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Abstract

Function profiling is a mechanism used by developers, performance analysts and architects to

evaluate resource usages of a particular function. When coding was done locally and deployed

in local or in-house servers profiling was used as a method to evaluate the performance of a

program. With the emergence of Serverless the function deployment environment no longer

reside on a local Server. The runtime is not accessible for the developer and is maintained

by an external entity. With a minimal availability of system information developers are using

brute force techniques to identify the required memory parameter for function deployment. The

public unavailability of the underlying CPU allocation which correlates to the provided memory

parameter intensifies the requirement for the use of brute force methods.

This study presents a Proof of concept and an experimental study to define how function

profiling can be used to provide a combined memory parameter out of CPU, memory and

running time produced by a profiler. The resulting output is then mapped against a memory

configuration for function deployment in a Serverless environment. In the two fold research

methodology selection of profilers and the platforms are carried out as proof of concept. Then

the proof of concept is converted to an experimental study to deep dive into Serverless platform

to observe the behavior of Serverless memory and CPU. Finally, by utilizing regression models

a fine-tuned cost estimation function is defined.

The study successfully updated the knowledge over mapping local CPU time to Serverless

CPU time based on thememory parameter with a linear regressionmodel. This further optimizes

the running time of a function which is expandable in a range of CPU parameters and Memory

configurations.

With the understanding of the underlying environments, functions for estimating Serverless

function. The profiler techniques, CPU time-sharing and Serverless cost estimation are the

primary outputs of the research. Which is then backed with an algorithm definition to develop

an analysis tool to achieve cost optimizations in a Serverless platform using function profiler

"memory_profiler" and scalene for Python.
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Chapter 1

Introduction

1.1 Background

The evolution from Mainframe application development to Serverless application development

(Mainframe → Client/Server → Service Oriented Architecture (SOA) → MicroServices

Architecture (MSA)→ Serverless) welcomed various programming and deployment models to

computer science. Each of these paradigms introduced unique characteristics to computing and

contributed towards reducing programming complexity, cost-effectiveness, resource

management, and improved scalability. Improvements to Program Architecture, Application

modeling / Design, and new technologies are part of the major value additions introduced by

each of these paradigms. Monolithic and large application systems have been transformed into

distributed, small-scaled, decoupled and individually functioning components. Application

development and deployment have become a combination of development, DevOps,

monitoring, and maintenance. Therefore, developers are concentrating on service distribution,

integration, scalability, load balancing, and orchestration of application instead of worrying

about the platform configurations.

Alongside the evolution of development practices, a paradigm shift towards Cloud-based

IAAS platform have become the infrastructure for the new deployment models. Serverless

deployments bridge the gap of requiring specialized experience for infrastructure knowledge on

IAAS platforms with configuration less coding. Serverless Computing (or simply serverless) is

emerging as a new and compelling paradigm for the deployment of cloud applications, largely

due to the recent shift of enterprise application architectures to containers and microservices

[1]. Serverless provides a simplified programming model while reducing the knowledge over

infrastructure required by the application developer. Also, it provides a cost reduction for cloud
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services while paying only for the resources for running time of a specific service. All these

flexibilites are maintained at the platform provider end while application developer concerns

about the development architecture of the application or service.

Figure 1.1: Interest Over Time for the term “Serverless” in Google Trends. [2]

Although Serverless has been a novel concept, within two years there has been an increase

in Google search trends for Serverless (figure 1.1.) This implies the growing interest in the

concept of Serverless. According to Baldini et al. [1] the primary value addition which brings

in such attraction is the ability to scale from 0-n while developer not having to worry about

the operational aspects such as deployment, maintenance of the code, fault-tolerance and auto-

scaling. In particular, the code is scaled to zero where no servers are running when the user’s

function code is not used, and there is no cost to the user. The same advantage in return has

introduced design complexities over managing costs when spikes in resource usage. This is due

to the pricing on Serverless depends not on the infrastructure but on the resource usage over

time and the number of requests served.

1.2 Problem Definition

As described in Costless by Elgamal et al. [3] the pricing for an AWS Serverless function

depends on the following factors.

1. The number of times each function is executed per month (e.g., 1,000,000

executions/month).

2. The memory allocated to the function by application developers. The CPU resources

allocated to the function represent an implicit parameter. This parameter value is

proportional to the function’s allocated memory (i.e., a 256 MB function is automatically

allocated twice the CPU speed than a 128 MB function).
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3. The duration how long the function runs.

4. The price per 1 GB of memory and 1 second of execution. For AWS Lambda, the price

of 1 GB and 1 second is 0.00001667$/GB-s [4].

When generalized across the commercially available Serverless Platforms the cost function

primarily depends on two key parameters.

1. Number of requests for each function

2. Amount of compute resources used per execution (Compute Charges).

PriceTotalCost � PriceComputeChar ges + PriceNumberO f Request (1.1)

Based on the primary costing factors the abstract function to describe the costs over serverless

functions can be described as in equation 1.1.

Table 1.1: Cost Breakdown for Commercial Serverless platforms [4] [5] [6] [7]

Platform Per request cost (Per M) Compute cost (GB/s)

AWS Lambda 0.20 1.67 ∗ 10−5

IBM Cloud Functions 0 1.7 ∗ 10−5

Google Cloud Functions 0.40 2.5 ∗ 10−6

Azure Functions 0.20 1.6 ∗ 10−5

All the commercial function platforms identified in Table 1.1 use the same primary

parameters to calculate the cost. However, for a more fine-grained cost calculation, we should

consider all the factors used in equation 1.2 [3] which provides a precise calculation of costs.

PriceTotalCost � T(C1 ∗ S ∗ M
1024

+ C2) (1.2)

T = Total Number of Requests for the period

S = Average compute seconds per execution

C1 = Cost per GB / Second

M = Memory limit assigned for the function in Megabytes

C2 = Cost Per Request
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The equation 1.2 describes how the listed factors contribute towards the overall cost of a

function execution for a given time period. The implication of this function is to manage costs

born by serverless function. Therefore developers should be aware of all the above parameters.

However, no of requests directed at a function is out of the control of the developer unless there

are certain throttling policies involved to restrict the calls. Else the function should be available

for any number of calls directed at it.

Considering CPU used for a function equation 1.2 doesn’t include clear indications on how

CPU is considered for either runtime or the Cost. The CPU allocation for each function is

decided by the amount of memory configured for each function. Individually the Serverless

platforms have their own method of correlating the memory configuration to underlying CPU

allocated for a function.

In the case of AWS Lambda [8] the underlying CPU allocation for memory has a 1:1 linear

mapping. However, the same text claims that it is not guaranteed to provide the exact mapping of

the CPU to every function. With reference 1.2 how Google cloud functions allocate underlying

CPU resources, it doesn’t hold a linear distribution as well. Therefore, deciding the direct

memory to CPU mapping for a function runtime is in question.

Figure 1.2: Google Cloud Functions Memory to CPU allocation

Eventually given that the CPU allocated is directly proportionate to the amount of memory

used, this leaves the developers with making decisions over memory allocated and the running
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time of a function. We cannot strictly define that with less amount of memory the function

will provide a cost-effective running time. Also if we increase the memory for a function we

would improve on the time but pay extra for the memory that is not utilized. Hence, developers

require to find a balance between the allocated amount of memory and the optimal running time

expected from a function.

This leads us to the problem of how can a developer determine the optimized memory

parameter for a Serverless function before it is deployed in a Commercial Serverless platform.

1.3 Aims and Objectives

The research problem has sub-components that can be extracted to formulate the primary

objectives of the research. The following can be identified as the primary objectives expected

by this study.

1. Identify function profiling approaches to obtain optimized CPU and Memory parameters

for Serverless functions.

2. Provide an algorithm to map memory and CPU parameters taken from profilers to vendor-

specific memory configuration.

3. Reduce overall Serverless cost by optimized memory and running time parameters.

1.4 Scope of the Study

The intention of the study is to identify profilers which is capable of executing a Serverless

function locally. Then the profiler outputs are used to evaluate the running time variables on

a Serverless platform to provide an estimated output of the potential running time. Within the

scope of this study the intention is to provide an estimation for the running time and the total

cost.
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1.4.1 Function Profilers

With the availability of multiple function profilers currently available the study is scoped into

identifying a profiler out of the existing profilers. Rather than to re-invent a profiler that is

capable of providing the CPU and Memory parameter is considered. Based on the need the

changes were introduced to profilers such as function entry points to adapt to the nature of

Serverless functions.

1.4.2 Runtime Language

With the nature of Serverless functions if a pre compilable language is used there will be an

addition of compilation time for the container startup. This also adds memory overhead on the

function execution which will create outliers on the results. Hence function runtime language is

selected as Python. Since the Serverless platforms tend to provide the latest versions of runtimes.

For Python the version selected is 3.8.

1.4.3 Experimental Setup

The experimental setup consists of two primary environments one of which is a local developer

environment and the other an existing serverless platform. The local developer environment is

used to estimate the parameters for the function from the developer perspective and then it is

deployed on the Serverless environment with the values derived through the function 4.18. The

Serverless platforms used to run the setup is AWS Lambda and GCF.

1.5 Structure of the dissertation

Following is the summary of how each of the chapters are organized in this study. In chapter 2

the background which relates to the current study is analyzed using already published literature

by other researches. By providing a contrast between recent literature the possible research gaps

are identified to create the research questions addressed in this study.

In chapter 3 the research methodology followed in this research is described. The usage

of mixed-method research methodology is describe on how the POC and experimental study

is designed. The background functions, experimental setup and selection of technologies is

described further in this chapter. Finally the expected research outcomes are listed.
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Chapter 4 includes the details on how the proposed solution is implemented with the options

for multiple regression functions. The outline for how the research is analyzed step by step to

achieve the final outputs are further explained in this chapter.

With the completion of proposing the solution with multiple options for evaluation the next

step is to evaluate and obtain results for each. In chapter 5 the evaluation process is explained on

how the selection of profilers and estimator functions are finalized. This includes the summary

of the results obtained during the evaluation which are discussed in detail to provide required

support for the claims made.

Finally in chapter 6 the research is concluded with a discussion on obtained results and the

potential future extensions of the study.
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Chapter 2

Literature Review

2.1 Serverless Architecture

From the transformation of just being a buzz word to a real-world concept, Serverless has

transformed quite a lot from its inception. Therefore, a lot has changed in between and the

research areas have been updated constantly. Understanding the current architectures and how

Serverless is leveraged in the present context is critical. To understand the current state of the

Serverless platforms we can refer the Thesis by Bolscher [9].

This study has extensively discovered the challenges faced in Serverless space concerning

widely used cloud computing concepts. two out of five research questions addressed in the

study concentrates on providing a solid background for what is Serverless. When considering

the strong areas of Serverless discussed in the thesis it has covered

1. Granular Scaling of Serverless

2. Resource optimization

3. Reducing Operational costs

4. Novel Architectural opportunities

5. Improvements to current development processes

Also, as part of the advantages of Serverless the research also has covered the drawbacks

and current challenges faced by Serverless.

