

Masters Project Final Report

(MCS)

2019

Project Title

Estimating Task Complexity of Text Analysis Tasks

Student Name

 W.M.T. Chathurika

Registration No.
& Index No.

 Reg. No: 2017MCS014
 Index No:17440143

Supervisor’s
Name

 Dr. Ruwan Weerasinghe

For Office Use ONLY

S

E1

E2

For Office Use Only

Estimating Task Complexity of Text

Analysis Tasks

A dissertation submitted for the Degree of Master of

Computer Science

W.M.T. Chathurika

University of Colombo School of Computing

2020

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: W.M.T. Chathurika

Registration Number: 2017MCS014

Index Number: 17440143

__________W.M.T.Chathurika___________

Signature: Date: 21-06-2020

This is to certify that this thesis is based on the work of

Mr./Ms.

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name:

Signature: Date:

1

Abstract

Text analysis is one of the most common approaches in machine learning

applications. The process of analyzing raw data to make conclusions on those data

and to find trends and answers for some questions which are known as data analytics

captures a broad scope in the field of computing. “Text Analysis” is the term that is

used to describe the process of computational analysis of text data. It involves

numerous techniques and approaches to bring text data to an end where they can be

mined for trends, patterns, or insights. The accuracy of machine learning algorithms

depends on the size of the train data set. The quantity of data is affected by various

factors. It depends on the complexity of the problem, training method, and diversity

of inputs. Depending on the type of data, they can be expensive. Due to that, it is

useful to know the amount of data needed before training a model. In this paper, the

broad area of text analytics would be broadened down to text classification to reduce

the complexity in the experimental approach.

In this research text classification algorithms will be trained using different datasets,

that consist of different amounts of data and different features to observe the

accuracies.

2

Acknowledgments

At the outset, I wish to express my sincere gratitude to my supervisor Dr. Ruwan

Weerasinghe, senior lecturer of the University of Colombo School of Computing -

UCSC , for his un- ceasing guidance, constant supervision, and providing valuable

resources throughout my research.

 Also, I would like to convey my utmost gratitude to all the other academic members

of the University of Colombo School of Computing - UCSC for the knowledge they

passed.

Finally, I would like to thank my colleagues who gave me ideas and my family for

their valuable support and encouragement given endlessly, to make this project

successful.

3

Table of Contents

1 Introduction .. 5

1.1 Introduction ... 5

1.2 Problem Domain ... 6

1.2.1 Machine Learning .. 6

1.2.2 Text Analysis ... 7

1.2.3 Text Classification ... 8

1.3 Problem ... 8

1.4 Motivation ... 9

1.5 Research Contribution ... 10

1.5.1 Goal .. 10

1.5.2 Objectives .. 10

1.6 Scope ... 10

2 Literature Review... 12

2.1 Introduction ... 12

3 Methodology .. 15

3.1 Introduction ... 15

3.1.1 Problem Analysis ... 15

3.1.2 Model / Design ... 16

3.2 Dataset Selection ... 16

3.3 Feature Extraction ... 18

3.3.1 Bag of Words ... 18

3.3.2 Count Vectorizer .. 19

3.3.3 Tfidf Vectorizer (Term Frequency-Inverse Document Frequency)................... 21

3.4 Handle data imbalance .. 22

3.5 Text Classification... 24

4 Results and Evaluation ... 30

4.1 Overview ... 30

4.2 Evaluation Approach ... 30

4.3 Data sets involved with the evaluation .. 31

4.4 Results ... 32

4.5 Conclusions ... 35

4.5.1 Conclusion of K-Nearest Neighbor Algorithm .. 35

4.5.2 Conclusion for Decision Tree Algorithm .. 37

4.5.3 Conclusion for Logistic Regression ... 39

4

4.5.4 Conclusion for SGD Classifier .. 41

4.5.5 Conclusion for Multinomial Naïve Bayes Algorithm .. 43

4.5.6 Conclusion for SVC Algorithm ... 45

References .. 48

Table of Figures

Figure 1: Text Analytics process flow ... 7

Figure 2: Text classification process.. 8

Figure 3: Details of the initial dataset .. 16

Figure 4: Using Label Encorder ... 17

Figure 5: Data preprocessing ... 17

Figure 6: Using Bag of Words for feature creation ... 19

Figure 7: Applying CountVectorizer ... 20

Figure 8: Features generated by CountVectorizer ... 21

Figure 9: Application of TfidfVectorizer ... 22

Figure 10:Data distribution for the first 500 data rows in Movie_reviews classification dataset

.. 23

Figure 11:Generating synthetic instances .. 24

Figure 12: Clasifier pipeline .. 25

Figure 13: Results generated for CyberTroll Detection dataset with count vectorizer and 1,1

ngram range ... 32

Figure 14: Accuracy scores for Cyber Troll Detection dataset - Count vectorizer - Ngram

range 1,1 ... 33

Figure 15:Graph for accuracy scores generated on Cyber Troll Detection dataset - Count

vectorizer - Ngram range 1,1 ... 33

Figure 16:Accuracy scores for Cyber Troll Detection dataset - Count vectorizer - Ngram

range 1,2 ... 34

Figure 17:Graph for accuracy scores generated on Cyber Troll Detection dataset - Count

vectorizer - Ngram range 1,2 ... 34

5

Chapter 1

1 Introduction

1.1 Introduction

The process of analyzing raw data to make conclusions on those data and to find

trends and answers for some questions which are known as data analytics captures

a broad scope in the field of computing. “Text Analysis” is the term which is used

to describe the process of computational analysis of text data. It involves numerous

techniques and approaches to bring text data to an end where they can be mined for

trends, patterns, or insights.

The computer will generate linguistically valid interpretations of text analysis tasks

such as content tagging, text extraction, entity recognition, and text classification.

The use of machine learning for text analytics makes it feasible to process large

amounts of text data in less amount of time. When adopting machine learning

approaches customized models are created to learn through examples and improve

over time.

The first step of a machine learning approach is gathering text data. Gathering data

is an important task as these data are used as training samples to build the

classification/extraction models in the machine learning approach. The goal is to

train the models in order to make them able to analyze text and make predictions

automatically. In these tasks, it is logical to want to know the amount of training

data that will be needed in order to train a model. The quantity of data points needed

is affected by a huge range of factors, all of which have a varying degree of

influence on the eventual size of the dataset. The amount of data needed depends

both on the complexity of the problem and on the complexity of the chosen

algorithm. Multiple reasons demonstrate the importance of predicting the dataset

size in advance of the training process. Acquiring training data for a machine

learning task can be expensive. Because of that, it is crucial in machine learning

projects to determine the amount of training data that is needed to achieve a specific

performance goal, such as the classifier accuracy. In classification tasks, when the

dataset is too small, the classifier has more degrees of freedom to construct the

6

decision boundary which can cause overfitting [1]. As well as the train data set size,

the number of its features can have a considerable effect on the outcome. For

example, as more features are added, the classifiers have a high chance to find a

hyperplane to split the data. If the dimensionality is increased without considering

the number of training samples the feature space can become sparser and the

classifier may overfit.

