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ABSTRACT

This research project proposes and implements a system to improve and measure the accuracy
of the Sinhala OCR using the Tesseract OCR engine. The system implements modules to rectify
the issues which are inherent to the Tesseract OCR engine when performing OCR for Sinhala
language. During the course of the project, the world level accuracy was used to measure the

accuracy of the output from the system.

As a baseline to compare the results of the proposed system which implements tesseract OCR,
the software the OCR Engine “esg =Qsm” was used. To improve the accuracy, a syntactical
rule engine a module to detect and correct confusion character pairs and a rudimentary
dictionary look up feature to detect and correct errors in word level has been implemented into

the system.

During the initial stage in the project which implemented only the Tesseract OCR library
functionality, the output was less accurate when compared with the OCR Engine “esg
= Oum”. But as the features were built into the system, it yielded significantly improved results

which improved the word level accuracy from the original 53.22% to 86.16%.
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CHAPTER 1: INTRODUCTION

OCR Stands for "Optical Character Recognition." OCR is a technology that recognizes text
within a digital image [3]. It is commonly used to recognize text in scanned documents, but it
serves many other purposes as well [3]. OCR software processes a digital image by locating
and recognizing characters, such as letters, numbers, and symbols [26]. Some OCR software
will simply export the text, while other programs can convert the characters to editable text
directly in the image [26]. Advanced OCR software can export the size and formatting of the

text as well as the layout of the text found on a page [3].

The recognition process of the characters would be not accurate enough due to various reasons.
Some reasons would be when the original image quality is poor and skewed. By rectifying the
above issues using preprocessing techniques before feeding the image into the OCR engine.
This would enable us to improve the result, and the validation processes could be applied to the

output with much ease.

Post-processing is used to ensure the accuracy of the OCR output sequence to be as the same
as that of the input source. If a particular word differs from the original source, a replacement
suggestion is made to form a sensible and meaningful output.

Even after repeated attempts of producing accurate OCR output, although there are
developments in strategies behind OCR, there are still problems when it comes to recognizing
the correct character. However, the OCR knowledgebase has been widely utilized in increasing
the accuracy of OCR recognition. Some of the techniques used to correct OCR errors are the
usage of language models, Statistical information of N-grams, Grammar rules, Syntactic

Analysis, Language Models and Lexicons.

The accuracy of the results from an optical character recognition engine may vary from the
context and the language it’s being used. Tesseract is an OCR engine which is used to do OCR

for many languages [1].

1.1 Motivation

Compared to the Latin script and other scripting languages like Chinese and Korean, Sinhala
OCR is at a research-level for being able to use at a commercial level. However, the usages of
OCR in Sinhala would be many as there are a lot of untapped resources which could be digitized

to produce advancements in the respective fields.



Documents and scripts on indigenous medicine, archived historical documents which are
decaying with time, voter registers, and government documents which have been stored through
various departments like census and hospitals are some of the examples of applied usages which

could benefit from an OCR solution.

Since the localization and introduction of computers and digitization to government offices in
the recent past has amplified the necessity further. While OCR for Sinhala language and
meaningful data extraction is far behind, several improvements have been achieved with respect

to the research done using the tesseract OCR engine.

Since Tesseract OCR engine is being used by similar scripting languages like Devanagari,
Gurmukhi, Sindhi, Tamil, Thai and Telugu which shares some commonalities, it logical to look

into means of utilizing Tesseract OCR with the Sinhala language.

1.2 Aims and Objectives

While there have been attempts to use the Tesseract engine for Sinhala language, it is important
to look into ways of improving the output [1]. Measurement is needed to decide on the progress
made on such an attempt.

Techniques used to improve OCR accuracy can be classified into two main classes.
1) Preprocessing techniques

Preprocessing techniques are applied to enhance the quality of the source image before running
an OCR. A better source image which has minimal skew, a minimum amount of noise

(blots/stains) and clear input text are some of the example techniques that can be leveraged.
2) Post-processing techniques

The post-processing techniques are used to fine-tune the output. Most common techniques
include running the output against a lexicon, running the output against a rule engine to process

the grammar etc.
This project is done with respect to the following project objectives.

The intention of this project is to improve the accuracy by using the above means to measure

the accuracy against the accuracy measures of interest [2] mentioned below.
a) Character Accuracy

b) Word level accuracy



c) Accuracy by character class
d) Phrase accuracy
e) Non-stop word accuracy

* Developing an OCR solution for the Sinhala language by focusing on improving the accuracy

of selected accuracy measures.
* Meaningful accuracy statistics extraction and Analysis
* Presenting results of the above OCR accuracy measures for the Sinhala language

It is intended to measure the OCR accuracy for Sinhala language using the above accuracy
measures. While it is important to measure the OCR accuracy, it is important to evaluate best

matrices that can be used to improve OCR accuracy for the Sinhala language.

1.3 Scope of the study

¢ The measuring will be done for the popular Sinhala Unicode font “Iskolapotha" and depending
on the accuracy and the quality of the results, other fonts will be considered. (Newspaper

fonts/type writer fonts etc.)

e Preprocessing techniques will be applied manually to create a better input image where

applicable. (Will not be built into the system as a feature)



CHAPTER 2: LITERATURE REVIEW

The Tech Terms Computer Dictionary defines Optical character recognition (OCR) as follows.
“Optical character recognition (OCR) is a technology that recognizes text within a digital image
[3]. The common usage of Optical character recognition (OCR) is to digitally process scanned
documents such as passport documents, invoices, bank statements, computerized receipts,

business cards, mail, printouts of static-data, or any suitable documentation [4].

Optical character recognition (OCR) software processes a digital image by locating and
recognizing characters, such as letters, numbers, and symbols [3]. Some Optical character
recognition (OCR) software will simply export the text, while other programs can convert the

characters to editable text directly in the image [3].

