
 

  

 

 

 

 

Masters Project Final Report 

(MCS) 

2019 
 

Project Title 

 
 
Solo traveler application with snake detection 

Student  Name 

 
W.A.Isuru Mahesh Wickramasinghe 

Registration No.  
& Index No. 

 
2017/MCS/090  
17440909 

Supervisor’s 
Name 

 
Dr. G.D.S.P Wimalaratne 

 

For Office Use ONLY 
 

 

S  

E1  

E2  

For Office Use Only 



 
 

 

 

 

 

                                  

Solo traveler application with snake 

detection 

  

A dissertation submitted for the Degree of Master of 

Computer Science 

 

 

W.A.I.M.Wickramasinghe 

University of Colombo School of Computing 

2020 

                                                         

                                                                                                              

 

 

 



 
 

 

Declaration 

The thesis is my original work and has not been submitted previously for a degree at this or any other 

university/institute. 

To the best of my knowledge it does not contain any material published or written by another person, 

except as acknowledged in the text. 

 

Student Name:  W.A.I.M.Wickramasinghe 

Registration Number:2017/MCS/090 

Index Number:17440909      

 

 

_____________________ 

Signature:        Date: 

 

This is to certify that this thesis is based on the work of  

Mr./Ms.  

under my supervision. The thesis has been prepared according to the format stipulated and is of 

acceptable standard. 

 

Certified by: 

Supervisor Name:Dr G.D.S.P. Wimalaratne         

 

 

_____________________ 

Signature:         Date: 

 

 



 
 

Abstract 

 
The snakes are not the most famous animals among all other animals. They are perceived as 

animals should be feared and killed. There are more than 3000 snake species all around the world 

except in Antarctica, Iceland, Ireland, New Zealand and Greenland. Among these species 600 are 

venomous and 200 species venomous enough to kill a man. 

Snakebite is a critical medical emergency that requires quick medical treatment. To make medical 

treatment, identifying snake is the most vital task. People normally identify snakes based on visual 

features like body shape, eye shape and color patterns. The knowledge of identification snakes 

which is not ordinary for many people where only a few experts have this knowledge. 

This study was focused on creating an automatic snake image classification system that supports 

mobile and web-based systems. To the best of my knowledge this is the best mobile application 

that works fully offline and give better accuracy. Convolutional Neural Network was applied to 

train the snake classification model because Convolutional Neural Network has been obtained 

great results in image classification.  

Snake dataset was collected through AICrowd competition. Few Convolutional Neural Network 

algorithms had been applied on the snake dataset and identified the best algorithm for snake 

classification.  

The mobile system was optimized to classify the snakes with and without internet. Therefore, 

TensorFlow Lite was used to convert the trained image classification model to mobile support 

format. TensorFlow and Keras was used as the framework for developing and testing the image 

classification model. 

 

 

 

 

https://www.aicrowd.com/challenges/snake-species-identification-challenge


 
 

Acknowledgement 

 
I would like to express my sincere gratitude to my supervisor Dr. G.D.S.P. Wimalaratne Senior 

Lecturer of University of Colombo School of Computing, for his invaluable guidance and support. 

He always responded to my questions so promptly and the valuable comments and advices that 

given by him helped me to write the thesis in a professional way. 

And also, I would like to express my sincere gratitude to Dr. Kasun Karunanayaka and Mr 

Prabhash Kumarasinghe for the given support during the project work. 

 

 

 

 



 

Table of Contents 

List of Figures ................................................................................................................................... 3 

List of Tables .................................................................................................................................... 5 

1. Introduction ................................................................................................................................. 1 

1.1 Problem .................................................................................................................................. 2 

1.2 Motivation.............................................................................................................................. 3 

1.3 The Exact Computer Science Problem ................................................................................... 3 

1.4 Aims and Objectives ............................................................................................................... 4 

1.5 Scope ...................................................................................................................................... 5 

1.6 Novelty of the Project ............................................................................................................ 6 

1.7 Structure of the Dissertation ................................................................................................. 6 

2. Literature Review ......................................................................................................................... 8 

2.1 Introduction ........................................................................................................................... 8 

2.2 Related work .......................................................................................................................... 8 

2.3 Summary of Literature Review ............................................................................................ 12 

2.3.1 Taxonomy of Image Classification Models ................................................................... 12 

2.3.2 Comparison of Classifiers .............................................................................................. 13 

3. Methodology .............................................................................................................................. 15 

3.1 Introduction ......................................................................................................................... 15 

3.2 Problem Analysis .................................................................................................................. 15 

3.3 Convolution Neural Network ............................................................................................... 15 

3.3.1 Convolutional Layer ...................................................................................................... 16 

3.3.2 Pooling Layer ................................................................................................................. 17 

3.3.3 Fully-Connected Layer................................................................................................... 18 

3.4 CNN Types ............................................................................................................................ 18 

3.4.1 MobileNetV2 ................................................................................................................. 18 

3.4.2 InceptionResNetV2 ....................................................................................................... 19 

3.4.3 DenseNet ...................................................................................................................... 20 

3.5 Transfer learning .................................................................................................................. 21 

3.6 Dataset ................................................................................................................................. 21 



 
 

3.6.1 Handling Class Imbalance ............................................................................................. 22 

3.7 Tflite Models ........................................................................................................................ 25 

3.8 Model Design ....................................................................................................................... 25 

3.8.1 Training Model .............................................................................................................. 25 

3.8.2 Architecture .................................................................................................................. 26 

3.8.3 Mobile Design ............................................................................................................... 28 

3.8.4 Web Design ................................................................................................................... 29 

3.9 Implementation ................................................................................................................... 30 

3.9.1 Image Preprocessing ..................................................................................................... 30 

3.9.2 Training ......................................................................................................................... 31 

3.9.3 Fine-Tuning ................................................................................................................... 32 

3.9.4 Converting to tflite models ........................................................................................... 32 

3.9.5 Load tflite models in Android........................................................................................ 33 

5. Results and Evaluation ............................................................................................................... 34 

5.1 Results .................................................................................................................................. 34 

5.1.1 MobileNetV2 ................................................................................................................. 34 

5.1.2 InceptionResNetV2 ....................................................................................................... 36 

5.1.3 DenseNet121 ................................................................................................................ 38 

5.1.4 Tflite Models Size .......................................................................................................... 39 

5.1.5 Tflite Models Accuracy .................................................................................................. 40 

5.1.6 Compare Mobile Mode vs Server Mode ....................................................................... 40 

5.2 Evaluation ............................................................................................................................ 43 

5.2.1 Confusion Matrix ........................................................................................................... 44 

5.2.2 Local Interpretable Model-Agnostic Explanations (LIME) ............................................ 49 

5. Conclusion and Future Work ..................................................................................................... 53 

5.1 Conclusion ............................................................................................................................ 53 

5.2 Future Work ......................................................................................................................... 53 

List of References ........................................................................................................................... 54 

Appendix ........................................................................................................................................ 58 

User Manual to use Mobile application ..................................................................................... 58 

How to Identify snakes using mobile application ...................................................................... 59 

 



 
 

List of Figures 

Figure 1: Image Classification Models ........................................................................................... 12 

Figure 2: CNN Architecture ............................................................................................................ 16 

Figure 3: Convolutional Layer ........................................................................................................ 17 

Figure 4: Pooling Layer ................................................................................................................... 17 

Figure 5: Fully Connected Layer ..................................................................................................... 18 

Figure 7:InceptionResNetV2 Architecture ..................................................................................... 20 

Figure 8: DenseNet Architecture ................................................................................................... 21 

Figure 9:Augmented Images .......................................................................................................... 24 

Figure 10:Training Model ............................................................................................................... 26 

Figure 11: Architecture .................................................................................................................. 27 

Figure 12:Camera view .................................................................................................................. 28 

Figure 13:Map View ....................................................................................................................... 29 

Figure 14:Web View ....................................................................................................................... 29 

Figure 15:MobileNetV2 Model Summary ...................................................................................... 34 

Figure 16:MobileNetV2 Training .................................................................................................... 35 

Figure 17:InceptionResNetV2 Model Summary ............................................................................ 36 

Figure 18:InceptionResNetV2 Training .......................................................................................... 37 

Figure 19:DenseNet121 Model Summary ...................................................................................... 38 

Figure 20:DenseNet121 Training ................................................................................................... 39 

Figure 21:Test Snake Image ........................................................................................................... 40 

Figure 22:MobileNetV2 Offline Test Results .................................................................................. 41 

Figure 23:MobileNetV2 Online Test Results .................................................................................. 41 

Figure 24:DenseNet121 Offline Test Results ................................................................................. 42 

Figure 25:DenseNet121 Online Test Results.................................................................................. 42 

Figure 26:InceptionResNetV2 Offline Test Results ........................................................................ 43 

Figure 27:Confusion Matrix MobileNetV2 ..................................................................................... 46 

Figure 28:Confusion Matrix InceptionResNetV2 ........................................................................... 47 

Figure 29:Confusion Matrix DenseNet121 .................................................................................... 48 