In this paper, the broad area of text analytics would be narrowed down to text

classification in order to reduce the complexity of the experimental approach.

1.2 Problem Domain

This paper addresses an issue that arises in text data analytics. This study is

correlated with heuristic methods for deciding the amount of text data required for

data analytics tasks. The research will mainly focus on text classification over the

other text analytics approaches.

1.2.1 Machine Learning

Machine learning is the process that powers many of the services people are using.

It is a sub-branch of the tree of Artificial Intelligence. Machine learning algorithms

use statistics to find patterns in large amounts of data which can be text, images,

digits, etc. Search engines like Google and Baidu, social media feeds like Facebook

and Twitter, voice assistants like Alexa and Siri are based on machine learning

algorithms. All these applications are collecting as much data about their users as

to provide the best services to them. Machine learning has three methods of learning

which are supervised, unsupervised, and reinforcement. In this research, the domain

of text classification will be addressed. Therefore, the research will address

supervised learning. The data are labeled to tell the machine what pattern it should

be looking for.

Machine learning algorithms have three phases known as implementing, training,

and testing.

This research is mainly focused on the training phase, predicting the amount of data

and number of features that are needed in a text classification task.

7

1.2.2 Text Analysis

As shown in Figure 1 text analytics is known as the automated process of deriving

information that is relevant and important from unstructured text data.

Computational linguistics, information retrieval, and statistical methods are being

applied in text analytics approaches. Text analytics is an example of the application

of machine learning.

Figure 1: Text Analytics process flow:

Text analytics allows organizations to do the extraction and classification of text

data obtained from emails, product reviews, survey responses, etc. These

approaches let an organization extract specific information such as keywords,

names, or contact details and let the organization to categorize reviews as positive

and negative.

1

2

3

 4

 5

6

7

8

9

10

8

1.2.3 Text Classification

From the text analytics approaches, the research is going to mainly focus on text

classification tasks. Text classification is considered one of the most important

natural language processing (NLP) techniques. It is the process of assigning

predetermined labels/tags/categories on unstructured data as shown in Figure 2.

In machine learning, there are two types of training methods that we can adopt in

text classification using machine learning. Those are supervised learning and

unsupervised learning. Supervised learning algorithms are trained using labeled

data which helps to make predictions on outcomes for unforeseen data.

Unsupervised learning does not require supervision over the model. The model is

allowed to work on its own in order to discover outcomes. Unsupervised learning

algorithms mainly use unlabeled data. Classification algorithms belong to

supervised learning since training data are used to initialize the model.

Figure 2: Text classification process

1.3 Problem

9

Deciding the amount of train data needed in data analytics tasks before the data

gathering is a rarely touched area in the domains of modern computer science.

Machine learning algorithms that can be adopted in text analytics tasks often

encounter problems with the high dimensionality of data.

The size of the training dataset has a huge impact on text analytics tasks from many

perspectives. The training dataset size clearly affects the accuracy of the output of

a machine learning task. In addition to the accuracy, acquiring training data in

machine learning tasks is expensive when considering man-hours, equipment run

time, license fees, etc. If the model is pre-trained, the amount of data needed to train

the model is less than a non-pre-trained model. Because of these reasons, it is

important to predetermine the amount of training data needed to achieve a particular

text analytics task. But no limitations on the size of train data have been defined so

far and it is considered that the larger the data set is more accurate the output would

be. The question “How much data do you want exactly?” remains unanswered.

The amount of training data can vary depending on certain reasons. The training

data size is determined by the complexity of the model. When the number of

parameters considered by the model increases, the size of the train data set also

increases. The more complex the model is, the more data are required by the model.

The training method which is used to train the model causes variations in the

amount of train data. Depending on the variations in the number of labels produced

from data and the effort the model takes to produce those labels, input data size can

vary. The size of the input dataset can be determined by the diversity of inputs.

1.4 Motivation

As mentioned in the “Problem” section the question “How much data is needed to

do the classification task” remains unanswered. There is no specific method to

predict the exact or approximate amount of train data which would be sufficient to

get the most accurate output from a text classification model. It would be easy for

researchers and those who are involved in text analysis tasks if they know the

amount of data that should be collected or created before they step into the training

phase.

10

1.5 Research Contribution

The contribution of the research is to study the effect of training data set size on the

text classification models and to determine the amount of data needed by different

algorithms for different features. The study targets sample size planning before the

data collection step. The motivation behind the study is that the independent

samples for classifier training and validation, being expensive and rare. Data

collection may take a lot of effort and time. Having an insight into the data amount

at the beginning can avoid the unnecessary cost for train data as the training data

size depend on the nature of the task, nature of the model, and other facts such as

the number of features, variables, etc.

1.5.1 Goal

To develop an approach that is capable of predicting the size of the train data set in

text classification tasks.

1.5.2 Objectives

The objective of the research is to propose a method to do initial estimations of text

classification tasks.

1. Estimating the amount of training data needed for a classification task before the

data collection process by examining the number of features, variables, and the

nature of the classification model.

2. Study the correlation between the output of a classification algorithm and the

number of features in the training dataset.

3. By making the correct estimation, predict if a particular task is feasible depending

on the cost and effort that has to be paid to collect train data.

1.6 Scope

This research is a sample size determination (SSD) approach that determines the

size of the sample data needed for text classification tasks.

11

In this research, a solution to problems that arise in text analysis operations due to

not knowing the train dataset size prior to the training process is developed. The

scope of the research is narrowed down from text analysis tasks to text

classification. In the experimental approach, the researcher is mainly focused on

text classification algorithms. The research was conducted over six classification

algorithms which are

 K-Nearest Neighbor Classifier

 Decision Tree Classifier

 Logistic Regression Classifier

 Stochastic Gradient Descent (SGD) Classifier

 Multinomial Naïve Bayes

 Support Vector Machines (SVM)

For all these classifiers default hyperparameters were used.

In the research, three annotated datasets were used each containing more than

20,000 labeled data.

12

Chapter 2

2 Literature Review

2.1 Introduction

In data analytics tasks such as text classification using deep learning, measures of

the complexity in classification tasks can estimate the difficulty of dividing data

into the expected classes.

One major problem with data analytics tasks is the difficulty of estimating the

complexity of the task. At the beginning of the task, it is difficult to predict that,

how much training data are needed to train a training model, how many classes are

needed when doing classification tasks in text analytics, how many variables are

needed to solve the problem. Because of that during the first stages of the task,

researchers/developers do not have a good understanding of the problem domain.

There exist researches that have been conducted on estimating the complexity of

software products, which provides a common estimation model for any software

product. The research “A Neural Network Approach to Software Project Effort

Estimation” [1] propose a model to estimate the cost, effort, and duration of a

software product using artificial neural networks(ANN), prior to the

implementation of the software. Though this research does not address the text

analytics tasks particularly, it presents a method, using neural networks that could

be adopted in other tasks. The research consists of a method of training two sets of

artificial neural networks. Data to train the ANN are supplied by BT. In this research

four main programs work together allowing the user to create train data sets for the

ANN, normalizing the data, training the ANN, taking a trained neural network to

answer questions based on estimations of cost for the particular software. Since the

estimation of the duration, cost, and effort for a software project is done, the

researchers have considered the cost drivers as Effectiveness of code, function

points, MBI, and productive index. When applying or adopting the concepts to the

13

proposed research, other factors that determine the complexity of text classification

tasks must be considered.