1. Performance challenges

2. Development and Operational complexities
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3. Function composition

4. Monitoring complexities

5. Migration efforts

6. Threats of vendor lock-in

7. Security concerns

8. Reducing operational costs

With in-depth explanations and citations to the above points, the researcher has

comprehensively analyzed the improvements gained by developers. While shifting over to the

Serverless platform the revelations on potential drawbacks help developers to avoid taking

unaccounted decisions while adopting Serverless.

The research methodology applied in the study Design Science Research Methodology

(DSRM) is considered a design science research methodology used in Information Systems (IS)

researches [10]. The intention of this methodology is to provide a Serverless architecture design

framework for Serverless architects based on the best practices identified through a thorough

back ground study. The same methodology opens up space to test the framework and evaluate

with domain expertise. Since, the evaluations are based on case studies rather than on empirical

data or evidence the adopted approach is a viable approach for the study and the researcher has

followed the defined methodology accordingly.

Rather than just being an Architecture Serverless had to evolve as a technology which

incorporates to the current use cases of the consumers. The design and implementation of such a

platformwas considered a huge effort due to technological advancements required. The study by

Scott et al. [11] discuss in-depth on how the datacenter evolutionwith virtualization has achieved

the feat of successfully creating an opensource Lambda platform identified as OpenLambda.

Within this research the evolution of the Serverless concept is identified and conveyed on

how the evolution of the non shared machines converted to application-level lambda sharing

environments. Also, the performance gains achieved by simplifying the function deployment is

further discussed at the background study to start the research.

Later an in-depth analysis of the Serverless programming model, advantages of Lambda

architecture and the design principles attached around the development of OpenLambda is

discussed. The technological concerns such as execution engines, Interpreted Languages,

Package support, Cookies and session management, Databases and data aggregators are
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discussed in detail. For each of these components the benchmark values to be considered and

the data models are defined so that a future adopter would be able to go through the

fundamental areas of Serverless implementation technologies.

While the following quote "Achieving these cost reductions however is not as straightforward

as it might appear, the potential savings of serverless computing ’heavily depend on the execution

behavior and volumes of the application workloads’" [9] conveys the idea that Serverless still

needs means of reducing costs over deployments. This is due to the volume of application

workloads are out of the control of developers at the moment. Hence this particular study has

concluded that the current solution of estimating costs for Serverless is to deploying the code and

running it for the expected load for some time. Which is one of the conclusion I tend to disagree

with since later efforts like Costless [3] [12] has thoroughly studied on estimating beforehand

and reducing costs of Serverless functions.

Therefore, the current research will be used to strengthen the above claim that cost of

Serverless can be estimated beforehand and provide a meaningful approach to estimate the

volume of application workload beforehand.

2.2 Virtualization for Serverless platforms

In Serverless environments the execution environments are virtual machines which are running

in a shared environment. The demand for cost-effective deployments is a concern of the platform

provider. Adopting virtualization environments have become the best solution for reducing the

cost of deployment, instance autoscaling and to achieve efficiency in hardware resources. The

study by Alexandru et al. [13] describes how AWS Lambda [14] utilizes virtualization for the

underlying runtime environment. Within the study the researches who are from Amazon Web

Services team has explained how the traditional Virtualization techniques are optimized to be

used with Serverless platforms.

The options of Container-based isolation, language-specific isolation and hardware-based

virtualization are considered while building up Firecracker [15] as a KVM (Kernel-based Virtual

Machine) for AWS Lambda. Achieving multitenancy through virtualization and the rationale

behind the selection of Linux kernels is described as a decision made based on security, code

compatibility and memory footprint of the kernel. On top of the selection of Linux kernels

further evaluations are done based on isolation of hardware, overhead and density of running

thousands of functions within a single virtual machine, performance compared to running a

native function against a virtual container, compatibility against various Linux binaries without
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modifications to the original binary, Fast switching between functions and Soft allocation of

CPU and Memory resources. The evaluation performed to measure the properties described

above to produce a comparison between Boot time, Memory overhead and IO performance.

The best evaluation the study has received is the successful production deployment of AWS

Lambda where it processes events in trillions every month. The findings made within the study

by Alexandru et al. [13] has been used within AWS Lambda since the version 2 of Lambda

platform.

Apart from using Linux kernels for Serverless environments the Microsoft also rethought

their strategies on providing a Serverless platform on Microsoft Azure. The study by McGrath

and Brenner [16] presents how a Windows container-based function deployment and execution

platform is built. The objective of the study is focused on providing a performance-oriented

Serverless computing platform on top of Windows servers. The implementation of the study

utilizes .NET, Azure storage, Azure storage queues, Azure storage tables and Azure storage

blobs which are bound to technologies provided by the Azure platform.

With compared to AWS Lambda the Azure functions [17] instead of running a KVM based

virtual machines it utilizes Docker with Windows Nano Servers. The underlying docker images

are built with the respective running time language to allow the execution of multiple function

languages. The execution function is attached to a container using a read-only volume which is

attached during the container startup.

With the implementation of the prototype platform the study by McGrath [16] has done an

in-depth comparison against AWS Lambda, Apache OpenWhisk, GCF and Azure functions.

Which improves the current performance of Azure functions. However, compared to other

Serverless platform performance on concurrent requests and back off time both the prototype

and the Azure functions are very low in performance.

Although both studies by Alexandru et al. [13] and McGrath [16] describes how respective

Serverless platform architects its underlying virtualization environment both of the studies

doesn’t mention how the CPU allocation is performed. For AWS lambda the only information

about the underlying CPU allocation is in the form of [18] where it refers to the CPU allocation

as proportions to the memory. In the study by McGrath [16] and Azure documentation both

confirms that the CPU allocation is decided proportionally based on the memory parameter.

Which opens up a gap to be researched into.
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2.3 Costs of Serverless vs Monolithic architectures

To bring out a solid argument on the savings achieved by a certain technology one should compare

and contrast it to the other existing technologies. Monolithic and microservices architectures

being the predecessors of Serverless architectures the ideal comparison would be to compare

costs of Serverless with these architectures. The study by M. Villamizar. et al. [19] has

addressed this concern. Using a case study approach the researchers have created environments

for Monolithic, Cloud, Microservices and Serverless to execute the same functionality. This

application has a simple API exposed which accesses a backend relational database to retrieve

some information.

Application functionality has been maintained consistently while the underlying deployment

architecture changes according to the deployment pattern. Based on the deployment architecture

each of the selected platforms has introduced various points of costs due to the requirements

for that specific architecture. This means for each deployment developers had to worry about

different points where costs will be introduced and saved. Formicroservices, it was the additional

number of nodes and methods of scaling. For Cloud deployments the costs for the vendor and

gateways. For Serverless in this case AWS lambda function run time and memory parameters.

The external elements such as internet access from a local machine and the connectivity

to the backend database is kept consistent in all the architectures which is a key point in the

study. Also, when it comes to language selection the programmer has been stuck to MVC

web framework architecture since the requirement to maintain a three-tier architecture was

present. Hence, the application which is deployed in each of the platforms has used the Play web

framework with Jax-RS. Given the requirement we can decide that the selection of languages

in this context is properly validated. However, in order to avoid startup delays encountered by

tomcat or other types of heavy weight Java web servers the researchers have opted to Netty and

Jetty which are by design intended for faster startup times and consumes less resources. This

particular choice of technology raises some doubts on how the developer has accounted for the

same startup time delays in Serverless functions. This is due to the fact the selected serverless

platformAWS lambda doesn’t disclose the information on what type of runtime web servers used

within the functions. Therefore, in relation to autoscaling provided by the Serverless platform

the comparison between response time can be considered for questions. Also, this has quite a bit

of impact for the memory used by the runtime since it should account for the memory utilized

by the runtime web server as well. Hence, for the current research we have to consider a runtime

which doesn’t necessarily require a web server to run the code within environments.
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The most highlighting fact about this research is the approach taken to test each of these

environments and configurations. Although the same JMeter script is used for testing in order

to leverage between two scenarios where the specific services work the 2 web applications

with varying deployment parameters are exposed to the tests in a percentile manner (20/80,

50/50, 80/20). For each architecture respectively two services are exposed with the mentioned

percentiles. Later with the results produced the architectures are compared for the costs incurred

by each of the scenarios. In return comparison of the results between each architecture provides

a strong basis to be compared based on how each platform would behave with respect to external

stimulators as well as within non-stimulated environments.

With the conclusion, the study has revealed that by moving to cloud and Serverless the

developers can reduce costs by a margin of 77.08 % and the higher the number of requests been

made to the application higher the savings become. Which in return provides a solid background

to the current research that moving to Serverless for the benefit of costs resides at the number of

invocations done in a period.

With the future works of the same study the writers has highlighted that the need for

evaluation of memory, I/O and network-intensive services used in these platforms. Within the

scope of the study they have only evaluated the usage of single memory parameter and single

platform (AWS Lambda). The usage of a memory parameter has clearly affected the study since

it is a key cost reduction factor. Also, since these applications and the lambda functions are

not memory, CPU intensive the parameters they have used in the configurations might have

been reduced. Hence, resulting in more cost savings and further extending the outcomes of the

research. This highlights the fact that the requirement for pre analyzing the memory parameters

even for the contexts of research is still not touched and properly studied.

2.4 Costless

Consumers of Commercial Serverless platforms are constantly refining how they manage costs

on Serverless deployments. These efforts mainly uses trial and error approaches and tend to

be less publicized. Concerning scientific studies focused in this area, Costless [3] has done a

thorough study on how should Serverless developers plan, manage and implement functions

with the focus of managing costs. This study has individually considered Amazon Lambda and

Lambda workflows to provides a thorough and holistic idea of where a chain of functions has its

cost implications. Furthermore, this has supported the claims of reducing costs by organizing a

sequence of functions considering the total cost.
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Rather than purely highlighting the Serverless function the aspect of placing the function in a

SaaS vendor is considered in this research. The function fusion approach discussed in this study

analyses how complex functions can be split into multiple functions considering the cost factors

involved. However, the fusion has been done with the use of AWS workflows and Lambda state

transitions. The split functions are then evaluated with several function placements on edge

devices, VMs and Lambda to further contrast the cost gains by the use of Serverless.

The identification of the factors affecting Serverless pricing and formal definitions of the

pricing formulas are another set of key information that is reusable for further studies.

Highlighting the factors affecting the cost and evaluating the impact of changing these

parameters is done throughout the whole research. The usage of cost graphs to illustrate the

flow of costs can be considered a valuable approach when used in cost-related research.

With regards to single function performance and memory parameters, the study has

considered several memory parameters. As stated in the publication, the approach toward

deciding memory parameters for the function is by using Function Profiling. However, they

haven’t mentioned or not provided any solid background on this decision and nor they have

provided the method or techniques used for function profiling.

As a function, Costless [3] has used an image processing workflow for face detection and

creating a thumbnail with an index. This is a solid reference to begin the current study.

Since the current research approach is on how to use function fusion (Collection of functions)

and function placement (Function deployed location AWS Edge device or Lambda) the study

had to tweak memory parameters based on the outputs of each fusion. Hence the consideration

over fine-tuning memory has been considered partially. Therefore, the same research brings out

the necessity of a focused study on how to optimize Serverless memory parameters for better

results.