Figure 30:Images with superpixels ................................................................................................ 49 

Figure 31:Dekay's brownsnake perturbed images ........................................................................ 50 



 
 

Figure 32:Foxsnake perturbed images ........................................................................................... 50 

Figure 33:Common garter snake perturbed images ...................................................................... 50 

Figure 34:Top features MobileNetV2 ............................................................................................ 51 

Figure 35:Top features InceptionResNetV2 ................................................................................... 51 

Figure 36:Top features DenseNet121 ............................................................................................ 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

List of Tables 

Table 1: Comparison of Classifiers ................................................................................................. 14 

Table 2:MobileNetV2 Architecture ................................................................................................ 19 

Table 3: Original Dataset ................................................................................................................ 22 

Table 4:Balanced Dataset .............................................................................................................. 24 

Table 5:MobileNetV2 Training Results .......................................................................................... 35 

Table 6:InceptionResNetV2 Training Results ................................................................................. 36 

Table 7: DenseNet121 Training Results ......................................................................................... 38 

Table 8:ML Model sizes .................................................................................................................. 39 

Table 9:Tflite Models Accuracy ...................................................................................................... 40 

Table 10:MobileNetV2 Classification Report ................................................................................. 46 

Table 11:Classification Report InceptionResNetV2 ....................................................................... 47 

Table 12:Classification Report DenseNet121................................................................................. 48 



1 | P a g e  
 

1. Introduction 
 

The snakes are not the most famous animals among all other animals they are perceived as 

animals should be feared and killed. There are more than 3000 snake species all around the 

world except in Antarctica, Iceland, Ireland, New Zealand and Greenland. Among these 

species 600 are venomous and 200 species venomous enough to kill a man [1]. 

Annually, at least 20,00 deaths and 421,000 envenomings occur because of snake bites 

worldwide. These statistics can be high as 94,000 deaths and 1,841,000 envenomings. 

Snake bite is an ordinary medical problem among plantation workers and farmers in South 

East Asian region. Most of the younger generation are victims of snake bites [2]. These 

snake bites can be cause death or chronic disability therefore It has a significant impact at 

the economy of the country.  

Sri Lanka boasts one of the highest rates of biological endemism in the world whether in 

plants or animals and is included among the top five biodiversity hotspots in the world. 

Therefore, Sri Lanka is a famous destination for travelers all over the world for exploring 

the biodiversity. 

Travelers who visit Sri Lanka go into jungles to explore the biodiversity. Most of them do 

not aware what snake species live in that area. This application makes them aware of what 

snake species are generally found in that area. In their journey they may be get snake bites, 

without proper identification and first aids their life can be in danger. 

Sri Lanka is a country which has highest snake bites in the world. Because of the highest 

biodiversity of the country many snake species can be found. Sri Lankan snake fauna 

comprise of 100 species belonging to 10 families. Out of these 100 species, 87 live on land, 

14 live in the ocean, and the remaining one inhabits brackish water [3]. Nearly 49% (50 

species) of the snake species found in Sri Lanka are endemic to the island, or do not occur 

naturally anywhere else in the world. 

The snakes of Sri Lanka that live on land can be categorized into four groups, depending 

on the lethality of their venom. Accordingly, 5 species can be considered as deadly 



2 | P a g e  
 

venomous- Cobra, Russell’s Viper, Common Krait, Sri Lankan Krait, Saw-scaled Viper; 5 

species as mildly venomous and 12 species as mildly venomous. The remaining 61 species 

are non-venomous. This demonstrates that the majority of snake species (63%) are in fact, 

harmless. 

Snakebite is a critical medical emergency that requires quick medical treatment. To make 

medical treatment, identifying snake is the most vital task. People normally identify snakes 

based on visual features like body shape, eye shape and color patterns [4]. The knowledge 

of identification snakes which is not ordinary for many people where only a few experts 

have this knowledge. This application helps to identify snakes that live in those areas and 

what first aids can be done after snake bite. 

 

1.1 Problem 
 

After a snake bite identifying the snake is the most vital task for giving antivenom to the 

patient. Antivenom is the only effective medicine for a snake bite. People is used to kill the 

snake after a snake bite and bring it to the hospital with the patient. People put their lives 

in more danger when trying to kill the snake and sometimes they kill the snake without 

identifying it is a nonvenomous one. Identifying the snake should be done by a practiced 

physician. If snake was not caught laboratory tests can be done to identify snake by its 

venom. It is a time-consuming task that causing delay of medical treatment. Most of time 

snake is identified after seeing the death snake or according to the details that described by 

the patient. This identification process can be led to highly inaccurate results. Snake is 

identified having a very lower accuracy of 53% after a snake bite [5].  

There is no automated system to identify snakes using images. With an automated system 

it would be easy to identify snakes and it would be reduced the danger in human lives when 

they put trying to catch snakes. Identifying snakes with earliest possible will give a good 

chance to save the life of the patient. 



3 | P a g e  
 

Furthermore, due to the lack of understanding of snakes in Sri Lanka, they are frequently 

killed regardless of their identity. Therefore, the ability to identify snakes will save the 

lives of human beings and also harmless snakes.  

Snakes identification is more challenging because some species have patterns that vary 

depending on their age, some species have patterns that vary depending on their location 

and two species might look very similar, with one being venomous and the other not [6]. 

 

1.2 Motivation 
 

As mentioned above there is no automated framework to identify snakes. It would be very 

helpful to doctors and people to identify snakes easily. It would reduce the deaths of the 

people and also the snakes. Sri Lanka is a country which has a great snake fauna and one 

of the countries that has highest snake bites. Travelers all around the world visit Sri Lanka 

to study the biodiversity of Sri Lanka. Having an application to study snakes and identify 

biodiversity areas of Sri Lanka will be helpful to travelers. This automated framework can 

be converted to Sri Lankan context with few modifications. Taking the initial step to 

creating this snake identification framework and giving some useful application to the 

society is the main motivation. 

 

1.3 The Exact Computer Science Problem  
 

Human visual cortex that made up of 140 million neurons is one of the most difficult part 

of the brain to understand. Human visual context is responsible for processing and 

interpreting visual data to give perception and formulate memories. Humans can extract 

much information after seeing an image and tell the whole story behind that.  

Computer vision is a field of computer science that deals with understanding the images 

and videos like humans do. Computers do not see images and videos like humans do. They 

see images as pixels, numeric values that represent color variations of red, blue and green. 



4 | P a g e  
 

Computers should determine the pattern of pixels to understand images and identify objects 

in the images. With the advancement of deep learning computer vision has gained a good 

progress for identifying objects in an image. To have a good accuracy using a deep learning 

algorithm, it should be trained with huge amount of data and require great computational 

power. Still computer vision is not good at understanding what is going on in the images. 

Understanding relationship between objects in the images needs common sense and prior 

knowledge. Human visual cortex has been trained for years but making a machine to 

interpret as human visual cortex always been a challenge. 

The results of the snake identification framework should be very accurate because 

depending on the identified snake doctors decide the antivenom for the snake. Most of the 

snake bites happen in rural areas so internet connectivity cannot be guaranteed so 

application should work without internet. 

Until now there is no automated classification system to identify snake species from 

images. Snakes classification is an ongoing research problem. This project is target on 

developing such an application which will capture images of snakes and classify them 

using image processing and deep learning technologies. 

 

1.4 Aims and Objectives 
 

The main objective of the project is to develop an automated framework to identify snakes 

using Image processing and machine learning techniques. Most snake bites are reported in 

rural areas therefore Internet cannot be guaranteed hence application should be worked 

with internet and without internet. 

 The following objectives can be found in this research 

• Develop a mobile application to identify snakes in real time. 

• Mobile application should produce accurate results with minimum computational 

time. 

• Identify the best Machine learning algorithm to use for snake identification for 

mobile and server. 



5 | P a g e  
 

• Build and train Machine learning algorithm using snake images. 

• Develop a web application to identify snake species. 

 

1.5 Scope 
 

This system identifies 10 snake species Common gartersnake,Dekay’s 

brownsnake,Western diamondback rattlesnake,Black rat snake,Copperhead,Eastern 

racer,Rough green snake,Eastern hognose snake,Timber rattlesnake and Foxsnake. This 

system includes two applications a mobile and a web-based application. Mobile application 

is the main application that comes with many features and web application only comes 

with limited features. Mobile application runs on Android platform. It comes with features 

such as Identifying snakes on real time, display snake details and show nearest biodiversity 

areas and hospitals according to user's location. Users can identify snakes by taking a 

picture from camera or uploading an image in the gallery. Identifying snakes works with 

internet and without internet. To identify snakes without internet mobile supported 

machine learning model should be developed. When developing the mobile application, 

the size of the application, the performance, memory, computational power of the device 

and the accuracy of the results are considered. 

First machine learning model is developed to identify above 10 snake species. Machine 

learning models need high computational power, memory and they are big in size. 

Therefore, developed machine leaning model should be converted to mobile support form. 