“Reading Metrics for Estimating Task Efficiency with Machine Translation

Output” [2] proposes that reading derived metrics are better proxies of task

performance than the standard

automatic metric. The research is based on identifying better metrics that help in

estimating the efficiency of a task, rather than the metrics which are already

available. In this research logical puzzles have been taken into consideration. 80

different logical puzzles have been tested for participants to read metrics to estimate

efficiency.

“Estimating Linguistic Complexity for Science Texts” [3] propose a method for

estimating the complexity in various tasks involving Natural Language Processing,

including text classification, with Recurrent neural networks. This differs from the

proposed research, as the research [3] is based on estimating the “linguistic

complexity for science texts” particularly.

“How Complex Is Your Classification Problem?” [5] discuss in deep on complexity

measures for text classification tasks dividing them into categories as Feature-based

measures, Linearity measures. Neighborhood measures, Network measures,

Dimensionality, and class imbalance measures. It describes how a classification

task can be succeeded or failed depending on these features. But it does not address

how to make estimations on the classification task such as the amount of training

data needed for a particular task, number of variables, etc.

The research “Complexity measures of supervised classification problems” [6]

consider the geometric complexity of a class boundary in measuring the difficulty

of a classification task. The research addresses a small set of classification problems

to observe up to which extent a training dataset represents a test set.

[7] is an approach to approximate the relationship of input-output among many

variables. It is an experimental approach which is conducted to show how

generalized sampling theorem can be applied for approximation problems using

neural network. In their study, they propose the least in size training data set can be

found for any multi-dimensional function based on the knowledge of the frequency

power spectrum. Though the research discusses the train data size approximation,

it is not based on text analytics tasks and does not propose an overall idea on how

to determine the dataset size for any model rather than two-layered neural networks.

14

“Sensitivity of hyperspectral classification algorithms to training sample size” [8]

is research on determining the sensitivity of Multi-Classifier Decision Fusion

(MCDF) and MCDF framework in the Discrete Wavelet Transform domain (DWT-

MCDF) for a limited number of train data. It is an experimental approach where

they apply feature extraction and classification methods over different numbers of

train data to obtain the conclusion that even with sufficient training data

classification tasks can fail due to poor performance due to the poor quality of train

data. In the experiment, the dimensionality of data also has been changed with the

data amount to observe the sensitivity of classifiers on the quality of data.

The research “Impact of training corpus size on the quality of different types of

language models for Serbian” [9] has been conducted in the domain of Natural

Language Processing (NLP) in the Siberian language. The paper describes the

relationship between the quality of the language model and the size of the textual

corpus which is used in the training process. The research has been conducted on

three types of n-grams which are word-based which is trained on the textual corpus,

lemma-based that is trained on a corpus consisting of lemmas, and class-based that

is trained on a corpus of word classes. The three language models have been trained

using the SRILM toolkit with similar values of datasets with different sizes and

different vales of data with different sizes. The researchers have concluded the

research with results stating that the lemma model and word-based model require

“more” training data to deliver results with more accuracy. But the researcher does

not present that amount numerically as an exact or approximate value. Therefore,

even though the research has been conducted following a similar approach as this

paper, the researcher of [9] fails to present a method to predict or approximate the

train data size for a given data analytics task.

The research “Effect of Training Set Size on SVM and Naïve Bayes for Twitter

Sentiment Analysis” [10] discusses the impact of training data size on the accuracy

of classification of text. They address the issue of approximating the data set size

for the classification, being within the frame of the two famous algorithms, SVM

and Naïve Bayes.

15

Chapter 3

3 Methodology

3.1 Introduction

The methodology of the research is more experimental and addressed with the

knowledge gained through the literature review. As mentioned in previous chapters,

the scope of the research is limited to text classification. In the broad area of

machine learning, the research touches on the supervised learning method. As

mentioned in the previous chapters, the goal of the research is to develop a method

to predict the accurate or approximate amount of data needed for a text classification

task with high accuracy. This chapter provides a comprehensive overview of the

steps which were followed in the implementation process.

In this chapter, the selection of datasets, machine learning tools, and techniques that

were used in the classification process and reasons for those selections are discussed

in deep.

3.1.1 Problem Analysis

In the text classification, the data can be categorized into a hundred or more

categories depending on the requirement. The most efficient approach of

classification is using machine learning approaches to categorize text data. In the

machine learning approach, a model needs to be created for the classification task

and that model should be trained with training data. Then the model learns itself to

generate outputs for similar inputs after being well trained. The traditional and

common point of view is that the size of this training input data for machine learning

(supervised learning) should be high to obtain the most accurate outputs.

But collecting data is an expensive task. Because of that having an insight into the

exact/approximate amount of data for a particular task is important rather than

training the model blindly for a huge amount of training data.

16

3.1.2 Model / Design

According to the proposed concept, text classification algorithms are trained and

tested in scikit learn with datasets with different sizes, different numbers of features,

and variables. The relationship between the accuracy and the training dataset is

examined to approximate the size of the train data needed for a classification task.

3.2 Dataset Selection

When selecting text data, they were specifically chosen depending on the dataset

size, the number of attributes, and the number of classes. The research is focused

on text classification of the English language.

In the research, three datasets were used which contain more than 20000 annotated

data. These three datasets consist of two features, which are being encoded as 1 and

0.

Dataset 1

The initial dataset was obtained from the UCI Machine Learning Repository. All

selected data are labeled data. The initial dataset contains over 5000 SMS messages

labeled as spam and non-spam.

Figure 3: Details of the initial dataset

17

According to figure 3, the dataset consists of 4825 non-spam messages and 747

spam messages. The dataset consists of 5575 SMS messages. These messages were

preprocessed by following the below steps.

Firstly, the class labels were converted into binary values using LabelEncoder from

sklearn. The rest of the data were preprocessed by replacing email addresses, URLs,

phone numbers, and other symbols using regular expressions.

Figure 4: Using Label Encoder

Figure 5: Data preprocessing

18

Dataset 2

The second dataset contains 25000 movie reviews obtained from IMDb. These data

are labeled as positive and negative which is suitable for binary sentiment

classification. The overall distribution of the dataset was balanced.

Dataset 3

The third publicly available dataset contains 21000 tweets which are classified as

aggressive and non-aggressive. The dataset consists of multiple features. One

feature was selected in order to make it feasible to use for binary classification.

3.3 Feature Extraction

In the research, how the accuracy is affected by the feature selection is also

examined. The process of feature selection is crucial in machine learning tasks as

machines cannot process text data in raw form. Raw data need to be broken down

into a numerical format to make them readable by the machine. In this task, features

are created using the domain knowledge of the data for the classification algorithms.

