

Masters Project Final Report

(MCS)

2020

Project Title

Code Reviewer Recommendation system for pull requests

Student Name

Pavani Yashodha De Silva

Registration No.
& Index No.

2017/MCS/021 17440216

Supervisor’s
Name

Dr. Ajantha Athukorale

For Office Use ONLY

S

E1

E2

For Office Use Only

Code Reviewer Recommendation system

for pull requests

A dissertation submitted for the Degree of Master of

Computer Science

Pavani Yashodha De Silva

University of Colombo School of Computing

2020

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any other

university/institute.

To the best of my knowledge it does not contain any material published or written by another person,

except as acknowledged in the text.

Student Name: Pavani Yashodha De Silva

Registration Number: 2017/MCS/021

Index Number: 17440216

Signature: Date: 21/6/2020

This is to certify that this thesis is based on the work of

Mr./Ms.

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name:

Signature: Date:

i

Abstract

Development of software has been drastically changed in the direction of distributed and

collaborative environment. Global contributors are encouraged to remotely contribute to open

source projects using the pull based model and continuous integration techniques with

extremely low barriers. Since this allows external developers to integrate changes into the

central repository, maintaining the code quality of the central code base is considered a critical

project activity with high importance. Core developers of a project is responsible for

maintaining the central code base. Performing a code review before integrating the changes by

external developers improves software quality. Identifying the most apposite reviewers for a

pull request review is a challenging activity in a distributed software development environment.

Identifying the potential candidate reviewer would improve the reviewing latency and will help

to provide constructive feedback on the development. This research is an approach to

recommend potential reviewer candidates for a pull request. A similarity measure between the

novel pull requests and the available pull requests of the repository based on tile and description

similarity (text similarity), file path similarity and activeness of the integrators is used as the

basis for the approach. Upon analyzing on the literature, it was revealed that activeness of the

integrators is not considered for recommendation of reviewers in state-of-the-art approaches.

Most research is based on one factor either on text similarity, file path similarity, expertise of

developers or social network and relationships of developers. This approach is a combination

of multiple factors and uniquely considers activeness of the integrators towards development

of the recommendation algorithm. On submission of a novel pull request, an average integrator

score is calculated for each of the integrators of the repository by the similarity between the

novel pull request and the older PR’s he/she has reviewed. Ranking of the integrators based he

integrator score is used for generation of the recommendation list for reviewers. Feature

weighting is done, and the accuracy is compared against different weighting combinations.

Experimentation is done based on three github repositories - Akka, Bitcoin and Rubocop which

are developed on different programming languages. This approach yields and average accuracy

of 82% across multiple repositories.

ii

Acknowledgements

I would like to express my sincere gratitude towards my supervisor Dr. Ajantha Athukorale,

Deputy Director – University of Colombo School of Computing (UCSC) for his motivation,

guidance and support extended throughout the research project.

Appreciation and thanks extend to all the lecturers of University of Colombo School of

Computing (UCSC) who enlightened me in numerous ways to solve the complex issues we

encountered from the initiation of the project and for their encouragement, insightful

comments, and hard questions.

I am also grateful to the non-academic staff members and technical staff at the faculty for

providing me with the technical requirements needed to achieve ultimate project goal. Without

your support this project would not have been successful.

I warmly extend my heartfelt gratitude all friends who helped me in numerous ways throughout

this venture to complete the research project.

Finally, I would like to express gratitude to all my family members for their continuous support

in this journey.

Thank you all.

iii

Table of Contents
List of Figures .. v

List of Tables .. vi

1.Introduction ... 1

1.1 Introduction .. 1

1.2 Background and Motivation ... 1

1.3 Problem Domain .. 3

1.4 Research contribution ... 4

1.4.1 Aim and Objectives ... 4

1.5 Scope and limitations ... 5

1.6 Structure of the report .. 6

2. Literature Review... 7

2.1 Introduction .. 7

2.2 Methods .. 8

2.2.1 Text based approaches ... 8

2.2.2 File path and location-based approaches ... 8

2.2.3 Social relations-based approaches ... 14

2.2.4 Technology experience and expertise-based approaches .. 17

2.2.5 Profile based approaches ... 18

2.3 Comparison of state-of-the-art techniques ... 19

3. Methodology .. 21

3.1 Introduction .. 21

3.2 Proposed research solution ... 21

3.3 High level design of the system ... 23

3.4 Feature extraction and dataset collection ... 23

3.5 Recommending reviewers for a PR - Real time processing ... 25

3.5.1 Similarity calculation ... 25

3.5.2 Recommending reviewers for a novel PR ... 27

3.5.3 Assigning weighted scores for attributes ... 27

3.5.4 Accuracy calculation ... 28

4. Evaluation and Results ... 29

4.1 Research hypothesis and research questions .. 29

4.2 Evaluation approach ... 30

iv

4.3 Dataset collection ... 30

4.4 Evaluation metrics .. 30

4.5 Experimentation results .. 31

4.6 Discussion .. 34

5. Conclusion and Future work .. 35

5.1 Introduction .. 35

5.2 Problem addressed and solution proposed ... 35

5.3 Future work .. 36

References .. 37

APPENDIX .. 40

Appendix A – Home Screen of the System.. 40

Appendix B – All integrators of the repository .. 40

Appendix C – Recommendation of reviewers for PR .. 41

v

List of Figures

Figure 1: Outline of pull request mechanism ... 2

Figure 2: Computation example of Code Reviewer ranking Algorithm [3] 11

Figure 3: High level data flow diagram of the system ... 22

Figure 4: High level architecture of the system ... 23

Figure 5: Data model of pull request entity ... 24

Figure 6: Integrator table ... 25

file:///C:/MSc/Sem%203/Project/Final%20report/Draft%20final%20Report.docx%23_Toc56537526

vi

List of Tables

Table 1: Comparison of the state-of-the-art techniques ... 19

Table 2: Summarization of experimental dataset ... 30

Table 3: Summarization of results of the research approach ... 31

Table 4: Accuracy calculation for weight combinations for AKKA repository 31

Table 5: Summarization od feature weight combinations of highest accuracy 33

Table 6: Comparison of accuracy against dataset window sizes ... 33

1

Chapter 1

1.Introduction

1.1 Introduction

Software development has been drastically changed in the direction of distributed development

in a collaborative environment recently. Pull based model used in continuous integration

process inspires global contributors to contribute to projects with extreme low barriers. This

model allows external contributors to propose and integrate changes into a project without

having direct access to the central codebase of the project. External developers usually create

a fork, work on changes of their interests and when the changes are ready to be merged, request

the changed files to be merged into the central project using a pull request [1].

Pull requests management has been identified as a critical project activity. Software quality is

among the foremost considerations of software engineering. Projects core team is responsible

for maintaining the code quality. Numerous techniques have been adopted to ensure code

quality. Among industry accepted standards, peer code reviews have been identified as an

effective technique for maintaining code quality. Code review is usually considered as a cost-

effective fault detection approach as bugs can be detected early which is when it is less

expensive to fix [2]. Projects core team must ensure that pull requests are sensibly reviewed

and evaluated before merging a pull request to the main project. Reviewing is a scrutiny of

change of code by co-developers to detect and fix defects prior to merging a change of code to

a system [3]. Review process helps to identify coding rule violations, simple logical

verifications and identify vulnerabilities at early phase of development.

Generally, after a code change a merge request with the changed code lines is submitted for

review, a set of code- reviewers will be invited by the author to review the code change.

Subsequently fixes will be suggested by the reviewers discussing on the change. Currently a

pull request is reviewed by one or more professional developers of the central codebase

suggested by the merge request submitter.

1.2 Background and Motivation

With the drastic improvement in distributed development, pull request-based model has been

popular. External developers can suggest changes and contribute to a project short of direct

access to the central code base of the project. An external person creates a fork on the original

repository and study the code base of his area of interest. He implements novel features or fix

2

bugs on his local repository cloned from the latest version of the central code repository. Once

a developer has completed his new features or bug fixes, he creates a pull requests to merge his

developments to the central repository. Usually the developer himself, or one of the core

developers of the project assigns a reviewer to the pull request manually. The reviewer is

responsible for discussing the submitted new features and bug fixes with the developer and

other reviewers and suggesting updates. Next the contributor updates the merge request upon

reviewers’ suggestions. Afterwards reviewers discuss the pull request with the updates again.

The core team after considering all the opinions of reviewers in conclusion, merges or rejects

the pull request. Pull request mechanism used is collaborative and distributed.

Currently in the pull request-based models, a pull request is assigned a reviewer manually by

the submitter or by one of the main developers of the project. Assignee is responsible for the

review process. The assignee will receive notifications and other developers can participate for

discussions using the @mention tag. The developers with @mention tag will receive

notifications on the pull request. Two types of comments can be published by the reviewers:

general comments on wide-ranging contributions, and code-inline comments for the changes

on specific lines.

