

Improving and Measuring OCR

Accuracy for Sinhala with Tesseract

OCR Engine
 (f

A dissertation submitted for the Degree of Master of

Computer Science
(Font size 20)

B. P. K. M. Balasooriya

University of Colombo School of Computing

2020
(Font size 20)

 2 cm

i

DECLARATION

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: Kasun Manoj Balasooriya

Registration Number: 2016/MCS/013

Index Number: 16440132

Signature: Date: 2020/11/17

This is to certify that this thesis is based on the work of

Mr. Kasun Manoj Balasooriya.

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name: V.W Welgama

Signature: Date: 2020/11/17

ii

ABSTRACT

This research project proposes and implements a system to improve and measure the accuracy

of the Sinhala OCR using the Tesseract OCR engine. The system implements modules to rectify

the issues which are inherent to the Tesseract OCR engine when performing OCR for Sinhala

language. During the course of the project, the world level accuracy was used to measure the

accuracy of the output from the system.

As a baseline to compare the results of the proposed system which implements tesseract OCR,

the software the OCR Engine “පෙළ කැටෙත” was used. To improve the accuracy, a syntactical

rule engine a module to detect and correct confusion character pairs and a rudimentary

dictionary look up feature to detect and correct errors in word level has been implemented into

the system.

During the initial stage in the project which implemented only the Tesseract OCR library

functionality, the output was less accurate when compared with the OCR Engine “පෙළ

කැටෙත”. But as the features were built into the system, it yielded significantly improved results

which improved the word level accuracy from the original 53.22% to 86.16%.

iii

ACKNOWLEDGEMENTS

I wish to express my gratitude to the supervisor of this project, Mr. Viraj Welgama, Senior

Lecturer, University of Colombo School of Computing, for his valuable guidance and advices

given throughout the project. I would also like to acknowledge all the lecturers of the MSC

program, the course coordinators for their guidance and assistance. I would also like to

acknowledge my teammates and managers from work who helped me out to balance out my

work life with studies. I also like to extend my sincere gratitude to the classmates of the MSC

program for their support in numerous ways throughout the course and the project. I would like

to thank all the academic and non-academic staff of UCSC for their support in various ways in

past years. Finally, I wish to pay my gratitude to my family members, relations and friends for their

understanding and support given during my study period.

iv

TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

List of Figures .. vi

List of Tables .. vii

List Of Graphs ... viii

List Of Appendices .. ix

LIST OF ACRONYMS .. x

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Aims and Objectives ... 2

1.3 Scope of the study .. 3

CHAPTER 2: LITERATURE REVIEW .. 4

2.1 Pre-processing .. 6

2.1.1 Image Acquisition ... 6

2.1.2 Transformation .. 6

2.1.3 Segmentation ... 6

2.1.4 Feature extraction .. 7

2.2 Recognition .. 7

2.2.1 Feature selection and Creation .. 7

2.2.2 Pattern Recognition ... 8

2.3 Post Processing ... 8

2.3.1 Lexicon based post-processing .. 8

2.3.2 Statistical based post-processing ... 9

2.3.3 Context-based post-processing .. 9

CHAPTER 3: PROBLEM ANALYSIS AND METHODOLOGY ... 10

3.1 Research Problem ... 10

3.1.1 Sinhala Language .. 10

3.1.2 Generating Sinhala words .. 12

v

3.2 Methodology ... 13

3.2.1 Measuring OCR accuracy of Sinhala language ... 13

CHAPTER 4: IMPLEMENTATION ... 16

4.1 Unicode Errors .. 16

4.2 Syntactical Errors ... 17

4.3 Confusion Pairs .. 18

4.4 Word Level Errors .. 18

4.5 Error handling using post processing ... 19

4.6 Evaluation Approach .. 19

4.7 Algorithms .. 22

4.7.1 Algorithm for the system ... 22

4.7.2 Algorithm for confusion pairs ... 23

CHAPTER 5: EVALUATION ... 24

5.2 Results from the OCR Engine “පෙළ කැටෙත” .. 27

5.3 Introducing Unicode normalization to the OCR output ... 28

5.4 Dealing with confusion pairs .. 30

CHAPTER 6: CONCLUSION ... 35

6.1 Discussion ... 35

6.2 Future work .. 37

REFERENCES ... 39

vi

LIST OF FIGURES

Figure 2.1: list of supported page segmentation modes in Tesseract ... 7

Figure 3.1 Sinhala Alphabet ... 10

Figure 3.2 Different Consonant Modifier Combinations ... 12

Figure 4.1 Tesseract Output without normalization ... 17

Figure 4.2 Common Confusion Pairs ... 18

Figure 4.3 Evaluation approach used to measure the OCR accuracy 21

Figure 5.2 output from the default training data ... 25

The Figure 5.4 contains a screenshot of the output from the “පෙළ කැටෙටත” OCR engine.

[29] ... 27

Figure 5.4 output from the “පෙළ කැටෙටත” OCR engine ... 28

Figure 5.5 Tesseract output after applying the normalization rules ... 29

Figure 5.6 Tesseract output after correcting errors from confusion pairs 31

https://d.docs.live.net/4676ecab0b44c876/MSC/Improving%20and%20Measuring%20OCR%20accuracy%20for%20Sinhala%20with%20tesseract%20OCR%20engine/09%20Final%20Thesis/Improving%20and%20Measuring%20OCR%20accuracy%20for%20Sinhala%20with%20tesseract%20OCR%20engine.docx#_Toc43642467

vii

LIST OF TABLES

Table 2.1: OCR Error Examples... 5

Table 3.1 Different Consonant modifier combinations with the consonant ක. 11

Table 5.1 Summary of words in the Input Source .. 24

Table 5.2 Stage 1 output of the different errors .. 26

Table 5.3 Comparison of results from default training data vs “පෙළ කැටෙටත” OCR engine

 .. 28

Table 5.4 Comparison of results from default training data, “පෙළ කැටෙටත” OCR engine and

output after normalizing ... 29

Table 5.5 Stage 2 output of different errors.. 30

Table 5.6 Comparison of results from default training data, “පෙළ කැටෙටත” OCR engine and

output after correcting confusion pairs ... 32

Table 5.7 Stage 3 output of different errors.. 32

viii

LIST OF GRAPHS

6.1 Word level accuracy at each level

6.2 No of words correctly recognized at each phase

6.3 No of words corrected recognized at each phase

ix

LIST OF APPENDICES

Appendix A - Analysis of input Source ... 42

Appendix B – COnfusion Groups .. 49

Appendix C – Sinhala Unicode CHart ... 50

Appendix d – Source Code ... 54

x

LIST OF ACRONYMS

OCR – Optical Character Recognition

COTS -Commercial Off The Shelf

UCSC – University of Colombo School of Computing

1

CHAPTER 1: INTRODUCTION

OCR Stands for "Optical Character Recognition." OCR is a technology that recognizes text

within a digital image [3]. It is commonly used to recognize text in scanned documents, but it

serves many other purposes as well [3]. OCR software processes a digital image by locating

and recognizing characters, such as letters, numbers, and symbols [26]. Some OCR software

will simply export the text, while other programs can convert the characters to editable text

directly in the image [26]. Advanced OCR software can export the size and formatting of the

text as well as the layout of the text found on a page [3].

The recognition process of the characters would be not accurate enough due to various reasons.

Some reasons would be when the original image quality is poor and skewed. By rectifying the

above issues using preprocessing techniques before feeding the image into the OCR engine.

This would enable us to improve the result, and the validation processes could be applied to the

output with much ease.

Post-processing is used to ensure the accuracy of the OCR output sequence to be as the same

as that of the input source. If a particular word differs from the original source, a replacement

suggestion is made to form a sensible and meaningful output.

Even after repeated attempts of producing accurate OCR output, although there are

developments in strategies behind OCR, there are still problems when it comes to recognizing

the correct character. However, the OCR knowledgebase has been widely utilized in increasing

the accuracy of OCR recognition. Some of the techniques used to correct OCR errors are the

usage of language models, Statistical information of N-grams, Grammar rules, Syntactic

Analysis, Language Models and Lexicons.

The accuracy of the results from an optical character recognition engine may vary from the

context and the language it’s being used. Tesseract is an OCR engine which is used to do OCR

for many languages [1].

1.1 Motivation

Compared to the Latin script and other scripting languages like Chinese and Korean, Sinhala

OCR is at a research-level for being able to use at a commercial level. However, the usages of

OCR in Sinhala would be many as there are a lot of untapped resources which could be digitized

to produce advancements in the respective fields.

2

Documents and scripts on indigenous medicine, archived historical documents which are

decaying with time, voter registers, and government documents which have been stored through

various departments like census and hospitals are some of the examples of applied usages which

could benefit from an OCR solution.

 Since the localization and introduction of computers and digitization to government offices in

the recent past has amplified the necessity further. While OCR for Sinhala language and

meaningful data extraction is far behind, several improvements have been achieved with respect

to the research done using the tesseract OCR engine.

Since Tesseract OCR engine is being used by similar scripting languages like Devanagari,

Gurmukhi, Sindhi, Tamil, Thai and Telugu which shares some commonalities, it logical to look

into means of utilizing Tesseract OCR with the Sinhala language.

1.2 Aims and Objectives

While there have been attempts to use the Tesseract engine for Sinhala language, it is important

to look into ways of improving the output [1]. Measurement is needed to decide on the progress

made on such an attempt.

Techniques used to improve OCR accuracy can be classified into two main classes.

1) Preprocessing techniques

Preprocessing techniques are applied to enhance the quality of the source image before running

an OCR. A better source image which has minimal skew, a minimum amount of noise

(blots/stains) and clear input text are some of the example techniques that can be leveraged.

2) Post-processing techniques

The post-processing techniques are used to fine-tune the output. Most common techniques

include running the output against a lexicon, running the output against a rule engine to process

the grammar etc.

This project is done with respect to the following project objectives.

The intention of this project is to improve the accuracy by using the above means to measure

the accuracy against the accuracy measures of interest [2] mentioned below.

a) Character Accuracy

b) Word level accuracy

3

c) Accuracy by character class

d) Phrase accuracy

e) Non-stop word accuracy

• Developing an OCR solution for the Sinhala language by focusing on improving the accuracy

of selected accuracy measures.

• Meaningful accuracy statistics extraction and Analysis

• Presenting results of the above OCR accuracy measures for the Sinhala language

It is intended to measure the OCR accuracy for Sinhala language using the above accuracy

measures. While it is important to measure the OCR accuracy, it is important to evaluate best

matrices that can be used to improve OCR accuracy for the Sinhala language.