Three methods were followed to do the feature extraction task which are

 Bag of Words

 Count Vectorizer

 Tfidf Vectorizer (Term Frequency-Inverse Document Frequency)

3.3.1 Bag of Words

When using Bag of Words for feature creation, the words in each processed text

message are considered as features. Because of that, the processed set of messages

were tokenized into words. 1500 most common words were considered as features.

19

Figure 6: Using Bag of Words for feature creation

3.3.2 Count Vectorizer

CountVectorizer is the simplest method of vectorizing text. Count Vectorizer can

implement both tokenization and occurrence counting. In this research the dataset

was trained, using Count Vectorizer in feature creation. Firstly the raw data were

processed by removing unnecessary terms. Then the data set was split into train data

and test data. Count vectorizer was applied to train data and test data to vectorize

them.

20

Figure 7: Applying CountVectorizer

21

Figure 8: features generated by CountVectorizer

One drawback of Bag of Words representation is the generation of a sparse matrix.

It only focuses on word representation ignoring the relationship between

neighboring words. But as shown in Figure 8, CountVectorizer considers N-gram

features. By using different types of feature extraction techniques in this research,

different domains of the same problem have been addressed.

3.3.3 Tfidf Vectorizer (Term Frequency-Inverse Document Frequency)

Tfidf (Term Frequency-Inverse Document Frequency) Vectorizer calculates how

frequently a word appears in a context. Through the frequency of the word, it

calculates a score for each word. Therefore, words with high frequencies get a

higher score, while words with less frequency obtain a low score. Each word is been

allocated a weight value proportional to the appearance in the context. The set of

words with the highest scores is used to represent the document. Hence those words

are being identified as features.

The term frequency is a ratio of the count of a word’s occurrence in a document and

the number of words in the document. Thus, it is a normalized measure that takes

into consideration the document length. Let us show the count of the word i in

document j by . The document frequency of word i represents the number of

documents in the corpus with the word i in them. Let us represent document

frequency for word i by . With N as the number of documents in the corpus, the

tf-idf weight for word i in document j is computed by the following formula:

[17]

22

Figure 9: Application of TfidfVectorizer

3.4 Handle data imbalance

 In the classification process balancing data is a crucial step. Data imbalance

problem occurs when the amount of data in one class outnumbers the other classes

by a comparatively large portion. Having to deal with imbalanced problems in the

dataset can be excessive work. But this is important as balancing data leads to

inaccurate accuracy metrics and the inefficiency of production performance. [18]

In the research, the objective is to observe the maximum accuracy scores for

different samples of data. The same set of classifiers is being tested against different

samples of data increasing by 500 in each iteration.

Data will be selected randomly for a particular iteration. In case the selected data

consists of imbalanced classes, the accuracy of that particular iteration will be

reduced regardless of the sample size.

23

Figure 10:Data distribution for the first 500 data rows in Movie_reviews classification dataset

Figure 10 shows the distribution of the selected sample of 500 data rows from the

second data set (Movie reviews). This distribution can produce accuracy scores

which can also be misleading.

As the classifiers can turn out to be overfitted as a result of data imbalance, it can

create a false sense of high accuracy. As the conclusions have to be made depending

on these accuracy scores it is important to eliminate the data imbalance for each

selected data sample.

To achieve this task Synthetic Minority Over Sampling Technique for imbalanced

data (SMOTE) was used. SMOTE chooses a minority class input variable in its

process. Then finds it’s K-nearest neighbor. K-neighbor is required to be specified

as an argument in the SMOTE() function. One of the neighbors is selected and a

synthetic point is placed on the line that joins the point under consideration of the

neighbor.

This process will be repeated until the data is balanced. [19] . The synthetic

instances generated by the SMOTE function are being added to the original dataset.

Then the modified data set is passed to the classifier.

This approach mitigates the problem of overfitting produced due to the random

oversampling as the SMOTE function generates synthetic examples rather than a

replication of instances.

24

Figure 11:Generating synthetic instances

3.5 Text Classification

From the text analytics approaches, the research is going to mainly focus on text

classification tasks. Text classification is considered one of the most important

natural language processing (NLP) techniques. It is the process of assigning

predetermined labels/tags/categories on unstructured data.

In machine learning, there are two types of training methods that we can adopt in

text classification using machine learning. Those are supervised learning and

unsupervised learning. Supervised learning algorithms are trained using labeled

data which helps to make predictions on outcomes for unforeseen data.

25

Unsupervised learning does not require supervision over the model. The model is

allowed to work on its own to discover outcomes. Unsupervised learning algorithms

mainly use unlabeled data. Classification algorithms belong to supervised learning

since training data are used to initialize the model.

In the research 6 classification algorithms were used to obtain the accuracy values.

 K Neighbors Classifier

 Decision Tree Classifier

 Logistic Regression

 SGD Classifier

 Multinomial NB

 SVC

A classifier pipeline was created to achieve this target. For each classification

algorithm, default hyperparameter values were used.

Figure 12: clasifier pipeline

At the end of each classification task, accuracy was calculated for each

classification algorithm.

26

 K Neighbors ClassifierK

 K- Nearest Neighbor (KNN) is a supervised machine learning algorithm that

relies on labeled data to learn. When doing classification, the KNN algorithm

assumes that similar objects are exciting in close proximity.

 In the classification process, KNN should be initialized with the number of

neighbors. In this research, the default values were taken. For each data, the distance

between the query example and the current example from data should be calculated.

The index of the example data and the distance is being put into an ordered

collection. Then the collection is being sorted in ascending order by the distances.

The first K entries from the sorted collection are then selected and the labels are

checked. Finally, the mode of the K label is returned. The disadvantage of using

this model in the research was slowing down the overall performance of the script

as it is significantly slower when the number of examples is increased.

 Decision Tree Classifier

In indecision tree classification the set of training samples are being split into

smaller subsets while the decision tree is developed incrementally. At the end of the

learning process of the classifier, a decision tree that covers the provided training

set is being returned. The decision tree partitions the provided data into clusters and

empty regions. [20] . This is a widely used method in classification tasks which is

27

𝜽𝟏 𝟏

𝜽𝟐 𝟏

𝜽𝟑 𝟏

very straightforward. The classifier is organized with a set of test questions and

conditions. Starting from the root node these teat conditions are applied to the data

sample until it reaches the leaf node. The label associated with the leaf node is

getting assigned to the particular record of the provided data sample.

 Logistic Regression

In this research binary logistic regression was used in binary classification tasks.

Using maximum – likelihood estimation, the classifier estimates the coefficients.

Maximum likelihood estimation is a widely used learning algorithm that is used by

many other machine learning algorithms. The best coefficients will result in a model

that predicts a value that is closer to one for the default class and a value closer to

0 for the other class. When making predictions using the test data, the logistic

regression model will generate a value and by looking at this value (if it is closer to

one or zero) the decision would be made.