When optimizing a machine learning model to mobile support form, it degrades the 

accuracy. Therefore, optimized machine learning model is deployed with mobile 

application and other one is deployed in a powerful server. Hence mobile supported 

machine learning model gives less accuracy, mobile application is designed to get results 

from the server when user has internet connectivity. When user has no internet connectivity 

it will rely on the machine learning model that runs locally inside the application. 

Web application only supports to identify snakes when an image uploads to the system. It 

directly uses the server deployed machine leaning models to retrieve results. 



6 | P a g e  
 

1.6 Novelty of the Project 
 

The main outcome of the project is a stand-alone mobile application that works offline for 

identifying 10 snake species - Common gartersnake,Dekay’s brownsnake,Western 

diamondback rattlesnake,Black rat snake,Copperhead,Eastern racer,Rough green 

snake,Eastern hognose snake,Timber rattlesnake and Foxsnake. People normally identify 

snakes based on visual features like eye shape, body shape and color patterns. The 

knowledge of identification snakes which is not ordinary for most people where only a few 

experts have this knowledge. It is proved that Computer vison can be achieved more 

accurate results than human vision. In this research Computer vison accuracy is evaluated 

against snake species context. 

There are many Machine learning algorithms for Image classification. Their accuracy can 

be varied against the input. The best Machine learning algorithm is identified against snake 

species context. 

The Machine learning models are required high computational power and more storage, 

mobile devices do not have high computation power and more storage so best mobile 

supportive Machine learning model is identified according to above requirements. Natively 

machine learning models do not support mobile devices, they should be converted to 

mobile support format. After this conversion, the accuracy of the model can be degraded, 

best mobile supporting Machine learning model is identified. 

 

1.7 Structure of the Dissertation 
 

The chapters of this dissertation describe how the project is planned, organized and 

implemented. The first chapter describes the problem that was addressed and the outcome 

of the project. 

The second chapter describes the literature review that was done during the project. 

Literature review study described related work and methods that had been applied and used 

by other researchers in image classification domain. 



7 | P a g e  
 

The third chapter describes the selected methodology for snake classification after doing 

the literature review. This chapter also describes the architecture, design phase and 

implementation of the application. In this chapter there is a detailed description how dataset 

was collected, how dataset was preprocessed and how application was implemented. 

The fourth chapter describes the results that obtained after project was completed. This 

chapter also describes what were the techniques that applied to evaluate the project work 

and the accuracy of applied methodologies in the project. 

Final chapter describes conclusions that observed after project was completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 | P a g e  
 

2. Literature Review 
 

2.1 Introduction 
 

Snakes identification is more challenging because some species have patterns that vary 

depending on their age, some species have patterns that vary depending on their location 

and two species might look very similar, with one being venomous and the other not [2]. 

It is very important to do a literature survey for studying related work and finding 

approaches that have been taken by other researchers for snake classification and image 

processing related applications. After identifying their approaches some valid insights can 

be taken when selecting the most suitable approach for the current application. In this 

chapter related work is analyzed and discussed their outcomes. 

 

2.2 Related work 
 

Prakash M. Manikar et al. proposed an image-based plant leaf disease recognition by using 

the feedforward back propagation network (BPNN) [7]. Images of various leaves were 

collected using high resolution camera to get better results. The research analyzed RGB 

images of plant leaves and extract suitable features. The noise added during image 

acquisition should be removed. RGB images are device dependent so they are converted 

into independent color space which providing same color regardless of the device used to 

take pictures. 

Image segmentation is done using k-means clustering to simplify the representation of 

image in a more meaningful way. K-means clustering has been selected over hierarchical 

clustering because K-means treats each observation in the data set as an object having a 

location in space. Mostly green colored pixels have been identified and removed because 

they were representing healthy areas. 



9 | P a g e  
 

The extracted features have been given as inputs to pre-trained neural network for 

automatic classification of diseases. Neural network has been selected as a classification 

algorithm because It is a recognized technique. 

Mohini Niraj Sheth et el. proposed an image-based snake identification system by using 

Principal component analysis (PCA) algorithm. In their work total number of 85 images 

have been used. Forty images are of non-venomous snakes, twenty-seven images are of 

venomous snakes and 19 images are of semi venomous snakes.  

Grayscale images have been used as they required less memory storage and image 

operations were easy. PCA algorithm had been used to extract feature vectors of images. 

PCA requires centralize data. Centralized data was obtained computing row mean and 

subtracted row mean from image data. Computed scattering matrix of centralized data and 

eigen value of scatter matrix has been found out. In order to get eigen vectors of larger 

eigen values sort the eigen value in descending order and computed feature vector after 

that plot feature vector and store this data. Euclidean distance has been calculated between 

feature vector of training image and test image. The image which has minimum Euclidean 

distance has been selected [8]. 

In their work average success rate of identifying snakes is 74%. It is a low score rate 

therefore PCA algorithm can’t be considered as a good algorithm for identifying snakes. 

In the work Amiza Amir et el. investigated the accuracy of five machine learning 

algorithms - naive Bayes, nearest neighbors, k-nearest neighbors (k-NN), backpropagation 

neural network, and decision tree J48 for image-based snake identification problem. Color 

and Edge Directivity Descriptor (CEDD) has been used to extract features of 349 images 

that belongs to 22 different snake species [9].  

The Weka tool has been used to implement five machine learning algorithms using CEDD 

data set. In their work they got 75.54% with Naïve Bayes,87.63% Backpropagation neural 

network ,89.22% Nearest neighbor and 71.29% with Decision tree J48 

Luz Jimenez et el. proposed image-based species identification system using Artificial 

Neural Network (ANN). In their work total of 11,198 images were tested belongs to fish, 

plants and butterflies. In Image preprocessing, Grabcut’s algorithm has been used to 



10 | P a g e  
 

remove image background and converted images to grayscale. Different filters were added 

to remove the image noise. Feature extraction was done after image preprocessing,15 

geometrical, morphological and texture features are extracted and used for pattern 

recognition. 

A neural network has been trained using extracted features. Input neurons was determined 

from the extracted number of features which is 15. The success rate of this research is 

91.65% for fish identification,92.87% for plants identification and 93.25% for butterfly 

identification [10]. 

 

Alejandro Arteaga et el. proposed image-based real time snake classification system using 

regional-based convolutional neural network(R-CNN) architectures [11]. In their work 

total number of 247 images were collected that belonged to 9 Pseudalsophis snake species. 

TensorFlow had been used to load pretrained R-CNN models such as: ResNet, Inception 

V2, VGG16 and MobileNet. Different size of training and test dataset had been used to 

train the deep learning models. Their work shows good results with accuracy of 75% 

ResNet,70% Inception V2,70% VGG16 and 10% MobileNet. 

 

In the work Alex Pappachen James et el. described what features are most important to 

successfully identify a snake. The snake images for the experiment have been collected 

from forest across different parts of Kerala, India. Total number of 1299 snake images were 

collected that belongs to spectacled cobra, russel’s viper, king cobra, common krait, saw 

scaled viper and hump nosed pit viper. Feature dataset has been created by extracting 38 

physical characteristics from snake images.  

To perform snake classification multiple classifiers have been used. The dataset was 

randomly split into 5% samples in training set and 95% in test set and performance 

evaluated on individual classifiers. The selection of features is performed on the training 

set. Selection and testing was repeated 100 times to ensure statistical correctness and got 

Naïve Bayes 77.69,Bayes net 78.81 and Multilayer Perceptron 86.85 accuracy [12]. The 

research has been proved that 15 characteristics enough to identify a snake. 



11 | P a g e  
 

Sathiesh Kumar proposed a system to identify flower species using Convolutional Neural 

Networks and Transfer learning. When recognizing flowers, the main features to be 

considered is color, shape and texture. The unpredictable variety of existence of above 

features in flowers, the feature extraction is difficult. In his work without applying different 

feature extract methods Convolutional Neural Networks were directly used. 

Image dataset was collected from the Visual Geometry group of University of Oxford. 

Transfer leaning has been used to train the dataset therefore no need to train the CNN from 

scratch. OverFeat is a trained network on ImageNet and it has been used as the feature 

extractor by freezing all the pre-trained layers except Fully Connected layer in CNN. In 

this method over 90% of accuracy was obtained [13]. 

In the work of Rupali S.Zambre et el.proposed a method to identify cotton leaf disease 

using SVM. The RGB color of images of cotton leaf are collected and several feature 

extraction methods have been used. SVM has been used as the image classifier and 

obtained 97% of accuracy [14]. 

In the work of Neha Sharma et el.compared the accuracy of three Convolution Neural 

Networks AlexNet, GoogleNet and ResNet50.The architecture of the networks differs from 

each other by number of internal layers and techniques used therefore accuracy of the 

networks are differed. To identify the accuracy of the networks three datasets-CIFAR-10, 

CIFAR-100 and MNIST have been used. CIFAR-100 dataset has 50000 images and 10000 

test images that belongs to 100 different classes. CIFAR-10 dataset has 5000 images and 

10000 test images that belongs to 10 different classes. 