1.3 Scope of the study

• The measuring will be done for the popular Sinhala Unicode font “Iskolapotha" and depending

on the accuracy and the quality of the results, other fonts will be considered. (Newspaper

fonts/type writer fonts etc.)

• Preprocessing techniques will be applied manually to create a better input image where

applicable. (Will not be built into the system as a feature)

4

CHAPTER 2: LITERATURE REVIEW

The Tech Terms Computer Dictionary defines Optical character recognition (OCR) as follows.

“Optical character recognition (OCR) is a technology that recognizes text within a digital image

[3]. The common usage of Optical character recognition (OCR) is to digitally process scanned

documents such as passport documents, invoices, bank statements, computerized receipts,

business cards, mail, printouts of static-data, or any suitable documentation [4].

Optical character recognition (OCR) software processes a digital image by locating and

recognizing characters, such as letters, numbers, and symbols [3]. Some Optical character

recognition (OCR) software will simply export the text, while other programs can convert the

characters to editable text directly in the image [3].

Character recognition can be classified into two based on the input method [4]. They are on-

line character recognition and Off-line character recognition. On-line character recognition is

a real-time process which concentrates on capturing the motion of the characters/glyphs drawn

rather than the shape of the character or glyph. Off-line character recognition focuses on

scanning and analyzing the shapes of the characters and glyphs [3] [4].

Optical character recognition (OCR) fits under off-line character recognition in the above

classification. Usually, the OCR system uses an optical input device (e.g., scanner) to capture

images and to feed it to the recognition system. OCR systems can be further classified into two

types, OCR systems to recognize printed text and OCR systems to recognize hand-written text

[5].

Because of the existence of a variety of writing styles, it's often difficult to produce accurate

and reliable output for hand-written text when compared with printed text. The printed text

follows a font standard which can be processed relatively easily when compared with a hand-

written text [5]. The widespread usage of OCR in the present spans from storing data in

databases, processing text for translation, transliteration or converting text to speech,

meaningful historical data archiving, digitization of historical documents to Automatic number

plate recognition etc.

Most commonly used input formats in OCR software include JPG, TIFF, GIF, and PDF while

the output formats are text, Microsoft Word, RTF, PDF etc. Some of the most widely used OCR

software are Abbyy FineReader, Adobe Acrobat Professional and Google Tesseract OCR [6].

Some of the above software has leveraged commercial off-the-shelf (COTS) OCR software

packages such as Tesseract making OCR software openly available [6] [7].

5

Commercially developed OCR systems demonstrate a high level of accuracy for Latin script

[5]. The above OCR systems are the first OCR systems to be developed for commercial use.

The accuracy of commercial OCR systems spans from71% - 98% [5]. The accuracy of the OCR

depends on the quality of the scanned image (sharpness/skew, etc.) and the OCR software [5].

Some typical sample errors [5] are listed in table 2.1 below.

Table 2.1: OCR Error Examples

Most OCR errors are primarily caused by noise (either inherent or introduced during the

scanning process) in the document [5]. A two-pass approach to recognize characters is used in

software like Cuneiform and Tesseract. They use the first pass to identify the letter shapes with

a confidence level. Then the letters identified with high confidence is used in the second pass

to recognize the remaining letters on the second pass. This approach can be beneficial for

unusual fonts or low-quality scans or when the font is distorted (e.g. blurred or faded) [4].

Application of OCR in the modern world is diverse and the images to be scanned contain

degraded images, heavy-noise, paper skew, low-resolution complex and various fonts

/symbols/glossary words etc. Consequently, better OCR accuracy with better reliability has

become an inevitability.

An OCR engine will typically mark some of the characters "suspicious", and the error correction

is mostly based on verifying the above-identified characters [5]. However, there are other

approaches like checking the OCR output against a dictionary [8], probabilistic approaches [9]

6

[10], advanced level of linguistic knowledge about grammar rules/syntax and semantics [11]

[12] [13] which can be applied to improve OCR accuracy.

The current process of OCR can be studied under three main stages; Pre-processing,

Recognition and Post Processing. Measures to improve accuracy can be employed in each of

these stages. Pre-processing is used to prepare the source in the optimal quality possible before

feeding into the OCR software. Then during the recognition stage, the source image is converted

into a document with a digital representation of characters. During the post-processing stage

error detection and correction of errors to improve accuracy is done. It is important to have an

understanding of the above stages and discuss them in detail.

2.1 Pre-processing

There are four steps in preprocessing. Namely Image acquisition, Transformation,

Segmentation and Feature extraction [14].

2.1.1 Image Acquisition

Converting a document to a numerical representation is image acquisition. It acquires the image

of a document in color, grey-levels, and in binary format. The image is scanned first. The

resolution depends on the purpose of the application and the nature of the material. Then the

scanned image is sampled and quantified into a number of grey levels. Coding techniques are

used to reduce the size of data representing.

2.1.2 Transformation

Transformation of the image to image is portrayed by input-output relationship. It involves

refining the data in the representation image in several methods such as Geometrical

transformation, Filtering, Background Separation, Object Boundary Detection, and Structural

Representation [3].

2.1.3 Segmentation

In the segmentation stage, the layout information is extracted by breaking down the image into

lines and further into characters [15]. The number of lines and the number of words/characters

can be extracted as Metadata which could be used to improve accuracy during this stage.

Tesseract supports and can be compiled to support a variety of page segmentation modes

depending on the user preference [16].

7

Figure 2.1: list of supported page segmentation modes in Tesseract

2.1.4 Feature extraction

Feature extraction will classify symbols into classes. Feature extraction captures the distinctive

characteristics of the digitized characters for recognition [3].

2.2 Recognition

Recognition involves sensing, feature selection and Creation, pattern recognition, decision

making, and system performance evaluation [3]. A vertical projection is used, and it scans a

line from top to bottom in character separation [15].

2.2.1 Feature selection and Creation

Feature selection is applied to reduce sample complexity, computational cost, and to overcome

performance issues during recognition. There are three approaches to feature extraction and

Creation [17]. Filter approach; used to filter out some features before applying a classifier,

Wrapper approach which wraps the feature selection algorithm with computational cost and an

unbiased classifier, Hybrid model which fits the subset of features and the accuracy of matching

to a classifier [17].

8

2.2.2 Pattern Recognition

Pattern recognition will assign a given pattern into one of the known classes. There are two

commonly used methods; template matching and classification on feature space [14] [17] [18].

Template matching compares the pattern with stored models of known patterns and selects the

best match [18]. Template matching can be applied when the number of classes and variability

within a class is small [14]

When classifying based on the feature space features are summarized and classified using

statistics, syntax, neural networks or a combination of above methods [17].

2.3 Post Processing

The human eye with the aid of the human brain is able to read and process most of the texts

irrespective of the font, style, skew, distortion missing characters etc. But in contrast, the OCR

systems like most machines mimicking human behavior exhibit poor accuracy when compared

to that of humans. Hence, improving the accuracy of OCR output has become imperative.

Hence to improve the accuracy of the OCR output, post-processing is exploited.

Most errors in recognizing characters are introduced in segmentation and classification stages,

mainly due to low-quality images [5]. Post-processing is harnessed to correct errors and/or

resolve ambiguities in OCR results by using at the levels of context, word, sematic and sentence.

One such post-processing techniques are character level contextual post-processing [19].

Character level contextual post-processing is mainly based on lexicon methods and statistical

methods [19].

2.3.1 Lexicon based post-processing

In lexicon-based post-processing approach, a lexicon is applied to individual characters which

are reliably segmented in a word [20]. There are three approaches used in lexical based post-

processing approach [21].

1) Bottom-up approach

2) Top-down approach

3) Hybrid approach

9

2.3.2 Statistical based post-processing

In the statistical method, letter n-grams are used to filter out unacceptable candidate words from

the recognizer. An n-gram is a letter string of size n [12]. The probability of n-gram appears in

a word is considered for each candidate word for the selection. In this case, conditional

probabilities in forwarding and backward directions are considered. Widely used n-grams are

bi-grams and trigrams.

While there are post-processing techniques which operates at a character level, another type of

popular post-processing technique is to operate at the word level. The dictionary lookup method

is the most commonly used post-processing technique which operates at a word level [12] [6].

2.3.3 Context-based post-processing

Context-based post-processing is another post-processing technique. One such context-based

post-processing is the usage of syntactic properties of a language like grammar rules to check

for illegal character combinations [12]. Looking for a presence of two consecutive vowels or a

word string with a forbidden consonant or vowel can be given as an example for such grammar

rules.

10

CHAPTER 3: PROBLEM ANALYSIS AND METHODOLOGY

3.1 Research Problem

3.1.1 Sinhala Language

The Sinhala alphabet consists of 18 vowels 41 consonants and two semi-consonants, which will

total into 61 letters [22] as shown in Figure 3.1.

Figure 3.1 Sinhala Alphabet

The usage of semi consonants is to enable writing vocal strokes with speech sounds. A strong

relation is present between the speech sound and the consonant when compare to the English

language [23].

11

Table 3.1 Different Consonant modifier combinations with the consonant ක.

More often, the composite characters have a different shape to its base (core) character but its

shape is a combination of the consonant and the modifier both together. (Figure3.2a)

Consonant has an inherent vowel ‘a’ sound and its pure form is obtained by removing that using

“al-lakuna” (්). Sometimes, the composite characters have totally different shapes compared

to the base character [25]. (Figure 3.2b) Some modifiers figures out different shapes for

different base characters. (Figure 3.2c) This is valid for “al-lakuna”, “papilla” and “diga

papilla”. For “Al-lakuna” forms are named as “kodiya” and “raehaena” whereas for papilla they

are called “wak papilla” and “kon papilla” [23].

Even for the similar shaped composite characters as in Figure 3.2a, the modifier may be

differing in size, orientation and appearance. (Figure 3.2d) Some modifiers have totally

different shapes for different base characters too. (Figure 3.2e). Any vowel, consonant or

composite character may be preceded to a semi-consonant.

12

Figure 3.2 Different Consonant Modifier Combinations

3.1.2 Generating Sinhala words

Some Statistics for the language by using UCSC lexicon [24] as the data store is as follows.

Number of words = 6, 57,131

Number of Unique words = 70,131

Shortest Word = ද

Longest Word = ප‍යෝතිශ ශාස්ත් රඥයින්පේ

A root word is used in the Sinhala language to generate many numbers of word forms in the

Sinhala language [25]. The root word is the smallest building block and the word which will

invoke the meaning. Inflectional root words are stems, and they are formed by the root word.

The same word stem is able to generate several numbers of nouns, adjectives, adverbs or verbs,

considering tense, number, person and purpose etc. This enables a word in the Sinhala language

to be separated into prefix, stem, and suffix triples.