 Stochastic Gradient Descent (SGD) Classifier

In SGD classification some random samples from the given dataset are selected

instead of the entire dataset for each iteration. The sample is randomly shuffled and

selected to perform the iteration

C
L

A
S

S
IF

IE
R

X1

X2

X3

DECISION 1

DECISION 2

28

 Multinomial Naïve Bayes Classifier

This algorithm is more suitable for the classification of discrete features.

Multinomial Naïve Bayes accepts feature counts as integers but still, it accepts

fractional counts such as TFIDF that is used in this research. In the research, the

same set of samples are being vectorized using Count Vectorizer and TFIDF

vectorizer. [21]

 Support Vector Classifier (SVC)

SVC returns the best fit hyperplane that divides the data provided to the model. This

generates a high accuracy compared to other classification models such as logistic

regression and decision tree.

Class A

Class B

Support Vectors

29

A hyperplane separates the objects that belong to different classes. Support vectors

are the data points that stay close to the hyperplane decided by the svc model. The

separating line is defined by these points by calculating the margins. The margin is

a gap placed in between the two lines on the closest class points. Margin is

calculated the perpendicular distance between these two points.

In the classification process, SVC generates the hyperplane to separate the classes

in the best way.

30

Chapter 4

4 Results and Evaluation

4.1 Overview

 This paper addresses an issue that arises in text data analytics. This study is

correlated with heuristic methods for deciding the amount of text data required for

data analytics tasks. The research will mainly focus on text classification over the

other text analytics approaches.

“Text Analysis” is the term which is used to describe the process of computational

analysis of text data. It involves numerous techniques and approaches to bring text

data into an end where they can be mined for trends, patterns, or insights. The

computer will generate linguistically valid interpretations of text analysis tasks such

as content tagging, text extraction, entity recognition, and text classification. The

use of machine learning for text analytics makes it feasible to process large amounts

of text data in less amount of time. When adopting machine learning approaches

customized models are created to learn through examples and improve over time.

The first step of a machine learning approach is gathering text data. Gathering data

is an important task as these data are used as training samples to build the

classification/extraction models in the machine learning approach. The goal is to

train the models to make them able to analyze text and make predictions

automatically.

In these tasks, it is logical to want to know the amount of training data that will be

needed to train a model. In this paper, the broad area of text analytics would be

narrowed down to text classification to reduce the complexity in the experimental

approach.

4.2 Evaluation Approach

Each independent execution is involved in an evaluation task. In this research,

results are being generated for different sets of inputs. (train data and test data). And

31

will be observed, the different outputs generated for the classification algorithm for

different vectorization methods.

The evaluation approach is a combination of experimental and mathematically

based approaches, at the same time it does outcome mapping which is an impact

evaluation approach which unpacks an initiative’s theory of change, provides a

framework to collect data on immediate, basic changes that lead to longer, more

transformative change, and allows for the plausible assessment of the initiative’s

contribution to results.

In the research different text classification methods will be executed with different

sets of data, containing different amounts and different attributes. A confusion

matrix will be generated in which the accuracy of the classification task is obtained.

It will experiment on how the change of dataset size affects the accuracy of the

classification task. And in the research, will experiment on how the changes of

features result in different outcomes in text classification.

4.3 Data sets involved with the evaluation

Multiple sets of publicly available text data are used in the research. Data sets are

obtained from the “UCI Machine Learning Repository “

(https://archive.ics.uci.edu/ml/index.php). The UCI Machine Learning Repository

is a collection of databases that are used by the machine learning community for the

empirical analysis of machine learning algorithms.

Different datasets containing different numbers of attributes are used in the

research. The research is mainly focused on text classification tasks. Therefore,

datasets with different numbers of classes are used. Observing the outputs generated

for different conditions (different vectorization mechanisms, different number of

attributes), the combination between success rate and the size of the dataset will be

identified.

In this

32

4.4 Results

As mentioned in previous chapters the objective of the research is to observe the accuracy

of text classification algorithms for different sample sizes of data. In this approach,

accuracy was calculated for the trained model, and then prediction was made for the test

dataset to check the accuracy of the model for unseen data.

Figure 13: Results generated for CyberTroll Detection dataset with count vectorizer and 1,1

ngram range

33

Figure 14 summarizes the results generated from the six classifiers described in the

previous chapter. results were generated for samples of data starting from 500 sample size.

Then the sample size is increased by 500. The same task is performed for both count

vectorizer and tfidf vectorizer for ngram ranges (1,1), (1,2), and (1,3).

Figure 14: Accuracy scores for Cyber Troll Detection dataset - Count vectorizer - Ngram

range 1,1

Figure 15:Figure 14:Graph for accuracy scores generated on Cyber Troll Detection dataset

- Count vectorizer - Ngram range 1,1

34

Figure 16: Figure 14:Accuracy scores for Cyber Troll Detection dataset - Count vectorizer - Ngram

range 1,2

Figure 17:Figure 15:Figure 14:Graph for accuracy scores generated on Cyber Troll Detection

dataset - Count vectorizer - Ngram range 1,2

35

4.5 Conclusions

Depending on the results obtained following conclusions were made

4.5.1 Conclusion of K-Nearest Neighbor Algorithm

Sample

Size

Average

TFIDF

Cyber

Average

Vector

Cyber

Average

TFIDF tweet
Average Vector Tweet

500 36.67 36.22222222 66.22222222 54.8888889

1000 49.22 37.22222222 70.66666667 59.3333333

1500 49.26 39.33333333 73.11111111 62.0740741

2000 42.56 40.55555556 73.05555556 62.2777778

2500 46.49 39.33333333 69.64444444 64.3555556

3000 45.37 43.96296296 74.44444444 65.7777778

3500 45.11 41.26984127 74.31746032 64.0952381

4000 47.56 43.47222222 71.97222222 67.25

4500 48.17 44.56790123 75.30864198 66.5185185

5000 46.47 44.84444444 65.28888889 66.2444444

5500 46.91 44.92929293 68.78787879 68.6868687

6000 46.72 46.05555556 60.33333333 67.3148148

6500 47.56 48.30769231 59.79487179 65.6068376

7000 47.4 46.58730159 60.19047619 67.4285714

7500 46.83 47.67407407 66.75555556 66.1777778

8000 47.56 47.625 60.23611111 69.5972222

8500 49.41 49.9869281 57.68627451 67.3464052

9000 48.77 49.64197531 61.24691358 70.0246914

9500 49.42 52.59649123 57.83625731 70.5497076

10000 49.71 51.65555556 56.97777778 71.1

36

Sample Size
 Average

Accuracy

500 48.5

1000 54.11

1500 55.94

2000 54.61

2500 54.96

3000 57.39

3500 56.2

4000 57.56

4500 58.64

5000 55.71

5500 57.33

6000 55.11

6500 55.32

7000 55.4

7500 56.86

8000 56.25

8500 56.11

9000 57.42

9500 57.6

10000 57.36

The data set used for the experiment is the “tweeter data set” other use the “cyber troll data

set”. The techniques that are applied to the data set are Vectorization and TFIDF. For each

data set and technique there are three n-gram ranges [(1,1) ,(1,2), (1,3)]. The size of both

data set is 10k. Training starts from 500 entries and gradually increases to 10K. Accuracy

is recorded as data size increases. After which average of three n-grams is calculated for

each dataset and technique which gives a total of 4 new-accuracies (frequencies) and

37

plotted against the increasing data size on the x-axis and accuracy on the y-axis. From

which it is observed that for each frequency accuracy increases rapidly until 1.5k data size

after which increase becomes gradual until 4.5k. Outer-fitting is observed TFIDF in the

case of both algorithms while for Count Vector overfitting is negligible. From 1.5k to 4.5k

average increase in accuracy is 2%. It is also observed that after there is some overfitting

from 1.5k to 4.5k. At 10k the average accuracy is 57% which is only 2% more than what it

was at 1.5k. With possible underfitting. Finally, the average accuracy of a whole

experiment is computed and plotted against the data set which also proved that 4.5k is the

ideal data size in the case of KNN.

