

Patient Management System

J P L Gomes

2020

2

Patient Management System

A dissertation submitted for the Degree of Master of

Information Technology

J P L Gomes

University of Colombo School of Computing

2020

i

Abstract

In this study an attempt is made to explore many limitations of manual and computer-based

systems to manage patient information in small scale private medical clinics. Currently, many

small-scale medical clinics are using a local computer-based system or manual system to

manage healthcare records. In such systems it is inconvenient to access the patients’ medical

histories. Also, if a patient moves to a new doctor, that doctor cannot access their previous

records instantly. This is a critical issue in emergency situations. A cloud-based patient

management system will address these problems. The objective of such an application is to

store data in a centralized cloud-based system. Doctors, patients, support staff and the system

administrator will be granted different levels of access. Data reliability, data security, efficiency

and overall customer experience is also addressed. Implementation of this system was done to

host as a cloud-based system adhering to client-server architecture. Spring boot was used for

the server component and Angular was used for the client component. The application was

made more portable and easier to deploy by containerization using docker. As patient

information security plays a critical role in patient management system, a special authentication

and authorization system was introduced to the system using Spring security, JWT tokens and

REDIS server (token blacklist). Implemented Patient Management System is streamlines

processes within a medical clinic to support doctor, support staff and patients to ease their

work. Therefore it has a positive impact on healthcare providing small scale medical clinic. It

allows smooth interactions with the patient care by automating daily operations. This PMS

produce a good chance of an effective and efficient business model for healthcare practitioners.

ii

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: J P L Gomes

Registration Number: 2017/MIT/019

Index Number: 17550196

Signature: Date: 20.11.2020

This is to certify that this thesis is based on the work of

Mr./Ms. J.P.L Gomes

under my supervision. The thesis has been prepared according to the format stipulated and is

of acceptable standard.

Certified by:

Supervisor Name: Malik Silva

Signature: Date: 20.11.2020

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Mr. Malik Silva,

Senior Lecturer of University of Colombo School of Computing for his valuable support and

guidance.

A special thanks goes to Dr. Megha Pemasinghe and his staff for providing me with this chance

to implement this Patient Management System – GPMate, according to their requirements,

providing necessary information amidst their busy work schedule.

Also, I would like to give my sincere gratitude for the academic staff members of University

of Colombo School Computing for all the knowledge and support given throughout the MIT

degree program which immensely helped to complete the dissertation and the final individual

project.

Last but not least, I would like to express my thanks to my loving family: especially my

husband for introducing me to this topic as well as for the huge support given throughout, my

parents for their support and encouragement throughout the whole time and especially my little

son for tolerating me when I could not attend to him, when he needed me mostly. I will be

grateful forever for your love.

