles. Structure from Motion 
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algorithm, RANSAC algorithm, SIFT, Multicase Lucas-Kanade algorithm and Event-based 

algorithm are some of the algorithms that were adapted for obstacle detection. 

  

Deep learning-based approaches are widely adapting to blind navigation in recent years 

[5][16][17]. Convolutional Neural Network (CNN) techniques are commonly applied in object 

recognition tasks due to their high accuracy although there are concerns regarding collecting a large 

set of training data and overfitting due to noisy data when using CNNs.  

 

Smartphone usages of the blind persons are increasing due to their features such as screen reader, 

haptic feedback, audio feedback, adjustable contrast, audible battery indicator, and vibration. Light 

weight of a smartphone is also an advantage and it does not affect the navigation. Therefore, 

smartphones are widely being used in assisting the blind navigation [2]-[5]. Further laptops and 

other customized devices are used in designing assistive devices for blind navigation [18]-[21]. 

 

1.4 Aims and Objectives 

 
Navigation is a difficult task for blind people. Since many blind people use only the white cane for 

navigation, there is a higher possibility of facing to harmful situations. Therefore, there is a critical 

need of providing more information of the environment around them to ensure their safety. The 

main objective of this research is to propose a novel obstacle detection mechanism to improve the 

safety and independent mobility of the blind people. 

 

The aims of the study are described below.  

 

• The main aim of the proposed approach is real-time obstacle detection with higher accuracy. 

To achieve this, a deep learning-based approach is used to obstacle detection due to the higher 

accuracy and real-time prediction of results of deep neural networks (DNN).    

     

• It is expected to fill the gap of detection while using a white cane due to its limited reachability. 

Mainly when considering obstacles that are above ground-level are not reachable using the 

white cane and thus not detected by the white cane. With this proposed mechanism it is aimed 

to cover such obstacles. 
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• Furthermore, communicating to the user about potential threats in their surroundings in an 

effective manner to avoid such threats successfully is also an aim of the study.  

 

1.5 Proposed Approach  
 

With the improvements of the technology, it is possible to create deep learning models that provide 

real-time results with high accuracy [22]. Therefore, deep learning is used for object detection tasks 

in various applications. Similarly, this proposed system uses a deep learning-based obstacle 

detection mechanism. Training a deep learning model requires a large amount of data. To train this 

object detection model, the data was collected using a simulation environment instead of using 

real-world data. 

 

There are different architectures and frameworks which are available for deep learning. Faster R-

CNN [23], Masked R-CNN [24], YOLO [25], SSD [26] are such popular architectures for object 

detection. Among these, some architectures are fast enough to be running on mobile devices such 

as YOLO (YOLO family) and SSD (Single Shot MultiBox Detector). It is a challenging task to 

select a suitable architecture and considering requirements to perform a task and its deployment 

requirements an architecture must be selected. Here, considering the requirement of mobile 

deployment, the SSD MobileNet architecture is used to train a deep learning model.  

 

The system prototype consists of three main modules namely object detection model, depth 

estimation module and feedback module. After detecting an obstacle through the object detection 

model, its depth estimation will be carried out using the depth estimation module. The depth 

estimation module is deployed in an external server. To perform depth estimation MonoDepth [27], 

a deep learning-based approach was used. This proposed approach is a deep learning-based 

obstacle detection mechanism that combines simulation, deep learning, and computer vision 

techniques. 
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1.6 Contribution 
 

The main contribution of this research is to propose a novel obstacle detection mechanism to assist 

blind navigation that targets, 

 

1. Obstacle detection with high accuracy and in real-time.  

For obstacle detection, a deep neural network is used. In the proposed system, a novel 

approach was adapted that uses data generated from a simulation environment instead of 

real-world data to train the deep neural network. Simulation platforms are used in various 

domains as a mechanism of data generation. Similarly, a simulation platform was used here 

and to generate data a 3D realistic environment was created.  

  

2. A common mechanism that can be used to estimate the distance of both ground-level, above 

ground-level obstacles.  

A deep learning-based monocular depth estimation methodology is combined with binary 

thresholding to identify the obstacle with possible threats to the navigator. 

 

 

1.7 Scope 
 

This research will be conducted to propose an obstacle detection mechanism to assist blind people 

to navigate safely and independently. As it is clear that using only a white cane is not adequate for 

a blind person to navigate safely in outdoor environments, it is important to provide more 

information about the obstacles in their path. Due to the limited reachability of the white cane, 

especially the obstacles that exist above the ground-level are not detectable. Such obstacles are 

mainly focused to detect using the obstacle detection model. 

To train the deep learning model, the required data is generated using a simulation environment. 

The Deep Learning Model (DNN) will be trained using a machine learning library that supports 

mobile conversion since this model is deployed in a smartphone. To estimate the distance of the 

detected obstacles a pre-trained MonoDepth algorithm [27] based implementation will be used. 

The feedback of the system will be communicated to the blind user via pre-recorded audio queues. 
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1.8 Thesis outline  

 
The thesis is organized in the following format.  The first chapter of the thesis identifies the problem 

of blind navigation and describes the proposed solution to overcome the issue.  Chapter two 

presents the literature review on proposed approaches to assist blind navigation, background on 

simulation platforms, and usages of simulation in real-world and deep learning algorithms for 

obstacle detection. Chapter three presents the architecture of the prototype and the research 

methodology. Chapter four includes the details of the development of the proposed solution. 

Evaluation results of the obstacle detection model and the system prototype are presented in chapter 

five and the chapter concludes with the discussion section. The final chapter of the thesis contains 

the conclusion and future work.  
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CHAPTER 2 
 

 

2. Literature Review 

 

2.1  Overview   
 

For years many researchers have focused on improving the safe navigation of the visually impaired 

in outdoor environments. A navigation system consists of three parts. Such a navigation system 

includes localization, providing information about the current location and orientation, and 

pathfinding. For the localization purpose, a particular system must extract the details and features 

of the current surrounding of the blind person. Global Coordinates (GPS), Local coordinates, 

environmental features, and dead reckoning are some of the feature identification methods for 

localization. Providing information about the current location includes static and dynamic obstacle 

detection and correct orientation. Pathfinding or wayfinding is finding the optimal or best route to 

the destination.  

 

Many researchers have focused on the area of blind navigation from earlier years and many 

technologies have been adapted to develop assistive devices for blind navigation over the years. 

Figure 2.1 provides a classification of blind navigation systems and research carried out under 

different aspects. 
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Figure 2.1: Classification of Blind Navigation systems 

 

A detection system for obstacles on the ground at any height using a handheld smartphone is 

proposed in Peng et al. [2]. This proposed method uses computer vision techniques such as color 

histograms and edge detection for obstacle identification and obstacles are captured through the   

smartphone camera. A color histogram is created based on the images acquired from smartphones 

and histograms are created for each frame and chooses the simplest RGB color space. Then, a 

binary RGB histogram is built for the safe region which is derived from the image region. 

 

 In Caldini et al. [3], a calibrated smartphone on users’ chest which installed a gyroscope is used 

to detect obstacles. It implements a modified Structure from Motion (SfM) algorithm for scene 

reconstruction. Visual data obtained from the camera and measurements obtained from the 
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gyroscope are used in the developed algorithm. The proposed vision-based system focuses on 

obstacle detection to help visually impaired people to move autonomously in unknown indoor and 

outdoor environments. 

 

Bai et al. [28] presents a navigation device for the visually impaired people to reach a destination 

in an indoor environment. Here, to solve the problems of indoor localization and virtual-blind-road 

building, the visual SLAM algorithm was used. Furthermore, a PoI (Point of Interest) -graph was 

generated by the A* based way finding algorithm to find a globally shortest virtual-blind-road. A 

dynamic sub-goal selecting based route following algorithm was used to help the blind follow the 

globally shortest virtual-blind-road and to avoid obstacles. The system is deployed on a pair of 

wearable optical glasses. Fisheye camera and depth camera are used for obstacle detection and 

ultrasonic sensor is used for distance calculation. All the algorithms such as visual SLAM, obstacle 

detecting, way-finding, route following and speech synthesis are performed on a CPU. The 

feedback from the CPU is provided to the user via earphones and AR glasses. 