4.5.2 Conclusion for Decision Tree Algorithm

Sample

Size

Average

TFIDF

Cyber

Average Vector

Cyber

Average

TFiDF

Tweet

Average Vector Tweet

500 54.88888889 56.4444444 74 78

1000 61.11111111 54.3333333 71.88889 75.11111

1500 61.03703704 56.5925926 74 78.14815

2000 59.94444444 59.5 74.77778 73.16667

2500 63.77777778 58.8 76.35556 74.35556

3000 62.22222222 60.1111111 75.11111 77.55556

3500 64.31746032 60.5396825 77.42857 76.79365

4000 64.61111111 60.9166667 76.75 79.47222

4500 66.07407407 62.691358 76.54321 78.5679

5000 66.2 64.2444444 78.73333 78.35556

5500 68 64.0606061 76.62626 77.89899

6000 67.77777778 64.462963 77.7963 77.75926

6500 67.98290598 65.025641 77.09402 78.2735

7000 68.92063492 66.3174603 77.7619 79

7500 70.25185185 66.6222222 78.20741 78.93333

8000 70.19444444 66.5833333 77.61111 79.58333

8500 70.98039216 68.4836601 77.33333 77.94771

9000 72.08641975 68.4444444 78.02469 80.38272

9500 71.59064327 69.122807 79.63743 79.38012

10000 71.75555556 70.1222222 79.05556 79.72222

38

Sample Size
Total

average
500 65.83333

1000 65.61111

1500 67.44444

2000 66.84722

2500 68.32222

3000 68.75

3500 69.76984

4000 70.4375

4500 70.96914

5000 71.88333

5500 71.64646

6000 71.94907

6500 72.09402

7000 73

7500 73.5037

8000 73.49306

8500 73.68627

9000 74.73457

9500 74.93275

10000 75.16389

39

The data set used for the experiment is the “tweeter data set” other use “cyber troll data

set”. The techniques that are applied to the data set are Vectorization and TFIDF. For each

data set and technique there are three n-gram ranges [(1,1) ,(1,2), (1,3)]. The size of both

data set is 10k. Training starts from 500 entries and gradually increases to 10K. Accuracy

is recorded as data size increases. After which average of three n-gram is calculated for

each dataset and technique which gives a total of 4 new-accuracies (frequencies) and

plotted it against the increasing data size on the x-axis and accuracy on the y-axis. It is

observed through this plot that accuracy for cyber data set to increase with an increase in

data-size up-to 5.5k after which there is some outer-fitting with TFIDF and increase rate of

frequency also decreases with the bare minimum rate after 7k for both TFIDF and Count

vector. In the case of the tweeter dataset, the change of accuracy rate remains good up to

5.5k for TFIDF while for Vector Count there is a lot of outer-fitting. Which causes the

accuracy rate to increase and decrease for Vector-Count. For the cyber dataset change rate

also become a bare minimum after 7k. The total average plot also shows that change from

7k to 10 is only 2% so for the decision tree ideal dataset size could about 7k in this case.

4.5.3 Conclusion for Logistic Regression

Sample

Size

Average

TFIDF

Cyber

Average

TFiDF

Tweet

Average

Vector

Cyber

Average Vector Tweet

500 60.8888889 71.33333 56.444444 76.44444

1000 58.5555556 78 57.555556 78.11111

1500 62.7407407 78.74074 61.62963 79.33333

2000 62 80.11111 62.5 78.72222

2500 66.9777778 80.04444 64.577778 79.46667

3000 64.5925926 82.11111 65.333333 81.14815

3500 68.2539683 82.88889 67.333333 81.36508

4000 69.2777778 82.02778 68.444444 83.16667

4500 69.1358025 83.16049 70.296296 82.96296

5000 69.8444444 84.02222 69.666667 84.08889

5500 70.2424242 83.29293 69.939394 83.63636

6000 70.3888889 83.64815 70.722222 83.72222

6500 71.6752137 84 71.059829 83.67521

7000 71.4126984 84.12698 73.142857 84.2381

7500 73.8666667 84.37037 74.311111 85.0963

8000 73.8194444 84.84722 74.833333 84.52778

8500 74.9673203 83.96078 75.594771 84.57516

9000 74.654321 85.49383 74.185185 85.7284

9500 75.3099415 85.25146 76.538012 85.08772

40

10000 75.8444444 85.46667 76.655556 85.63333

Sample Size
Total

average
500 66.27778

1000 68.05556

1500 70.61111

2000 70.83333

2500 72.76667

3000 73.2963

3500 74.96032

4000 75.72917

4500 76.38889

5000 76.90556

5500 76.77778

6000 77.12037

6500 77.60256

7000 78.23016

7500 79.41111

8000 79.50694

8500 79.77451

9000 80.01543

9500 80.54678

10000 80.9

41

The data set used for the experiment is the “tweeter data set” other use the “cyber troll data

set”. The technique that is applied to the data set is Vectorization and TFIDF. For each data

set and technique there are three n-gram ranges [(1,1) ,(1,2), (1,3)]. The size of both data

set is 10k. Training starts from 500 entries and gradually increases to 10K. Accuracy is

recorded as data size increases. After which average of three n-gram is calculated for each

dataset and techniques which give a total of 4 new-accuracies (frequencies) and plotted it

against the increasing data size on the x-axis and accuracy on the y-axis. It is noticed that

the increase in accuracy is gradual throughout the whole dataset. In the case of the "tweeter

dataset" the maximum accuracy is achieved at 6.5k that is about 84% while in the case of

the cyber dataset the change in accuracy remains gradually constant with 71% at 6.5 and

75% at 10k. This is observed for both Vector-Count and TFIDF. From 6.5k to 10k average

increase is 3%. So 6.5k is a desirable size. Although average frequency increases but the

change rate remain extremely little.