It is observed that, a change of code which is not immediately reviewed is almost likely not to

be reviewed. Weigerber et al. [4] identified that minor changes of code are preferred to be

accepted by reviewers unlike heavy code changes. Some code changes are idling in the queue

for more than two weeks prior to being reviewed according to Weigerber et al. Rigby and Bird

Figure 1: Overview of pull request mechanism Figure 1: Outline of pull request mechanism

3

[5] spot that reviewing time of 50% of reviews average to 30 days. According to Tsay et al. [6]

some code changes are waiting for 2 months to be merged to the central repository. Idling

happens mostly due to not assigning the targeted or most suitable code reviewer for the merge

request or assigning reviewers who are not active in the codebase. By recommending the

potential targeted reviewers for a PR idling time could be minimized.

1.3 Problem Domain

Code reviews are expensive as it entails the reviewers to read, comprehend and analysis a code

change [7]. Reviewers with profound knowledge of the relevant system code is essential to find

the defects of the submitted code change. Determining potential code reviewers for every code

change is labor intensive and time consuming for developers as all the code changes must be

inspected and reviewed prior integration [8]. Speedy and precise selection of reviewers is the

crucial factor of the success of code reviewing process. Reliable information on reviewer

expertise is not available readily. Therefor mining of the codebase is necessary to identify the

expertise of the developers. Novice developers with less familiarity with the codebase and the

skills and expertise of hundreds of developers struggle in reviewer identification in a distributed

software development environment. This directly impacts the reviewing time badly.

Discussions among reviewers and timely responsiveness of reviewers affect the pull request

evaluation process immensely. Most of the developers criticize on late feedback on their

changes and irresponsiveness of the reviewers due to not giving a timely feedback. Commits

lacking an assigned reviewer require considerably high time to be integrated to the master

repository [9].

With the recent trend of open source development, number of pull requests also increase

drastically. Bulk of pull requests is a critical challenge to the integrators in large projects.

Consequently, some reviewers can be exhausted due to their expertise on a single aspect of a

project. Timely noticing of pull requests by some potential reviewers will not happen.

Manual suggestion of reviewers would lead to communication overhead and delay in

processing of pull requests. Thus, suggestion of potential reviewers automatically to a novel

pull requests will enhance the efficiency of the pull-based model. Recommending reviewer will

increase the effectiveness of the review process because it lowers the time gap in between the

submission of a merge-request and the review of it.

4

1.4 Research contribution

1.4.1 Aim and Objectives

Objectives of the project are aligned with the goal of the research – Implementing an automated

pull request reviewer suggestion system.

Objectives are

• Investigation on the potential parameters for recommending apposite reviewers for a

pull request.

There are many attributes that can be considered in recommending the potential

reviewers for a pull request. For example

✓ Activeness

✓ Expertise of technologies

✓ File path similarity of recently reviewed pull requests and current changes

✓ Text similarity of recently reviewed pull requests and current changes

This objective includes studying the literature and similar approaches which has solved

the above problem and identifying the most suitable attributes to be used for developing

a model to recommend reviewers. Each of the attributes contribute differently to the

output of the system.

• Feature extraction and developing a dataset.

After identifying the potential attributes, features to represent these attributes from

github repositories needs to be identified. Thereafter measures need to be taken to

extract the identified features and develop a dataset containing the identified attributes.

A dataset containing features from multiple projects need to be developed. For example

✓ Activeness can be measured through last commit date or time lapse between

suggesting and reviewing the pull request

✓ Expertise of technologies can be measured using the technologies used in pull

requests reviewed in the past.

• Developing a system to recommend pull request reviewers.

After extracting the above-mentioned features, a system is developed using the prior

developed dataset. Appropriated weights need to be allocated for each of the features

based on the importance of the features for the outcome.

5

• Evaluation of the developed model with respect to state-of-the-art techniques.

Results of the model are compared with the state-of-the-art techniques to validate the

performance of this model. Testing dataset developed using repositories of open source

projects is used to test the results.

1.5 Scope and limitations

Research is about development of a code reviewer recommendation system for pull requests.

On studying literature, I research about the factors which affects identifying a potential

candidate for reviewing a pull request. This research investigates on the potential parameters

which affects recommending apposite reviewers for a pull request by studying the literature

and identifies the factors for developing the system. Feature extraction from the available

github repositories to characterize the identified parameters is done. Thereafter identified

features are extracted from repositories and a dataset containing the identified attributes is

developed for multiple repositories.

The research identifies the features characterizing a pull request such as title, description, file

paths of changed files, libraries and technologies used in changed files and develops a similarity

between pull requests to recommend reviewers for a pull request reviewing process. Identifying

the potential reviewers is done using similarity measures. A similarity algorithm considering

file path similarity, text similarity and activeness of the integrators is developed. An average

integrator score is assigned to each of the integrators in the repository once a novel pull request

is submitted using the similarity measure algorithm. Integrators are ranked based on the score

and the top k recommendation list for a pull request id generated. Experimentation of accuracy

by assigning weights to the attributes is done to analyses the importance of attributes towards

the reviewer recommendation

Research compares the results of the recommendation against the reviewers of the actual PR’s

and experimentation analyses how the impact of each factor could affect the final

recommendation. Three github repositories of different programming languages – Akka,

Bitcoin and Rubocop is used for experimentation.

Limitations of this research included not identifying expertise and libraries used by developers

on cross project basis. The system is developed only based on a single project therefor cross

project evaluation is not focused in this research. Furthermore, the social relations among the

reviewers which helps to identify reviewers with the same expertise based on the discussions

they have actively participated is not considered in this research.

6

1.6 Structure of the report

Introduction chapter of the report is structured to identify the research problem and motivation

to develop the proposed system. Scope the proposed system and the limitations are also

elaborated in this chapter.

Second chapter includes a literature review which detailly analyses the state-of-the-art

techniques to solve the identified research problem. The methods, approaches, algorithms and

implementation of the state-of-the-art techniques are detailly explained here. The research gap

of the current approaches to solve the identified research problem is discussed here.

Furthermore, comparison of the state-of-the-art techniques based on their limitations and

advantages have been summarized in this chapter.

 Third chapter is about a detailed description of the methodology I have adopted to solve the

above identified research problem. High level data flow of the proposed system, high level

architecture of the system and the approach and algorithms adopted to implement the solution

is discussed in detail in this chapter.

Fourth chapter details about the evaluation techniques adopted to appraise the suggested

approach against state-of-the-art techniques for automatic reviewer suggestion.

Final chapter discusses about the problems encountered during the research and how I have

tried to address the identified problems. Furthermore, this chapter discusses on future research

activities which could be based on this research and extensions for the research.

7

Chapter 2

2. Literature Review

2.1 Introduction

A merge request (pull request) is a checkup of a modification of source code by an independent

external contributor to detect and fix defects prior to amalgamating a source code alteration

into a system. Managing merge requests has been identified as a critical project activity.

Projects core team is responsible for maintenance of the code quality. They must ensure that

pull requests are sensibly reviewed and evaluated before merging a pull request to the main

project. Review process helps to identify coding rule violations, simple logical verifications

and identify vulnerabilities at early phase of development. Currently a pull request is reviewed

by a single or multiple expert developer of the central codebase suggested by the pull request

submitter. Reviewers with profound knowledge of the relevant system code is essential for the

success of this task. Reliable information on reviewer expertise is not available readily.

Therefor mining of the codebase is necessary to identify the expertise of the developers.

Discussions among reviewers and timely responsiveness of reviewers affect the pull request

evaluation process immensely. Most of the developers complain about not getting a timely

feedback on their changes. Discovery of apposite code-reviewers to every piece of code

transformation is labor- intensive and time-consuming.

With the recent trend of open source development, number of pull requests also increase

drastically. Bulk pull requests is a critical challenge to the integrators in large projects. With

the radical increase of the pull requests, need for the competent reviewers also increase. The

challenge here is to find apposite reviewers in a pool of reviewers. Manual suggestion of

reviewers would lead to communication overhead and delay in processing of pull requests.

Review latency is the time gap between a pull request being submitted and the time the

reviewers start discussing on the pull requests. Review latency of pull requests with a reviewer

assignment is much low than pull requests without reviewer assignment. Average gain of a pull

request with a reviewer suggested, submitting his first comment on the merge request is 40.8

hours shorter than that without recommendation [3].

Results reveal that code-reviewer assignment problem exists among 4%-30% of reviews. Pull

requests with the reviewer assignment problem pointedly consume 12 days extended to

approve a code change [3]. Thus, suggestion of potential reviewers automatically to novel pull

requests will enhance the efficiency of the pull-based model.

8

2.2 Methods

Currently many approaches are used to identify potential candidates for recommending

reviewers. Machine learning based approaches considering a pull request as a textual

document, file path similarity-based approaches, models considering social relations among

reviewers, approaches based on expertise of reviewers are among the state-of-the-art

techniques.

2.2.1 Text based approaches

Y. Yu et al. base this approach on automatic bug triaging based on mining bug repositories

using machine learning techniques [10], [11], [12]. Model considers pull requests as text

documents and use machine learning techniques to predict top n reviewers. Each pull request

is uniquely recognized using its title, description, and categorized with the names of developers

who has at least submitted one comment to the request. After eliminating all non- alphabetic

tokens and stop words, rest of the words are stemmed. An individual pull request is represented

as a vector space model where an individual element in the vector is a term, and the importance

of the pull request represented by the value. If a word frequency in a pull request is high, it is

considered more important for the pull request. Vice versa if the same word appears n many

pull request the importance of that word for categorizing a pull request is low. Value of a term

is represented using Term frequency-inverse document frequency (tf-idf) shown in Equation

1.