 

Providing necessary information feedback in real-time is a critical requirement in blind navigation 

assisting. A real-time object detection and classification system design is proposed in Mocanu et 

al. [4]. In this paper moving obstacles are detected using video streams and interesting points are 

selected and tracked using the multiscale Lucas-Kanade algorithm [29]. Then, by applying the 

RANSAC algorithm [30] recursively on the set of matched key points, the background motion is 

identified. The outliers are merged into clusters using the associated motion vectors. 

 

A Sensor-based navigation system for visually impaired persons using a fusion of vision and depth 

sensors that uses Microsoft Kinect Sensor is introduced in Kanwal et al. [31]. In the research, the 

expected outcome is to utilize the usage of both sensors by detecting obstacles using corner 

detection and then estimating their distance using a depth map of the corresponding scene.  The 

data acquired from the Microsoft Kinect camera is processed to detect Edges using the Sobel edge 

detector, Corners using Harris&Stephens detector and Blobs using SIFT detector. But according 

to the paper, the Kinect sensor is not reliable as expected in outdoors and some sensors are unable 

to work in different environmental conditions and the infrared sensor has issues with blind spots in 

sunlight.  
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A wearable assistive system for visually impaired which provides the user detailed feedback about 

the obstacles surrounding the user is proposed in Katzschmann et al. [18]. The proposed system is 

designed as wearable by visually impaired and composed using a sensor belt and a haptic feedback 

device. Here infrared time-of-flight (TOF) distance sensors and sonar sensors were used in 

identifying the surroundings near the visually impaired person and different vibration patterns are 

introduced to notify the user.  

 

A wearable system for indoor navigation called NAVI (Navigation Assistance for Visually 

Impaired) was introduced in Aladren et al. [19] which combines both range and color information 

to address the task of NAVI. In this research, due to the limitations of the range sensor (RGB-D 

sensors), the color information has been joined for the segmentation of the floor. A user interface 

containing a sound map information, created using stereo beeps where its frequency depends on 

the distance from a user to an obstacle and other voice commands are used as mechanisms for 

alerting the users. 

 

Velázquez et al. [6] proposes a system that combines GPS for outdoor localization and tactile-foot 

simulation for providing instructions to assist in blind navigation in pedestrian environments. A 

smartphone was used to get the user GPS coordinate and orientation acquisition and when the user 

connected to the internet, his geospatial information is transmitted to a cloud server. A text file 

containing longitude, latitude, and orientation is constructed in the server and discards other 

information. A remote computer can access the server's text file via the internet and locate the user. 

Route waypoints returned from YOURS (open source route planner) are stored in the 

GIS(OpenStreetMap). Directions are translated to actuator commands and transmitted to the user 

via radiofrequency (RF) and signals are interpreted by a microcontroller and it controls the 

actuators in the tactile display using vibrations. 

 

An assistive device that combines computer vision techniques and deep convolutional neural 

networks to detect, track and recognize objects encountered during the outdoor navigation is 

proposed by Mocanu et al. [16] and it aims on real-time obstacle detection. Object detection and 

recognition, object tracking and acoustic feedback are the main modules in the proposed 

framework. The initial object detection is performed by the YOLO Algorithm [25] and the module 

also consists of a generic object tracker based on two convolutional neural networks (CNNs) 
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trained offline that can track generic objects using motion patterns and visual attention models. A 

modified version of the YOLO algorithm is used for classification. The feedback to users is 

transmitted as acoustic warning messages through headphones. Some of the improvements of the 

proposed system are ability to handle occlusions, sudden movements of camera/object and rotation 

or various complex changes. 

   

Everding et al. [32] proposes a wearable lightweight device for facilitating autonomous navigation 

and obstacle avoidance to assist the blind. The system has two retina-inspired dynamic vision 

sensors for visual information gathering and data acquired through dynamic vision sensors are 

processed through hardware by depth extraction, event selection, and 3D sound generation. The 

visual information is encoded as a stream of single-pixel events that are generated asynchronously 

and it is a different approach compared to classical camera systems.  The Event-based algorithms 

operating on the visual data stream extract depth information in real-time and translates into the 

acoustic domain. The total latency of the system is approximately 50ms due to aggregation of the 

sounds and the system is not validated in dynamic environments. 

 

Another assistive system called BBeep is proposed in Kayukawa et al. [20] that notifies the user 

and the nearby pedestrians of the potential risk of collision. An RGBD camera is used in the system 

to detect, track and predict the motion of nearby pedestrians. A stereo camera mounted on a suitcase 

is used to record RGB images and depth data. The system detects pedestrians using the RGB 

images and finds their position using the depth data. The RGB image is used to detect people using 

a convolutional neural network (CNN) and the depth data is used to estimate the distance to 

pedestrians (YOLOv2 [33]). After predicting the future positions of each pedestrian, BBeep emits 

an audible signal indicating the risk of collision with the blind navigator. After predicting the future 

position of the pedestrians in real-time, the system provides sound notifications only when there is 

a possibility of collision. The higher amount of unnecessary sound emissions is a drawback here. 

 

Guerreiro et al. [21] presented CaBot (Carry-on roBot), an autonomous suitcase-shaped navigation 

robot guides blind navigators by avoiding obstacles. CaBot relies on a floorplan with relevant 

Points-of-Interest (POIs) and on LiDAR (Light Detection and Ranging) for localization and path 

planning. CaBot uses a LiDAR to map the environment, localize itself and for path planning. A 

stereo camera is used to convey semantics about objects in the environment by using a 
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convolutional neural network (CNN).  The annotated floorplan with the location of relevant POIs 

are conveyed via speech and a modified suitcase handle is available to provide vibrotactile 

feedback about CaBot's directional actions. According to the authors the robot has only been tested 

in a controlled environment and dynamic elements have not been considered.  

 

The proposed system in Lin et al. [5], consist of a computer image recognition system and a 

smartphone application that form a guiding system for the visually impaired. This system uses deep 

learning algorithms to recognize various obstacles and implements offline image recognition 

through the Haar feature and histogram of oriented gradients (HOG) feature to sort through 

detected objects. Faster R-CNN [34] and YOLO [25] algorithms were used to perform object 

recognition for real-time performances. This system informs the user of the type of obstacle in front 

of him or her and reveal the approximate distance between the user and the object. According to 

the authors, the system can detect objects in Range > 10m but limitations are arising with the 

distance. Large information computing is considered a burden in this system. 

 

A summary of the above approaches with respect to coverage and type is shown in the following 

table. 

 

Paper Coverage Type Range(m) 

Peng et al., 2010 [2] Indoor Static < 5 

Mocanu et al., 2013 [4] Indoor, outdoor Static, dynamic 5 < 

Caldini et al., 2015 [3] Indoor, outdoor Static < 5 

Kanwal et al., 2015 [31] Indoor, outdoor Static, dynamic 2-5 

Aladren et al., 2016 [19] Indoor Static < 3.5 

Everding et al., 2016 [32] Indoor, outdoor Static > 8 

Lin et al., 2017[5] Indoor, outdoor Static, dynamic > 10 

Mocanu et al., 2017[16] Outdoor Static, dynamic <5 



 

13 

 

Velázquez et al., 2018 [6] Outdoor Static, dynamic <5 

Katzschmann et al., 2018 [18] Indoor, outdoor Static < 5 

Bai et al., 2018 [28] Indoor Static, dynamic <2 

Kayukawa et al., 2019[20] Indoor, outdoor Both < 10 

Guerreiro et al., 2019 [21] Indoor Static <10 

 

Table 2.1: Summary of approaches based on coverage and obstacle type. 

 

The table 2.2 below shows a summary of data input and feedback delivering methods adapted in 

research described above.  

 

Paper Input Instruction Drawbacks 

Peng et al., 

2010 [2] 

Embedded camera 

on the smartphone 

Auditory feedback Maintaining the tilt of the 

smartphone 

Mocanu et al., 

2013 [4] 

Video camera Auditory feedback Displacement of the camera 

 

Caldini et al., 

2015 [3] 

Smartphone camera, 

gyroscope 

 

Auditory feedback Maintaining the tilt of the 

smartphone 

Kanwal et al., 

2015 [31] 

Microsoft Kinect 

Sensor 

Auditory (verbal) 

feedback 

The Kinect sensor is not 

reliable in outdoors. The user 

requires to carry a standard 

Kinect sensor, a battery, and 

a laptop /processor. 