13

3.2 Methodology

3.2.1 Measuring OCR accuracy of Sinhala language

The research problem is to measure the OCR accuracy using the following pre-defined matrices.

Some of the accuracy measures that are of interest are given below [2]:

1) Character Accuracy

The text generated by a page-reading system is matched with the correct text to determine the

minimum number of edit operations (character insertions, deletions, and substitutions) needed

to correct the generated text [2]. This quantity is termed the number of errors. If there are n

characters in the correct text, then the character accuracy is given by (n-#errors)/n

2) Word level accuracy

A popular use of a page-reading system is to create a text database from a collection of hard-

copy documents. Information retrieval techniques can then be applied to locate documents of

interest. For this application, the correct recognition of words is paramount. We define a word

to be any sequence of one or more letters. In word accuracy, we determine the percentage of

words that are correctly recognized. Each letter of the word must be correctly identified. Errors

in recognizing digits or punctuation have no effect on word accuracy [2].

3) Accuracy by character class

The character set (alphabet) is divided into several classes, and the percentage of characters in

each class that were correctly recognized is determined.

4) Phrase accuracy

Users search for documents containing specific phrases. We define a phrase of length L to be

any sequence of L words.

For example, the phrases of length 3 in "University of Nevada, Las Vegas" are "The University

of Nevada," "of Nevada, Las," and "Nevada, Las Vegas."

For a phrase to be correctly recognized, all of its words must be correctly identified. Phrase

accuracy is the percentage of phrases that are correctly recognized, and we have computed it

for L = 1 through 8. The phrase accuracy for length 1 is equal to the word accuracy.

14

Phrase accuracy reflects the extent to which errors are bunched or scattered within the generated

text. Suppose two-page readers, A and B, have the same word accuracy but A has a higher

phrase accuracy than B. Then A's errors are more closely bunched, and hence, easier to correct,

than B's errors.

5) Non-stop word accuracy

Stop words are common words such as the, of, and, to, and a in English; de, la, el, y, and en in

Spanish; and der, die, in, und, and von in German and ස්ත්හ, පතක්, ස්ත්මග, පහෝ in the Sinhala

language.

These words are normally not indexed by a text retrieval system because they are not useful for

retrieval. Users search for documents by specifying non-stop words in queries. With this in

mind, we wish to determine the percentage of non-stop words that are correctly recognized, i.e.,

the non-stop word accuracy. To do this, a list of stop words for the Sinhala Language is required.

In each of the above measures, the Sinhala language satisfies the need of having the features

which are needed to apply the above measures and feed data into the variables of each of the

above categories. Considering the features and structure of the Sinhala language, all the above

matrices can be applied to measure OCR accuracy for the Sinhala language. The rationale in

choosing the above five categories to measure OCR accuracy is as follows:

1) Character Accuracy

As noted under section 3.1.1 Sinhala alphabet consists of 18 vowels 41 consonants and two

semi-consonants which are unique from each other. Hence the accuracy measure (n-#errors)/n

can be used to measure accuracy.

2) Word level accuracy

A Sinhala word lexicon such as the UCSC lexicon [24] can be used as the word database, and

the percentage of correctly identified words in each OCR run can be measured

3) Accuracy by Character class

The Sinhala language has been divided into character classes as vowels, consonants and semi-

consonants. These classes can be used to determine the percentage of characters in each class

that were correctly recognized. The density of characters from each class can be tweaked as

input parameters to generate result sets for accuracy

15

4) Phrase Accuracy

The Sinhala language contains words which will combine to formulate phrases. The phrases in

an OCR output for the Sinhala language can be identified and used to determine the phase

accuracy. The phrase length and number of phrases in the input document can be adjusted as

variable inputs.

5) Non-stop word accuracy

Exploiting stop words similar to ස්ත්හ, පතක්, ස්ත්මග, පහෝ in the Sinhala language the Non-stop

word accuracy can be measured with respect to a Sinhala OCR output. The density of stop

words included in an input document can be exploited as a variable input to measure the

accuracy.

In addition to the changing of the above variable input parameters in each of the above five

measures, the following variables can be used for all of the above measurements as another

input variable.

1) The font size of the text in the input document

2) Spacing between words in the input documents

3) Basic font styles of the input text (italic/bold)

16

CHAPTER 4: IMPLEMENTATION

A POST PROCESSING BASED METHODOLOGY TO INCREASE

OCR ACCURACY FOR SINHALA SCRIPT ERROR HANDLING

In the OCR output some words that are identified are correct while some of the words identified

are incorrect. If the words in the output does not match the words in the original document, the

identified word is incorrect.

4.1 Unicode Errors

Due to how the Sinhala Unicode characters are implemented, an additional effort is needed to

correct the errors observed in the output. The primary error that is affecting the output is the

order of the Unicode characters and the modifiers. The Unicode of a modifier and the letter in

the Sinhala alphabet does not follow their graphical representation sequence for the consonants.

When writing the modifier is followed by the consonant. But in the Unicode representation the

Unicode of the consonant is followed by the modifier.

Example

පක comprises of the modifier ප් (Kombuwa) and the consonant ක.

The individual Unicode strings for the characters are:

ප් - \udd9

ක - \ud9a

Although when writing the letter, the modifier is followed by the consonant, the Unicode

sequence is as follows:

\ud9a\udd9

Furthermore, the above rule changes when it comes to vowel modifiers. Whenever a vowel is

associated with a modifier, the character is considered a new character and gets its own Unicode

value.

Example

The character අ can be associated with the modifier ්ැ (Adapilla) and the output character ඇ is

represented as a single Unicode string.

17

අ - \ud85

්ැ - \udd0

ඇ - \ud87

The Unicode sequence will take the visual sequence and the result output string will be

represented incorrectly.

Figure 4.1 Tesseract Output without normalization

Example

The output from the tesseract OCR engine will represent the character ඇ as අ්ැ.

Hence to resolve the above issue, normalization engine is built into the proposed system which

will process the output and change the Unicode sequence to the correct value or replace the

Unicode with the correct Unicode value.

4.2 Syntactical Errors

Another means of improving the accuracy is to identify the syntactical rules in Sinhala

language.

1) Some of the syntactical rules that has been identified is as follows [22][27][23].

2) The characters ඏ (SINHALA LETTER ILUYANNA) and ඐ (SINHALA LETTER

ILUUYANNA) are currently not in use

3) In addition, the letter ඦ is very rarely in use.

4) No modifiers are used with ඞ (KANTAJA NAASIKYAYA)

5) A word cannot start with a consonant or semi consonant.

18

6) Usually a vowel will not be in the middle of a word. For that the dependent vowel form

is used. [23][25]

7) ඞ can be replaced with the letter ් , but not vice versa.

8) The only word that starts with ණ is ණය

However, building all these rules into a syntactical rule engine and rectifying errors can be

difficult to achieve. But some of these syntactical rules have been built into the rule engine and

the system has been tested for any improvements in accuracy.

4.3 Confusion Pairs

Confusion pairs are a common OCR problem which occurs during the recognition phase. The

problem is the OCR engine confusing the source text with a visually similar character. In

Sinhala language following are some of the most commonly found visually similar confusion

pairs.

Figure 4.2 Common Confusion Pairs

4.4 Word Level Errors

Contextual word recognition in post processing is performed on the OCR data stream at one

level above character recognition, called the word level. By working at the word level, certain

interferences and error rectifications are possible, which would not be feasible at the character

level.

The most common post-processing technique operates at the word level is the dictionary look

up method [12]. Techniques based on statistical information about the language are also used

as well [12]. In statistical method, an n-gram, a letter string of size n [12] is used to filter out

unacceptable candidates, on which substrings of n-grams cannot be generated, from the

recognizer.

19

In order to correct word level errors caused by confusion pairs, the dictionary look up method

was in used. The wordlist used is the UCSC Lexicon [24] which contains 70131 unique words.

The technique used is to look for characters which are in the confusion pairs and if the source

text which is not a word in the lexicon and by replacing a confusion character, if a word can be

generated, the current word will be replaced with the proper word to increase accuracy.

4.5 Error handling using post processing

The objective of post-processing is to correct errors or resolve ambiguities in OCR results by

using contextual information at the character level, word level, at the sentence level and at the

level of semantics.

Character level contextual post processing is mainly of two types Statistical methods and using

a Lexicon [19]. The both methods involve in detecting and correcting of one or more errors. In

Statistical method conditional probability of n-grams are gathered with training data to apply

them to the testing data. If all the n-grams for the word existed, the word is considered as correct.

In the other method, dictionary is used. If the word is found in the dictionary it is assumed that

all its characters have been correctly recognized. Otherwise the same dictionary is used for

correcting the errors in the recognized characters.

In addition, syntactical methods like grammar rules can also be incorporated to check for illegal

character combinations. Some of such grammar rules are presence of two consecutive vowels

or a word starting with a forbidden consonant or vowel [12].

4.6 Evaluation Approach

The evaluation approach that is used for this project will be experiment based. The datasets

used for training tesseract will be the generic dataset that is already provided with the Tesseract

OCR project. However, the input dataset for the OCR process will be generated in the following

order to automate the error detection and analysis process.

• Create input as a text file with the desired word combinations. To extract meaningful

text which has context, news articles from Sinhala e-newspapers will be used.

• Generate an image for OCR from the above text file. (The tool JtessBox editor [28]

which is a tool used to create OCR training data will be used)

20

To compare the accuracy of the OCR output, the input image will be fed into few of the readily

available Sinhala OCR tools. As of now some of the OCR tools which uses the tesseract OCR

engine in the core are as follows.

1. "පෙළ කැටෙත" - මුද්‍රිත අකුරු හඳුනාගැනිපේ මෘදුකා ගය [29]

2. Optical Character Recognition System for Sinhala [30]

The output from the OCR engine from this project will be compared against the output of the

above engines to compare the accuracy.

To quantify and measure the accuracy of an input document against the original text the

following accuracy measure [31] will be used.

• Word level accuracy

A popular use of a page-reading system is to create a text database from a collection of hard-

copy documents. Information retrieval techniques can then be applied to locate documents of

interest. For this application, the correct recognition of words is paramount. We define a word

to be any sequence of one or more letters. In word accuracy, we determine the percentage of

words that are correctly recognized. Each letter of the word must be correctly identified. Errors

in recognizing digits or punctuation have no effect on word accuracy [31].

The Figure 4.3 shows the evaluation approach used to measure the OCR accuracy.

21

The experiment is based on the research hypothesis, the output of the tesseract OCR engine can

be improved using post processing techniques. As exhibited in the Figure 1.1, with each

iteration the OCR post processing engine will be refined with new rules and features to improve

OCR accuracy. With each iteration the accuracy of the output will be diffed with the original

text and the accuracy of the output text will be measured with the matrix word level accuracy.