2.5 Cross platform resource characteristics

Understanding runtime configurations of a Serverless platform is critical for the current research

as it relies mainly on the underlying CPU and memory relationship of each platform. The

requirement to understand how each of the platforms deal with underlying resources for each

configuration should be well understood. In [20] the researches have deep-dived into each of the

following Serverless platforms AWS Lambda, Google functions and Azure functions. By doing

so they have managed to demystify the correlation between memory to CPU allocation for each

of the platforms.
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Figure 2.1: The median instance CPU utilization rates with min-max error bars in AWS and

Google as function memory increases, averaged across 1,000 instances for a given memory size.

[20]

Using python-based applications to access the host containers of each of the function runtime

the study has read the information within. This approach has greatly contributed for the report

as it is able to directly read the information. Also, this has revealed that for each of the platforms

for the same memory configuration there could be several types of CPU available hence the

runtime for each function should may differ. Using the above results they have strengthened the

claims done by Chapin in his blog publication [21] where he was able to observer inconsistent

behavior of running for a Fibonacci function for various memory parameters. The figure 1.2

illustrates the relationship between CPU for each of the memory parameters.

The behavior of how the CPU allocation changes according to study has its unique

characteristics for each of the platforms. Numerically AWS lambda has an increase of CPU

utilization rate from 7.7% to 92.3% (SD 0.7% and 8.7% )as memory increased from 128 MB

to 1536 MB. With related to Google cloud functions the increase has ranged from 11% to

100%. The ability to co-reside functions in the same container has also been evaluated within

the same function and has met with similar results since each of the platforms are managing the

concurrent function requests to be able to use the ample amount of resources from the system.

The availability of the source code by the researcher as an Open Source repository allows to

update the same values to the date since the study was publicize in February 2018. Also, the

study strongly backups on the fact that there is a requirement for an analysis on how developers

should consider memory parameters with caution given that the underlying CPU resources tend

to vary for each invocation. Hence, the impact on running time for various CPU configurations

need to be analyzed before hand.
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2.6 Function Profiling

Evaluating a function before deployment may seem impossible, given the nature of function

behavior. However, in cases of performance optimization developers and performance engineers

use profiling techniques. To gain an understanding of the current profiling techniques [22] in

their study to Linux profilers has done a thorough explanation of what are the existing profiling

techniques which are used,

1. Instrumentation Techniques

2. Sampling Techniques

3. Line-by-line

These techniques are used in a variety of domains for performance analysis and this particular

study they have explained on how Linux profilers are used for Kernel and Code run within.

Figure 2.2: Gprof call graph output [22]

With the output results from the Gprof tool Figure 2.2 it is evident how an Instrumentation

approach could be used to get the base idea on how sample invocations are profiled for memory

usage for an average period. This provides a base approach towards the current study to provide

the feasibility of adopting the existing profilers to get the initial parameters for a valid memory

configuration.
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2.7 Research gaps

Based on the literature discussed above the following are identified as the research gaps to be

filled within this study.

1. Adapting serverless functions for the volumes of load with cost-effectiveness.

2. Multiple studies depending on guessed memory parameters for functions emphasizes the

need to pre-define the memory parameters.

3. A deep dive and fine-tuning how CPU allocation works within each Serverless platform

to provide a quantifiable memory to CPU mapping.

2.8 Research Questions

Based on the identified research gaps the research questions are derived.

2.8.1 Research Question 1

The analysis of Elgamal et al. [3] shows how they have involved function profiling to provide

a ballpark figure of memory parameters. However, there is a requirement to do an in-depth

analysis of the use of function profiling to pre-determine the memory parameters of a Serverless

function. Therefore the first research question is derived based on the above argument,

What are the suitable function profiling techniques to define memory parameters for a

Serverless function?

2.8.2 Research Question 2

AsServerless platforms have their correlation betweenmemory andCPU thememory parameters

provided by the function profiler alone cannot be directly used to define the Serverless memory

parameters. Hence the requirement to define a formula to convert the profiler output parameters

should be identified. Which results in the next research question,

What is the formula that is capable of converting profiler CPU and Memory parameters into

the Vendor-specific Serverless function memory parameter?
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2.8.3 Research Question 3

With the memory parameters defined on a Serverless Function when reducing costs, the memory

parameters should be capable of optimizing the running time of the function as well. In return,

the function would provide a balance between the memory and running time to manage/reduce

costs spent on a function.

Can the memory parameter and execution time provided by function profiling be used to

reduce costs of Serverless by defining the optimal memory configuration?
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Chapter 3

Methodology

3.1 Research Methodology

Based on the hypothesis "Function profiling can be used to define memory parameters of a

Serverless function to reduce costs by optimizing the running time" the research methodology is

formulated as follow. The study uses mixed methodology research which consists of a proof of

concept combined with an experimental research figure 3.1. The rationale behind the selection

of mixed methodology is to address multiple axis of the research. The proof of concept is used

to initially validate the theory that function profiling can be used to provide the deployment

memory parameter (CPU and memory usage) for a Serverless function before it is deployed in

a platform. Followed by the proof of concept the hypothesis was tested using the experimental

method. This is to identify the optimization of costs on a particular Serverless function based

on the resulting deployment memory parameter. An evaluation condition that has to be met is to

achieve cost-effective memory allocation and running time of the function without brute-force

trial on the deployment platform.

The study started with an extensive background study surrounding the current status of

Microservices and Serverless. Since Microservices have been a primary enabler for the

Serverless eco-system it was considered in the background study to understand the supporting

technologies. The background study also required to understand CPU utilization models and

memory allocation for functions this provides context to real-world profiling. The literature

study was conducted with references to recent studies which covered the current status of

Serverless, Costs of Serverless and traditional architectures, CPU and Memory utilization

techniques, and existing function profiling techniques. Based on the problem, background and

the existing literature research gaps are identified.
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Figure 3.1: Research Design
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3.2 Research Design

After the definition of suitable research methodology the research design is carried out to define

how each research questions 2.8 are addressed using the particular methodology. The figure 3.1

shows the flow of research on how each step is carried out.

3.2.1 Environments and parameters

The base of the study required to consider the fact of themodel’s compatibility between developer

environment and a Serverless platform. Therefore, maintaining the consistency between these

environments was considered from the beginning. Hence, the following control parameters

needed to be implemented at the beginning of the research.

1. Function runtime language

2. Function execution and evaluation Serverless platform.

3. Variant memory utilization function based on input parameters.

4. Variant CPU utilization function based on input parameters.

5. Mixed CPU and memory function based on input parameters.

6. Local function environment.

7. Control function execution environment.

Function runtime language

The above elements are utilized with Proof of Concept, Memory mapper experimental study

and in the evaluation. Maintaining the consistency between the environments as well as the

input parameters were key hence the functions are written to accept input parameters which will

determine the resource usage by the function.

Runtime language selection was to be performed on the availability of the language on

AWS Lambda and GCF, the dynamic or compiled language in order to avoid latencies added

by the cold-start performance issues, high costs and compilation during startup, availability of

standalone profilers.
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Table 3.1: Language selection matrix [23] [24]

Language AWS GCF Dynamic language Standalone profiler

Node Js X X X X

Python X X X X

Java X X X X

C# X X X X

GO X X X X

In addition to the above characteristics Python has been also used in several of the recent

studies [20], [25]. Since, the most recent version of Python supported by each of the platforms

are 3.7 and 3.8. Giving the priority to the latest version for this study the Lambda functions are

written in Python 3.8.

Function definition

The requirement to evaluate the platform CPU and Memory utilization the requirement for

variable functions based on input parameters is required. The functions should be able to

generate load on CPU andMemory individually. Although total independence between CPU and

Memory cannot be achieved the functions required to be focused on each parameter individually

while keeping the other low. For this requirement following key characteristics are considered.

• CPU function should utilize 100% of CPU for the total period of execution.

• Memory function should be able to utilize various memory values based on an input

variable.

• The ability to calculate the function running time.

• A combination function for both CPU and Memory utilization.
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Listing 3.1: Variable memory function

def memory_func ( v a l u e ) :

d = {}

i = 0 ;

f o r i in range ( 0 , v a l u e ) :

d [ i ] = ’A’ ∗ 1024

i f i % 1000000 == 0 :

pr in t ( i )

i f __name__ == ’ __main__ ’ :

memory_func (2000000)

Based on the above concerns there were two initial functions defined. Amemory function 3.1

which creates in-memory arrays for the number of values provided as input. The number of

arrays created changes based on the input variable and the memory utilization varies accordingly.

The correlation between the input integer to the highest memory used by function is linear. When

mapping with the lambda or GCF environments simply the code is changed at the point of access

which does not affect the algorithm and the code lines within the function.

The next function 3.2 is a Fibonacci sequence which uses CPU to the ≈100% to calculate

the Fibonacci values for the defined range. Based on the amount of CPU allocated for this

particular function while utilizing CPU to ≈100% the function running time depends mostly

on the available memory to utilize the function. When CPU time-sharing is involved the

same function uses the maximum CPU share to ≈100% for the sequence calculation. The key

advantage of using this particular function is, based on the CPU power allowed to the function

the running time of the function varies. Therefore, this function is used to correlate running

time taken between local, control and function platform environments 3.2.2.
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Listing 3.2: CPU Fibonacci function

def f i b F u n c t ( ) :

n t e rms = i n t ( input ( "How␣many␣ t e rms ?␣ " ) )

# f i r s t two t e rms

n1 , n2 = 0 , 1

coun t = 0

# check i f t h e number o f t e rms i s v a l i d

pr in t ( " F i b o n a c c i ␣ sequence : " )

whi le coun t < n t e rms :

n t h = n1 + n2

# upda t e v a l u e s

n1 = n2

n2 = n th

coun t += 1

i f __name__ == ’ __main__ ’ :

f i b F u n c t ( ) ;

The Memory CPU function 3.3 is a combination of both the Memory function and CPU

function to generate loads on both Memory and CPU for the evaluation purposes. This function

is especially employed to evaluate how the black box CPU time-sharing is converted through

the experimental analysis 5.1.

The underlying CPU time sharing of function platform was analyzed with a specialized

function which generates maximum CPU load for a period of seconds. The fundamental for

this function was extracted from [20] where the Python time() function is called for a consistent

period of time. This generates a maximum capacity within each CPU the function runs in.

The consistent CPU utilization for a defined time period generated the required information to

examine the CPU time sharing percentage from the underlying host machine.
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Listing 3.3: Memory CPU function

def fibMemCPU ( va l u e ) :

n t e rms = va l u e

# f i r s t two t e rms

n1 , n2 = 0 , 1

coun t = 0

d = {}

whi le coun t < n t e rms :

n t h = n1 + n2

# upda t e v a l u e s

n1 = n2

n2 = n th

d [ coun t ] = ’A’ ∗ 1024

i f coun t % 100000 == 0 :

pr in t ( coun t )

coun t += 1

i f __name__ == ’ __main__ ’ :

fibMemCPU (2000000 ) ;

3.2.2 Experimental Setup

Due to the nature of the problem the key concern is developers been able to decide the memory

parameter of a Serverless function. This should be achieved without involving brute force

techniques against a Serverless platform. Therefore, the function should be evaluated in a

developer environment prior to be deployed in a Serverless platform. The experimental setup is

required to replicate this behavior which will validate the realtime application of the solution. It

was initially decided to create two environments Local developer environmentwhere the function

will be profiled for deployment parameters, the Serverless environment where the deployment

parameters will be tested. Later, it was decided to add a third environment which is a control

environment to revalidate the local parameters and to avoid overfitting to the local environment.