Aladren et al., 

2016 [19] 

RGB-D sensors Auditory feedback Blockage of natural sounds. 
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Everding et al., 

2016 [32] 

Retina-inspired 

Dynamic Vision 

Sensors 

Auditory signals Latency of the system 

Lin et al., 2017 

[5] 

Smartphone camera Auditory feedback Large information computing 

burden. 

Mocanu et al., 

2017[16] 

Video camera Acoustic warning 

messages 

Issues in Object tracking 

module. 

Velázquez et 

al., 2018 [6] 

Smartphone was 

used for using GPS 

coordinate 

Tactile display using 

vibrations. 

GPS signal loss and low 

accuracy. 

 

Katzschmann 

et al., 2018 

[18] 

Sensor belt (infrared 

time-of-flight (TOF) 

distance sensors and 

sonar sensors) 

Haptic feedback 

device 

Vibration patterns 

Displacement of the sensor 

belt. 

 

Bai et al., 2018 

[28] 

Fisheye and Depth 

cameras 

Auditory feedback 

(earphones) 

Displacement of the device 

and its components. 

Kayukawa et 

al., 2019[20] 

RGB camera Audible signal Unnecessary sound 

emissions 

 

Guerreiro et 

al., 2019 [21] 

LiDAR and stereo 

camera 

Vibrotactile, Audio 

feedback 

Suitcase-shaped navigation is 

not able to navigate in 

staircases etc. 

 

 

Table 2.2: Summary of approaches based on input and output methods 
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A summary of used object detection algorithms and frameworks is shown in the table 2.3 below.  

 

Paper Obstacle Detection Algorithm/s 

and Framework 

Deployment 

Platform 

Peng et al., 2010 

[2] 

Combination of color histograms, edge cues, 

and pixel-depth relationship. 

 

Smartphone 

Mocanu et al., 

2013 [4] 

Multiscale Lucas-Kanade algorithm, 

RANSAC algorithm 

Smartphone 

Caldini et al., 

2015 [3] 

 

Structure from Motion (SfM) algorithm Smartphone 

Kanwal et al., 

2015 [31] 

The data acquired from the Microsoft Kinect 

camera is processed to detect Edges using the 

Sobel edge detector, Corners using 

Harris&Stephens detector and Blobs using 

SIFT detector. 

 

Standard Kinect 

sensor, a battery, and 

laptop or processor. 

User will carry all in a 

backpack 

Aladren et al., 

2016 [19] 

RANSAC algorithm is used for plane 

detection, Range-based plane extraction 

algorithm, segmentation algorithm based on 

range information, and Back Projection 

Algorithm are used. 

RGB-D device 

(camera), a 

laptop and headphones 

Everding et al., 

2016 [32] 

 

Event-based algorithms on visual data is  

used for depth extraction. 

 

Lightweight device 

containing headphones 

connected to a 

USB sound adapter. 

Lin et al., 2017 

[5] 

 

Faster R-CNN and YOLO algorithms Smartphone 
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Mocanu et al., 

2017 [16] 

 

YOLO approach with extensions. video camera, 

processing unit, 

graphical board, 

headphones. 

Velázquez et al., 

2018 [6] 

GPS, GIS Smartphone, tactile 

display 

Katzschmann et 

al., 2018 [18] 

After detecting obstacles commands are sent 

from sensor belt to haptic strap via a Bluetooth 

transceiver. 

 

Sensor Belt, Haptic 

Strap 

Bai et al., 2018 

[28] 

Visual SALM and PoI-graph for indoor 

localization and virtual-blind-road building  

(By fusing data from cameras and ultrasonic 

sensor).  

Way Finding by applying A* algorithm to the 

PoI-graph 

AR glasses connected 

to CPU and cameras 

(Fisheye, Depth) 

Kayukawa et al., 

2019 [20] 

 

Combination of stereo images and CNN-based 

generic object detector (YOLOv2) 

 

Laptop, Speakers 

Guerreiro et al., 

2019 [21] 

Convolutional Neural Network (CNN), 

LiDAR for localization and path planning. 

 

Autonomous 

navigation 

robot 

 

 

Table 2.3: Summary of object detection methods adapted in research. 
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2.2  Object Detection Algorithms  
 

When considering the above summary, in recent years deep learning algorithms have been used 

for object detection in assisting the blind. RCNN model family, SSD and YOLO (You Only Look 

Once) algorithm families are popular in object detection [46].  

 

Convolutional Neural Networks (CNN) are commonly used in analyzing images. It divides the 

image into multiple regions and classifies each region into various classes. The drawback of CNN’s 

is it is not possible to classify more than one different object in one image. Region-based 

Convolution Neural Network (R-CNN) uses pre-trained CNN and Selective search to create 

bounding boxes or region proposals. R-CNN has three modules named region proposal, feature 

extractor and classifier. Slow object detection, higher training time and space are some of the 

drawbacks of this algorithm. Furthermore, R-CNN training is a multi-stage pipeline. 

 

Fast – RCNN is an improved version of RCNN and still uses the Selective search. Therefore, due 

to the Selective search used in Fast-RCNN the computation time is still higher. Faster – RCNN 

replaced the Selective search with a region proposal network. Therefore, Faster- RCNN is faster 

than Fast-RCNN. Faster- RCNN has two modules. The first module is a CNN to propose regions 

and the second module is named the Fast-RCNN detector uses proposed regions. The overall 

performance of Faster-RCNN depends on the performance of each module are they execute 

sequentially.  Faster R-CNN is widely used for object detection tasks. Class label and bounding 

box coordinates for each object can be obtained from Faster – RCNN.  Mask R-CNN is an 

extension of Faster R-CNN for pixel level segmentation. Mask R-CNN is a combination of a Faster 

R-CNN that does object detection FCN (Fully Convolutional Network) that does pixel-wise 

boundary. 

 

YOLO is another popular algorithm family in object detection.  It is faster than Faster - RCNN due 

its simpler architecture. When comparing YOLO and Faster – RCNN, YOLO has difficulty 

detecting objects that are small and close to each other. But Faster RCNN detects small objects 

well. However, there is a latency in Faster- RCNN with real-time object detection.   
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2.3  Simulation Platforms  
 

To perform deep learning, a large number of datasets are required. In autonomous vehicle research, 

simulators are used to generate a lot more data efficiently, than a real vehicle with a driver could 

collect at the same time. Further, dangerous situations in simulations do not cause real damage and 

it is cost-efficient to simulate different scenarios in virtual environments. An autonomous/self-

driving vehicle must be accurate all the time to detect, avoid obstacles and take necessary 

precautions. To develop such an autonomous vehicle, large data sets must be collected to train 

machine learning models. However, practically it is impossible to collect a large number of data 

sets from real-world scenarios using a driver. Therefore, to overcome the issue of data generation, 

simulation platforms are used. 

 

AirSim [35], CARLA [36], DeepDrive are some of the simulation platforms which are being used 

for autonomous vehicle research. Microsoft AirSim is a simulator for drones and cars built on the 

Unreal Engine to support research and experiment with deep learning, computer vision, and 

reinforcement learning algorithms. According to [35] Microsoft AirSim includes a physics engine 

and the simulator is designed to support new types of vehicles, hardware platforms, and software 

protocols. CARLA is an open-source simulator for autonomous driving research, developed to 

support development, training, and validation of autonomous urban driving systems [36]. These 

simulation platforms provide APIs to generate, train and test data.  

 

• Modeling: These platforms allow us to model vehicles, drones and other object types in the 

simulation environments. They also expose APIs to interact with the model in the simulation 

programmatically. 

• Sensors: The main sensors available in these simulators are cameras. RGB, Depth, Thermal / 

IR cameras are supported as well as other sensors such as Lidar and Radar. 

• Weather conditions: Using different weather conditions feature is also available in some 

simulation platforms.  
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 A comparison of Simulation Platforms is shown in the table 2.4 below. 

 

Platform 
Modeling 

 
Camera 

Other 

sensors 
Weather 

Game 

Engine/ 

Platform 

Environ 

ments 

AirSim 

Vehicle, 

Drone, 

Other 

RGB, 

Depth, 

Thermal, 

IR 

Accelerometer, 

Gyroscope, 

Barometer, 

Magnetometer, 

Lidar, GPS. 