Furthermore, the improvement will be compared keeping the output accuracy of the other two

OCR engines “පෙළ කැටෙත” [29] and Optical Character Recognition System for Sinhala [30].

පෙළ කැටෙත

Input Image

Output text

Compare Output
accuracy

Optical Character Recognition
System for Sinhala (UCSC)

Input Image

Output text

Compare Output
accuracy

LankaOCR (OCR Engine of this
Project)

Input Image

Output text

Compare Output
accuracy

Introduce Rules to

OCR post- processing

engine

Figure 4.3 Evaluation approach used to measure the OCR accuracy

22

4.7 Algorithms

4.7.1 Algorithm for the system

Generate OCR output in the HOCR format and using Tess4J [32].

// apply Unicode normalization for the output text in word level

Repeat for all the OCRed words in the output file

 Extract a word

 Apply Vowel Normalization Rules

 Apply Consonant Normalization Rules

 Apply the syntactic error correction rules

// check whether word is available to apply confusion rules

If Sinhala word search it in the dictionary

If a match found, write into the output

Else

Generate words with confusion pair list1

If word with confusion character found

Write the best match into the output

Else

Write the current word to the output

23

4.7.2 Algorithm for confusion pairs

Repeat for each component in a string from left to right

For each confusion pair in the list {

If match found

Generate word replacing component with confusion

Test the word against the Dictionary

If a hit add the word to candidate list

And manipulate the likelihood}

Select the highest scored candidate

24

CHAPTER 5: EVALUATION

The training dataset used to train the tesseract OCR engine is the readily available training data

set, which is available in the tesseract project. The image format used as input source is tif. The

input sample is an extract from a Sri Lankan E-newspaper. The font is “Iskoolapotha”.

Input contains 2 tif pages which includes punctuations and numbers. (Arabic Numerals)

Figure 5.1 Sample image of the input used for OCR

The input image has 419 words in total.

The table 5.1 gives a summary of the words in the input source.

Table 5.1 Summary of words in the Input Source

Total Number of Words 419

Number of Unique words 239

Most Frequent word ප ෝක (9 occurrences)

Number of punctuations 16

Number of Arabic Numeral

occurrences
6

Number of words which occur More

than once in the text
66

25

5.1 Results from the output using the default training data without any post

processing

The output from the tesseract using the readily available sin.traindata (tesseract language

training data file for the font Iskoolapota)) produced the following results.

Total Number of words in the input = 419

Total Number of words in the output = 419

No of words in identified correctly = 223

Misrecognized words = 196

The word level accuracy (223/419) * 100 = 53.22%

The figure 5.2 contains a screenshot from the output and the figure 5.3 is a screenshot from the

comparison between the original text and the output text.

Figure 5.2 output from the default training data

26

Figure 5.3 Comparison between the original text and the output form the default training data

The following table shows different types of errors identified during this stage.

Table 5.2 Stage 1 output of the different errors

Input Word
Output

Word
Explanation

පමන්ම ප්මන්ම Unicode error which needs to be fixed by changing the Unicode

sequence of the "පකාේුව" with the consonant.

වවරස්ත් ප්ප්වරස්ත් Unicode error which needs to be fixed by allocating the correct

Unicode sequence and the correct Unicode for "පකාේු පදක".

ප ෝක ප් ා ්ක Unicode error and should be corrected by applying the correct

Unicode sequence followed by the consonant

පස්ත්පන්ට් ප්පස්ත්න්ට් Applying the correct Unicode sequnce should resolve the error

රිෙබ්ලිකන් රිෙබලීකන් Error in recognition from tesseract. a confusion pair "ි" and "ලී"

is observed

පහිකරන ප්හලීකරන Error in Unicode which can be fixed by normalizing but the error

in recognition for the confusion pair "ි" and "ලී" needs to be

handled

ආචාර්ය අ්ාවාර්ය Error in Unicode. The modifier "ඇ පිල් "has been recognized and

needs to be replaced by the correct Unicode. The confusion pair "ව"
and "ච" is observed

නැත්තාවූත් නැත්තාවුත් No Unicode errors, the confusion pair "වු" and "වූ" has resulted in

the error
අධ්‍යක්‍ෂ අධ්‍යකහි The joined letter has not been recognized correctly.

27

5.2 Results from the OCR Engine “පෙළ කැටෙත”

The sample input used in the above instance was fed into the OCR Engine “පෙළ කැටෙත” [29]

developed by the Language Research Training Laboratory of UCSC and the output was

extracted.

The output from the above OCR engine yielded the following results.

Total Number of words in the input = 419

Total Number of words in the output = 419

No of words in identified correctly = 233

Misrecognized words = 186

The word level accuracy (233/419) * 100 = 55.61%

The Figure 5.4 contains a screenshot of the output from the “පෙළ කැටෙටත” OCR

engine. [29]

28

Figure 5.4 output from the “පෙළ කැටෙටත” OCR engine

Comparing the results from output from the default training data vs “පෙළ කැටෙටත” OCR

engine [29].

Table 5.3 Comparison of results from default training data vs “පෙළ කැටෙටත” OCR

engine

5.3 Introducing Unicode normalization to the OCR output

To increase the OCR accuracy and to rectify the Unicode errors described under section 4.1, a

normalization engine was built to the application. This is an application of post processing in

an attempt to determine whether it can increase the accuracy of the output from tesseract OCR

engine. Enabling the normalization engine yielded the following results.

Total Number of words in the input = 419

Total Number of words in the output = 419

No of words in identified correctly = 307

Misrecognized words = 112

The word level accuracy (307/419) * 100 = 73.27%

With the introduction of the normalization to the output the word level accuracy increased by

20.05% which is a significant improvement.

Property
Default training

data
පෙළ කැටෙත

Total Number of words in the input 419 419

Total Number of words in the output 419 419

No of words in identified correctly 223 233

Misrecognized words 196 186

The word level accuracy 53.22% 55.61%

29

Figure 5.5 is a screenshot of the results obtained after enabling normalization rules to the

tesseract output with the readily available training data file for Sinhala language.

Figure 5.5 Tesseract output after applying the normalization rules

Table 5.4 Comparison of results from default training data, “පෙළ කැටෙටත” OCR

engine and output after normalizing

After the application of normalization rules, a significant portion of the Unicode errors were

resolved. However, there were some more errors which did not get resolved. Following is an

analysis of the resolved and unresolved errors after stage 2.

Property
Default training

data
පෙළ කැටෙත

Normalized

output with

default training

data

Total Number of words in the

input
419 419 419

Total Number of words in the

output
419 419 419

No of words in identified

correctly
223 233 307

Misrecognized words 196 186 112

Percentage of errors corrected at

this stage
N/A N/A 42.86%

The word level accuracy 53.22% 55.61% 73.27%

30

Table 5.5 Stage 2 output of different errors

Error from

stage1

Output

from stage 2
Explanation

ප්මන්ම පමන්ම Resolved with normalization.

ප්ප්වරස්ත් වවරස්ත් Resolved with normalization.

ප් ා ්ක ප ෝක Resolved with normalization.

ප්පස්ත්න්ට් පස්ත්පන්ට් Resolved with normalization.

රිෙබ්ලලීකන් රිෙබ්ලිකන් The confusion pair ‘ි’,’ලී’ exists and makes the word

incorrect

ප්හලීකරන පහලීකරන The Unicode error has been resolved through normalization

but the error in recognition for the confusion pair "ි" and

"ලී" needs to be handled

අ්ාවාර්ය ආවාර්ය The Unicode error has been resolved through normalization

the confusion pair "ව" and "ච" needs to be fixed

නැත්තාවුත් නැත්තාවුත් The confusion pair "වු" and "වූ" from stage 1 still remains

the same.
අධ්‍යකහි අධ්‍යකහි The joined letter has not been recognized correctly as

observed in stage 1.

Apart from the errors noted above, there are some errors which have been introduced from the

recognition phase. These errors are mainly due to the incompleteness of training data. (Missing

characters in the training data, punctuations not recognized properly and the training data

missing the Arabic numerals)

These errors are described with details in the next analysis after introducing the dictionary

correction feature for confusion pairs.

5.4 Dealing with confusion pairs

It was observed that the confusion pairs have a sizable impact on the accuracy of the OCR from

the results obtained until now. To rectify these errors and increase the accuracy, a new feature

to identify confusion pairs and replace the errored words through a dictionary look up was

introduced to the OCR engine.

The word look-up is a complex feature which can be improved in many ways. For example, the

word look -up can be introduced to correct word errors in the output by means of N-grams.

However, this feature has been introduced to look for a word which contains a confusion

pair/pairs in it and by swapping a confusion pair/pairs if a legitimate word can be found in the

word lexicon the current word will be replaced by the word from the lexicon.

31

The word lookup feature is another post processing technique which was used in this project to

increase the accuracy of the OCR output. After introducing the correction feature to deal with

confusion pairs with a word lookup, the following results were yielded.

Total Number of words in the input = 419

Total Number of words in the output = 419

No of words in identified correctly = 361

Misrecognized words = 58

The word level accuracy (307/419) * 100 = 86.16%

With the introduction of the feature to correct confusion pairs, the word level accuracy

increased from 73.27% to 86.16%. This is a 12.89% increase of accuracy when compared with

the results from stage 2 which introduced the Unicode normalization feature.

Figure 5.6 is a screenshot of the results obtained after introducing the correction feature for

confusion pairs to the tesseract output with the readily available training data file for Sinhala

language. The highlighted text in the figure are some of the corrections which were done

during this phase.

Figure 5.6 Tesseract output after correcting errors from confusion pairs

The following table is a summary of errors corrections done with a comparison of word level

accuracy during each stage.

32

Table 5.6 Comparison of results from default training data, “පෙළ කැටෙටත” OCR

engine and output after correcting confusion pairs

After introducing confusion pair correction for words, a significant portion of the words with

errors due to confusion pairs were resolved. However, there were some more errors which did

not get resolved. Following is an analysis of the resolved and unresolved errors after stage 3.

Table 5.7 Stage 3 output of different errors

Error from

stage2

Output from

stage 3
Explanation

රිෙබලීකන් රිෙබ්ලිකන් The confusion pair ‘ි’,’ලී’ has been resolved

පහලීකරන පහිකරන

The Unicode error has been resolved through

normalization but the error in recognition for the

confusion pair "ි" and "ලී" needs to be handled

ආවාර්ය ආචාර්ය The confusion pair "ව" and "ච" has been resolved.