iv

Table of contents

Abstract ... i

Declaration ... ii

Acknowledgements .. iii

Table of contents ... iv

List of Figures ... vi

List of Tables ... vii

List of Acronyms ... viii

Chapter 1 : Introduction ... 1

1.1 Motivation ... 1

1.2 Scope and objectives ... 3

1.3 Structure of thesis .. 3

Chapter 2 : Review of similar systems and technologies .. 5

2.1 Introduction ... 5

2.2 Related literature on automated patient management ... 5

2.3 Short code standards for recording diagnosis ... 7

2.4 Cloud computing and healthcare data security ... 8

Chapter 3 : Methodology ... 9

3.1 Introduction .. 9

3.2 Software development process .. 9

3.3 Requirements specification ... 11

3.3.1 Functional requirements ... 11

3.3.2 Non-functional requirements ... 12

3.4 Design.. 13

3.4.1 Designing phase .. 13

3.4.2 Workflow of the design ... 14

3.4.3 Use case diagram .. 15

3.4.4 Mind map .. 17

3.4.5 Class diagram .. 17

3.4.6 User interfaces .. 19

Chapter 4 : Implementation ... 24

4.1 Introduction .. 24

4.2 Version controlling system .. 24

4.3 Backend implementation ... 24

v

4.4 Front end implementation .. 28

4.5 Hosting on cloud .. 29

4.6 System security .. 30

Chapter 5 : Testing and evaluation .. 32

5.1 Introduction .. 32

5.2 Testing Strategy ... 32

5.3 Test Plan... 32

5.4 Test Cases .. 33

Chapter 6 : Conclusion and future work .. 37

6.1 Introduction .. 37

6.2 Problems encountered .. 37

6.3 Lessons learnt ... 38

6.4 Future enhancements ... 38

References .. 40

Appendices ... 42

Source code .. 42

User manual ... 42

API Documentation ... 43

SMS notifications examples .. 44

Sample report generated .. 45

vi

List of Figures

Figure 3.1 - Agile software life cycle .. 9

Figure 3.2 - Agile protyping process model .. 10

Figure 3.3 – Overview of web-based application .. 11

Figure 3.4 – Usecase diagram for GPMate .. 16

Figure 3.5 – Mind map of GPMate .. 17

Figure 3.6 – Class diagram .. 18

Figure 3.7 – Login user interface ... 19

Figure 3.8 – UI when logged in as the doctor .. 19

Figure 3.9 – UI when logged in as the system admin ... 20

Figure 3.10 – UI when logged in as the staff assistant ... 20

Figure 3.11 – UI for managing units ... 21

Figure 3.12 – UI for placing a patient in the queue ... 21

Figure 3.13 – Patient information view ... 22

Figure 3.14 – Patient dashboard ... 22

Figure 3.15 - Report generation UI .. 22

Figure 3.16 – Session management UI .. 23

Figure 3.17 – Session filter UI ... 23

Figure 4.1 – Overview of REST API ... 25

Figure 4.2 – Create patient API ... 27

Figure 4.3 – Create medical alert API ... 27

Figure 4.4 – Create user API .. 27

Figure 4.5 – MVC architecture .. 28

Figure 4.6 – Cloud hosting infrastructure .. 29

Figure 4.7 – Example for JSON web token ... 31

Figure 5.1- User login with valid username and password combination 34

Figure 5.2 - User login with invalid username and password combination 34

Figure 5.3 – Patient detail search with wrong identifier value .. 35

Figure 5.4 - Patient detail search with correct identifier type and value 36

file:///D:/MIT/semester3/MIT3201/17550196_FinalDissertation.docx%23_Toc56723550

vii

List of Tables

Table 4-1 – The APPI endpoints .. 26

Table 5-1 – Test case structure .. 33

Table 5-2 – Test cases for login function ... 33

Table 5-3 – Test cases for search patient details .. 35

viii

List of Acronyms

API: Application Programming Interface

CKM: Clinical Knowledge Management

CPABE: Cipher text-Policy Attribute-Based Encryption

ECDSA: Elliptic Curve Digital Signature Algorithm

EHR: Electronic Health Record

EMR: Electronic Medical Report

FHIR: Fast Healthcare Interoperability Resources

GP: General practitioner

GUI: Graphical User Interface

HCI: Human Computer Interaction

HMAC: Hash-based Message Authentication Code

HTML: Hyper Text Markup Language

HTTP: Hyper Text Transfer Protocol

JSON: Java Script Object Notation

JWT: JSON Web Token

LTS: Long Term Support

MVC: Model-View-Controller

NIC: National Identity Card

ONC: The Office of the National Coordinator for Health Information Technology

ORM: Object/Relational Mapping

PMS: Patient Management System

REST: Representational State Transfer

RSA: Rivest–Shamir–Adleman - one of the first public-key cryptosystems

ix

WHO: World health Organization

XML: Extensible Markup Language

1

Chapter 1 : Introduction

1.1 Motivation

Patient management refers to a software tool that streamlines processes within a medical

practice or hospital or refers to an entire system of care involving both patient and practice[1].

Healthcare has become a precious commodity around the world and Srilankan is no exception.

If we consider the Sri Lankan healthcare system, people are more likely to keep a general

practitioner (GP) for their health-related needs. This GP or as we call them “The family doctor”

plays a vital role in our day-to-day lives.

According to the central bank annual report 2017, patient-doctor ratio is 1800 patients per one

doctor in Sri Lanka. It can be a larger number of patients in urban areas. Therefore, memorizing

every patient, each visit, diagnosis history, prescriptions, allergies, other health conditions, etc

are almost impossible for doctors in their private clinics. On the other hand, the patient will not

be able to tell every detail due to their illnesses or other various factors during their visits.

For example, take a scenario in which a patient comes requesting medical assistance regarding

a bacterial infection. In this situation, most of the doctors would prescribe an antibiotic. But

the patient might be also suffering from gastritis and he might forget to tell the doctor that he

has such an illness on that visit. The doctor also does not have any records of the patient's

previous diagnoses and he has not prescribed any medicine for gastritis. Thus, a way to grab

the doctor's attention on patient's such conditions would prevent any side effects which can

occur from his medication.

In some occasions, the regular GP is unable to visit, and they send some other GP to cover him

up on that day. On such situations, the patients who are making their secondary visits will face

difficulties as they must describe their health conditions all over again. If there is a system that

could retain the previous diagnosis, it will help the substitute doctor and the patients

immensely. PMS also could provide features to read, update and store important patient

information in the system which can be access at future encounters. For the medical

practitioners’ providing patients a quality and timely treatment is their main objective. A PMS

guarantees that in an unobstructed way.

2

In a medical clinic, patients are the customers, and satisfying their needs and providing a better

service is important. Doctors are also considering many aspects to improve and expand patient

care and manage smooth relation between patients and their visits. Most often support staff of

a medical clinic needs to automate their tasks such as store information, administrative tasks.

Patient management system will be able to perform all those tasks, saving money and time too.

Doctor's assistant is responsible for the registration of new patients and accepting visits and

placing them in the queue. The delays, paperwork, effort, which has to be put into managing

patient records can be avoided, by carrying out those functions in whole or in part in an

electronic environment. The doctor is provided with short codes for recording diagnosis and

prescriptions without taking much time. Those codes could be mapped to internationally

accepted codes associated with open EHR or FHIR standards [2] (healthcare informatics

standards) as a future enhancement. These records will be stored in an application built on the

cloud. Therefore, the same patient’s information can be shared with other GPs' if they use the

same proposed system. Through a role-based access control login, the system offers an easy

way to access patient history, managing solid confidentiality of the records. For documenting

relevant medical history of a patient, documents from visits to other clinics also can be allowed

for uploading. To summarize the features of Patient management system, it can integrate,

patient information, diagnoses, prescriptions, billing records, appointment history and more. It

also automates tasks like scheduling appointments.

Although the current manual process is fulfilling the daily requirements of the medical clinic,

it is a difficult task to store, manage and maintain daily records of the medical clinic such as

patient information, prescribed medicines and schedules resulting wastage of man power, time

and money. Following tasks should be considered when implementing the automated patient

management system.

• Cost of software development, implement and maintenance deployment is high.

• Because of both staff and patients are familiar with the manual process, it is difficult to

migrate from manual process to automated system.

• Poor computer literacy among the staff is also a challenging problem that has to be

addressed through a rich human computer interaction solution.

• Large number of patient count visiting the medical clinic makes the migrating process

difficult. First time registration and data entry will take some time.

3

1.2 Scope and objectives

Design and implement a cloud based patient management system that streamlines the processes

within a medical clinic to support doctor, support staff and patients to ease their work with

efficient and effective output by providing best solutions complying with latest international

medical standards with effective combination in to Human-computer interaction(HCI) is the

main objective of this project.

Scope of the project can be outlined as follows:

• Patient registration

• Patient information management

• Patient scheduling

• Track patient encounter (Electronic Medical Record - EMR)

• Notification alerts to doctor about patient’s special health conditions

• Generate reports, prescriptions

• SMS notifications for cancelled sessions.

