

Visualizing Security Vulnerability

Evolution of Software Systems

N.N. Sinhabahu

2020

2 | Page

Visualizing Security Vulnerability

Evolution of Software Systems

A dissertation submitted for the Degree of Master of

Science in Computer Science

N.N. Sinhabahu

University of Colombo School of Computing

2020

DECLARATION

I hereby declare that the thesis is my original work, and it has been written by me in its entirety. I

have duly acknowledged all the sources of information which have been used in the thesis. This

thesis has also not been submitted for any degree in any university previously.

Student Name:N.N Sinhabahu

Registration Number:2017/MCS/077

Index Number:17440771

Signature of the Student & Date

This is to certify that this thesis is based on the work of Mr. /Ms. _______________________

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by,

Supervisor Name: Dr G.D.S.P.Wimalaratne

Signature of the Supervisor & Date

2 | Page

Abstract

The analysis of large-scale software and finding security vulnerabilities while its evolving is

difficult without using supplementary tools, because of the size and complexity of today’s systems.

However, just looking at a report may not transmit the overall picture of the system in terms of

security vulnerabilities and its evolution throughout the project lifecycle. Software visualization is

a program comprehension technique used in the context of the present and explores large amounts

of information precisely. For the analysis of security vulnerabilities of complex software systems,

Secure Codecity with evolution is an interactive 3D visualization tool that can be utilized. It utilize

techniques and methods that are used in graphical visualualization to illustrating security aspects

and the evolution of software. The main goal of the proposed framework defined as uplift, simplify,

and clarify the mental representation that a software engineer has a software system and its

evolution in terms of its security. Static code was visualized based on a city metaphor, which

represents classes as buildings and packages as districts of a city. Identified Vulnerabilities were

represented in a different color according to the severity. To visualize different aspects, large

variety of options were given. Users can evaluate the evolution of the security vulnerabilities of a

system on several versions using matrices provided which will help users go get an overall

understanding of security vulnerabilities varies with different versions of the software. This

framework was implemented using SonarQube for software vulnerability detection and ThreeJs

for implementing the City Metaphor. The evaluation results evidently show that our framework

surpasses the existing tools in terms of accuracy, efficiency, and usability.

Keywords : 3D software visualization, Vulnerability Evolution, Re-engineering ,Vulnerability

Analysis, 3D graphics, human-computer interaction.

3 | Page

Acknowledgment

First, I would like to express my sincere gratitude to Prof K.P Hewagamage, Director, University

of Colombo, School of Computing for giving me the opportunity to carry out this research study

and for their supervision given throughout this study.

I wish to express my profound gratitude to my Supervisor Dr.P.Wimalarathne, Senior lecturer,

Department of University of Colombo for his excellent supervision and guidance.Mr.Chaman

Wijesiriwardena,Lecturer faculty of information technology Moratuwa for the guidance,All the

students who’s involved in “Secure Codecity” Research Project which is use as the basis of this

research.

My sincere thanks goes to all academic staff of University of Colombo who donated their

valuable time for the success of my research study.

Finally, I express my gratitude to my family & all those colleagues that are numerous to name

& wishes to remain anonymous, for their generous assistance to make this research a success.

Nadun Sinhabahu

4 | Page

Table of Contents

Chapter 1: Introduction 7
1.1 Statement of the problem 7
1.2 Motivation 7

1.3 Research significance and Previous work 8
1.4 Aims and Objectives 8

1.4.1 Aim 8

1.4.2 Objectives 8

1.4 Research questions and their Objectives 9

1.5 Scope 9
1.6 Structure of the Thesis 10

Chapter 2: Literature Review 11
2.1 Introduction 11
2.2 Problem Definition 11

2.3 Background Analysis 12
2.3.1 Evaluating Security Vulnerabilities in a Project 12

2.3.2 Common Security vulnerabilities 13

2.3.3 Problems associated with Manual Code Reviewing 15

2.4 Mapping study 16
2.4.1 Available Static Code Analysis Techniques 16

2.4.2 Visualization for complex systems 17

2.4.3 CodeCity Metaphor for the visualization 17

2.4.4 Visualization of Code Evolution With Vulnerabilities 18

2.5 Conclusion 19

Chapter 3: Research Methodology 21
3.1 Introduction 21
3.2 Problem Analysis 21

3.3 Design Constraints and Assumptions 21
3.4 Hypothesis 22

3.5 Selecting Sample Datasets 22
3.6 Design Overview 22
3.7 System Overview 24

3.7.1 Vulnerability Processor 24

3.7.2 Visualization Engine (Building and District Generator) 26

3.7.3 Evolution processor 26

3.8 Secure CodeCity with Evolution Framework Approach 26
3.9 Secure Code city with Evolution Architecture 27

3.9.1 First View of Secure CodeCity With Evolution 27

3.9.2 Second View of Secure CodeCity With Evolution 28

3.9.3 Evolution view 28

3.10 Sub-components of the Framework 28
Chapter 4: Implementation 30

5 | Page

4.1 Implementation Overview 30
4.2 Tools and Technologies 30

4.2.1 Static Code Analysis: SonarQube 30

4.2.2 Translation Middleware 31

4.2.3 First Level (Class Level) 31
4.2.4 Second Level (Method Level) 33

4.3.5 Evolution View 33

4.4 Summary 33
Chapter 5: Testing and Evaluation 34

5.1 Introduction 34
5.2 Testing 34
5.3 Evaluation 35

5.3.1 Validate Functional Requirements 35

5.3.2 User Evaluation Experiments 35

5.3.3 Selection of Questions and Scenarios 37

5.3.4 Selecting Sample Projects for the experiment 37

5.3.5 Selecting Experimental Subjects 37

5.3.6 Formulating Questions 38

5.4 Data Collection and Analysis 39
5.4.1 Overall completion time of the questions 39

5.4.2 Overall usability score of the tasks 41

5.4.2.1 Measuring Effectiveness 41

5.4.2.2 Measuring Efficiency 42

5.4.2.3 User Satisfaction 42

5.4.5 Statistical Analysis for hypothesis testing 43

5.4.5.1 One Way Anova Experimental Design 43

5.4.5.2 Interpretation of the effect plot 44

5.5 Conclusion 44

Chapter 6: Conclusion and Future Work 45
6.1 Secure Code City with Evolution Applications 45

6.2 Further Work 45
List of References 46
Appendices 49

6 | Page

Table of Figures
Figure 1.1Cost Related to security over the time .. 8
Figure 2.1. Amount of Monetary Damages caused by cybercrimes over the years 12

Figure 2.2Top 20 Vulnerabilities by CIGITAL .. 14
Figure 2.3Comparison to OWASP Top 10 .. 15
Figure 2.4 An overview of the city of ArgoUML v.0.24 .. 18
Figure 2.5Evolution of the “Graphics3D” class of the Jmol software .. 19
Figure 3.1Taxonomy of Comparing Proposed solution with Existing solutions 23

Figure 3. 2 System Overview .. 24
Figure 3.3 Main Tasks of Vulnerability Processor .. 25
Figure 3.4 High Level View of Secure Code City with Evolution.. 27

Figure 4.1 SonarQube architecture ……………………………………………………………30

Figure 5.1 Boxplot of Industry Experience between Experimental and Control Group 36

Figure 5.2 Boxplot of Industry Experience between Experimental and Control Group 36
Figure 5.3Boxplot of overall Completion Time between Experimental and Control Group 41
Figure 5.4 Boxplot of overall Completion Time between Experimental and Control Group

considering only Q9-Q12 .. 41
Figure 5.5 Boxplot of overall Usability Score between Experimental and Control Group........... 42

List of Tables (LOT)
Table 1.1 Research questions and their Objectives………………………………………..……...9
Table 2.1 Advantages and Disadvantages OWASP LAPSE…………………………………….16

Table 2.2 Advantages and Disadvantages YASCA………………………………………..…….16

Table 2.4 Limitations of Current approaches…………………………………………...……….19

Table 3 1 Performance characteristics evaluation ... 22

Table 3.2 Components of the System .. 23
Table 5.1 Completion Time for The Questions in seconds ... 40

Table 5.2 Explanation of H0 rejection or H0 acceptance due to the P value 44
Table 5.3 Statistical values .. 44

7 | Page

Chapter 1: Introduction

1.1 Statement of the problem

The software industry has grown dramatically in recent decades. Since then the complexity of the

codes has grown up. Application developers write these features, rely on their operation, and may

even re-use them in their code. Due to rapid, feature-driven development and code sharing, when

a vulnerability is introduced in code (and goes undetected) it can spread rapidly.

With the advancement in the software industry, a new software product is out to the market every

passing day. But very few are having the expected security standards and follow Information

Security principles. Applications may simply use the same technology stack and have no common

business function in an organization. Unfortunately, code reviews are done by only some of the

developers. Most of them ignore it up until the main security breach happens.

Some of these vulnerabilities may be identified during the testing process. Most of these go

undetected until some security breaches happen. Due to growing competition, project delivery time

is shortened and the security factor is compromised to make systems more up to date, which will

eventually lead to unauthorized access and data/information theft.

Hence there is a need for a proper mechanism to evaluate code and identify the potential

vulnerabilities in the software product from the early stages of the project and keep the track of

them in the entire project time span. If the solution can keep the track of the security-related issues

which have been resolved in the current stage, will encourage developers to take precautions to

prevent the security loopholes.

1.2 Motivation

Nowadays, Software Security plays a key role in the Application development process with

complex requirements in hand. This makes applications with thousands and millions of lines.

Which leads to several kinds of vulnerabilities in software products. Since the size and the

complexity of the products, the manual code review is not an option anymore[4].

There are existing applications to fulfil this task[5], But using only these, users can’t get an overall

idea about the security level of the project. These tools do not cater to the need for a simpler and

user-friendly way of understanding the security vulnerabilities of a project.

There are code visualization techniques available. But there is a problem exists such as how to

utilize the visualization techniques to visualize the identified vulnerabilities in a way where users

can understand properly.