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑝𝑟, 𝑃𝑅) = log (
𝑛𝑟

𝑁𝑝𝑟

+ 1) ∗ log
𝑁𝑝𝑟

|𝑝𝑟 ∈ 𝑃𝑅∶𝑡 ∈ 𝑝𝑟|
 (1)

t represents a term, pr notates a pull-request, PR is the corpus of all pull-requests associated

with a given project, nt is the occurrences for term t in pr, and Npr represents the total number

of terms in pr and total pull-requests in the corpus is notated by NPR [13].

In training machine learning classifiers, each merge request must be labelled with many key

words therefor classifiers must possess the capability to handle multi-label classification.

Reviewers are ranked on the probability and when the probabilities appear to be same

developers are ranked in terms of the number of comments on pull requests on a project

submitted by them. SVM classifier is used in this approach for classification.

2.2.2 File path and location-based approaches

P Thongtanunam et al. implements a system for recommending reviewers based on file path

similarity algorithm (FPS). It determines the likeness of PR reviews based on the file path

9

location of the changed files. The main assumption this study uses is that files that are in similar

locality will be examined and reviewed by the same expertise and experienced developers. The

motivation underlying the above assumption is the directory structure of Linux kernel where

files with alike functions are generally located in similar or adjacent directories [14].

FPS algorithms selects the potential candidates for the reviews from the reviewers who had

analyzed and reviewed files with similar file path locations. This also considers prioritization

of time in recommending the top candidates. Inputs for the algorithm are the new request and

the number of candidate reviewers to be recommended. And the output is an ordered list of

potential reviewers based on file path similarity scores [14]. Algorithm 1 [14] is used by P

Thongtanunam et al to find the potential candidate list.

Equation 2 calculates the File Path Function. Past review score (Rp) is the average similarity

of every file in Rp (fp) comparing with every file in Rn (fn). The set of file paths of the input

review is returned by file path function. Equation 3 is the Similarity (fn; fp) function which

computes the similarity between fp and fn. The averaged similarity score is prioritized by j and

δ value where δ is a time prioritization factor. (0; 1).

𝐹𝑆𝑃(𝑅𝑛,𝑅𝑝,𝑚) =

∑ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑓𝑛,𝑓𝑝,)𝑓
𝑛 ∈ 𝐹𝑖𝑙𝑒𝑠(𝑅𝑛,)

𝑓𝑝 ∈ 𝐹𝑖𝑙𝑒𝑠(𝑝)

| 𝐹𝑖𝑙𝑒𝑠(𝑅𝑛,)|∗ | 𝐹𝑖𝑙𝑒𝑠(𝑝)|
∗ 𝛿𝑚 (2)

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑓𝑛,𝑓𝑝,) =
𝑐𝑜𝑚𝑚𝑜𝑛𝑃𝑎𝑡ℎ(𝑓𝑛,𝑓𝑝,)

max (𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑛),𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑝))
 (3)

Algorithm 1 Recommend Reviewers (Rn; k)

potentialReviewcandidates = list()

pastReviewList = retrievePastReviews(n)

j = 0

for newReview Rp :pastReviewList do

 candidateScore = FPS(Rn;Rp; j)

 for newReviewer i : getPastReviewers(Rp) do

 potentialReviewcandidates [i] = potentialReviewcandidates [i] + score

 end for

 j = j + 1 end for

potentialReviewcandidates:sort()

return potentialReviewcandidates[0 : k]

10

In Equation 4 the commonPath(fn; fp) function counts the common directory in both file paths

in order. Equation 3 formularizes the count of commonPath(fn; fp) where the values of i and j

are starting from 0.

𝑐𝑜𝑚𝑚𝑜𝑛𝑃𝑎𝑡ℎ(𝑓𝑛,𝑓𝑝,𝑖, 𝑗) = {
𝑐𝑜𝑚𝑚𝑜𝑛𝑃𝑎𝑡ℎ(𝑓𝑛,𝑓𝑝,𝑖 + 1, 𝑗 + 1)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

Evaluation of the performance of FPS algorithms has been done based on three distributed

Open Source Software (OSS) projects: Android Open Source Project (AOSP), OpenStack, and

Qt. Performance for the algorithm is measured differently for recommending one top reviewer,

top three reviewers and top five reviewers. 77.97% accuracy has been acquired by the FPS

algorithm. This algorithm achieves 77.12% accuracy for AOSP project, 77.97% for OpenStack.

However, for Qt which is comparatively large project only 27-36% accuracy has been achieved

[14].

Limitation of this algorithms is the poor performance for large projects. Calculation assumed

of similar files located in similar or adjacent locality. The file structure of Qt might not

correspond with the prior assumption. Furthermore, as potential candidate reviewers were

dependent on prior recommended reviewers list, reviewers may be frequently recommended

and may be overloaded as workload balancing was not considered [14].

P. Thongtanunam et al. suggests a file location-based code reviewer recommendation approach

as Revfinder which uses the resemblance of file paths formerly reviewed to endorse a potential

reviewer based on the intuition files that are organized in alike file paths are managed and

reviewed by equally skilled code-reviewers [3].

Revfinder uses Code Reviewers Raking Algorithm and combines the top reviewers to find the

potential candidates for a novel PR. Main aim of this approach is to endorse reviewers who has

priory reviewed almost identical functionality. Equivalence level of priory evaluated file paths

is used by the Code-Reviewers Ranking Algorithm to calculate code reviewer scores. State-of-

the-art string comparison techniques [15] has been used to calculate review similarity

benchmarking scores.

Figure 2 illustrates how Code Reviewer ranking Algorithm calculated the similarity of file

paths for a novel PR. As there are multiple string comparison techniques, Thongtanunam et al.

finds the top reviewers using multiple string comparison techniques and collectives the diverse

output lists into a combined list to minimize the false positives [3].

11

Figure 2: Computation example of Code Reviewer ranking Algorithm [3]

Algorithm 2 [3] is used by Thongtan et al. to find the potential candidate reviewer list by

estimating review likeness score between prior reviews and the novel request (Rn). Thereafter

resemblance scores are circulated to code reviewers. Review similarity score (calculatedScore

Rp) of each past review (Rp), the is an average of file path similarity value of individual file

path in Rn and Rp calculated using filePathSimilarity(fn, fp) function in Equation 5.

𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑓𝑛,𝑓𝑝,) =
𝑆𝑡𝑟𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛(𝑓𝑛,𝑓𝑝,)

max (𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑛),𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑝))
 (5)

File path is split using the delimiter slash and similarity of words is considered. The

StringComparison(fn, fp) function returns the count of mutual components in both file paths

after comparing the individual components of the file paths of fn and fp. String comparison

techniques Longest Common Substring (LCSubstr), Longest Common Prefix (LCP), Longest

Common Subsequence (LCSubseq) and Longest Common Suffix (LCS) are used to find

sperate potential candidate lists.

Combination of the lists are used to improve the performance in this approach. Borda Count

[16] has been used as the combination technique which is a voting technique that is used for

combination of the recommendation lists grounded on the rank. A count is assigned to each

12

code reviewer Ck based on its rank in each of the recommendation list using different string

comparison techniques. Candidate who sums up to the highest count is the highest ranked

reviewer Equation 6 is used to calculate the combination score where total count of candidate

code- reviewers with a non-zero score in Ri is Mi and the rank of code-reviewer candidate ck

in Ri is (ck|Ri).

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑐𝑘) = ∑ 𝑀𝑖 − 𝑟𝑎𝑛𝑘(𝑐𝑘|𝑅𝑖𝑅𝑖 ∈ 𝑅
) (6)

Evaluation of Revfinder is performed using 42,045 reviews on four open-source software

systems namely Android Open Source Project (AOSP), OpenStack, Qt and LibreOffice.

ReviewBot [2] is used as the baseline approach. Top-k accuracy and the Mean Reciprocal Rank

(MRR) are used as the evaluation metrics. Top-k accuracy computes the percentage of

accurately recommend code reviewers on a PR and the total number of reviews. A mean of

reciprocal ranks of accurate code-reviewers recommended through a recommendation list is

Algorithm 2 The Code-Reviewers Ranking Algorithm

Input: Rn : A novel code review

Output: O : Reviewer candidate list

Method:

formerClosedCodeReviews ← Priorly closed review list

formerClosedCodeReviews ← order(formerClosedCodeReviews).by(createdDate)

for singleReview R p ∈ formerClosedCodeReviews do

 File sn ← retrieveFiles(Rn)

 File sp ← retrieveFiles(Rp)

 # Calculate review similarity score between Rn and Rp

 computedSimilarityScore Rp ← 0

 for fn ∈ File sn do

 for fp ∈ File sp do

 calculatedScore Rp ← Score Rp + filePathSimilarity(fn, fp)

 end for

end for

calculatedScore Rp ← calculatedScore Rp / (length(File sn) × length(File sp))

Proliferate calculated similarity scores of the reviews to code-reviewers who have a

history in reviewing a PR Rp

for Code-Reviewer r : retrieveCodeReviewers(Rp) do

C[r]. reviewerScore ← C[r]. reviewerScore + reviewerScore Rp

end for

end for

return C

13

computed by Mean Reciprocal Rank (MRR). Top k accuracy and MRR of Revfinder approach

is higher with respect to all projects. Thotunaamn et al. presents that Revfinder properly

suggested 79% of reviews with a top-10 recommendation. Therefor Revfinder outperforms

four times more precisely in comparison with ReviewBot [2].