Two out of three environments are under the control of the researcher while the third

environment which is the Serverless environment is only manageable by the parameters allowed
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to public developers. From the two local environments one is the developer environment which

is a personal computer and the other been a container running on the same machine. The local

developer environment is Mac OS 2.9GHz QUAD Core - Intel Core i7 CPU with 16 GB of

memory. The control docker environment is a docker image built on top of python:latest Ubuntu

20.04. The docker file 3.4 is the sample image build file for the virtual environment. Since

this control environment is running in a virtualized environment it is also guaranteed that it

doesn’t get affected with the processes running in the local developer environment. Another key

advantage on the control environment is the ability to adjust the resource allocation during the

startup to provide varying resources to evaluate the results generated.

Listing 3.4: Docker file

FROM python : l a t e s t

# i n s t a l l mprof p r o f i l e r

RUN p ip i n s t a l l −U memory_p ro f i l e r

# copy ing t h e f u n c t i o n code t o t h e c o n t a i n e r

COPY MemoryFunction . py /

The execution function code is copied to the root (/) of the container for execution. The

container is started with the following command docker run -it –cpus=".1" –memory="1g"

mpmunasinghe/research-doc:latest bash. This will spawn a container with 0.1 percent of

total CPUs in the host machine and allocating 1GB of memory. With the bash parameter the

bash terminal within the container opens up allowing the execution of the code.

Within this environment when the code is executed with the command mprof run -M

python MemoryFunction.py the function is profiled and the data file for the profiling output

is generated. The resulting output carries the maximum memory parameter reached by the

function and the total running time Appendix B.

In relation to the function execution environment two platforms are mainly considered AWS

Lambda and Google Cloud Functions. Both of these are selected based on the following

capabilities.

1. Available public data on CPU allocation.

2. Consistent allocation of CPU resources.

3. Ability to access /proc/cpuinfo within the runtime.
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4. Inbuilt capability to expose functions as HTTP endpoints.

5. Availability of downloadable logs for function executions.

The output parameter from the local environment are used to deploy functions to the two

of the secondary platforms. Initially the memory parameters defined by the local function

profiler was deployed to each platform which was then evaluated to consider the running time

of the function and the capacity of the function execution. Then based on the initial outputs

the correctional values are identified for each of the platforms to really match the development

environment values to the exact running time values.

Listing 3.5: Variable memory function - Google Cloud functions

from f l a s k import e s c ape

def memory_func t ion ( r e q u e s t ) :

r e q u e s t _ j s o n = r e q u e s t . g e t _ j s o n ( )

v a l u e = r e q u e s t _ j s o n [ ’ v a l u e ’ ]

d = {}

i = 0 ;

f o r i in range ( 0 , v a l u e ) :

d [ i ] = ’A’ ∗ 1024

i f i % 1000000 == 0 :

pr in t ( i )

re turn va l u e

With consideration of the changes to the running codes both of the functions discussed in

section 3.2 are instrumented to be compatible with the Serverless platform. For both the

Google Cloud functions Listing 3.5 and AWS Lambda Listing 3.6 the method accessors and

the parameters are the only points that were needed to be adjusted.
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Listing 3.6: Variable memory function - AWS Lambda

def l ambda_hand l e r ( even t , c o n t e x t ) :

v a l u e = even t [ ’ v a l u e ’ ]

d = {}

i = 0 ;

f o r i in range ( 0 , v a l u e ) :

d [ i ] = ’A’ ∗ 1024

i f i % 1000000 == 0 :

pr in t ( i )

re turn {

" v a l u e " : v a l u e

}

Maintaining consistent CPU power was not considered a key parameter, the rationale was

to allow any developer environment to be capable of executing the formulas without the

consideration of the performance of their developer machine. Therefore, the resultant function

should be self-sufficient to calculate the output values based on the provided CPU parameters

by the developer as inputs. Although, the CPU power should not matter during the developer

executions for the purpose of consistency and normalization the results are obtained

maintaining specific CPU performance in both developer (2.9MHz) and control (2.5MHz)

environment.

3.2.3 Proof of Concept

Profiler selection

The proof of concept initialized with providing a comparison and a contrast on existing profilers

while minimizing the changes to the profiler code. This requirement to use an existing profiler

for faster adoption by the users is the basis for this decision. Hence during the POC the

profiler capability to provide the maximum memory and CPU usage for a function is considered

as a viable profiler. The following Python profilers were considered for the selection mprof

(memory_profiler), IOPipe, cProfile, Pympler, Psrecord and bash script based profiling.
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IOPipe is a Serverless framework centered profiling tool which is capable of profiling both

the memory and CPU of a function. This is very efficient in providing runtime profiling for

functions. The major drawback in adopting this solution for the study is that IOPipe profiler is a

realtime evaluator which requires profilingwithin the Serverless platform. Since the requirement

to profile the function independent of the platform is in place IOPipe was considered as a rejected

candidate.

Pympler is a python package which is an inline profiler. Pypmpler is capable of performing

targeted memory analysis to profile memory leaks. This profiler requires package imports to the

function and line by line instrumentation where the profiling is required. The nature of manual

instrumentation of code requires developers to take an additional effort to update the code lines

for profiling. Also, due to the selected profiling within the code lines the overall time for function

execution is not captured. The added packages will also affect the overall performance of the

function. Therefore, Pympler is also considered a rejected candidate.

Psrecord stood out as a good candidate for profiling both thememory and CPU percentage of

the python function. It is simple to use and requires no instrumentation and capable of externally

profiling the function during runtime with psrecord "python CPU-FibonacciFunction.py" –

log activity2.txt –plot plot2.png. Although, this stays as a candidate and is used to leverage

the functionality of the chosen profiler due to lack of ongoing development (no code fixes or

updates since 6 Sept 2018) and to an unanswered bug on the reliability of the CPU profiling

accumulation of CPU exceeding 100% at given instance the tool is to be considered as not a

rejected candidate but a suitable candidate as a validator for memory output.

cProfile is a CPU profiler which identifies the CPU usage as an external profiler. The

analysis is however not based on the overall performance of the function instead it looks upon

each segment of the function. Given the overall output is based on the external monitoring of

the function the tool is selected as a candidate for CPU profiling of a function.

mprof memory_profiler is an external profiler to monitor functions memory during the

running time. This requires no internal code change and can evaluate the function within the

tool itself. Provides a graphical output on the profiled values within the tool. This is selected

as the default candidate for the profiler with the exception of having a second profiler to provide

CPU usage for the function to further validate the scenario.

scalene is a high-performance CPU and memory profiler which is capable of profiling both

CPU and memory during the function execution. The ability to externally execute the code

for profiling is a key factor for this profiler. Although it doesn’t provide a graphical output of

the result the profiler provides a summary result at the end of execution. The CPU profiling
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through scalene is capable of providing the average CPU usage of the function for the overall

function execution time. The execution time doesn’t get affected with the profiler during the CPU

profiling however when used for memory profiling the execution time increases significantly.

Therefore, scalene is introduced as the CPU profiler tool for the study.

bash scripting is another option for profiling a function. The scripting has to depend on

the Top command output or an existing metadata file within a developer environment for the

result. A CPU analysis script is used as a supporting CPU analyzer for mprof however it is used

only as to provide validation for the claims that a certain function tends to utilize CPU at what

percentage in overall.

The comparison on the requirements and features provided by each profiler following profilers

are selected as suitable candidates for the research to be carried out. mprof (memory_profiler)

and cProfile as the primary profilers and Psrecord and Bash script as the secondary profilers.

Profiler to Serverless adoptation

Next step of the POC is to identify whether the profiler results are able to produce a tangible

result to be based at a serverless environment is considered. This is to provide an answer to the

Research Question 1 2.8.1. Profiler evaluation is based on two particular parameters generated

during the profiling output the maximum memory used and the complete execution time. Based

on these outputs a range of Serverless memory parameters +/- 1 configuration levels are tested.

Eg:- If the profiler provides a maximum memory result of 182MB the close highest memory

configuration 192MB will be applied and will be tested also for 128MB and 256MB. Although,

it is obvious that the higher memory configuration 256MB should work, in order to provide a

correlation between execution time the analysis on the upper bound is included.

Within the phase of POC it is not required to provide an exact match between the profiler

output and the platform configuration. The intention is to prove that the selected profilers are

capable of providing a result which can be closely matched (+ or - 1 level of configuration).

Which will be then a strong background to enhance the study towards fine-tuning the output

parameters using the profiler result to platform time estimator function.

The POC itself is used for the selection of a profiler to investigate the underlying Memory to

CPUmapping of the platform. Hence the requirement is to observe howwell the profiler provides

the memory output irrespective of the CPU utilized. However, to normalize the results the usage

of variable memory function and high CPU utilization function is used in the Analysis. The

analysis and evaluation on the POC phase is extended to memory mapper experimental study.
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3.2.4 Memory mapper

With the results obtained at the POC the foundation for the initial profiler output and Serverless

platform parameters the next phase for CPU and memory variant profiling has to be analyzed.

The definition of memory mapper is carried out in an experimental methodology where the

functions will be defined based on a couple of phases of experimental rounds with profiler

outputs and platform executions. This phase consists of the steps as illustrated in flow chart 3.2.

Figure 3.2: Memory Mapper Flow

When reading through [20] the study has already done an evaluation of the CPU fraction

allocated by AWS Lambda and GCF. However, due to the recent updates done by AWS and

GCF in between the time of the initial research and now it was decided to reevaluate the CPU

time shares used by each of the platforms before building up CPU to Memory mapping and
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Cost optimizations. Although, the publication done by Elagamal Et al [20] hasn’t provided the

functions used for this particular evaluation they have provided the outline of the function used.

The basis of the evaluation is depended on a Python-based function which generates maximum

CPU (≈100%) for 10000 milliseconds. In order to produce the maximum amount of CPU

utilization the python time.time() function is called within a while loop until the timeout is met

Listing 3.7. The particular function is wrapped with CPU proc stat information to extract CPU

usage before and after the function execution. These values are extracted as logs within the

platform Serverless function and then later processed to identify the CPU percentages used.