Character recognition can be classified into two based on the input method [4]. They are on-
line character recognition and Off-line character recognition. On-line character recognition is
a real-time process which concentrates on capturing the motion of the characters/glyphs drawn
rather than the shape of the character or glyph. Off-line character recognition focuses on

scanning and analyzing the shapes of the characters and glyphs [3] [4].

Optical character recognition (OCR) fits under off-line character recognition in the above
classification. Usually, the OCR system uses an optical input device (e.g., scanner) to capture
images and to feed it to the recognition system. OCR systems can be further classified into two
types, OCR systems to recognize printed text and OCR systems to recognize hand-written text

[5]

Because of the existence of a variety of writing styles, it's often difficult to produce accurate
and reliable output for hand-written text when compared with printed text. The printed text
follows a font standard which can be processed relatively easily when compared with a hand-
written text [5]. The widespread usage of OCR in the present spans from storing data in
databases, processing text for translation, transliteration or converting text to speech,
meaningful historical data archiving, digitization of historical documents to Automatic number

plate recognition etc.

Most commonly used input formats in OCR software include JPG, TIFF, GIF, and PDF while
the output formats are text, Microsoft Word, RTF, PDF etc. Some of the most widely used OCR
software are Abbyy FineReader, Adobe Acrobat Professional and Google Tesseract OCR [6].
Some of the above software has leveraged commercial off-the-shelf (COTS) OCR software

packages such as Tesseract making OCR software openly available [6] [7].
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Commercially developed OCR systems demonstrate a high level of accuracy for Latin script
[5]. The above OCR systems are the first OCR systems to be developed for commercial use.
The accuracy of commercial OCR systems spans from71% - 98% [5]. The accuracy of the OCR
depends on the quality of the scanned image (sharpness/skew, etc.) and the OCR software [5].

Some typical sample errors [5] are listed in table 2.1 below.

Table 2.1: OCR Error Examples

Error class recognized word correct word
Segmentation (missing space) thisis this is
Segmentation (split word) depa rtme nt department
Hyphenation error de- partment  department
Character misrecognition gsouiid sound
Number substitution Opporunity Opportunity
Special char insertion electi’on election
Changed word meaning mad sad

Case sensitive BrItaIn Britain
Punctuation this.is this is
Destruction NI.T IT I Minister
Currencies 720 $20

Most OCR errors are primarily caused by noise (either inherent or introduced during the
scanning process) in the document [5]. A two-pass approach to recognize characters is used in
software like Cuneiform and Tesseract. They use the first pass to identify the letter shapes with
a confidence level. Then the letters identified with high confidence is used in the second pass
to recognize the remaining letters on the second pass. This approach can be beneficial for

unusual fonts or low-quality scans or when the font is distorted (e.g. blurred or faded) [4].

Application of OCR in the modern world is diverse and the images to be scanned contain
degraded images, heavy-noise, paper skew, low-resolution complex and various fonts
/symbols/glossary words etc. Consequently, better OCR accuracy with better reliability has

become an inevitability.

An OCR engine will typically mark some of the characters "suspicious™, and the error correction
is mostly based on verifying the above-identified characters [5]. However, there are other

approaches like checking the OCR output against a dictionary [8], probabilistic approaches [9]



[10], advanced level of linguistic knowledge about grammar rules/syntax and semantics [11]

[12] [13] which can be applied to improve OCR accuracy.

The current process of OCR can be studied under three main stages; Pre-processing,
Recognition and Post Processing. Measures to improve accuracy can be employed in each of
these stages. Pre-processing is used to prepare the source in the optimal quality possible before
feeding into the OCR software. Then during the recognition stage, the source image is converted
into a document with a digital representation of characters. During the post-processing stage
error detection and correction of errors to improve accuracy is done. It is important to have an

understanding of the above stages and discuss them in detail.

2.1 Pre-processing

There are four steps in preprocessing. Namely Image acquisition, Transformation,

Segmentation and Feature extraction [14].

2.1.1 Image Acquisition

Converting a document to a numerical representation is image acquisition. It acquires the image
of a document in color, grey-levels, and in binary format. The image is scanned first. The
resolution depends on the purpose of the application and the nature of the material. Then the
scanned image is sampled and quantified into a number of grey levels. Coding techniques are

used to reduce the size of data representing.

2.1.2 Transformation

Transformation of the image to image is portrayed by input-output relationship. It involves
refining the data in the representation image in several methods such as Geometrical
transformation, Filtering, Background Separation, Object Boundary Detection, and Structural

Representation [3].

2.1.3 Segmentation

In the segmentation stage, the layout information is extracted by breaking down the image into
lines and further into characters [15]. The number of lines and the number of words/characters
can be extracted as Metadata which could be used to improve accuracy during this stage.
Tesseract supports and can be compiled to support a variety of page segmentation modes

depending on the user preference [16].



Orientation and script detection (0SD) only.
Automatic page segmentation with OSD.
Automatic page segmentation, but no 05D, or OCR.
Fully automatic page segmentation, but no 0SD. (Default)
Assume a single column of text of wariable sizes.
Assume a single uniform block of wertically aligned text.
Assume a single uniform block of text.
Treat the image as a single text line.
Treat the image as a single word.
Treat the image as a single word in a circle.
Treat the image as a single character.
Sparse text. Find as much text as possible in no particular order.
Sparse text with OsD.
Raw line. Treat the image as a single text line,
bypassing hacks that are Tesseract-specific.

WO s h o o w R @

e e e
(R N "]

Figure 2.1: list of supported page segmentation modes in Tesseract

2.1.4 Feature extraction

Feature extraction will classify symbols into classes. Feature extraction captures the distinctive
characteristics of the digitized characters for recognition [3].