Limitation of this approach is results were only based on four datasets. Experimental results

would differ with multiple datasets. Furthermore, code reviewer retirement was not considered

in this approach. That is the time sensitivity factor of the pull request reviewing process was

not taken into consideration. Workload balance of the reviewers wan not considered as a metric

and as a result reviewer might be burdened with workload [3].

Commercialized large software projects assign reviewers based on the file revision history and

diff. It is difficult to do this when there are immensely large number of files. V. Balachandran

propose a ReviewBot which uses an approach grounded on, line modification history of source

code. The line alteration history of a line of code in a file difference of a PR is the list of PR s

which was influenced by that line in the history. The ‘line’ here denotes the line in the patched

file found as a result of applying a line in the raw diff data, conflicting line in the raw diff data

[2].

Even though calculating file diff of deleted and altered lines are straightforward, inserted lines

must be handled differently as they have no PR which deal with these lines in the history.

Therefor for newly introduced lines, we use the adjacent prevailing line based on the underlying

assumption that the newly introduced lines are corelated to lines of code in its proximity [2].

Reviewer ranking Algorithms is used by ReviewBot to recommend the potential reviewers. ID

of PR and the diff revision for all the PR s are the inputs to the algorithm while the output is a

list of reviewers arranged in descending order based on user points. Algorithms 3 describes this

algorithm in detail.

Algorithm 3 Reviewer Rankers Algorithm

id: Code Review Request ID, revision: File Diff

CodeReviewRequest newReq = retrieveReviewRequest(id)

Diff diff request = retrieveDiff (revision)

//Compute review request points

for (FileDiff newFileDiff : diff :retrieveFileDiffs()) do

 if (isNovelFile(newFileDiff)) then

continue

end if

14

SetOfRequests {}

 for (Line l : fileDiff :retrieveRelaventLines()) do

 lchdreq LCHfileDiffreq (l)

 α = initialDiffPoint(fileDiff)

 for (CodeReviewRequest cdr : lchdreq :history()) do

 r.points = r.points + α

 α = α × δ

 SetOfRequests = SetOfRequests [frg

 end for

 end for

end for

// Proliferate review request points to user points

CandidateSet = {}

for (ReviewRequest r : SetOfRequests) do

for (Candidate candidate : r :getCandidates()) do

candidate.points = candidate.points + r :points

CandidateSet candidate

end for

end for

potentailReviewers = Collections.

toArray(CandidateSet)

//Sort potential candidate reviewers

return potentailReviewers

Limitation of this algorithm is it cannot be used on pull requests with new files.

Experimentation was carried out considering RevHistRECO as the baseline approach using

two datasets first one being relatively large with 7035 pull requests and second one with 1676

pull requests. Review Bot’s top-1 recommendation has accomplished an accuracy rate of 60%

for both projects while RevHistRECO has only 34.15% and 47.83%, respectively for top 1

recommendation. ReviewBot achieved 80.85% accuracy rate for top-5 recommendation while

RevHistRECO recorded 46.34% only accuracy rate for the first project whereas for the second

project, that is the smaller project top 5 recommendation reached the 92.31% and 60.39% for

ReviewBot and RevHistRECO respectively [2]. The experimental results reveal the fact the

outperforms RevHistRECO in both types of projects.

2.2.3 Social relations-based approaches

Research considers pull request reviewing as a communal activity reliant on negotiations

among code reviewers in GitHub, unlike bug fixing and feature enhancements which are only

dependent on expertise of a developer which can be learnt from history of his bug fixes. Y. Yu

et al. uses a

15

Comment Network, directly reflecting the interest and relations among developers to analyze

the social relations among reviewers and contributors. Experimentation is based on 10 projects

with more than 1000 merge requests and the evaluations reveal Comment Network based

approach achieves improvements over machine learning based approach.

ML based approach is based on description of a pull request. Preprocessed text of a PR contains

identifiers of the code files, variables and functions. For a developer who has submitted many

pull requests the corpus of him is small mainly consisting of the above identifiers. Then the

classifier biasedly assigns the pull request to him. Social network Based model addressed this

problem by recommending the developers who share mutual interests with the contributor of

code as reviewers. A network of comments to identify the developers having mutual interests

has been build tracing historical comments [13].

A system of comments is constructed for each individual project between contributors and

reviewers in a many-to-many model. A developer can coexist as a contributor of multiple pull

requests and a reviewer for an already submitted merge request. A weighted directed graph

denoted as Gcn = (V; E, W) where V denotes a developer, the relations between developers as

E and W representing the importance of the relation. Weight is calculated using Equation 7.

𝑊𝑖𝑗 = ∑ 𝑊(𝑖𝑗, 𝑟) = 𝑃𝑐∗ ∑ ∑ 𝜆𝑛−1 ∗ 𝑡(𝑖𝑗, 𝑟, 𝑛)𝑚
𝑛=1

𝑘
𝑟=1

𝑘
𝑟=1 (7)

Overall count of merge requests submitted by vi is denoted by k. Weighted score assigned to a

distinct pull request r is represented by w(ij,r). Pc is a pragmatic default value used to

approximate the impact of an individual comment on the pull-request, and the total count of

comments succumbed by vj in the same pull-request is denoted by m. t(ij;r;n) is a time-sensitive

factor of related comment calculated using Equation 8.

𝑡(𝑖𝑗, 𝑟, 𝑛) =
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑖𝑗,𝑟,𝑛)−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∈ (0,1] (8)

where timestamp(ij,r,n) is the date the reviewer commented on pull request. The baseline and

deadline are related to training set selection.

Novel merge requests are categorized into two classes based on the submitter. Pull-requests

from Acquaintance Contributors (PAC) denotes a submitter for whom we can at least find one

neighbor. Pull-Requests from New Contributors (PNC) denotes developers who has reviewed

other pull requests but has not submitted any or a novel contributor as well as a reviewer.

16

Algorithm 4 Top-k recommendation for PAC [5]

Require: Gcn depicts the comment network of a given project; vs repersents the contributor

of a new pull request; topk referes to the number of reviewers of requirement;

Ensure: recSet is a set of sorted reviewers;

Q:enqueue(vs) and recSet null;

repeat

v Q:dequeue and Gcn:RankEdges(v)

repeat

if topk = 0 then

return recSet

end If

vnb Gcn:BestNeighbor(v)

Q:enqueue(vnb) and Gcn:mark(vnb)

recSet [fvnbg and topk = topk – 1

until Gcn:Neighors(v) all marked

until Q is empty

return recSet

For a PNC recommended reviewer would be the neighbor connected to the contributor in the

previous pull requests. Improved breadth first search proposed by Algorithm 4 is suggested by

this research to recommend top n reviewers. For a PNC a prediction on reviewers who share

common interests is done using the comment network. For novel contributors lacking any

connection to the neighbours, mining based on co-occurrences of patterns of pull requests is

done. Apriori algorithm is used for rule mining in this approach. A new comer who lacks a

node in the comment network, potential reviewers are the most active reviewers in

corresponding communities [13].

Experimentation is carried out using dataset provided by Gousios et al. [17,18] evaluated on

10 projects with more than 1000 pull requests. Comment Network based approach achieves

78% accuracy in respect to the baseline. Approaches has been run on different projects

including rails, bitcoin, jquery, phantomjs and homebrew.

Few developers seem to be assigned to review pull requests frequently as they have been

submitting comments actively. Therefor the workload of these reviewers is increased.

Y. Yu et al. considers information retrieval and analyzing social relations to recommend

reviewers for a pull request in another research where he considers word-based semantics of

pull requests and social associations and connections of contributors [19] as the two key

perceptions. Y. Yu et al. assumes the commenting and reviewing history of a reviewer can be

17

used to find the expertise of a developer. For a novel PR, a contributor who has a commented

in the frequent past for similar PR request is considered as a potential candidate. Similarly, the

developers with similar interest are considered to have social relations [19].

2.2.4 Technology experience and expertise-based approaches

CORRECT approach is based on relevant cross project work history and expertise of

developers with respect to technologies in recommending potential candidates for a PR [20].

Information on the expertise of candidate reviewers need to be mined form the codebase.

Prevailing studies only emphasize on a project and disregard the expertise of the reviewers.

Furthermore, the fundamental tools and technologies are subjected to rapid change and mining

of the comment history, history of changed files or developer association history will not cater

to the requirements.

This approach considers the experience with respect to external libraries and technologies used

by the developers referred to as cross project experience. The intuition behind this is the pull

requests using similar external libraries and technologies are relevant to each other. Thus, the

reviewers who has reviewed similar pull requests are potential candidate reviewers for a novel

pull request [20].