1.3 Structure of thesis

CHAPTER 02: LITERATURE REVIEW

An overview of most relevant academic and industrial literature in the areas of patient

management, cloud computing, short code standards for recording diagnosis and healthcare

data security.

CHAPTER 03: PROBLEM ANALYSIS

This chapter will demonstrate the software engineer processes used to analyses the problem

and why that method was adopted.

CHAPTER 04: DESIGN

An overview of the designing the system is described here. Workflow of the design, higher

level diagrams, object-oriented diagrams which adopted to model the design also included.

4

CHAPTER 05: IMPLEMENTATION

Steps carried out in the implementation phase of the GPMate is described in this chapter. It

includes details about overall implementation of the proposed GPMate, and the selection of

technology tools for the implementation and explanations for selecting those tools.

CHAPTER 06: EVALUATION AND TESTING

This chapter discusses how the testing and evaluation was carried out to measure the level of

success related to the project.

CHAPTER 07: CONCLUSION AND FUTURE WORK

Whether the project objectives were satisfied and if not, the reasons for them are stated in this

chapter. Lessons learnt during the project should also be extended upon. Difficulties raised

which are beyond control, that have affected the progress are also stated here. Conclusion of

the work indicating a summary of the results of the project and future enhancements which can

be carried out.

5

Chapter 2 : Review of similar systems and technologies

2.1 Introduction

The purpose of this chapter is to review past efforts that relate to proposed PMS, with their

limitations or weaknesses, which make them insufficient for the required solution. There are

several researches and implementations done in the areas of Patient Management, Hospital

Management, Electronic medical recording. Patient Management is a major area in healthcare.

It also a critical indicator in the quality of healthcare service. The studies cited in this chapter

highlight the key features in a Patient Management System. Also, an overview of short code

standards for recording diagnosis, cloud computing and healthcare data security is provided.

2.2 Related literature on automated patient management

HHIMS (Hospital Health Information Management System) [3]

Initially in 2005 HHIMS was created on software built by the WHO country office for Sri

Lanka. It was further developed in 2006-2009 in a project implemented by the Austrian/ Swiss

Red Cross. After that in 2010 this HHIMS was carried out for the regional director of health

services, Kegalle, by NetCom Technologies.

HHIMS is a medical record software developed for use in Sri Lankan hospitals. It stores the

following information.

• Patient’s clinical details during out-patient visits

• Clinic consultations

• Ward admissions

And it is designed to replace the paper records. Medical information of a patient can be entered

to the system database directly as the patient is examined. Laboratory tests, prescriptions can

be managed through the computer network and processed without the need of paper records.

When a patient visits the hospital again or admitted to the hospital, an overview of all the

patient’s clinical details can be displayed on one single screen.

6

OpenEMR [4]

A most popular free and open source Hospital Management Software solution available today

is OpenEMR. It satisfies the hospital management functionalities and electronic record

management of health clinics of all scales.

Some major features of OpenEMR is listed below.

• Freely available, Free to download, use, modify, and upgrade, fFree documentation

• ONC Certified as a cComplete EHR

• Patient Demographics

• Fully Customizable

• Patient Scheduling

• Electronic Medical Records

• Patient Reports

• Electronic digital document management

• Voice recognition ready (MS Windows Operating Systems)

• Electronic Syndrome Surveillance reporting

• Clinic Messaging

• Send and Receive Medical Records via Direct Messaging

• Dated Reminders

• Online drug search

• Track patient prescriptions and medications

• Medical Billing

• Medical claim management interface

• Physician and patient Reminders

• Modern User Interface

• Scheduling and Appointments

• Secure Messaging and Chat

• Online Payments

• New Patient Registration

• Prescriptions and Drug Dispensing

• Supports use of multiple languages within the same clinic

• Support for Role Based Menus and Custom Menus

7

• Ability to Encrypt Patient Documents

Existing systems within the country are only shared within separated hospitals or districts. It

will be resulted in high construction costs and waste of resources. Especially for small scale

hospitals and private medical clinics which are unable to set up an independent information

platform.

Systems like OpenEMR need lots of records to be entered. But in the area that we concerned,

a GP with a small medical clinic has not much time to input bulk records. Some GPs do not

have assistants to enter information. Therefore, the system must be very simple and easy to

use. It should be very convenient to be used by the Doctor himself. Also, in today’s world as

we are focusing on customer satisfaction in every business, the system should provide a better

service to the patient also.

Based on the concepts of cloud computing, a solution is proposed to implement in this project.

Therefore, the high-end processing and information sharing is available in the ‘cloud’.

2.3 Short code standards for recording diagnosis

OpenEHR

openEHR is an open standard specification in health informatics that describes the management

and storage, retrieval and exchange of health-related data in electronic health records (EHRs).

In openEHR, all health-related data for a person is stored in a "one lifetime", vendor-

independent, person-centred EHR.

This openEHR specifications are managed by the openEHR foundation. These are based on

European and Australian research and development for 15 years. This openEHR specifications

include information and service models for the EHR, demographics, clinical workflow and

archetypes. [5]

One of the outcomes of openEHR modelling approach is the open development of archetypes,

templates and terminology subsets to represent health data. Due to the open nature of

openEHR, these structures are publicly available to be used and implemented in health

information systems. Community users are able to share, discuss and approve these structures

in a collaborative repository known as the Clinical Knowledge Manager (CKM). Some

currently used openEHR CKMs:

• openEHR Clinical Knowledge Manager

8

• NEHTA Clinical Knowledge Manager

• UK Clinical Knowledge Manager

2.4 Cloud computing and healthcare data security

According to Elmogazy, Huda and Bamasak, Omaima (2013), healthcare data has strict

security requirements for confidentiality, availability to authorized users, and traceability of

access. In that paper they propose a solution for healthcare industry which is provided by a

cloud, that will help in protecting patients’ data they host, focusing on specific cloud computing

healthcare security concerns and how homomorphic encryption with splitting key and key

delegation can help in meeting healthcare requirements. The suggested technique is based on

FHE algorithm with key delegation to ensure data confidentiality, authentication, integrity, and

availability in a multilevel hierarchical order. This will allow the healthcare practitioner to

ignore any access rule in any order, especially in a medical research environment [6].