නැත්තාවුත් නැත්තාවූත් The confusion pair "වු" and "වූ" has been resolved

අධ්‍යකහි අධ්‍යකහි
The joined letter has not been recognized correctly as

observed in stage 1 and stage 2

කරයිවිනය කරයිවිනය
The correct word sequence from the input source is

කරයි. චීනය. However, the punctuation “full stop” has

not been recognized correctly

Property
Default

training data
පෙළ කැටෙත

Normalized

output with

default

training

data

Correcting

confusion

pairs

Total Number of words in

the input
419 419 419 419

Total Number of words in

the output
419 419 419 419

No of words in identified

correctly
223 233 307 361

Misrecognized words 196 186 112 58

No of words corrected

during this phase compared

to first phase

N/A N/A 74 128

Percentage of errors

corrected at this stage
N/A N/A 39.78%

68.82%

The word level accuracy 53.22% 55.61% 73.27% 86.16%

33

රෑබිපයෝ රෑබිපයෝ
The character ‘රූ’ has been mis-recognized as ‘රෑ’. This

is a recognition level error which needs to be addressed

at the training data level

ස්ත්මබන්ධ්‍පයන් ස්ත්මබන්ධ්‍පයන්
The error is due to the character ‘ම’ is recognized instead

of the expected ‘ේ’. This is an issue with the training

data and needs to be corrected from the training data.

Analyzing the above output, it is evident that the OCR accuracy has improved from stage 2.

However, there is room for improvement at the recognition phase by improving the quality of

the training data used with tesseract.

Graph 6.1 Word level accuracy at each level

53.22% 55.61%

73.27%

86.16%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Default training data පෙළ කැටෙත Normalized output with
default training data

Correcting confusion
pairs

W
o

rd
 L

ev
el

 A
cc

u
ra

cy

The word level accuracy at each stage

The word level accuracy

34

Graph 6.2 No of words correctly recognized at each phase

Graph 6.3 No of words corrected recognized at each phase

419 419 419 419419 419 419 419

223 233

307

361

0

50

100

150

200

250

300

350

400

450

Default training data පෙළ කැටෙත Normalized output with
default training data

Correcting confusion pairs

N
o

 o
f

 W
o

rd
s

No of words correctly reognized at each phase

Total Number of words in the input Total Number of words in the output

No of words in identified correctly

419 419 419 419

196 186 112

58
0 0

74

128

0

50

100

150

200

250

300

350

400

450

Default training data පෙළ කැටෙත Normalized output with
default training data

Correcting confusion pairs

N
o

 O
f

O
w

rd
s

No of Words corrected during each phase

Total Number of words in the output

Misrecognized words

No of words corrected during this phase compared to first phase

35

CHAPTER 6: CONCLUSION

6.1 Discussion

The default training data for Sinhala language readily available with the Tesseract OCR engine

was used during the recognition phase of this project. The post processing features were built

to the OCR engine to improve the OCR accuracy from Tesseract.

To compare the results, the ‘පෙ කැටෙත’ OCR software developed by the Language

Technology Research Laboratory of UCSC was used as the baseline. The Accuracy measure

which was used in phase was word level accuracy. The data set which was used to test OCR

accuracy contained a combination of Sinhala characters covering all character classes and most

of their permutations. Some of the character classes and permutations used are:

1) Vowels

2) Consonants

3) Conjunct Characters (Eg: ඥ)

4) Special modifiers (Eg:)

The input image format for the proposed system was tif. However, the input for the

‘පෙ කැටෙත’ OCR tool, the input source had to be of type jpg. Hence the dataset which was a

2-page tif image, was converted to 2 jpg images.

The first set of results from ‘පෙ කැටෙත’ tool and the default training data from the Tesseract

yielded the word level accuracy of 55.61% and 53.22% respectively. Comparing the above

figures, it was observed that the ‘පෙ කැටෙත’ tool was able to produce slightly better word

level accuracy. However, the results from both of the above tools poor. The noticeable

difference between the two outputs was that the ‘පෙ කැටෙත’ OCR engine did not have any

Unicode character sequence confusions.

However, due to the way that tesseract is trained for the language the tesseract output will have

Unicode errors.

For example:

The letter පකෞ consists of the following characters

SINHALA VOWEL SIGN KOMBUVA ප්

36

SINHALA LETTER ALPAPRAANA KAYANNA ක

SINHALA VOWEL SIGN GAYANUKITTA ්ෞ

In Unicode, the following Unicode values are assigned to each of these glyphs:

0x0DD9 SINHALA VOWEL SIGN KOMBUVA ප්

0x0D9A SINHALA LETTER ALPAPRAANA KAYANNA ක

0x0DDF SINHALA VOWEL SIGN GAYANUKITTA ්ෞ

However, to generate the character පකෞ the glyphs Kombuwa and the Gayanukitta has a single

Unicode in the Sinhala Unicode character list.

0x0DDE SINHALA VOWEL SIGN KOMBUVA HAA GAYANUKITTA ප්ෞ

And the order in which the Unicode sequence is assigned is different to that of the visual

sequence. That is to generate the character පකෞ the proper Unicode sequence would be

0x0D9A(ක)+0x0DDF (්ෞ). But since tesseract is recognizing the character sequence in the

visual order as 3 glyphs in the order 0x0DD9(ප්) + 0x0D9A(ක)+ 0x0DDF (්ෞ) the final output

will be rendered as ප්කෞ.

To address this issue, a Unicode normalization engine was built to the proposed system. With

the introduction of the Unicode Normalization engine, the word level accuracy of the output

raised to the percentage 73.27%. This was a 20.05% increase from the previous value that was

generated from the raw Tesseract output figure 53.22%.

While the input contained 419 words, the output from the tesseract engine contained 419 words.

Hence, no words were missed. However, out of the 419 words recognized, there was clear

evidence that none of the Arabic numerals or the punctuations were recognized. Furthermore,

there were some characters which seemed to be missing in the original tesseract training dataset.

The number of misrecognized words in the output in the raw tesseract output was 196 and that

number was brough down to 112 with the introduction of the Unicode normalization feature.

The next step was to identify the confusion pairs which prevented a word from being accurate.

A confusion pair is a visually similar characters which is incorrectly identified as it’s incorrect

version during the recognition phase. An example of this is the Sinhala letter ව being recognized

as ච. Both these characters have visual similarities which the OCR engine might confuse and

identify one character incorrectly as the other character.

37

The resulting word could be a legit word or an illegitimate word. The approach followed during

this project to correct confusion pairs is to use a word lexicon along with the confusion pairs.

If an output word after normalization is not available in the word list and if it contains a

confusion pair, it is assumed that the current word is incorrect. Based on this assumption, the

confusion character is substituted in the word with its associated pair character and then the

word lexicon is probed for hit. If a match is found it is assumed that hit is the legit word that

fits the current context and is replaced with the word.

Building this feature into the current system yielded positive results and the word level accuracy

of the output was further increased up to 86.16%. This is a 12.89% increase when compared to

the previous stage and an overall 34.94% from the original figure yielded from the raw tesseract

training data output. During this phase the total number of incorrectly recognized were further

brough down to 58 from 112 words which was yielded in the previous stage. Out of the words

which were recognized incorrectly, 15 words were due to the current training dataset not

containing the input characters so that the tesseract engine can recognize the characters

correctly. Furthermore, the punctuations and the Arabic numerals which is a part of the input

dataset used for OCR has not been recognized by the current training dataset.

The Java wrapper library and the current version of the tesseract OCR engine provides the

ability to use multiple training data sets. The current version of the system supports multiple

training data files. Hence, the above errors are can be mitigated with the introduction of more

training data to the tesseract training dataset.

Considering the word level accuracy at each stage, a clear improvement of the accuracy is

observed. So, we can safely conclude that the application of the proposed post processing

techniques has improved the OCR accuracy of the output from the Tesseract OCR engine.

Hence it can be said that the goals of this research project have been achieved to a satisfactory

level and there is room for improvement for the project to reach to a commercial level.

6.2 Future work

The current word level correction done for the confusion pairs is using a word lexicon and has

limited capability to correct word errors. Furthermore, comparing for each confusion pair and

performing a word look up can be a costly operation depending on the number of confusion

pairs which can be identified for a character and the number of such characters found in a word.

38

The current system does not process a word for multiple hits when looking for confusion pairs.

That is the first word found as a hit for an incorrect word in the text will be substituted and the

post processing engine will stop substituting confusion pairs further.

This feature can be improved by introducing a probabilistic feature to the pick the best match

for confusion characters. The probability of a word appearing in a text can be considered when

replacing an incorrect word with confusion character which yields multiple hits when

processing. Another approach which could be used with the above feature is to consider the

context of the documents scanned. If there is a way to obtain some metadata about the source

document (Eg: an article about science, an article about history) depending on the context the

wordlists can be used for post processing.

A context-based lexicon can be defined to be used with a source document which has text

related to a matching context. This feature could further be improved to correct the errors in the

source document itself which would provide a meaningful output from the input document.

Language level features like extensive grammar rule check up and use linguistic features of a

word like root sems, adverbs and adjectives to improve the OCR accuracy can also be

considered as future work. However, implementing such language agonistic features will need

researching and gaining a deeper understanding of the Sinhala language. This can be facilitated

by a dictionary look up methodology to increase accuracy once the initial analysis of the

language features like identifying the root words and the variants like Adverbs and adjectives

is implemented.

39

REFERENCES

[1] "tesseract-ocr/tesseract", GitHub, 2020. [Online]. Available: https://github.com/tesseract-

ocr/tesseract. [Accessed: 22- Jan- 2020].

[2] S. Rice, F. Jenkins and T. Nartker, "The Fifth Annual Test of OCR Accuracy", Information

Science Research Institute University of Nevada, Las Vegas, 1996.

[3] Christensson, Per. "OPTICAL CHARATER RECONGNITION Definition." TechTerms.

(April 16, 2018). Accessed Oct 25, 2019. https://techterms.com/definition/Optical Character

Recognition.

[4] "Optical character recognition (OCR)", En.wikipedia.org, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Optical_character_recognition#Types. [Accessed: 22- Oct-

2019].

[5] Kai Niklas, “Unsupervised Post-Correction of OCR Errors,” Diploma thesis, Univ.

Hannover, Jun. 2010.

[6] Xiaofan Lin, “DRR Research beyond COTS OCR Software: A Survey,” in SPIE Conf.

Document Recognition and Retrieval XII, San Joes, CA, Jan. 2005

[7] "tesseract-ocr/tesseract", GitHub, 2019. [Online]. Available: https://github.com/tesseract-

ocr/tesseract#about. [Accessed: 23- Oct- 2019].

[8] B. Chaudhuri and U. Pal, "A complete printed Bangla OCR system", Pattern Recognition,

vol. 31, no. 5, pp. 531-549, 1998. Available: 10.1016/s0031-3203(97)00078-2.