In his work he has calculated average accuracy of identifying images for each dataset using 

above three CNN networks. GoogLeNet has given the best accuracy for CIFAR-100 

dataset with 64.40% accuracy. Resnet50 has given the best accuracy for CIFAR-10 dataset 

with 78.10% accuracy [15]. 

 

 



12 | P a g e  
 

2.3 Summary of Literature Review 
 

Various methodologies were identified in the image classification context by going through 

many research papers. These methodologies use different techniques in image 

classification and they have different pros and cons. 

The findings that obtain during this study was summarized and further studied. 

 

2.3.1 Taxonomy of Image Classification Models 
 

According above research papers following image classification methods were identified. 

 

 

Figure 1: Image Classification Models 

 

 

 

 

 

 

 

Image Classification

Classical

PCA [14]

Machine Learning

Neural Networks

ANN [15]

CNN [15]

K-NN [16] SVM Naïve Bayes [16] Decision Tree [16]



13 | P a g e  
 

2.3.2 Comparison of Classifiers 
 

Classifiers Advantages Disadvantages References 

PCA In a dataset there can be 

more than thousands of 

features and some of those 

features can be corelated. 

PCA can efficiently identify 

those correlated features. 

PCA components are less 

readable when comparing to 

original features. 

[16] 

 Improving the algorithm 

efficiency by reducing the 

correlated data set and 

reduces the overfitting of 

the algorithm. 

Information can be loss 

because of high variance of 

feature set. 

 

ANN Capable in distinguishing 

complex nonlinear 

relationship 

between independent and 

dependent variables. 

 

Great tendency of data 

overfitting. 

 

[17] 

 Simplistic statistical 

training. 

Bigger computational load. [17] 

CNN Multiple features can be 

extracted simultaneously. 

 

High computation level. 

 

 

 Robust to noise No capable for 

generalization. 

 

KNN No training needed. 

 

Susceptible to noise. [18] 

 Simplest classifier. Costly testing for each 

instance. 

 



14 | P a g e  
 

SVM Great generalization 

potential. 

Speed and size constraint for 

both training and testing 

 

 Exceptionally robust. Complex algorithm 

structure. 

 

  Slow training.  

Naïve 

Bayes 

It requires short 

computational time for 

training.  

The Naive Bayes classifier 

needs a huge dataset to 

obtain accurate results  

 

[18] 

 It increases the classification 

efficiency by removing the 

unrelated features. 

Less accurate as compared 

to other classifiers on some 

datasets.  

 

 

Decision 

tree 

Decision Trees are very 

simple and fast  

 

It has long training time.  

 

[18] 

 It can also deal with noisy 

data.  

 

Decision trees can have 

significantly more complex 

representation for some 

concepts due to replication 

problem  

 

 It supports incremental 

learning  

  

 

Table 1: Comparison of Classifiers 

 
 

 

 



15 | P a g e  
 

3. Methodology 
 

3.1 Introduction 
 

The methodology is the way that project is implemented with the findings and the 

knowledge gained through the literature review. This chapter provides a comprehensive 

overview of the image classification techniques that was used, the dataset details, how 

dataset preprocessed, overall project architecture and the implementation. 

 

3.2 Problem Analysis 
 

Snakes identification is more challenging because some species have patterns that vary 

depending on their age, some species have patterns that vary depending on their location and 

two species might look very similar, with one being venomous and the other not. Because of 

this variation it is very difficult to extract features manually. 

Proper Image classification method should be chosen to address above problem. When 

ANN and CNN are compared, ANN is not suitable for image classification because these 

networks need more processing for images that have more pixels. Consider an image of 

size [100*100*3], ANN should have 300,000 weights in its first layer to receive this input 

vector [13].Feature engineering should be done by an expert for traditional Machine 

Learning algorithms but CNN can learn features by itself. CNN has shown high accurate 

results than traditional ML algorithms in image classification domain [19].  

 

3.3 Convolution Neural Network 
 

Convolution Neural Networks are going to use as the Image classification methodology. 

CNNs are specially used in Computer Vision Applications that involve Image 

Classification and Object recognition. Snakes recognition is a combination of both Image 

Classification and Object Recognition. 



16 | P a g e  
 

CNN consists of multiple convolutional layers that followed by one or more fully 

connected layers and one output layer. CNN can receive an image as input, apply some 

mathematical operations and classify it under certain categories. Features should be hand 

engineered in traditional classifiers but CNN has the ability to learn the features by itself. 

CNN receives an image as three-dimensional matrix. Three dimensions are height, width 

and depth of the image, where depth is the number of color channels. As an example, CNN 

takes a [64x64x3] color image, pass it through the layers while identifying various features 

and predict the class or label of the image [20]. 

 

Figure 2: CNN Architecture 

 

CNN has three types of layers as follows 

 1.Convolutional Layer 

 2.Pooling Layer 

 3.Fully-Connected Layer 

 

3.3.1 Convolutional Layer 
 

Convolutional layer is the brain of the CNN. It identifies the features of an image. Normally 

there are multiple convolutional layers. The first convolutional layer is responsible for 

identifying high level features of an image. Kernel is a matrix that has the same depth of 

the input image. For an example, Kernel dimensions can be 5x5x3 for an image size of 

64x64x3. Kernel moves over the image and it does the matrix multiplication between 

Kernel values and original image values. These multiplications are summed up to create a 



17 | P a g e  
 

feature map. This process continues until full image is covered. To identify various features 

of an image, multiple filters are applied. The applied Kernel values are later modified by 

the backpropagation technique 

 

 

Figure 3: Convolutional Layer 

 

3.3.2 Pooling Layer 
 

It is common to add a pooling layer between two Convolutional layers in a CNN. The 

purpose of a pooling layer is to reduce the dimensionality of the feature maps generated in 

Convolutional layer. It helps to reduce the needed computational power and training time 

to train the network. There are multiple pooling techniques, among those most frequently 

use one is max pooling. Max pooling takes the largest value among the selected region as 

shown in figure 4. 

 

Figure 4: Pooling Layer 

 

 



18 | P a g e  
 

3.3.3 Fully-Connected Layer 
 

In the fully-connected layers it takes all the input from previous layers and flattened into a 

feature vector to predict the output probabilities. 

 

 

Figure 5: Fully Connected Layer 

 

3.4 CNN Types 
 

There are many CNNs are currently available. The architecture of the networks differs from 

each other by number of internal layers and techniques used therefore accuracy of the 

network is differed [21]. When selecting a CNN, it’s accuracy, computation power, model 

size and mobile support should be considered. Therefore, multiple CNNs that has high 

accuracy such as:MobilenetV2, InceptionResNetV2 and DenseNet121 were evaluated and 

got the best CNN that suitable for mobile and the server [20]. 

 

3.4.1 MobileNetV2 
 

MobileNetV2 is a lightweight, low-latency and low-power power CNN architecture that 

can be implemented in low-end devices like mobile devices. MobileNetV2 is an 

advancement of MobilnetV1 architecture. MobileNetV2 has used depth wise separable 



19 | P a g e  
 

convolutional layers in MobileNetV1 that can significantly reduce the model size and the 

complexity of the network. MobileNetV2 has two new features like linear bottle necks and 

shortcut connections between bottlenecks [22]. 

The architecture of MobileNetV2 

Input Operator t c n s 

2242 * 3 Conv2d - 32 1 2 

1122 * 32 bottleneck 1 16 1 1 

1122 * 16 bottleneck 6 24 2 2 

562 * 24 bottleneck 6 32 3 2 

282 * 32 bottleneck 6 64 4 2 

142 * 64 bottleneck 6 96 3 1 

142 * 96 bottleneck 6 160 3 2 

72 * 160 bottleneck 6 320 1 1 

72 * 320 Conv2d 1*1 - 1280 1 1 

72 * 1280 Avgpool 7*7 - - 1 - 

1 * 1* 1280 Conv2d 1*1 - k - - 

 

Table 2:MobileNetV2 Architecture 

 

3.4.2 InceptionResNetV2 
 

Traditionally deep learning networks have stacked of layers. When the network goes 

deeper accuracy gets saturated and then degrades rapidly. This is not causing by network 

is overfitting it is happened because layers suffer vanishing gradient problem. Traditional 

deep learning networks learning from data by passing each input through the model and 

Backpropagation. During the backpropagation weights are updated according to loss 

function. To calculate the gradient of loss function chain rule is applied. That means 

calculate the gradient of each layer and multiply the values calculated at layers before that. 

Because of every value is very small, multiplying them are close to zero. This is called the 

vanishing gradient problem. 



20 | P a g e  
 

To overcome this problem ResNet introduces residual blocks and skip connection [23]. In 

ResNet shortcuts are added to skip 2 or 3 layers and skip learning for some layers. This 

method solved the vanishing gradient problem. 

Inception is an architecture that designed going wider rather than going deeper. Inception 

architecture uses different convolutional filters rather than using one [24]. It increases the 

ability to identify features of the images more accurately rather than other deep learning 

networks. 