CORRECT is based on the hypothesis that likeness of two requests are computed on their

shared libraries and shared technologies in the modified files Degree of similarity is measured

using cosine similarity. Technologies and libraries with respect to a pull request is collected as

a bag of words decomposing tokens with a delimiter from it. Similarity between the two bag

of tokens are measured using cosine similarity using Equation 9.

 𝐶𝑆 (𝑅𝑐,𝑅𝑖,) =
∑ 𝐶𝑐𝑘∗ 𝑛

𝑘=1 𝐶𝑖𝑘

√∑ 𝐶𝑐𝑘
2𝑛

𝑘=1 ∗ √∑ 𝐶𝑖𝑘
2𝑛

𝑘=1

 (9)

Here, Cck corresponds to frequency of kth token from C in set Rc and Cik represents that

frequency in set Ri. Code Reviewer Ranking Algorithm used in this approach input a novel

pull requests and outputs a potential reviewer list. Firstly, it extracts the external libraries and

technologies used in the revised files of the pull request. Then it uses a most recent set of pull

requests from pull request history, extracts their libraries and technologies and calculated the

similarity between the novel request and the pass requests and assigns a score to each request.

Corresponding reviewers of the past requests are assigned a score where the frequent reviewers

with high cosine similarity assigned a higher score [20].

18

Experimentation is based on 10 commercial projects with 17,115 pull requests and six open

source projects. CORRECT achieves 85% - 92% with respect to recommendation accuracy,

about 86% precision and 79% - 81% recall in code reviewer recommendation. Top-K Accuracy

and Mean Reciprocal Rank (MRR) are used as performance evaluation metrics.

Many of the projects used for experimentation are medium sized projects but as testing on

many projects was carried out and did not crash the algorithms is robust. Experimentation is

carried on Python; Ruby and Java platforms and the system was not biased to any platform.

2.2.5 Profile based approaches

M. Fejzer et al. suggests maintaining a profile for each reviewer which is a multiset of all paths

reviewed by the correspondent contributor. Whenever a novel pull request is reviewed by the

contributor his profile gets updated. A similarity function is computed between profiles and the

novel pull requests. M. Fejzer et al. states that state-of-the-art techniques of analyzing through

all the history of commits and comments are impractical as the highly time consuming and

resource utilization is very high [1]. To address this problem M. Fejzer et al. suggest a model

grounded on profiles of the code reviewers. Profile is updated whenever a comment is added

by the reviewer on a commit. That is for each novel pull request, the system scans for the

reviewer profiles and not the commit history which saves time.

Hash tables has been used to implement reviewers’ profiles since it has average constant time

for insertions and scanning using hash function to plot distinct word in the profile for

multiplicity. All the file paths of the commits of a reviewer are extracted, tokenized into tokens

and added to the hash table. Multiset based representation (m(Ct)) of the commits is computed

with O(K) complexity where K is the number of tokes of path segments.

For a novel pull request, a comparison between its multiset-based representation along with

profiles of every reviewers is done suing an algorithm to identify the potential candidate to

review the PR. Jaccard coefficient and the Tversky index are used as similarity functions.

Jaccard coefficient computes the fraction of overlying elements belonging to two sets. Tversky

index computes the variant to a prototype [21]. Tversky index is used as the main similarity

function in this approach due to the opportunity of fine-tuning the importance ratio between a

review and a profile. When a novel pull request arrives, a mapping it to its multiset-based

representation m(Ct+1) is done. Then the m(Ct+1) is compared to profiles of reviewers. Top n

potential reviewers are suggested by calculating the similarity of the profiles and m(Ct+1).

19

Experimentation is done using Android, LibreOffice, OpenStack and Qt projects. Precision,

the recall and F-measure has been used as evaluation metrics [22,23]. Approach of M. Fejzer

et al. with Tversky index as the similarity function achieves improved precision to-recall ratio

and higher F-measure than all supplementary methods. Thus, experimentation results reveal

that fact that this approach use significantly less computing power and memory therefore

mainly advantageous to be used with bulky repositories such as Github [1].

2.3 Comparison of state-of-the-art techniques

Table 1: Comparison of the state-of-the-art techniques

Approach Significance Algorithm Limitations Advantages

Text based

approaches

Considers PR as

a text document.

Based on title,

description, and

categorized with

the names of

developers who

has at least

submitted one

comment to the

request

Machine

learning

approaches.

Social relations

of the reviewers

have been

ignored.

File location-

based

approaches

Considers the

file path of the

changed files.

Assumes that

files in similar

locality will be

examined and

reviewed by the

same expertise

and experienced

developers.

File path

similarity

algorithms.

String

comparison

techniques.

Poor

performance for

large projects.

Time consuming.

Reviewers may

be overloaded

with workload.

Social relations-

based

approaches

Considers the

social relations

of the reviewers

Apriori

algorithm

Frequently

commenting

reviewers can be

overloaded

Timestamp

of the

comments

has been

considered.

Expertise based

approaches

Concerns the

libraries,

technologies and

expertise of the

reviewers

Cosine similarity Social relations

of the developers

have been

ignored.

Cross

projects are

considered.

Profile based

approach

Builds a profile

considering the

file paths of the

changed files.

Jaccard

coefficient and

the Tversky

index are used as

 Significantly

less

computing

20

similarity

functions.

power and

memory.

Can be used

with large

projects

Table 2 summarizes the comparison of state-of-the-art techniques to sole the reserch problem.

Considering file path-based approaches, Revfinder performs better than ReviewBot because

Revfiner tracks changes in code history at file path level while ReviewBot tracks code change

history at line level source code. Finding reviewers at line level is best for projects with

recurrent changes. Files are not changed frequently [23]. 70% - 90% of code lines are uniquely

changed at a single time and then left untouched, signifying that code review system lacks line-

level history [3]. Therefor ReviewBot functionality is restricted.

From the literature review it is evident that most of the approaches are concerned on text-based

techniques. Similarity is evaluated based on the title or description similarity of PR s. Some of

the approaches considered the file path similarity of the changed files. Some approaches are

concerned about the social relations among developers. Few approaches are concerned about

the expertise of the developers derived from the libraries they have used priorly in their prior

development and reviewing. None of the approaches have considered the activeness of the

reviewer for recommending reviewers. Only a very few researches are based on combination

of text based approached and file path similarity approaches.

On the above inference I have decided to proceed on the combined approach of text based and

file path similarity-based approaches along with the activeness of the developers for my

research.

21

Chapter 3

3. Methodology

3.1 Introduction

Methodology focusses on the way in which the research question has been addressed promptly

with the knowledge gained through the analysis of similar literature. Through this chapter a

solution is proposed to the identified research gap in the recent literature. The conceptual

approach is explained in terms of input, output and process for the modules. Flow of inputs and

outputs between the individual modules is identified through this chapter. Furthermore,

provides an overview of the implementation methodology adopted during the project to achieve

the research goal.

3.2 Proposed research solution

This research aims at identifying the features of a pull requests, reviewer expertise and how

these features could be used to calculate a similarity between the reviewers and pull requests.

Research includes studying literature to investigate on potential attributes to be considered on

suggesting the top reviewers for a pull request (Eg: Activeness of the reviewer, File path

similarity, Text similarity).

After identifying the potential candidate attributes, investigating on the available datasets on

pull requests of multiple projects and identifying the potential features to be extracted to

develop a dataset is done. Afterwards features are extracted, and a dataset of multiple

repositories associated with a combination of programming languages is developed.

A similarity measure is used to identify the potential reviewers for a novel PR based on the

history if reviewing in the repository. An attribute weight is allocated for each of the attributes

to identify the prominent attributes. Using a ranking algorithm, the potential reviewer

candidates are ranked based on weighted attributes, the system will notify the integrators who

have been identified as the potential reviewers.

At the end of the project an automated system to recommend reviewers of a pull request is

developed. The high-level data flows of the system are depicted in Figure 3.

22

Figure 3: High level data flow diagram of the system

Suggesting related

integrators to review the

pull request through a

notification

Get all integrators

of the repository

Get all past PR s

of the repository

Integrator

ranking

Contributor
GitHub

Send Pull Request to

Repository

23

3.3 High level design of the system

Figure 4: High level architecture of the system

Figure 4 diagrammatically depicts the high-level architecture of the proposed solution.

3.4 Feature extraction and dataset collection

For the development of a dataset, relevant attributes featuring a pull request need to be extracted

from a pull request repository. A pull request is characterized by multiple textual attributes

such as

• Title

• Description

• Reviewer

• Commented developers

PR repository

Datase
t

New Pull Request

Activeness

Top k Recommended

reviewers

Ranking reviewers
Potential

reviewers’

identificatio

n

Average similarity

Semantic

File path similarity

Feature weighting
Feature extraction

24

• File paths of the changed files

• Libraries used

• Technologies

Furthermore, reviewer is featured by numerical attributes such as

• Activeness

• Review latency

• Number of pull request reviewed

• Number of comments

From the above attributes featuring a pull request and a reviewer I have chosen title,

description, reviewer, file paths of changed files and activeness for this research on the basis

that the experimentation on the analysis of impact of the attributes for reviewer

recommendation in the literature reveals that above attributes have a higher impact [24]. Each

of the above attributes needs to be extracted from a pull request database. Title and description

are represented as bag of words. Libraries and technologies used on the changed files are also

represented as bag of words. File paths of the changed files are extracted and represented in

the database.