[9] X. Tong and D. Evans, "A Statistical Approach to Automatic OCR Error Correction in

Context", ACL Anthology, 2019. [Online]. Available:

https://www.aclweb.org/anthology/W96-0108/. [Accessed: 25- Oct- 2019].

[10] Bansal, Veena & Sinha, R.M.K.. (2000). Integrating knowledge sources in Devanagari text

recognition system. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on. 30. 500 - 505. 10.1109/3468.852443.

[11] Sharma, Dharam & Lehal, Gurpreet & Mehta, Sarita. (2009). Shape Encoded Post

Processing of Gurmukhi OCR. Proceedings of the International Conference on Document

Analysis and Recognition, ICDAR. 788-792. 10.1109/ICDAR.2009.180.

40

[12] G S Lehal, Chandan Singh, “A post-processor for Gurmukhi OCR,” Sadhana , vol. 27, Part

1, February 2002, pp. 99–111.

[13] Kenneth Ward Church, Patrick Hanks, “Word Association Norms, Mutual Information,

and Lexicography,” Computational Linguistics, vol. 16, Mar. 1990

[14] Thien M Ha , H Bunke, “Image Processing Methods For Document Image Analysis,” in

Handbook Of Character Recognition And Document Image Analysis, World Scientific

Publishing Company, Singapore, May 1997,ch 1, pp 1-47.

[15] Dulip Herath, Nishantha Medagoda, “Research Report on the Preprocessing

Engine of the Optical Character Recognition System for Sinhala Scripts,” Language

Technology Research Laboratory,Univ. Colombo, Sri Lanka.

[16] "Page segmentation method", GitHub, 2019. [Online]. Available:

https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality#page-segmentation-method.

[Accessed: 23- Oct- 2019].

[17] Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Hing Y. Suen, Character

Recognition Systems - A Guide For Students And Practitioners, A John Wiley and Sons, New

Jersey, 2007.

[18] A. Lawrence Spitz, "Shape-Based Word Recognition," Document Analysis and

Recognition, Vol. 1, pp178-190, May. 1999.

[19] H. Bunke, “A Fast algorithm for finding the nearest neighbor of a word in a dictionary,”

in Proc. 2nd Int. Conf. .Document Analysis and Recognition, Nov. 1993

[20] T.K. Ho, J.J. Hull, and S.N. Srihari, "Word Recognition with Multi-Level Contextual

Knowledge,” in Document Analysis and Recognition Int. Conf., Saint Malo, France, 1991.

[21] A. Dengel, R. Hoch, F. Hones, T. Jager, M. Malburg, and A. Weigel. “Techniques for

Improving OCR Results,” in Handbook of Character Recognition and Document Image

Analysis, World Scientific Publishing Company, Singapore , May 1997, ch 4, pp 227–258.

[22] ‍ාතික අධ්‍යාෙන ආයතනය, ස හ පල්ඛන රීතිය, පතවන මුද්‍රණය, ‍ාතික අධ්‍යාෙන

ආයතනය,පකාළඹ, ශ්‍රී කා, 2001.

[23] පේ.බී. පීරිස්ත් , නූතන ස හ පල්ඛන වයාකරණය, ප්‍රථම මුද්‍රණය, සීමා ස්ත්හිත පල්ක් හවුස්ත්

ඉන්පවස්ත් මන්ට්ස්ත් ස්ත්මාගම, පකාළඹ, ශ්‍රී කාව,1990

41

[24]"Sinhala corpus of 10 million words", 2012. [Online]. Available:

http://www.ucsc.cmb.ac.lk/ltrl.[Accessed: 23- Oct- 2019].

[25] Lalith Premaratne, E Jarpe, Josef Bigun, “Lexicon and Hidden Markov Model based

Optimization of the recognizes Sinhala Script,” Pattern Recognition Letters, vol. 27, pp 696-

705, Apr. 2006

[26] "OPTICAL CHARACTER RECOGNITION (OCR)", Datamerj, 2020. [Online].

Available: https://datamerj.com/what-is-ocr.html. [Accessed: 24- Aug- 2019].

[27] පේ.බී. පීරිස්ත් , ස හ අක්ෂර විචාරය, ප්‍රථම මුද්‍රණය, සුමිත ප්‍රකාශන, ශ්‍රී කා, 2006.

[28] Vietocr.sourceforge.net. 2020. Jtessboxeditor - Tesseract Box Editor & Trainer. [Online]

Available at: <http://vietocr.sourceforge.net/training.html> [Accessed 7 April 2020].

[29] Subasa.lk. 2020. Optical Character Recognition. [Online] Available at:

<http://subasa.lk/aocr/ocr.php> [Accessed 7 April 2020].

[30] UCSC. 2020. Optical Character Recognition System for Sinhala - UCSC. [Online]

Available at: <https://ucsc.cmb.ac.lk/optical-character-recognition-system-sinhala/>

[Accessed 7 April 2020].

[31] S. Rice, F. Jenkins and T. Nartker, "The Fifth Annual Test of OCR Accuracy", Information

Science Research Institute University of Nevada, Las Vegas, 1996.

[32] Tess4j.sourceforge.net. n.d. Tess4j - JNA Wrapper For Tesseract. [Online] Available at:

<http://tess4j.sourceforge.net/> [Accessed 10 April 2020].