InceptionResNetV2 is an architecture that has designed based on ResNet and Inception 

taking best of the both worlds. 

Figure 6:InceptionResNetV2 Architecture 

 

3.4.3 DenseNet 
 

The problem with traditional CNNs is the vanishing gradient problem when they go deeper. 

Traditional networks pass data from one layer to another. ResNet proved that some layers 

can be dropped randomly because some layers contribute very little [23]. ResNet has 

introduced residual blocks to address this issue. The problem with ResNet is, it has very 

large number of parameters. 

In DenseNet the layers are densely connected together: Each layer receives all the inputs 

from previous layers and pass on its own feature maps to all subsequent layers [25]. 

DenseNet architecture has significant advantages when comparing to other CNN 



21 | P a g e  
 

architectures like resolving vanishing gradient problem, feature reuse and strengthen 

feature propagation. 

 

Figure 7: DenseNet Architecture 

 

3.5 Transfer learning 
 

To train a CNN from scratch, huge computational power and time is needed. CNN gives 

accuracy when there is huge amount of data [26]. If there is small amount of data, at the 

training time CNN would be overfitted and gives inaccurate results. To overcome these 

issues, transfer leaning is used. In transfer learning pre-trained models can be used which 

was trained on a huge dataset [11]. 

 

3.6 Dataset 
 

Image dataset was collected through AICrowd competition. The dataset includes images 

belongs to 10 snake species which contain both test and train images. There are 36,025 

train images and 1941 test images in the dataset. 

The details of the dataset as follows 

 

https://www.aicrowd.com/challenges/snake-species-identification-challenge


22 | P a g e  
 

Snake Name Train Images Count Test Images Count 

Timber rattlesnake 1983 142 

Common garter snake 10554 517 

Rough green snake 1918 144 

Foxsnake 1283 88 

Eastern hognose snake 1803 105 

DeKay's brownsnake 4406 194 

Black rat snake 5236 284 

Copperhead 2373 164 

Western diamondback 

rattlesnake 

5266 249 

Eastern racer 1381 54 

Table 3: Original Dataset 

 
 

3.6.1 Handling Class Imbalance 
 

The dataset consists with imbalance classes. The imbalance classes effect the accuracy of 

the classification model [27]. The majority class dominates the parameters of the 

classification model. This reduces the error of majority class at the early stage of iterations 

and increases the error of minority class. 

The new class distribution was determined by calculating the average number of images in 

the existing dataset. 

Average images per class = Total Images/Number of classes 

         = 36025/10 

         = 3600 

Following techniques were applied to handle the class imbalance problem. 

 



23 | P a g e  
 

Image Augmentation 

Image Augmentation is a technique to generate more new images with existing few images 

[28]. Augmentation techniques such as zoom, horizontal flip, vertical flip, rotation was 

applied to randomly selected images from minority classes and generated new images. 

Keras ImageGenerator method has been used to generate new images. 

ImageDataGenerator( 

                           width_shift_range=0.2, 

                            height_shift_range=0.2, 

                            zoom_range=0.2, 

                            rotation_range=45, 

                            horizontal_flip=True, 

                            vertical_flip=True, 

                            ) 

Following examples shows generated augmented images for Timer Rattle snake 

Original Image 

 

Width shift range      Height shift range                    Horizontal flip 

 



24 | P a g e  
 

Vertical flip        Rotation           Zoom 

 

Figure 8:Augmented Images 

 

Random Under Sampling 

Under sampling was used to randomly remove images from majority classes until reaching 

balance distribution 

The details of the dataset after class balancing 

Snake Name Train Images Count Test Images Count 

Timber rattlesnake 3600 200 

Common garter snake 3600 200 

Rough green snake 3600 200 

Foxsnake 3600 200 

Eastern hognose snake 3600 200 

DeKay's brownsnake 3600 200 

Black rat snake 3600 200 

Copperhead 3600 200 

Western diamondback 

rattlesnake 

3600 200 

Eastern racer 3600 200 

 

Table 4:Balanced Dataset 
 

 



25 | P a g e  
 

3.7 Tflite Models 
 

TensorFlow Lite converts already trained models that was trained on high power machines 

to light weight mobile supported tflite models. Deep leaning models normally use 32-bit 

floating point data types with high precision. These models need high storage, high CPU 

power and high memory to run. Mobile phones may not have these requirements to run a 

deep learning model. TensorFlow Lite can convert 32-bit floating point models to 8-bit 

integer models. When converting to tflite model there is an accuracy degrade when 

comparing to original model but comes with other advantages such as: CPU operations are 

faster for 8-bit integers than 32-bit floating point numbers, module size is reduced 4x when 

moving from 32-bits to 8-bits and lower bit data means more data can be fit into memory 

therefore no need to access memory more often. 

Floating point numbers has exponent and mantissa. The exponent allows for representing 

wide range of numbers and mantissa gives the precision. When converting 32-bit float 8-

bit integer exponent is replaced by a fixed scaling factor and use integers to represent the 

value of a number relative to this constant. 

 

3.8 Model Design 
 

3.8.1 Training Model  
 

Following diagram describes the architecture design for training the data models to support 

server version and mobile version. TensorFlow and Keras is used to train the network and 

TensorFlow Lite is used to convert the models to mobile support version 

 



26 | P a g e  
 

 

  Input Images   Preprocess Images  Trained the data 

  Trained Model   Deploy to Cloud 

            

       Tflite converter       Tflite Model  Deploy to Mobile 

 

Figure 9:Training Model  

 

 

3.8.2 Architecture 
 

The following diagram describes the complete architecture of the application how mobile 

and server version trained machine learning models interact with each other. When there 

is connectivity mobile application receive the results by call the hosted Machine Learning 

(ML) model in the server to achieve better performance. When there is no connectivity It 

gets the results through the Machine Learning (ML) model deployed inside the mobile 

application. 



27 | P a g e  
 

There is a separate web application to get results from the server directly. 

 

Figure 10: Architecture 
 

 

 

 

 

 

 

 



28 | P a g e  
 

3.8.3 Mobile Design 
 

Following are the screens for capturing snake images and displaying results 

 

Figure 11:Camera view 

 

In Camera view there are three main screens 

Screen1: User can get an image using Take Picture button or select an existing Image using 

Gallery. 

Screen2: After having the Image User can crop the Image 

Screen3: After cropping the image, Image is analyzed using the trained model inside the 

app and possible results are displayed. 

 

 

 



29 | P a g e  
 

Following are the two screens to display snake details and the map view to display 

biodiversity rich areas near to user’s location 

Figure 12:Map View 

 

3.8.4 Web Design 
 

Following is the screen for web application to upload a snake image and get the results 

directly through the server. 

Figure 13:Web View 
 



30 | P a g e  
 

3.9 Implementation 
 

TensorFlow and Keras was used to train the models and TensorFlow Lite was used to 

convert the models to mobile support version. Colab Notebook GPU with 25 GB RAM 

runtime version was used as development environment. ReactJs used for developing we 

application. Flask Framework used to develop the API and Heroku server was used to host 

the ML model. 

 

3.9.1 Image Preprocessing 
 

Image should be preprocessed before feeding to the network. Original Images came with 

different sizes. Image data set is converted to 128*128 images using OpenCV and feed to 

the CNN networks. 

CATEGORIES=["class-78","class-204","class-508","class-543","class-

581","class-697","class-771","class-804","class-872","class-966"] 

IMG_SIZE=128 

training_data=[] 

def create_training_data(): 

    for category in CATEGORIES: 

        path=os.path.join(DATADIR,category) 

        class_num=CATEGORIES.index(category) 

        for img in os.listdir(path): 

            try:                 

                snake_images_array=cv2.imread(os.path.join(path,img)) 

                

snake_resize_images_array=cv2.resize(snake_images_array,(IMG_SIZE,IMG_S

IZE))                          

                

training_data.append([snake_resize_images_array,[class_num]])      

            except Exception as e:                  

                pass 

create_training_data() 



31 | P a g e  
 

3.9.2 Training 
 

Keras Api was used to load pretrained models that trained on ImageNet dataset. 

MobileNetV2, InceptionResNetV2 and DenseNet121 pretrained models were used with 

transfer learning. These models have been already trained using 14 million images that 

belongs to 1000 classes. Pretrained model was loaded without including the top 

classification layer. Convolutional layers of the model were freezed to prevent updating 

already calculated weights while training. Since pre-trained models were trained on 1000 

classes, new output layer should be manually added to classify 10 classes in snake dataset. 

Before training the new model, it should be complied with loss function and optimizer. 

Finally, new model was trained with 30 epochs. Dataset was divided as 20% for validation 

and 80 % for training. Validation dataset was used to evaluate the performance of the 

dataset on each epoch. 