2.2 Recognition

Recognition involves sensing, feature selection and Creation, pattern recognition, decision
making, and system performance evaluation [3]. A vertical projection is used, and it scans a
line from top to bottom in character separation [15].

2.2.1 Feature selection and Creation

Feature selection is applied to reduce sample complexity, computational cost, and to overcome
performance issues during recognition. There are three approaches to feature extraction and
Creation [17]. Filter approach; used to filter out some features before applying a classifier,
Wrapper approach which wraps the feature selection algorithm with computational cost and an
unbiased classifier, Hybrid model which fits the subset of features and the accuracy of matching

to a classifier [17].



2.2.2 Pattern Recognition

Pattern recognition will assign a given pattern into one of the known classes. There are two

commonly used methods; template matching and classification on feature space [14] [17] [18].

Template matching compares the pattern with stored models of known patterns and selects the
best match [18]. Template matching can be applied when the number of classes and variability

within a class is small [14]

When classifying based on the feature space features are summarized and classified using

statistics, syntax, neural networks or a combination of above methods [17].

2.3 Post Processing

The human eye with the aid of the human brain is able to read and process most of the texts
irrespective of the font, style, skew, distortion missing characters etc. But in contrast, the OCR
systems like most machines mimicking human behavior exhibit poor accuracy when compared
to that of humans. Hence, improving the accuracy of OCR output has become imperative.

Hence to improve the accuracy of the OCR output, post-processing is exploited.

Most errors in recognizing characters are introduced in segmentation and classification stages,
mainly due to low-quality images [5]. Post-processing is harnessed to correct errors and/or

resolve ambiguities in OCR results by using at the levels of context, word, sematic and sentence.

One such post-processing techniques are character level contextual post-processing [19].
Character level contextual post-processing is mainly based on lexicon methods and statistical
methods [19].

2.3.1 Lexicon based post-processing

In lexicon-based post-processing approach, a lexicon is applied to individual characters which
are reliably segmented in a word [20]. There are three approaches used in lexical based post-

processing approach [21].
1) Bottom-up approach
2) Top-down approach

3) Hybrid approach



2.3.2 Statistical based post-processing

In the statistical method, letter n-grams are used to filter out unacceptable candidate words from
the recognizer. An n-gram is a letter string of size n [12]. The probability of n-gram appears in
a word is considered for each candidate word for the selection. In this case, conditional
probabilities in forwarding and backward directions are considered. Widely used n-grams are

bi-grams and trigrams.

While there are post-processing techniques which operates at a character level, another type of
popular post-processing technique is to operate at the word level. The dictionary lookup method
is the most commonly used post-processing technique which operates at a word level [12] [6].

2.3.3 Context-based post-processing

Context-based post-processing is another post-processing technique. One such context-based
post-processing is the usage of syntactic properties of a language like grammar rules to check
for illegal character combinations [12]. Looking for a presence of two consecutive vowels or a
word string with a forbidden consonant or vowel can be given as an example for such grammar

rules.



CHAPTER 3: PROBLEM ANALYSIS AND METHODOLOGY

3.1 Research Problem

3.1.1 Sinhala Language

The Sinhala alphabet consists of 18 vowels 41 consonants and two semi-consonants, which will

total into 61 letters [22] as shown in Figure 3.1.

cpesmgidieocrtitnomEtSodt @8 S

Semi-consonants

Consonants

= a @ ] A ]
2 =) o= o <]
o o LA & #in LA
.. ] & (A o) &

¢ a ] & &
wacs

RER®E o

Figure 3.1 Sinhala Alphabet

The usage of semi consonants is to enable writing vocal strokes with speech sounds. A strong

relation is present between the speech sound and the consonant when compare to the English

language [23].
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Table 3.1 Different Consonant modifier combinations with the consonant .

consonant vowel composite Vowel form sequence
= &2 s Ca = T

i iy = o] = O

=] 8y = O 7

= D = =0

= ] = = 0

= c =2 g = g

= = 5 9 ®9

m &a 253 Oa @ Ca

= &3aa Eaa Caa = Ca Oa
= & G (i G0 =

= gl et =0 =0 = &
= i S FEl a0 a0 =
= & ) & a0 = O
= & ST o 0 @ T &
= Ea S &0 0 = On

More often, the composite characters have a different shape to its base (core) character but its

shape is a combination of the consonant and the modifier both together. (Figure3.2a)

Consonant has an inherent vowel ‘a’ sound and its pure form is obtained by removing that using
“al-lakuna” (). Sometimes, the composite characters have totally different shapes compared
to the base character [25]. (Figure 3.2b) Some modifiers figures out different shapes for
different base characters. (Figure 3.2c) This is valid for “al-lakuna”, “papilla” and “diga
papilla”. For “Al-lakuna” forms are named as “kodiya” and “rachaena” whereas for papilla they

are called “wak papilla” and “kon papilla” [23].

Even for the similar shaped composite characters as in Figure 3.2a, the modifier may be
differing in size, orientation and appearance. (Figure 3.2d) Some modifiers have totally
different shapes for different base characters too. (Figure 3.2e). Any vowel, consonant or

composite character may be preceded to a semi-consonant.