42

APPENDIX A - ANALYSIS OF INPUT SOURCE

Word Occurance

. 16

ප ෝක 9

පස්ත්ෞඛය 8

වන 6

ඔහු 6

බව 5

කටයුතු 5

බවට 4

කරමින් 4

එක්ස්ත්ත් 4

සටිපේ 3

ස්ත්හ 3

ස්ත්දහා 3

ස්ත් විධ්‍ානපේ 3

ස්ත් විධ්‍ානයට 3

ස්ත් විධ්‍ානය 3

 බා 3

යුතු 3

බවයි 3

ෙ රකාශ 3

ෙවා 3

පදමින් 3

ට රේ් 3

පචෝදනා 3

චීනය 3

කියා 3

කපල්ය 3

ක 3

ඇති 3

ආචාර්ය 3

අධ්‍යක්‍ෂ 3

අතර 3

සටිපේය 2

ස්ත්ේබන්ධ්‍පයන් 2

ස්ත්මග 2

වවරස්ත්ය 2

වවරස්ත් 2

වූහාන් 2

වැරදි 2

වැඩි 2

වාර්ථා 2

වස්ත් ගතය 2

43

වගකීේ 2

ප ාව 2

රිෙබ්ලිකන් 2

මහා 2

බවත් 2

ෙ රකාශයක් 2

පිළිතුරු 2

ෙසුගිය 2

ෙවස්ත්ා 2

පනාමග 2

දත්ත 2

තම 2

‍නෙද 2

චීනපේ 2

චීනයට 2

චීන 2

පගෝලීය 2

කිරීම 2

කරයි 2

කර 2

කො 2

ඔවුන් 2

එල් 2

ඉඩ 2

අරමුදල් 2

පහ තුපවන් 1

පහිකරන 1

හිදී 1

හි 1

හැරියා 1

හාන්ස්ත් 1

හරින 1

හමුවකදී 1

ප ාක්ස්ත් 1

ස්ත් වභාවධ්‍ර්මය 1

පස්ත්පන්ට් 1

සුළු 1

සතා 1

සටිමු 1

සටින 1

ස්ත්හපයෝගපයන් 1

ස්ත් කුණක් 1

ස්ත්මස්ත් ත 1

ස්ත්මත් 1

ස්ත්භික 1

ස්ත්ෙයන 1

44

ස්ත්තිපේ 1

ස්ත්ටනක් 1

ස්ත්ටන 1

ස්ත් ඛයා 1

වයා්තිය 1

වයා්ත 1

වවරස්ත්පේ 1

පවමින් 1

පවත 1

වූත් 1

වූ 1

වීමට 1

වීම 1

වී 1

විසන් 1

විපශ ෂඥයින් 1

විපේචනයට 1

විල්බර් 1

වාසදායක 1

වස්ත් ගතපේ 1

වස්ත් ගතයට 1

ව 1

වනදා 1

වටයකින් 1

ප ෝකය 1

පල්ඛන 1

පල්කේ 1

ප ස්ත් 1

 ග 1

පරාස්ත් 1

රූබිපයෝ 1

රූෙවාහිනී 1

රැකියා 1

රා‍ය 1

රටවල් 1

යුපරෝපීය 1

යුධ්‍ 1

යුද්ධ්‍ය 1

යැවීමට 1

යැයි 1

යවන 1

යි 1

යයි 1

පමාපහාතකින් 1

පමය 1

පමම 1

45

පමන්ම 1

මුල් 1

මියපගාස්ත් 1

මාස්ත්පේදී 1

මාස්ත්පේ 1

මාස්ත් 1

මාර්පකෝ 1

මාරාන්තික 1

මාධ්‍ය 1

මරණ 1

මන්දිරපේ 1

මත 1

භාවයට 1

බෲස්ත් 1

බිස්ත් නස්ත් 1

බැිය 1

බ වත් 1

බ යක් 1

බ ධ්‍ාරීන් 1

බ 1

ෙ රමාණය 1

ෙ රතිවිරුද්ධ්‍ 1

ෙ රතිචාර 1

ෙ ර‍ාව 1

ෙ රකාශයට 1

පූර්ණ 1

පුරාවට 1

පුරා 1

පිළිබදව 1

පිහිටා 1

පිරිස්ත්ක් 1

පිටත්ක 1

ෙැහැර 1

ෙැහැදිිය 1

ෙැවැත්පේ 1

ෙැවැති 1

ෙැනයකට 1

ෙැතීරීම 1

ෙැතිරයාමට 1

ෙැතිරයාම 1

ො නය 1

ෙවතී 1

ෙ කපල්ය 1

ෙරිො නය 1

ෙමණක් 1

ෙත්කිරීමට 1

46

ෙක්‍ෂොතීව 1

පනාපේ 1

පනාවන 1

පනාපෙපනන 1

පනාෙමාව 1

නිවුස්ත් 1

නි 1

නිපයෝජිතයන්ද 1

නිපයෝජිතයන්පේ 1

නිදහස්ත් 1

නැත්තාවූත් 1

නාිකාපේ 1

නව 1

නගර 1

ධ්‍ව 1

පදස්ත්ැේබර් 1

පදස්ත්ට 1

දූවිි 1

දුරටත් 1

දුන් 1

දියුණුව 1

දිගු 1

දැවැන්ත 1

දැමූ 1

දැමීමට 1

දැන් 1

දැඩි 1

දා 1

දර්ශන 1

දක්වමින් 1

තුනකට 1

තීරණාත්මක 1

තිරපයන් 1

තිපබ්ල 1

තිපබන්නා 1

තාක්‍ෂණික 1

තවමත් 1

තවදුරටත් 1

තවත් 1

තර්‍නය 1

තමන්ට 1

පඩානල්් 1

ට රේ්පේ 1

පටපරාස්ත් 1

ප‍යෂ ඨ 1

‍නාධිෙතිවරණයක් 1

47

‍නාධිෙති 1

‍නවාරි 1

‍නරාල්වරයාපේ 1

‍නරාල් 1

‍නෙදයට 1

‍නෙදය 1

පචෝදනාවන්ට 1

පචෝදනාවන්පගන් 1

චීනපයන් 1

ග රහණය 1

පගාඩනගාගත් 1

පගපෙයිස්ත්ස්ත් 1

පගනවිත් 1

ගිිපහන 1

ගැනීමට 1

ගැනීම 1

ගැන 1

ක්ූේ 1

පරෝධ්‍පයන් 1

ක රයිාත්මක 1

පකාවි්-19 1

පකාවි් 1

පකාපරෝනා 1

පකාන්ස්ත්ර්පේටිේ 1

කුඩා 1

කිරීමට 1

කා පේ 1

කා යක් 1

කා ය 1

කපල් 1

ක ාෙපේ 1

ක ත් 1

කරන 1

කණ්ඩායමක් 1

කට 1

එහි 1

එපස්ත් ම 1

එපෙහිව 1

එපරහි 1

එම 1

එනේ 1

එක් 1

උෙපද්ශක 1

උදේ 1

උග ර 1

ඉල් ා 1

48

ඉ ක්ක 1

ඉදිරියට 1

ඉටු 1

ඇස්ත්ට 1

ඇපමරිකාව 1

ඇපමරිකා 1

ඇදීයමින් 1

ඇද 1

ඇගිල් 1

ආරේභ 1

ආධිෙතය 1

අළු 1

අස්ත් විය 1

අස්ත්රණ 1

අවස්ත් ථාපේ 1

අවස්ත් ථාවක 1

අවස්ත් ථා 1

අවස්ත්ානයක් 1

අවපබෝධ්‍ 1

අවධියක 1

අරග යයි 1

අයි වර්් 1

අපේරල් 1

අපි 1

අධික 1

අද්නාේ 1

අතරම 1

අත 1

40000 1

3335 1

2020 1

19 1

8 1

7 1

49

APPENDIX B – CONFUSION GROUPS

්ි ්

 ් ්

ය ස්ත්

ෙ ෂ

ස්ත් ඝ

ට ම

ව ච

න ත

ක න

ක ත

රු රැ

රූ රෑ

ඔ ඕ

ම ඔ

ඔ ඹ

ේර ශ ර

හ ග

ග ශ

හ භ

ඩ ධ්‍

උ

ර් ඊ

එ ළු

ඵ එ

ඵ ළු

බ ඛ

ඛ් ඛී

‍ ඡ

50

APPENDIX C – SINHALA UNICODE CHART

Position Decimal Name Appearance

0x0D82 3458 SINHALA SIGN ANUSVARAYA ්

0x0D83 3459 SINHALA SIGN VISARGAYA ්

0x0D85 3461 SINHALA LETTER AYANNA අ

0x0D86 3462 SINHALA LETTER AAYANNA ආ

0x0D87 3463 SINHALA LETTER AEYANNA ඇ

0x0D88 3464 SINHALA LETTER AEEYANNA ඈ

0x0D89 3465 SINHALA LETTER IYANNA ඉ

0x0D8A 3466 SINHALA LETTER IIYANNA ඊ

0x0D8B 3467 SINHALA LETTER UYANNA උ

0x0D8C 3468 SINHALA LETTER UUYANNA ඌ

0x0D8D 3469 SINHALA LETTER IRUYANNA ඍ

0x0D8E 3470 SINHALA LETTER IRUUYANNA ඎ

0x0D8F 3471 SINHALA LETTER ILUYANNA ඏ

0x0D90 3472 SINHALA LETTER ILUUYANNA ඐ

0x0D91 3473 SINHALA LETTER EYANNA එ

0x0D92 3474 SINHALA LETTER EEYANNA ඒ

0x0D93 3475 SINHALA LETTER AIYANNA ඓ

0x0D94 3476 SINHALA LETTER OYANNA ඔ

0x0D95 3477 SINHALA LETTER OOYANNA ඕ

51

0x0D96 3478 SINHALA LETTER AUYANNA ඖ

0x0D9A 3482 SINHALA LETTER ALPAPRAANA KAYANNA ක

0x0D9B 3483 SINHALA LETTER MAHAAPRAANA KAYANNA ඛ

0x0D9C 3484 SINHALA LETTER ALPAPRAANA GAYANNA ග

0x0D9D 3485 SINHALA LETTER MAHAAPRAANA GAYANNA ඝ

0x0D9E 3486 SINHALA LETTER KANTAJA NAASIKYAYA ඞ

0x0D9F 3487 SINHALA LETTER SANYAKA GAYANNA ඟ

0x0DA0 3488 SINHALA LETTER ALPAPRAANA CAYANNA ච

0x0DA1 3489 SINHALA LETTER MAHAAPRAANA CAYANNA ඡ

0x0DA2 3490 SINHALA LETTER ALPAPRAANA JAYANNA ‍

0x0DA3 3491 SINHALA LETTER MAHAAPRAANA JAYANNA ඣ

0x0DA4 3492 SINHALA LETTER TAALUJA NAASIKYAYA ඤ

0x0DA5 3493
SINHALA LETTER TAALUJA SANYOOGA

NAAKSIKYAYA
ඥ

0x0DA6 3494 SINHALA LETTER SANYAKA JAYANNA ඦ

0x0DA7 3495 SINHALA LETTER ALPAPRAANA TTAYANNA ට

0x0DA8 3496 SINHALA LETTER MAHAAPRAANA TTAYANNA ඨ

0x0DA9 3497 SINHALA LETTER ALPAPRAANA DDAYANNA ඩ

0x0DAA 3498 SINHALA LETTER MAHAAPRAANA DDAYANNA ඪ

0x0DAB 3499 SINHALA LETTER MUURDHAJA NAYANNA ණ

0x0DAC 3500 SINHALA LETTER SANYAKA DDAYANNA ඬ

0x0DAD 3501 SINHALA LETTER ALPAPRAANA TAYANNA ත

52

0x0DAE 3502 SINHALA LETTER MAHAAPRAANA TAYANNA ථ

0x0DAF 3503 SINHALA LETTER ALPAPRAANA DAYANNA ද

0x0DB0 3504 SINHALA LETTER MAHAAPRAANA DAYANNA ධ්‍

0x0DB1 3505 SINHALA LETTER DANTAJA NAYANNA න

0x0DB3 3507 SINHALA LETTER SANYAKA DAYANNA ඳ

0x0DB4 3508 SINHALA LETTER ALPAPRAANA PAYANNA ෙ

0x0DB5 3509 SINHALA LETTER MAHAAPRAANA PAYANNA ඵ

0x0DB6 3510 SINHALA LETTER ALPAPRAANA BAYANNA බ

0x0DB7 3511 SINHALA LETTER MAHAAPRAANA BAYANNA භ

0x0DB8 3512 SINHALA LETTER MAYANNA ම

0x0DB9 3513 SINHALA LETTER AMBA BAYANNA ඹ

0x0DBA 3514 SINHALA LETTER YAYANNA ය

0x0DBB 3515 SINHALA LETTER RAYANNA ර

0x0DBD 3517 SINHALA LETTER DANTAJA LAYANNA

0x0DC0 3520 SINHALA LETTER VAYANNA ව

0x0DC1 3521 SINHALA LETTER TAALUJA SAYANNA ශ

0x0DC2 3522 SINHALA LETTER MUURDHAJA SAYANNA ෂ

0x0DC3 3523 SINHALA LETTER DANTAJA SAYANNA ස්ත්

0x0DC4 3524 SINHALA LETTER HAYANNA හ

0x0DC5 3525 SINHALA LETTER MUURDHAJA LAYANNA ළ

0x0DC6 3526 SINHALA LETTER FAYANNA

53

0x0DCA 3530 SINHALA SIGN AL-LAKUNA ්

0x0DCF 3535 SINHALA VOWEL SIGN AELA-PILLA ්ා

0x0DD0 3536 SINHALA VOWEL SIGN KETTI AEDA-PILLA ්ැ

0x0DD1 3537 SINHALA VOWEL SIGN DIGA AEDA-PILLA ්

0x0DD2 3538 SINHALA VOWEL SIGN KETTI IS-PILLA ්ි

0x0DD3 3539 SINHALA VOWEL SIGN DIGA IS-PILLA ්

0x0DD4 3540 SINHALA VOWEL SIGN KETTI PAA-PILLA ්

0x0DD6 3542 SINHALA VOWEL SIGN DIGA PAA-PILLA ්

0x0DD8 3544 SINHALA VOWEL SIGN GAETTA-PILLA ්ෘ

0x0DD9 3545 SINHALA VOWEL SIGN KOMBUVA ප්

0x0DDA 3546 SINHALA VOWEL SIGN DIGA KOMBUVA ප ්

0x0DDB 3547 SINHALA VOWEL SIGN KOMBU DEKA ව්

0x0DDC 3548
SINHALA VOWEL SIGN KOMBUVA HAA AELA-

PILLA
ප්ා

0x0DDD 3549
SINHALA VOWEL SIGN KOMBUVA HAA DIGA

AELA-PILLA
ප්ෝ

0x0DDE 3550
SINHALA VOWEL SIGN KOMBUVA HAA

GAYANUKITTA
ප්ෞ

0x0DDF 3551 SINHALA VOWEL SIGN GAYANUKITTA ්ෞ

0x0DF2 3570 SINHALA VOWEL SIGN DIGA GAETTA-PILLA ්ෲ

0x0DF3 3571 SINHALA VOWEL SIGN DIGA GAYANUKITTA ්

0x0DF4 3572 SINHALA PUNCTUATION KUNDDALIYA ෴

54

APPENDIX D – SOURCE CODE

Normalization Engine

public String applyVowelNormalizationRules(String wordString) {

 String modifiedWordString = wordString;

 /*
 Sinhala Code point range in decimal 3456-3583 *
 */
 // Start Replace the Vowels with modifies to the proper character
 if (wordString.charAt(0) == 3461 && wordString.charAt(1) == 3535) { // SINHALA LETTER
AAYANNA

 modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3462));
 StringBuilder tempWordString1 = new StringBuilder(modifiedWordString);
 tempWordString1.deleteCharAt(1);
 modifiedWordString = tempWordString1.toString();