Following sample code describes the training process using MobileNetV2 

IMG_SIZE=128 

IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3) 

base_model=tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, 

                                              include_top=False, 

                                              weights='imagenet’) 

for layer in base_model.layers: 

    layer.trainable=False 

 

global_average_layer = tf.keras.layers.GlobalAveragePooling2D() 

prediction=Dense(10,activation='softmax') 

model = tf.keras.Sequential([ 

  base_model, 

  global_average_layer, 

  prediction 

]) 

base_learning_rate = 0.0001 

model.compile(optimizer=tf.keras.optimizers.Adam(lr=base_learning_rate)

, 

              loss="categorical_crossentropy", 

              metrics=['accuracy']) 

 

hist=model.fit(train_data,train_labels,batch_size=32,epochs=30,validati

on_split=0.2) 

model.save("Snakes-MobileNetV2.h5") 



32 | P a g e  
 

3.9.3 Fine-Tuning 
 

Once the model was trained on the new data, base model was unfreezed and train with 

newly added classifiers again. This allowed to fine-tune features in base model in order to 

make them relevant to training dataset features. Trained model was fine-tuned with a much 

lower learning rate to avoid overfitting the network. Model was fine-tuned 5 epochs. 

base_model.trainable = True 

base_learning_rate = 0.00001 

model.compile(optimizer=tf.keras.optimizers.Adam(lr=base_learning_ra

te), 

              loss="categorical_crossentropy", 

              metrics=['accuracy']) 

 

fine_tune_epochs = 5 

total_epochs =  initial_epochs + fine_tune_epochs 

history_fine=model.fit(train_data,train_labels_categorical,batch_siz

e=32,epochs=total_epochs,initial_epoch=history.epoch[-

1],validation_split=0.2) 

 

 

3.9.4 Converting to tflite models 
 

After saving the trained model it should be converted to a tflite model for supporting 

mobile devices. TensorFlow Lite was used to convert the already trained model as tflite 

model. 

model=load_model("Snakes-MobileNetV2.h5") 

converter = tf.lite.TFLiteConverter.from_keras_model(model) 

converter.optimizations = [tf.lite.Optimize.DEFAULT] 

tflite_model = converter.convert() 

open("snake_mobilenet.tflite", "wb").write(tflite_model) 

 

 

 

 



33 | P a g e  
 

3.9.5 Load tflite models in Android 
 

After adding TensorFlow Lite Interpreter to Android project tflite model can be loading 

using below code snippet 

tflite = Interpreter(loadModelFile()) 

private fun loadModelFile(): MappedByteBuffer { 

        val fileDescriptor = 

this.getAssets().openFd("snake_mobilenet.tflite") 

        val inputStream = 

FileInputStream(fileDescriptor.fileDescriptor) 

        val fileChannel: FileChannel = inputStream.getChannel() 

        val startOffset = fileDescriptor.startOffset 

        val declaredLength = fileDescriptor.declaredLength 

        return fileChannel.map(FileChannel.MapMode.READ_ONLY, 

startOffset, declaredLength) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 | P a g e  
 

5. Results and Evaluation 
 

5.1 Results 
 

The accuracy of the CNNs should be measured to identify suitable CNN for classification 

of snake species. While networks were training their validation accuracy and training 

accuracy was recorded. After training was completed models were saved and evaluate 

using Model.Evaluate() method in Keras Models API. Using test dataset clear idea can be 

obtained how trained ML models behave when they see new data.ML models were trained 

with different epoch sizes to get better results. Graphs were generated for every model to 

get clear idea how model accuracy behave while training. Python pyplot library was used 

to generate graphs. Training parameters were different for each ML model. To get a clear 

idea about trainable parameters Model.Summary() method used in Keras Models API. 

Following are the results that obtain after training each ML model. 

 

5.1.1 MobileNetV2 
 

Following diagram describes trained layers of the network and trainable parameters 

 

Figure 14:MobileNetV2 Model Summary 

 



35 | P a g e  
 

MobileNetV2 training models were evaluated using test dataset and following results were 

obtained. Model is evaluated before fine-tuning and after fine-tuning. 

 

 30 epochs 35 epochs (Fine-Tuning) 

Model Loss Accuracy Loss Accuracy 

MobileNetV2 0.9241 0.6745 0.5994 0.7990 

 

Table 5:MobileNetV2 Training Results 

 

MobileNetV2 training accuracy vs validation accuracy was recorded for each epoch to get 

a better idea how ML model behave while training. 

 

 

Figure 15:MobileNetV2 Training  
 



36 | P a g e  
 

5.1.2 InceptionResNetV2 
 

Following diagram describes trained layers of the network and trainable parameters. 

 

 

Figure 16:InceptionResNetV2 Model Summary 

 

InceptionResNetV2 training models were evaluated using test dataset and following results 

were obtained. 

 30 epochs 35 epochs (Fine-Tuning) 

Model Loss Accuracy Loss Accuracy 

InceptionResNetV2 1.0926 0.6180 0.8508 0.8175 

 

Table 6:InceptionResNetV2 Training Results 
 

 

InceptionResNetV2 training accuracy vs validation accuracy was recorded for each epoch 

to get a better idea how ML model behave while training. 

 

 



37 | P a g e  
 

 

Figure 17:InceptionResNetV2 Training  

 

 

 

 

 

 

 

 

 

 



38 | P a g e  
 

5.1.3 DenseNet121 
 

Following diagram describes trained layers of the network and trainable parameters. 

 

Figure 18:DenseNet121 Model Summary 

 

 

DenseNet121 training models were evaluated using test dataset and following results were 

obtained. 

 

 30 epochs 35 epochs (Fine-Tuning) 

Model Loss Accuracy Loss Accuracy 

DenseNet121 0.9235 0.6830 0.4867 0.8430 

 

Table 7: DenseNet121 Training Results 

 

DenseNet121 training accuracy vs validation accuracy was recorded for each epoch to get 

a better idea how ML model behave while training. 

 

 

 



39 | P a g e  
 

 

Figure 19:DenseNet121 Training 

 

5.1.4 Tflite Models Size 
 

ML models were converted to tflite mobile supporting format. The ML model size and 

Tflite model size were recorded. 

Model name Model Size Tflite Model Size 

MobileNetV2 27 MB 2.2 MB 

InceptionResNetV2 638.9 MB 53.4 MB 

DenseNet121 83.4 MB 7.1 MB 

 

Table 8:ML Model sizes 

 



40 | P a g e  
 

5.1.5 Tflite Models Accuracy 
 

Tflite model accuracy also observed because it is important while selecting the suitable 

model for mobile. The accuracy of those models was evaluated using the test dataset. 

Tensorflow.lite.Interpreter.Run() method was used to predict the results in the mobile 

application. The average time to predict the snake in the mobile application was measured 

because it is important when selecting the suitable model for mobile. Therefore, the average 

execution time to predict the snake was recorded using test dataset. 

Model name Accuracy % Prediction Time(ms) 

MobileNetV2 0.72 48.27 

InceptionResNetV2 0.81 210 

DenseNet121 0.83 151.50 

 

Table 9:Tflite Models Accuracy 

 

5.1.6 Compare Mobile Mode vs Server Mode 
 

Selected test Images were manually tested and observed the results. All the image classes 

were manually tested with the server deployed ML model and mobile deployed ML tflite 

model. Following are the part of the results that gained three snake species Common garter 

snake, Timber rattlesnake and DeKay’s brownsnake 

Common garter snake Timber rattlesnake DeKay’s brownsnake 

 

   

Figure 20:Test Snake Image 

 



41 | P a g e  
 

Test results for Common garter snake, Timber rattlesnake and DeKay’s brownsnake with 

MobileNetV2 tflite offline mode  

 

Figure 21:MobileNetV2 Offline Test Results 

 

Test results for Common garter snake, Timber rattlesnake and DeKay’s brownsnake with 

MobileNetV2 server online mode  

 

 

Figure 22:MobileNetV2 Online Test Results 

 



42 | P a g e  
 

Test results for Common garter snake, Timber rattlesnake and DeKay’s brownsnake with 

DenseNet121 tflite offline mode  

 

Figure 23:DenseNet121 Offline Test Results 

 

Test results for Common garter snake, Timber rattlesnake and DeKay’s brownsnake with 

DenseNet121 server online mode  

 

 

Figure 24:DenseNet121 Online Test Results 

 



43 | P a g e  
 

InceptionResNetV2 ML model is larger than 200MB.It was unable to deploy in web server 

because of server limitations. Test results are displayed for Common garter snake, Timber 

rattlesnake and DeKay’s brownsnake with InceptionResNetV2 tflite offline mode 

 

 

Figure 25:InceptionResNetV2 Offline Test Results 

 

 

5.2 Evaluation 
 

Three Image Classification algorithms were trained 30 epochs and fine-tuned for 5 epochs. 

All models were showed significant accuracy increase when fine-tuning. Before fine-

tuning all models gain accuracy around 65%. After fine-tuning all models pass 80% 

accuracy. Finally, accuracy of the models is MobileNetV2-81%, InceptionResNetV2-82%, 

DensetNet121-83%. DenseNet121 has the better accuracy among three models.  