11



Figure 3.2 Different Consonant Modifier Combinations

3.1.2 Generating Sinhala words

Some Statistics for the language by using UCSC lexicon [24] as the data store is as follows.
Number of words = 6, 57,131

Number of Unique words = 70,131

Shortest Word = ¢

Longest Word = e#sdBdaLnwdsied

A root word is used in the Sinhala language to generate many numbers of word forms in the
Sinhala language [25]. The root word is the smallest building block and the word which will
invoke the meaning. Inflectional root words are stems, and they are formed by the root word.
The same word stem is able to generate several numbers of nouns, adjectives, adverbs or verbs,
considering tense, number, person and purpose etc. This enables a word in the Sinhala language

to be separated into prefix, stem, and suffix triples.
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3.2 Methodology

3.2.1 Measuring OCR accuracy of Sinhala language

The research problem is to measure the OCR accuracy using the following pre-defined matrices.
Some of the accuracy measures that are of interest are given below [2]:
1) Character Accuracy

The text generated by a page-reading system is matched with the correct text to determine the
minimum number of edit operations (character insertions, deletions, and substitutions) needed
to correct the generated text [2]. This quantity is termed the number of errors. If there are n

characters in the correct text, then the character accuracy is given by (n-#errors)/n
2) Word level accuracy

A popular use of a page-reading system is to create a text database from a collection of hard-
copy documents. Information retrieval techniques can then be applied to locate documents of
interest. For this application, the correct recognition of words is paramount. We define a word
to be any sequence of one or more letters. In word accuracy, we determine the percentage of
words that are correctly recognized. Each letter of the word must be correctly identified. Errors

in recognizing digits or punctuation have no effect on word accuracy [2].
3) Accuracy by character class

The character set (alphabet) is divided into several classes, and the percentage of characters in
each class that were correctly recognized is determined.

4) Phrase accuracy

Users search for documents containing specific phrases. We define a phrase of length L to be

any sequence of L words.

For example, the phrases of length 3 in "University of Nevada, Las Vegas" are "The University

of Nevada,” "of Nevada, Las," and "Nevada, Las Vegas."

For a phrase to be correctly recognized, all of its words must be correctly identified. Phrase
accuracy is the percentage of phrases that are correctly recognized, and we have computed it

for L = 1 through 8. The phrase accuracy for length 1 is equal to the word accuracy.
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Phrase accuracy reflects the extent to which errors are bunched or scattered within the generated
text. Suppose two-page readers, A and B, have the same word accuracy but A has a higher
phrase accuracy than B. Then A's errors are more closely bunched, and hence, easier to correct,

than B's errors.
5) Non-stop word accuracy

Stop words are common words such as the, of, and, to, and a in English; de, la, el, y, and en in
Spanish; and der, die, in, und, and von in German and ew», enz=l, a®@®, exd in the Sinhala

language.

These words are normally not indexed by a text retrieval system because they are not useful for
retrieval. Users search for documents by specifying non-stop words in queries. With this in
mind, we wish to determine the percentage of non-stop words that are correctly recognized, i.e.,

the non-stop word accuracy. To do this, a list of stop words for the Sinhala Language is required.

In each of the above measures, the Sinhala language satisfies the need of having the features
which are needed to apply the above measures and feed data into the variables of each of the
above categories. Considering the features and structure of the Sinhala language, all the above
matrices can be applied to measure OCR accuracy for the Sinhala language. The rationale in

choosing the above five categories to measure OCR accuracy is as follows:
1) Character Accuracy

As noted under section 3.1.1 Sinhala alphabet consists of 18 vowels 41 consonants and two
semi-consonants which are unique from each other. Hence the accuracy measure (n-#errors)/n

can be used to measure accuracy.
2) Word level accuracy

A Sinhala word lexicon such as the UCSC lexicon [24] can be used as the word database, and

the percentage of correctly identified words in each OCR run can be measured
3) Accuracy by Character class

The Sinhala language has been divided into character classes as vowels, consonants and semi-
consonants. These classes can be used to determine the percentage of characters in each class
that were correctly recognized. The density of characters from each class can be tweaked as

input parameters to generate result sets for accuracy
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4) Phrase Accuracy

The Sinhala language contains words which will combine to formulate phrases. The phrases in
an OCR output for the Sinhala language can be identified and used to determine the phase
accuracy. The phrase length and number of phrases in the input document can be adjusted as

variable inputs.
5) Non-stop word accuracy

Exploiting stop words similar to ew», em=f, a@®, @®d in the Sinhala language the Non-stop
word accuracy can be measured with respect to a Sinhala OCR output. The density of stop
words included in an input document can be exploited as a variable input to measure the

accuracy.

In addition to the changing of the above variable input parameters in each of the above five
measures, the following variables can be used for all of the above measurements as another

input variable.
1) The font size of the text in the input document
2) Spacing between words in the input documents

3) Basic font styles of the input text (italic/bold)
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CHAPTER 4: IMPLEMENTATION

A POST PROCESSING BASED METHODOLOGY TO INCREASE
OCR ACCURACY FOR SINHALA SCRIPT ERROR HANDLING

In the OCR output some words that are identified are correct while some of the words identified
are incorrect. If the words in the output does not match the words in the original document, the

identified word is incorrect.

4.1 Unicode Errors

Due to how the Sinhala Unicode characters are implemented, an additional effort is needed to
correct the errors observed in the output. The primary error that is affecting the output is the
order of the Unicode characters and the modifiers. The Unicode of a modifier and the letter in
the Sinhala alphabet does not follow their graphical representation sequence for the consonants.
When writing the modifier is followed by the consonant. But in the Unicode representation the
Unicode of the consonant is followed by the modifier.

Example

ez comprises of the modifier e:: (Kombuwa) and the consonant z.
The individual Unicode strings for the characters are:

e - \udd9

= - \ud9a

Although when writing the letter, the modifier is followed by the consonant, the Unicode

sequence is as follows:
\ud9a\udd9

Furthermore, the above rule changes when it comes to vowel modifiers. Whenever a vowel is
associated with a modifier, the character is considered a new character and gets its own Unicode

value.

Example

The character & can be associated with the modifier <:; (Adapilla) and the output character & is

represented as a single Unicode string.

16



& - \ud85
27 - \uddO
q&l - \Ud87

The Unicode sequence will take the visual sequence and the result output string will be

represented incorrectly.

Figure 4.1 Tesseract Output without normalization

Example

The output from the tesseract OCR engine will represent the character &; as .

