IT Ticketing System with A Chatbot

W G A G P Sanjeewa
2020

I'T Ticketing System with a Chatbot

A dissertation submitted for the Degree of Master of
Information Technology

W G A G P Sanjeewa
University of Colombo School of Computing
2020

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any other
university/institute.

To the best of my knowledge it does not contain any material published or written by another person,
except as acknowledged in the text.

Student Name: W G A G Poorna Sanjeewa
Registration Number: 2017/MIT/070

Index Number: 17550706

Signature: Date: 11/11/2020

This is to certify that this thesis is based on the work of
Mr. W G A G Poorna Sanjeewa

under my supervision. The thesis has been prepared according to the format stipulated and is of
acceptable standard.

Certified by:

Supervisor Name: Damitha D.Karunaratna

Signature: Date:

Acknowledgements

| would like to express my sincere gratitude to all the individuals who supported me throughout this project.
First, | wish to express my sincere gratitude to my supervisor, Dr. Damitha D.Karunaratna, for his enthusiasm,
patience, insightful comments, helpful information and ideas that have always helped me tremendously in
writing of this thesis.

| also wish to express my sincere thanks to UCSC for accepting me into the MIT program as well as to all the
lectures at UCSC who had given me helps technically and mentally throughout my journey of completion this
project.

finally, 1 would also like to thank my parents and friends who helped me a lot and provide unending
inspiration.

Contents

N 14 { oo [0 1T} o H PRSPPI 1
1.1, IMOBIVATION o e e et e e e s ee e s 1
00 A ©] oY1= o 4 1Y 3P 2
1 T Yoo o PP PP 2
1.4. Dissertation Organization ... 3
P - - To €4 o TV T BRSSP 4
B S 1Y o = V£ 1S 4
2.1.1. FUNCHIONAl rEQUITEMENTS. ...uiiiiciiiee et e e e e s e e e s s e e e e e s sreaeeenasees 4
2.1.2. NON-fUNCLIONAl rEQUIrEMENTSviiiiiiiiie et e e s e e e s e e e e e eaeees 5
2.2. Overview of currently available systems in the market.........ccccceeeeiiiiiiccie e, 6
2.3, ReView Of SIMilar SYSEEMS.......ccii e e e e e et e e e e ar e e e e e e nreee e e eanees 7
P2 70 O O o T=Y o I Yo TU ol IR o] [4 o 13U 7
23,110 UVAESK i et a e e b e ae e e b nnee e 7
2.3.1.2. Zammad COMMUNILY [B]..eeeieiiiieeeiiiiie e ettt e e eciee e e ecrte e e e eire e e e tae e e e esraeeeeeeasaeeeeennnaeeeeennens 8
2.3.1.3. OSTICKEL [B] 1eureeeiiiiieieeeee et 9
2.3.2. ENtErPriSe SOIULIONS c.eeeiiei ittt e e eesect e e e e e e et bareeeeeeeesesanrrereeeeeeeeennnsreens 10
2 T A N o =Y oY =Y <] SRR 10
2.3.2.2. ViSiON HElPAESK [11]...ccoeiiciiieeeee ettt e eectrree e e e e e e eetra e e e e e e e e e senanrreeeeeseeeesnnnnnnens 11
2.3.3. Helpdesk Ticketing Systems developed by a Sri Lankan companies.ccccccvveeeviiveeennnnee. 12
2.3.3.1. Extremeweb Ticket Support System [12]cccoviciiiiiieeee e 12
2.3.3.2. Tryo service desk System[L13]ccoi i e e e e e e e e anaaees 12
2.3.4. Comparison of features between available solutions and proposed solution................... 13
2.3.5. Other systems vs the proposed SYSTEMcooiiii it 13
D T B 1= LY F{ o B =1 (=Y =AY 14
2,41, AIErNate SOIUTIONS ..co.eeiiiiiiieiee et ne e s e e e sne e 14
2.4.2. Software Development Methodology USedccccvveeeiiiiiiiiiiiiiiieeiee e 16
2.4.2.1. Iterative Waterfall MOdel..........oooiiiiiiiee e e 17
2.4.3. Tools Used to improve software development proCess.ccccvvveeeeeeeeieciirveeeeeeeeeeesesnnneen, 18
K T Y =1 d g Yoo [o] FoT =AY RO PUPRRPPP 19
I B U E N o [=N [- T={ - [O UPUSRRRPTPPP 19
3.2, ACHIVITY DIQEIAMS ..ttt bbbttt e betstetessbsssbssssssssebsbsbsssssssssbssnnnnnnnnnnnnnnnnns 21
I T ¢ T DT =4 =1 o 1 OO RO UUTRRRRPPP 25
3.4, SEOUENCE DIQBIaM ..eeeeieiiieieieiiieieieietetetetetatetebetetabetebeassetstesesssssssssassssssbsbesssssnsssssesssssnsnsnsnnnnnnns 26
3.5. ER (Entity Relationship) Diagrami.......ccccuiiiiiiiiiieiciie et 26

3.6. DY = | o RSl =] o] (S A0 Lo 1 1 <IN 28

3.6.1. WHhat is SQLAICREMY? oo s e st e e s e saae e e s stbaeeesnasraeeeenns 28
I R 611 F- 1 «To | AR O PP P PO UPPOPPPRTON 30
St T b T V71 [o T o V=Y o SRR 30
2 A I - Y oY1 0¥ =N 32
3.8, USer INterface deSIZNuuiiiiiiiiei ittt e e s e e s s ste e e s e sbae e e e sabaeeesnsraeeennns 33
- Tt I =Y 4 o T'o] = IR W 1Y Yo SRR 34
- Tt S B V1V o - 3 1o - ISR 34
3.8.1.2. Usage of Jinja to achieve reusabilityc.ccccoeiiiieiiiiiiii e e 34
3.8.2. Dynamically populate drop dOWNScoiieiiiiiiiiiiie ettt esre e e e e e saraee e 37
3.8.3. SN EMAIl.ciiiiiiiiiiie e e s s 39
3.8.4. DashbOard Charts.......cueeoiiieiiieeieeete ettt et e s sar e s nnee e 40
3.9, SECUITY IMIASUIES .eeveiiiiiiiiietiieieieietttetetetetat ettt bbb sssssssssssbsbssssssssssssssssssssnsnnnnns 41
3.9.1. Querying Database tables.........u i 41
3.9.2. Menu AUthOritY STrUCTUIE.......eeeiiieeee e e e e e e e e e e e e e e e aneaeees 42
I I T o LIV oY o B o =1 o 11 Y= PR 42
310, TESE PlaN et 43
3.11. Implementation ENVIFONMENTcoivii i e e e e e e e rrrr e e e e e e e e anreeees 44
N V7 | [V o [o o PSPPSR PR PRPPR 45
4.1. Additional capabilities and fEATUIESccoeieciiriieeee e e e 46
4.2, LESSONS IEAMMNT .ttt 47
4.3. Problems ENCOUNTEIedcooiiiiiiiiiiiieeeeee s 47
4.4, OVErall COMMENT ...t st 48
L €] o Tl [o] o EE P TP P P PPPOPPRON 49
RETEIEINCES ..ttt ettt e et e e s bt e e e bt e e e b e e e eabeeseab e e s neeesanneeeas 50
Appendix A - MYSQL tables created by python MOdels.........coovevviieiiiiiiiieiiee e 52
APPENIX B — TS CASES ceiiiiiieiciiiiiieiee e e e eeititee e e e e e e eesettreeeeeeeeesesastaeaeeeaaesesassssasseeaesssaassssssesaaaesannnns 54
AppPendix C—USEr ManUaluuiiiiiieeee ettt e e e et ar e e e e e e e e e s abbt e e e e e e e e e seannstreaeeaaaasenanns 56
AppPendiX D — AdMIN IMANUAL......uuiiieiieiiiiciieeeee ettt eeseearree e e e e e eessabrraeeeeeeeeseessstrsseeeeesssnnnns 60

List of figures

Figure 2.1 Use case of common help desk SYSTEMScouiiiiiiiiiie e e e e naeee s 6
Figure 2.2 UVdesk Create tickET SCrEEN........ci it e e et e e e rata e e e ssaaa e e e snsaeeeeannaneen 7
Figure 2.3 Zammad DashbOardcoooiiiiiiiece et e e s e e s r e e e s nra e e e s aaaee s 8
Figure 2.4 Zammad TICKET VIEW....oii ittt st e e st e e e s ba e e e s nsseeesnnsbeeesansaeeen 8
Figure 2.5 OSTICKEt TICKET fIlLI wuviiiiiiiee e e e st e e s ssba e e e sbseeessnbbeeesnnsaeeeen 9
Figure 2.6 HelpDESK tICKEE VIEW ...ccicuiiiiiiiiei ettt e st e e et bee e s s e e s s sabee e e s abeeeesnbaeesennnes 10
Figure 2.7 Vision Helpdesk INCIAENTS VIEWcccuuiiiiiiiiiiieiiie ettt et see e s see s s ree e s s sabee e s s abee e s snnnes 11
Figure 2.8 Vision Helpdesk MoODiIle APPueiiiiiiiiiiiiieeeiee ettt e s e s s bee e s s aree e e s nreee s snanes 11
Figure 2.9 Try0 SErviCe dESK SYSTEIM ...uiiiiiiiiiiiiiiieeeciee e ertee ettt e e e s e e s st e e e s sbre e e s s sbeeesssreeeessnbeeessnnsens 12
Figure 2.10 Projection of future traffic of major programming languages [14]ccccccevviieeiviieeeeeciiee e 14
FIZUre 2.11 HOW AJAX WOTKS [LB].uueeeeeeiiiiiiiiiiieeeeeeeeciiteeeeeeeeeeeetrteeeeeeeeeeetabasaseseesessssssssaesseesssssssssssaeseessnnnnnes 15
Figure 2.12 Iterative Waterfall MOAEl..........ooo it ree e e abae e s s nares 17
Figure 2.13 Git Hub repository of the Project........ i 18
Figure 2.14 Trello board of the ProjeCt.... ... i e e e e e arae e e e b ae e e e enrees 18
Figure 3.1 Trello board of the ProJECT ... e e e e e e e aree e e e nbee e e eenrees 19
Figure 3.2 All USErs USE CASE IABIaIMcccuuiiieiiiiieecciieeeecitee e ettt e e e s tte e e s etre e e e e bt aeesearaeeeansraeesesseeesensenesennsens 20
Figure 3.3 login to system and user base menu activity diagram........cccoccoeeieeiiiee e e 21
Figure 3.4 create ticket activity diagrami.... ..o e e e e abe e e e e are e e e e nrae e e eenrees 19
Figure 3.5 reply to ticket activity diagramc..eeieeiiiiiiecee e e ree e e e e ee e e e arae e e e eares 23
Figure 3.6 create user activity diagrami.ot e e bee e e e are e e e e nabee e s enreeeeennreeeeennrens 24
Figure 3.7 Class diagram of the system and USEr TYPESeeiiciiiieeciiie et et e e bae e e e 25
Figure 3.8 Sequence diagram of the Chathot...........ccuiiiiii e e 26
Figure 3.9 ER diagram of the chatbot tables.........ccouiiiiiiii e 26
Figure 3.10 ER diagram of the COre tables ...t e e rae e s e 27
= U T I R W Ty T g 1V o o = PP 19
Figure 3.12 Process flow of Chatterbotcoiviiiiiiee e e 30
Figure 3.13 Chatterbot cONfigUIationciiiiiiii e ree e s bae e s e earees 31
Figure 3.14 Chatterbot training datacceeii i e ee e s e e e st e e e e tbee e e s sabaeeeennnees 32
Figure 3.15 Chatterbot training PYthon COAEoiiiiiiiiie e e 32
Figure 3.16 how Chatterbot training data store in the databasecccocveeiiiiiiei e 33
Figure 3.17 Dashboard VIEW 0N @ |arger SCrEENcuuiiiieciieeecciiee ettt e st e e e sree e e s bee e e e sabee e e e snbaeeesnnnees 33
Figure 3.18 Dashboard view on @ SMaller SCrEENooocuiiii et e e e 34
Figure 3.19 Jinja usage to diSPlay MENUciiciiiiie ettt e e e tre e e e et e e e et ee e e eareeeeenraeeeennsees 35
Figure 3.20 Jinja usage to display active MenU iteM.........ouii i e e 35
Figure 3.21 selected MENU IEMue e e e e e e e et e e e e e e e e nabeeaeeeeeesssnsseaaeeeeesennnnnes 36
Figure 3.22 JavaScript and python usage of dynamic dropdown population...........cccceeeeiieeieiiieececiiee e, 37
Figure 3.23 call “create_reportto” function when department change.........ccccoeeeecieiecciec e, 37
Figure 3.24 “create_reportto” fUNCHIONcoic i e e e e e e e e are e e e e areee e e eanes 38
Figure 3.25 “reportto” python fUNCLIONoociiiie et e e e e e e e et e e e e aree e e e eaaes 38
Figure 3.26 “sendemail” python fUNCHIONcuiiii et e e rre e e e earae e e e 39
Figure 3.27 pass parameters to dashboard HTML page using pythoneeeeeiiiiccciiiieeee e 40
Figure 3.28 create bar chart using chart.js using received parameters.......ccccocvveeivccieecccieee e e 40
Figure 3.29 created chart using received ParameELersveivciieieeiiee e abae e e e 41
Figure 3.30 simple SQLAIchemy query with table JOINScoiciiii i e 41
Figure 3.31 if non admin user tries to access admin URL, he will see this........ccccceeevieiiiiiieiiiiciee e, 42
Figure 3.32 python bcrypt for password hashingoooiiiiiiiiiee e e 42
Figure 3.33 hashed passwords in the databasecoeeiiiiiiiiiic e e 42
Figure 3.34 System code and folder STrUCTUIEccccuviiii e ee e e 43
Figure 4.1 LOW Priority TICKETvviiieiiiie ettt e et e e e ae e e e st e e s sanbaeeeenabaeeeenabeeeeenseeesennsens 46
Figure 4.2 Medium Priority tICKETuii e e s e e et ee e e et ee e e earaee e enrees 46
Figure 4.3 High Priority tICKEt.......oo it s e st e e s e e e e et e e e e e abee e e eareeeeennnees 47