As Suhair Alshehri ; Stanislaw P. Radziszowski ; Rajendra K. Raj (2012) point out, many

healthcare organizations adopt electronic health records (EHRs) and the case for cloud data

storage becomes compelling for deploying EHR systems: not only is it inexpensive but it also

provides flexible, wide-area mobile access increasingly needed in the modern world. In this

paper they propose the use of Ciphertext-Policy Attribute-Based Encryption (CPABE) to

encrypt EHRs based on healthcare providers' attributes or credentials, to decrypt EHRs. They

must possess the set of attributes needed for proper access [7].

9

Chapter 3 : Methodology

3.1 Introduction

The goal of this project is to design and implement a simple cloud-based web application, that

can be accessed from any device, for ease of access. An interactive GUI will be provided to

facilitate accessing the patients' records online. The patient records can be accessed from any

medical facility which adopts the developed system. Therefore, the patient can visit any of the

doctors to get a consultation if needed. The framework has been built to accommodate further

modifications, adding additional features without disturbing the existing system.

3.2 Software development process

Agile development process was used as the software development process. Following figure

3.1 illustrates the Agile software development life cycle.

Figure 3.1 Agile software life cycle

10

Basically, Agile is a model comprehending process clusters run in sequence within a definite

period in iteration. A feedback is looped to the customer for validating the solution. It can be

found in especially in software development industry. The context has been adopted

successfully. Likewise, this method can be used to patient management system development

projects in healthcare [8].

Agile methodology was selected for this project because of the following listed reasons;

• Most of the solution, but not all is identified. The goal needs to be specific and

measurable.

• There may be several deviations from unidentified ranges of the solution.

• Allow stakeholders to involve in developing the solution.

• Evaluating and validating the influence of alternatives.

For managing the impact of changing the system incremental prototype is a good approach.

Incremental prototype paired with Agile aids to cover changing requirements, benefits and

outputs more rapidly. The following figure 3.2 illustrates a higher-level approach of

accomplishing this project.

 Figure 3.2 - Agile protyping process model

11

The PMS is to be deployed as a web-based application (micron/progressive web application).

It is a type of software and there is a huge increase in popularity than the desktop applications.

Portability is the most significant advantage over traditional desktop applications. Not only that

web-based applications have many number of advantages over desktop applications. It let a

user to interact with a application server through a web browser interface, users can use the

software without installing additional softwares and the application software is not depend on

the operating system of the device. Therefore, it is not necessary to code different versions for

different operating systems. Following figure 3.3 presents an overview of web based

application.

Figure 3.3 – Overview of web-based application

3.3 Requirements specification

3.3.1 Functional requirements

• There should be users who are authorized and authenticated based on their roles for

the system.

• The system should allow users to login with their usernames and passwords.

• Authorized staff member should be able to perform CRUD operations on staff

member details.

• Authorized staff member should be able to register a patient to the system.

12

(When a patient arrives for the first time, that patient is given an application form to fill,

to gather the basic information. Then the authorized staff member registers the patient for the

system.)

• Authorized staff member should be able to do CRUD operations on patient details.

• According to the privileges granted for staff members, they should be able to create a

session for patients.

• Patients should be given a queue number according to the order of arrival and placed

in a queue.

• Doctor should be able to start the session that has been created.

• Doctor should be able to view the list of patients.

• Doctor should be able to select any patient from the list according to their need. i.e. in

an emergency.

• Doctor should be able to edit, update patients’ health record information.

• Doctor should be able to access the patients’ medical history.

• Medical history should only be accessed after user authentication.

• Doctor should get an alert if a patient has any special health condition such as an

allergy or chronic condition.

• Doctors should be able to upload medical test results of a patient to his/her account.

• Doctor must be able to record diagnosis and record prescriptions for each patient.

• Support staff should be able to view records entered by a doctor relevant to payments

of a patient and generate bills.

• With proper authorization, doctors from all units should be able to access the patients’

medical records, reports and past prescriptions.

3.3.2 Non-functional requirements

System properties such as reliability, response time, user friendliness, etc. can be state as non-

functional requirements. They may define constraints on the system also.

systems.

Usability

• The system should be accessible on almost all OS platforms.

13

• The system should be accessible from all types of devices including mobile devices.

• The system should provide help menu for the ease of accessibility to users.

• The system should be user-friendly for people of all ages and different ability levels.

Security

• The system should have different levels of access to different people to prevent

unauthorized usage of sensitive information.

• The system should not grant access to anyone unless the correct username-password

combination has been entered.

• The system should only permit 3 failed attempts to login. After that, the account

should be suspended, and the user will have to contact the PMS administrator and

pass a security challenge in order to unlock the account.

 Availability

• The system should always be available 24*7 .

• The system should not fail more than 3 times a year.

• When the system fails, it should not take more than a day to start back-up to avoid

additional problems.

Performance

• Response time for any activity performed by the user must not exceed 20 seconds.

3.4 Design

3.4.1 Designing phase

Designing phase of a software development life cycle generally involves problem solving and

planning the solution. What system will do and how the system will work is the output of this

phase.

Requirement gathering from the private medical clinic is the first part of the design phase. Then

the requirements are maps into design. The design defines the components, their behaviors

14

and user interfaces. The design documentation puts forward a plan to implement the identified

requirements. A good design has several key factors.

• Accuracy - the extent to which the system's outputs are appropriate to satisfy their

intended use.

• Reliability – the probability in free of failure processing of the software for a given

period in a specified environment.

• Once the system is functioning, reliability is the probability of failure-free software

operation for a specified period in a specified environment.

• Usability – the degree to which the software can be used.

• Interoperability - the ability of the software to exchange and make use of information.

• Security – to continue the implemented functions of the software properly, there should

be a guard to the software against possible threats.