Hence to resolve the above issue, normalization engine is built into the proposed system which
will process the output and change the Unicode sequence to the correct value or replace the

Unicode with the correct Unicode value.

4.2 Syntactical Errors

Another means of improving the accuracy is to identify the syntactical rules in Sinhala

language.
1) Some of the syntactical rules that has been identified is as follows [22][27][23].

2) The characters e (SINHALA LETTER ILUYANNA) and es (SINHALA LETTER
ILUUYANNA) are currently not in use

3) In addition, the letter & is very rarely in use.
4) No modifiers are used with & (KANTAJA NAASIKYAYA)

5) A word cannot start with a consonant or semi consonant.
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6) Usually a vowel will not be in the middle of a word. For that the dependent vowel form

is used. [23][25]
7) & can be replaced with the letter <o, but not vice versa.
8) The only word that starts with e Is e

However, building all these rules into a syntactical rule engine and rectifying errors can be
difficult to achieve. But some of these syntactical rules have been built into the rule engine and

the system has been tested for any improvements in accuracy.

4.3 Confusion Pairs

Confusion pairs are a common OCR problem which occurs during the recognition phase. The
problem is the OCR engine confusing the source text with a visually similar character. In

Sinhala language following are some of the most commonly found visually similar confusion

pairs.

Figure 4.2 Common Confusion Pairs

4.4 Word Level Errors

Contextual word recognition in post processing is performed on the OCR data stream at one
level above character recognition, called the word level. By working at the word level, certain

interferences and error rectifications are possible, which would not be feasible at the character

level.

The most common post-processing technique operates at the word level is the dictionary look
up method [12]. Techniques based on statistical information about the language are also used
as well [12]. In statistical method, an n-gram, a letter string of size n [12] is used to filter out

unacceptable candidates, on which substrings of n-grams cannot be generated, from the

recognizer.
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In order to correct word level errors caused by confusion pairs, the dictionary look up method

was in used. The wordlist used is the UCSC Lexicon [24] which contains 70131 unique words.

The technique used is to look for characters which are in the confusion pairs and if the source
text which is not a word in the lexicon and by replacing a confusion character, if a word can be
generated, the current word will be replaced with the proper word to increase accuracy.

4.5 Error handling using post processing

The objective of post-processing is to correct errors or resolve ambiguities in OCR results by
using contextual information at the character level, word level, at the sentence level and at the

level of semantics.

Character level contextual post processing is mainly of two types Statistical methods and using
a Lexicon [19]. The both methods involve in detecting and correcting of one or more errors. In
Statistical method conditional probability of n-grams are gathered with training data to apply
them to the testing data. If all the n-grams for the word existed, the word is considered as correct.
In the other method, dictionary is used. If the word is found in the dictionary it is assumed that
all its characters have been correctly recognized. Otherwise the same dictionary is used for
correcting the errors in the recognized characters.

In addition, syntactical methods like grammar rules can also be incorporated to check for illegal
character combinations. Some of such grammar rules are presence of two consecutive vowels

or a word starting with a forbidden consonant or vowel [12].

4.6 Evaluation Approach

The evaluation approach that is used for this project will be experiment based. The datasets
used for training tesseract will be the generic dataset that is already provided with the Tesseract
OCR project. However, the input dataset for the OCR process will be generated in the following

order to automate the error detection and analysis process.

e Create input as a text file with the desired word combinations. To extract meaningful

text which has context, news articles from Sinhala e-newspapers will be used.

e Generate an image for OCR from the above text file. (The tool JtessBox editor [28]

which is a tool used to create OCR training data will be used)
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To compare the accuracy of the OCR output, the input image will be fed into few of the readily
available Sinhala OCR tools. As of now some of the OCR tools which uses the tesseract OCR

engine in the core are as follows.
1. "oog mOun" - §8» em wEPNBe® Bagmoens [29]
2. Optical Character Recognition System for Sinhala [30]

The output from the OCR engine from this project will be compared against the output of the

above engines to compare the accuracy.

To quantify and measure the accuracy of an input document against the original text the

following accuracy measure [31] will be used.

e Word level accuracy

A popular use of a page-reading system is to create a text database from a collection of hard-
copy documents. Information retrieval techniques can then be applied to locate documents of
interest. For this application, the correct recognition of words is paramount. We define a word
to be any sequence of one or more letters. In word accuracy, we determine the percentage of
words that are correctly recognized. Each letter of the word must be correctly identified. Errors

in recognizing digits or punctuation have no effect on word accuracy [31].

The Figure 4.3 shows the evaluation approach used to measure the OCR accuracy.
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Figure 4.3 Evaluation approach used to measure the OCR accuracy

The experiment is based on the research hypothesis, the output of the tesseract OCR engine can
be improved using post processing techniques. As exhibited in the Figure 1.1, with each
iteration the OCR post processing engine will be refined with new rules and features to improve

OCR accuracy. With each iteration the accuracy of the output will be diffed with the original
text and the accuracy of the output text will be measured with the matrix word level accuracy.

Furthermore, the improvement will be compared keeping the output accuracy of the other two
OCR engines “esg m0sn” [29] and Optical Character Recognition System for Sinhala [30].
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4.7 Algorithms

4.7.1 Algorithm for the system

Generate OCR output in the HOCR format and using Tess4J [32].
Il apply Unicode normalization for the output text in word level
Repeat for all the OCRed words in the output file
Extract a word
Apply Vowel Normalization Rules
Apply Consonant Normalization Rules
Apply the syntactic error correction rules
/I check whether word is available to apply confusion rules
If Sinhala word search it in the dictionary
If a match found, write into the output
Else
Generate words with confusion pair listl
If word with confusion character found
Write the best match into the output
Else

Write the current word to the output
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4.7.2 Algorithm for confusion pairs

Repeat for each component in a string from left to right
For each confusion pair in the list {
If match found
Generate word replacing component with confusion
Test the word against the Dictionary
If a hit add the word to candidate list
And manipulate the likelihood}

Select the highest scored candidate
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CHAPTER 5: EVALUATION

The training dataset used to train the tesseract OCR engine is the readily available training data
set, which is available in the tesseract project. The image format used as input source is tif. The

input sample is an extract from a Sri Lankan E-newspaper. The font is “Iskoolapotha”.