Figure A.1 DepartMeENnt IMOGEIoo ittt e e e s e e e e st e e e et e e e eenabaeeeenaseeeeennbeeeeennsens 52

Figure A.2 TiCKetmMaster IMOAE]uviiiiiiiie e e e e e e e et ee e e et a e e e e abae e e enbeeesenraeeeennsees 53
FIBUIE C.1 LOBIN SCIBN e 56
= U O D -1 o] o Yo - o PP 57
Figure C.3 TicKet Creation Page .. . ittt e e et e e e st ae e e s abee e e sabeeeesnbeeesennsens 58
Figure C.4 Ticket Creation SUCCESS MESSAZE.....cuuuiiiiiiieieeiiieee ettt e ssitee e e sbaee e e sbbeeessareeessabeeesssareeessnaseeessnnsens 58
FIUre C.5 Chat WINQOWuuiiiiiiiiie ettt e e st e e st te e e s st ae e e s s s beeeesnsbaeesensbeeeseaseeessareeessnnsens 59
= UL T X [0 11 T =T o T PP 60
=V D I X [o WU =T o o Y- V- S PP 60
Figure D.3 User Creation SUCCESS MESSAZE ...uurtieeieeririurirteeeeeeaarairtrteeeesssasasararteeeesssssasnesteesesssssassssseeesessssssnnne 61
Figure D.4 The E-mail received DY the USEr ...t e s abee e s s 61

Vi

List of Tables

Table 2.1 Comparison of features between available solutions and proposed solution...........ccccceeevieeennnnee. 19
LI o] To T8 Y AT @ LI U =T =1 o[PP 28
Table 3.2 USEI I0ZIN 1O CASE....uuiiiieciiiieciieee ettt ecte et e et e e e et e e e e st be e e s e abeeesesbaeesansreeeesnssaeeeennreeeeennsens 43
Table 3.3 All Software, Hardware and tools USed..........cooovviiiiiiiiiiiii 44
Table 4.1 ObjJective EValUGLION......cccciiii et e e st e e e e te e e s eabe e e e e abeeeesnasaeeeenraeeeennsens 45
Table A.1 MYSQL DepartmMeENt tABIEccccuuiiiieiiie et e s et e e e et re e e e e e e e e enbaeeeennres 52
Table A.2 MYSQL Ticketmaster tableuei oo e e e e e abe e e s e aba e e e e ares 53
Table B.1 Ticket Creation TESTCASE.uuiiiiiieie ettt et e e et e e et e e e s e ate e e s e abeeesesreeeeesreeeeennreeeeennsens 54
Table B.2 Reply t0 an assign ticket tESTCASE.....cuuiiii et e e e e e rrre e e e eabe e e e eenres 55

vii

List of Abbreviations

AJAX
CSS
ER
HTML
ORM
(0N
RDBMS
SDLC
saL
ul
UML
URL

YAML

Asynchronous JavaScript and XML
Cascading Style Sheet

Entity Relationship

Hyper Text Markup Language
Object Relational Mapper
Operation System

Relational Database Management System
Software Development Life Cycle
Structured Query Language

User Interface

Unified Modelling Language
Uniform Resource Locator

Yet Another Markup Language

viii

1. Introduction

In recent years, there has been an immense increase in using information systems by businesses. Most of
the businesses nowadays use several information systems for different types of operations. As an example,
an Insurance company can have core insurance system for their main insurance activities as well as
distribution management system for monitor their adviser performance, customer service software for
manage inbound and outbound communication, HR system for manage employee-related information and
tasks. All these systems are accessible via company network and this entire enterprise IT environment plays
a major role in the daily business operations. So that, keep these systems up and running and prompt
solutions for issues are very important. That is where the IT help desk software comes to the picture. IT
helpdesk ticketing software is being used by companies to provide a centralized facility to troubleshoot and
facilitate solutions to IT-related issues.

1.1. Motivation

Information systems are made up of hardware, software, databases and networks. But the internal end-
users of those systems are mostly non-technical people. If a technical issue arises, end users must have a
way of informing those to the IT department. The purpose of an IT help desk is to make sure the high
availability of information systems by providing prompt actions to end-users’ technical issues. This is a very
critical piece of any company.

Based on the company size, the number of issues per day could be varied. For large companies like banks,
insurance companies etc. this could be hundreds or thousands per day. Most of those are regular issues
which can resolve easily. Spending time on that kind of issues unnecessarily will cause delay on most
important ones.

Following are the main problems every organization face when it comes to managing IT help desk activities.

e How to manage a large number of user request efficiently?

e How to document and keep track of the issues?

e How to check whether service level agreements are met or not?
e How to get user feedback about the service they received?

e How to prioritize requests? Which one to attend first?

e Can customer service agent resolve the issue immediately? If not, how can customer service agent
assign that issue to relevant person? And keep a track of it?

e How to check statuses of the issues raised by each user and what is the progress of it?

e |sthere a way to resolve end-users’ issues without human interaction?

e How to check weekly monthly or yearly activities of end-users, help desk agents as well as other
supporting staff?

1.2.

How managers can view their subordinates’ activities?

How to reduce the cost and time taken to resolve technical issues?

Objectives

The overall aim of this project is to provide an innovative solution for most of the issues faced by businesses
when maintaining internal helpdesk activities. To achieve this, the following are some important objectives:

1.3.

Solve the recurring issues using an automated way (A chatbot) which reduce the time and cost taken
for issue solving. Which makes more time to focus on important or urgent issues. Users can chat
with the chatbot first and try to find a solution before raising a ticket.

Reduce the number of calls received to help desk agents by letting end-users to raise a ticket using
the online system.

Train the chatbot based on user feedback to increase the accuracy of the chatbot.
Make it easy for relevant parties to attend urgent issues first based on prioritized tickets.
Self-evaluate the tickets being assigned or work has been completed.

Manage the issue solving workflow with a more transparent way which all the involved parties can
check the progress.

Improve the end-user satisfaction about overall technical issues solving process.
Ease management decision making regarding IT helpdesk tasks.
Enhance the quality of service and meet the service level agreements of IT help desk.

Improve the efficiency of overall IT help desk functions.

Scope

This project involves developing a web-based IT ticketing system with a chatbot. Which would help
to manage IT helpdesk functions efficiently and cost-effective way in the medium to large
organizations.

This system will only manage IT-related issues which occur within the organization. Customer
support features are out of scope.

When a user starts to chat with the bot, he will ask a set of questions to understand what the issue
is. Then chatbot will ask the user to follow some instructions to resolve the issue. If chatbot doesn’t
have an answer, he will ask to raise a ticket.

At the end of the project, the chatbot will be trained to solve some recurring issues. Not very complex
issues.

2

1.4. Dissertation Organization
The rest of this dissertation is organized as follows:
Chapter 2. Background

In this chapter, we give a summary of background information relevant to the implementation of the
project. Also, this consists of analysis about the requirements as well as a review about the similar systems
and technologies. After we have a comparison of alternative design strategies, this includes development
strategies, hardware and software strategies.

Chapter 3. Methodology

This chapter mainly describes the design and structure of the system. Design of the system includes various
types of diagrams which explains the database design, sequence of the system functionalities, different type
of users and the functionalities they use. The major codes and modules, as well as the system test plans, are
also explained here.

Chapter 4. Evaluation

This chapter explains whether the project objectives satisfied or not, what are the lessons learnt during the
project, what kind of problem we faced, have all aspects of the system tested and are those up to the
expected level.

Chapter 5. Conclusion

This chapter gives a summary of the results of the project, some of the future work that could be done for
further enhancement of the system.

2. Background

There are few researches about the helpdesk systems. The askspoke.com’s help desk research [1] shows that
help desk software has a big impact on ticket resolution time, and overall productivity of the business
functions. This research shows how important a Ticketing system for a company. But unlike other software
systems, there are not so many IT-specific Ticketing systems available in the market. This project aims to add
extra features which not available in the market.

Why do we use a chatbot for this IT ticketing system?

According to salesforce.com’s chatbot statistics 2019 [2], 77% of customers say chatbots will transform their
expectations of companies in the next five years. Also, as they mention “53% of service organizations expect
to use chatbots within 18 months — a 136% growth rate that foreshadows a big role for the technology in
the near future”. “The ‘State of Service’ research found that 80% of service decision-makers believe Al is
most effective when deployed with — rather than in place of — humans.”

These statistics clearly show the importance of a helpdesk system, as well as Al technologies, are the future
of all kind of technologies. This project focus on getting benefit from Al chatbot. Which provide business
users to more time to focus on critical business functions rather than wasting time on technical issues.

2.1. Analysis

System analysis fills the understanding gaps between technical and non-technical project stake holders. It
describes how the current available systems operates and the what are the requirements of the proposed
system.

2.1.1. Functional requirements

Functional requirements describe the functions of the system. What types of task the system performs.
Following are the functional requirements of the proposed IT ticketing system.

e Create and maintain user profiles

e Reset password on first login.

e Ability to Set up the initial parameters of the system. Initial parameters include SLAs, Priority Levels
etc.

e Menu access based on user roles.

e Dashboard with pie charts which represents the details about the tickets they got assigned, tickets
they assigned to others and tickets they closed.

e Create tickets, assign to users and manage tickets.

e Add comments, reassign, close tickets.

e Filter and view tickets.

e Relevant users get Email notifications for all the activities which requires his/her attention.

e Atrained chatbot with solutions to recurring simple IT issues.

2.1.2. Non-functional requirements

Non-functional requirements are the specification that describes the system’s operation capabilities and
constraints that enhance its functionality.[3] Following are the non-functional requirements of the system.

Privacy — All User password are hashed before save to the database. No one can view or use those
unless user share password.

Security — System use flask SQLAlchemy extension for querying the database. So, SQL injection
attacks are almost impossible.

Efficiency — Because of the system uses the flask SQLAIchemy extension, it never renders a literal
value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query
optimizers to cache query plans effectively. [4] Because of that, SQL query performance are high.
Also, THE System uses thread-based processes for sending email and some other tasks. So, system
users do not have to wait till those tasks competed to perform another task.

Accessibility — Because this is responsive web-based system, users can access this form anywhere
using any device like PC, Tablet or mobile.

Availability — Because this is web-based system, Availability is high. Also testing process ensures the
minimum system issues.

Efficiency — System design in high efficiency in mind. As an example

Accuracy — System developed with high level of validations both in data input screens as well as
database. Accuracy of the data available in the database are high.

Maintainability — There are number of configurable parameters available. Business does not need a
programmer to maintain the system.

2.2. Overview of currently available systems in the market

Following use case represents the currently available systems. It shows the general view of all the available
system in the market and interaction of the users with those.

Common help desk systems

Create and manage user accounts

Change user password

Manage system issues Admin

Login and logout from the system

Create new Ticket

zer

Add comment to a ticket

Close a ticket

Figure 2.1 Use case of common help desk systems

2.3. Review of similar systems

There are a number of customer relationship management (CRM) systems and Help desk systems are
available in the market. But IT-related helpdesk ticketing systems are less compared to CRM systems. Here
we have divided the similar systems into three categories. That are open source systems, Enterprise systems
and Systems developed by Sri Lankan companies.