• Maintainability - ease of updating the software to satisfy new requirements after it has

been developed.

• Efficiency - the ratio of the useful work performed by the system to the resources

needed.

3.4.2 Workflow of the design

The system is designed as described herewith. When a user enters the URL of the system on a

web browser, the user will be redirect to the login UI of the system. Upon entering both

username and password credentials successfully the user will be able to access the system.

According to the assigned role by the system to the user, a view will be loaded respectively

which containing the functions that user could be handled. For an example if the logged in

user’s role is the doctor then the UI with side menu which contains functions that the doctor

can carried out through the system will be loaded.

Likewise, system admin and other staff members will get a view according to their privileges

they have. Patient portal was not considered when implementing this project because it will

lengthen the scope of the project. But the user type ‘patient’ was created in design phase for

consider the patient registration, edit and update patient profiles, upload test results by patients

themselves as future enhancement.

15

Authorized staff member can register a patient via “Patient Registration” menu item. Patient

identifier will be based on their NIC, driving license, passport or a temporary ID generated by

the system in case the patient is not able to provide any of the mentioned.

A channeling session could be also created by the authorized staff member. It will store many

items related to the channeling session. Then the patients will be placed in a queue according

to the order of their arrival within that sessions. Channel session can be pre planned. When the

doctor arrives and log in to the system, he could see a list of patients who are in the queue.

Then he could start the session. The doctor can select any patient from the queue if an

emergency patient visits the clinic.

The doctor can view the medical history of the relevant patient. After the examination doctor

can record the diagnosis, any vital signs and enter prescriptions. If the relevant patient has a

special health condition recorded previously that will notify to the doctor by the system. Doctor

can enter medical test results of the patient. When the examination and the recording is over

the doctor must end the visit of that patient. Then the doctor will direct to the next patient in

the queue. At the end of the day doctor or staff assistant should end the sessions.

Distinct list of patients visited during a given period of time also can be generate as a report

from this system. Considering the current pandemic situation of the country this kind of report

is very important. From that report all the necessary details about patients visited during the

given period can be obtained.

SMS Gateway is integrated for the system for notify patients when the doctor cancelled the

planned channeling sessions due to unavoidable circumstances.

3.4.3 Use case diagram

A use case diagram is used to represent the users’ interaction with the system. It demonstrates

the relationships of the user with different use cases. It is often accompanied by many other

diagrams. From this diagram different types of users and different use cases of the system can

be recognized. Following figure 3.4 represent the use case diagram of GPMate system.

16

Figure 3.4 – Usecase diagram for GPMate

GPMate

Patient registration

doctor

Patient information

management

patient

Patient scheduling

(Session Management)

Manage electronic

health records

Generate reports,

medical reports,

prescriptions

System

admin

support staff

Create users, units,

roles

GPMate

17

3.4.4 Mind map

Following mind map, figure 3.5 represent the visually organized information of the proposed

Patient Management System, GP Mate. This mind map shows tasks, words, items linked to and

arranged around GP Mate. This allows to build an in-built framework around GP Mate and it

is hierarchical.

Figure 3.5 – Mind map of GPMate

3.4.5 Class diagram

The main principle of object-oriented modeling is the class diagram. It can be used to build the

conceptual modeling structure of the application and for data modeling. The detailed modeling

class diagrams can also be used for converting the models into programming code. Following

figure 3.6 is the complete class diagram modeled for this project.

18

Figure 3.6 – Class diagram

19

3.4.6 User interfaces

Following figures 3.7, 3.8, 3.9, 3.10 present few user interfaces designed to PMS. Different

user interfaces for different functionalities were designed. When a user logged in to the GPMate

the right panel of the UI will display a menu which contain the functionalities that user is

authorized to carry out.

Figure 3.7 – Login user interface

Figure 3.8 – UI when logged in as the doctor

20

Figure 3.9 – UI when logged in as the system admin

Figure 3.10 – UI when logged in as the staff assistant

21

Figure 3.11 – UI for managing units

Figure 3.12 – UI for placing a patient in the queue

22

 Figure 3.13 – Patient information view

Figure 3.14 – Patient dashboard

Figure 3.15 - Report generation UI

23

Figure 3.16 – Session management UI

Figure 3.17 – Session filter UI

24

Chapter 4 : Implementation

4.1 Introduction

This chapter describes the steps carried out in the implementation phase of GP Mate. Details

about overall implementation of the proposed automated PMS, the choice of tools and

technologies for the implementation and justifications for selecting those tools are included in

this chapter.

4.2 Version controlling system

For this GPMate patient management system, a Git repository was created in GitHub. Git is an

open source version control system. The constant changes made to the code when developing

the system can have kept here. This allows easiness in collaboration, as the new versions of the

software is downloadable, make updates and upload the latest version. Reason for choosing Git

over other systems available was it can store changes to the files more efficiently and

guarantees the integrity of the file well. With a unique URL, where the repository is located

with all the files related to the project can be accessed. URL for accessing the GPMate project

is stated below.

https://github.com/piumigomes/gp-mate

4.3 Backend implementation

To implement the back end of the web-based Patient Management System, Spring Boot was

used. A stand-alone and ready to use spring application can be created using Spring Boot.

Spring Boot is a very stable technology which was introduced by the Pivotal Team which is an

open source Java based framework used to create a micro service [9]. This has a large good

community forum for ask questions and get help with problems. For this project Spring Boot

was especially selected to reduce the complexity of configuration. From using simple

customizable properties automatic configuration can be done.

Using Spring Boot a REST API can be built. It is an architectural design for creating

applications. Using REST, maintainable, lightweight web services can be created. It treats

server objects as resources that can be created and destroyed. Virtually it can be used by any

https://github.com/piumigomes/gp-mate

25

programming language. Almost all programming languages can work with REST APIs. Using

REST API requests can be submitted for CREATE, READ, UPDATE, DELETE operations

using the HTTP protocol, and receive responses in the state. APIs can use HTTP requests to

render information from a web application. The state can be in XML or JSON format [10].