Listing 3.7: CPU time sharing analysis function

def l ambda_hand l e r ( even t , c o n t e x t ) :

import os

import t ime

from s u b p r o c e s s import Popen , PIPE , STDOUT

# Cap tu r i ng p r o c e s s i d o f t h e c u r r e n t i n s t a n c e

p id = s t r ( os . g e t p i d ( ) )

# / proc / p roce s s_ ID / s t a t i n f o b e f o r e t h e CPU f u n c t i o n e x e c u t i o n

p r o c e s s S t a r t = s t r ( os . popen ( ’ ’ ’ c a t / proc / ’ ’ ’ +

p id + ’ ’ ’ / s t a t |

awk ’{ p r i n t $14+$15+$16+$17 } ’ ’ ’ ’ )

. r e a d l i n e ( ) . s t r i p ( ) )

u p t im e S t a r t = s t r ( os . popen ( ’ ’ ’ c a t / proc / up t ime |

awk ’{ p r i n t $1 } ’ ’ ’ ’ ) . r e a d l i n e ( ) . s t r i p ( ) )

# Reading i n p u t v a l u e

va l u e = even t [ ’ v a l u e ’ ]

# p r i n t i n g CPU i n f r o m a t i o n

p = Popen ( " c a t ␣ / p roc / c p u i n f o " , s h e l l =True , s t d i n =PIPE ,

s t d o u t =PIPE , s t d e r r =STDOUT, c l o s e _ f d s =True )

pr in t ( p . s t d o u t . r e ad ( ) )
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# CPU u t i l i z a t i o n f u n c t i o n

t _ end = t ime . t ime ( ) + 1

whi le t ime . t ime ( ) < t_end :

t ime . t ime ( )

# / proc / p roce s s_ ID / s t a t i n f o a f t e r t h e CPU f u n c t i o n e x e c u t i o n

p roce s sEnd = s t r ( os . popen ( ’ ’ ’ c a t / proc / ’ ’ ’ +

p id + ’ ’ ’ / s t a t |

awk ’{ p r i n t $14+$15+$16+$17 } ’ ’ ’ ’ )

. r e a d l i n e ( ) . s t r i p ( ) )

upt imeEnd = s t r ( os . popen ( ’ ’ ’ c a t / proc / up t ime |

awk ’{ p r i n t $1 } ’ ’ ’ ’ )

. r e a d l i n e ( ) . s t r i p ( ) )

# Clock T i c k va l u e o f t h e p r o c e s s

h e r t z = os . popen ( ’ ’ ’ g e t c o n f CLK_TCK ’ ’ ’ ) . r e a d l i n e s ( )

# P r i n t i n g b e f o r e and a f t e r i n f o r m a t i o n i n t o t h e l og

pr in t ( " P r o c e s s _R e s u l t : s t a r tCPU , " + p r o c e s s S t a r t

+ " , endCPU , " + p roce s sEnd +

" , s t a r t T ime , " + u p t im e S t a r t

+ " , endTime , " + upt imeEnd + " , Her tz , "

+ h e r t z [ 0 ] )

re turn {

" v a l u e " : v a l u e

}

The function 3.7 is executed for all the memory configurations provided on the platform

for 1000 executions per each configuration. The resulting percentages are then plot against the

memory to CPU percentage on a scatter plot. Based on the previous evidence the distribution

should be a linear relationship between CPU and Memory. Therefore, a linear regression

analysis will be performed on the results to define the relationship linear function. Based on the
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executions the scatter plot was generated using the Median and 95th percentile for each of the

memory configurations. Therefore, There will be two linear functions to be evaluated against

the local profiler outputs.

The evaluation stage 1 is then performed based on the derived linear functions against the

primary functions defined for variablememory and highCPU running time functions both locally

and on the Serverless platform. For the purpose of variability the function was executed with a

range of parameter input both under locally through mprof and on Lambda. The resulting values

are compared against the predicted running time of the function against the actual running time

in seconds. The suitable function candidate is decided based on actual running time difference to

the estimated time. The calculation of the residual sums of square (RSS) is the evaluation metric

for the equations. The lowest RSS for multiple CPU values will be evaluated against estimation

time and actual Lambda running time. If the RSS is higher the benchmark the function will be

reevaluated within the range of memory configurations.

Followed by the linear function evaluation and finalization it is evident that the direct profiler

result matters accounts to the fact that memory to memory mapping is predicting the timing

very accurately. However, due to the CPU time sharing when CPU is considered for the function

execution time the running time is growing rapidly. Therefore, the element of CPU usage

analysis and calculation of complete CPU utilization locally has to be factored. Based on this

factoring the next phase of optimizing the cost of overall function parameters is considered.

Based on the 2nd output of the study the Memory to CPU correlation function and the total

cost function 1.2 identification of the best optimal memory parameter which leverages both

CPU and Memory is defined. This is an intersection between the cost rise for the number of

expected executions to cost gains achieved by the profiler result analysis. The observation and

the requirement raised for this particular extension of the study is due to the CPU time sharing

nature of the functions although the function didn’t utilize maximum memory the CPU fraction

CPU output increased the running time of the function. This eventually resulted longer function

running times which will either exceed the threshold running time allowed by the platform or

amount in higher costs. Also, with HTTP based calls timeout for request exceeding 30s for most

of the browser and tools. Therefore, the ability to either optimize the running time for better

cost gains and to avoid timeouts the cost optimization algorithm has to be introduced.

The Total cost function will be further extended with the profiler to memory mapper function

first to define the values required to achieve a certain cost objective. Then the memory to time

consumption is optimized based on the total cost introduced. Although allowing maximum

CPU share will minimize the cost using maximum CPU will require an allocation of a higher
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memory which will in return increase the cost exponentially. Therefore, it is critical to identify

the sweet spot of memory to CPU ratio for the function deployment to be cost-effective.

The evaluation of the second stage is based on the algorithm’s ability to match the pricing

with the actual costs calculated by the Serverless platform. This excludes all the external costs

on the pricing on the API exposure and will be narrowed down only to the cost of a Serverless

execution for a particular number of calls with a certain memory parameter.

3.3 Research Contributions

With the research design and the final outcome following key items are produced as the key

contributions for the research community.

• A function profiler suitable for externally profiling memory for Serverless platforms.

• Equation to correlate profiler CPU time sharing against Memory allocated on AWS

Lambda.

• Serverless Cost optimization algorithm for variable CPU and Memory configurations.

• Research paper publications on the outputs of the study.

• Dissertation to discuss the process and the outcomes of the study.
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Chapter 4

Proposed Solution

4.1 Serverless Time Estimator

4.1.1 CPU time sharing in Serverless runtimes

The application layer of Serverless platforms which are running on top of virtual machines rely

on time-sharing for CPU allocation. In order to extract the time-sharing information from the

underlying virtual machines the research design has defined the function 3.7. The execution of

CPU time sharing function 3.7 for a single execution produced log section similar to Appendix

A. The second log line consists of the CPU information of the current virtual machine the

function is executed. The amount of full CPU power assigned to the machine and the number

of cores assigned for the function is extracted from this particular log line. Out of the produced

logs the log line which contains information on the CPU resources utilized by the process are

represented in 4.1. This consists of the start and end resource values for the function execution.

Listing 4.1: Lambda Process result log

P r o c e s s _R e s u l t : s ta r tCPU , 9 , endCPU , 1 7 , s t a r t T ime , 1 5 9 5 . 7 6 ,

endTime , 1 5 9 6 . 9 4 , Her tz , 100

The output from 4.1 result respresents the following variables.

• startCPU (Cs) - Cummulative CPU time at the begining of execution of user code (ucode),

kernel code (stime), waited for children user code(cutime) waited for children kernel code

(cstime).

• endCPU (Ce) - Cummulative CPU time at the end of execution of user code (ucode),

kernel code (stime), waited for children user code(cutime) waited for children kernel code

(cstime).
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Table 4.1: Lambda Memory to CPU time sharing percentage

Memory Config 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Median 6.78 14.286 21.296 28.846 35.922 43.137 50.495 57.843 65.347 72.277 79.412 86.139 90.196 99.02 100 100

95th Percentile 7.759 14.815 22.642 29.808 37.255 44.66 51.961 59.406 66.667 74.257 81.188 88.119 94.059 100.99 100.99 100.991

Highest 8.621 16.364 23.585 30.769 38.462 46.078 52.941 60.396 68 75.248 83 89.109 96.04 103 103 103

Lowest 5.738 12.727 19.444 26.923 33.962 40.385 48.077 54.902 62.745 69.608 77.228 79.412 87.129 92.079 94.059 96.04

Standard Deviation 0.587 0.622 0.674 0.738 0.831 0.854 0.837 0.876 0.946 0.912 0.93 1.251 1.67 1.479 1.217 1.012

Proportion 7.143 14.286 21.429 28.571 35.714 42.857 50 57.143 64.286 71.429 78.571 85.571 92.857 100 100 100

Proportion Difference 0.363 0 0.133 -0.275 -0.208 -0.28 -0.495 -0.7 -1.061 -0.848 -0.841 -0.425 2.661 0.98 0 0

• startTime (Ts) - Machines running time since the last boot up from /proc/uptime to the

start of function execution.

• endTime (Te) - Machines running time since the last boot up from /proc/uptime to the end

of function execution.

• Hertz (Hz) - The number of clock ticks per second of your machine.

The CPU time share is calculated as a fraction of the overall CPU resources available for the

duration 4.1 of function execution.

CPUusa ge �
Ce − Cs

Hz (Te − Ts)
(4.1)

Followed by the function definition the functions are invoked in batches of 1000 executions

per each memory configuration for both Lambda and GCF platforms. The execution logs are

then extracted for processing and the calculations are made to identify both the median and 95th

percentile CPU usage amounts.

The results generated in 4.1 are plotted on a scatter plot to understand the distribution of

how the median and 95th Percentile CPU time-sharing is defined on top of AWS lambda servers.

The graphical illustration of the data further proved the claim that Lambda provides CPU shares

proportionate to the memory allocated to a function. Also, further it proved that the current

updated values does have changed from the study performed by Wang [20]. With relevance to

the data generated in this study instead of the proportional CPU allocation factor of (2/3328) *

Memory identified by [20] has been changed to changed to (1/1792) * Memory. This change is

due to the underlying changes from Lambda services has moved CPU allocation to reach 100%

at the 1792 MB instead of the previously calculated 1664 MB memory configuration. Hence

the original CPU to time share AWS proportional relationship can be described as 4.2. The

proportional relationship is constantly increasing until it reaches a maximum of 100 until the

configuration parameter reaches 1792 MB and stays consistent until the final memory parameter

of 3308MB.
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CPUFraction �
M

1792
(4.2)

However, the results obtained by the realtime CPU time sharing to Memory allocation

provided within the allocation analysis has deferred to the original input values. There were

significant changes for the Highest value and 95th percentile distribution of proportional CPU

allocation values. In the case of the highest CPU allocation which achieves the best CPU

utilization of the deviation is up to 4.29%. With comparison to the average case of CPU

allocation it was evident that most of the CPU allocations were below the expected CPU

allocation at the middle range of memory configurations from 512MB to 1536MB where most

of the servers were under-provisioned with CPU at certain ranges and some ranges being over-

provisioned. With this deviation it is evident that there will be significant deviations when it

comes to higher amounts of function invocations with higher memory configurations. While

low memory functions might perform more than expected.