Yes 
Unreal 

Unity 

Urban, 

Other 

 

CARLA Vehicle 

RGB, 

Depth, 

Semantic 

segmentation 

Lidar Yes Unreal Urban 

DeepDrive Vehicle 

RGB, 

Depth, 

 

 - Unreal Urban 

NVIDIA 

Drive 
Vehicle Yes 

Lidar 

Radar, 

GNSS / IMU 

- 

NVIDIA 

DRIVE 

PX 

AI 

computing 

platform 

Urban 

 

Table 2.4:  Comparison of Simulation Platforms 

 

Furthermore, these simulators are being used to research purposes in various domains other than 

in autonomous vehicle research. [37], AirSim-W, a simulation environment which is designed for 

the domain of wildlife conservation and it includes an African savanna environment. This proposed 

environment contains improved APIs that follow objects of interest or to fly in zigzag patterns to 

generate simulated training data which would assist in Identifying poachers and animals. 
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In [38] a novel application called SPOT (Systematic POacher de-Tector) which is based on [37] is 

explained. African savanna environment is created using AirSim that allows users to interactively 

fly through a savanna, while also running SPOT for live, near real-time detection. The research 

[39] proposed a drone detection model that uses the UAV simulator of the Microsoft AirSim to 

construct simulation environments. The drones are instantiated inside the simulation environment. 

In this research, a custom environment is built in Unreal Engine and using the internal camera 

model of AirSim, images of drones were generated in different angles.  

 

 

2.4  Conclusion  
 

In this section, a detailed literature review of the background related to blind navigation is provided. 

Past and current research in the area of blind navigation are analyzed in depth in this section and 

the evolution of object detection algorithms from CNN, R-CNN to SSD are further discussed here. 

Due to the high accuracy that can be achieved by deep neural networks, many object detection 

systems are adapting deep learning-based approaches. This can be seen similarly in blind 

navigation assistive systems. In the 2.3 section, details of simulation platforms available today and 

a comparison of such platforms are presented. Simulation platforms are used in various domains 

as an approach for data generation. The next chapter describes the research methodology and the 

implementation process of the proposed proof of concept system. 
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CHAPTER 3 
 

3. Methodology 

 

This chapter presents the design, the process flow, and the methodology of the proposed object 

detection prototype to assist the blind navigation. The chapter starts with an overall idea of how 

the system works at a higher level. Section 3.1 describes the design of the system and the process 

flow and the methodology to build the system is described in section 3.2. 

 

3.1 Research methodology  
 

The research methodology is based on constructive research.  Constructive research consists of 

several phases. A relevant and practical problem must be available to apply the constructive 

research. After analyzing the problem domain using relevant literature, practical experiences or 

using other methods a thorough understanding must be gained on the research area. Then 

considering the identified problems and research gaps, a novel prototype solution must be 

constructed and the solution could be presented as an algorithm, model or a framework. The 

constructed solution must be tested and evaluated thoroughly to be considered a theoretical 

contribution to the field. 

 

Considering the threats that the blind people face while navigating, this research is focused on 

finding a practical solution to assist them. Although the blind people use the white cane to assist 

them, due to its limited reachability, it is not an adequate solution. Therefore, more insights of the 

surroundings must be provided to the navigator. Information of the obstacles with potential threats 

must be informed to the user based on the distances.  

 

The proposed prototype uses deep neural network-based approaches to detect obstacles and 

estimate the distance of detected obstacles. This prototype will be deployed in a smartphone and 

therefore, it is developed as a mobile application. The blind navigator will use the smartphone 

camera to capture the surroundings in a video stream and after processing the data, the application 

will provide necessary feedback through audio queues to avoid threatening obstacles in their path.  



 

22 

 

3.2 Design of the PoC (Proof of Concept Prototype) 
 

 

 

Figure 3.1: Design of the PoC 

 

According to the figure 3.1, to design the prototype following software and hardware are used. 

1. Simulation platform  

2. Game Engine (used simulation platform is a plugin for game engines) 

3. Machine learning Library  

4. External sever to perform depth estimation. 

5. Mobile device: A suitable android smartphone with a quality camera and an adequate RAM to 

install the application.  

  

A simulation platform is used to generate data to train a deep learning model. The simulation 

platform works as a plugin for a game engine and there are APIs available in the simulator that can 

be extended using external APIs. By extending the available APIs or using other available methods 

provided by the simulation platform, the desired data generation can be performed. The trained 

deep learning model is deployed in a mobile platform therefore it's important to choose a suitable 

architecture that supports mobile deployments.  
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3.3   Process flow of the (PoC) System 
 

Figure 3.2 illustrates the process flow of the prototype.  

 

 

 

Figure 3.2: Process flow of the prototype.  

 

 

The process flow to build the prototype system is described in the following section.  
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3.3.1 Generation of training and testing data  

 

Creating a simulation Environment 

 

For this step, a simulation platform will be used and such available simulation platforms are mostly 

built on game engines such as Unreal or Unity, etc. It is possible to create highly realistic 3D-

scenes for games using such game engines. Similarly, it is possible to create new and customized 

environments after adding the plugins of the simulator. To create a suitable simulation 

environment/s it is to possible use environmental modules already available in the respective asset 

stores of the game engines. Further, it is possible to use single assets and create customized 

environments for the required purpose.  

 

Data Generation 

 

The simulation platforms allow modeling different types of physics models such as drones, 

vehicles and other objects. These physics models have cameras dedicated to them. These camera 

views can be accessed through API calls.  For example, the cameras of the car model in AirSim 

can be accessed via front_center, front_right, front_left, fpv and back_center API calls. AirSim has 

car, multirotor and other physics models. Furthermore, some platforms allow to simply move a 

camera using keyboard keys through the simulation environment and retrieve data.  

 

By using the capabilities of the simulation platforms, it is possible to model different objects with 

sensor capabilities. For an example a person with sensors attached to the body (wearing a headband 

with two cameras, etc.) can be modeled within the environment, and while simulating the way that 

person walks, data can be generated. Similarly, methods without physical engines can also be 

adapted into the data generation process. The simulation platforms allow us to modify or extend 

the behavior of physics models and cameras through APIs using different programming languages. 

Data collected through simulation are used to train a deep learning model. 
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3.3.2 Object detection model training  

 

Deep learning algorithm and machine learning library selection  

  

Using the collected data from the simulation, a deep learning model is trained for obstacle 

detection. There are machine learning libraries available for this purpose and it is important to 

select a machine learning platform that supports mobile conversions. Keras [40], pyTorch, Caffe 

and TensorFlow are some of the popular deep learning libraries. Among such libraries, TensorFlow 

provides a mobile framework called TensorFlow Lite and pyTorch provides a framework called 

pyTorch Mobile that supports mobile deployments. To train a deep learning model it is important 

to have the supported hardware such a good GPU preferably Nvidia, CPU as Core i5 and a RAM 

of 8GB. 

Table 3.1 presents a summary based on whether it is possible to deploy an object detection 

algorithm on a mobile device or not. 

 

Detection Algorithm Possible to Implementation on mobile devices 

R-CNN No 

Fast R- CNN No 

Faster R-CNN No 

Mask R-CNN No 

SSD Yes 

YOLO Yes 

YOLO 2 Yes 

 

Table 3.1: Summary of DNN algorithms on the possibility of deploying on mobile devices. 

 

Faster R-CNN algorithm uses a region proposal network to create boundary boxes and utilizes 

those boxes to classify objects. But this reduces the real-time performance. Single Shot MultiBox 

Detector (SSD) is designed for object detection in real-time. SSD speeds up the process by 

eliminating the region proposal network and to reduce the accuracy loss, SSD includes multi-scale 

features and default boxes.  
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SSD’s architecture builds on the VGG-16 architecture and discards its fully connected layers. The 

VGG- 16 network functions as a feature extractor. VGG-16 was used due to its strong performance 

in high-quality image classification tasks.  

 

Training the Deep Learning model  

 

There are two deep learning methods that perform object recognition. 

 

I. Training a new model from scratch 

This approach involves using a large dataset and designing a network architecture from 

scratch. It requires a large amount of training data and needs to set up the layers and weights 

of the CNN manually. Before train a new model from scratch it is necessary to get a thorough 

understanding of the outcome of the model. The training time for this type of model is very 

time-consuming. 