Figure 5.1 demonstrate an overview of REST API.

Figure 4.1 – Overview of REST API

The other advantage of using Spring Boot is when the data model is created the relational

database tables are automatically mapped and generated. So, there is no need to write SQL

queries to manage database and the tables. Spring Boot uses Hibernate ORM for that purpose.

It enables programmers to code the applications more easily. As an Object/Relational Mapping

(ORM) framework, hibernate is concerned with data persistence as it applies to relational

databases [11].

In this application, the server end points are ‘/users’, to ‘/staff’, ‘/patients’, ‘/sessions. etc. An

end point can be a URL of a server or service for APIs. Endpoint is the location where the APIs

can access the resources which they require to carry out their functions. In other words, it is

the place that APIs send requests where the resources located. APIs work using ‘requests’ and

‘responses’.

26

These calls are made by the front end, using the angular resource objects using http methods;

GET, POST, PUT DELETE. In this project 60+ APIs have been implemented spread across

fourteen main endpoints. The list of main API endpoints is described in Table 4.1.

Table 4-1 – The APPI endpoints

Complete API documentation is available at :

https://documenter.getpostman.com/view/2724477/SzzoYubQ?version=latest

Following figures 4.2, 4.3 and 4.4 presents few screenshots from the API documentation.

 URL Description

1 /gpmate/api/auth/ Handle authentication

2 /gpmate/api/service/users User creation

3 /gpmate/api/service/staff Create profiles for staff

4 /gpmate/api/service/patients Handle operations related to patient registration

5 /gpmate/api/service/roles Create roles to assign users

6 /gpmate/api/service/visits Manage each patient’s encounter within a session

7 /gpmate/api/service/diagnoses Record diagnoses of a patient

8 /gpmate/api/service/vital-signs Record vital signs of a patient

9 /gpmate/api/service/medical-notes Special medical note for patient by the doctor

10 /gpmate/api/service/prescriptions Create prescription for patients

11 /gpmate/api/service/medical-alerts Notifications to doctor about patient’s special health

conditions

12 /gpmate/api/service/channelling-sessions Create a channeling session for a day to manage patients

13 /gpmate/api/service/investigation-

requests

Record laboratory tests to be done

14 /gpmate/api/service/units Create units which the doctor is available

https://documenter.getpostman.com/view/2724477/SzzoYubQ?version=latest

27

Figure 4.2 – Create patient API

Figure 4.3 – Create medical alert API

Figure 4.4 – Create user API

28

4.4 Front end implementation

Angular was used to implement the front end. Angular is an open-source front-end framework

developed by Google for creating dynamic, modern web applications [12]. This has obtained a

big popularity during recent years for ensuring lightweight and faster applications by

eliminating unnecessary code. The most important advantage of Angular is that it is supported

by Google’s Long-Term Support (LTS).

Another advantage of using Angular is that it is built using TypeScript language, which

guarantees high security as it supports types such as primitives, interfaces, etc. TypeScript code

can be debug directly in the browser or in the editor if the map files are properly created during

the build time.

HTML is used by Angular to define the UI of the application. HTML is a less complicated

language as compared to other languages. Therefore, it is no need to spending time in program

flows and deciding what loads first. Angular will take care of it when what you require is

defined. Testing can be done easily in Angular. Angular.js modules have the parts of the

application, which are easy to deploy. Necessary services can be loaded with module

separation, while effectively performing automatic testing. Angular framework is adhered with

MVC (Model-View-Controller) software architectural format. However, it is more simplified

MVC pattern. Following figure 4.5 illustrate the MVC architecture.

Figure 4.5 – MVC architecture

29

4.5 Hosting on cloud

Use of virtual hardware, network, storage and merge solutions from a cloud vendor refers

principally as cloud hosting.

It is enabled through virtualization, whereby the entire computing capacity of an infrastructure

or data center is distributed and delivered to multiple users simultaneously. To host the

applications, services and data a user can use underlying infrastructure [13]. Figure 4.6

illustrates the cloud hosting infrastructure.

Figure 4.6 – Cloud hosting infrastructure

Cloud hosting is a very scalable, reliable, and flexible type of hosting because of the site is

stored on several servers which let to pull resources from several places rather than from one

server.

Major drawback with shared hosting is if the server gets down, the system also gets down. But

when a cloud server gets down, other servers in that network will care about the system. When

considering the today’s world, cloud-based development become more and more popular

because of the above facts. Where a single application can be range across multiple of servers

in different networks with difficult port configurations, the capability to automate the

deployment of “units” of code is a great help. Managing OS version, disk size, available

30

memory, port configuration are some advantages of the ability to control the execution

environment. Containerization supports to avoid unexpected encounters when OS libraries

create unexpected conflicts.

Docker is a very popular system for containerizing applications. Containerization packages the

executable code along with the runtime environment in deployable virtual images using a

repeatable, automatable process [14]. For this project Docker is used as the container

management system.

4.6 System security

System security is a very crucial part when considering health care. The system must adhere a

strong security level as it contains sensitive data. In order to acquire that, a token-based

authentication was introduced to this GPMate. Using JSON Web Token, the token-based

authentication system was created.

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-

contained way for securely transmitting information between parties as a JSON object. This

information can be verified and trusted because it is digitally signed. JWTs can be signed using

a secret (with the HMAC algorithm) or a public/private key pair using RSA or ECDSA [15].

JWTs can be encrypted to provide secrecy among users. But the signed tokens are considered

as they can verify the integrity of the claims contained within it, while encrypted tokens hide

those claims from other parties. The signature also certifies that only the party holding the

private key is the one that signed it, when the tokens are signed using public/ private key pairs.