Therefore, the requirement to further create a more fine-tuned relationship with memory to

CPU time sharing with the obtained results for median and 95th percentile are evaluated with

linear regression and quadratic regression to create a trendline relationship between memory

configuration to CPU time sharing correlation.

Linear regression

The linear regression is performed using the linear regression calculation based on the function

4.3 and values denoted by 4.4

Where linear function is,

y � a + bx (4.3)

Where a and b denoted by,

b �

∑n
i�1 xi yi − nx̄ ȳ∑n

i�1 x2
i − nx̄2

a � ȳ − bx̄

(4.4)

The resulting regression produced two functions trendlines forMedian 4.5 (r=0.9982389493)

and 95th percentile 4.6 (r=0.99785488008). Scatter plot and the trendline for each of these

functions 4.2 illustrates the near linear relationship as well as the correlation coefficients provide

further evidence towards the relationship.

38



y � 0.4431 + 0.0554x (4.5)

y � 1.007 + 0.0565x (4.6)

(a) CPU time sharing median distribution 4.5 (b) CPU time sharing 95th percentile 4.6

Figure 4.1: CPU Time sharing distributions and linear trendlines

One of the key observation is that the CPU time-share fraction increases linearly until the

memory configuration of 1792MB. For all the memory configurations above 1792MB the CPU

time share is at the 100% maximum hence adding those values to the analysis distorts the

relationship. Therefore, regression is performed for the memory configuration range 128MB -

1792MB.

Quadtratic regression

The quadratic regression is performed on the dataset median distribution with reference to 4.7

and 4.8

Where quadratic function is,

y � A + Bx + Cx2 (4.7)
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Where A, B and C denoted by,

B �

∑ (xi − x̄)2 ∑ (
x2

i − x̄2
)2
−∑ (

x2
i − x̄2

) (
yi − ȳ

) ∑ (xi − x̄)
(
x2

i − x̄2
)

∑ (xi − x̄)2 ∑ (
x2

i − x̄2
)2
−

(∑ (xi − x̄)
(
x2

i − x̄2
))2

C �

∑ (
x2

i − x̄2
) (

yi − ȳ
) ∑ (xi − x̄)2 −∑ (xi − x̄)2 ∑ (xi − x̄)

(
x2

i − x̄2
)

∑ (xi − x̄)2 ∑ (
x2

i − x̄2
)2
−

(∑ (xi − x̄)
(
x2

i − x̄2
))2

A � ȳ − Bx̄ − Cx̄2

(4.8)

The resulting regression was used to create two quadratic trendlines based on the median

4.9 the 95th percentile 4.10 for the CPU utilization calculation.

y � −2.5973 ∗ 10−6x2
+ 6.0402 ∗ 10−2x − 1.2590 (4.9)

y � −2.1966 ∗ 10−6x2
+ 6.0727 ∗ 10−2x − 0.4325 (4.10)

(a) CPU time sharing median quadratic

trendline 4.9

(b)CPU time sharing 95th percentile quadratic

trendline 4.10

Figure 4.2: CPU Time sharing distributions and quadratic trendlines

Both of the Median quadratic function and the Percentile quadratic function represented

following Coefficient of determination R2 and Residual sums of squares Median function 4.9 R2

= 9.994804625·10-1, rss = 5.952719313 and Percentile function 4.10 R2 = 9.998646404·10-1,

rss = 1.611871653. In which the highest rss gain in the middle range of memory parameters.

The four regression functions obtained in this section are later used for profiler results to

memory parameter conversion and running time predictions. The base function for the actual
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Table 4.2: Lambda, GCF CPU values

Memory config 128 256 512 1024 2048

Lambda CPU 2500.012 2500.012 2500.012 2500.01 2500.008

GCF CPU 2700.253 2700.233 2700.236 2700.294 2700.272

proportion definition is compared to further evaluate and strengthen the claims made by this

particular study. With the evaluation phase these functions are later reduced into one function

with the most suitable function for a prediction on both running time and the cost for the most

efficient optimization of Serverless costs.

4.1.2 Profiler to Serverless deployment

Given the CPU time-sharing is linear to the memory configuration the next step is to transform

locally profiled memory and running time to Serverless memory and predict the running time of

the function. Since the mprof profiler is capable of providing a direct mapping to the function

memory parameter the analysis required is to calculate total CPU time required for a function

and convert the local CPU time to Serverless CPU time based on theMemory based time sharing

functions identified in section 4.1.1.

Prior to mapping local CPU shares to Serverless shares the requirement to understand the

Maximum CPU power provided at Serverless platforms are required. With all the function

executions done to calculate the CPU time share the log line with CPU info revealed that both

AWS lambda and GCF is using consistent CPU powers underlying for each of the functions.

While lambda utilizes 2.5Ghz with 2 cores, GCF uses 2.7Ghz with 2 cores. Which converts to

2500 MHz of Clock rate in Lambda vs 2700 MHz clock rate in GCF Table 4.2.

With the assumption that a local function executes at full capacity for the duration of the

function a the product of Clock rate into the total time of execution provides the total CPU time

utilized. The same CPU capacity is expected to be utilized at the Serverless platform as well.

Therefore the base function 4.11 is defined with CR being the clock rate of the environment and

TS the Time sharing percentage for Serverless platform.

In case of a local function is not executed with 100% CPU utilization locally. The scalene

profiler output for the average CPU utilization of the function will be used to obtain the total

fraction of CPU used locally by getting the percentage of CRlocal.Tlocal.

Tserverless �
CRlocal .Tlocal

CRserverless .TS
(4.11)
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The function is further extended to two functions by replacing the Time Sharing percentage

with Memory as the X value to form the four initial Time Prediction functions median time

predictor linear function 4.12, percentile time predictor linear function 4.13, median time

predictor quadratic function 4.14 and percentile time predictor quadratic function 4.15.

Tserverless �
100.CRlocal .Tlocal

CRserverless . (0.4431 + 0.0554M) (4.12)

Tserverless �
100.CRlocal .Tlocal

CRserverless . (1.007 + 0.0565M) (4.13)

Tserverless �
100.CRlocal .Tlocal

CRserverless . (−2.5973 ∗ 10−6M2 + 6.0402 ∗ 10−2M − 1.27590) (4.14)

Tserverless �
100.CRlocal .Tlocal

CRserverless . (−2.1966 ∗ 10−6M2 + 6.0727 ∗ 10−2M − 0.4325) (4.15)

In the evaluation phase the four of these functions are then considered as base functions

to predict the time of a Serverless function. Memory parameters produced by the profilers are

provided as input with the respective environment values with local Clock rates and Serverless

clock rates respective for each of the platforms.

Followed by the evaluation round 1 it was identified that there is a considerable deviation for

the predicted time based on the profiler output. It was nearly half of the time than predicted with

a 100% error rate for prediction. Further analysis revealed that the CPU fraction calculation is

based on one CPU shares inside a host VM Serverless runtime and in the actual environment the

VM share resides two instances. Hence, the formula had to be updated to account for the number

of co-residing instances inside the allocation 4.16 represented with CC (coresident count) with

each of the time share function replacing TimeShareFunction.

Tserverless �
100.CRlocal .Tlocal

CRserverless .CC. (TimeShareFunction) (4.16)

This adjustment doubled the current resource usage fraction eventually doubling the

utilization percentage. Followed by this adjustment the second evaluation round is performed.

With the running time estimation and the profiler output on the memory parameter the

initial requirements for the deployment of the Serverless function is achieved. From the

memory parameter from the profiler the function is capable of deployment in Serverless. By

the evaluation based on the Time predictor the memory parameter can be further adjusted for

further improvements in the running time of the function.
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Table 4.3: Lambda Cost prediction vs Actual Cost

Memory Config 128 192 256 512 1024 1536

Lambda Cost Estimation 257.0146339 257.0146339 257.0146339 257.0146339 257.0146339 257.0146339

Actual Execution Cost 269.3221053 267.4817582 268.0414117 265.5348897 262.3249979 263.2158427

4.2 Cost Estimator

If the proportional CPU allocation for Serverless platforms stand as it is according to Total Cost

calculation equation 1.2 the time of the execution is going to be proportionately increasing. In

that case for a function which gets invoked for 10000000 (1M) times for 1 Second for various

memory configuration would cost the user the same amount for each memory configuration.

According to Table 4.3 there is a significant difference for the costs between the predicted

and the actual. This difference is eventually increased as the number of requests increase. Also,

the observations made on the actual proportions generated by AWS lambda it was noted that

there is a tendency to provide low running times with 512MB 1024MB configuration range

due to the behavior of the quadratic nature of the distribution. Due to these two concerns the

requirement to analyze the cost deviations for CPU intensive functions has to be analyzed and

the final formula for cost estimation had to be defined.

With the initial phase of the study we were left with four functions to be evaluated for the

execution time of the Serverless function. Cost optimization has been the goal of the study hence

profiler outputs should be mapped with the cost function for the cost optimization. Since the

running time of the function and memory configuration are the variables that can be controlled

with configurations. The Cost optimizer function needs to take these as parameters. While

memory is the only configurable parameter and running time is derived through local CPU

time to Serverless CPU time calculation the cost function has to depend on the defined memory

parameter.The cost estimation function is then updated to replace function execution time S to

Tserverless in function 4.17 obtained replacing the TimeShareFunction 4.18.

PriceTotalCost � T(C1 ∗ Tserverless ∗
M

1024
+ C2) (4.17)

PriceTotalCost � T(C1 ∗
100.CRlocal .Tlocal

CRserverless .CC. (TimeShareFunction) ∗
M

1024
+ C2) (4.18)

The function 4.17 is tested for multiple local memory_profiler and scalene executions based

predictions with realtime batch run results on a serverless platform. The key optimizations
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would be to achieve minimal costs within benchmark execution time (<300s for long running

and <30s for short running) for a function. The dependent TimeShareFunction in 4.18 is finally

replaced with the relevant time predictor function in the results and discussion based on the

selected Time Predictor Function to provide the best-estimated profiler running time and cost.
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Chapter 5

Evaluation and Results

5.1 Evaluation

The research problem, background study, and literature review was key inputs for the research

methodology and design. The research methodology and design is organized to achieve the

three research questions identified in section 2.8. Within the chapter 4 the details of how each

of these questions are addressed are discussed while identifying multiple options for each of

the questions. Here in the evaluation chapter the discussion is built around how each option is

evaluated to decide the most suitable approach to address the research questions.

The first research question onwhether there is a suitable profiling technique to definememory

parameters is evaluated based on the following parameters.

• Modifications to be done on the function to be profiled.

• Ability to execute independent of the platform on a local developer machine.

• Output should include the highest memory required by the function and benchmark for a

running time of the function.

• Profiler should be able to provide the CPU utilization for the duration of the function.

• The function deployed to the platform with the resultant parameters should work without

out of memory errors.

The second question is to derive a formula to convert profiler results to the Serverless

platform will be tested with deployment parameters figure 5.1. Based on the profiler outputs

Memory, CPU utilization and running time the Time estimator function is expected to produce

the running time of the function.
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Figure 5.1: Time Estimator function evaluation

Since both estimated memory parameter and CPU usage accounts for the running time the

extracted running time doesn’t necessarily have to be exact as the local running time. Therefore,

the output is compared with realtime Serverless running time for a closer match. The evaluation

is based on three key factors to leverage between different local environments as well as the

Serverless environment.