8 | Page

Figure 1.1Cost Related to security over the time[36]

1.3 Research significance and Previous work

Most of the researches have been conducted on finding vulnerabilities of a software project without

executing it through static code analysis . Only a few researches were there addressing the problem

of a lack of understanding about the security aspects of a software project. Another problem was

that it's difficult to find research addressing both of these problems together. The literature review-

based studies focus on the analysis of previously conducted studies and other papers. Existing

approaches have not been focused on finding the vulnerabilities of software products but existing

systems unable to communicate it to the people. Hence it’s difficult to evaluate the software in

terms of security. Therefore considering the above facts, there is a need for a comprehensive study

regarding this research topic.

Previously research has been conducted to address this issue by UCSC students(“Secure Codecity”

Research Project)[2], and this research is an extension of that research.

1.4 Aims and Objectives

1.4.1 Aim

Provide a mechanism to give users a better understanding of the security aspects of software

solutions by finding and visualizing vulnerabilities that exist in source code in different versions

via using static code analysis and 3D visualization techniques alongside with related

countermeasures in order to enhance the secureness of the a software in Software Development

Life Cycle.

1.4.2 Objectives

 To Perform a background on software security vulnerabilities and what’s causing of them

 To study about existing vulnerability discovering process

 To compare existing software visualization metaphors

 To select a suitable visualization metaphor which can be used in the proposed solution

 To study existing static code analysers available

 To select a suitable static code analyser for the proposed solution

9 | Page

 To Implement the proposed Solution

 To Evaluate the proposed solution using benchmarking projects

1.4 Research questions and their Objectives

As previously mentioned, this study aimed to improve the understandability of the vulnerability

aspects of software products by using visualization techniques. In order to achieve these objectives,

following research questions (RQs) were proposed.

RQ1: How to extend code city metaphor to visualize source code and its evolution by referring

to the top 10 security vulnerabilities identified by The Open Web Application Security Project

(OWASP)? [6],[32]

RQ2: How to improve the understandability of the vulnerability aspects by visualizing the

vulnerabilities over the different versions of software? [32]

Throughout this study iabove iresearch iquestions have been ianswered. This istudy iconsists iof ia

iliterature ireview that provides ipast iimportant ipoints irelated ito ithe iresearch itopic and iresearch

iquestions.

Table 1.1 shows the research questions that this study is focused on.

No Research question Objectives

RQ1 How to extend code city metaphor to

visualize source code evolution by

referring to the top 10 security

vulnerabilities?

This research question’s objective is to

give identify top10 security

vulnerabilities by static code analyzing

techniques and visualize these identified

technologies via code city metaphor

with combining the visualization

techniques for better user

understandability

RQ2 How to improve the understandability of

the vulnerability aspects by visualizing the

vulnerabilities over the different versions

of software?

This research question’s objective is to

explore how to improve user

understanding about the vulnerability

changes with the code evolution of

software by using visualization

techniques.

Table 1.1 Research questions and their Objectives

1.5 Scope

Secure Code city with Evolution is capable of analyse the source code in different versions of the

java web-based applications and visualizing its security related information using code city

metaphor. Due to using SonarQube for the vulnerability analysing part and SonarQube identifying

Java application project vulnerabilities with a higher accuracy compared with other languages

solution limited only for the java web-based applications. The system categorizes identified

10 | Page

vulnerabilities into categories according to their severity. There is a colour code for each category

which represents the color of the buildings in the modelled city

Framework only focusing on identifying the OWASP Top10 listed vulnerabilities. Other

vulnerabilities identified by the SonarQube wont be processed by the framework.This framework

will keep the track of vulnerabilities identified and resolved in each version used these processed

information will be used for visualizing vulnerability evolution between two different versions. .

By comparing different versions of the system, users can identify how the security vulnerabilities

evolve with new feature additions and changes. Users can visualize the security evolution of a

system using different models given matrices.

1.6 Structure of the Thesis

 The structure of the thesis is as follows. Discuss the background and related work(Literature

review), Research Methodology, Discuss the Proposed solution in detail, Present and discuss

result from the study, conclusion and future work

11 | Page

Chapter 2: Literature Review

2.1 Introduction

In Recent years cybersecurity crimes grew up and security has become a major concern. Security-

related crimes have gone up and associated cost increased accordingly [10]

Since the complexity of applications, grown-up isecurity vulnerabilities in such iapplications have

igrown as iwell. There are different kinds of application vulnerabilities. In order to find a better

solution studying the existing Web Application Security Mechanisms is a must [1]

Information security aspects have changed from time to time due to technology and imarket

ichanges. For iexample, over the past 10 years, ipeople have shown concerns about cloud computing

or iprivacy or ithird-party ipublic clouds, iwhereasi today iusing a icloud iservice iis imuch imore

iwidely iaccepted ibecause icloud iiproviders ihave imore isecurity ireadiness compared to the past,

and business isectors are isatisfied with the benefits of the cloud, for example, ilow icost and

flexibility[14].

Bug prediction is one of the most active research areas in software engineering and different

prediction techniques have been proposed by the research community. This chapter describes

major approaches in software defect prediction.

2.2 Problem Definition

Security vulnerabilities in software systems have posed a serious threat to users, organizations and

even nations. In 2017, unpatched vulnerabilities allowed the WannaCry ransomware crypto worm

to shut down more than 300,000 computers around the globe[15]. At the same time, another

vulnerability in Equifax’s Apache servers led to a devastating data breach that exposed half of the

American population’s Social Security Numbers [16]. As of December 2017, the CVE website has

archived more than 95,000 security vulnerabilities.

By Analysing these statistics it’s clear that software security breaches have increased dramatically

in recent years, the costs associated with them increases accordingly. it's clear security has become

a major concern for software products more than ever.

In order to resolve these vulnerabilities, real cause of the issues should be identified. It’s important

to augmenting the concerns of software security into each phase of the Software development Life

Cycle(SDLC) and keep the track of the vulnerabilities detected and vulnerabilities resolved

between different versions.

12 | Page

Figure 2.1. Amount of Monetary Damages caused by cybercrimes over the years[37]

2.3 Background Analysis

In the early days it was believed that the complexity of software would lead to defects and security

threats.To show how complicated the software is, Akiyama ibuilt ia isimple model using Lines of

Codes(LOC) [17]. iUsing iLOC ias ia imetric ifor vulnerability assessment iwas itoo isimple iand

therefore MaCabe iproposed icyclomatic icomplexity ias a measure for security vulnerability

prediction[18]. iCyclomatic icomplexity and iHalstead icomplexity [19] iwere ivery ipopular imetrics

for evaluating vulnerabilities at that time but there was a major drawback in those models. The

model can be used to predict on the new software module and so they have demonstrated some

relationship between the matrix and the number of errors[20] Shen et al built a linear regression

model in order to test the accuracy of the defects identified in the new software module. However,

there are some bias issues in that model and Munson et al.proposed a classification model which

was modified and had high accuracy [21]. With the increasing popularity of version control

systems, several process matrix estimation models were proposed in the 2000s. There were certain

limitations in vulnerability prediction models developed during the 2000s.Major limitation was

the inability to predict defects whenever a source code file is changed. Just In Time(JIT) security

vulnerabilities prediction models were introduced to overcome this limitation and it is also an

active research area that allows predicting defects whenever we change the source code. Another

drawback is the failure to evaluate new projects and projects with very little historical information.

Cross defect prediction models have been introduced to address this limitation.

2.3.1 Evaluating Security Vulnerabilities in a Project

 Many Security problems are caused by bugs that can be spotted in the code Ex: Miss using various

string functions. Developers ignore the vulnerabilities until problems occur [35].

In the process of identifying Software Vulnerabilities, can be classified into two categories.

software vulnerability analysis and software vulnerability discovery. Software vulnerability

analysis is mainly focused on analyzing discovered software vulnerabilities to identify the

characteristics of vulnerabilities, such as main cause, position and implement features, and

characteristics of vulnerability the discovery process, such as features of vulnerability discovery

rate.[3]

13 | Page

2.3.2 Common Security vulnerabilities

Web and mobile applications are facing various attacks each and every day. When considering the

top critical web application vulnerabilities, poor programming approach which leads to these

vulnerabilities [34] which makes the developers responsible for these vulnerabilities. There are

various web and mobile applications related vulnerabilities that exist in the present. Also new

vulnerabilities are discovered by attackers very frequently. New technologies like cloud

infrastructure, new programming languages change the threat landscape and create new attack

vectors. This situation makes security more complicated and bizarre for the organizations and

makes it easier to the attackers. Since the situation is getting worse day by day, it would be nice to

have an independent body or organization who can invest in researching new threats,

vulnerabilities, define the severity of the vulnerabilities and define guidelines and best practices to

avoid, address these vulnerabilities. Also, they can suggest required and best security solutions,

providers and necessary tools. Then the organizations can get a clear idea about the top

vulnerabilities and take necessary actions like, educate the engineers, focus on test cases to cover

necessary scenarios. This will be a great advantage since it can save considerable resources for an

organization. Couple of well-known independent foundations or organizations exist, performing

security related research and doing great help for businesses as well as the community. Below are

some of them

● Open Web Application Project (OWASP)

● Cigital

● SANS

The following can be identified as the most common Security Vulnerabilities according to

OWASP

 SQL Injection, Broken Authentication, Sensitive data exposure, XML External Entities (XXE),

Broken Access control, Security misconfigurations, Cross-Site Scripting (XSS), Insecure

Deserialization, Using Components with known vulnerabilities, Insufficient logging, and

monitoring [26]

14 | Page

Figure 2.2Top 20 Vulnerabilities by CIGITAL[38]

15 | Page

Figure 2.3Comparison to OWASP Top 10

CWE/SANS TOP 25 Most Dangerous Software Errors

Following contains Top 25 Software Errors identified by Common Weakness

Enumeration(CWE).This a list which demonstrates most common and critical weaknesses which

may lead to software vulnerabilities.These vulnerabilities can be discovered easily and exploit

them.