 

II. Using transfer learning 

A machine learning method where a model developed for a task is reused as the starting point 

for a model on a second task. It is a popular method in computer vision since it reduces the 

time to train a model from scratch. This method is faster because the model has already been 

trained on thousands of images.  

 

 

 

3.3.3 Depth estimation  

 

Distance estimation using a single camera is considered a challenging task. There are several 

approaches available for this purpose.  
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Approach I  

 

To calculate the distance to an object from a single camera, several parameters must be predefined.  

The ratio of the size of the object in the picture and the height of the object in real-world is the 

same as the ratio between the focal length and distance of the object and camera. This relationship 

can be defined as follows. 

 

 

 
Distance =  

 focal length ∗   real height of the object  ∗ camera frame height 

Image height ∗   sensor height 
    3.1 

 

But there are some drawbacks in this method. The real height of a particular object must be known 

in advance to calculate the distance. Practically it is not possible to know the height of a random 

unknown object. Furthermore, the frame height and the sensor height mainly depend on the camera 

type and the brand. Therefore, every time this calculation is performed on a different type of 

camera, camera frame height and sensor height must be recalculated.  

 

 

Approach II 

 

  

There is a geometric correlation between the focal length of a camera lens (F), the distance from 

the lens to the target object(O), and the distance between the lens and the projected image (I). This 

relationship can be defined as follows. 

 

 
1

𝐹
=  

1

𝐼
+

1

𝑂
 3.2 

 

 

 

 

Figure 3.3 describes the image formation information for distance estimation in a camera lens.  
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Figure 3.3: Image formation for distance estimation in a camera lens 

 

Approach III 

 

Another approach of estimating distance is based on monocular images. Monodepth [27] is an 

unsupervised CNN based approach for distance estimation. A deep learning model is trained on 

stereo images and it makes inference on monocular images. Using this approach, it is possible to 

get a disparity image of a particular image.  In a disparity image, pixels with larger disparities are 

relatively closer to the camera than the pixels with smaller disparities. 

 

Furthermore, to get only an estimation of the distances, it is possible to apply image binarization 

by giving a global threshold value to the disparity image. If we use binary thresholding on the 

disparity image, it will be divided into two black and white segments. From that segmented black 

and white image, we can get a relative distance estimation for each obstacle in it. As the obstacles 

in the white area are closer to the camera than the obstacles in the black area. 

 

If we only consider the obstacles on the ground-level it is possible to change the tilt of the 

smartphone. For example, if the tilt is set to 45 degrees and the smartphone is held 1m above the 

ground-level, an area of nearly one-meter can be detected. But it is not useful when detecting 

obstacles above ground level. To reduce the view of the angle of the smartphone camera a small 

tilt can be used depending on the user’s height. Thus, it is possible to reduce the detections of the 

obstacles that are above the head level of the user. 
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3.3.4     Audio feedback module  

 

The final output of the obstacle detection system by combining the results of both the obstacle 

detection model and the distance estimation module will be provided to the user. For this 

prerecorded audio will be used. When an obstacle is detected the user will be notified about the 

obstacle type and the directional recommendations.  

 

 

 

3.4 Conclusion  
 

 

In this section, the research methodology, design of the proposed proof of concept system and the 

process flow of the prototype are presented. As the research methodology, constructive research 

methodology is adapted in this study. The prototype is deployed in a mobile platform and therefore 

it is important to select a suitable deep learning architecture that supports mobile deployments. 

YOLO and SSD are such deep learning algorithms that are fast enough to run on mobile devices. 

The features and methods provided by the simulation platforms to enable data generation are 

discussed here. Furthermore, approaches to estimate the distance from a single camera to an 

obstacle are described here. In the next chapter, the implementation details of the proposed 

prototype are presented. 
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CHAPTER 4 
 

 

4. Implementation   
 

This chapter describes the process carried out to implement the proposed system. Data generation 

using a simulation platform is described in section 4.1 and deep learning object detection model 

training is described in section 4.2. Section 4.3 explains the modification of the prototype to 

integrate the distance estimation module to the prototype.  

 

The overall implementation process is elaborated in figure 4.1 below. 

 

             Figure 4.1: Implementation of the system 
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4.1 Data generation with AirSim by simulation 
 

AirSim is a simulation platform that enables simulation in realistic 3D environments. It is open-

source and has an active repository with good documentation and an active community. It also has 

a number of APIs that provide access to cameras and different physics models and such available 

APIs can be modified using programming languages as Python or C++.  AirSim has different 

physics models such as vehicle, and multirotor models provided for simulation and it is also 

possible to simulate without any physics model. In AirSim, this approach is called the 'Computer 

Vision' mode. In this mode the physics engines are disabled and the cameras are moved in desired 

paths and angles by the keyboard. Furthermore, AirSim provides RGB, depth and thermal camera 

output. It also provides output of the sensors such as accelerometer, gyroscope and barometer. CARLA 

is another simulation platform and it supports vehicle physics model and sensors such as Lidar. AirSim 

provides more features compared to the other simulation platforms such as CARLA and DeepDrive. 

 

Considering the above facts AirSim was used in developing the proposed system. AirSim is used 

as a plugin for Unreal Engine which is a suite of integrated tools for game developers to design 

and build games, simulations, and visualizations.  

 

 

4.1.1 Setting up AirSim: Creating Unreal projects and integrating AirSim  

 

The AirSim plugin can be downloaded from the Microsoft Git hub repository. Using the Unreal 

project browser, we can create a new empty project with basic code C++. After creating the project, 

a suitable simulation environment is downloaded from Unreal Market Place and merge the 

configuration files and plugins with the project configurations. This process is also possible to do 

automatically without manually transferring files by directly adding an asset/s into a project. Then 

the AirSim plugin must be enabled in the Unreal project. This setup was completed using Unreal 

Engine version 4.23 and Visual Studio 2017 was used as an editor for Unreal projects. 
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Figure 4.2: Creating Simulation Environments in Unreal Engine – Crossover   

 

 

4.1.2 Data generation   

 

For this prototype, both custom and already available environments that contain ground-level 

obstacles such as cars, crosswalks, roadblocks, staircases and above ground-level obstacles such 

as branches, windows and banners were used.  

 

To generate data the “Computer Vision" mode was used. In this mode, the physics engine is 

disabled and it is possible to move the camera around using the keyboard. Here the data capturing 

is controlled by the user. By moving the camera in the simulation environment, it is possible to 

capture the view of the obstacles in different angles. To capture the images settings json file 

provided by AirSim can be modified as preferred. After pressing the Record button, AirSim will 

continuously generate images according to the specifications in settings json file. The collected 

RGB images with 800px width and 600px height were saved in PNG format. This process 

continued until an adequate number of images were collected to train the deep learning model.  
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Figure 4.3: Sample of Environment created in Unreal Engine. 

 

4.2 Deep learning model training  
 

TensorFlow [41] is a free and open-source software library that can be used to develop machine 

learning applications such as neural networks. Furthermore, TensorFlow provides a platform called 

TensorFlow Lite that enables converting TensorFlow models into mobile compatible versions. 

TensorFlow Lite [42] is a set of tools to run TensorFlow models on mobile, embedded, and IoT 

devices. It enables on-device machine learning inference with low latency and small binary size. 

Therefore, TensorFlow was used as the machine learning library to train the deep learning model.  

 

TensorFlow has introduced a framework called TensorFlow Object Detection API, which is a 

framework for creating deep learning networks for object detection. TensorFlow Object Detection 

API has been introduced to perform object detection in images and videos. The TensorFlow CPU 

version 1.15 and Python version 3.6 which were installed inside an Anaconda [43] (2019.10) 

environment, and the TensorFlow Object Detection API were used to train the model.  
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4.2.1 Data preprocessing  

 

To preprocess the collected data following steps were followed. 

 

1. Creating the relevant dataset  

1.1. Reduce the sizes of images. (800 * 600 pixels) 

Python scripts are available for this reduction. 

1.2. Change the image format from PNG to JPG format. 

1.3. Rename and separate the captured images into two folders. Training folder (80%) and 

Testing folder (20%). 