Input contains 2 tif pages which includes punctuations and numbers. (Arabic Numerals)
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¢dm O08
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B»oBs¥
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oc® Dt e Guost D¢ s@ewnt 40000 O adm 80w Bwenidd & 90 BE er»dm D8
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OCI® ewdn wdihmed ginme YAE wdilie edeipe adon® coegiind gE o guidw wn DO
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Figure 5.1 Sample image of the input used for OCR
The input image has 419 words in total.
The table 5.1 gives a summary of the words in the input source.

Table 5.1 Summary of words in the Input Source

Total Number of Words 419
Number of Unique words 239
Most Frequent word @cd= (9 occurrences)
Number of punctuations 16
Number of Arabic Numeral 5
occurrences
Number of words which occur More
. 66
than once in the text
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5.1 Results from the output using the default training data without any post
processing

The output from the tesseract using the readily available sin.traindata (tesseract language

training data file for the font Iskoolapota)) produced the following results.

Total Number of words in the input =419
Total Number of words in the output =419
No of words in identified correctly =223
Misrecognized words =196

The word level accuracy (223/419) * 100 =53.22%

The figure 5.2 contains a screenshot from the output and the figure 5.3 is a screenshot from the

comparison between the original text and the output text.
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Figure 5.2 output from the default training data
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Figure 5.3 Comparison between the original text and the output form the default training data

The following table shows different types of errors identified during this stage.

Table 5.2 Stage 1 output of the different errors

Input Word (\)Al;;?,gt Explanation

0®53® [CIIOEOTO) Unicode error which needs to be fixed by changing the Unicode
sequence of the "ez®g®" with the consonant.

©@edJes eedoes | Unicode error which needs to be fixed by allocating the correct
Unicode sequence and the correct Unicode for "ez0®g eem".

ocd® elEt® Unicode error and should be corrected by applying the correct
Unicode sequence followed by the consonant

@850 etewsyd | Applying the correct Unicode sequnce should resolve the error

Besd Bz Bsa@wmz3 | Error in recognition from tesseract. a confusion pair "&" and "&"
is observed

©»EWOD euw@mo» | Error in Unicode which can be fixed by normalizing but the error
in recognition for the confusion pair "&" and "@" needs to be
handled

&8s a8 Error in Unicode. The modifier "&.c 8 c"has been recognized and
needs to be replaced by the correct Unicode. The confusion pair "o
and "®" is observed

Vo IoM3o] =8 | No Unicode errors, the confusion pair "g" and "g" has resulted in
the error

IS e The joined letter has not been recognized correctly.
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5.2 Results from the OCR Engine “ecsg m0un”

The sample input used in the above instance was fed into the OCR Engine “esg m0sn” [29]
developed by the Language Research Training Laboratory of UCSC and the output was
extracted.

The output from the above OCR engine yielded the following results.

Total Number of words in the input =419
Total Number of words in the output =419
No of words in identified correctly =233
Misrecognized words =186

The word level accuracy (233/419) * 100 =55.61%

The Figure 5.4 contains a screenshot of the output from the “csg m»0305” OCR

engine. [29]
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Figure 5.4 output from the “csg »230%” OCR engine

Comparing the results from output from the default training data vs “esg 030" OCR

engine [29].

Table 5.3 Comparison of results from default training data vs “ecsg m»030” OCR

engine
Property DEfau(Ijtatt;aining eBE WOBD
Total Number of words in the input 419 419
Total Number of words in the output 419 419
No of words in identified correctly 223 233
Misrecognized words 196 186
The word level accuracy 53.22% 55.61%

5.3 Introducing Unicode normalization to the OCR output

To increase the OCR accuracy and to rectify the Unicode errors described under section 4.1, a
normalization engine was built to the application. This is an application of post processing in
an attempt to determine whether it can increase the accuracy of the output from tesseract OCR
engine. Enabling the normalization engine yielded the following results.

Total Number of words in the input =419
Total Number of words in the output =419
No of words in identified correctly =307
Misrecognized words =112

The word level accuracy (307/419) * 100 =73.27%

With the introduction of the normalization to the output the word level accuracy increased by

20.05% which is a significant improvement.
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Figure 5.5 is a screenshot of the results obtained after enabling normalization rules to the

tesseract output with the readily available training data file for Sinhala language.
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Figure 5.5 Tesseract output after applying the normalization rules

Table 5.4 Comparison of results from default training data, “csg %9205 OCR

engine and output after normalizing

Normalized
Propert Default training oue 1O output with
perty data € = default training
data
Total Numbt_ar of words in the 419 419 419
input
Total Number of words in the 419 419 419
output
No of words in identified 993 933 307
correctly
Misrecognized words 196 186 112
Percentage of_errors corrected at N/A N/A 42 86%
this stage
The word level accuracy 53.22% 55.61% 73.27%

After the application of normalization rules, a significant portion of the Unicode errors were
resolved. However, there were some more errors which did not get resolved. Following is an

analysis of the resolved and unresolved errors after stage 2.
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Table 5.5 Stage 2 output of different errors

Error from Output Explanation
stagel from stage 2 P

o Os® 0®s3® Resolved with normalization.

@D eedJes Resolved with normalization.

OGRS ecI® Resolved with normalization.

eeensyd e®8esId Resolved with normalization.