Improper iRestriction iof iOperations iwithin ithe iBounds iof ia iMemory iBuffer, iImproper

iNeutralization iof iInput iduring iWeb iPage iGeneration i('Cross-site iScripting'),Improper iInput

iValidation, iInformation iExposure, iOut-of-bounds iRead, iImproper iNeutralization iof iSpecial

iElements iused iin ian iSQL iCommand i('SQL iInjection'),Use iAfter iFree, iInteger iOverflow ior iWrap

iaround, iCross-Site iRequest iForgery i(CSRF),Improper iLimitation iof ia iPathname ito ia iRestricted

iDirectory i('Path iTraversal'),Improper iNeutralization iof iSpecial iElements iused iin ian iOS iCommand

i('OS iCommand iInjection'),Out-of-bounds iWrite, iImproper iAuthentication, iNULL iPointer

iDereference, iIncorrect iPermission iAssignment ifor iCritical iResource, iUnrestricted iUpload iof iFile

iwith iDangerous iType, iImproper iRestriction iof iXML iExternal iEntity iReference, iImproper iControl

iof iGeneration iof iCode i('Code iInjection'),Use iof iHard-coded iCredentials, iUncontrolled iResource

iConsumption, iMissing iRelease iof iResource iafter iEffective iLifetime, iUntrusted iSearch iPath,

iDeserialization iof iUntrusted iData, iImproper iPrivilege iManagement, iImproper iCertificate

iValidation

2.3.3 Problems associated with Manual Code Reviewing

 Peer code review is a well-established practice among development teams aiming to produce high-

quality software, in both open source and commercial environments. According to the statistics,

its clear that the formal code inspections will improve the quality of software delivered

significantly[13].

16 | Page

In order to conduct a static code analysis, these known characteristics of vulnerabilities should be

identified. Since manual code reviews are time-consuming, costly and error-prone, the need for

automated solutions has become obvious. Static analysis is the process of evaluating a system or

component based on its form, structure, content, or documentation, which does not require

program execution[4]

2.4 Mapping study

2.4.1 Available Static Code Analysis Techniques

In order to choose a suitable static code analyser, it should have to be analysed the characteristics,

capabilities, and problems in current static code analyser techniques. There are existing source

code analysers. Source code analysis tools, also referred to as Static Application Security Testing

(SAST) tools, which was designed to analyse source code and/or compiled versions of code to

help find security flaws.

Most of the current static code analysers available right now are used as flow-sensitive,

interprocedurally and context-sensitive data flow analysis to discover vulnerable points in a

program[12]

There are some tools that are used lexical analyser techniques to find vulnerabilities in the source

code Ex: ITS4, FlawFinder, and RATS. In these systems, the technique of tokenizing source files

is used and then they are matched with the resulting token stream against a library of vulnerable

constructs.[5]

There are many static code analysers available. These tools have their strengths, weaknesses, and

performance characteristics. While using multiple static code analysers, tools claim to check the

same vulnerabilities but generate different results. In this scenario, at least one of the SCA tools is

generated with both false positives, which are locations in source code that are incorrectly labelled

to have a flaw, and false negatives, which are locations in source code that actually have a flaw

and are not labelled at all. Hence it is needed to identify the best-suited static code analyser to suit

our purpose. In order to do that, Software Engineering Metrics to Evaluate the Quality of Static

Code Analysis Tools can be used[11]

OWASP LAPSE

Advantages Disadvantages

Possible to integrate with an integrated

development environment and perform the source

validation without compilation.

Only support for eclipse integrated development

environment

Tool handles the testing with three steps, which

are identifying the vulnerability source in the

source code, identifying the vulnerability sink in

No new versions after 2012

17 | Page

the tool and examine to see whether we can use

vulnerability sink to each the vulnerability source

Table 2.1 Advantages and Disadvantages OWASP LAPSE

YASCA

Advantages Disadvantages

Possible to integrate with other powerful and

related tools

Capable only for finding straight forward,

low-hanging fruits and Cross-Site scripting and

SQL injections attacks
Table 2.2 Advantages and Disadvantages YASCA

SONARQUBE

Advantages Disadvantages

Open Source

Report generation and the ease of integrating it

with Automation servers like Jenkins

Code analyzing for detecting vulnerabilities with

higher accuracy

Multiple Language Support

Accuracy of vulnerability detection well

performed only on JAVA code based systems

Table 2.3 Advantages and Disadvantages YASCA

2.4.2 Visualization for complex systems

“Visualization is a method of computing. It transforms the symbolic into the geometric, enabling

researchers to observe their simulations and computations. Visualization offers a method for seeing

the unseen. It enriches the process of scientific discovery and fosters profound and unexpected

insights. In many fields, it is already revolutionizing the way scientists do science.” [23]

In order to debug and understand the software systems, diagrams are drawn to visualize what is

happening. These diagrams, visualizations will formulate the way that our imagination about

software. But there are many problems associated with these techniques. Thinking ahead of time,

that most programmers don't have the graphics or compute hardware needed to take advantage of

visualizations that have been produced. Ex: Thinking ahead of time Fail to communicate the idea

to the users

 By considering all these factors there is a clear need for software visualization. The aim of the

research is to change the focus of our software visualization efforts which will make sure

developers are in touch with reality.

 Software visualization is a technique that can be used to summarize the system which can be

useful to software maintenance, reverse engineering, and software evolution analysis. After

combining knowledge gathered in security and vulnerability analysis with the virtualization, users

can detect and take precautions to avoid potential security breaches[9]

2.4.3 CodeCity Metaphor for the visualization

Software is virtual and also it’s intangible [24]. Without a visualization technique, it’s very hard

to make a clear mental representation of what a piece of software it is. Basically, visualizing

software is like drawing a picture of the software [25].

18 | Page

Researchers have proposed many software visualization techniques and various taxonomies [27],

[28], [29], [30]. There have been many Programs developed to visualize the static code

Ex: Imagix 4D, NDepend, Sotoarc, Sourcetrail, Softagram, Getaviz, SonarGraph[31]

Many of the existing solutions have failed to communicate relevant information about the system

to its users. As for the researchers identified, this happens mainly because most of the tools using

additional 3rd dimensions to communicate the information to the users, which will lead to

information overload. Software’s are mostly represented as nodes and Edges in a 3D space. This

research has suggested a new approach, which is going to visualize the source code and its security

vulnerabilities in a more familiar context to the users (The City Metaphor). [6]

The goal is to provide experimental evidence of the viability of this 3D modelling Then it is needed

to consider how to implement 3D model visualization according to the given source code. [7]

Figure 2.4 An overview of the city of ArgoUML v.0.24

2.4.4 Visualization of Code Evolution With Vulnerabilities

When considering the relationship between code review coverage and post-release defects, review

coverage is negatively associated with the incidence of post-release defects. However, it was only

provided with significant explanatory power to some of the studied releases, suggesting that review

coverage alone does not guarantee a low incidence rate of post-release defects[13]

Source code is changed many times during the life cycle of a software system. This will lead to

the problem in which developers may not be able to get an insight into these changes. Just by

looking at the changeset it’s difficult to get an overall idea about the changes that have been done

throughout the project and there is a clear need to develop a tool to represent the software

versioning via 3D model [8]

The Code Evolution and vulnerability changes visualization is very useful to show how the

vulnerabilities changes and when new methods are created and disappear. Some evolutionary

19 | Page

patterns can be found, for example, a building (class) that evolves and loses an ever-increasing

number of bricks (methods) looks unstable. Another example is when a large number of bricks are

suddenly added from one version to another and new vulnerabilities arise because of that.

Correlating the timeline visualizations of several classes and vulnerability changes enables the

detection of causes for vulnerabilities and massive refactoring [33].

Hence it’s clear that it is necessary to keep the track of the vulnerabilities identified over the project

life cycle and only keeping those records is not enough to cater to the idea about security aspects

of the project.

Figure 2.5Evolution of the “Graphics3D” class of the Jmol software

2.5 Conclusion

Software Visualization Static Code Analysis Tools

Security Vulnerabilities and their evolution

are not visualized

Vulnerabilities are not given with its impact

on the system

Doesn’t support second level drill down If the project is large and complex its very

difficult to refer to the source of an issue
Table 2.4 Limitations of Current approaches

By analysing the above evidences conclude that there is not enough research that has been done

on combining Vulnerability Analysis with the Visualization Mechanisms with Code evolution

representation.

There are various software visualization approaches that have been used over the last two decades

that have led to a plethora of visualization techniques and these can be classifiable into several

taxonomies. Each technique targets one or more of a software system and represents information

according to its own visual language. Performing an analysis of several aspects of a software

20 | Page

system(eg: Design, Evolution, Complexity) would require conducting separate analysis for each

targeted aspect using different visualization.

While trying to select a suitable representation for software, iseveral iresearchers iproposed

different representation techniques using ireal-world imetaphors. iThese itechniques use easily

understandable elements of the world to provide insights about software. For example,

codecity(techniques are based on a City abstraction), Metaballs(3D imodeling itechnique iwhich

can ibe used ito irepresent icomplex iorganic ishapes)

According to the facts included in this section depicts that SonarQube is a code quality

measuring tool which has been widely used in the software security domain.The proposed

solution from this dissertation has used SonarQube for identifying OWASP Top 10 security

vulnerabilities.

21 | Page

Chapter 3: Research Methodology

3.1 Introduction

The methodology is the way of handling the research question and it is addressed with the

knowledge gathered through referring to literature review. As mentioned earlier, the scope of this

research had spread among many fields in modern computer science. As a result of these

reasons, many experiments and techniques had been taken into consideration to cater the goals of

the research. As mentioned in previous chapters, the goal of this research is an iefficient

vulnerability detection, visualization and evolution of software systems using code city

metaphor. This chapter describes a icomprehensive ioverview of the iimplementation procedures

which had been undertaken throughout the project.

3.2 Problem Analysis

The primary aim of this Project is to identity possible security vulnerabilities of a software system

in earlier stage(While developing the system) and represent those identified vulnerabilities and

evolution of these vulnerabilities in an attractive manner by using 3D visualization.To achieve this

goal, research was done by exploring relevant research papers, dissertations and tools.By carrying

out a background study, system requirements and Architecture have been identified. The

limitations that were identified in this approach, information gained by referring iconcept ipapers

were incorporated while working with the design of the isystem iarchitecture.