4.5.4 Conclusion for SGD Classifier

Sample

Size

Average

TFIDF

Cyber

Average

Vector

Cyber

Average

TFiDF

Tweet

Average Vector Tweet

500 61.7777778 61.7777778 73.55556 71.33333

1000 59.8888889 57.8888889 75.11111 75.55556

1500 59.9259259 58.3703704 76.81481 78

2000 61.3888889 61.3333333 78.44444 77.44444

2500 62.8444444 60.3111111 78.84444 77.55556

3000 60.5925926 60.0740741 80 79.07407

3500 63.2380952 62.0634921 81.49206 80.34921

4000 66.6111111 62.8611111 81.44444 82.25

4500 63.4814815 63.8024691 82.09877 82

42

5000 65.9333333 64.7333333 83.4 83.33333

5500 65.4545455 65.4141414 82.22222 81.59596

6000 66.7407407 66.2222222 82.72222 82.14815

6500 67.4017094 68.3418803 83.55556 82.73504

7000 69.1587302 69.5555556 83.46032 82.95238

7500 70.4444444 70.9185185 84.53333 84.34074

8000 69.7083333 72.0277778 84.41667 83.69444

8500 72.3006536 72.3267974 83.85621 83.69935

9000 72.0246914 72.2345679 85.4321 85.24691

9500 74.3274854 74.1403509 85.05263 84.98246

10000 76.6111111 76.7888889 85.56667 84.8

Sample

Size

Total

average

500 67.11111

1000 67.11111

1500 68.27778

2000 69.65278

2500 69.88889

3000 69.93519

3500 71.78571

4000 73.29167

4500 72.84568

5000 74.35

5500 73.67172

6000 74.45833

6500 75.50855

7000 76.28175

7500 77.55926

8000 77.46181

8500 78.04575

9000 78.73457

9500 79.62573

43

10000 80.94167

The data set used for the experiment is the “tweeter data set” other use “cyber troll data

set”. The techniques that are applied to the data set are Vectorization and TFIDF. For each

data set and technique there are three n-gram ranges [(1,1) ,(1,2), (1,3)]. The size of both

data set is 10k. Training starts from 500 entries and gradually increases to 10K. Accuracy

is recorded as data size increases. After which average of three n-gram is calculated for

each dataset and technique which gives a total of 4 new-accuracies (frequencies) and

plotted it against the increasing data size on the x-axis and accuracy on the y-axis. From

which it is observed that accuracy for tweeter database increase gradually until 6k where it

achieves high accuracy of 82% from where to 10k the increase is barely minimum about

3%. For the Cyber dataset, the increase in frequency remains gradual throughout the

training although it achieves the accuracy of about 65% percent at 6k. Its accuracy keeps

on growing whereas it gives about accuracy of 75% at 10k. . In the case of a total average

plot of 6.5k to 10k, there is a 4 % increase. So the optimum data size should be around 6k

to 7k. Increasing further will only be desirable if computation time is little and the overall

increase in accuracy is high.

4.5.5 Conclusion for Multinomial Naïve Bayes Algorithm

Sample

Size

Average

TFIDF

Cyber

Average

Vector

Cyber

Average

TFIDF

Tweet

Average Vector Tweet

500 66.4444444 64.4444444 71.55556 76

1000 61.7777778 61.6666667 76.11111 76.88889

1500 66.8148148 66.6666667 77.48148 80

2000 69.5555556 68.8333333 79.38889 79.16667

2500 68.6666667 68.2222222 78.53333 79.11111

3000 67.8518519 68 79.03704 80.81481

3500 69.1746032 69.047619 81.74603 81.33333

4000 69.8611111 69.8888889 80.05556 82.52778

44

4500 69.3580247 70.5925926 81.77778 82.02469

5000 70.1111111 70.1111111 81.11111 83

5500 70.8888889 71.6565657 82.42424 81.87879

6000 71.1296296 72.2777778 82.57407 83.05556

6500 73.1111111 72.2905983 82.34188 82.68376

7000 72.968254 73.7301587 82.88889 83.42857

7500 73.2740741 73.2296296 82.91852 84.05926

8000 73.4722222 74.3472222 83.98611 83.86111

8500 74 73.7254902 82.57516 83.9085

9000 74.4074074 73.5185185 83.19753 84.7284

9500 73.7426901 74.6783626 84.07018 84.63158

10000 74.5333333 74.5444444 84.27778 84.81111

Sample

Size

Total

average

500 69.61111

1000 69.11111

1500 72.74074

2000 74.23611

2500 73.63333

3000 73.92593

3500 75.3254

4000 75.58333

4500 75.93827

66.4444444
61.7777778

66.814814869.555555668.666666767.851851969.174603269.861111169.358024770.111111170.888888971.129629673.111111172.96825473.274074173.47222227474.407407473.742690174.5333333

64.444444461.6666667
66.666666768.833333368.22222226869.04761969.888888970.592592670.111111171.656565772.277777872.290598373.730158773.229629674.347222273.725490273.518518574.678362674.544444471.55556

76.1111177.4814879.3888978.5333379.0370481.7460380.0555681.7777881.1111182.4242482.5740782.3418882.8888982.9185283.9861182.5751683.1975384.0701884.27778

7676.88889
8079.1666779.1111180.8148181.3333382.5277882.024698381.8787983.0555682.6837683.4285784.0592683.8611183.908584.728484.6315884.81111

0

10

20

30

40

50

60

70

80

90

Multi Nomial

Average TFIDF Cyber Average Vector Cyber

Average TFIDF Tweet Average Vector Tweet

45

5000 76.08333

5500 76.71212

6000 77.25926

6500 77.60684

7000 78.25397

7500 78.37037

8000 78.91667

8500 78.55229

9000 78.96296

9500 79.2807

10000 79.54167

The data set used for the experiment is the “tweeter data set” other use “cyber troll data

set”. The techniques that are applied to the data set are Vectorization and TFIDF. For each

data set and technique there are three n-gram ranges [(1,1) ,(1,2), (1,3)]. The size of both

data set is 10k. Training starts from 500 entries and gradually increases to 10K. Accuracy

is recorded as data size increases. After which average of three n-gram is calculated for

each dataset and technique which gives a total of 4 new-accuracies (frequencies) and

plotted it against the increasing data size on the x-axis and accuracy on the y-axis. In both

case, TFIDF and VectorCount accuracy increase gradually for both data sets this remain

about 6k after 6k change rate becomes bare minimum even with drastic data size change.

The average accuracy only changes 3% from 6k to 10k. The average accuracy plot also

concludes 6k should be the ideal data size.