JSON web tokens are very useful in authorization and information exchange scenarios. Most

common scenario for using JWT is authorization. Once a user logged in with a valid token,

each request will include the JWT, allowing the user to access permitted resources with that

token

JSON Web Tokens contain three parts separated by dots (.), which are:

I. Header

II. Payload

III. Signature

31

The result is three Base64-URL strings separated by dots. It can be easily passed in HTML and

HTTP environments. Following figure 5.4 illustrate an example for JSON web token which

was to decoded, verified, and generated using jwt.io Debugger.

Figure 4.7 – Example for JSON web token

The application or client requests authorization to the server. An access token to the application

returns from the authorization server when the authorization is granted. Then the application

uses the access token to access a protected resource. As all the information within the token is

visible to user, sensitive information should not put in that token. But even though they are

visible to users they unable to edit it.

32

Chapter 5 : Testing and evaluation

5.1 Introduction

Most health care providing organizations are using automated software systems to maintain the

functions of their hospitals, clinics, etc. Interrelating all these functions to a single web

application is a huge task and making it work properly is even a challenging task. Therefore,

rigorous testing of the PMS is compulsory, and it must go through various testing phases.

Testing is the process of validating and verifying a system. The system or its components are

compared against requirements and specifications through testing. Evaluation of test outputs

combines with assessing progress of design, performance, supportability, etc. This chapter

discusses how the testing and evaluation was carried out to measure the degree of success

associated with the project.

5.2 Testing Strategy

Manual testing was used to test the PMS. To test the APIs, Postman tool was used. All the 60+

APIs were tested with the use of Postman tool, which is a collaboration platform for API

development. Some basic functions such as login functionality was automated using Selenium

tool for learning purposes. But could not extend to whole system due to the time plan.

Testing was planned to perform for user acceptance testing. User acceptance testing could not

have been carried out because of the prevailing situation of the country due to the Covid – 19

outbreak.

5.3 Test Plan

A test plan is a document which states the testing scope and process. It contains the

functionalities to be tested, testing procedures, test data and the expected result. Following table

5.1 describes the structure which was followed in testing the system.

33

Test

case no.
Test data Purpose Expected result Actual result

Table 5-1 – Test case structure

5.4 Test Cases

Table 5.2 displays the test cases used for a user sign in. Several test cases try different entries

of data fields.

Table 5-2 – Test cases for login function

Following are some test cases and test outputs resulted in postman tool.

Scenario 01

User login with valid username and password.

Test

case no.

Test data Purpose Expected result Actual result

1. Enter a wrong

username

Test username Display error

message. User

not logged in.

Display error

message. User not

logged in.

2. Enter a wrong

password

Test password Display error

message. User

not logged in.

Display error

message. User not

logged in.

3. Click login button

with empty username

Test login without

an account

Display error

message. User

not logged in.

Display error

message. User not

logged in.

4. Click login button

with empty password

Test login without

a password

Display error

message. User

not logged in.

Display error

message. User not

logged in.

5. Enter correct

username and

password

Test correct login

to system

User logged in. User logged in.

34

Figure 5.1- User login with valid username and password combination

Scenario 2

User login with invalid username and password combination.

 Figure 5.2 - User login with invalid username and password combination

35

Table 5.3 displays the test cases used for search patient details.

Table 5-3 – Test cases for search patient details

Scenario 1

Search patient details with wrong identifier value.

Figure 5.3 – Patient detail search with wrong identifier value

Test

case no.

Test data Purpose Expected result Actual result

1. Enter a wrong

identifier type

Test identifier

type

Display error

message.

Display error

message.

2. Enter a wrong

identifier value

Test identifier

value

Display error

message

Display error

message.

3. Click search button

without entering

identifier value

Test search

without an

identifier value

Disable search

button

Display error

message

Disable search

button

Display error

message

4. Enter correct identifier

type and value

combination

Test search

patient details

Enable search

button

Patient details

Enable search

button

Patient details

36

Scenario 2

Search patient details with correct identifier type and value.

Figure 5.4 - Patient detail search with correct identifier type and value

37

Chapter 6 : Conclusion and future work

6.1 Introduction

The study reveals that a PMS has a positive impact on healthcare providing medical clinic. It

allows smooth interactions with the patient care by automating daily operations. To produce

an effective and efficient business model for healthcare practitioners a PMS is a good chance.

It allows to store all the records related to patients, better user communication, organize and

simplify day to day operations, manage human resources and finally a better service to the

customer. Implemented Patient Management System is streamlines processes within the

medical clinic to support doctor, support staff and patients to ease their work.

6.2 Problems encountered

• Busy schedule of the doctor, low level computer literacy among the staff, collecting

data from the manual records and privacy of the patient’s data were the problems

encountered when gathering the requirements.

• As the system proposed a short code typing technique for recording diagnosis, a good

knowledge had to be gained about the medical terms to find an internationally

recognized standards for such recording system.

• Spring Boot and Angular tools was used as development tools. As they have not being

used before, going through many tutorials to learn about those technologies to get a

thorough idea to use in this project was required.

• Could not manage to finalize the method of mapping diagnosis short codes to the

system as the busy work schedule of the doctor and due to the current situation of the

country. Therefore, inputting diagnosis through a text box was implemented as

suggested by the doctor initially.

• Due to the prevailing situation of the country, user testing and user evaluation could not

be carried out.

• Testing could not have been carried out using an automation tool due to the lack of

fluency using those tools. Time was not enough to get a through idea about those tools

as I’m novice to all the technologies used in this project.

38

• In this project the user authentication was done using JWT token. When the user is

logged, JWT token is set to a predefined expiration time. Even if the user wants logout

from the system before the token expiration time, that token will be remain valid.

Because the server cannot determine whether this token is invalid as it is still within the

expiation period. If the token is maliciously used by some other party before the

expiration period, the server sees it as a valid token and accept as a valid request. This

was a problem that came up with user authentication. In order to overcome this the

token should be blacklisted after a user logout. Therefore, logged out blacklist tokens

are maintained. If this blacklist is maintained in the database, it will cause decrease on

performance level as it has to check whether the user is logged in every server call. As

a solution REDIS in memory blacklist store was implemented. It is much faster and

time taking for API authentication is also low.