Due to the security vulnerabilities and System design flaws, leads to major security issues as

mentioned in Chapter 1. Because of this, code reviews play an important role in the software

development life cycle. Static code analysis tools[1,2,4] were explored in order to elect a tool to

identify the code-level security issues as aforementioned in Chapter 2.Using the literature review

conducted on Vulnerability analysis tools, SonarQube was selected as the Static code Analysis

tool aforementioned in Chapter 2.OWASP Top 10 was selected to get counter measures to

vulnerabilities as it links with SonarQube.

However there is no direct approach exists in available tools to find the association between

identified vulnerabilities and the part of the source code relevant to the vulnerability as

mentioned problem definition in Chapter l, the research component was based on discovering an

approach to map the detected vulnerabilities to 3D metaphors and provide relevant

countermeasures to user and compare the evolution of the identified vulnerabilities between

versions.

3.3 Design Constraints and Assumptions

The evolution of vulnerabilities of software systems from the Secure Codecity with Evolution

can be used as a separate software application or a component of a software application. For the

vulnerability identification we have used SonarQube.According to the background study

conducted in Chapter 2,the number of vulnerability types identified by SonarQube is maximum

for the Java Web Application project compared to the Other supported languages. Hence, the

solution only supports the Java Web Applications which is compatible with the supported

version of the Java language from the SonarQube.

The intended users of the Secure Codecity with Evolution are software developers who should

have a basic knowledge about the software security in order to use the framework.Subsequently,

22 | Page

the user should have familiar with the SonarQube source code analyzing process due to the

framework uses SonarQube for software vulnerability identification. The framework identifies

bugs and categorizes them into OWASP top 10.Other kind of categorization methodologies are

not available.

User should configure the SonarQube before using the framework.For the Visualization Codecity

metaphor has been used since it's easy to represent the software metrics to the user.Codecity

metaphor has been modified in order to integrate security vulnerabilities information and give

user a clear understanding about these vulnerabilities of a software project.

3.4 Hypothesis

The below hypotheses have been iformulated to cover the scope of the proposed research and to

measure the effectiveness of the proposed Framework. By gathering some information from

previous research, hypotheses were formulated.

Null Hypotheses Alternative Hypotheses

H1o The overall accuracy of the answers

when considering all tasks is similar in

experiment and control group

H1 The overall accuracy of the answers

when considering the tasks is different in

experiment and control group

H2o The Usability ratings for the systems

are same in the experiment and control

group

H2 The Usability ratings for the systems are

different in the experiment and control group

H3o Time taken to complete all the tasks are

similar in the experiment and control group

H3 Time taken to complete all the tasks are

different in the experiment and control group

Table 3 1 Performance characteristics evaluation

3.5 Selecting Sample Datasets

Systems accept the sources which are used in the Java programming language.Sample data sets

were chosen from open source OWASP Benchmarking projects.In order to be a fair dataset, it

should have followed globally accepted the practices and procedures used while developing these

systems.Selected projects have been Licensed under MIT.

After the analysis, following source had been selected as input source

● Security Shepherd

● WebGoat(insecure web application maintained by OWASP for evaluation purposes)

Another reason behind this selection is these projects have especially been designed to discover

the vulnerabilities and we know what are the vulnerabilities exists in these projects.Webgoat

consist of known vulnerabilities that we can use to validate the Framework.

3.6 Design Overview

Ultimate goal of the project was to create a tool which is free and capable of analysing security

vulnerabilities of the source codes and visualize the code evolution using vulnerability evaluation

metices. Projects which were selected(WebGoat,Security Sheperd) for testing and analysis of the

system are Apache Source codes,Reasons behind the selection are these projects are well-known

http://www.owasp.org/

23 | Page

and follow general standards,Projects contains known vulnerabilities that can used to verify the

correctness of the system.For visualization purposes, the Code city metaphor was selected.

Proposed system has main components as follows.

Static Code Analysis

Vulnerability Processor - read, categorize and store relevant into the database.This contains several

sub components(File Hierarchy Processor,Metrics Preprocessor,Issue and vulnerability

processor,Color generator)

Evolution processor - Compare the vulnerabilities between different versions of the codebase and

generate informations required

Visualization Engine(Building and District Generator) - which can be used by the developers to

visualize the vulnerabilities with the association with the codebase using codecity metaphor
Table 3.2Components of the System

Figure 3.1Taxonomy of Comparing Proposed solution with Existing solutions

24 | Page

3.7 System Overview

As mentioned above, the system was divided into independent components. More focus and the

weight were given for designing Vulnerability Processor,the Evolution processor and

visualization engine, since those components provided high value for the end users. Building the

vulnerability knowledge base of the analysed source codes was the major part of the proposed

system stem and that was not completely automated. Some manual work also taken into

consideration to continue the workflow of the building vulnerability knowledge base such as after

gathering the source code samples. Those things were required to be uploaded to the static analysis

tool to perform the analysis. Also when the analysis was completed by the tool, a false positive

removal was performed to make the result set accurate. After that the result was imported to the

system in a particular format which it could be interpreted by using Vulnerability and it was stored

in the database for using for evaluation. Formed Visualization model will be transferred into the

Visualization Engine(FrontEnd).

● Upload the selected source code sample to the static analysis tool

● False positive analysis

● Generate 3D visualization (Vulnerability Evolution) based on analysed versions of a

project

Below is the high-level overview of the complete System. The diagram shows all the components

of the proposed system and how each component is going to interact with other components to

provide the necessary output of the proposed system.

Figure 3. 2 System Overview

3.7.1 Vulnerability Processor

This is one of the important components of the project and it could be used by developers to

analyze the potential vulnerabilities of source code. Vulnerabilities were analysed and the ways

to address those vulnerabilities were found, prepare the visualization model.

25 | Page

A commercial static analysis tool was required to perform vulnerability assessments of the source

code samples. Also it was practically impossible to purchase a commercial tool for the project due

to the pricing of these tools(These tools are very expensive).For an example static analysis tool

like kiuwan cost between $600 to $2,550 based on the project.During the static analysis selection

process, mainly the analysis was done as a part of the project to understand the features ,

capabilities and the differences of the static analysis tools and ease of use. Most of the Open Source

tools accuracy level was not satisfactory.SonarQube has been selected as the StaticCode Analyzer

according to the conducted analysis Chapter 2.

After analysing the required vulnerabilities using SonarQube,Other required details for the

visualization(Details required to generate basic structure of the city) ,class level details,Metrics

processing,File hierarchy processing will be conducted.

The codes were analyzed by the code processing tool(SonarQube) and they have categorized

accordingly. The tool can be connected to the created knowledge base to analyse the potential

security vulnerabilities of the selected source code sample and the feedback was given to the

developer in a user-friendly manner. Color code generators decide the colors for the buildings

based on the Security Vulnerabilities Severity, Cognitive Complexity, and the Remediation effort.

Identifying the associations between codebase and vulnerabilities will be done by combining the

knowledge gathered on file hierarchy processing and vulnerability processing.By combining the

remodation suggestions generated by SonarQube and User Feedbacks tool is capable of generate

more detailed suggestions to resolved the vulnerabilities.

Figure 3.3 Main Tasks of Vulnerability Processor

Information gathered during the analysis will be saved on the database with reference to its

version(Project version), which will be used in analyzing the vulnerability evolution over the

different versions of the codebase.

26 | Page

3.7.2 Visualization Engine (Building and District Generator)

These processed data (Abstracted details from Analysed code base) were fetched into the

visualization component. Here the abstracted details will be modeled into the Visualization model

which mapped into a 3D city using code city metaphor.

3.7.3 Evolution processor

Process vulnerabilities between two different versions of the codebase and Generate the

Vulnerability Evolution Model. Combining the information’s changes between two versions

generated by SonarQube and combining it with Pre Analysed data Evolution Model will be

generated

Following describe the Secure CodeCity with Evolution Framework Approach and detailed

description about components

3.8 Secure CodeCity with Evolution Framework Approach

The task of discovering security vulnerabilities inside the source code can be done using

SonarQube without having much difficulty.Even it could identify the files which contain them,

having a comparison to get an overall idea of these vulnerabilities is little bit challenging. In the

current approach we have to get vulnerabilities of each and every file and have to calculate the

vulnerabilities separately. It is very time consuming. Although we can find the vulnerable classes

or methods, we have no idea about which class or method should we have to give the priority.It's

even worse if we are trying to do a comparison between different versions of the codebase. To

address these issues, we introduce Secure CodeCity with Evolution, a new 3D code visualization

tool that aims to improve a programmer's understanding on security vulnerabilities of an existing

codebase in a manner to get an overall idea about vulnerabilities, countermeasures.

The objective of this study is to improve the understandability of system owners in the perspective

of software vulnerability via analysing the code evolution through various versions of the project.

The solution was carried out in three modules. In the first module, software vulnerabilities were

identified through static code analysing techniques ,abstracted details will be visualized using

codecity metaphor. In the second module is a drill down view where the users can use to discover

further details, Finally in the third phase, the software code evolution was visualized between

different versions of the code base.

The proposed solution is an extension of Detection and Analysis of Software Security

Vulnerabilities [2].Secure CodeCity with Evolution organizes source code into a 3D scene in order

to take advantage of human spatial memory capabilities and help one better understand. By

extending 3D space into more levels, Secure CodeCity is also able to provide an exciting game-

like environment, thereby encouraging engagement and subverting boredom. Secure CodeCity

also supports two unique points of view: exocentric and egocentric, which allows one to examine

the vulnerabilities at different granularities. In method level, different charts are used to present

different granularities of vulnerabilities inside a class.

We aimed to create a vulnerability visualization tool that helps users in becoming familiar with

vulnerabilities in existing codebase and comparing it with different versions. This tool must be

easy to work with and must show information in a form which reduces the user's cognitive load.

One thing that sets Secure CodeCity apart from current tools in the literature is that it is designed

to be suitable for both beginner and experienced developers alike.

27 | Page

Software visualization enables the user to interact with a representation of something familiar,

namely a world with familiar objects that a person can interact with may help to better explore

software structure[34].The visual environment as a more suitable option for teaching beginners.