Activeness is an attribute measured by the date of the developers last commit. Review latency

is a measure of the duration between PR created date and merged date.

A dataset consisting of pull request with the above mention textual and numerical attributes is

created. A database with two entities – Pull request and Integrator is developed.

Figure 5: Data model of pull request entity

25

Figure 6: Integrator table

3.5 Recommending reviewers for a PR - Real time processing

3.5.1 Similarity calculation

The research is experimentation on the fact that similarity between pull requests is

characterized by semantic similarity between pull requests in title, description and similarity

of changed file paths.

Semantic similarity of titles and descriptions

The tiles and descriptions of pull requests are extracted and indexed. A vector space model is

used for indexing. Standard preprocessing by tokenization, stemming and stop words removal

is done on title and description. Porter stemming algorithm [25] is used for stemming.

Preprocessed text is transformed to multidimensional vector computable in Vector space

Model. Each dimension of the vector represents a distinct word in the corpus of the text build

by all pull requests. TD-IDF model [26] is used to calculate the value of Wj,n which denotes

the weight of the nth entry in the vector of jth text. Equation 10 is used for calculation.

 Wj,n = tfj,n × idfn (10)

The term frequency which is the frequency of nth term appearing in the jth text is represented

by tfj,n. . Distinguishing characteristic of a term is signified by fj,n which is the inverse term

frequency.

Cosine Similarity [27] is used to measure the similarity between two PRs represented as a

collection of texts in vectors after transformation. Equation 11 is used for calculation of two

titles and description represented as bag of words.

𝑆𝑖𝑚(𝑖, 𝑗) =
𝑇𝑒𝑥𝑡𝑉𝑒𝑐𝑖 . 𝑇𝑒𝑥𝑡𝑉𝑒𝑐𝑗

|𝑇𝑒𝑥𝑡𝑉𝑒𝑐𝑖||𝑇𝑒𝑥𝑡𝑉𝑒𝑐𝑗|

26

=
∑ 𝑊𝑖,𝑚 ∗ 𝑊𝑗,𝑚

𝑚=𝑣
𝑚=1

√∑ 𝑊2
𝑖,𝑚

𝑚=𝑣
𝑚=1 √∑ 𝑊2

𝑗,𝑚
𝑚=𝑣
𝑚=1

 (11)

Two similarities between two pull-requests is calculated based on similarity between title and

similarity between descriptions.

Similarity between file paths of changed files

File path similarity function [3] is used to measure the similarity between the changed files of

two PRs.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑓𝑛,𝑓𝑝,) =
𝑐𝑜𝑚𝑚𝑜𝑛𝑃𝑎𝑡ℎ(𝑓𝑛,𝑓𝑝,)

max (𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑛),𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑝))
 (3)

The StringComparison(fn, fp) function compares components of file paths and returns the

common components. In this research an average of scores is calculated using Longest

Common Substring (LCSubstr), Longest Common Prefix (LCP), Longest Common

Subsequence (LCSubseq) and Longest Common Suffix (LCS) methods have been used. The

reason behind the use of an average score is that the combination of the results of individual

techniques has been successfully shown to improve the performance in

the data mining and software engineering domains [28, 29].

File Path Similarity Algorithm [14] computes a score for a past review (Rp) from an average

of similarity of every file in Rp (fp) comparing with every file in Rn (fn). File returns the array

of file paths of the novel PR. The Similarity (fn,fp) function computes the likeness between

fp and fn.

𝐹𝑆𝑃(𝑅𝑛,𝑅𝑝,𝑚) =

∑ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑓𝑛,𝑓𝑝,)𝑓
𝑛 ∈ 𝐹𝑖𝑙𝑒𝑠(𝑅𝑛,)

𝑓𝑝 ∈ 𝐹𝑖𝑙𝑒𝑠(𝑝)

| 𝐹𝑖𝑙𝑒𝑠(𝑅𝑛,)|∗ | 𝐹𝑖𝑙𝑒𝑠(𝑝)|
∗ 𝛿𝑚 (2)

Activeness of the reviewer

Activeness of the reviewer is calculated as the difference between the new PR created date and

the merged date of the last PR reviewed by the reviewer. Time is decaying over a lambda

constant. Equation 12 is used for calculating the activeness of an integrator.

𝐴𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑁𝑒𝑤 𝑃𝑅 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑑𝑎𝑡𝑒 − 𝐿𝑎𝑠𝑡 𝑃𝑅 𝑚𝑒𝑟𝑔𝑒𝑑 𝑑𝑎𝑡𝑒

 (12)

27

3.5.2 Recommending reviewers for a novel PR

When a new PR is submitted, for each of the integrators in the database, an average score based

on the similarity of all PR’s reviewed by each integrator is calculated. Similarity between the

new PR and the old PR’s is calculated as an average score of file path similarity, text similarity

and activeness. All the calculated scores are standardized into one frame and stored in the

database.

Average integrator score =
∑ 𝑇𝑒𝑥𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝐹𝑖𝑙𝑒 𝑝𝑎𝑡ℎ𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝐴𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑛

𝑖=1

𝑛

(13)

For each of the integrators a score is calculated by averaging the score of priorly reviewed PRs.

Equation 13 is used to calculate the average integrator score where n is the number of PR’s

reviewed by the integrator. Ranking of the reviewers is done based on the average integrator

scores of each integrator.

When a PR which is already processed is added to the system to find the integrators, system

navigates through the database to find the recommendation list. Calculation process will not

happen twice to increase the efficiency.

3.5.3 Assigning weighted scores for attributes

A PR is characterized by multiple attributes. These attributes are assigned weights based on its

importance for the reviewer assignment. Supervised learning approach is used for training a

model for feature weighting. In this research decision tree learning algorithm [30] is used for

supervised learning to rank the features based on is importance. Decision tree algorithm is the

most effective method of predicting a value of a target variable based on several input features

[31].

Decision Tree algorithm calculates the entropy of a class using Equation 14

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑝𝑖
𝑠
𝑖=1 log 1

𝑝𝑖
⁄ (14)

Information gain is calculated using Equation 15 and the split with the maximum gain is chosen

as the splitting criteria.

𝐺𝑎𝑖𝑛(𝐷, 𝑆) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑ 𝑃(𝐷
𝑖
)𝑠

𝑖=1 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑖) (15)

Weights of the training data set is initialized using the posterior probabilities of each class.

Count of incidences of each attribute value Aij is taken, to calculate P(Aij) for each attribute,

28

Ai. Probability P (Aij | Cj) is estimated by counting the occurrence of attribute value in class Cj

in the training data. For every value of attributes, P (Aij | Cj) are determined. Initialization of

the weights of the attributes is done by multiplying the probabilities of distinct attribute values

from the training instances using these probabilities.

For training instance ei having independent attribute values {Ai1, Ai2,…,Aip} as we have

already calculated P(Aik | Cj), for each class Cj and attribute Aik , P(ei |Cj) is estimated by

Equation 16.

𝑃(𝑒𝑖 |𝐶𝑗) = 𝑃(𝐶𝑗) ∏ 𝑃(𝐴𝑖𝑗|𝐶𝑗)𝑘=1−→𝑝 (16)

Likelihood of ei in each class is calculated to initialize weights for attributes. The posterior

probability P (Cj | ei) is calculated for each class. Afterwards the weight of the training instance

is assigned with the maximum posterior probability for that training instance.

A weighted score is assigned to each of the attribute’s activeness, file path similarity and text

similarity to prioritize each of the factors. Experimentation is carried on which factors affect

mostly in highly accurate recommendation list generation. Weights can be varied by the system

and observations on how each factor affects the result is analyzed.

Default weighted scores are assigned based on the above method. Defaults scores are set as

Activeness- 0.7, File path similarity – 0.1, Text similarity – 0.2

3.5.4 Accuracy calculation

Accuracy calculation is done assuming the reviewers in the real code base as the ground truth.

This is done to experiment on difference weight combinations and analyze how it could affect

the overall accuracy of the system.

Accuracy calculation allows to set an offset which the starting PR id from the database and sets

a window frame which is the set of records the system considers for accuracy calculation. For

each of the records starting from the offset, top k recommendation lists are generated for each

PR. If the actual reviewer of the code base for a specific PR record is within the top k generated

list for each PR, a score of 1 is assigned. Average accuracy score is generated likewise for all

combinations of weighted attributes.

29

Chapter 4

4. Evaluation and Results

4.1 Research hypothesis and research questions

The research focusses on development of a pull request reviewer recommendation system. It

identifies the features characterizing a pull request such as title, description, file paths of

changed files, libraries and technologies used in changed files and develops a similarity

between pull requests to recommend reviewers for a pull request reviewing process.

Identifying the potential reviewers is done using similarity measures. Ranking of reviewers is

based on a ranking algorithm considering the weights of attributes characterizing the potential

reviewers such as expertise, activeness, review latency, number of comments.