 } else if (wordString.charAt(0) == 3461 && wordString.charAt(1) == 3536) { // SINHALA LETTER
AEYANNA

 modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3463));
 StringBuilder tempWordString2 = new StringBuilder(modifiedWordString);
 tempWordString2.deleteCharAt(1);
 modifiedWordString = tempWordString2.toString();

 } else if (wordString.charAt(0) == 3461 && wordString.charAt(1) == 3537) { // SINHALA LETTER
AEEYANNA

 modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3464));
 StringBuilder tempWordString3 = new StringBuilder(modifiedWordString);
 tempWordString3.deleteCharAt(1);
 modifiedWordString = tempWordString3.toString();

 } else if (wordString.charAt(0) == 3467 && wordString.charAt(1) == 3551) { // SINHALA LETTER
UUYANNA

 modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3468));
 StringBuilder tempWordString4 = new StringBuilder(modifiedWordString);
 tempWordString4.deleteCharAt(1);
 modifiedWordString = tempWordString4.toString();

 } else if (wordString.charAt(0) == 3545 && wordString.charAt(1) == 3473) { // SINHALA LETTER
AIYANNA

 modifiedWordString = wordString.replace(Character.toString(wordString.charAt(1)),
Character.toString((char) 3475));
 StringBuilder tempWordString5 = new StringBuilder(modifiedWordString);
 tempWordString5.deleteCharAt(0);
 modifiedWordString = tempWordString5.toString();

 } else if (wordString.charAt(0) == 3476 && wordString.charAt(1) == 3551) { // SINHALA LETTER

55

AUYANNA

 modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3478));
 StringBuilder tempWordString6 = new StringBuilder(modifiedWordString);
 tempWordString6.deleteCharAt(1);
 modifiedWordString = tempWordString6.toString();
 }

 return modifiedWordString;
}

public String applyConsonantNormalizationRules(String innerText) {

 // TODO : Add rule to correct kroo
 int lengthOfString = innerText.length();

 for (int currentPos = 0; currentPos < lengthOfString;) {

 if (innerText.charAt(currentPos) == 3545) { // SINHALA VOWEL SIGN KOMBUVA

 if (currentPos + 3 <= lengthOfString) { // String of 4 chars starting from kombuwa
 if ((innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <= 3526)
 && innerText.charAt(currentPos + 2) == 3535 && innerText.charAt(currentPos + 3) == 3530)
{ // kombuwa Consonant alapilla hal kireema

 innerText = insertCharAt(innerText, (char) 3549, currentPos + 3);
 innerText = deleteCharAt(innerText, currentPos);
 innerText = deleteCharAt(innerText, currentPos + 1);
 innerText = deleteCharAt(innerText, currentPos + 2);

 lengthOfString = innerText.length();
 currentPos += 2;

 } else if (currentPos + 2 <= lengthOfString) { // string of 3 chars starting from kombuwa

 if ((innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <= 3526)
 && innerText.charAt(currentPos + 2) == 3535) { // kombuwa consonant and adapilla

 innerText = insertCharAt(innerText, (char) 3548, currentPos + 2);
 innerText = deleteCharAt(innerText, currentPos);
 innerText = deleteCharAt(innerText, currentPos + 2);

 lengthOfString = innerText.length();
 currentPos += 2;

 } else if ((innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <=
3526)
 && (innerText.charAt(currentPos + 2) == 3551 || innerText.charAt(currentPos + 2) ==
3571)) { // kombuwa consonant and gayanu kiththa

 innerText = insertCharAt(innerText, (char) 3550, currentPos + 2);
 innerText = deleteCharAt(innerText, currentPos);
 innerText = deleteCharAt(innerText, currentPos + 2);

 lengthOfString = innerText.length();

56

 currentPos += 2;

 } else if (innerText.charAt(currentPos + 1) == 3545
 && (innerText.charAt(currentPos + 2) >= 3482 && innerText.charAt(currentPos + 2) <=
3526)) { // kombuwa combuwa and consonant

 innerText = insertCharAt(innerText, (char) 3547, currentPos + 3);
 innerText = deleteCharAt(innerText, currentPos);
 innerText = deleteCharAt(innerText, currentPos);

 lengthOfString = innerText.length();
 currentPos += 2;

 } else if ((innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <=
3526)
 && (innerText.charAt(currentPos + 2) == 3551 || innerText.charAt(currentPos + 2) ==
3530)) { // kombuwa consonant and hal kireema

 innerText = insertCharAt(innerText, (char) 3546, currentPos + 2);
 innerText = deleteCharAt(innerText, currentPos);
 innerText = deleteCharAt(innerText, currentPos + 2);

 lengthOfString = innerText.length();
 currentPos += 2;

 } else if (innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <=
3526) { // kombuwa and consonant

 innerText = swapCharacters(innerText, currentPos, currentPos + 1);
 currentPos += 2;

 } else {

 currentPos++;

 }

 } else if (currentPos + 1 <= lengthOfString) { // string of 2 chars tarting from kombuwa

 if (innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <= 3526) {
// kombuwa and consonant

 innerText = swapCharacters(innerText, currentPos, currentPos + 1);
 currentPos += 2;

 } else {
 currentPos++;
 }

 } else {

 currentPos++; // TODO implement Later
 }

 } else if (currentPos + 1 <= lengthOfString) { //kombuwa and consonant at the end of a word

 if (innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <= 3526) { //
kombuwa and consonant

 innerText = swapCharacters(innerText, currentPos, currentPos + 1);
 currentPos += 2;

57

 } else {
 currentPos++;
 }

 } else {

 currentPos++;
 }

 } else {

 currentPos++;
 }

 }

 return innerText;
}

public String applySpecialConsonantRules(String innerText) {

 int lengthOfString = innerText.length();
 char[] charSet = {3482, 3484, 3495, 3497, 3501, 3508, 3510};

 for (int currentPos = 0; currentPos < lengthOfString;) {
 if (currentPos + 5 <= lengthOfString) { // string of 6 chars starting from a consonant
 if (containsChar(innerText.charAt(currentPos), charSet)) { // starting character is a consonant from
the charSet
 if (innerText.charAt(currentPos + 1) == 3546 && innerText.charAt(currentPos + 2) == 8205
 && innerText.charAt(currentPos + 3) == 3515 && innerText.charAt(currentPos + 4) == 3535
 && innerText.charAt(currentPos + 5) == 3530) { // Sinhala Char Kroo
 innerText = swapCharacters(innerText, currentPos + 1, currentPos + 5);
 innerText = replaceCharAt(innerText, currentPos + 4, 3549);
 innerText = deleteCharAt(innerText, currentPos + 5);
 lengthOfString = innerText.length();
 currentPos = currentPos + 4;

 } else {
 currentPos++;
 }
 } else {
 currentPos++;
 }

 } else {
 currentPos++;
 }

 }
 return innerText;
}

Dictionary Match

58

public List<String> readFromWordLexicon() {

 File textFile = new File(".\\word_list.txt");
 List<String> wordList = new ArrayList<>();

 try {
 BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(textFile),
"UTF-8"));
 String st;
 while ((st = br.readLine()) != null) {
 wordList.add(st);
// log.info(st);
 }
 br.close();
 } catch (FileNotFoundException ex) {
 log.error(ex);
 } catch (IOException ex) {
 log.error(ex);
 }

 return wordList;
 }

 public boolean findDictionaryMatch(String word, List<String> wordList) {
 return wordList.contains(word);

 }

Confusion Pairs

 public String applyConfusionRules(String word) {

 String tempWord;
 if (this.findDictionaryMatch(word, wordList)) {
 return word;
 } else {
 for (int i = 0; i < confusionRuleArray.length; i++) {
 if (word.contains(confusionRuleArray[i][0])) { //matching the confusion rule R->L
 tempWord = word.replaceFirst(confusionRuleArray[i][0], confusionRuleArray[i][1]);
 if (findDictionaryMatch(tempWord, wordList)) {
 return tempWord;
 } else {
 return word;
 }

// log.info("confusion rule found" + confusionRuleArray[i][0] + " " + confusionRuleArray[i][1] + " "
+ word);
// log.info("replaced WOrd : " + word.replaceFirst(confusionRuleArray[i][0],
confusionRuleArray[i][1]));
 } else if (word.contains(confusionRuleArray[i][1])) {
 tempWord = word.replaceFirst(confusionRuleArray[i][1], confusionRuleArray[i][0]);
 if (findDictionaryMatch(tempWord, wordList)) {
 return tempWord;

59

 } else {
 return word;
 }
 }
 }
// return word;
 }

 return word;
 }

Invoking the Tesseract OCR engine to obtain Output

public String performOcr(String filePath) {

 String hocrOutput = null;
 File imageFile = new File(filePath);

 Tesseract hocrInstance = new Tesseract();// JNA Interface Mapping
 hocrInstance.setLanguage("sin");
 hocrInstance.setHocr(true);
 hocrInstance.setDatapath(".");

 try {
 hocrOutput = hocrInstance.doOCR(imageFile);

 } catch (TesseractException e) {
 System.err.println(e.getMessage());
 }

 return hocrOutput;
}

Invoking the corrections during post-processing

public void runOcrErrorCorrectionEngine(File ocrOutputString) {

 String innerSpanContent;
 String innerText;
 String normalizedInnerText;

 try {
 Document inputHtmlDoc = Jsoup.parse(ocrOutputString, "UTF-8");
 PrintWriter writer = new PrintWriter(ocrOutputString, "UTF-8");
 wordList = this.readFromWordLexicon();
 confusionRuleArray = this.readConfusionPairs();

 //Choose each word in the output
 for (Element span : inputHtmlDoc.select("span.ocrx_word")) {

 innerSpanContent = span.html();
 innerText = span.text();

 normalizedInnerText = applyVowelNormalizationRules(innerText); // Apply Vowel Normalization
rules
 normalizedInnerText = applyConsonantNormalizationRules(normalizedInnerText); // Apply
Consonant Normalization rules

60

 normalizedInnerText = applySpecialConsonantRules(normalizedInnerText);
 log.info("before confusion :" + normalizedInnerText);
 normalizedInnerText = applyConfusionRules(normalizedInnerText); //Apply confusion rules
 log.info("after confusion :" + normalizedInnerText);
 innerSpanContent = innerSpanContent.replace(innerText, normalizedInnerText);

// log.info(innerText + " : " + this.findDictionaryMatch(normalizedInnerText, wordList));
 span.html(innerSpanContent);

 }

 writer.write(inputHtmlDoc.html());
 writer.flush();
 writer.close();

 } catch (IOException ex) {
 log.error(ex.getMessage(), ex);
 }

 }