2.3.1. Open source solutions

Open source solutions are available publicly for free. These kinds of software are developed collaboratively
by many developers. Most of the open-source systems have its own enterprise version as well. Usually,
opensource systems come with limited features. Following are some most popular open-source helpdesk
ticketing solutions and its features.

2.3.1.1. UVdesk [5]

UV desk is a popular open-source, PHP bases helpdesk system. This solution has an enterprise edition as
well. Following are some of the useful feature of the open-source system.

e Insight reports

e Ticket management

e Mailbox

o Knowledgebase

e Agents and customers management

<Bake Tickets

o Subject ﬁ::“l:mer Customer Email Timestamp Group Team Type Replies Age

& #10 Welcome To Uvidesk ::\f_, customer@demacom 110419 NiA M support O

Figure 2.2 UVdesk create ticket screen

2.3.1.2. Zammad Community [6]

Zammad is an open-source user support and ticketing system. This is a simple web-based system which is

initially developed by a Germans. This system is developed using the Ruby programming language. Following
are the main features of the system [7].

e Dashboard

e Ticket management

e Supports individual escalation or setting client solution time limit
e Multilingual support

e Two-factor-authentication

Activity Stream

Emma Taylor updated Ticket
Thanks! Great service!

My Stats

@ WAITING TIME TODAY MooD CHANNEL DISTRIBUTION
v Christopher Miller updated
Q a V&) Ticket Order 777555
My handling time: 24 minutes 0 of my tickets escalated. Q Anna Lopez updated Ticket
Order 777555
ASSIGNED YOUR TICKETS IN PROCESS REOPENING RATE
'a David Bell created Ticket
complaint wrong delivery of
- - order #51519891
Tickets assigned to me: 34 of... 85% are currently in process 2% are being reopened Ryan Parker created Ticket
Order 887956

‘-‘a Emily Adams created Ticket
Order 787956

2 Samuel Lee created Ticket
& Order 787556

Figure 2.3 Zammad Dashboard

4 Ticket »
Order 887956 Sales
Emma Taylor

Hi, 'a

please send me: pending reminder
1 x Café Kopi susu E
& x Viennese melange

Delivery Address: 11/06/2016 at 0733
David Bell
Eiffel Tower
5 Avenue Anatole France
2 normal
order

kopi susu

Figure 2.4 Zammad Ticket view

2.3.1.3. OSTicket [8]

This is another popular open source-system available for users. This system also has a community edition.
This system is developed using PHP language. Following are some interesting features of this system.

e Custom Fields

o Ticket Filters

e Agent Collision Avoidance
e Assign, Transfer, & Referral
e Thread Action

e Service Level Agreements
e Tasks

Add Mew Filter

Filtars are axacuted based on execution order Filter can tanget spacific fickst source.

Filter Mams: Caustom Filter
Execution Order: 1 {1..85) = Stop procasaing further cn matchl
Filber Status: D Active ' Disablad *
Target Channal: Aty N
T Filter Rules ¥ Filter Actions & Infernal Mofes

Fittar Rules: Rulas ara aoplied based on the critaria, *

Bl fatzhing Criteria; Match Al 8 Match Any * feasa-insensitve compaisan)
Usar | Email Addrass = Contains * | @wabeatviniage, com
— Salact Dna — ¥ | — Selact One — %
Q) feict Aule
Aad Flitar Resat Cancal

Figure 2.5 OSTicket Ticket filter

2.3.2. Enterprise solutions

Enterprise solutions are commercially developed, usually owns by a company and users have to purchase a
license or a subscription to use the system. These systems sell to customers with certain conditions and
restricted from modifying or redistribute. There are so may helpdesk ticketing systems are available in the
market. Following are the top two Help Desk ticketing systems according to capterra.com [9].

2.3.2.1. HelpDesk[10]

This is an online ticketing system which aims to simplify work within the team. It also helps to save the time
of the customer service agents and enable them to provide the highest level of customer service. Following
are some interesting features of the system.

e Categories

e Filters

e Smart search

e Ticket details

e Attachments

e Tagging

e Email notification

& Back Shoe size question # Details
tinfo
Lisa Goodman 26 Mar 2019, 1:31 PM ~
D Copy URL
. 1
Hi,
Are these shoes https://.../red-boots available in size 77
Thanks, Lisa
©
signed ticket to Patricia 5 Mar 2019, 1:32 PM
4% Jane - Private message 26 Mar 2019, 1:32 PM +hdd tag
Let her know she can also check on our website the availability at the store closest to her. nsibility
Change
Patricia 26 Mar 2019, 1:33 PM
Change
HiLisa,
Thank you for your message.
Your dream shoes are in stock.
ister Change

You can order them online or check the availability at the local store that's closest to you here:
https://.../red-boots/availability

Let me know if you have any other questions.

Best regards, Patricia
jare peop!

@ Recent tickets

0 Ticket status | Pending ~ m

Figure 2.6 HelpDesk ticket view

10

2.3.2.2. Vision Helpdesk [11]

Vision Helpdesk is all in one customer support help desk software. It allows managing various channels like
e-mail, web forums, twitter, facebook and calls. This product is used by more than 1500 companies across
the globe. Following are some interesting features available in this system.

o Workflow

e SLA & Escalation

e Notifications

e Ticket based billing
e Task Management
e Mobile App

& o Home / Incidents e A Y =
SOLO™ Telecom
Resesrch and Development « | Incidents (12)
General ~
1to120f12 | < - ’
Open
- Incident hash Subject Email Department Priority
Awaiting
osed = 5BBL-704899 €Can | host the Helpdesk on my own servers yogesh patil2436@gmail.com Technical Support Critical
ose
= BNMO-426289 Are you ITIL certified john_gudhino@gmail.com sales
Resolved
pending = BALW-032197 Helpdesk Annual Billing boris_rebello@hotmail.com Billing
al = GZBW-157740 GDPR Compliant renusharma19@rediffmail.com sales Low
ales -
= HLFD-426470 Urgent Help for helpdesk installation Priyanka@yahoo.com General Low
Technical Suppart v B " > e
il f SJRI-520141 1have query about 4G plans max@iamdemo.co Research and Development
gilling -
< HBRL-827243 Call @ Sales team General
Marketing v
= REVF-766329 i Sales Low
T . ® Meeting with AsiaPacific Business
General v L J RMNF-743051 Best of luck for new team demo@demo.com Research and Development
Customer Support Department v = GBJK-993199 Looking for Helpdesk braganza.dennis@gmail.com General Low
gilling Department - = RMPR-286228 V5 - compatibility with php 7 adolf-thopil20@gmail.com General
Open = WTH|-363716 Your request for Helpdesk on live chat adolfvhd@gmail.com Sales
Awaiting
- 1to120f12 | ¢ - >
Closed
Resolved

Figure 2.7 Vision Helpdesk Incidents view

Filters Activity

Owerdue

Assigned

m

Inbox Create ficket

2 =

Figure 2.8 Vision Helpdesk Mobile App

11

2.3.3. Helpdesk Ticketing Systems developed by a Sri Lankan companies.

There is a limited number of helpdesk Softwares developed by Sri Lankan companies. Following are two
software solutions available in the Sri Lankan market and its features.

2.3.3.1. Extremeweb Ticket Support System [12]

This is an online help desk software solution for handling client requests through a web-based support ticket
system. Following are the features available in the system.

Online Help Desk Software with a Role-Based Access
Email Notifications

Unique Ticket ID

Custom Ticket Status & Auto Status Update

Allow / Disallow File Upload

Ticket ID Recovery

2.3.3.2. Tryo service desk System[13]

This is also an online ticketing system which is developed by Tryonics(PVT) Ltd. It has very limited features

like,

Log reported incidents.
Maintenance of service standards.
Report generation for issue analysis.
Alerts

Helpdesk

Figure 2.9 Tryo service desk System

12

2.3.4. Comparison of features between available solutions and proposed solution

Open Source Solutions Enterprise solutions Sri Lankan Developed
Vision Our
Feature UVdesk Zammad | OSTicket | HelpDesk | Helpdesk | Extremeweb Tryo solution

Insight reports / Dash Board YES YES YES YES YES Not mentioned | YES | YES
Ticket management YES YES YES YES YES YES YES YES
Mailbox YES NO NO YES YES NO NO NO
Knowledgebase / FAQ YES NO NO YES YES NO NO YES
Agents and customers
management YES NO YES YES YES NO NO NO
Multilingual support NO YES NO NO NO NO NO NO
Two-factor-authentication NO NO NO NO NO NO NO Future
Custom Fields NO NO NO YES NO NO NO NO
Ticket Filters YES YES YES YES YES YES YES YES
Thread Action NO NO YES NO NO NO NO YES
Service Level Agreements NO YES YES YES YES NO NO YES
Priority Levels NO NO NO YES YES NO NO YES
Tagging NO NO NO YES YES NO NO YES
Email notifications NO NO NO YES YES NO NO YES
Workflow NO NO NO YES YES NO NO YES
Mobile App NO NO NO NO YES NO NO Future
Alerts NO NO NO YES YES NO NO YES
Web based YES YES YES YES YES YES YES YES
Chat Bot NO NO NO NO NO NO NO YES

Table 2.1 Comparison of features between available solutions and proposed solution

2.3.5. Other systems vs the proposed system

The proposed system is specifically for IT-related issue solving within the company or organization. But all
the commercially available helpdesk systems are focus on general Customer Relationship Management
(CRM) activities. So that instead of features like the agent and customer management available on
commercially available systems, the proposed system has role-based employee profile management feature.

None of the available systems has used Artificial Intelligence (Al) related technologies for better issue solving.
But most of the systems have a live chat feature, which is required another employee to respond to the
messages. But the proposed system uses a chatbot to resolve issues quickly and efficiently with minimum
errors.

13

2.4. Design Strategy

There are multiple Software development models, tools and technologies available today. For this project,
there are some open-source software components used as well as there are some components developed
from scratch.

2.4.1. Alternate Solutions

There is plenty of hardware and software available for design developed software systems. Following are
the software, hardware and tools used for the development of this system.

Desktop application or Web App?

Web-based systems can be accessed via the internet using any device with internet access. But the
desktop application must be installed on a computer before using it. It also depends on the
operating system installed on the computer. Web-based applications can be scale very easily when
using cloud-based solutions. So, for this project, we develop a web app.

Programming languages?

There are different types of programming languages available for web app developments. There are pros
and cons for each of these languages. The main programming language selected for this project is Python.
Following are the main reasons to choose python over other web development languages.

e Python is considered as easy to learn a language.

Keep gaining popularity as backend web development language

Lots of framework choices

Available more tools to support with compared to other languages (E.g.: Debugger packages)

Python usually considered as modern, versatile and simple language compared to languages like
PHP

e Python has a large community support.

Projections of future traffic for major programming languages

Future traffic is predicted with an STL model, along with an 80% prediction interval

15%

F -
]
c
<]
£
F =
g) A
[} 10% AA - . \
g ’ \,/\—\ / / .
2 —~\/
3 p v
> w/v‘
c
9 \/\/ “\,/\‘\/\/V
] -
g, 5%
T
[
>
o
“
o
X
0%
2012 2014 2016 2018 2020
- python - java { - javascript . -C# - php - C++

Figure 2.10 Projection of future traffic of major programming languages [14]

14

Python framework?

Flask python framework used to develop this project. There are multiple python frameworks are available.
Most popular options are Django and flask. There are many other python frameworks as well. As an example,
Tornado, web2py, Flacon and Pyramid can be considered. Flaks is generally considered as easy to learn
framework compared to Django. Also, Django is more suitable for large projects like E-commerce sites.

Database?
MySQL selected as the database of the project. There are plenty of options available when it comes to
RDBMS. MySql is the most popular open-source RDBMS system available today. But the current trend shows
the decreasing of its popularity. The main considerations for selecting MySq| for this project are,

e MySql opens source.

e lLarge community support.

e High reliability.

e Still the world’s most popular opensource database.

Ul Framework?

Bootstrap used as a front-end framework for this project. Without any argument, Bootstrap is the world’s
most use frontend web framework currently available. It uses HTML, CSS and JavaScript. Bootstrap has many
articles, tutorials, plugging and templates available.

Chatbot development?

ChatterBot python library used as the main framework for the chatbot of this project. “ChatterBot is a Python
library that makes it easy to generate automated responses to a user’s input. ChatterBot uses a selection of
machine learning algorithms to produce different types of responses. This makes it easy for developers to
create chatbots and automate conversations with users.” [15] There are many commercially available
chatbots are there. ChatterBot is easy to integrate with Flask.