4.5.6 Conclusion for SVC Algorithm

Sample

Size

Average

TFIDF

Cyber

Average

Vector

Cyber

Average

TFiDF

Tweet

Average Vector Tweet

500 51.5555556 45.1111111 72.44444 67.33333

1000 52.8888889 46.3333333 77.33333 78

46

1500 55.1111111 52.8148148 79.03704 76.37037

2000 57.9444444 56.9444444 79.61111 77.33333

2500 65.6888889 60.8444444 80.31111 77.51111

3000 62.4814815 64.9259259 81.40741 80.33333

3500 70.9206349 67.5238095 83.14286 80.25397

4000 69.4444444 72.0833333 82.22222 81.80556

4500 71.382716 72.9135802 83.80247 81.97531

5000 72.9111111 72.3111111 84.28889 82.88889

5500 73.5353535 73.1919192 83.55556 82.30303

6000 73.1851852 74.1851852 84.07407 82.27778

6500 75.1794872 72.8376068 84.20513 82.97436

7000 76.031746 75.1269841 84.20635 83.01587

7500 75.3333333 75.2 84.63704 83.85185

8000 76.2222222 75.7222222 84.72222 83.51389

8500 76.7973856 76.5359477 84.36601 83.34641

9000 77.6419753 75.8641975 85.4321 84.1358

9500 77.1578947 77.251462 85.75439 84.03509

10000 77.6555556 77.3777778 85.81111 84.47778

Sample

Size

Total

average

500 59.11111

1000 63.63889

1500 65.83333

2000 67.95833

2500 71.08889

3000 72.28704

3500 75.46032

4000 76.38889

4500 77.51852

5000 78.1

5500 78.14646

6000 78.43056

6500 78.79915

47

7000 79.59524

7500 79.75556

8000 80.04514

8500 80.26144

9000 80.76852

9500 81.04971

10000 81.33056

The data set used for the experiment is the “tweeter data set” other use “cyber troll data

set”. The techniques that are applied to the data set are Vectorization and TFIDF. For each

data set and technique there are three n-gram ranges [(1,1) ,(1,2), (1,3)]. The size of both

data set is 10k. Training starts from 500 entries and gradually increases to 10K. Accuracy

is recorded as data size increases. After which average of three n-gram is calculated for

each dataset and technique which gives a total of 4 new-accuracies (frequencies) and

plotted it against the increasing data size on the x-axis and accuracy on the y-axis. From

which it is observed that for each frequency accuracy increase gradually to 6.5k. In the case

of TFIDF there an increase after 6.5k to 10k less than 2 percent in the case of both datasets.

While for Count Vector this change is a bit high between 3 to 4 percent. When the plot of

total average accuracy is plotted it is also seen there is only an increase of about 3 to 4

percent accuracy from 6.5k to 10k with high accuracy of 78.8% at 6.5k. So in this case

ideal size will be about 6.5k.

48

References

[1]. A. Shenoy, "Text Classification with Extremely Small Datasets", Medium, 2019.

[Online]. Available: https://towardsdatascience.com/text-classification-with-

extremely-small-datasets-333d322caee2. [Accessed: 05- May- 2020].

[2]. F. Nadeem and M. Ostendorf, “Estimating Linguistic Complexity for Science

Texts,” in Proceedings of the Thirteenth Workshop on Innovative Use of NLP for

Building Educational Applications, New Orleans, Louisiana, 2018, pp. 45–55.

[3]. S. Klerke, S. Castilho, M. Barrett, and A. Søgaard, “Reading metrics for estimating

task efficiency with MT output,” in Proceedings of the Sixth Workshop on Cognitive

Aspects of Computational Language Learning, Lisbon, Portugal, 2015, pp. 6–13.

[4]. C. W. Dawson, “A Neural Network Approach to Software Project Effort

Estimation,” vol. 16, p. 9, 1996.

[5]. O. Bisikalo and I. Bogach, “Complexity Class of Semantics-related Tasks of Text

Processing,” p. 9.

[6]. A. Lorena, L. Garcia, J. Lehmann, M. Souto and T. Ho, "How Complex Is Your

Classification

Problem?", ACM Computing Surveys, vol. 52, no. 5, pp. 1-34, 2019.

[7]. Tin Kam Ho and M. Basu, "Complexity measures of supervised classification

problems", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

24, no. 3, pp. 289-300, 2002.

[8]. A. Malinowski, J. Zurada, and P. Aronhime, "Minimal Training Set Size Estimation

For Neural Network- based Function Approximation", University of Louisville.

[9]. M. A. Lee et al., "Sensitivity of hyperspectral classification algorithms to training

sample size," 2009 First Workshop on Hyperspectral Image and Signal Processing:

Evolution in Remote Sensing, Grenoble, 2009, pp. 1-4.

49

[10]. S. Ostrogonac, M. Sečujski and D. Mišković, "Impact of training corpus size on

the quality of different types of language models for Serbian," 2012 20th

Telecommunications Forum (TELFOR), Belgrade, 2012, pp. 720-723.

[11]. O. Abdelwahab, M. Bahgat, C. J. Lowrance and A. Elmaghraby, "Effect of training

set size on SVM and Naive Bayes for Twitter sentiment analysis," 2015 IEEE

International Symposium on Signal Processing and Information Technology

(ISSPIT), Abu Dhabi, 2015, pp. 46-51. 14

[12]. J. Ding, X. Li and V. N. Gudivada, "Augmentation and evaluation of training data

for deep learning," 2017 IEEE International Conference on Big Data (Big Data),

Boston, MA, 2017, pp. 2603-2611.

[13]. Daniyal, W. Wang, M. Su, S. Lee, C. Hung and C. Chen, "A guideline to determine

the training sample size when applying big data mining methods in clinical decision

making," 2018 IEEE International Conference on Applied System Invention

(ICASI), Chiba, 2018, pp. 678-681.

[14]. L. Zhang, "Improving the Efficacy of Artificial Neural Network Training by

Optimizing Training Data for the Simulation and Prediction of

Electroencephalogram Chaotic Patterns," 2018 IEEE 17th International

Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC),

Berkeley, CA, 2018, pp. 145-153.

[15]. M. Martin, B. Sciolla, M. Sdika, P. Quétin and P. Delachartre, "Segmentation of

neonates cerebral ventricles with 2D CNN in 3D US data: suitable training-set size

and data augmentation strategies," 2019 IEEE International Ultrasonics

Symposium (IUS), Glasgow, United Kingdom, 2019, pp. 2122-2125.

[16]. Beleites, Claudia, Ute Neugebauer, Thomas W Bocklitz, Christoph Krafft and

Juergen Popp. “Sample size planning for classification models.” Analytica chimica

acta 760 (2013): 25-33

50

[17]. "TfidfVectorizer – From Data to Decisions", From Data to Decisions, 2020.

[Online]. Available: https://iksinc.online/tag/tfidfvectorizer/. [Accessed: 04- Mar-

2020]..

[18]. Rout, Neelam. (2018). Handling Imbalanced Data: A Survey.

[19]. Mahendru, K., 2019. How To Deal With Imbalanced Data Using SMOTE. [online]

Medium. Available at: <https://medium.com/analytics-vidhya/balance-your-data-

using-smote-

98e4d79fcddb#:~:text=Find%20its%20k%20nearest%20neighbors,steps%20until

%20data%20is%20balanced> [Accessed 11 April 2020].

[20]. A. Chakure, "Decision Tree Classification", Medium, 2019. [Online]. Available:

https://towardsdatascience.com/decision-tree-classification-de64fc4d5aac.

[Accessed: 17- Apr- 2020]

[21]. [3]"Naive Bayes text classification", Nlp.stanford.edu, 2020. [Online]. Available:

https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-

1.html. [Accessed: 23- March- 2020]..