Besd BT BedE»sY The confusion pair ‘8’,’&’ exists and makes the word
incorrect

e B®In e B0 The Unicode error has been resolved through normalization
but the error in recognition for the confusion pair "&" and
"&" needs to be handled

a8 008w The Unicode error has been resolved through normalization
the confusion pair "©" and "®" needs to be fixed

N3] B Y The confusion pair "g" and "§" from stage 1 still remains
the same.

TSIty RIS The joined letter has not been recognized correctly as
observed in stage 1.

Apart from the errors noted above, there are some errors which have been introduced from the
recognition phase. These errors are mainly due to the incompleteness of training data. (Missing
characters in the training data, punctuations not recognized properly and the training data

missing the Arabic numerals)

These errors are described with details in the next analysis after introducing the dictionary

correction feature for confusion pairs.

5.4 Dealing with confusion pairs

It was observed that the confusion pairs have a sizable impact on the accuracy of the OCR from
the results obtained until now. To rectify these errors and increase the accuracy, a new feature
to identify confusion pairs and replace the errored words through a dictionary look up was

introduced to the OCR engine.

The word look-up is a complex feature which can be improved in many ways. For example, the
word look -up can be introduced to correct word errors in the output by means of N-grams.
However, this feature has been introduced to look for a word which contains a confusion
pair/pairs in it and by swapping a confusion pair/pairs if a legitimate word can be found in the

word lexicon the current word will be replaced by the word from the lexicon.
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The word lookup feature is another post processing technique which was used in this project to
increase the accuracy of the OCR output. After introducing the correction feature to deal with
confusion pairs with a word lookup, the following results were yielded.

Total Number of words in the input =419
Total Number of words in the output =419
No of words in identified correctly =361
Misrecognized words =58

The word level accuracy (307/419) * 100 =86.16%

With the introduction of the feature to correct confusion pairs, the word level accuracy
increased from 73.27% to 86.16%. This is a 12.89% increase of accuracy when compared with

the results from stage 2 which introduced the Unicode normalization feature.

Figure 5.6 is a screenshot of the results obtained after introducing the correction feature for
confusion pairs to the tesseract output with the readily available training data file for Sinhala
language. The highlighted text in the figure are some of the corrections which were done

during this phase.

208 nimeme e8n8 fudEms! Hlewulfnaric eedds s 3E8¢D dmed .o
eEom o ¢Fm Dot

5% enBo tdm 5o HD edderm oM emsd GEID cw39ds B-0thma &8 £08 ¢an Bn 8850
@Oy »o8si

®E0 g eedidsn Oxdn 980 98 ah ¢ 89 cldern moE8ma s8um emeditn 8des
yEhess 3368

eEs Dt s Jus! De v@aa 200 20 edn 88u Buemed e 99 He eonim

thiith enEmdm

Figure 5.6 Tesseract output after correcting errors from confusion pairs

The following table is a summary of errors corrections done with a comparison of word level

accuracy during each stage.
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Table 5.6 Comparison of results from default training data, “cesg 0305 OCR

engine and output after correcting confusion pairs

Normalized
output with |~ Correcting
Property _De;fault eug OB default confusion
training data . .
training pairs
data
Total Numbgr of words in 419 419 419 419
the input
Total Number of words in 419 419 419 419
the output
No of words in identified 293 933 307 361
correctly
Misrecognized words 196 186 112 58
No of words corrected
during this phase compared N/A N/A 74 128
to first phase
0,
Percentage of_errors N/A N/A 39.78% 68.82%
corrected at this stage
The word level accuracy 53.22% 55.61% 73.27% 86.16%

After introducing confusion pair correction for words, a significant portion of the words with

errors due to confusion pairs were resolved. However, there were some more errors which did

not get resolved. Following is an analysis of the resolved and unresolved errors after stage 3.

Table 5.7 Stage 3 output of different errors

Error from Output from .
Explanation
stage? stage 3
BesaBwxy Besd B>y The confusion pair ‘&’,”&’ has been resolved
The Unicode error has been resolved through
SOl eEWOD normalization but the error in recognition for the
confusion pair "&" and "&" needs to be handled
&8s &8 The confusion pair "©" and "®" has been resolved.
B B g The confusion pair "g" and "g" has been resolved
The joined letter has not been recognized correctly as
gormS qosmE observed in stage 1 and stage 2
The correct word sequence from the input source is
»OBEm@ BB »08. 8w, However, the punctuation “full stop” has

not been recognized correctly
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The character ‘S;” has been mis-recognized as ‘a.’. This
adewd adewd is a recognition level error which needs to be addressed

at the training data level

The error is due to the character ‘®’ is recognized instead
©@aVews’ | w@dsTVewsy | of the expected ‘®’. This is an issue with the training

data and needs to be corrected from the training data.
Analyzing the above output, it is evident that the OCR accuracy has improved from stage 2.

However, there is room for improvement at the recognition phase by improving the quality of

the training data used with tesseract.

The word level accuracy at each stage
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3 20.00%
2
é 30.00%

20.00%

10.00%

0.00%

Default training data eBg WOBD Normalized output with  Correcting confusion

default training data pairs

==@==The word level accuracy

Graph 6.1 Word level accuracy at each level
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CHAPTER 6: CONCLUSION

6.1 Discussion

The default training data for Sinhala language readily available with the Tesseract OCR engine
was used during the recognition phase of this project. The post processing features were built

to the OCR engine to improve the OCR accuracy from Tesseract.

To compare the results, the ‘esc »0sm»’ OCR software developed by the Language
Technology Research Laboratory of UCSC was used as the baseline. The Accuracy measure
which was used in phase was word level accuracy. The data set which was used to test OCR
accuracy contained a combination of Sinhala characters covering all character classes and most

of their permutations. Some of the character classes and permutations used are:
1) Vowels
2) Consonants
3) Conjunct Characters (Eg: e)
4) Special modifiers (Eg:)

The input image format for the proposed system was tif. However, the input for the
‘evem@un’ OCR tool, the input source had to be of type jpg. Hence the dataset which was a

2-page tif image, was converted to 2 jpg images.