The goal of our experiential study is to assess the effectiveness of the suggested approach in

terms of accuracy in ranking of reviewers for a pull request. With the intension of achieving

the above research goal, we discourse the subsequent research questions.

Question 1: Does the suggested system precisely recommend code reviewers?

We propose our approach to suggest the appropriate code reviewers since similarity of title,

description, file paths of changes files would lead to better accuracy.

Question 2: Does the suggested approach performs better in ranking of recommended

code-reviewers?

Recommending most apposite code-reviewers in the top rankings effortlessly will comfort the

developer and will also avoid intrusive disparate code-reviewers. The above research goal is

set to evaluate the performance of our approach in ranking the reviewers.

Question 3: Does the suggested approach outperform or performs similarly with the

state-of-the-art techniques for reviewer recommendation?

Currently the state-of-the-art techniques for reviewer recommendation includes either

similarity measurements on file paths, profile-based recommendation techniques, technology

expertise, social relations etc. This research aims at finding whether the combination of all the

parametric would outperform the current techniques.

30

4.2 Evaluation approach

One of the most effective ways for evaluating a code reviewer recommendation technique is to

consult with actual code reviews and the reviewers assigned for them from a codebase [20].

Therefor the evaluation process is a mathematical calculation-based method on real repositories

on different projects.

4.3 Dataset collection

Evaluation approach is based on 3 open source repositories which have received over 1000

pull-requests. These projects are of different languages – a combination of multiple languages.

Bitcon repository is based mainly on C++, Python and C languages while akka repository is

based on Scala and Java. Pull request data is collected from GitHub using GitHub API. They

are popular and widely used. Pull requests lacking reviews will be discarded. Some of the pull

requests of core developers are reviewed by themselves which deviates from normal behavior.

Therefor these pull requests are also discarded. For each project, developers who have reviewed

others’ pull requests are identified as the reviewer candidates. Table 3 summarizes the statistics

of the experimental opens source repositories.

Table 2: Summarization of experimental dataset

Project Language Total Pull requests Total PR Reviewers

Akka C++, Python 3842 19

Bitcoin Java, Scala 5104 38

Rubocop Ruby 5000 19

4.4 Evaluation metrics

As the research focusses on recommendation we use the following evaluation metrics for

performance evaluation of the proposed system.

Top-K Accuracy:

Percentage of pull requests with at least one reviewer precise recommendation within the Top-

k recommendations by a technique. The top-k accuracy can be calculated using Equation 17

where R is a collection of reviews,

Top-k Accuracy (R) =
∑ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑜𝑝−𝑘 𝑟𝑒𝑐𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠𝑟∈𝑅

𝑅
 * 100% (17)

31

Mean Reciprocal Rank (MRR):

Average of mutual ranks of correct code-reviewers in a recommendation list. Equation 18

calculates MRR where R is a collection of reviews. rank(candidates(r)) returns the first rank of

actual code-reviewers in the recommended potential candidate list candidates(r). If there are

no true positive code-reviewers in the recommendation list,1/(rank(candidates(r))) will return

0. Preferably, a method with faultless ranking will reach an MRR of 1.

MRR=
1

|𝑅|
∑

1

rank(candidates(r))𝑟∈𝑅 (18)

4.5 Experimentation results

Experimentation is conducted on 3 open source projects and the results achieved is summarized

below. Using a sliding window-based approach of window size=100, I have collected a

candidate reviewer list from prior merge requests. Candidates are ranked using our approach

and the results are evaluated and summarized. Table 3 summarizes the performance of our

approach on different projects.

Table 3: Summarization of results of the research approach

Project Top K accuracy MRR

Akka 82% 0.718

Bitcoin 88.3% 0.822

Rubocop 84.7% 0.763

Accuracy for each of the repositories is calculated for different weight combinations varying

the window size. Results for Akka repository with a window size of 100 is visualized as below

in Table 4.

Table 4: Accuracy calculation for weight combinations for AKKA repository

File path

similarity

Text

similarity

Activeness Top 1

accuracy

Top 3

accuracy

Top 5

accuracy

MRR

0.1 0.1 0.8 0.51 0.92 1 0.713

0.1 0.2 0.7 0.53 0.92 1 0.717

0.1 0.3 0.6 0.52 0.92 1 0.708

0.1 0.4 0.5 0.5 0.92 1 0.698

0.1 0.5 0.4 0.51 0.92 1 0.703

0.1 0.6 0.3 0.49 0.92 1 0.693

32

0.1 0.7 0.2 0.49 0.92 1 0.693

0.1 0.8 0.1 0.5 0.93 1 0.703

0.2 0.1 0.7 0.52 0.92 1 0.717

0.2 0.2 0.6 0.52 0.92 1 0.71

0.2 0.3 0.5 0.5 0.92 1 0.7

0.2 0.4 0.4 0.51 0.92 1 0.703

0.2 0.5 0.3 0.5 0.93 1 0.698

0.2 0.6 0.2 0.49 0.93 1 0.694

0.2 0.7 0.1 0.48 0.93 1 0.694

0.3 0.2 0.5 0.5 0.93 1 0.703

0.3 0.1 0.6 0.52 0.92 1 0.71

0.3 0.3 0.4 0.53 0.93 1 0.716

0.3 0.4 0.3 0.51 0.93 1 0.703

0.3 0.5 0.2 0.49 0.93 1 0.696

0.3 0.6 0.1 0.48 0.93 1 0.693

0.4 0.1 0.5 0.51 0.93 1 0.706

0.4 0.2 0.4 0.53 0.93 1 0.718

0.4 0.3 0.3 0.51 0.93 1 0.706

0.4 0.4 0.2 0.48 0.93 1 0.691

0.4 0.5 0.1 0.48 0.93 1 0.689

0.5 0.1 0.4 0.5 0.93 1 0.701

0.5 0.2 0.3 0.51 0.93 1 0.706

0.5 0.3 0.2 0.49 0.93 1 0.693

0.5 0.4 0.1 0.46 0.93 1 0.679

0.6 0.1 0.3 0.48 0.93 1 0.686

0.6 0.2 0.2 0.48 0.93 1 0.681

0.6 0.3 0.1 0.45 0.93 1 0.673

0.7 0.1 0.2 0.47 0.93 1 0.684

0.7 0.2 0.1 0.47 0.93 1 0.678

0.8 0.1 0.1 0.49 0.93 1 0.686

33

From the above experimentation it was revealed that highest accuracy is gained with a weight

combination of the following weights. Table 5 summarizes the feature weight combinations

achiving highest accuracy on multiple repositories.

Table 5: Summarization od feature weight combinations of highest accuracy

Repository File path

similarity

Text similarity Activeness MRR

Akka

0.4 0.2 0.4 0.718

0.2 0.1 0.7 0.716

0.3 0.3 0.4 0.715

Bitcoin

0.3 0.1 0.6 0.822

0.2 0.2 0.6 0.818

0.2 0.1 0.7 0.810

Rubucop

0.3 0.3 0.4 0.763

0.2 0.1 0.7 0.758

0.4 0.2 0.4 0.741

Comparison of results obtained for multiple window sizes is summarized below in Table 6.

Table 6: Comparison of accuracy against dataset window sizes

Repository Window size Top 1

Accuracy

Top 3

accuracy

Top 5

Accuracy

MRR

Akka

30 0.63 1 1 0.78

50 0.54 1 1 0.73

100 0.53 0.93 1 0.72

Bitcoin

30 0.47 1 1 0.72

50 0.54 1 1 0.76

100 0.68 0.97 1 0.82

Rubocop

30 0.69 1 1 0.84

50 0.59 1 1 0.77

100 0.57 0.94 1 0.76

34

4.6 Discussion

After analyzing the results of Table 4 it can be revealed that highest accuracy is obtained with

weighted attribute combination of File path similarity – 40%, Text similarity – 20% and

Activeness – 40%. Table 5 summarizes the results of multiple datasets and from the results it

can be inferred that higher weight factors for activeness always contributes towards gaining

higher accuracy scores. File path similarity is contributing next towards higher scores. Therefor

it can be inferred that importance of factors towards gaining higher accuracy rates in

recommendation of code reviewers can be rated as activeness > file path similarity > text

similarity.

Table 6 summarizes the evaluation results of multiple repositories. In almost all of the results

obtained Top 5 accuracy is 1 which concludes that the Top 5 recommenders always included

the real PR reviewer in the dataset. Top 3 accuracy is also at higher scores whereas Top 1

accuracy is between 50%-70%.

On considering threats to validity Almost all our experimental projects are medium sized

projects. Extending the research on bulk projects would enhance the stress testing of the

system. I have examined the system across multiple languages. During the experimentation on

multiple languages any biasness towards a language was not observed which generalize our

finding on the approach.

On consideration of construct validity non availability of retirement details of code reviewers

will affect the accuracy of reviewer recommendation as we consider the pull request review

history for potential candidate list formulation. Furthermore, as we does not consider the

workload balancing factor, reviewers may be overburdened with review requests.