Other?
There are few other open-source tools/plugins being used for this project.

e AJEX - AJEX used to send data between Flask and web browser. Following figure (Figure 2.10)
Shows how the AJEX works.
Browser Server
An event occurs...

»Create an] ? s Create a response and
XMLHttpRequest object send data back to the
browser

® Process HTTPRequest

& Send HttpReguest

Browser

*Process the returned
data using JavaScript —

r

sUpdate page content

Figure 2.11 How AJAX Works [16]

15

e DataTables — “DataTables is a plug-in for the jQuery Javascript library. It is a highly flexible tool, built
upon the foundations of progressive enhancement, that adds all of these advanced features to any
HTML table.” This jQuery plug-in used for tables development in the frontend. [17]

e Chart.js — This is a plug-in for Simple, clean and engaging HTML5 based JavaScript charts. [18] This
plug-in used to create charts on the dashboard page.

2.4.2. Software Development Methodology Used

Following describe the thinking behind the decision of selecting Iterative waterfall methodology as the
development methodology of this project.

The Software development life cycle (SDLC) model used for this project is the iterative waterfall
methodology. Following are the main reasons to choose iterative waterfall methodology.

e This is a mid-sized software project and the requirements are clear.
e Product definition is less dynamic
e Since only one developer is working on the project, complete each phase one at a time is easy.

Following are the reasons for not using other SDLC Methodology.

e Traditional waterfall model — In this model, there is no way to do that changes. Once a step is done
changes doesn’t accept.

e V-model (Validation and Verification model) — This methodology mostly suits for the projects where
failures and downtimes are minimal. (Example — Medical software)

e Spiral model —This methodology suits for a project where requirements are unclear at the beginning,
very large and complex projects. (Example — Research and development projects)

e The Rational Unified Process (RUP) — This is mostly suited for Large, high-risk projects.

e Scrum, extreme programming and other agile methodologies — Agile is the most popular SDCL
nowadays. These methodologies are the best suit for projects when a group of people work on.

16

24.2.1.

Iterative Waterfall Model

Iterative waterfall model contains the same steps as the traditional waterfall model. But the difference is the
iterative model allows changes to the previous phase. “The iterative waterfall model provides feedback
paths from every phase to its preceding phases, which is the main difference from the classical waterfall

model.” [

19]

[Feasibility Study

Requirement analysis
and specification

[Design

[Coding and unit testing

-~

Integration and system
testing

-

[Maintenance }

Figure 2.12 Iterative Waterfall Model

Feasibility Study: The main goal of this phase is to determine whether it would be financially and
technically feasible to develop the software. The feasibility study involves understanding the
problem and then determine the various possible strategies to solve the problem. These different
identified solutions are analysed based on their benefits and drawbacks, the best solution is
chosen and all the other phases are carried out as per this solution strategy.

Requirements analysis and specification: The aim of the requirement analysis and specification
phase is to understand the exact requirements of the customer and document them properly.
Design: The aim of the design phase is to transform the requirements specified in the Software
requirement specification (SRS) document into a structure that is suitable for implementation in
some programming language.

Coding and Unit testing: In coding phase software design is translated into source code using any
suitable programming language.

Integration and System testing: Integration of different modules are undertaken soon after they
have been coded and unit tested. Integration of various modules is carried out incrementally over
several steps.

Maintenance: Maintenance is the most important phase of a software life cycle. The effort spent
on maintenance is 60% of the total effort spent to develop full software.

17

2.4.3. Tools Used to improve software development process.

Following are two software tools used throughout the project.

Git used for version control. As the Git structure, only two branches being used. One as development and
the other one is the master branch. There is no need for having so many branches as only one developer
working on this project. The main reason for using git here is to keep track of the changes made during the
project life cycle.

<>Code (1) lssues 0 [Pull requests © © Actions] Projects 0) Security 0 [ii Insights £ Settings

Uni final project Edit

Manage topics

<1 commit 7 2 branches 9 0 packages © 0 releases
Branch: master v New pull request Create new file Upload files | Find file Clone or download ~
' poornast First Commit Latest commit dee2b82 on Feb &
i vscode First Commit 3 months ago
B _pycache_ First Commit 3 months ago
B env First Commit 3 months ago
I ticketing First Commit 3 months ago
B app.py First Commit 3 months ago
Add a README with an overview of your project. Add a README

Figure 2.13 Git Hub repository of the project

Also, Trello [18] (A work management tool) board used to keep track of the tasks which need to be
performed, which has completed and what are the task currently InProgress. Trello is a collaboration tool
that organizes project task into board stickers. This mainly used by agile development. Even though this
project uses the iterative development model, this software tool is used to manage small tasks.

@ [B Boards

Ticketing System ¥ Personal

Things To Do Doing Done

install c++ tools Developing Chatbot Create user fuction

+ Add another card = + Add ancther card n Add all columns to create user

Auto update inserted and updates
timestaps

Password Encryption

Database design for user module

Use one template file for navigation
menu. Use that template to all the files

Select a suitable bootstrap template
and customize it

=+ Add another card

Figure 2.14 Trello board of the project

18

3. Methodology

This chapter will explain in detail the methodology and the design is being used to develop the project. How
the system processes work, what are the software and tools being used, what is the database structure looks
like and what are the mechanism being used to develop some security aspects of the system. System
developed and designed using object-oriented concepts and modelling. UML diagrams are being used to
visually represent the system.

3.1. Use case diagrams

Use case diagrams show the interactions between users and the system using structured text and visuals.
Following figure 3.1 and 3.2 show the interaction between system users and different functions of the

system.
//_—\ ==Include=> alidate user name
w ---------- and DEEEIJIIII-Drd
-==Include>> _ pficpiay both common users' ment
items and admin options
Create User accounts ==Include=>
" zzincludes= » ’@
.... c<intiudes=
Reset user passwords
Admin
Users
Remove users
Addidelete/update lookup table
) we =T data
System confogurations ==*" zzInclude==

Figure 3.1 Trello board of the project

e After login to the system Admins users has more options in the menu. That options are not accessible
for other users.

e Admin can create user accounts and it will trigger an email to the user account holder.

e Admin has authority to rest user password and once password resets an email will be sent to that
user.

e Admin can remove user accounts.

e Admin can add, delete or update lookup tables (E.g.: Department table, User grades table)

19

All users

z<=Include:=>

alidate user name
and password

Login to the system

_==Include==>

View dashboard

Create ticket

isplay only common users' meni
items

_ ==Include==

Assign/ reassign ticket to

<<Include==--
relevant user

T 4
z<Include=>"

<:~:Include:~:— e

validate whether the closed date within
last 30 days

Re-open a closed ticket

validate whether the accessing user same

as created user
c.-ilnlzlm:lem>

Change own password
Search other users

=zInclude:==

View other users' profile
' use chat data to train the bot
=<zInclude==
Chat with chat bot

Figure 3.2 All users use case diagram

el

After login to the system, all other users apart from admins see the same menu options. Admin
sees more admin options.

Users can see their dashboard as soon as login to the system.

Users can create a new helpdesk ticket. Assign that to a user can be done while creating the ticket.
Once user click create button, the ticket will be created, and an email will trigger to the ticket
assigned user.

20

3.2

Users can see all the tickets assigned to them on the dashboard and reply. Tickets can be re-assign
if needed. An email will trigger once the reassignment happened.

Users can re-open a closed ticket within the 30 days of the ticket closer. But only the ticket created
user can re-open a ticket.

Users can view all the ticket created in the system.

Users can search for tickets by different parameters.

Users can view all the tickets which are created by themselves.

Users can view Tickets which is created by his/her team.

Users can view their own user profile details and change their profile picture.

Users can change their password

Users can view and search all the other users in the system.

Users can chat with the chatbot and get answers to most of their issues.

Activity Diagrams

An activity diagram shows the flow of one activity to another activity in the system. Activity diagrams are a
bit similar to flow charts. Start of the process is denoted by a filled circle and end of the process denoted by
a filled circle inside another circle. Round cornered rectangles show the activities.

Figure 3.3 Activity diagram shows the login process and user-based menu control of the system.

Enter user name and
passwaord

.

Validate user name
and password

[Invalid] }_| Show error

message
[valid]
[An admin user]
[Mot an admin user]
. how regular use
Show Irﬁgm?ruserl Fmenu + admin ’]
men

@

Figure 3.3 login to system and user base menu activity diagram

21

Figure 3.4 activity diagram shows the ticket creation process and its validations. It represents the high-level
logic behind each validation layers.

Enter detzils * -,

!

Click enter button

[Required field/s empty] Show error
message
Y

[No Required field empty] [one or more
aftachments are
bigger than 2ME]

[Attachment/s available]

[=ach
attachment is

[No attachment] smaller than 2ME]

message

[Show success]

Figure 3.4 create ticket activity diagram

22

Figure 3.5 activity diagram represents replay to a ticket activity. It contains assign ticket to the correct user.
The default selection of the reassign user is the last reply user. If that’s not the correct user to reassign this

time, reassign to required user.

Enter reply r -
[Default
reassignment
wrong)
[Default _
reassignment Reasszign to
correct] correct user

ﬁ—L

Cllck enter bul‘tun

[Required field/s empty] Show error
message

F Y

[No Required field empty] [one or more
attachments are
bigger than 2ME]

[Attachment/s available] <>
[=ach

attachment is
smaller than 2ME]

[Mo attachmenf]

Show success
message

Figure 3.5 reply to ticket activity diagram

23

Figure 3.6 activity diagram shows the create user activity. It contains the initial password setup, Username
validation and other validation activities.

I.r

| Fill user details l‘ -

|

| Click submit button

[Required field/s empty] .| Show ermor
o message

-~

[Required field’s
not empty]

[password and
confirm password

[password and not match]
confirm password
match]
A
[User name
already exits]
[User name

not already exits]

Show success
message

Figure 3.6 create user activity diagram

24

3.3. Class Diagram

“Class diagrams are used when developing an object-oriented system model to show the classes in a system
and the associations between these classes. Loosely, an object class can be thought of as a general definition
of one kind of system object. An association is a link between classes indicating that some relationship exists
between these classes. Consequently, each class may have to have some knowledge of its associated class.”
[21]

Figure 3.7 shows the high-level view of system classes and it's main methods.

Ticket
TicketiD
-7 Titie 1
1 Description
Liser _
Validate()
UserlD Add ticket()
Chathot Usemamme
- 0.x
Chatbot name 1 1" Email Address
Attachment
Get input text() Create ficket() TicketiD
Send reply() View ficket())
change password() ticket detail ID
) sequence number
Validate()
Admin Regular Help desk

UserlD UserlD UserlD

UserType User Type User type

Create/Update users()

configure lookup tables()

Figure 3.7 Class diagram of the system and user types

25

3.4. Sequence Diagram

Sequence diagrams represent the interaction between objects. It shows the sequence of those
interaction.

Figure 3.8 shows the interaction between the chat window and the trained chatbot in a sequence.

Trained
Chat window Chatbot client Database
(Pickle file)

Compare with

Text input > trained data

h

return output

A

Figure 3.8 Sequence diagram of the chatbot

3.5. ER (Entity Relationship) Diagram

ER diagram displays the relationship between entities stored in a database. In a DBMS, an entity can
be a table or an attribute of a table. It explains the logical structure of the database. ER diagrams
can be used as the blueprint of the database design.

Figure 3.9 shows the database structure of the chatbot tables. These tables use to keep the data about
chatbot training as well as user conversations with the chatbot.

_| statement v
id INT
text VARCHAR{255)
search_text VARCHAR(255)
conversation VARCHAR(32)
created_at D ATETIME
in_response_to VARCHAR(255)
search_in_response_to W ARCHAR{255)
persona Y ARCHAR(50)

>

S
T
A
:| tag_association ¥ :| tag v
Ztag_id INT id INT
—————— -+
- statement_id INT name Y ARCHAR (50)

> >

Figure 3.9 ER diagram of the chatbot tables

26

Figure 3.10 explains the database structure of the core application. It shows the relationships between
tables, Main attributes of the tables, Primary keys and foreign keys.