Also, Secure CodeCity with Evolution offers code interaction from an exocentric and an egocentric

perspective, combining the benefits of both interaction modalities.

3.9 Secure Code city with Evolution Architecture

As mentioned above, the framework consists of three related views,which are First level ,Second

Level and Evolution View.First Level is the initial view where the abstract details of the system

being visualized. Second level view visualize deeper but more restrictive scoped vulnerability

information related to the input. In the Evolution view where the user can view the evolution of

the vulnerabilities between different versions.

Figure 3.4High Level View of Secure Code City with Evolution

3.9.1 First View of Secure CodeCity With Evolution

This is the initial view from where the user can get particular security vulnerability information

related to the source code.In the First level view user can will be able to visualize the source code

of the input project in 3D city.where each building depicts a class of the input project.The footprint

size of a building is determined according to Cyclomatic Complexity of the corresponding input

source file.Where the height of a building represented according to number of lines of the source

code file.The color of the building which represents a class varies according to the overall severity

level of identified vulnerabilities and Security Rating.Further Total number of Vulnerabilities

,Total number of issues will be available in the First level visualization

28 | Page

3.9.2 Second View of Secure CodeCity With Evolution

When a user selects a building in the first view ,a second view appears .This view also has buildings

which represent the methods in the class related to the selected building.The color of the building

varies according to the overall severity level of vulnerabilities in the particular vulnerability. This

view can identify what OWASP vulnerability categories are included in the selected class.In here

users can identify the number of Major,Minor,Critical vulnerabilities that exist in the selected

class.

3.9.3 Evolution view

In this view users can view the evolution of the vulnerabilities between two different versions of

the codebase.Using this view user can identify addition of new components,and changes in the

existing components to the system affecting the system security aspects.

3.10 Sub-components of the Framework

l . Metrics Pre-processor

Ths modules accumulate the information of different metrics (number of classes,number of

methods , names of methods, starting line and ending line of a particular method,lines of codes) of

classes and methods.Processed information by Metrics generator are used as an input to the

building generator and vulnerability processor.

2. Vulnerability processor

This module is used to get vulnerability details of the classes of a project. It provides details related

to the particular vulnerability like severity, message, debt, effort and so on. These values are

extracted from SonarQube.

 3. Building Generator

This module is used to generate models which have been used to 3D building views for the

methods of the selected class. Each building represents a method. The height of the building shows

the number of lines of the method.The footprint size of a building is determined according to

Cyclomatic Complexity of the corresponding input source file. The metrics for generating

buildings were taken from metrics Pre-processor.

4. Sonar Vulnerability Summarizer

This module is used to summarize different kinds of information about the projects.No of

vulnerabilities,Vulnerability types,the severity level of vulnerabilities,etc will be generated by

combining the metric pre-processor information and other project related matrices. Different types

of charts will be generated after processing the information

5. File System analyser

29 | Page

This module is used to analyse the files structure and find the associations between vulnerabilities

and Classes,methods.This component merges the information gathered by other components

which is used to generate the Visualization model.

 6. Color Generator

By considering the level of risk factor,the Color generator module was utilized to provide colours

for the building.For determining the severity level of vulnerabilities in each method, OWASP Risk

Rating Methodology was taken. numerical values were assigned for parameters (Ex:

Exploitability, Prevalence.) that were considered for rating the issue category. The method which

did not have the vulnerability, was colored in green. Method which has vulnerabilities but not

providing any owasp category related to this, it was colored as brown. The other methodologies

which possess and Dotnet core and tested using Jasmine and Karma . Frontend of the project is

built using Typescript,Javascript programming language with HTML and CSS

30 | Page

Chapter 4: Implementation

4.1 Implementation Overview

After design of the project was completed, the next challenge was to implement the project and

also make sure implementation would achieve all the project requirements specially user-

friendliness and accuracy. Most importantly implementation should not limit or restrict the

required features of the project and implementation enchase or facilitate to enrich the project

features. Certain decisions should be made to achieve the successful implementation of the project,

including underlying the technology frameworks that needed to be used and back-end technology

which is going to be used. The primary focus of this research was to implement the project

successfully rather than using the best and the latest technologies available in the industry.

4.2 Tools and Technologies

The framework was developed as a stand alone application which render in the browser. It consists

of a different levels and some levels are used3D visualization .Threejs library is used with

JavaScript to 3D implementations.TheFirst Layer of the application is built using TypeScript,

Angular and Dotnet core and tested using Jasmine and Karma . Theres of the project is built using

Typescript,Javascript programming language with HTML and CSS

The first layer of the application has developed using TypeScript,Angular,and Dotnetcore because

the Secure CodeCity with evolution should run fast and reliably to visualize the security related

data. TypeScript is the superset of JavaScript which includes some of the features includes in oop

based programming languages. The main advantage is its supporting for spotting common errors

on real time. First layer of the application was divided into components such as vulnerability

summary, city builder, scene. Sidebar, top bar etc. and implemented those components using

Angular and RxJs.. Angular Testing Frameworks (Jasmine,Karma) are used to test the application

frontend and for backend Nunit,XUnit is used. Also CSS and Sass were used to style the front end.

Webpack used to bundle Javascript files for usage in a browser.

The metrics pre-processor for method level was built using Dotnet core programming language

with Dotnet core webapi related technologies. The main reason behind choosing dotnet core is

ease of implementation and rich set of libraries available. MsSql is used for creating the database

and other required data transferring operations. The additional reasons , and for the main

development communicate with 3D techniques and allow to letting JavaScript programming

language is, it is in browser a popular, robust, secure run implementation of the used for the

chapter explains the development approaches taken in the implemented framework described in

Chapter 3 with the tools and technologies .A detailed description of the implementation of each

common CodeCity Framework architecture is described under sub sections

4.2.1 Static Code Analysis: SonarQube

In order to identify the Security vulnerabilities of a particular software application and of software

metrics, the Secure CodeCity Framework user needs to analyse the source code using SonarQube.

31 | Page

The vulnerabilities identified as security bugs categorized with respect to OWASP 10[13] by this

tool. SonarQube is a static code. It consists of different levels and some levels are used for 3D

visualization . Categorization of software bugs into OWASP T10 is an additional reason for

selecting this tool for the proposed approach of the framework as identified in Chapter 2.

Figure 4.1 SonarQube architecture

4.2.2 Translation Middleware

This component acts as a bridge between a SonarQube Api, database and Frontend Application.

This Middleware has the ability to derive the abstract syntax tree(AST) related to a Java source

code as well as, to breakdown Java source code to methods, statements with particular keywords

etc and process them to find associations between different metrics.

4.2.3 First Level (Class Level)

The First Level (Class Level) of the application is built to map project to a 3 dimensional City

metaphor Security Vulnerability Severity, Security Remediation Effort Security Vulnerability

Rating Issue, cognitive and Number of developer details could be taken using the colour spectrum

of the building Also specifies source file details such cyclomatic complexity, number of lines of

code Security Remediation Effort ,Security Vulnerability Severity , Security Vulnerability Rating

,Cognitive complexity and number of developer could be taken by selecting the building.

Application is built as a Single Page Application using Angular and ThreeJs.Functionality of this

component has been Tested using Jasmine and karma

1. Metrics Pre-Processor

Using SonarQube provides API we can obtain the different types of metric details related to the

scanned projects by sonar Scanner. Metrics pre-processor process these metrics and bind them to

the Processing Model. This model is created to represent the to store details about the extracted

details from SonarQube. So in order to make it efficient and speed up the process, APIs are being

called in Asynchronous manner. Measures such as cyclomatic complexity, number of lines of code

32 | Page

are needed to map files to buildings and number of file details are needed to map components

(packages) to districts. These generated details are fetched to the Model builder to build secure

code city models.

For implementing the required functionalities in the the api dotnet core has been used ,For the

testing api Postman is used

2. Vulnerability Processor

SonarQube provides a facility to extract vulnerability details of any given project via SonarAPI. It

sends output details as a JSON object. Then details are processed according to various needs of

the project.

For implementing the required functionalities in the the api dotnet core has been used ,For the

testing api Postman is used

3. Building and District Generator

The metrics results related to class details and package details would be stored in the “Visualization

model” which uses the “Processing Model” in the metric pre-process stage. All building, Packages

related metric details would be taken from the Processing Model.

“Generate CodeCity” Component rules have been defined i.e. mapping of line of code in source

file to height of the building, mapping of cyclomatic complexity of source file to footprint of the

building etc.

The Visualization model will be used to generate the city in the "Generate CodeCity" Component.

The Functionalities of those components were implemented using TypeScript and for generating

the codecity view ThreeJs has been used.Unit tests are implemented using Karma and Jasmine

4. File Hierarchy Processor

Build the association between files and identified vulnerabilities file Hierarchy Processor is used.

Associations between districts, buildings related packages, files, identified vulnerabilities ,Classes,

methods are identified and use these information’s to update the “Visualization model”

For implementing the required functionalities in the the api dotnet core has been used ,For the

testing api Postman is used

5. Colour Generate

Colour code generator will decide the colour code for a particular class by processing the

vulnerabilities and other metrics(Exploitability, Prevalence).These generated color code will be

used to update the Visualization Model

For implementing the required functionalities in the the api dotnet core has been used ,For the

testing api Postman is use

33 | Page

4.2.4 Second Level (Method Level)

1. Metrics Pre-Processor

SonarQube API does not provide a way to get method details inside a class. In order to get the

methods details, source code will be fed to java parser and extract method name, size and method

lines details.API is implemented using dotnet core to send those pre processed metrics values as

JSON format to building the generator component

2. Building Generator

The metrics results related to method details which are coming as a JSON object from Building

generator api will be processed to extract the required information to build the view using

Typescript. Some vulnerability details are also needed to build this view and those details are

extracted from vulnerability processor. View is generated usingThree.js library.

3. Colour Generate

Colour code generator will decide the colour code for a particular Method.