1.4. Label the training images using the “labelImg” library.  

LabelImg is a graphical image annotation tool written in Python.  The labeling process is 

done manually.  Rectangles should be drawn around the objects which are planned to 

detect. Every image in training and testing folders must be labeled manually.    

2.  Convert the images to “TFRecord” file format 

2.1. TensorFlow Object Detection API uses the TFRecord file format. A python script was 

used to convert the image dataset in training and testing folders to the TensorFlow record 

format.  

3. Create RECORD files for train and test data sets. 

 

 

 

 

4.2.2 Setting up TensorFlow Object Detection API 

 

1. Setting up the TensorFlow Object Detection API Environment. 

1.1. Clone the TensorFlow object detection API 

Using https://github.com/tensorflow/models.git command the repository can be cloned 

into a specified directory on the computer.  

 

 

 

 

 

 

https://github.com/tensorflow/models.git
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 4.2.3 Preparing for Transfer Learning and Training the model 

 

To initialize the deep learning model, the SSD MobileNet architecture was used. MobileNet is an 

efficient architecture introduced by Google (using depth-wise and pointwise convolutions). It can 

be used for classification purposes, or as a feature extractor. 

 

1. Downloading the latest checkpoint of the pre-trained ssd_mobilenet_v2_coco version from the 

TensorFlow model zoo and setting up the configuration. 

2. Model Evaluation  

2.1. COCO APIs were installed to use COCO evaluation metrics to evaluate the accuracy of 

the model during training. 

3. Model training  

3.1. The training of the model was carried until the total loss value becomes smaller.  

 

4.2.4 Converting to a mobile version 

 

TensorFlow Lite framework will be used for the conversion. 

1. After completing the model training, the inference graph was converted into a tflite file. This 

file size is around 4.5 MBs. This is the format of TensorFlow Lite which can be loaded into a 

mobile or embedded device. It is important to reduce the tflite file size below 5MB by 

compressing. 

2. To test this file in an android app, the set-up of the Object detection android example by 

TensorFlow was used. Android Studio version 3.5 was used to set up this application. Upon 

the successful installation, its tflite file was exchanged with the trained models tflite file and 

successfully installed the android application on a Samsung Galaxy J7 and on a Huawei 

MediaPad t3.  
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4.3 Modifying the android application  
 

 

4.3.1 Implementing the depth estimation module  

 

For the depth estimation process, MonoDepth approach - which is a method to estimate monocular 

depth from a single image is used. There are several other approaches available for depth estimation 

from a single camera as described in section 3.3.3.  

 

Approach 1: the ratio of the size of the object in the picture and the height of the object in real-world 

is the same as the ratio between the focal length and distance of the object and camera. In this approach 

the real height of the object, camera frame height and sensor height along with other parameters 

must be known in advance to calculate the distance. Since some parameters are specific to a 

particular brand or a model of the same brand, such parameters must be re-defined when using a 

camera of a different model /brand. 

 

Approach 2 is using the geometric correlation between the focal length of a camera lens (F), the 

distance from the lens to the target object(O), and the distance between the lens and the projected image 

(I). The focal length of the smartphone camera may not be similar in different brands/ models and 

therefore the parameter F must be re-defined when using a different smartphone. Furthermore, 

calculating the parameter I in real time can be an issue when considering the limited calculation power 

of a smartphone.  

 

Approach 3 is estimating distance is based on monocular images. MonoDepth is such a mechanism and 

a deep learning model is trained on stereo images and it is used to retrieve a disparity image of a given 

image. The advantage of this approach compared to the above approaches is that this model can work 

as an independent module so that it is not required to use pre-defined parameters of a particular 

smartphone. Therefore, MonoDepth is used in this prototype to estimate the distance. 

 

When an image is given as the input to the model a corresponding disparity image can be obtained 

as the output. After an obstacle is successfully detected by the obstacle detection model, an image 

of the current view will be immediately captured via the smartphone camera. That image will be 

used to get a corresponding disparity image. To get the disparity image, a MonoDepth based 

PyTorch implementation [44] with pre-trained model on Kitty [45] data set was used.  
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In the following figure 4.4, the original image is in the left side and the corresponding disparity 

image is in the right side. 

 

  

  Original Image               Disparity image  

 

Figure 4.4: Original image and corresponding disparity image 

 

After capturing the disparity image, to capture the areas with low disparity values which are closer 

to the camera compared to the high disparity areas, we can use a thresholding value to the image. 

This can be achieved by adding a binary threshold to the disparity image. It will divide the image 

into two black and white segmented areas. The areas of the white color can be considered as closer 

regions. In the figure 4.5 below, the greyscale image can be seen in the left side and the image after 

adding binary thresholding can be seen in the right side. 
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   Greyscale image (Left)                             Image after adding binary Thresholding using (Right) 

 

Figure 4.5 : Grey Scale image and Image after adding binary thresholding 

 

 

When the model gives the output of a detected obstacle it also gives the region of the obstacle in a 

rectangle. Therefore, it is possible to acquire the coordinates of the bounding box of a particular 

obstacle. Then by comparing the overlapping white areas of the segmented image and the obstacle 

region of the original image, we can decide whether the detected image is near the user or not. The 

priority will be given to the obstacles detected in white areas. As the output of the distance 

estimation module, the obstacles detected in white areas of the segmented image will be selected.  

 

 4.3.2 Server-side implementation of the Distance estimation module  

 

The distance estimation module is deployed in an external server. A Python server is needed for 

the calculation of the disparity image. The captured image from the smartphone camera is sent to 

server via HTTP from the Android application and the result is received back to the smartphone. 

After the server receives the image and the bounding box information sent from the smartphone, 

the corresponding disparity images is produced. Then the binary thresholding is applied on the 

disparity image. After applying the thresholding, the bounding box coordinates of the obstacle is 

checked against the white segments of the image with thresholding. After identifying the closer 

obstacles, the feedback is sent to the smartphone. 
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To implement the binary thresholding, OpenCV (version 3.3.1) library was used and a global 

thresholding value of 127 / 255 was used for the thresholding purpose. This divides the image into 

two black and white segments. For the comparison of bounding box coordinates and white 

segments another python implementation was used.  

    

 

4.3.3 Integrating the audio queue feedback module 

 

After receiving the detected obstacle details and the distance estimation details, the obstacles in 

the close range are communicated to the blind user through audio queues. Prerecorded audio 

queues are used for this process.  

 

 

4.4  Conclusion  
 

This chapter describes the complete implementation details of the proposed prototype. AirSim is a 

simulation platform introduced by Microsoft to support experimentation on machine learning and 

deep learning. To build this prototype, data sets were generated using AirSim to train the deep 

learning model for obstacle detection. SSD MobileNet Architecture was used to train the deep 

learning model using the TensorFlow Object Detection API and to estimate distance, MonoDepth 

PyTorch implementation was used. To give audio feedback to the user, pre-trained audio queues 

are used.  Using the TensorFlow Lite library the prototype was converted into a mobile compatible 

version to be deployed in a smartphone. 

 

The next chapter presents the evaluation details of the prototype. Under that section, evaluation of 

the deep learning model and the usability evaluation of the proposed system are presented. 
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CHAPTER 5 

 
 

5. Evaluation and Results 

 

This chapter presents the evaluation and results of the study. The evaluation of the research was 

carried out in two phases. The first section discusses the evaluation results of the trained deep 

learning model and the second section presents the evaluation of the usability of the proposed 

obstacle detection system. This chapter concludes with the discussion on the obtained results of the 

prototype evaluations.  

 

 

5. 1 Evaluation of the Object Detection Model  
 

The deep learning model for obstacle detection was trained using the SSD MobileNet architecture 

using the TensorFlow Machine Learning library. The data to train the deep learning model was 

generated using simulation in a 3D environment. For this task 1500 images were generated and 

1200 (80%) images were used for as training data and 300 (20%) images were used as testing data. 

Using cameras available in the simulation environment, generating images of various objects from 

different angles can be performed in a lesser time compared to taking pictures using a camera. 

The real-time video stream captured by the smartphone camera is used for the object detection 

process.  Mainly to evaluate an object detector it is important to consider 2 factors. The first factor 

is the correct detection of objects which is determining whether an object exists in a particular 

view. The second factor is determining the locations of the object/s with bounding boxes correctly. 