] ticketdetail v
id INT
P master_id INT
:] userdepartment . description TEXT
id INT “status INT
user_department Y ARCHAR(100) @ priority INT

created_tim estamp DATET IME & reassian_to INT
updated_fimestamp DATETIME
inserted_by INT

updated_by INT

created_tim estamp DATETIME
updated_timestsmp DATETIME

inserted_by INT
> updated_by INT
* >
o
A vowov v
__| userreportto ¥ _] user ¥ [[| |
id INT id INT I I I I
P user_id INT username YV ARCHAR(80) | | | |
»report_to_user_id INT # password VARCHAR(200) I I I I
created_timestamp DATETIME >4 | first_nam e VARCHAR(200) I I I_ _ I
updated_tmestamp DATETIME !-w middle_name VARCHAR{200) | | 1| |
inserted_by INT last_name V ARCHAR{200) I I I I
updated_by INT > email VARCHAR{100) | | [
[@ usertype_id INT - _I I I I
@ userdepartment_id INT L J| 1 |
P usergrade_id INT |I :] Iid(etslal; v I
active_flag TINYINT(1) I d T I
j usertype v ré reset_password_flag TINYINT(1) | status_description Y ARCHAR(100) |
id INT | created_tim estamp DATETIME I creaiE; tim estamp DATETIME I
user_type VARCHAR(100) I updated_fimestamp DATETIME I updated_ timestamp DATETIME |
created_tim estamp DATETIME J| inserted_by INT I inserte d:by T #
updated_timestsmp DATETIME updated_by INT I updated by INT | ticketpriority v
inserted_by INT » | > id INT
updated_by INT ¥ + I ; prionity_description ¥ ARCHAR(100)
> I - _* 1 T _____ created_tim estamp DATETIME
I moo v I I updated_imestamp DATETIME
i_ _____ 1 id INT I | inserted_by INT
| title VARCHAR(200) | I updated_by INT N
I description TEXT I
* catagory INT ' 7] ticketattachment ¥
W o v - st AN P————- | master_id INT
id INT < priority INT detail idINT
grade_rank INT 2 init_assign_to INT sttachment num INT
user_grade YARCHAR{ 100) & curr_assign_to INT - - path VARCHAR(300)
created_tim estamp DATETIME created_tim estamp DATETIME j ticketstatuschange ¥ created_tim estamp DATETIVE
updated_timestamp DATETIME updated_timestamp DATETIME master_id INT inserted,_by INT
inserted_by INT inserted_by INT detail_jd INT >
updated_by INT updated_by INT status INT
» »

created_timestamp DATETIME
inserted_by INT

Figure 3.10 ER diagram of the core tables

27

3.6. Database table structure

All the database tables related activities such as table creation with relationships, querying tables, insert,
update and delete data are done using SQLAIchemy ORM. Tables created with the best normalized form
possible.

3.6.1. What is SQLAIchemy?

“SQLAIchemy is a library that facilitates the communication between Python programs and
databases. Most of the times, this library is used as an Object Relational Mapper (ORM) tool that
translates Python classes to tables on relational databases and automatically converts function calls
to SQL statements. SQLAlchemy provides a standard interface that allows developers to create
database-agnostic code to communicate with a wide variety of database engines.” [22]

In SQLAIchemy ORM each table is referred to as a model. A model is a python class with attributes.
These attributes are the columns. There are multiple models available in the database. These
models sometimes have a relationship with other model/models.

Table 3.1 shows User table created in MYSQL database and figure 3.11 shows how the User model
coded using python.

Full list of MYSQL table and python model comparison given in the Appendix.

Column Name Description Data Type and length Key

id ID int Primary
username Username varchar(80) Unique
password Password varchar(200)

first_name First Name varchar(200)

middle_name Middle Name varchar(200)

last_name Last Name varchar(200)

email E-Mail varchar(100)

usertype_id User Type ID int Foreign
userdepartment_id | User Department ID int Foreign
usergrade_id User Grade ID int Foreign
active_flag Active Flag tinyint(1)

reset_password_flag | Reset password flag tinyint(1)

created_timestamp | Created date time datetime

updated_timestamp | Updated date time datetime

inserted_by Record inserted user ID | int

updated_by Record updated user ID | int

Table 3.1 MYSQL User table

28

class User(db.Model):
id = db.Column{db.Integer, primary_key=True)
username = db.Column{db.String(28), unigue=True)
password = db.Column{db.String(2688), nullable=False)
first_name = db.Column{db.String(288), nullable=False)
middle_name = db.Column{db.String(2E8))
last_name = db.Column{db.String(28a})
email = db.Column(db.String(188), nullable=False)
usertype_id = db.Column{db.Integer, db.Foreignkey(
‘usertype.id'), nullable=False)
userdepartment_id = db.Column{db.Integer, db.Foreignkey(
‘userdepartment.id’)}, nullable=False)
usergrade_id = db.Column{db.Integer, db.Foreignkey(
‘usergrade.id"'), nullable=False)
active flag = db.Column{db.Boolean)
reset_password_flag = db.Column{db.Booclean)
created_timestamp = db.Column{db.DateTime, default=func.now())
updated timestamp = db.Column{
db.DateTime, default=func.now(), cnupdate=func.now())}
inserted_by = db.Column{db.Integer)
updated by = db.Column{db.Integer)
userreportto = db.relationship('Userreportto’, backref="user', lazy=True)
ticketmaster = db.relationship('Ticketmaster', backref="user', lazy=True)
ticketdetail = db.relationship(' Ticketdetail', backref="user', lazy=True)

def init (self, username, password, first_name, middle_name,

last_name, email, usertype_id, userdepartment_id,
usergrade id, active flag,
reset_password_flag, inserted_by, updated_by):

self.username = username

self.password = password

self.first_name = first_name

self.middle_name = middle_name

self.last_name = last_name

self.email = email

self.usertype_id = usertype id

self.userdepartment_id = userdepartment_id

self.usergrade_id = usergrade_id

self.active flag = active flag

self.reset_password_flag = reset_password_flag

self.inserted by = inserted by

self.updated_by = updated_by

Figure 3.11 User Model

29

3.7. Chatbot

3.7.1. Development

Chatterbot python library has been used to develop the chatbot of this project. Chatterbot library
using machine learning algorithms to generate responses based on previously trained
conversations. Chatbot’s accuracy gets higher as it trains more. But when training the chatbot, the
training data needs to be carefully examined whether we train the chatbot with correct data. If
chatbot trained with wrong data accuracy gets low.

Chatterbot selects the response based on the closest matching trained sentence. It generates a
confidence value based on trained data. Following figure 3.12 shows how the chatterbot select
response based on the confidence value.

Get input
Get input from some source
(console, AP, speech recognition, etc.)

v

Process input
The input statement is processed by each of the logic adapters.

Logic adapter 1
1. Select a known statement that most closely matches
the input statement.
2. Return a known response to the selected match and
a confidence value based on the matching.

Logic adapter 2
1. Select a known statement that most closely matches
the input statement.
2. Return a known response to the selected match and
a confidence value based on the matching.

Return the response from the logic adapter that generated
the highest confidence value for its result.

'

Return response
Return the response to the input
(console, API, speech synthesis, etc.)

Figure 3.12 Process flow of chatterbot

30

There are Multiple configurations needs to be done on chatterbot software in order to get the preferred
response from the chatbot. Following figure 3.13 shows the configuration made for this project to get the
optimal response.

Creating ChatBot Instance
chatbot = ChatBot(
'TicDeskbot',
storage_adapter="chatterbot.storage.5QL5torageAdapter’,
logic adapters=[
‘chatterbot.logic.BestMatch’,

{
"import_path': 'chatterbot.logic.BestMatch',
‘default_response’: 'I am sorry, but I do not understand.’
Please Click here</a» to\
create a ticket’
}

1,
database_uri=app.config[' SQLALCHEMY DATABASE URI']

Figure 3.13 Chatterbot configuration

Let’s look at these configurations one by one.

e Storage adapter — Storage adapter used to connect to different databases. Because of this project
uses MYSQL database, storage adapter setup as SQL storage adapter. There are different storage
adapters can be used for chatterbot based on the requirement.

e logic adapters — Logic adapter select the response to the given input. Here we selected the best
match logic adapter. There are few other logic adapters available for chatterbot. Those are Time
Logic Adapter, Mathematical Evaluation Adapter, Specific Response Adapter. But test results give
low confidence when using those adapters for this project.

e Default response — This is the default response users get if the best match response not found

e Database URI — Connection string for the storage adapter. Here in this project, all the connection
strings are stored as configurations.

31

3.7.2. Training

Chatterbot is a corpus-based chatbot solution. Which means it uses a list of written texts as input
for the training. Chatterbot comes with the inbuilt tools to help simplify the chatbot training
process. For this project, all the corpus data save as YAML files. These files should have a proper
format. Following figure 3.14 shows the YAML data format.

I' blue_screenyml X

ticketing > static > chatbot > ! blue_screenym
1 categories:
2 - Blue Sreen issue
3
4 conversations:
& - - I'm getting a blue screen
6 - Simply rebooting can fix the blue screen of death (or STOP error, as it is otherwise known).
7 - Rebooting can help the issue.
8 - - I have got the dreaded blue screen of death!
9 - Simply rebooting can fix the blue screen of death (or STOP error, as it is otherwise known).
e - Rebooting can help the issue.
11 - - Blue screen issue.
12 - Simply rebooting can fix the blue screen of death (or STOP error, as it is otherwise known).
13 - Rebooting can help the issue.
14 - - Blue screen
15 - Simply rebooting can fix the blue screen of death (or STOP error, as it is otherwise known).
16 - Rebooting can help the issue.
17 - - I am getting a2 blue screen
18 - Simply rebooting can fix the blue screen of death (or STOP error, as it is otherwise known).
19 - Rebooting can help the issue.
2e - - I'm getting a blue screen
21 - Simply rebooting can fix the blue screen of death (or STOP error, as it is otherwise known).
22 - Rebooting can help the issue]

Figure 3.14 Chatterbot training data

Following figure 3.15 shows the Chatbot training python code. It takes all the corpus data set as inputs and
store them in the database. As graph data structure. Figure 3.16 explains how chatbot training data save in
the database.

Training with Corpus Data
trainer_corpus = ChatterBotCorpusTrainer{chatbot)
trainer_corpus.train(

"L/ ticketing/st
Sticketing/
LSticketing/
Jticketing/

i
t

L
—+
[5¥]
+t
e e e e
[l

[l

L
[l

fchatbot/endings.yml",
fchatbot/greetings.yml’,
/chatbot/options.yml",
/chatbot/blue screen.yml’

[Ty}
r+
[5K]
i+

[l

n
+
[5¥)
i+

Figure 3.15 Chatterbot training python code

32

Conversation 1

Statement 1 Statement 2 L, Statement 3 Statement 4
"Hello, how can | help you?" "l would like to buy a movie ticket." "0k, for what movie?" "Monty Python and the Holy Grail"

Conversation 1

Statement 1 Statement 2 Statement 3 Statement 4
"Hello, how can | help you?" "l would like to buy ticket for a movie." "0k, for what movie?" "The Wizard of Oz"

Graph stored in database
Statement 2 Statement 4
"l would like to buy a movie ticket." “"Monty Python and the Holy Grail"
Statement 1 Statement 3
"Hello, how can | help you?" "Ok, for what movie?"
Statement 2 Statement 4
"l would like fo buy ticket for a movie." "The Wizard of Oz"

Figure 3.16 how Chatterbot training data store in the database

3.8. User Interface design

All User interfaces of this project designed using responsive web development approach. All the interfaces
response perfectly for all the user behaviors, different screen sizes and different platforms. Figure 3.17 and
figure 3.18 shows how the system dashboard adjusts according to the screen size.

TICBESK %URANCE ' - &9

HER O

Dashboard

Tickets Assign to you Last 30 Days(Tickets created and closed)

D Title Priority Created Date

3 adssdfa g 2020-06-09

12 Nimal's first ticket High 2020-06-16

4 fest ricket kusa

Figure 3.17 Dashboard view on a larger screen

33

ilﬂSURANCE £
HER O

u,.ﬁm. Dashboard

HIGH PRIORITY TICKETS ASSIGN TO
YOu.

2 0

LOW PRIORITY TICKETS ASSIGMN TO
YOu

5

I

Tickets Assign to you

1D Title Priority Created Date

Figure 3.18 Dashboard view on a smaller screen

3.8.1. Template used

SB Admin 2 template used as the based template for the project. “SB Admin 2 is a free, open source,
Bootstrap 4 based admin theme” [23]. This template use bootstrap 4 and CSS. For this project, this template
highly customized and use with python jinja templates.

3.8.1.1. What is Jinja?

“Jinja is @ modern and designer-friendly templating language for Python.” [24] HTML is a static
template but Jinja provides dynamic capabilities for HTML tables.

3.8.1.2. Usage of Jinja to achieve reusability

When creating a user-based menu for this project, Jinja capabilities are heavily used. For this
project, there is only one HTML document which contains the code for the user menu. Each menu
item redirects the user to different HTML page bus menu remains the same with the selected option
keep highlighted. These capabilities were not there in the original template. But using lJinja
capabilities that were achieved by passing parameters between python and HTML.