1. Multiple CPU powers on local developer environment.

2. CPU time share proportions based on memory configuration.

3. Realtime execution time for Serverless platform.

Based on the above factors three datasets are generated for the evaluation of the estimator

functions.

1. Profiler output (memory_profiler, scalene) for processing input for CPU powers with

2.3GHz, 2.5GHz, 2.7GHz and 2.9GHz

2. Profiler output for various inputs to High CPU function, input execution readings from

500000 ,1000000, 1500000

3. 3 x 50 executions for each of the memory configurations from 128, 256, 512, 1024, 1536,

2048
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These data is then processed through each estimation function to analyze the success against

the actual running time obtained for each memory configuration. The resulting running time is

expected to be minimal since an increase of a second than the estimated adds up to the overall

cost. This affects the total cost by the total number of invocations which leads up to millions of

calls per month, therefore the expected running time deviation is to be kept within +/- 5 seconds

for each of the memory configurations. With the calculation of the residual sum of squares the

lowest RSS value is selected as the suitable function for the running time estimation.

Final question is to address the cost optimization factors with the profiler outputs gained. The

cost optimization function with the provided regression functions are behaving in two different

patterns. If the linear regression function is the best fit for time prediction the cost increase will

become linear for each memory configuration with minimal differences between the actual cost

and the estimated cost. In case of the quadratic function is selected the cost of functions will have

a difference which will be more cost-effective towards the mid-range of memory configurations.

However, this observation had to be evaluated further to discover the effectiveness of the cost

estimation. Based on the time estimation function selected from the previous Time estimator

evaluation the total cost estimation is calculated for the functions. The effective cost for each

of the actual Serverless executions are then compared against the cost estimation to understand

the least error generated memory configurations. In case of a function execution dependency on

maintaining fast executions is key and therefore the estimation evaluation also analyzes the speed

of execution in the lower range which means higher CPU capacities but with the maximum cost-

effectiveness. Later based on the selected function the cost estimation python tool is evaluated

against Lambda another round of function execution on the Serverless platform to evaluate the

total costs gained or loss due to the function placement based on the cost estimator.

5.2 Results and Discussion

5.2.1 Profiler evaluation

Out of the three research questions the first research question is to find a suitable function profiling

technique to define memory parameters for the Serverless functions. For the selected runtime

language Python memory_profile package stood as the strongest candidate based on the section

profiler selection 3.2.3. In order to address the initial research question the memory_profile has

been executed on the function 3.1 with variable array sizes from 1000000 to 6000000 within

incremental gaps of 500000. For each of the profiled parameters generated by the profiler the
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memory parameters are first recorded. These recorded memory parameters are then matched

with availablememory configurations for the nearest high configuration for both of the Serverless

platforms AWS lambda and Google cloud functions.

Based on the output memory configuration functions are executed in the environment for 5

executions for each function configurations. Resultant configurations from the platforms which

performed 100% success rate compared to the profiler outputs are in table 5.1

Table 5.1: Profiler output to platform configuration

Array Size Profile Output AWS config GCF config

1000000 63.44 128 128

1500000 120.398 256 256

2000000 219.137 256 256

2500000 219 256 256

3000000 393 448 256

3500000 418 448 512

4000000 445 448 512

4500000 462 448 512

5000000 477.68 448 512

5500000 480.33 448 512

6000000 779 768 1024

Figure 5.2: Profiler output to platform configuration

The visualization on figure 5.2 shows the clear disparity between the profiler config and the
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platforms. The gradual performance increase on the platforms compared to profiler output is

considered as a result of increasing CPU resource allocations. Since the local profiler is used to

profile on static CPU resources the config increase follows a curvature. In order to understand

this further the actual memory utilization in each platform is extracted for the 98th percentile of

function executions Table 5.2.

Table 5.2: Profiler output to execution memory for 98th percentile

Array Size Profile Output AWS 98% GCF 98%

1000000 63.44 128 146

1500000 120.398 256 196

2000000 219.137 256 238.3

2500000 219 256 250

3000000 393 422 428

3500000 418 422 408

4000000 445 422 428

4500000 462 423 408

5000000 477.68 423 387

5500000 480.33 426 428

6000000 779 750 731

Figure 5.3: Profiler output to execution memory for 98th percentile

The percentile values show the gain over profiler output in Figure 5.3 due to the

aforementioned variation of CPU values. These data reveals that as the next phase the
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leveraging of the profiler should be evaluated with the CPU to consider the variant results of

the output is due to the CPU performance. The CPU performance changes were analyzed in the

design phase of the study under section 4.1.1 this revealed that Lambda relies on proportional

CPU allocation. Therefore, it was evident that the running time has to be deviated between the

local profiler running time-based on the CPU resources used for the particular duration.

This was the key point of the research to involve a CPU profiler for local profiling instead

of relying on a memory profiler. Hence, the introduction of scalene as the CPU profiler for the

study. This tool provides a better understanding on the amount of CPU resources required for

the function execution.

5.2.2 Time Estimator Selection

The defined regression functions for the CPU fraction calculation are the functions which were

subjected for evaluation. Additionally the proportional function estimation is included in the

analysis to provide a contrast between the actual mapping against the result output.

In the execution of function profiler approach initially the local profiler values are generated

for the defined CPU capacities using the docker container. Where the container is run on top

of the 2.9GHz host machine with CPU shares corresponding to 2.3GHz (CPU .7931), 2.5GHz

(CPU .8621), 2.7GHz (CPU .9310) and 2.9GHz (CPU 1). In order to normalize the data

extracted 100 executions locally for each CPU configuration is profiled and the median selected

as the local running time for the particular CPU power. The resulting local profiler running

times are,

• For 2.3GHz input 50000 = 5.068s, 100000 = 22.143, 150000 = 44.2292s

• For 2.5GHz input 50000 = 4.946s, 100000 = 20.084, 150000 = 39.5013s

• For 2.7GHz input 50000 = 4.135s, 100000 = 18.434, 150000 = 36.3695s

• For 2.9GHz input 50000 = 4.035s, 100000 = 16.999, 150000 = 35.043s

Then from the three rounds of platform execution the extracted running times were compared

for the residual sums of squares for the error rates and averaged for each local CPU power used

for profiling. The summary of the results are represented in the table 5.3.

The results suggest that the use of Median Linear function is the function which has a

consistent error rate for all three variations of CPU time used. For shorter execution times such

as when the input for CPU function is 50000 both quadratic functions performed well for all the
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Table 5.3: Time Estimator RSS for profiler CPU

CPU (GHz) 2.3 2.5 2.7 2.9

Input = 50000

Median Linear 44.03898182 20.35692034 22.48768294 8.253268728

95th Percentile Linear 37.70319718 15.32568062 59.75212221 35.90480806

Median Quadratic 7.448440791 28.38961409 2.50010134 8.317139639

95th Percentile Quadratic 6.16933472 0.1698427501 18.09345393 5.375047578

Proportional 1.417489145 2.523542598 8.91239479 1.060728123

Input = 100000

Median Linear 116.6238024 70.01302425 48.11584507 29.97157302

95th Percentile Linear 42.95843516 62.73264662 80.38219441 104.2680548

Median Quadratic 1112.374918 931.3553036 829.2207438 725.6539977

95th Percentile Quadratic 152.783511 95.76657127 67.66538199 42.92325073

Proportional 328.2695443 238.3682535 190.649746 145.0343491

Input = 150000

Median Linear 615.8458092 425.4899488 415.1542664 605.5025967

95th Percentile Linear 411.0181311 758.6806978 845.3076761 419.744228

Median Quadratic 5070.307447 3769.763657 3558.56086 5020.733256

95th Percentile Quadratic 1143.540879 857.1866468 829.454089 1129.809522

Proportional 1515.716711 970.8997759 896.5331568 1492.832524
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Table 5.4: RSS value distribution for Median Linear Estimation

Memory Configuration 128 192 256 512 1024 1536 2048 Total RSS

round 1 8.820536275 18.74896214 14.39212752 7.403916737 2.845852389 1.252343569 0.05625351285 53.51999214

round 2 8.448200124 15.55546868 12.34444164 7.182206597 2.655809439 1.206497002 0.04773055228 47.44035404

round 3 6.248843884 12.72346885 13.29620204 7.631262143 2.157683185 1.19594253 0.1337863982 43.38718903

Table 5.5: RSS value distribution for 95th Percentile Linear Estimation

Memory Configuration 128 192 256 512 1024 1536 2048 Total RSS

round 1 69.40241716 2.384198129 0.005479176132 2.016314455 1.408933131 0.6729850726 0.2007786146 76.09110574

round 2 70.46211206 3.725092555 0.04252196311 1.90142003 1.276187953 0.6394907798 0.1843656966 78.23119103

round 3 77.4572721 5.322686804 0.005369744829 2.135777289 0.9388154443 0.6318130295 0.3325520574 86.82428647

CPU powers however with the increase of execution time has increased the error produced by

these functions. When the Lambda proportional allocation function is used for the estimation

for long-running functions the error rate is high even though for the short running function it

was the lowest error function. Based on the results obtained in this particular analysis Median

Linear function, 95th percentile Linear function and Lambda Proportional functions are taken

forward.

Further analyzing the data it was a concern to understand why each of these functions were

resulting in higher amounts of RSS values even the best performing functions were off with

higher margins at the long-running function range. A more granular observation on the results

revealed that both of the functions tend to have a larger variation of estimated time and the

actual time at the memory configuration of 128MB on the Serverless platform. The table 5.4,

5.5 and 5.6 describes the effect of the memory configuration on Total RSS for each round. The

reason for this considerable deviation is due to the fact that with lower memory configurations

the execution time is higher which tends to subject for noise created on the CPU resources.

Therefore, the estimation values for lower memory configuration has a higher difference with

compared to Serverless platform execution.

Table 5.6: RSS value distribution for Lambda proportion Estimation

Memory Configuration 128 192 256 512 1024 1536 2048 Total RSS

round 1 104.254882 54.69803514 29.29590318 9.042091098 2.876614435 1.199198016 0.07102131725 201.4377452

round 2 102.9650184 49.13795496 26.34090361 8.796900926 2.685529421 1.154343955 0.06140149475 191.1420528

round 3 94.87457397 43.99406237 27.72305764 9.29315105 2.184479566 1.144020629 0.1560947253 179.36944
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Figure 5.4: Local CPU to Time Estimator RSS values

Figure 5.4 illustrates the relationship of the RSS for each estimator function for local profiler

CPU powers. Which represents the data in table 5.3 for input 100000. With relation to the

data for both cross CPU power estimation and per memory estimation accuracy it is evident that

the Median linear function produces respectively lower error rate. Hence the conclusion to use

Median Linear Time Estimator is decided 4.12.