For the evaluation of the model, COCO detection metrics were used while training the TensorFlow 

Object Detection API. The COCO metrics are the official detection metrics used to score the COCO 

dataset.  In COCO evaluation according to the documentation, the Intersection over Union (IoU) 

threshold ranges from 0.5 to 0.95 with a step size of 0.05 represented as AP@[.5:.05:.95].  

 

mailto:AP@[.5:.05:.95
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The IoU is given by the ratio of the area of intersection and area of union of the predicted bounding 

box and ground truth bounding box. To decide the correction of a predicted object, Intersection 

over Union is used. A prediction is considered to be a true positive if IoU is greater than the 

threshold and a false positive if IoU is lesser than the threshold. 

 

 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 
 5.1 

 

 

The following table describes how to classify the output from the trained DNN.  

 

 
Actual values 

Positive Negative 

 

Predicted 

values 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

Table 5.1: Predicted and Actual values matrix 

 

Precision is defined as the number of true positives divided by the sum of true positives and false 

positives  

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 5.2 
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The recall is defined as the number of true positives divided by the sum of true positives and false 

negatives. It is the True Positive Rate i.e. Of all the actual positives, how many are True positives 

predictions. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁  
 5.3 

 

 In this study, to evaluate the performance of the trained DNN, Average Precision (AP) was 

adapted. After the training process was performed up to 5000, 15000, 25000, and 35000 steps the 

respective AP values were calculated. The mAP for object detection is the average of the AP 

calculated for all the classes. TensorFlow Object Detection API provides python scripts to evaluate 

the models that are being trained.  

 

5. 2  Results of the Obstacle Detection Model Evaluation  

 

 

Class name  AP (AP@0.5IOU) 

Car   0.27 

Crosswalk  0.31 

Window  0.34 

Branch  0.41 

Tree  0.38 

Banner  0.29 

mAP (mAP@0.5IOU)                    0.33 

 

Table 5.2: AP calculation at checkpoint 5000 
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Class name  AP (AP@0.5IOU) 

Car   0.52 

Crosswalk  0.59 

Window  0.61 

Branch  0.57 

Tree  0.54 

Banner  0.53 

mAP(mAP@0.5IOU) 0.56 

 

Table 5.3: AP calculation at checkpoint 15000 

 

 

Class name  AP (AP@0.5IOU) 

Car   0.60 

Crosswalk  0.66 

Window  0.74 

Branch  0.72 

Tree  0.65 

Banner  0.61 

mAP(mAP@0.5IOU) 0.66 

 

Table 5.4:  AP calculation at checkpoint 25000 

Class name  AP (AP@0.5IOU) 

Car   0.69 

Crosswalk  0.69 

Window  0.77 

Branch  0.75 

Tree  0.70 

Banner  0.63 

mAP (mAP@0.5IOU) 0.70 

 

Table 5.5: AP calculation at checkpoint 35000 
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 Figure 5.1: Average Precision after 5000, 15000, 25000, and 35000 training steps.  

After the 5000th, 15000th, 25000th and 35000th training steps, the calculated mAP values of the 

classes were 0.33, 0.56, 0.66 and 0.70 respectively.  While collecting the data set of 1500 images, 

a roughly similar number of images per class were generated to reduce the low performance that 

occurs due to the limited training data for classes. According to figure 5.1 after the first 5000 

training steps, all the classes reach more than 25% of average precision (AP) value. After the next 

10000 training steps, the average precision of the classes increases significantly. The AP of the 

window class reached more than 60% AP after 15000 training steps. After 25000 training steps, 

the AP values of all the classes were increasing but the increasing rates were lower compared to 

the earlier steps. Similarly, the increasing rates of the AP of classes were very low after 35000 

training steps. The mAP values of all the classes show a similar pattern of increasing where the 

earlier values were increasing at a higher rate and the latter values were increasing at a lower rate. 

The window and branch class reached more than 70% AP after 35000 training steps.  
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5. 3  Evaluation of the Obstacle Detection System   

 
5.3.1 User feedback of the Prototype 

To get the user feedback of the prototype, it was tested in a controlled environment that contains 

similar obstacles that were used to generate data. In this environment, blindfolded human test 

subjects were used to collect the feedback. The experiment was conducted while the completely 

blindfolded participants walk through the controlled environment using a white cane and the 

smartphone which contains the prototype.  

 

5.3.2 Experimental Setup 

 

To experiment on the obstacle detection system prototype, four blindfolded persons had 

participated. Before the experiment, each participant was thoroughly briefed about using the 

system and the feedback mechanism. Each participant was given 5 minutes to navigate within the 

experimental environment and the feedback was collected using a questionnaire. Each participant 

was asked to rate answers on a 1 to 10 scale. Where 1 being very poor and 10 being excellent. Five 

participants participated in the experiment and they all were below 30 years of age. The smartphone 

had an uninterrupted internet connection while the experiment was conducting.  

 

The following table describes the participant details and corresponding experimental setup 

information.  
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Participant  Gender  Age Duration 

(mins) 

Time of the 

Day 

Obstacles  

1 (P1)  Male  25 5 Morning  Window, tree, branches, 

staircase   

2 (P2) Male  23 5 Afternoon  Window, tree, branches, 

staircase   

3 (P3) Female  29 5 Morning  Window, tree, branches, 

staircase   

4 (P4) Female  26 5 Afternoon Window, tree, branches, 

staircase   

5 (P5) Male 28 5 Afternoon Window, tree, branches, 

staircase   

 

Table 5.6 : Personal and experimental details of the participants 

 

The following questions were used to collect feedback from the participants.   

1. Whether the place where the smartphone is positioned on the body is comfortable while 

navigating with the white cane?  

2. After receiving the feedback from the audio queue did you get enough time to avoid the 

obstacle without colliding with it? 

3. If the notifying frequency of audio queues were satisfied?  

4. Are you satisfied with the overall usability of the obstacle detection system? 
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5. 4 Results of the Prototype Evaluation  

 

5.4.1 Summary of the user feedback 

 

 

 

 

Figure 5.2 : Summarized feedback from the participants  

 

The smartphone was calibrated using a belt around the waist of each participant. Thus, it reduced 

using the other hand which is not being used to hold the white cane. The participants were satisfied 

with both hands not being occupied while navigating. According to the instructions of the audio 

queues, the participants were successfully notified about the obstacles in front of them. But 

according to them the directional feedback to avoid the obstacles could have been improved.  

 

Notifying frequency of the audio queues received mixed feedback from the participants. To reduce 

this frequency, only the obstacles which have a confidence score of more than 75% from the 

obstacle detection model are used for distance estimation. This further reduces the possibilities of 

false-positive detections. In overall, the participants rated the overall usability of the prototype 

above 60%. 

 

 



 

48 

 

5.4.2 Analysis of Variance (ANOVA) Test 

 

 

An Analysis of Variance (ANOVA) test was performed on the feedback data collected from the 

participants. To perform the ANOVA test, two null hypotheses were developed based on rows and 

columns of the table 5.7. 

 

 Q1 Q2 Q3 Q4 

P1 8.5 6.5 7.5 7.5 

P2 8 6 5.5 7 

P3 8 6.5 8 6.5 

P4 8.5 5.5 6 7 

P5 6 6 7 7 

 

Table 5.7: Data to perform ANOVA test  

 

• Null hypothesis for rows  

H0: There is no significant difference between the feedback collected from each participant 

(regardless of the questions).   

 

• Null hypothesis for columns  

H0: There is no significant difference between the feedback collected for each question 

(regardless of the participants). 

  

The ANOVA test was performed using Excel Software. ANOVA two-factor without replication 

test was performed using an alpha value of 0.05. The results of the ANOVA are shown in the figure 

5.3.  
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Figure 5.3: Results from the ANOVA Two- Factor without replication Test 

 

In the top section of figure 5.3, the average and the variance of the feedback recorded from each 

participant can be obtained and from the bottom section, ANOVA test result can be obtained. 

 

In the first row of the ANOVA result (Rows), the F-critical (value = 3.26) is larger than the F 

(value= 1.29). The P- value for the Rows is 0.327 which is larger than the alpha value (0.05). Since 

rows = 0.327 > 0.05 = alpha, the null hypothesis for rows cannot be rejected. Thus, we can observe 

that there is no significant difference between the feedback of each participant. According to figure 

5.2, the feedback received for the overall usability of the system from each participant exceeded 

65%. Thus, approvable results on the prototype were obtained from the participants.  