34

Figure 3.19 shows the usage of Jinja templates. “layout.html!” contains the HTML code related to
the menu and index.html page import all the menu code in.

< indesthtml X

icketing > templates > <> index.html > ..

1 {% extends "layout.html" %}

2 {% set active_page = "menu_index" %}

3

4 [% block title ¥}

5 TicDesk

& {% endblock %}

8 {% block content %}

9 {% block style %}

18 <!-- Custom styles for this page --»
11 <link href="{{ url_for('static', filename="css/chat.css')}}" rel="stylesheet"»
12 <!-- Custom styles for this page --»

13 <link href="{{ url_for('static’, filename='vendor/datatables/dataTables.bootstrap4.min.css')}}" rel="stylasheet”>
14 <!-- Custom styles for page load --»

15 <link href="{{ url_for('static’, filename='css/pageload.css’)}}" rel="stylesheet">

16 <!-- Custom styles for page load --»

17 <link href="{{ url_for('static’, filename="css/ticket-row-color.css')}}" rel="stylesheet"»
18 <!-- Custom styles for page load -->

19 «<link href="[{ url_for('static’, filename='css/Chart.css’)}}" rel="stylesheet”>

28 <!-- Custom styles for page load --»

21 <link href="{{ url_for('static', filename="css/Chart.min.css')}}" rel="stylesheet™>

22 {% endblock %}

23 <!-- Page Heading --»

24 <div class="d-sm-flex align-items-center justify-content-between mb-4"»

25 <hl class="h3 mb-8 text-gray-3e8"»Dashboard</hl>»

26 </div>

Figure 3.19 Jinja usage to display menu

Figure 3.20 shows how “layout.html” use Jinja capabilities to view the active menu item. These
parameters pass to HTML from python and based on the parameter menu item will show as active
and collapsed.

< layout.html X

ticketing > templates > <> layouthtml > €2 htm 2 diviwrapper > € ul#accordionSidebar.navbar-nav.bg-gradient-primary.sidebar]
121

122 ¢l-- MNav Item - Pages Collapse Menu -->»

123 ¢1i class="nav-item {{ 'active’ if active_page in ('menu_adduser') else ' }}"»

124 <a class="nav-link {{ "active' if active_page in ('menu_adduser') else 'collapsed’ }}" href="#"

125 data-toggle="collapse” data-target="#collapsePages"”

126 aria-expanded="{{ 'true’ if active_page in ('menu_adduser') else 'false' }}" aria-controls="cecllapsePages">
127 <i class="fas fa-fw fa-user-circle"»</i>

128 <{span>Users

129 <fa»

138 <div id="collapsePages" class="collapse {{'show’ if active_page in ('menu_adduser’) else "'}}"

131 aria-labelledby="headingPages" data-parent="#accordionsidebar”:»

132 <div class="bg-white py-2 collapse-inner rounded”»

133 ¢<ht class="collapse-header”»Edit Users:</hé>»

134 <a class="collapse-item {{ 'active’ if active_page == "menu_adduser’ else "' }}"

135 href="{{ url_for('adduser') }}"»

Figure 3.20 Jinja usage to display active menu item

35

Figure 3.21 shows how a menu item shows active and main menu category keeps collapsed once
user click. According to the figure, the user has clicked the “All tickets” menu item and Tickets main

category display as collapsed.

Dashboard .
Tickets
View all Tickets.
Ticket List
Create Ticket Show| 10 = |enf
Your Tickets
Ticket #
Team's Tickets
All Tickets 1
2
3
4

Figure 3.21 selected menu item

36

3.8.2. Dynamically populate drop downs

Dynamically populate dropdowns which means a dropdown populated by a selection of another dropdown,
are used for some input forms of the system. Following figure 3.22 chart shows how Javascript and python
are being used together to achieve this.

HTML
Uiser change a drop
down value
v Java script
) Capture Change Pass change value to
[Capauarfaeggﬂ L:smg]—»[event using Java python function using
P Script java script
Python
Convert query result to Select data from
a JSON object and database based on the
return it parameters received
h Java script
Receive JSOMN object and
create HTML drop down
based on JSOMdata

Figure 3.22 JavaScript and python usage of dynamic dropdown population

Figure 3.23 shows the on-change event of the department drop-down. This Javascript code triggers
when department dropdown changes and call a function named “create_reportto” figure 3.24
shows the “create_reportto” fiction. 3.25 Shows the python function which returns query results as
a JSON object.

userdepartment.onchange = create reportto;

Figure 3.23 call “create_reportto” function when department change

37

fetch{"/reportto/" + userdepartment wval + "/" + usergrads val).then{function (response) {
response.json().then(function (data) {

let opitonalHTML = "<option value="@"»--None--</foption>';

for {let user of data.users list) {

opitonalHTML += '<option value="" + user.id + ""»" + user.full_name + '</option>';

¥

userreportto.innerHTML = opitonalHTML;
OE
1

Figure 3.24 “create_reportto” function

@app.route(”/reportto/<departments/<grade»")
| def reportto(department, grade):
' if grade != "None':
user_list = User.query.with entities(
User.id, func.concat{User.first_name, ' ',
User.last_name, ' (', User.email, ")")}
dabel{"full name")).filter(and (
User.userdepartment_id == department,
User.usergrade _id » grade, User.username != "Admin’
)}.all()
else:
user_list = User.query.with entities(
User.id, func.concat{User.first_name, ' ',
User.last_name, ' (', User.email, ")")}
dabel{"full name")).filter(and (

User.userdepartment_id == department,
User.username != "Admin’
)y.all()

user_array = []

for user in user_list:
userocbj = {}
userobj['id'] = user.id
userobj['full name'] = user.full name
user_array.append{userobj)

return jsonify({ 'users list': user_array})

Figure 3.25 “reportto” python function

38

3.8.3. Send Email

Flask-email extension has used for sending emails. Flask itself has a powerful extension to send an email.
Using a few configurations, an email can send easily. But for this project, there are some modifications done
to the default features. The main modification is introducing the threading for the email function. Because
of that email can be triggered separately without delay any activity which the user performs.

Following figure 3.26 shows the send email python function.

2 sendemailpy X
ticketing > % sendemail.p :

1 from ticketing import mail

2 from flask mail import Message

3 from threading import Thread

4 from ticketing import app

=

6

7 def send _async_email{app, msg):

8 with app.app_context():

9 mail.send(msg)
1@

11

12 def send mail{subject, to, txt body):
13 try:

14 msg = Message(subject,

15 sender="tic.desk.21lggmail.com”,
16 recipients=[to])
17 msg.html = txt body

18 thr = Thread{target=send async_email, args=[app, msg])
19 thr.start()

28 print('Mail sent!")

21 except Exception as e:

22 print{str{e}))

23

Figure 3.26 “sendemail” python function

This function accepts 3 input parameters. Those are email subject, email address and email body. Then a
new thread will create for sending the mail.

39

3.8.4. Dashboard Charts

Dashboard Graphs created using Charts.js opens source flexible chats design solution. To populate data
into these graphs data has been pass between python and JavaScript. Blow figures show how the User last
30 days ticket created, and closed graph works.

User is loggedin show them the index page

return render template(index.html"’,
LSE“ﬂaﬂE=SESSiOn['JSEPﬂawe']J
high_priority=high priority,
medium_pricority=medium pricority,

low pricrity=low priority,

all created=all created,

all _assigned=all_assigned,

created hight last3B=created hight last2e,
created medium last3@=created medium last3a,
created low last3@=created low last38,
closed _high last3@=closed high last38@,
closed medium last38=closed medium last3@,
closed low last38=closed low last3@)

Figure 3.27 pass parameters to dashboard HTML page using python

var Created = [created _hight last3®, created medium last3@&, created low last3d];
var Closed = [closed high last38, closed medium last38, closed low last3e];
// Pie Chart Example
var ctx = document.getElementById{"mybarChart");
var mybarChart = new Chart{ctx, {
type: 'bar’,
data: data = {
labels: [Priority[e], Priority[1], Priority[2]].
datasets: [

d
type: 'line’,
label: "Closed"”,
fill: false,

data: [Closed[8], Closed[1l], Closed[2]],
borderColor: 'rgba(l82, 26, 255, 8.5)°,
s
{
label: 'Ceated', //1D2230
data: [Created[&], Created[1l], Created[2]],
backgroundColor: [
'rgha({255, 9%, 132, 8.4)°,
'rgba(255, 286, 85, 8.4)°,
'rgha(75, 192, 182, @.4)',],
hoverBorderWidth: '3°,

b

Figure 3.28 create bar chart using chart.js using received parameters

40

Last 30 Days(Tickets created and closed)

Figure 3.29 created chart using received parameters

3.9. Security Measures

There are 3 main security masseurs considered when developing the system.

3.9.1. Querying Database tables

Using plain SQL queries make a security concern of SQL injection attacks. This is one of the main reason for
SQLAlIchemy ORM selection. SQLAlchemy query engine automatically put quotation marks to all the special
characters which make almost impossible to do a SQL injection attack. In this project, all the queries use

SQLAIchemy ORM.

user_team = Userreportto.query.filter(

Userreportto.report_to user_id == user_id).join{
User, User.id == Userreportto.user_id).join(
Usergrade, User.usergrade id == Usergrade.id,

isouter=True}).add columns(
func.concat(User.first _name, ' ',

User.last name, ' (', User.email, ')")
.label({"member name"), Usergrade.user_grade).order_by{
Usergrade.id)

Figure 3.30 simple SQLAIchemy query with table joins

41

3.9.2. Menu Authority Structure

There are two types of views on the system menu. Admin view and other users' view. Admin view is not visible
for other users. But this authority level is not enough as users can type URL manually and gain access. To
prevent that from happening, each admin menu item checks for user profile whether the user has admin
access or not. If some non-admin user tries to access admin menu by typing URL he will see a page not found
error.

Page Not Found

— Back to Dashboard

Figure 3.31 if non admin user tries to access admin URL, he will see this

3.9.3. Password Hashing

All passwords available in the database are hashed. To do this python bcrypt hashing function has been used.

password = bcrypt.generate password _hash{request.form['password’])

Figure 3.32 python bcrypt for password hashing

id LsErname password
1 Admin £2b5125dgGj1.Hh 1sHKwalplPGOLUEDjgHg FAM 5M 2MXkGUpOpDna4baR fA7G
2 tharidup £2b5128X 2eLI2FyMdkTHQ 2Ty AbIXeMNewY MMzvDY wow4r (ZSna3EzB 3TBnP 5u
3 nimalp £2b 51 28HyNY nMEgVUBDSei luzzY Oglas 2UGPY Syit96a, dolO3dGePWipzs
4 kelumu £2b$12%euRDQogLhvEglgL9IDzT 3el DEFC/EC 3vwBofBoAw 3P wywmglicC
5 sadunu £2b5128Y6R 2EwkghagaiSMmPhAE S0 7y OMrG0gMoHoQPkmasMEAEkyLXmfCRE
& kusalf £2b51 28k JuaYTXbIA IHMywyYLaxY'9, ZPKGIPZKxyF . GmOQS3h CpicgUI2pyCy
7 hemanthak 52bs1289waPaGrPkaDFmEzVULX FukTC 2 1x 214K UHLEY ZTR fkoL IHawK Qg Ag
8 upuln £2b £ 128V WP rxOfCHmMr9 SPadON 48levh FpICpnkpP 3FC7p4C Cvs4EGMb. Obla
g kusalas &§2b§126vkTRWS,7sGKY 2¢ 150, pGfuMkcRokmSUjRur 4T5 1pAV2MR W qQoXeOK
10 tharidug £2h£12£3W ImLZEjXyYihkPyBWaa 7006Y 85 MK TUK 3EChgRgTdwHwts 7/ hi

Figure 3.33 hashed passwords in the database

42

3.10. Test Plan

Testing is one of the most important aspects of any software system. Testing ensures all initially planned
millstones achieved with the expected outputs. This system was tested using different types of test cases.
The following table shows the first test case tested when developing the system. Full list of test cases given
in the Appendix.

Test
Case
Test Case Description Expected Result Actual Result Pass/Fail
Test login with invalid Incorrect
username and username/password Incorrect username/
1 | valid password message password Pass
Test login with invalid Incorrect
password and username/password Incorrect username/
2 | valid username message password Pass
Test login with blank Enter password Enter password
3 | password message message Pass
Test login with both blank Enter Username Enter Username
4 | username message message Pass
Both fields show enter | Both fields show enter
Test login with both bank username username
username and enter password and enter password
5 | and password message message Pass
Test login with both valid
username
6 | and password Successful login Successful login Pass

Table 3.2 User login test case

Following figure 3.34 shows the code and folder structure of the project. Static folder contains subfolders
for all the CSS, Image files, Javascript files, user attachments and chatbot corpuses. Template folder contains
all the HTML templates being used in the system.