4.3.5 Evolution View

Users can use this view to get information about how the changes between different versions affect

the software security. User can select two different version of a software which was analysed by

the framework. SonarQube API provide information’s regarding version changes. Evolution

Processor will combine SonarApi metrices with previously analysed result which was stored in

the database. Processed data will be bind to the “Evolution Model”. For implementing the required

functionalities dotnet core has been used and NUnit has been used to prepare the unit test cases.

“Evolution Model” will be transferred to the “Evolution viewer” component in the Angular

Project. Typescript has been used to implement the functionalities, and for 3D visualization of the

Evolution Threejs has been used

4.4 Summary

The chapter above, presented the procedure of implementation of the framework(secure code city

with evolution) with the tools and technologies in each component and Implementation of the

design modules in secure code city with evolution Framework architecture explained with

technically presented as an integration of them with the reasons behind in selecting relevant tools

and technologies.

34 | Page

Chapter 5: Testing and Evaluation

5.1 Introduction

This chapter will describe the results of the project, application features, functionalities and

capabilities to evaluate the project and also possible approaches to test and verify the application

functionality to Make sure it provides the expected quality output. Below step was used to evaluate

the developed application.

● Source code testing to make sure there are no errors and logically it is implemented as

expected.

- Angular Unit Tests (Using Jasmine and Karma)

- Web Api Unit tests(Using NUnit and XUnit)

● Functionality testing.

- Functionality testing of the vulnerability explorer(Static code Analysis)

- Functionality testing of the Vulnerability Processor

- Functionality testing of the 3D Visualization

 - Functionality testing of the Visualization Engine(Building and District Generator).

● Usability testing.

- Verify whether users are able to understand the framework functionalities without

extensive training

- Verify whether users can increase their awareness about the system vulnerability

aspects by using the framework

5.2 Testing

The testing procedure was conducted as a strategy to ensure secure CodeCity with evolution

product operates as intended in the specification. It can be realized under two major categories

namely, functional and non-functional testing .In Functional testing, it includes unit testing ,

integration testing and system testing to verify that the implemented framework functions correctly

and provides the results in accordance with the development constraints. Unit testing for the front

end was performed using Jasmine and Karma. The First Layer View of the application was built

using Angular,Typescript,JavaScript and Threejs, which was tested using Jasmine and Karma and

the backend developed using dotnetCore and tested using xUnit and NUnit. API calls were being

tested using Postman. The manual testing also carried out for the entire system to check the

functionality of the whole system by writing the test cases.

Acceptance Testing was conducted under functional testing where the System was Evaluated with

the help of industry expertise and their experience gathered to verify that the System works

properly and meets the requirements. System Testing was performed by analysing benchmark

projects with SonarQube itself and the whole system and check weather system generates the

expected outputs to verify that all components together risks properly

Performance Testing was conducted under non-functional testing and the framework was tested

for analysis of large-scale projects to check whether the system crashes or fails to produce expected

outputs. The OWASP Benchmarking projects namely Security Shepherd and WebGoat(insecure

web application maintained by OWASP for evaluation purposes) used for the evaluation purpose.

http://www.owasp.org/

35 | Page

5.3 Evaluation

This research intended to demonstrate a novel method and a proof of concept of framework

proposed for visualizing security vulnerability information and its evolution throughout the SDLC

of a java projects. First evaluation is done to measure the overall accuracy of secure code city with

evolution. Second it was evaluated whether the results generated by secure code city with evolution

is time efficient.

5.3.1 Validate Functional Requirements

For evaluating the functional requirement Security Shepherd and WebGoat has been used as

benchmark projects

● The proposed tool was executed against different versions (Ex:WebGoat 7.1,8.0) of the

Source Codes(Dataset) and vulnerabilities were identified.

- Testing data set has known vulnerabilities

● Each version was tested on security vulnerabilities that had been used for evaluating

- Ex: Which areas of code will make the system to be exploited by the SQL Injection

techniques

● Test cases were prepared to evaluate the productivity and correctness of the system for

each and every version.

● Using these benchmark projects, the Correctness of the predicted vulnerabilities were

verified.

● 3D code visualization was checked for each version with identified vulnerabilities

- Here, 3D model was verified to see whether the generation works properly

- Did it work as expected?

- Were we able to go through different versions of the system and identify

vulnerabilities?

● System was checked whether it had all its functional requirements

- Did the System have all the functionalities that we were trying to achieve ?

Ex: If there was a vulnerability in some class, its representative building should be in a different

colour. User should have the able to click on it and identify what was the issue

● System suggested solutions were checked to resolve some vulnerability validity.

5.3.2 User Evaluation Experiments

The User Evaluation experiment was designed based on the Subjects Design, which is one of the

famous experimental design methods in software Engineering. The main purpose of the user

evaluation experiment was to use a multi-fold evaluation of secure CodeCity in terms of accuracy

when conducting tasks, time to complete tasks ,correctness of the tasks and overall usability of

Secure CodeCity when compared with SonarQube.The research population for this experiment

had 20 subjects who had 2-10 years of working experience in the industry.Subjects has been

36 | Page

selected based upon on their industry experience and familiarity based upon the source code

reviewing tools like Sonar Qube.

All the subjects have been divided into two groups one as Experimental group and one as the

control group.While grouping the members, we have considered the factors of industry experience

and intimacy of the source code reviewing tools.Figure 5.1 and 5.2 shows the distribution of these

factors among two groups.

Figure 5.1 Boxplot of Industry Experience between Experimental and Control Group

Figure 5.2 Boxplot of Industry Experience between Experimental and Control Group

The Experimental group has been provided with Secure code city with evolution while control

group has been provided SonarQube 8.3

According to the Hypothesis defined in Chapter 3, questionnaires has been formed.The experiment

has been conducted after an explanation about the secure codecity with evolution and

communicating the objectives of conducting the experiment.Afterwards simple demonstrations

37 | Page

have been conducted inorder to give the users proper understanding about the framework and the

Sonarqube.Then the questionnaires has distributed to the participants,where the participants asked

to answer upon completing each and every task within a defined time frame(10min and 12min).

The experiment group has been instructed to answer the questionnaires based on the experience

they had while working with the Secure code city with evolution while working with the task list.

The control group has been instructed to answer the same questionnaires while working with the

SonarQube on the same task list. After completing the experiment, overall usability has been

measured from the each group.

5.3.3 Selection of Questions and Scenarios

While selecting the scenarios and questions we have focussed on covering up several critical

aspects of software engineering and evaluating. For the tasks, two open-source apache projects

have been selected. Questions have been prepared to evaluate the points mentioned in the

hypothesis and evaluate whether the objectives have been fulfilled.

We have formed questions which fall into three categories identified in the context of software

visualization, evolution and vulnerability identifying. These categories will cover up the three

levels in the framework. First questions are simple and straightforward where the subjects can

answer without having that much analysis. It included questions like

● Which class contains the most number of vulnerabilities?

● What are the number of vulnerabilities contained in a particular class ?

● Which will provide information which will be useful for the software engineers, system

architects, business analysts , project managers to evaluate the software.

Second Question set focused on explore the method level vulnerabilities and details of various

security aspects.Next set of questions are prepared to evaluate the understanding related to

software versioning and vulnerability changes according to that. Example questions are like

● What class has been more vulnerable since the new features?

● How the new changes are going to impact the secureness of the software ?

While we are selecting the questions, we were careful to avoid biases towards the one system.

5.3.4 Selecting Sample Projects for the experiment

Two open-source Apache projects have been selected for conducting the experiment. These two

selected Apache projects(Security Shepherd, Web Goat) which are available on the GitHub have

been used by the researchers over past years. Projects have ibeen created to enhance awareness of

security among a variety of iskill-set idemographic. The second project which was selected is Web

Goat. Web Goat is a ideliberately iinsecure web based application, which is governed by OWASP,

which was designed to teach isecurity ilessons of web iapplications. iThe project's iselection was

mainly based on the availability in the public instances of SonarQube and Jenkins, which have

the iability ito ido all the tasks. Also we ensure that the selected iprojects are of a ireasonable isize due

to the itime ilimitation iin iconducting iexperiments

5.3.5 Selecting Experimental Subjects

The irationale behind the selection of experimental subjects is that the experiment subjects

should have the basic knowledge regarding static code analysers which are required to perform the

given tasks. While conducting the experiment subjects have been provided with simple

introduction about Secure code city with Evolution , SonarQube and the selected projects

38 | Page

5.3.6 Formulating Questions

While formulating questions we have considered three aspects. Questions have been developed

based on those aspects.

Category 1 : To explore the class level vulnerabilities and related details

By conducting a vulnerability identification process, will help programmers and non-programmers

to get the overall picture of the severity levels of each class, and ultimately as a united whole

project by aggregating the security vulnerabilities with other project metrics. Showing the overall

picture of the severity levels of each class is even more useful, so the most vulnerable areas of the

project can be identified with ease. Existing static code analysis tools which available only keep

track of the vulnerabilities of each class and the related details to those vulnerabilities, in a list

view. If it can generate the security vulnerabilities of a particular class, it can be useful for a

programmer.

Following 5 questions has been prepared to provide the insights related to software vulnerability

for software practitioners, in class level.

Q1. Which one contains the most number of critical vulnerabilities of the input project, according

to the system?

Q2. Which one is/are the most vulnerable class (*) of the input project, according to the system?

Q3. How many vulnerabilities are there in class UncheckedEmail.java?

Q4. What is the line of code(loc) value of class UncheckedEmail.java?

Q5. What vulnerabilities can be identified in class UncheckedEmail.java?

SonarQube ican ibe iused ito iobserve ithe continuous icode iquality iof ia isoftware isystem. iHowever, in

SonarQube, the vulnerability details are mutually exclusive from each other. There are no links

between vulnerabilities or there are no aggregations created using those vulnerabilities, other than

the fact that those vulnerabilities are categorized under corresponding class. For example, to find

the answer to Q3, a particular user needs to up the SonarQube service, particular project should be

scanned into SonarQube local server, the vulnerabilities related to the particular class (In this case,

UncheckedEmail.java) should be identified, the remediation efforts of all the identified security

vulnerabilities in the class should be added together in order to come up with the remediation effort

of the class.