 

In the second row of the ANOVA result (Columns), the F-critical (value = 3.49) is smaller than the 

F (value= 4.28). The P- value for the Columns is 0.028 which is smaller than the alpha value (0.05). 

Since rows = 0.028 < 0.05 = alpha, the null hypothesis for columns must be rejected. There is a 

significant difference between the results obtained from different questions.  
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According to the figure 5.2, it can be seen that the difference between the results obtained for 

question one and question two are significantly different. More favorable feedback was collected 

for question one and the favorability of the feedback collected for question two is lesser.  

 

 

5. 5 Discussion   
 

The deep neural network trained for obstacle detection reached a mean Average Precision (mAP) 

of 70% for all the classes. Therefore, the data collected from simulation has shown the validity to 

be used in object detection tasks. The trained model was used to develop the prototype to assist the 

blind navigation and to evaluate the usability, an ANOVA test was performed. From the usability 

test, the hypothesis related to the rows, or the feedback of each participant was recognized as 

significantly similar. The hypothesis related to the columns, or the feedback on each question was 

recognized as significantly different. Thus, the participants showed less approval on some features 

of the prototype, but they showed satisfaction on the overall usability of the system. 

 

The obstacle detection deep learning model which is deployed in the smartphone, functions 

accurately without an internet connection since it only uses the resources of the smartphone. The 

inference speed of the trained model is less than one second after deploying it on the smartphone. 

Therefore, the time to recognize an obstacle takes less than one second. However, for the distance 

estimation of the detected obstacle, an external server is used. For that, an internet connection must 

be available in the smartphone. Furthermore, the time taken to retrieve distance estimation results 

from the server takes around two seconds. This is considerably larger than the obstacle detection 

time. This makes the overall latency of the system around two seconds. Therefore, an internet 

connection is mandatory to function the system properly.  

 

However, it is possible to change the tilt of the smartphone only to focus on the ground-level 

obstacles. With a tilt of 45 degrees towards the ground, the user can detect obstacles on the ground 

up to one or two meters. This can be used as an alternative approach to estimate distance when an 

internet connection is not available. The latency of the system is reduced significantly here since 

the result from the server is not used but the accuracy is also reduced.  
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Without an internet connection, it is not possible to perform distance estimation of the above 

ground-level obstacles. Furthermore, this tilt reduces the angle of the smartphone camera 

significantly. Therefore, a small tilt is recommended to maintain while using the system with an 

internet connection. The accuracy and latency of the system are reduced when the system is used 

without an internet connection. In contrast, higher accuracy and a higher latency can be achieved 

from the system with an internet connection. The obstacle detection of the model is not affected by 

the internet connection. The table 5.8 shows a comparison when the prototype operates in different 

conditions.  

 

 With Internet connection Without internet connection 

Accuracy High Low 

Obstacle detection output 

from the DNN 
Yes Yes 

Reliability High Low 

Latency High Low 

Detecting obstacles above 

ground-level 
Possible Not possible 

Detecting obstacles in 

ground-level 
Possible Possible (< 1.5m) 

  

Table 5.8: Comparison of the prototype in different conditions. 

 

 

5. 6 Conclusion    
 

This chapter presented the evaluation details of the trained deep neural network (DNN) and the 

system prototype in depth. To evaluate the usability of the system prototype, experiments were 

conducted using five blindfolded participants and they showed satisfaction on the usability of the 

system. Furthermore, the features that need improvements were also identified subsequently.  In 

5.5 section, the different conditions where the prototype can be used are discussed. In the next 

chapter includes conclusion and the future work of the thesis.  
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CHAPTER 6 
 

6. Conclusion and Future Work 

 

This study proposed a deep learning-based obstacle detection mechanism to assist blind navigation. 

The developed prototype consists of three main modules namely obstacle detection, distance 

estimation, and audio queue feedback. For obstacle detection, a deep neural network is trained 

using the data generated by simulation instead of real-world data. To estimate the distance, 

monocular depth estimation was used and the feedback is communicated to the user via audio 

queues. The prototype is deployed in a smartphone to improve the user-friendliness. The distance 

estimation calculation is performed in an external server and the result is sent back to the 

smartphone.   

 

The main research question focused on this study is, 

1. How to find a solution to fill the detection gap of the white cane that arise due to its limited     

    reachability to improve the independent navigation of the blind?  

 

Under that, the following sub-questions were focused. 

1.1  How to generate data using simulation to detect target obstacles? 

1.2  How to develop a deep learning model from collected data that can be deployed in  

a mobile platform? 

1.3  What object detection algorithms or architecture should be adapted?  

1.4       What is the most suitable mechanism to estimate the distance of the detected  

obstacles? 

 

To improve the safe and independent mobility of the blind people, more insights about their current 

surroundings must be provided to them. Thus, they can avoid threatening obstacles and situations 

successfully. Considering the real-time performance and the high accuracy of the deep neural 

networks, a deep learning-based obstacle detection mechanism was proposed in this study to 

improve the navigation of the blind people.   
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To generate the data required to train the deep learning model, a simulation platform named AirSim 

was used.  A 3D realistic environment created using the Unreal game engine and to generate data, 

‘Computer Vision’ mode available in AirSim was used. Considering the requirement of mobile 

deployment of the prototype, to select a suitable deep learning architecture that is fast enough to 

run on mobile devices, various object detection architectures were studied. The SSD MobileNet 

architecture was selected to train the deep learning model using the TensorFlow machine library. 

A deep learning-based distance estimation method using MonoDepth algorithm was used in the 

prototype to estimate the distance. 

  

After evaluating the deep neural network trained for object detection, the mean Average Precision 

(mAP) of all the classes reached 70%. To evaluate the usability of the prototype, an experiment 

was conducted and the feedback was collected using a questioner. According to the feedback the 

usability and the effectiveness of the prototype system reached more than 60% and some drawbacks 

of the prototype were identified.  

 

The inference time of the obstacle detection model is always less than one second. But the latency 

of the depth estimation is higher. Thus, the obstacle detection is performed near real-time, but due 

to the latency of the distance estimation module, the overall latency of the system is higher. 

Therefore, as future work, it is expected to find a suitable approach to reduce the processing time 

of the distance estimation model. Another, important aspect of the system is the ability of 

functioning without an internet connection since there can be occasions which it is not possible to 

access the internet. As future work, it is also expected to focus on this aspect. 
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Appendix  
 

The following questioner was used to collect feedback from the participants in the usability 

evaluation experiments.   

 

1. Whether the place where the smartphone is positioned on the body is comfortable while 

navigating with the white cane? 

 

Please rate your experience according to the following criteria.  

Choose your feedback on a scale from 1 to 10. Select a number between 1 and 10 (inclusive) 

1 -Very Poor               10 – Very Good 

 

2. Does the belt holding the smartphone give you any extra hazel while navigating?  

 

Yes     No  

 

 

3. After receiving the feedback from the audio queue did you get enough time to avoid the 

warned the obstacle without colliding with it? 

 

Please rate your experience according to the following criteria.  

Choose your feedback on a scale from 1 to 10. Select a number between 1 and 10 (inclusive) 

1 -Very Poor               10 – Very Good 

 

 

4. If the frequency of audio queues were uncomfortable for the ear?  

 

Please rate your experience according to the following criteria.  

Choose your feedback on a scale from 1 to 10. Select a number between 1 and 10 (inclusive) 

1 -Very Poor               10 – Very Good 
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5. What is your feedback on the audio queue feedback? 

 

5.1. Do you like the method of delivering the audio queue to you?  

Yes     No  

 

5.2. If you do not like the headphone what alternatives do you suggest? 

 

 

 

 

 

6. Do you have any other improvements that you think the system could have to improve the 

independent navigation? 

 

 

 

 

 

 

 

7.   Please rate the overall usability of the system according to your experience.  

 

Please rate your experience according to the following criteria.  

Choose your feedback on a scale from 1 to 10. Select a number between 1 and 10 (inclusive) 

1 -Very Poor               10 – Very Good 

 

 