6.3 Lessons learnt

• Gained a good knowledge on how to work on a collaborative environment. Learnt many

technical and personal skills.

• Having done a good basic technical survey on the tools and technologies that must use,

the work to carryout can be organized more efficiently.

• And last not least, learning and applying latest technologies to implement the project

was a very challenging task. Fulfilling that task amidst under a hectic office, study and

family schedules made it more unimaginable. Manage time for work to achieve a goal

in a planned time duration is a great lesson learnt during this project.

6.4 Future enhancements

• Create a patient registration portal which enables patients to be registered by

themselves.

• Provide facilities to scan and upload laboratory reports, documents from visits to other

clinics also can be allowed for documenting medical history of the patients.

• Introducing short code mapping system which is internationally accepted that is

associated with open EHR and FHIR standards to enter diagnosis details easily for the

doctor.

39

• Support local languages.

• Generate and print medical reports and prescriptions.

40

References

[1] Smartsheet. (2019). How Patient Management Software Improves the Health Care

Experience. [online] Available at: https://www.smartsheet.com/patient-management-software-

systems [Accessed 28 Nov. 2019].

[2] En.wikipedia.org. (2019). Fast Healthcare Interoperability Resources. [online] Available

at: https://en.wikipedia.org/wiki/Fast_Healthcare_Interoperability_Resources [Accessed 29

Nov. 2019].

[3] Hhims.org. (2019). hhimsv2. [online] Available at: http://www.hhims.org/ [Accessed 12

Jul. 2019].

[4] Open-emr.org. (2019). OpenEMR. [online] Available at: https://www.open-emr.org/

[Accessed 1 Oct. 2019].

[5] Huda, E. and Omaima, B. (2013). Towards healthcare data security in cloud computing -

IEEE Conference Publication. [online] Ieeexplore.ieee.org. Available at:

https://ieeexplore.ieee.org/abstract/document/6750223 [Accessed 20 Jan. 2020].

[6] https://ieeexplore.ieee.org/abstract/document/6750223 [Accessed 20 Jan. 2020].

En.wikipedia.org. (2020). OpenEHR. [online] Available at:

https://en.wikipedia.org/wiki/OpenEHR [Accessed 20 Jan. 2020].

[7] Suhair Alshehri ; Stanislaw P. Radziszowski ; Rajendra K. Raj (2012). Secure Access for

Healthcare Data in the Cloud Using Ciphertext-Policy Attribute-Based Encryption - IEEE

Conference Publication. [online] Ieeexplore.ieee.org. Available at:

https://ieeexplore.ieee.org/abstract/document/6313671 [Accessed 20 Jan. 2020].

[8] Stagnaro, C. (2019). Agile management can benefit healthcare process improvement

projects: Health care organization leaders are working hard to create, update and

continuously improve on their processes to align with the Triple Aim initiative (see Figure 1.

Triple Aim Model). [online] Beckershospitalreview.com. Available at:

https://www.beckershospitalreview.com/human-resources/agile-management-can-benefit-

healthcare-process-improvement-projects.html [Accessed 1 Oct. 2019].

[9] “Spring Boot - Introduction,” Tutorialspoint. [Online]. Available:

https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm. [Accessed: 07-

Jan-2020].

41

[10] H. Shaikh, “PHP REST API Tutorial Step by Step [Beginners],” onlyxcodes, 01-May-

2020. [Online]. Available: https://www.onlyxcodes.com/2019/12/php-rest-api-tutorial.html.

[Accessed: 10-Feb-2020].

[11] “Hibernate ORM,” Hibernate. [Online]. Available: https://hibernate.org/orm/.

[Accessed: 03-May-2020].

[12] Angular. [Online]. Available: https://angular.io/features. [Accessed: 20-Feb-2020].

[13] “What is Cloud Hosting? - Definition from Techopedia,” Techopedia.com. [Online].

Available: https://www.techopedia.com/definition/29018/cloud-hosting. [Accessed: 01-May-

2020].

[14] “What is a Container?” Docker. [Online]. Available:

https://www.docker.com/resources/what-container. [Accessed: 01-May-2020].

[15] auth0.com, “JSON Web Tokens Introduction,” JSON Web Token Introduction. [Online].

Available: https://jwt.io/introduction/. [Accessed: 08-April-2020].

42

Appendices

Source code

Full source code implemented is available at:

https://github.com/piumigomes/gp-mate

User manual

User manual to set up the system in a windows environment is as follows:

Prerequisites:

Install;

-docker

-java 1.8

-maven

Step 01 – Go to the following git hub URL:

https://github.com/piumigomes/gp-mate

Step 02 - Clone the gp-mate project from git hub link using ‘git clone’ command.

>git clone git@github.com:piumigomes/gp-mate.git

Step 03 – After successfully cloning the project run the ‘up_db.bat’ file located in

gp-mate >> db_docker folder.

This will compose db_docker_compose file, which would set up and start the application

database, Redis - in memory datastore which is used for authentication token blacklisting and

adminer db console for db management.

Step 04 – To set up the application server, go to ‘gpmate-server’ folder.

Step 05 – Build the project using the following command:

> mvn clean install

https://github.com/piumigomes/gp-mate
https://github.com/piumigomes/gp-mate

43

When the built is successful, the ‘target’ folder will be created.

Step 06 – inside the ‘target’ folder run the ‘gp-mate-server-0.0.1-SNAPSHOT.jar’ file.

Application server will be up and running after this point.

Step 07 – To set up the client server, go to ‘gpmate-client’ folder.

Step 08 – Run the up_client.bat inside that folder.

When the built is successful production artifact of the application will be created.

Step 09 – Execute the client docker file to deploy the application using NGINX server.

API Documentation

Complete API documentation is available at :

https://documenter.getpostman.com/view/2724477/SzzoYubQ?version=latest

https://documenter.getpostman.com/view/2724477/SzzoYubQ?version=latest

44

SMS notifications examples

45

Sample report generated