2 __pycache__
» static
» templates
e _init_.py
@ chatbot.py M
& models.py
requirment. bt
® routes.py
& sendemail.py
® app.py
& cri_tables.py

sentence_tokenizer.pickle

Figure 3.34 System code and folder structure

43

3.11. Implementation environment

Tool, Software and hardware used

Descrition

All the development was done using a

Windows 10 Microsoft windows 10 OS
RAM 16GB
Hard drive 256GB SSD
Processor Intel Core i7-8565U
Conda virtual environment is used as the python
interpreter for this project. Anaconda is free and
Anaconda open source distribution.
MySQL 8.0.19 community server is used and the
MYsQL database for this project.
MySQL workbench a visual tool for MySQL
database. This software used to execute ad-hoc
MySQL workbench queries when developing the system.

Visual Studio Code

VS code used as the main IDE and debugging tool
for this project.

Python version

Python 3.7.6

Flask version

1.1.1

Chatterbot version

ChatterBot 1.0.5

Bootstrap Version

Bootstrap 4

draw.io

draw.io is a free online diagram creation
software. This software used to draw all the
diagrams of this project

Table 3.3 All Software, Hardware and tools used

44

4. Evaluation

The best way to evaluate the project is to check whether it meets the objectives. Let’s Take the initial

Objectives one by one and check.

Initial Objectives

Comment

Solve the recurring issues using an automated
way (A chatbot) which reduce the time and cost taken
for issue solving. Which makes more time to focus on
important or urgent issues. Users can chat with the
chatbot first and try to find a solution before raise a
ticket.

The chatbot is in place and ready. More
conversations bot gets trained during the
system usage, more accurate it gets.

Reduce the number of calls received to help desk

A Very efficient system is available
now. Based on the priority issues get solved.

Train the chatbot based on user feedback to increase
the accuracy of the chatbot.

agents by letting end-users to raise a ticket using the | Priorates are visually present in the
online system. dashboard.
This will happen during usage.

All customer interactions are gets save in the
database.

Make it easy for relevant parties to attend urgent
issues first based on prioritized tickets.

Tickets are ordered based on the priority and
show in the dashboard with color codes. So
that system users never missed the
important ones.

Self-evaluate the tickets being assigned or work has
been completed.

All active tickets are visible in the dashboard.

Manage the issue solving workflow with a more
transparent way which all the involved parties can
check the progress.

Allinvolved and relevant parties get an email
notification for each integration of the
tickets. Also, the dashboard is available to
view the status of the current months' ticket.

Improve the end-user satisfaction about overall
technical issues solving process.

Uses get email notifications, Tickets are
prioritized and view by color codes. So, the
chance of a ticket solving getting delay is
minimum. Which will improve user
satisfaction.

Ease management decision making regarding IT
helpdesk tasks.

Managers can view their teams’ tickets and
all the information separately.

Enhance the quality of service and meet the service
level agreements of IT help desk.

All the tickets which do not meet the SLAs are
visible over the dashboard. Necessary
actions can be taken accordingly.

Improve the efficiency of overall
functions.

IT help desk

There are additional benefits also available
with this system. Those described below.

Table 4.1 Objective evaluation

45

4.1. Additional capabilities and features

e The system initially planned to solve IT helpdesk issues. But this system can also be used to do
important issue solving between departments. The ticket assignment works as a workflow and it’s
possible to assign tickets to any employee who registered in the company. So that additional
capability kept as it is so it will be beneficial for the business operations.

e Three types of priority levels are display using 3 colour codes (Low — green, Medium — yellow, High -
red) throughout the system. These colour codes are available in the dashboard, ticket viewing
screens as well as ticket commenting areas. Users never miss out most important, prioritized tickets.

#18 : Low priority ticket

By Tharidu Perera (poorna_sanjeewa@yahoo.com) on 2020-06-21 12:16:26

Status : Open
Initial Assignment : Tharidu Perera (poorna_sanjeewa@yahoo.com)
Current Assignment : Tharidu Perera (poorna_sanjeewa@yahoo.com)

Description :
Low priority ticket

Figure 4.1 Low priority ticket

By Tharidu Perera (poorna_sanjeewa@yahoo.com) on 2020-06-21 12:17:00

Status : Open
Initial Assignment : Tharidu Perera (poorna_sanjeewa(@yahoo.com)

Current Assignment : Tharidu Perera (poorna_sanjeewa(@yahoo.com)

Description :
Medium priority ticket

Figure 4.2 Medium priority ticket

46

#20 : High priority ticket

pllslalsgbolgid By Tharidu Perera (poorna_sanjeewa@yahoo.com) on 2020-06-21 12:17:27

Status : Open

nitial Assignment : Tharidu Perera (poorna_sanjeewal

@yahoo.com)

Current Assignment : Tharidu Perera (poorna_sanjeewa@yahoo.com)

Description :

High priority ticket

4.2,

Figure 4.3 High priority ticket

Lessons learnt

Following are the list of lessons learnt during the project lifecycle.

4.3.

Abel to acquire practical understanding about the software development process and its’ stages.
Able to learn new technologies and tools.

Gain knowledge about how to use different programming languages and use them, passing data
between then more efficiently

Improved project documentation skills.

Learnt more about software testing process.

Learnt how to apply software engineering practises and how to apply them on the real project.
Improved skills in software debugging and issues fixing.

How to work with tide deadlines.

Problems Encountered

There is a set of problems encountered during the development of the project. But hard-working and well
panning gets through most of the issues. Following are some of those problems.

At the initial stages of the project, the development was done using a Linux environment (Laptop
with ubuntu OS installed). But suddenly the laptop motherboard failure occurred. The entire project
had to move to a new laptop which installed windows. Project coding didn’t lose because of git
integration. But all the environment setup and debugging configurations had to be done on the
windows PC which takes lots of time.

Chatbot training took more time than expected. So, accuracy is a bit lower than expected. But this
can be sorted during the actual usage of the chatbot.

Initially, SQLlite database used as the main database. But it has limited capabilities and had to change
it to much larger RDBMS. At that time all the queries were Witten in plan SQL and had to rewire. But
rather than rewrite SQLs, SQLAlchemy was introduced and not changing a database as just the
matter of changing the connection string. But to do all these changes it took some considerable
effort and time.

47

4.4. Overall comment

When considering all the aspects together and the test results, the system met all the specifications and
tested properly. Even the look, as well as functionalities of the system, is sometimes beat the commercially

available expensive Help desk systems also.

48

5. Conclusion

As a helpdesk ticketing system, this system has all the capabilities it required. But because of the way this
system design was done, this system has the additional capability of use as a workflow management system.
Because users can assign tasks to the users within the organization and see the progress of those tasks as
well. This is a two in one kind of system for an organization.

If | had to mention any deficiencies of the system that would be the accuracy of the chatbot. But the chatbot
accuracy is not something which can be obtained within a few months. It needs more inputs and more
training. Even the training data might differ from one organization to the other.

There are few areas which can be enhanced as future improvements.

e A mobile app — A mobile app can be developed for this system so users can access the system
much easier. Even though the system developed using very responsive Uls, a mobile app is much
easier to use.

e Two-factor authentication — System security is becoming a major issue organizations face today. So
rather than just using a password to login to the system a pin code via SMS or some authentication
service can be used.

e Active Directory integration — Most of the organizations today use Microsoft products with their
active directory service. By integrating the system with Microsoft active directory service, users can
log in to the system using the same Microsoft credentials.

49

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Jessica Greene, “35 IT Help Desk Statistics: How Does Your Team Stack Up?”, askspoke.com, 2018.
[Online], Available: https://www.askspoke.com/blog/it/it-help-desk-statistics/ [Accessed: Jan. 20,
2020].

Mathew Sweezey, “Key Chatbot Statistics to Know in 2019”, salesforce.com, Aug, 2019, [Online].
Available, https://www.salesforce.com/blog/2019/08/chatbot-statistics.html [Accessed: Jan. 20,
2020].

Altexsoft, “Non-functional Requirements: Examples, Types, How to Approach”, altexsoft.com
[Online], Available: https://www.altexsoft.com/blog/non-functional-requirements/ [Accessed: Feb.
23, 2020].

pypi, “SQLAlchemy - Introduction”, pypi.org [Online], Available:
https://pypi.org/project/SQLAIchemy/ [Accessed: Feb. 23, 2020].

UVdesk , “UVdesk open source features”, uvdesk.com [Online], Available:
https://www.uvdesk.com/en/opensource-features/ [Accessed: Jan. 20, 2020].

Zammad community, “Zammad’s documentation”, zammad.org. [Online], Available,
https://docs.zammad.org/en/latest/about/zammad.html [Accessed: Jan. 21, 2020].

Aaron Kili, “An Open Source Help Desk and Support Ticket System”, tecmint.com, 2018, May.
[Online]. Available, https://www.tecmint.com/install-zammad-ticket-system-in-centos-ubuntu-
debian/ [Accessed: Jan. 21, 2020].

OSTicket, “OSTicket Features”, osticket.com. [Online]. Available, https://osticket.com/features/
[Accessed: Jan. 21, 2020].

Capterra, “Help Desk Software”, capterra.com, 2020 [Online]. Available,
https://www.capterra.com/help-desk-software/, [Accessed: Jan. 22, 2020].

[10]HelpDesk, “Discover HelpDesk features that will simplify your team’s efforts”, helpdesk.com, 2020

[Online]. Available, https://www.helpdesk.com/features/, [Accessed: Jan. 23, 2020].

[11]Vision Helpdesk, “Multi Channel Help Desk Software”, visionhelpdesk.com, 2020 [Online].

Available, https://www.visionhelpdesk.com/products/help-desk-software, [Accessed: Jan. 23,
2020].

[12] Extremeweb, “Ticket Support Systems”, extremewebdesigners.com, 2020 [Online]. Available,

https://www.extremewebdesigners.com/services/ticket-support-systems/, [Accessed: Jan. 23,

2020].

[13] Tryonics (PVT) Ltd, “Tryo Service Desk”, tryonics.com, 2019 [Online]. Available,

http://www.tryonics.com/project/tryo-service-desk/, [Accessed: Oct. 31, 2019].

50

https://www.askspoke.com/blog/it/it-help-desk-statistics/
https://www.salesforce.com/blog/2019/08/chatbot-statistics.html
https://www.altexsoft.com/blog/non-functional-requirements/
https://pypi.org/project/SQLAlchemy/
https://www.uvdesk.com/en/opensource-features/
https://docs.zammad.org/en/latest/about/zammad.html
https://www.tecmint.com/install-zammad-ticket-system-in-centos-ubuntu-debian/
https://www.tecmint.com/install-zammad-ticket-system-in-centos-ubuntu-debian/
https://osticket.com/features/
https://www.capterra.com/help-desk-software/
https://www.helpdesk.com/features/
https://www.visionhelpdesk.com/products/help-desk-software
https://www.extremewebdesigners.com/services/ticket-support-systems/
http://www.tryonics.com/project/tryo-service-desk/

[14] Steel Kiwi, “Top 13 Python Web Frameworks to Learn in 2020”, steelkiwi.com, 2019 [Online].
Available, https://steelkiwi.com/blog/top-10-python-web-frameworks-to-learn/, [Accessed: May.
17, 2020].

[15]ChatterBot, “About ChatterBot”, chatterbot.readthedocs.io, 2019 [Online]. Available,
https://chatterbot.readthedocs.io/en/stable/, [Accessed: May. 17, 2019].

[16]W3schools, “AJAX Introduction”, w3schools.com, 2019 [Online]. Available,
https://www.w3schools.com/xml/ajax_intro.asp, [Accessed: May. 17, 2019].

[17]DataTable, “DataTable”, datatables.net, 2019 [Online]. Available, https://datatables.net/,
[Accessed: May. 17, 2019].

[18]Charts.js, “Chart.js”, chartjs.org, 2019 [Online]. Available, https://www.chartjs.org/, [Accessed:
May. 17, 2019].

IM

[19]GeeksforGeeks, “Software Engineering | Iterative Waterfall Model”, geeksforgeeks.org, 2019
[Online]. Available, https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-
model/, [Accessed: May. 17, 2019].

[20] Trello, “What is Trello”, computerworld.com, 2018 [Online]. Available,
https://www.computerworld.com/article/3226447/what-is-trello-a-guide-to-atlassians-
collaboration-and-work-management-tool.html, [Accessed: May. 17, 2020].