 

 
 

 



44 | P a g e  
 

5.2.1 Confusion Matrix 
 

Confusion matrix gives more insights about the performance of the classification algorithm 

[28]. The matrix compares the actual values with predicted values by classification 

algorithm. It is generated using the test data. When there are multiple classes, calculating 

accuracy only misleads the performance of the classification algorithm. As an example, 

when algorithm gives accuracy of 80% for 10 classes. It is difficulty to identify that all 

classes gave 80% accuracy. It can be 9 classes have accuracy of 85% and 1 class has 

accuracy of 35%. It is very important to have a better accuracy for all classes in snake 

classification. 

Sample confusion matrix for binary classification. 

      Predicted 

 Negative Positive 

Negative True Positive False Positive 

Positive False Negative True Negative 

 

True Positive (TP) - The predicted value by algorithm is positive and It is true. For 

example, algorithm predicted the snake image as Rattle snake and It is correct. 

True Negative (TN) - The predicted value by algorithm is negative and It is true. For 

example, algorithm predicted the snake image is not Rattle snake and It is correct. 

False Positive (FP) - The predicted value by algorithm is positive but it is actually 

negative. For example, algorithm predicted the snake image as Rattle snake and It is 

incorrect. 

False Negative (FP) - The predicted value by algorithm is negative but it is actually 

positive. For example, algorithm predicted the snake image as not Rattle snake but it is 

actually Rattle snake. 

 

 

Actual 



45 | P a g e  
 

Following matrices can be calculated using Confusion Matrix 

Precision 

Precision calculates how many of the predicted values by the model is actually positive 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

Recall 

Recall calculates how many of the actual positive values that predicted by the model 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 

F1-Score 

F1-score gives an insight of the balance between Precision and Recall 

𝐹1 =
2 ∗ (Precision ∗ Recall)

    Precision + Recall
 

 

Confusion Matrix was generated for all models using test dataset. Classification report was 

also generated with Precision, Recall and, F1-Score values 

In a multi-class classification, diagonal of confusion matrix shows right predictions for 

each class. Rough green snake has the highest Precision and Recall among all models. 

Eastern hangoose snake has the least Recall among all models. That can be happened 

because Eastern hangoose snake has wide range of color patterns. 

MobilenetV2 and InceptionResNetV2 have mostly misclassified Foxsnake as Eastern 

hangoose snake most likely due to their color patterns seem equal.MobileNetV2 has 

misclassified Timber rattle snake as Diamondback rattle snake most likely due to they have 

same color pattern because they are belong to same family. 

In DenseNet121 Black rat snake has the least precision that means other classes has 

misclassified them as Black rat snake. Timber rattlesnake,Foxsnake,Eastern hangoose 

snake and Eastern racer have been mostly misclassified. 



46 | P a g e  
 

MobileNetV2 Confusion Matrix 

Figure 26:Confusion Matrix MobileNetV2 

 

MobileNetV2 Classification Report 

 precision recall f1-score support 
Timber rattlesnake 0.74 0.69 0.71 200 

Common garter snake 0.79 0.88 0.83 200 

Rough green snake 0.92 0.99 0.95 200 

Foxsnake 0.86 0.70 0.77 200 

Eastern hognose snake 0.63 0.59 0.61 200 

DeKay's brown snake 0.83 0.90 0.86 200 

Black rat snake 0.71 0.83 0.76 200 

Copperhead 0.91 0.88 0.89 200 

Diamondback rattle 
snake 0.82 0.87 0.84 200 

Eastern racer 0.79 0.67 0.72 200 

     

accuracy 0.80 0.80 0.80 0.80 

macro avg 0.80 0.80 0.80 2000 

weighted avg 0.80 0.80 0.80 2000 

 

Table 10:MobileNetV2 Classification Report 

 



47 | P a g e  
 

InceptionResNetV2 Confusion Matrix 

Figure 27:Confusion Matrix InceptionResNetV2 

 

InceptionResNetV2 Classification Report 

 precision recall f1-score support 

Timber rattlesnake 0.84 0.73 0.78 200 

Common garter snake 0.87 0.82 0.84 200 

Rough green snake 0.94 0.98 0.96 200 

Foxsnake 0.83 0.70 0.76 200 

Eastern hognose snake 0.66 0.70 0.68 200 

DeKay's brown snake 0.82 0.96 0.88 200 

Black rat snake 0.68 0.77 0.72 200 

Copperhead 0.88 0.93 0.90 200 

Diamondback rattle 
snake 0.87 0.90 0.88 200 

Eastern racer 0.81 0.71 0.75 200 

     

accuracy 0.82 0.82 0.82 0.82 

macro avg 0.82 0.82 0.82 2000 

weighted avg 0.82 0.82 0.82 2000 

 

Table 11:Classification Report InceptionResNetV2 

 



48 | P a g e  
 

DenseNet121 Confusion Matrix 

Figure 28:Confusion Matrix DenseNet121 

 

DenseNet121 Classification Report 

 precision recall f1-score support 

Timber rattlesnake 0.85 0.7 0.77 200 

Common garter snake 0.76 0.94 0.84 200 

Rough green snake 0.96 0.99 0.97 200 

Foxsnake 0.89 0.79 0.84 200 

Eastern hognose snake 0.75 0.69 0.72 200 

DeKay's brown snake 0.91 0.9 0.91 200 

Black rat snake 0.68 0.84 0.75 200 

Copperhead 0.92 0.92 0.92 200 

Diamondback rattle 
snake 0.91 0.90 0.90 200 

Eastern racer 0.85 0.77 0.81 200 

     

accuracy 0.84 0.84 0.84 0.84 

macro avg 0.85 0.84 0.84 2000 

weighted avg 0.85 0.84 0.84 2000 

 

Table 12:Classification Report DenseNet121 

 



49 | P a g e  
 

5.2.2 Local Interpretable Model-Agnostic Explanations (LIME) 
  

Deep Learning models can be very complex when it comes to understand how it predicts 

the output. If user can understand how the model predicts the output, it will increase the 

trust towards the model. Second, developers can find the errors and fine tune the features 

of the model. 

LIME is a technique that highlights most relevant features of an image that affects for the 

prediction [29]. LIME divides the image into superpixels. They are clusters of similar 

features of the image. A range of perturbed images are created by randomly hiding some 

superpixels. These perturbed images are fed into the Deep Learning model and identifies 

most relevant superpixels. 

Predictions of ML models were tested using LIME. Following results show what are most 

relevant features of Common garter snake, DeKay's brown snake and Foxsnake that affected 

for the prediction. 

  DeKay's brown snake                       Foxsnake    Common garter snake 

 

25 superpixels were generated for each image 

 

Figure 29:Images with superpixels 

 



50 | P a g e  
 

25 perturbed images were generated for an image and 3 of them are displayed. 

Perturbed images of DeKay's brown snake 

 

Figure 30:Dekay's brownsnake perturbed images 

 

Perturbed images of Foxsnake 

 

Figure 31:Foxsnake perturbed images 
 

Perturbed images of Common garter snake 

 

Figure 32:Common garter snake perturbed images 

 



51 | P a g e  
 

Identified most relevant superpixels for the prediction of Dekay’s brown snake, Foxsnake 

and Common garter snake by MobileNetV2 

 

Figure 33:Top features MobileNetV2 

 

Identified most relevant superpixels for the prediction of Dekay’s brown snake, Foxsnake 

and Common garter snake by InceptionResNetV2 

 

Figure 34:Top features InceptionResNetV2 

 

Identified most relevant superpixels for the prediction of Dekay’s brown snake, Foxsnake 

and Common garter snake by DenseNet121 

 

Figure 35:Top features DenseNet121 

 



52 | P a g e  
 

LIME gave a better insight about how models predict the results. DeneNet121 has 

identified the snake better than other models. It can be identified DeneNet121 has identified 

snake features accurately. Other models have been learned about the background pixels 

also. 

After evaluating these results DenseNet121 was selected as the ML model to deploy in 

mobile and server. Execution time and size is also a significant requirement in mobile 

application but when comes to snake classification accuracy should be also considered. 

Therefore, DenseNet121 is the better option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 | P a g e  
 

5. Conclusion and Future Work 
 

5.1 Conclusion 
 

The main purpose of the study was creating a stand-alone mobile application in snake 

classification that works offline with higher accuracy. When selecting a ML model that 

works in mobile for snake classification, parameters such as accuracy, performance and 

memory allocation should be considered. Therefore, the study analyzed three different 

CNNs such as: MobileNetV2, DenseNet121 and InceptionResNetV2 for selecting the most 

suitable one. 

Transfer Learning was used to extract features from the dataset. Transfer learning was 

helped to extract features from the dataset using low computation power and less time. All 

ML models reached the accuracy level of 80% after fine-tuning. When comparing to 

MobileNetV2 and DenseNet121, InceptionResNetV2 has more layers and depth. But It did 

not achieve the highest accuracy. It was noted DenseNet121 achieved highest accuracy 

comparing to other models. After converting ML models to tflite models there is a 

significant accuracy degradation in MobileNetV2. 