In ianswering ithe iquestions iin iScenario 1, Secure CodeCity also ifetches idata ifrom iSonarQube. For

this reason, it can be argued that the iexperimental iresults iobtained ifrom iboth the experimental

group and icontrol igroup iare inot isignificantly different iin iterms iof icorrectness iand ithe itime.

However Secure CodeCity performs more tasks behind the scenes in which users would take a lot

of time in finding relevant vulnerabilities and analyzing those vulnerabilities to derive the ultimate

answer. Because of this, it can be observed and concluded that iexperimental iresults iobtained ifrom

iboth the experimental igroup iand icontrol igroup iare isignificantly different iin iterms iof icorrectness

iand ithe itime.

Category 2: To explore the method level vulnerabilities and details of various security aspects

As showing the overall picture of the severity levels of each class, showing the severity level of

each method which resides in a selected class is also important to programmers and non-

programmers. The current practice is that the static code analysis tools only keep track of the

vulnerabilities of each class and the related details to those vulnerabilities are represented in a list

view. Vulnerabilities of each method are not shown separately. SonarQube does not provide a

39 | Page

direct way to get various security related aspects like getting OWASP related issues, getting

MINOR, MAJOR, BLOCKER, INFO and CRITICAL issue percentages etc. There can be

moments where the details of security vulnerabilities of a particular method can be useful for a

programmer. To ieffectively analyze this iscenario, ithree ikey iquestions ihave ibeen iidentified (Q6 to

Q8).

Q6. What is the most critical method in class Register.java?

Q7. What is the percentage of MINOR issues in class Register.java?

Q8 How many security vulnerabilities are there in method in classRegister.java? .

Experiments were conducted on both of the aforementioned projects. Answering Q6 and Q7

without Secure CodeCity with Evolution is cumbersome, requiring accessing each method in class

and getting a number of issues with the related (OWASP tag. Then ranking value should be

calculated for each and every vulnerable method and have to find the most critical method as the

answer for Q6. Q7 also has to do some calculations to get percentage value after adding each and

every type of same type issues together. Q8 can be done by getting the summation of vulnerabilities

of relevant classes.

In this scenario, the advantage of using Secure CodeCity is that the ability to navigate to the exact

line of a particular code in the IDE, which is also the starting line of a particular vulnerability

without worrying about the locating procedure.Hence,different types of vulnerabilities can be

resolved in less time.

Category 3: To explore information related to vulnerability evolution

Typical static code analysis tools have the capability of providing information related to changes

in different version.Q09 to Q12 questions have been prepared to evaluate the capabilities of the

systems while analyzing the vulnerability changes between particular versions

Q09.How many vulnerabilities are resolved between version 6.0 and 8.0?

Q10 .What are the classes that the vulnerability density has been increased ?

Q11.What are the new vulnerabilities occured version 8.0 compared to version 8.0 in class

UncheckedEmail.java?

Q12. Calculate the vulnerability evolving ratio by comparing two versions ?

These questions have been designed to evaluate the ability to analyze the evolution of security

vulnerabilities in different versions.

5.4 Data Collection and Analysis

In this section, we overview of the data collected to evaluate three hypotheses and the results

taken through statistical analysis.

5.4.1 Overall completion time of the questions

Before starting the experiment we have advised the subjects not to spend more than 10 minutes

for Q1-Q8 and not to spend more than 12 minutes for Q9-Q12. At the end of each task, they

were requested to write down the time spent on each task. Average completion times for all the

questions across the experimental and control groups presents in Table number 4. It was

observed that overall completion time of the experimental group is less than that of the control

40 | Page

group. A notable advantage of Secure CodeCity was not witnessed in answering Q4 and Q5, in

particular. However, Secure CodeCity significantly surpasses the SonarQube in answering

Q1 , Q2,Q3,Q6, Q9,Q10,Q11 and Q12.

Question Experimental Group Control Group

Q1 11.52 438.46

Q2 12.14 435.64

Q3 30.71 170.65

Q4 78.75 68.55

Q5 34.28 25.85

Q6 11.68 349.25

Q7 16.25 34.82

Q8 17.50 55.25

Q9 58.75 478.50

Q10 38.25 585.75

Q11 25.25 245.75

Q12 85.25 578.25

Table 5.1Completion Time for The Questions in seconds

The box plots in Figure 5.3 shows the distribution of time across the experimental group and the

control group, denoting that Secure Code City with Evolution was capable of obtaining the result

much faster than that of baseline tools.

Secure code City with evolution’s mean overall completion time is 297.73s , and it is 907.09s

lower than the control group mean score of 2204.82s.These values clearly indicates the advantage

box of secure Code City with Evolution over SonarQube, regarding the efficiency.

41 | Page

Figure 5.3Boxplot of overall Completion Time between Experimental and Control Group

Figure 5.4 Boxplot of overall Completion Time between Experimental and Control Group considering only Q9-Q12

5.4.2 Overall usability score of the tasks

In order to evaluate the usability of Secure CodeCity compared with the SonarQube in

performing the selected 12 tasks we have used 3 Metrics recommended by ISO/IEC 9126-4

Metrics.Which are Effectiveness,Efficiency,User Satisfaction.

5.4.2.1 Measuring Effectiveness

In the process of measuring Effectiveness we have considered the Successful Completion rate of

the task using the following equation.

42 | Page

Effectiveness = Number of tasks completed successfully x 100%

 Total number of tasks undertaken

Effectiveness of Secure CodeCity with Evolution(63.33%) is greater than SonarQube’s 55%

5.4.2.2 Measuring Efficiency

In Order to Complete The Assigned Tasks Secure code city with Evolution has taken average

time of 438.2 seconds while SonarQube has taken average time of 3466.2 seconds.Its clear that

in efficiency Secure code city outperforms the SonarQube.

5.4.2.3 User Satisfaction

We have used standardized satisfaction questionnaires for usability evaluation.In order to evaluate

the Test Level Satisfaction we have used IBM Computer Usability Satisfaction Questionnaires

which contains 19 Questions. The subjects were requested to give a score from 1 to 7 for each of

the 19 questions, based on their degree of satisfaction.(strongly disagree - 1 to strongly agree - 7)

Secure CodeCity with Evolution's mean CSUQ score is 88.2357 (standard deviation of 6.4507),

and it is 11.0638 higher than the that of control group mean score of 77.1719 (standard deviation

of 9.345), it evidently showed the acceptance of Secure CodeCity with Evolution over baseline

tool, SonarQube, which was used for the evaluation.

By comparing all the metrics it clearly indicates that the Overall usability of the Secure CodeCity

with Evolution is far more greater than SonarQube.

Figure 5.5 Boxplot of overall Usability Score between Experimental and Control Group

5.4.3 Overall correctness of the tasks

A simple rating mechanism has been used to obtain the correctness values for each task. If the

answer to a particular task is correct (i.e., the perfect match of the obtained values) the participant

was given one point. Likewise, for the mentioned eleven tasks, a maximum score of 24 points

could be obtained if all of them were answered correctly. Similarly, 0 marks allocated for the

wrong answers and timeouts.

43 | Page

Secure CodeCity with Evolutions's mean correctness score is 16.889 (standard deviation of 1.833)

compared with the mean correctness score of 12.182 in control group (standard deviation of 3.027),

Box plot is shown in Figure 5.6 for the overall correctness for the both experimental and control

groups. Which is denoting considerable overall correctness of Secure CodeCity with Evolutions

over SonarQube.

Figure 5.6 Boxplot of overall Correctness Score Time between Experimental and Control Group

5.4.5 Statistical Analysis for hypothesis testing

5.4.5.1 One Way Anova Experimental Design

Variance analysis is used to test whether the experiment result is different from the control

One way Anova experimental design was used assuming:

1. The independent variable for the category variables (categorical variable), depending on the

variables must be continuous variables (continuous variable)

2. The mother group must be normal distribution (Normal Distribution)

3. Independent event: The sample must be independent variable (Independent variable) → the

sample of the first group does not affect the sample of the second group; the sample of the

second group does not affect the first group.

4. Variance homogeneity: The variance of the two groups of samples must be equal.

44 | Page

5.4.5.2 Interpretation of the effect plot

According to the two - factor factorial analysis done by Minitab 19 software, the P value

was 0.000 at 5 % significance level

P value >0.05 H0 is not rejected at 5% significance level

P value =<0.05 H0 is rejected at 5% significance level
Table 5.2Explanation of H0 rejection or H0 acceptance due to the P value

Property P value Comment

Overall Accuracy 0.001 H10 rejected

Usability rating 0.000 H20 rejected

Time taken 0.007 H30 rejected

Table 5.3 Statistical values

According to the statistical analysis using Minitab 19 software the P- value < 0.05 at 0.05 level

of significance when considering Secure Code City with Evolution (Experiment) and SonarQube

(Control). It proves that there is a significant difference in the experiment and control which

confirms the alternative hypothesis.

5.5 Conclusion

It was observed that Secure Code City with Evolution outperforms SonarQube iregarding

accuracy, itime efficiency, iand iusability. Any, stakeholder ihaving a iconceptual iknowledge in the

software ianalysis domain ican iuse secure Code City with Evolution to answer some basic

questions, even without having prior programming knowledge or security related knowledge. Just

by seeing the colour spectrum and the spread of the colours across the city, any user can identify

what the most security vulnerable classes are. This is allowed through three-dimensional graphical

visualization mechanisms. iFurther, iboth iexpert and inovice iresearchers can iperform ivarious

analysis iexperiments on the Secure Code City with Evolution framework.

45 | Page

Chapter 6: Conclusion and Future Work

In this chapter a conclusion and a summary of the study in relation to its aims and objectives,

problem definition and limitations of this current work is given. Furthermore, at the end of the

chapter suggestions for further works are discussed as well

6.1 Secure Code City with Evolution Applications

In this thesis a study was conducted to augment software security in existing software

visualization techniques, in order to help the programmers in following SDLC as the research

problem. To achieve this initially background literature was studied to select a suitable software

visualization Afterward “Code City metaphor” is selected as the best software visualization

model. i

6.2 Further Work

● Secure Code City with Evolution only supports for the applications developed in Java

programming language. This can be further enhanced to enable for compatible for other

languages

● Visualization of Evolution can be done based different metrices

● Another possible avenue is when identifying the design level threats from source code,

this approach can be extended to visualize STRIDE threat categories

46 | Page

List of References

 [1] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Securing web

application code by static analysis and runtime protection,” in Proceedings of the 13th conference

on World Wide Web - WWW ’04, New York, NY, USA, 2004, p. 40.