[21] I. Sommerville, “System modeling,” in Software Engineering, 10" ed, Marcia Horton, Ed. England:
Pearson Education Limited, 2016, pp. 149

[22] Bruno Krebs, “SQLAIchemy ORM Tutorial for Python Developers”, auth0.com, 2017 [Online].
Available, https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/, [Accessed:
May. 20, 2020].

[23]Bruno Krebs, “SQLAlchemy ORM Tutorial for Python Developers”, startbootstrap.com, 2019
[Online]. Available, https://startbootstrap.com/themes/sb-admin-2/, [Accessed: May. 20, 2020].

[24] Jinja, “Jinja”, jinja.palletsprojects.com, 2019 [Online]. Available,
https://iinja.palletsprojects.com/en/2.11.x/, [Accessed: May. 20, 2020].

o1

https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.computerworld.com/article/3226447/what-is-trello-a-guide-to-atlassians-collaboration-and-work-management-tool.htm
https://www.computerworld.com/article/3226447/what-is-trello-a-guide-to-atlassians-collaboration-and-work-management-tool.htm

Appendix A - MYSQL tables created by python models

e Department model and table

class Userdepartment(db.Model):
id = db.Column(db.Integer, primary_key=True)
user_department = db.Column{db.S5tring(168), unique=True)
created timestamp = db.Column{db.DateTime, default=func.now())
updated timestamp = db.Column{
db.DateTime, default=func.now(), onupdate=func.now())
inserted by = db.Column{db.Integer)
updated by = db.Column{db.Integer)
user = db.relationship('User’', backref="userdepartment', lazy=True)

def init (self, user_department, inserted by, updated by):
self.user_department = user_department
self.inserted by = inserted by
self.updated by = updated by

Figure A.1 Department Model

Column Name Description Data Type and length Key

id Department id int Primary
user_department Department name varchar(100) Unique
created_timestamp | Created date time datetime

updated_timestamp | Updated date time datetime

inserted_by Record inserted user ID | int

updated_by Record updated user ID | int

Table A.1 MYSQL Department table

52

Department model and table

class Ticketmaster(db.Model)

id = db.Column{db.Integer, primary_key=True)
title = db.Column{db.String(268))
description = db.Column{db.Text)
catagory = db.Column{db.Integer)
status = db.Column(db.Integer, db.ForeignkKey(
‘ticketstatus.id'), nullable=False)
priority = db.Column{db.Integer, db.ForeignKey(
‘ticketpriority.id’), nullable=Fzlse)
init_assign_to = db.Column(db.Integer, nullable=Fzlse)
curr_assign_to = db.Column{db.Integer, db.ForeignKey(
‘user.id"'}, nullable=False)
created_timestamp = db.Column{db.DateTime, default=func.now())
updated_timestamp = db.Column(
db.DateTime, default=func.now(), onupdate=func.now())
inserted_by = db.Column{db.Integer)
updated_by = db.Column{db.Integer)
ticketdetail = db.relationship(
'Ticketdetail', backref="ticketmaster', lazy=True)
ticketdetail = db.relationship(
'Ticketattachment', backref="ticketmaster’, lazy=True)
ticketdetail = db.relationship(
'Ticketstatuschange', backref="ticketmaster', lazy=True)

def __init_ (self, title, descriptieon, catagory, status, priority,
init_assign_to, curr_assign_to, inserted_by, updated_by):
self.title = title
self.description = description
self.catagory = catagory
salf.status = status
self.priority = priority

self.init_assign_to = init_assign_to
self.curr_assign_to = curr_assign_to
self.inserted_by = inserted_by
self.updated_by = updated_by

Figure A.2 Ticketmaster Model

Column Name Description Data Type and length Key

id Ticket Id int Primary
title Title varchar(200)

description Description text

category Category int

status Status int Foreign
priority Priority int Foreign
init_assign_to Initially assigned user int

curr_assign_to Currently assign user int Foreign
created_timestamp | Created date time datetime

updated_timestamp | Updated date time datetime

inserted_by Record inserted user ID | int

updated_by Record updated user ID | int

Table A.2 MYSQL Ticketmaster table

53

Appendix B — Test Cases

Ticket creation test case

Test
Case
Test Case Description Expected Result Actual Result Pass/Fail
Message saying fill the Message saying fill
required the
7 | Submit with blank Title fields required fields Pass
Message saying fill the Message saying fill
Submit with blank required the
8 | description fields required fields Pass
Submit by filling tile and Successfully submitted Successfully
9 | description message submitted message | Pass
Attach a file 1 bigger than Error message saying Error message
10 | 2MB file is too big saying file is too big | Pass
Attach a file 2 bigger than Error message saying Error message
11 | 2MB file is too big saying file is too big | Pass
Attach a file 3 bigger than Error message saying Error message
12 | 2MB file is too big saying file is too big | Pass
Attach a file 4 bigger than Error message saying Error message
13 | 2MB file is too big saying file is too big | Pass
Attach a file less than 2MB, Message saying fill
Keep the title blank and Message saying fill the the
14 | submit required fields required fields Pass
Attach a file less than 2MB, Message saying fill
Keep the description blank | Message saying fill the the
15 | and submit required fields required fields Pass
Attach one files less than
2MB,fill both title and Successfully submitted Successfully
16 | description then submit message submitted message | Pass
Attach four files less than
2MB,fill both tittle and Successfully submitted Successfully
17 | description then submit message submitted message | Pass
Attach two files less than
2MB, to random slots, fill
both tittle and description Successfully submitted Successfully
18 | then submit message submitted message | Pass

Table B.1 Ticket creation testcase

54

Reply to an assign ticket test case

Test
Case
Test Case Description Expected Result Actual Result Pass/Fail
Successfully submitted | Successfully
19 | Submit with blank description | message submitted message | Pass
Successfully submitted | Successfully
20 | Submit with filled description | message submitted message | Pass
Attach a file 1 bigger than Error message saying Error message
21 | 2MB file is too big saying file is too big | Pass
Attach a file 2 bigger than Error message saying Error message
22 | 2MB file is too big saying file is too big | Pass
Attach a file 3 bigger than Error message saying Error message
23 | 2MB file is too big saying file is too big | Pass
Attach a file 4 bigger than Error message saying Error message
24 | 2MB file is too big saying file is too big | Pass
Attach a file less than 2MB, Message saying fill
Keep the description blank Message saying fill the | the
25 | and submit required fields required fields Pass
Attach one files less than
2MB,fill description then Successfully submitted | Successfully
26 | submit message submitted message | Pass
Attach four files less than
2MB,fill description then Successfully submitted | Successfully
27 | submit message submitted message | Pass
Attach two files less than
2MB, to random slots, fill Successfully submitted | Successfully
28 | description then submit message submitted message | Pass
Successfully submitted | Successfully
message and status submitted message
Change Status to 'Blocked' should display as and status should
29 | and submit blocked display as blocked Pass
Successfully submitted | Successfully
message and status submitted message
should display as and status should
Change Status to 'Close - closed - waiting for display as closed -
30 | waiting approval' and submit | approval waiting for approval | Pass
Successfully
Successfully submitted | submitted message
message and currently | and currently
Change Assign to user and assigned user should assigned user should
submit. Check currently be same as the one be same as the one
31 | assigned user is correct selected selected Pass

Table B.2 Reply to an assign ticket testcase

55

Appendix C — User Manual

1) How to login to the system

Welcome To
TicDesk

Username

Password

Figure C.1 Login Screen

1) Enter correct username and password.
e Please note that username is case sensitive
2) Click login button or hit enter. If you provide the correct username and password, you will redirect
to the dashboard.

56

2) Dashboard explanation

TICDESK *"

) -
INSURANCE 3 4 5
HER
Dashboard ! ‘ . '
Tickets HIGH PRIORITY TICKETS ASSIGN TO LOW PRIORITY TICKETS ASSIGN TO YOU.
You, 6 1
3 2
Users
Settings
Tickets Assign to you Last 30 Days(Tickets created and closed)
D Title Priority Created Date
3 adssdfa High 2020-06-09
12 Nimal's first ticket High 2020-06-16
20 High priority ticket High 2020-06-21 [e I
N
15 sddas Medium 2020-06-21
19 Medium priority ticket Medium 2020-06-21 ‘
Showing 1to 5 of 11 entries Previous 2 3 Next 7
Figure C.2 Dashboard

1 —This is the menu items. You can collapse each menu category and select items.
2 — This card shows how many high priority items assign to you at the moment

3 —This card shows how many medium priority items assign to you at the moment
4 — This card shows how many low priority items assign to you at the moment

5 — This card shows how many tickets you created are still open

6 — This table includes all the tickets currently assign to you. This is order by the priority. You can click in the
ticket ID or the name. It will take you to the ticket and you can work on that ticket.

7 — This graph shows the past 30 days activity of the user. Each bar represents each priority level and how
many tickets user created for last 30 days. Line shows the how many tickets currently closed of those created
tickets.

8 — This is the chat window for chat with the chatbot

9 — This shows the currently logged in your name and the profile picture. When user clicks on this profile
picture drop appear with two options. One is to log out of the system and another for view user profile.

57

3) How to create a ticket

1)
2)
3)
4)

5)
6)

7)

Dashboard

Tickets

Create Ticket

Your Tickets

Team's Tickets

All Tickets

Settings

Create Ticket

Title

Title

Ticket Priority

Low v
Assign to Department Assign to User

Finance v Tharidu Perera (poorna_sanjeewa@yahoo.com)
Description

Type Your Description here...

Choose file... Browse
Choose file... Browse
Choose file... Browse
Choose file... Browse

Figure C.3 Ticket creation page

Click the ‘Create ticket” menu item. It will re-direct you to the ticket creation page.

Title and Description are mandatory.

You should select ticket priority based on your requirement.

Select the department you want to assign this ticket to. Based on your department selection,
‘Assign to user” dropdown will change.

Select the you want to assign the ticket.

You can attach up to 4 attachments. Please note that each attachment should be less than 2MB of

size.

Click submit button If ticket creation success, following message will pop up.

@ Success!

Ticket created successfully!
Create another ticket?

Figure C.4 Ticket creation success message

58

4) Chat with the chatbot

TicDesk Bot —
Hi
ﬁ Hi, how can | help?

I'm getting a blue screen

ﬁ

Simply rebooting can fix the blue
=creen of death (or STOP error, as it

S OtneEN NN

|Send message 4

Figure C.5 Chat window

Chat window is available on dashboard page for users to chat with the chatbot.

59

Appendix D — Admin Manual

1) Additional menu

Apart from regular main menu items, Admin users have additional admin section. As shown on the
below Figure.

2)

Add a user

TICDESK

Dashboard

Tickets

Settings

Add User

Edituser

Forgot Password

TICDESK

Dashboard

Tickets

Figure D.1 Admin menu

tﬁéunAN

NG

Add User

First Name

First Name

Email address

name(@example.com

User Type

Admin

Employee Grade

Assistant General Manager v

User Name
User Name
Password
Password
Re-enter password
Re-enter password
Active

Reset Password on

Middle Name (Optional)

Middle Name

User Department

v Finance

Report to

First Login

Figure D.2 Add user page

60

--None--

Kusala Sanjeewani '

Last Name (Optional)

Last Mame

1)
2)
3)
4)
5)
6)
7)

8)

9)

Click add user option under Admin section of the menu. It will load the add menu page.

All the fields of this page are mandatory apart from the user’s middle name and last name.

Then Type user’s email address.

Then select User type (Admin, Regular or Help Desk)

Select user department.

Select User grader (Executive, Assistant Manager, etc.)

Then select who is the person user report to (User’s immediate supervisor). This report to list will
change based on the user department and the grade. Only higher-grade employees than the user
will be displayed.

Type a username for the user. Always try keep the user’s fist name and last name firs character as
the username. If that username already taken, then try fist two character of the last name and so
on. Please note this username is unique key. If you try to add same username twice an error message
will popup.

The type the password.

10) Retype the same password for validation
11) Active tag is default ticked.
12) Reset password on first login is also default ticked. This will prompt a password reset window at first

user login

13) Then click submit button. A success message will pop up on successful user creation. An email will

be sent to user informing his user account is created. The email contains only the username. You
must provide user password separately. Password is not sent with the email because of the security
concerns.

& Success!

ser created successfully!
reate another User?

Figure D.3 User creation success message
tic.desk.21@gmail.com
To: pooma_sanjeewa@yahoo.com

Hi Athula,

Your TicDesk User ID has been creatad.
Your User |ID: athular
Plzase contact IT Help desk for your Password.

Thanks,
TicDesk

Figure D.4 The E-mail received by the user

61