 

5.2 Future Work 
 

This study can be carried out to gain more accuracy in snake identification by using a large 

image size for training and can be trained on a Deep Learning algorithm such as 

NasNetMobile. Furthermore, more images can be collected for each snake specie and try 

out the accuracy of above Convolutional Neural Networks. 

This study was focused on snake species in different countries. Sri Lanka is a country which 

has a great snake fauna so this study can be carried out in Sri Lankan context. In Sri Lanka 

many snake bites are recorded annually. This application can be modified to identify snakes 

in Sri Lanka and that would help many people in the country. 

 



54 | P a g e  
 

 

List of References 
 

[1] A. Kasturiratne et al., “The Global Burden of Snakebite: A Literature Analysis and 

Modelling Based on Regional Estimates of Envenoming and Deaths,” PLoS Med, 

vol. 5, no. 11, p. e218, Nov. 2008, doi: 10.1371/journal.pmed.0050218. 

 

[2] D. A. Warrell, “Guidelines for the Management of Snake-Bites,” p. 162. 

 

[3] “Karunarathna - 2009 - Neglected snake fauna of Sri Lanka (text in Sinhal.pdf.” . 

 

[4] H. De Silva, S. Gunatilake, S. Kularatne, and K. Sellahewa, “Anti-venom for 

snakebite in Sri Lanka,” Ceylon Med. J., vol. 47, no. 2, p. 43, Aug. 2011, doi: 

10.4038/cmj.v47i2.3449. 

 

[5] I. Bolon et al., “Identifying the snake: First scoping review on practices of 

communities and healthcare providers confronted with snakebite across the world,” 

PLoS ONE, vol. 15, no. 3, p. e0229989, Mar. 2020, doi: 

10.1371/journal.pone.0229989. 

 

[6] A. James, “Snake classification from images,” PeerJ Preprints, preprint, Mar. 2017. 

doi: 10.7287/peerj.preprints.2867v1. 

 

[7] P. M. Mainkar, S. Ghorpade, and M. Adawadkar, “Plant Leaf Disease Detection and 

Classification Using Image Processing Techniques,” International Journal of 

Innovative and Emerging Research in Engineering, vol. 2, no. 4, p. 6, 2015. 

 

[8] M. N. Sheth, S. L. Nalbalwar, and A. B. Nandgaonkar, “IDENTIFICATION OF 

SNAKE TYPE FROM IMAGE,” p. 4. 

 



55 | P a g e  
 

[9] A. Amir, N. A. H. Zahri, N. Yaakob, and R. B. Ahmad, “Image Classification for 

Snake Species Using Machine Learning Techniques,” in Computational Intelligence 

in Information Systems, vol. 532, S. Phon-Amnuaisuk, T.-W. Au, and S. Omar, Eds. 

Cham: Springer International Publishing, 2017, pp. 52–59. 

 

[10] A. Hernández-Serna and L. F. Jiménez-Segura, “Automatic identification of species 

with neural networks,” PeerJ, vol. 2, p. e563, Nov. 2014, doi: 10.7717/peerj.563. 

 

[11] A. Patel, L. Cheung, N. Khatod, I. Matijosaitiene, A. Arteaga, and J. W. Gilkey, 

“Revealing the Unknown: Real-Time Recognition of Galápagos Snake Species 

Using Deep Learning,” Animals, vol. 10, no. 5, p. 806, May 2020, doi: 

10.3390/ani10050806. 

 

[12] A. P. James, B. Mathews, S. Sugathan, and D. K. Raveendran, “Discriminative 

histogram taxonomy features for snake species identification,” Hum. Cent. Comput. 

Inf. Sci., vol. 4, no. 1, p. 3, Dec. 2014, doi: 10.1186/s13673-014-0003-0. 

 

[13] I. Gogul and V. S. Kumar, “Flower species recognition system using convolution 

neural networks and transfer learning,” in 2017 Fourth International Conference on 

Signal Processing, Communication and Networking (ICSCN), Chennai, India, Mar. 

2017, pp. 1–6, doi: 10.1109/ICSCN.2017.8085675. 

 

[14] S. P. Patil and R. S. Zambre, “Classification of Cotton Leaf Spot Disease Using 

Support Vector Machine,” vol. 4, no. 5, p. 6, 2014. 

 

[15] N. Sharma, V. Jain, and A. Mishra, “An Analysis Of Convolutional Neural 

Networks For Image Classification,” Procedia Computer Science, vol. 132, pp. 

377–384, 2018, doi: 10.1016/j.procs.2018.05.198. 

 



56 | P a g e  
 

[16] S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M. Zamani, and A. Hooman, “An 

Overview of Principal Component Analysis,” JSIP, vol. 04, no. 03, pp. 173–175, 

2013, doi: 10.4236/jsip.2013.43B031. 

 

[17] “Review_on_Techniques_for_Plant_Leaf_Classification.pdf.” . 

 

[18] “Comparative Study of K-NN, Naive Bayes and Decision Tree Classification 

Techniques,” IJSR, vol. 5, no. 1, pp. 1842–1845, Jan. 2016, doi: 

10.21275/v5i1.NOV153131. 

 

[19] K. Hoang, “Image Classification with Fashion-MNIST and CIFAR-10,” p. 5. 

 

[20] F. Sultana, A. Sufian, and P. Dutta, “Advancements in Image Classification using 

Convolutional Neural Network,” 2018 Fourth International Conference on 

Research in Computational Intelligence and Communication Networks (ICRCICN), 

pp. 122–129, Nov. 2018, doi: 10.1109/ICRCICN.2018.8718718. 

 

[21] K. Nguyen, C. Fookes, A. Ross, and S. Sridharan, “Iris Recognition With Off-the-

Shelf CNN Features: A Deep Learning Perspective,” IEEE Access, vol. 6, pp. 

18848–18855, 2018, doi: 10.1109/ACCESS.2017.2784352. 

 

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: 

Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, Salt Lake City, UT, Jun. 2018, pp. 4510–

4520, doi: 10.1109/CVPR.2018.00474. 

 

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 

Recognition,” arXiv:1512.03385 [cs], Dec. 2015, Accessed: May 16, 2020. 

[Online]. Available: http://arxiv.org/abs/1512.03385. 

 



57 | P a g e  
 

[24] L. D. Nguyen, D. Lin, Z. Lin, and J. Cao, “Deep CNNs for microscopic image 

classification by exploiting transfer learning and feature concatenation,” in 2018 

IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, 

pp. 1–5, doi: 10.1109/ISCAS.2018.8351550. 

 

[25] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected 

Convolutional Networks,” arXiv:1608.06993 [cs], Jan. 2018, Accessed: Jun. 21, 

2020. [Online]. Available: http://arxiv.org/abs/1608.06993. 

 

[26] M. Hussain, J. J. Bird, and D. R. Faria, “A Study on CNN Transfer Learning for 

Image Classification,” in Advances in Computational Intelligence Systems, vol. 840, 

A. Lotfi, H. Bouchachia, A. Gegov, C. Langensiepen, and M. McGinnity, Eds. 

Cham: Springer International Publishing, 2019, pp. 191–202. 

 

[27] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class 

imbalance problem in convolutional neural networks,” Neural Networks, vol. 106, 

pp. 249–259, Oct. 2018, doi: 10.1016/j.neunet.2018.07.011. 

 

[28] A. Patel, L. Cheung, N. Khatod, I. Matijosaitiene, A. Arteaga, and J. W. Gilkey, 

“Revealing the Unknown: Real-Time Recognition of Galápagos Snake Species 

Using Deep Learning,” Animals, vol. 10, no. 5, p. 806, May 2020, doi: 

10.3390/ani10050806. 

 

[29] I. Palatnik de Sousa, M. Maria Bernardes Rebuzzi Vellasco, and E. Costa da Silva, 

“Local Interpretable Model-Agnostic Explanations for Classification of Lymph 

Node Metastases,” Sensors, vol. 19, no. 13, p. 2969, Jul. 2019, doi: 

10.3390/s19132969. 

 

 

 



58 | P a g e  
 

Appendix 
 

User Manual to use Mobile application  
 

Following screens are the Home page and the Snake details page of the application. In the 

home page, we have search option top of the page, using that we can easily find a snake. 

We can see more details of a snake by going to snake details page by click a snake card in 

the home page 

 

Using bottom navigation bar, we can navigate between main screens of the mobile 

application. There are three buttons in the bottom navigation bar List, Camera and Map 

 

 



59 | P a g e  
 

How to Identify snakes using mobile application 
 

Go to Camera view clicking by camera icon in bottom navigation bar. There are three 

buttons in this view camera button, gallery button and predict button. Using both of camera 

button and galley button we can capture a snake image. After capturing a snake image, we 

can use crop option to reduce the noise. After cropping an image use predict button to 

generate results. 

Following two screens are Crop Image screen and Camera view 

 

 

 

 

 

 



60 | P a g e  
 

Using the map icon in the bottom navigation bar we can move to Map View. In this view 

nearby hospitals and rich biodiversity areas are displayed 

 

 

 

 

 