[2] Wijesiriwardana, C. and Wimalaratne, P., 2017. On the detection and analysis of software

security vulnerabilities. 2017 International Conference on IoT and Application (ICIOT)

[3] B. Liu, L. Shi, Z. Cai, and M. Li, “Software Vulnerability Discovery Techniques: A Survey,”

in 2012 Fourth International Conference on Multimedia Information Networking and Security,

Nanjing, China, 2012, pp. 152–156.

[4] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static Analysis Tool for Detecting Web

Application Vulnerabilities (Short Paper),” IEEE Symp. Secur. Priv., p. 6, 2006.

[5] B. Chess and G. McGraw, “Static analysis for security,” IEEE Secur. Priv. Mag., vol. 2, no. 6,

pp. 76–79, Nov. 2004.

[6] R. Wettel and M. Lanza, “Visualizing Software Systems as Cities,” in 2007 4th IEEE

International Workshop on Visualizing Software for Understanding and Analysis, Banff, AB,

Canada, 2007, pp. 92–99.

[7] A. Aoki et al., “A case study of the evolution of Jun: an object-oriented open-source 3D

multimedia library,” in Proceedings of the 23rd International Conference on Software Engineering.

ICSE 2001, Toronto, Ont., Canada, 2001, pp. 524–533.

[8] L. Voinea, A. Telea, and J. J. van Wijk, “CVSscan: visualization of code evolution,” in

Proceedings of the 2005 ACM symposium on Software visualization - SoftVis ’05, St. Louis,

Missouri, 2005, p. 47.

[9] S. P. Reiss, “The Paradox of Software Visualization,” in 3rd IEEE International Workshop on

Visualizing Software for Understanding and Analysis, Budapest, Hungary, 2005, pp. 1–5.

[10] Information security handbook: develop a threat model and incident response strategy to

build a strong information security framework Darren Death - Packt Publishing - 20174

[11] E. Alikhashashneh, R. Raje, and J. Hill, “Using Software Engineering Metrics to Evaluate the

Quality of Static Code Analysis Tools,” in 2018 1st International Conference on Data Intelligence

and Security (ICDIS), South Padre Island, TX, 2018, pp. 65–72.

[12] S. Mohajer Naraghi, “An Improved Method of Static Code Analysis Based on the Context-

Sensitive Rules”, Majlesi Journal of Mechatronic Systems, vol. 8, no. 3, Sep. 2019.

[13] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of code review coverage

and code review participation on software quality: A case study of the qt, vtk, and itk projects,” in

Proceedings of the 11th Working Conference on Mining Software Repositories, ser. MSR 2014.

New York, NY, USA: ACM, 2014, pp. 192–201.

[14] S. Pearson, and A. Benameur, “Privacy, security and trust issues arising from cloud

computing”, in Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second

International Conference on, pp. 693-702, 2010

47 | Page

[15] WannaCry Ransomware Attack. https: //en.wikipedia.org/wiki/WannaCry_

ransomware_attack.

[16] NEWMAN, L. H. Equifax officially has no excuse. Wired, 2017.

https://www.wired.com/story/ equifax-breach-no-excuse/.

[17]M. D'Ambros and M. Lanza, "Software bugs and evolution: a visual approach to uncover their

relationship," Conference on Software Maintenance and Reengineering (CSMR'06), Bari, 2006,

pp. 10 pp.-238.

[18]A. E. Hassan and R. C. Holt, "Predicting change propagation in software systems," 20th IEEE

International Conference on Software Maintenance, 2004. Proceedings., Chicago, IL, 2004, pp.

284-293.

[19]S. Hangal and M. S. Lam, "Tracking down software bugs using automatic anomaly detection,"

Proceedings of the 24th International Conference on Software Engineering. ICSE 2002, Orlando,

FL, USA, 2002, pp. 291-301.

[20]J. Lin, Q. Zhang, H. Bannazadeh and A. Leon-Garcia, "Automated anomaly detection and root

cause analysis in virtualized cloud infrastructures," NOMS 2016 - 2016 IEEE/IFIP Network

Operations and Management Symposium, Istanbul, 2016, pp. 550-556.

[23] McCormick, B., DeFanti, T., Brown, M. and Zaritsky, R. (1987). Visualization in scientific

computing. [New York, N.Y.]: ACM SIGGRAPH.

[24] C. Knight and M. Munro, “Virtual but Visible Software,” Proc. Fourth IEEE Int’l Conf.

Information Visualization, pp. 198-205, 2000.

[25] G. Roman and K. Cox, “Program Visualization: The Art of Mapping Programs to Pictures,”

Proc. 14th ACM Int’l Conf. Software Eng., pp. 412-420, 1992.

[26] Owasp.org. (2019). Category:OWASP Top Ten 2017 Project - OWASP. [online] Available at:

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project [Accessed 25 Nov.

2019].

[27] B. Price, R. Baecker, and I. Small, “A Principled Taxonomy of Software Visualization,” J.

Visual Languages and Computing, vol. 4, no. 3, pp. 211-266, 1993.

[28] G. Roman et al., “A Taxonomy of Program Visualization Systems,” Computer, vol. 26, no,

12, pp. 11-24, Dec. 1993.

[29] C. Knight, “System and Software Visualisation,” Handbook of Software Engineering and

Knowledge Engineering, pp. 1-17, World Scientific Publishing Company, 2001.

[30] J. Maletic, A. Marcus, and M. Collard, “A Task Oriented View of Software Visualization,”

Proc. First Int’l Workshop Visualizing Software for Understanding and Analysis, pp. 32-40, 2002.

[31]En.wikipedia.org.(2019).Software visualization. [online] Available at:

https://en.wikipedia.org/wiki/Software_visualization [Accessed 25 Nov. 2019].

[32] P. Caserta and O. Zendra, “Visualization of the Static Aspects of Software: A Survey,” IEEE

Trans. Vis. Comput. Graph., vol. 17, no. 7, pp. 913–933, Jul. 2011.

48 | Page

[33]M. Fischer and H. Gall, “Evograph: A Lightweight Approach to Evolutionary and Structural

Analysis of Large Software Systems,” Proc. 13th Working Conf. Reverse Eng., pp. 179-188, 2006.

[34]Gračanin, D., Matković, K. and Eltoweissy, M., 2005. Software visualization. Innovations in

Systems and Software Engineering, 1(2), pp.221-230.

[35] G. McGraw, “Automated Code Review Tools for Security,” Computer, vol. 41, no. 12, pp.

108–111, Dec. 2008.

[36] Automotive Cyber Security Market | Industry Report, 2019-2025, 2020

[37] Statista. 2020. Cyber Crime: Reported Damage To The IC3 2019 | Statista. [online]

Available at: <https://www.statista.com/statistics/267132/total-damage-caused-by-by-cyber-

crime-in-the-us/> [Accessed 15 November 2020].

[38] Owasp.org. 2020. [online] Available at: <https://owasp.org/www-pdf-

archive/Cigital_Top10_DallasOWASP-062116.pdf> [Accessed 15 November 2020].

49 | Page

Appendices

50 | Page

One-way iANOVA: iC4 iversus iC1

Method

Null ihypothesis All imeans iare iequal

Alternative ihypothesis Not iall imeans iare iequal

Significance ilevel α i= i0.05

Equal ivariances iwere iassumed ifor ithe ianalysis.

Factor iInformation

Factor Levels Values

C1 2 0, i1

Analysis iof iVariance

Source DF Adj iSS Adj iMS F-Value P-Value

C1 1 382033 382033 16.31 0.001

Error 22 515275 23422
 i i

Total 23 897308
 i i i

Model iSummary

S R-sq R-sq(adj) R-sq(pred)

153.041 42.58% 39.97% 31.66%

Means

C1 N Mean StDev 95% iCI

0 12 36.52 25.35 (-55.11, i128.14)

51 | Page

1 12 288.8 214.9 (197.2, i380.5)

Pooled iStDev i= i153.041

One-way iANOVA: iC4 iversus iC1

Method

Null ihypothesis All imeans iare iequal

52 | Page

Alternative ihypothesis Not iall imeans iare iequal

Significance ilevel α i= i0.05

Equal ivariances iwere iassumed ifor ithe ianalysis.

Factor iInformation

Factor Levels Values

C1 2 0, i1

Analysis iof iVariance

Source DF Adj iSS Adj iMS F-Value P-Value

C1 1 145.80 145.800 38.94 0.000

Error 18 67.40 3.744
 i i

Total 19 213.20
 i i i

Model iSummary

S R-sq R-sq(adj) R-sq(pred)

1.93506 68.39% 66.63% 60.97%

Means

C1 N Mean StDev 95% iCI

0 10 16.900 1.729 (15.614, i18.186)

1 10 11.500 2.121 (10.214, i12.786)

Pooled iStDev i= i1.93506

53 | Page

One-way iANOVA: iC4 iversus iC1

Method

Null ihypothesis All imeans iare iequal

Alternative ihypothesis Not iall imeans iare iequal

Significance ilevel α i= i0.05

Equal ivariances iwere iassumed ifor ithe ianalysis.

Factor iInformation

Factor Levels Values

C1 2 0, i1

Analysis iof iVariance

Source DF Adj iSS Adj iMS F-Value P-Value

C1 1 1080 1080.5 9.40 0.007

Error 18 2069 115.0
 i i

Total 19 3150
 i i i

Model iSummary

S R-sq R-sq(adj) R-sq(pred)

10.7220 34.30% 30.65% 18.89%

Means

C1 N Mean StDev 95% iCI

0 10 105.10 11.04 (97.98, i112.22)

1 10 90.40 10.39 (83.28, i97.52)

Pooled iStDev i= i10.7220

54 | Page