5.2.3 Cost Estimation analysis

With the previous section resulting with the conclusion to use equation 4.12 as the time estimator

function the final cost estimation function is defined as 5.1

PriceTotalCost � T(C1 ∗
100.CRlocal .Tlocal

CRserverless .CC. (0.4431 + 0.0554M) ∗
M

1024
+ C2) (5.1)

The cost estimations are generated based on this function and then compared against the

averaged execution times for each round of function executions. Since the functions has a linear

relationship with the number of request the cost estimation for a single call is calculated for the

result discussion. The overall cost for each round of executions in Lamdba is calculated using

the standard cost calculator function. Then the total sum for the three rounds of execution is

collected to get the cost for 1500 function executions. For each local CPU power the resulting

profiler output estimation is then estimated for 150 executions and compared with the actual cost

table 5.7.

The resulting output reveals that the actual total costs are always below than the estimation

with minor margins with a difference of 1 x 10-4 differences of Dollar differences for 150

executions. Even with a higher number of request the resulting costs are not going to carry a
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Table 5.7: Cost Estimation difference for 150 executions

Local CPU Local Memory Local execution time 128 192 256 512 1024 1536 2048

2.9 80 16.9995 -0.00418443 -0.00213841 -0.0019473 -0.00307453 -0.00361658 -0.00770856 -0.00302271

2.7 80 18.4343 -0.00457768 -0.00253953 -0.00235246 -0.00348593 -0.00403116 -0.00812422 -0.00343891

2.5 80 20.0842 -0.00494093 -0.00291004 -0.00272672 -0.00386594 -0.00441412 -0.00850817 -0.00382336

2.3 80 22.143 -0.00553687 -0.0035179 -0.00334071 -0.00448938 -0.00504239 -0.00913807 -0.00445407

significant difference on the cost. The most significant observation from these results is that

for the CPU function used for evaluation the best cost estimation which correlates to the same

running time as local machine is below the 100% CPU allocation. The configuration 1024MB

where proportional CPU fraction co-relates to 59% of CPU shares is where the actual invocation

records the lowest total cost. Therefore, the cost predictions are reliable with the Final Cost

estimation function.

5.3 Function Profiling for Serverless Cost optimization

With the results obtained and the observations made it is evident that function profiling done on

a local machine can be successfully used for Serverless cost estimations. In order to achieve the

particular output following steps has to be carried out as a workflow of execution.

1. Execute function locally using memory_profiler to obtain memory and running time of

the function.

2. Execute the function locally with scalene for CPU profiling to identify average CPU

utilization and running time of the function.

3. Using Time Estimator function calculate the optimal memory configuration for the

expected running time on Serverless.

4. Estimate the cost of function execution for the particular memory configuration to obtain

the ball park cost of function execution.

5. Deploy the function in the Serverless platform with the respective memory configuration.
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Figure 5.5: Local profiler to Serverless memory configuration workflow

Following the steps in Figure 5.5 we are able to transfer the control for the developer to

successfully estimate the running time on the Serverless platform and expected cost for the

particular configuration. This is a key result output which finally addresses the third research

question on how to obtain cost optimizations based on the output memory parameter. Rather

than relying on the straightforward proportional CPU allocation for profiler to running time

estimation. The linear regression approach discussed in this research has proven that better cost

optimizations can be achieved without the utilization of brute force techniques for Serverless

platforms.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

At theBegining of the research themain problem to addresswas how the developerswould be able

to successfully evaluate the performance of their function before deploying them to a Serverless

environment. Since the Serverless platforms are primarily allowing memory as a configuration

parameter the developers were on the blue when deciding the suitable memory configuration for

their functionality with CPU time taken in for consideration. The only information available with

regards to CPU is that each of the platforms AWS Lambda and GCF are providing proportional

CPU in relationship with memory. This resulted in developers to be executing the functions in

a brute force method to understand the suitable memory configuration with the optimal running

time requirement.

By using the memory_profiler for python and scalene profilers this study has successfully

profiled functions for memory and CPU usage which are then converted to Serverless memory

configuration. Which has addressed the first research question 1 2.8.1 What are the suitable

function profiling techniques to define memory parameters for a Serverless function? With

memory_profiler (mprof) as a memory profiling tool and scalene as a CPU profiler we are able

to calculate memory parameter for a Serverless platform.

Rather than just providing amemory output through profiling the regression analysis on time-

sharing on Serverless platforms has further allowed to convert the output CPU andMemory from

local profiling to Serverless running time with the appropriate Serverless memory parameter.

The regressionmodel was evaluated against the newly updated proportional CPU allocation. The

evaluation proved that the constant time-sharing provided by proportional allocation changes

hence the regression model is more suitable for calculating the underlying CPU.Which in return

56



addressed the research question 2 2.8.2 What is the formula that is capable of converting profiler

CPU and Memory parameters into the Vendor-specific Serverless function memory parameter?

by introducing Time estimation function.

With the ability to obtain the running times of a function based on the memory parameter

cost estimator function is finally defined and the steps to obtain the optimal cost is defined as

algorithm steps. These steps can be utilized with local profiler outputs to adjust the memory

parameter on the Serverless platform to obtain optimal running time while having a look at

the potential cost of execution for a given number of executions. Which in return answers the

research question 3 2.8.3 Can the memory parameter and execution time provided by function

profiling be used to reduce costs of Serverless by defining the optimal memory configuration?

with a solid yes.

Although there is error involved in all of the models and doesn’t estimate either the time

and or the cost exactly the given that these errors are in the range of fractions we are satisfied

with the results obtained. The study has successfully created a mechanism for developers to

profile their functions and provide an estimation of time and costs incurred on their functions

before they are deployed into a Serverless platform. This leaves us with a conclusion to the

study where function profiling can be used for function evaluation even though it is deployed

into a Serverless platform.

6.2 Future Work

Within this research the Serverless platforms considered are only AWS Lambda and GCF.

However, there are other Serverless platforms which needs the same evaluation to be performed

on eg:- Azure functions and Openwhisk as tasks for the future understanding the CPU time

sharing of these platforms has to be considered.

The primary target of this study was to produce a suitable technique to profile functions

beforehand of deploying to a Serverless platform. Therefore, the evaluation focused on the

capability of converting the profiler outputs CPU, memory and running time for a Serverless

memory configuration. Therefore, the functions used are to be expected to use maximum

memory and maximum CPU for the total period of execution. Although, it was intended

to study the varying resource functions within the same study given the execution rounds of

evaluation it is kept aside. Therefore, a future study would require to analyze the feasibility of

the same solution for varying resource usages.
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Appendix A

Lambda CPU time sharing log

2020-04-18T08:51:46.959Z START RequestId: 25bb1091-0470-4927-b091-d4acdea7e45f

Version: $LATEST

2020-04-18T08:51:47.208Z b’processor: 0 vendor_id: GenuineIntel cpu family: 6 model: 62

model name: Intel(R) Xeon(R) Processor @ 2.50GHz stepping: 4 microcode: 0x1 cpu MHz:

2500.010 cache size: 33792 KB physical id: 0 siblings: 2 core id: 0 cpu cores: 2 apicid: 0

initial apicid: 0 fpu: yes fpu_exception: yes cpuid level: 13 wp: yes flags: fpu vme de pse tsc

msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx

rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni

pclmulqdq ssse3 cx16 pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx

f16c rdrand hypervisor lahf_lm cpuid_fault pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust smep

erms smap xsaveopt arat md_clear arch_capabilities bugs: cpu_meltdown spectre_v1

spectre_v2 spec_store_bypass l1tf mds swapgs bogomips: 5000.02 clflush size: 64

cache_alignment: 64 address sizes: 46 bits physical, 48 bits virtual power management:

processor: 1 vendor_id: GenuineIntel cpu family: 6 model: 62 model name: Intel(R) Xeon(R)

Processor @ 2.50GHz stepping: 4 microcode: 0x1 cpu MHz: 2500.010 cache size: 33792 KB

physical id: 0 siblings: 2 core id: 1 cpu cores: 2 apicid: 1 initial apicid: 1 fpu: yes

fpu_exception: yes cpuid level: 13 wp: yes flags: fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx rdtscp lm constant_tsc

rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 cx16 pcid

sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm

cpuid_fault pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust smep erms smap xsaveopt arat md_clear

arch_capabilities bugs: cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds
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swapgs bogomips: 5000.02 clflush size: 64 cache_alignment: 64 address sizes: 46 bits

physical, 48 bits virtual power management: ’

2020-04-18T08:51:48.429Z

Process_Result:startCPU,9,endCPU,17,startTime,1595.76,endTime,1596.94,Hertz,100

2020-04-18T08:51:48.430Z END RequestId: 25bb1091-0470-4927-b091-d4acdea7e45f

2020-04-18T08:51:48.430Z REPORT RequestId: 25bb1091-0470-4927-b091-d4acdea7e45f

Duration: 1471.48 ms Billed Duration: 1500 ms Memory Size: 128 MB Max Memory Used:

52 MB Init Duration: 119.92 ms
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Appendix B

Profiler memprof result - sample

CMDLINE /usr/local/opt/python@2/bin/python2.7 MemoryFunction.py

MEM 0.179688 1576746200.7199 MEM 9.808594 1576746200.8203 MEM 95.640625

1576746200.9205 MEM 238.847656 1576746201.0209 MEM 347.882812 1576746201.1239

MEM 439.031250 1576746201.2242 MEM 531.613281 1576746201.3278 MEM 635.953125

1576746201.4290 MEM 729.585938 1576746201.5303 MEM 833.160156 1576746201.6312

MEM 938.054688 1576746201.7318 MEM 1043.734375 1576746201.8322 MEM

1152.546875 1576746201.9327 MEM 1252.378906 1576746202.0331 MEM 1377.351562

1576746202.1335 MEM 1502.718750 1576746202.2354 MEM 1539.710938

1576746202.3358 MEM 1544.863281 1576746202.4375 MEM 1577.675781

1576746202.5398 MEM 1625.628906 1576746202.6408 MEM 1717.414062

1576746202.7412 MEM 1782.792969 1576746202.8417 MEM 1835.824219

1576746202.9420 MEM 1883.707031 1576746203.0423 MEM 1902.468750

1576746203.1452 MEM 1942.542969 1576746203.2454 MEM 2028.250000

1576746203.3459 MEM 2107.429688 1576746203.4463 MEM 2196.339844

1576746203.5468 MEM 2266.648438 1576746203.6501 MEM 2350.207031

1576746203.7504 MEM 2395.203125 1576746203.8542 MEM 2408.667969

1576746203.9547 MEM 2535.148438 1576746204.0566 MEM 2643.027344

1576746204.1571 MEM 2720.632812 1576746204.2574 MEM 2819.976562

1576746204.3626 MEM 2862.839844 1576746204.4629 MEM 2936.273438

1576746204.5637 MEM 3021.621094 1576746204.6644 MEM 3101.578125

1576746204.7649 MEM 3152.273438 1576746204.8653 MEM 3201.859375

1576746204.9656 MEM 3238.980469 1576746205.0662
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Appendix C

Profiler scalene result - sample

CPU-FibonacciFunction.py: % of CPU time = 100.00% out of 26.19s.

Figure C.1: Scalene Sample output
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