35

Chapter 5

5. Conclusion and Future work

5.1 Introduction

This chapter wraps up this documentation on the research by summarizing the final quest

thoughts, comments and future work to enhance research on this study. This research is an

effort to explore an efficient approach for recommendation of reviewers for pull request

reviewing process. The research study was supported out with three core steps comprehensive

literature review, analysis of state-of-the-art methods and algorithms for reviewer

recommendation and experimentation on the suggested research approach for its performance

and evaluation against the real-world repositories for its accuracy.

5.2 Problem addressed and solution proposed

Pull request reviewing is a critical activity in project management as we step towards the

collaborative and open source development culture. Any third-party developer can fix bus or

introduce new features to an open source project. Core developers of the project is responsible

for maintaining code quality. For this purpose, pull requests submission and code reviewing

has been encouraged. An external developer makes a clone from the repository, do some

changes on code and submits the changes as a Pull request to the central repository. The person

who submits the pull request is responsible for assignment of a reviewer for reviewing the pull

request.

This is the place where the research fixes in. The person who submits the pull request is not

familiar with the prior code reviewers and file structures of the repository. A new submitter

finds it hard to assign the pull request to an apposite developer. The new developer is not

familiarized with the expertise of languages and libraries of the existing integrators. He will

have to dig into the repository to find the expertise technologies. Assignment of the pull request

to wrong reviewer would result in the PR idling for long time. If the reviewer is not active PR

will be left unattended for long time and will not be picked by some other reviewer. Therefor

the research is about developing a pull request reviewer recommendation system. Objectives

of the research includes investigation on the potential parameters for recommending apposite

reviewers for a pull request by studying the literature, feature extraction and developing a

dataset characterizing a pull requests after identification of the features, development of the

recommendation system and experimentation and evaluation of the developed system against

real world repositories.

36

On submission of a new PR, the system analyses the history of the repository and calculates a

similarity between the submitted new PR and the already reviewed PRs. Based on text

similarity, file path similarity and activeness of the integrators, the system ranks the integrators

and recommends the top 5 integrators for reviewing a pull request.

Furthermore, for the purpose of evaluation and experimentation accuracy is calculated for the

suggested integrators for the PRs. Weights are assigned for identified attributes characterizing

pull request and integrator. Experimentation is carried out on the weight assignment to yield

the highest accuracy. Three github repositories each with more than 3000 pull requests Akka,

Bitcoin and Rubocon is used for experimentation and dataset development. System has

received an average accuracy level around 80% - 85%.

5.3 Future work

Research conducted does not consider social networking of the reviewers. Experimentation on

using social relationships and networking of reviewers for enhancing the performance of

reviewer recommendation by identifying reviewers with the same expertise based on the

discussions they have actively participated using their comment network can be carried out as

future extension to this research.

This research does not identify expertise and libraries used by developers on cross project basis.

Cross project references an expertise on libraries and technologies of reviewers is not focused

in this research.

Workload balancing among integrators is not considered in this research. As a result, an active

integrator could be overloaded with PR reviews. Considering the work load and indicating it

as hint on recommending reviewers about the unattended PR s left for an integrator would

enhance the performance of the system.

Further research could be carried out on handling concurrent recommendation requests on real

time. In theoretical aspect mixing of this approach with Convolutional Neural Network

recommendation-based approach will achieve better accuracy and is worthy of further

experimentation.

37

References

[1] F. Mikołaj, P. Piotr & S. Krzysztof. (2017). Profile based recommendation of code

reviewers. Journal of Intelligent Information Systems. 10.1007/s10844-017-0484-1. 14

[2] V. Balachandran, “Reducing Human Effort and Improving Quality in Peer Code Reviews

using Automatic Static Analysis and Reviewer Recommendation,” in ICSE ’13, 2013, pp. 931–

940 9

[3] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida and K.

Matsumoto, "Who should review my code? A file location-based code-reviewer

recommendation approach for Modern Code Review," 2015 IEEE 22nd International

Conference on Software Analysis, Evolution, and Reengineering (SANER), Montreal, QC,

2015, pp. 141-150. doi: 10.1109/SANER.2015.7081824

[4] P. Weiß gerber, D. Neu, and S. Diehl, “Small Patches GetIn !” in MSR’08, 2008, pp. 67–

75

[5] P. C. Rigby and C. Bird, “Convergent Contemporary Software Peer Review Practices,” in

ESEC/FSE 2013, 2013, pp. 202–212

[6] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s Talk About It: Evaluating Contributions

through Discussion in GitHub,” in FSE’14, 2014, pp. 144–154

[7] P. C. Rigby and M.-A. Storey, “Understanding broadcast-based peer review on open source

software projects,” in ICSE’11, 2011, pp. 541–550.

[8] V. Mashayekhi, J. Drake, W.-T. Tsai, and J. Riedl, “Distributed, collaborative software

inspection,” IEEE Software, vol. 10, no. 5, pp. 66–75, 1993.

[9] Drake, J., Mashayekhi, V., Riedl, J., & Tsai, W.T. (1991). “A distributed collaborative

software inspection tool: Design, prototype, and early trial. In Proceedings of the 30th

aerospace sciences conference”

[10] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proceedings of the

28th International Conference on Software Engineering,ser. ICSE ’06. New York, NY, USA:

ACM, 2006, pp. 361–370.

[11] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug tossing graphs,”

in Proceedings of the the 7th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ser.

ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 111–120.

[12] P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highlyaccurate, bug

assignment using machine learning and tossing graphs,” Journal of Systems and Software, vol.

85, no. 10, pp. 2275–2292, 2012

[13] Yu, Yue & Wang, Huaimin & Yin, Gang & Ling, Charles. (2014). Who Should Review

this Pull-Request: Reviewer Recommendation to Expedite Crowd Collaboration? 335-342.

10.1109/APSEC.2014.57.

38

[14] P Thongtanunam et al., “Improving code review effectiveness through reviewer

recommendations”, Proceedings of the 7th International Workshop on Cooperative and Human

Aspects of Software Engineering, June 02-03, 2014, Hyderabad, India

[doi:10.1145/2593702.2593705]

[15] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology, 1997

[16] R. Ranawana and V. Palade, “Multi-Classifier Systems - Review and a Roadmap for

Developers,” IJHIS, vol. 3, no. 1, pp. 1–41, 2006.

[17] G. Gousios and A. Zaidman, “A dataset for pull request research,” in MSR ’14:

Proceedings of the 11th Working Conference on Mining Software Repositories, may 2014,

[18] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of the 10th Working

Conference on Mining Software Repositories, ser. MSR’13. Piscataway, NJ, USA: IEEE Press,

2013, pp. 233–236.

[19] Yu, Yue. (2014). Reviewer Recommender of Pull-Request in GitHub.

10.1109/ICSME.2014.107.

[20] M. M. Rahman, C. K. Roy & J. A. Collins (2016). CORRECT: Code Reviewer

Recommendation in GitHub Based on Cross-Project and Technology Experience.

10.1145/2889160.2889244.

[21] Terra, R., Brunet, J., Miranda, L.F., Valente, M.T., Serey, D., Castilho, D., & da Silva

Bigonha, R. (2013). Measuring the structural similarity between source code entities (S). In

The 25th international conference on software engineering and knowledge engineering,

Boston, MA, USA, June 27-29, 2013 (pp. 753–758). Knowledge Systems Institute Graduate

School.

[22] Lee, J.B., Ihara, A., Monden, A., & Matsumoto, K. (2013). Patch reviewer

recommendation in OSS projects. In Muenchaisri, P., & Rothermel, G. (Eds.) 20th Asia-Pacific

software engineering conference, APSEC.

[23] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert Recommendation with Usage

Expertise,” in ICSM’09, 2009, pp. 535–538

[24] D. M. Soares, M. L. de L. Junior, A. Plastino, and L. Murta “What Factors Influence the

Reviewer Assignment to Pull Requests?" Information and Software Technology. 98.

10.1016/j.infsof.2018.01.015, (2018)

[25] M. F Porter. 1997. An algorithm for sufx stripping. Morgan Kaufmann Publishers Inc.

130– 137 pages

[26] Chengnian Sun, D Lo, Xiaoyin Wang, and Jing Jiang. 2010. “A discriminative model

approach for accurate duplicate bug report retrieval” In ACM/IEEE International Conference

on Software Engineering. 45–54

39

[27] Paul Kantor. 1999. Foundations of Statistical Natural Language Processing. MIT Press,

pags. 91–92 pages.

[28] J. Kittler, I. C. Society, M. Hatef, R. P. W. Duin, and J. Matas, “On Combining

Classifiers,” IEEE TPAMI, vol. 20, no. 3, pp. 226–239, 1998.

[29] T. K. Ho, J. Hull, S. N. Srihari, and S. Member, “Decision Combination in Multiple

Classifier Systems,” IEEE TPAMI, vol. 16, no. 1, pp. 66–75, 1994

[30] A. Colin, 1996, “Building Decision Trees with the ID3 Algorithm", Dr. Dobbs Journal,

June 1996.

[31] L. Rokach, O. Maimon. “Data mining with decision trees: theory and applications”. World

Scientific Pub Co Inc. ISBN 978-9812771711, 2008.

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-9812771711

40

APPENDIX

Appendix A – Home Screen of the System

Appendix B – All integrators of the repository

41

Appendix C – Recommendation of reviewers for PR

42