The first set of results from ‘esEm0=m’ tool and the default training data from the Tesseract
yielded the word level accuracy of 55.61% and 53.22% respectively. Comparing the above
figures, it was observed that the ‘esE=@es»’ tool was able to produce slightly better word
level accuracy. However, the results from both of the above tools poor. The noticeable
difference between the two outputs was that the ‘escE=m9s»’ OCR engine did not have any

Unicode character sequence confusions.

However, due to the way that tesseract is trained for the language the tesseract output will have

Unicode errors.

For example:

The letter @29 consists of the following characters

SINHALA VOWEL SIGN KOMBUVA e
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SINHALA LETTER ALPAPRAANA KAYANNA =

SINHALA VOWEL SIGN GAYANUKITTA g

In Unicode, the following Unicode values are assigned to each of these glyphs:
0x0DD9 SINHALA VOWEL SIGN KOMBUVA @

Ox0D9A SINHALA LETTER ALPAPRAANA KAYANNA =
OxODDF SINHALA VOWEL SIGN GAYANUKITTA g

However, to generate the character ez the glyphs Kombuwa and the Gayanukitta has a single

Unicode in the Sinhala Unicode character list.
OxODDE SINHALA VOWEL SIGN KOMBUVA HAA GAYANUKITTA oo

And the order in which the Unicode sequence is assigned is different to that of the visual
sequence. That is to generate the character ez the proper Unicode sequence would be
O0XO0D9A(z)+0x0ODDF (::9). But since tesseract is recognizing the character sequence in the
visual order as 3 glyphs in the order 0XODD9(e::) + 0XOD9A(z)+ 0XODDF (=) the final output

will be rendered as e::2v9.

To address this issue, a Unicode normalization engine was built to the proposed system. With
the introduction of the Unicode Normalization engine, the word level accuracy of the output
raised to the percentage 73.27%. This was a 20.05% increase from the previous value that was

generated from the raw Tesseract output figure 53.22%.

While the input contained 419 words, the output from the tesseract engine contained 419 words.
Hence, no words were missed. However, out of the 419 words recognized, there was clear
evidence that none of the Arabic numerals or the punctuations were recognized. Furthermore,

there were some characters which seemed to be missing in the original tesseract training dataset.

The number of misrecognized words in the output in the raw tesseract output was 196 and that

number was brough down to 112 with the introduction of the Unicode normalization feature.

The next step was to identify the confusion pairs which prevented a word from being accurate.
A confusion pair is a visually similar characters which is incorrectly identified as it’s incorrect
version during the recognition phase. An example of this is the Sinhala letter ® being recognized
as . Both these characters have visual similarities which the OCR engine might confuse and

identify one character incorrectly as the other character.
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The resulting word could be a legit word or an illegitimate word. The approach followed during

this project to correct confusion pairs is to use a word lexicon along with the confusion pairs.

If an output word after normalization is not available in the word list and if it contains a
confusion pair, it is assumed that the current word is incorrect. Based on this assumption, the
confusion character is substituted in the word with its associated pair character and then the
word lexicon is probed for hit. If a match is found it is assumed that hit is the legit word that

fits the current context and is replaced with the word.

Building this feature into the current system yielded positive results and the word level accuracy
of the output was further increased up to 86.16%. This is a 12.89% increase when compared to
the previous stage and an overall 34.94% from the original figure yielded from the raw tesseract
training data output. During this phase the total number of incorrectly recognized were further
brough down to 58 from 112 words which was yielded in the previous stage. Out of the words
which were recognized incorrectly, 15 words were due to the current training dataset not
containing the input characters so that the tesseract engine can recognize the characters
correctly. Furthermore, the punctuations and the Arabic numerals which is a part of the input
dataset used for OCR has not been recognized by the current training dataset.

The Java wrapper library and the current version of the tesseract OCR engine provides the
ability to use multiple training data sets. The current version of the system supports multiple
training data files. Hence, the above errors are can be mitigated with the introduction of more

training data to the tesseract training dataset.

Considering the word level accuracy at each stage, a clear improvement of the accuracy is
observed. So, we can safely conclude that the application of the proposed post processing
techniques has improved the OCR accuracy of the output from the Tesseract OCR engine.
Hence it can be said that the goals of this research project have been achieved to a satisfactory

level and there is room for improvement for the project to reach to a commercial level.

6.2 Future work

The current word level correction done for the confusion pairs is using a word lexicon and has
limited capability to correct word errors. Furthermore, comparing for each confusion pair and
performing a word look up can be a costly operation depending on the number of confusion
pairs which can be identified for a character and the number of such characters found in a word.
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The current system does not process a word for multiple hits when looking for confusion pairs.
That is the first word found as a hit for an incorrect word in the text will be substituted and the
post processing engine will stop substituting confusion pairs further.

This feature can be improved by introducing a probabilistic feature to the pick the best match
for confusion characters. The probability of a word appearing in a text can be considered when
replacing an incorrect word with confusion character which yields multiple hits when
processing. Another approach which could be used with the above feature is to consider the
context of the documents scanned. If there is a way to obtain some metadata about the source
document (Eg: an article about science, an article about history) depending on the context the

wordlists can be used for post processing.

A context-based lexicon can be defined to be used with a source document which has text
related to a matching context. This feature could further be improved to correct the errors in the

source document itself which would provide a meaningful output from the input document.

Language level features like extensive grammar rule check up and use linguistic features of a
word like root sems, adverbs and adjectives to improve the OCR accuracy can also be
considered as future work. However, implementing such language agonistic features will need
researching and gaining a deeper understanding of the Sinhala language. This can be facilitated
by a dictionary look up methodology to increase accuracy once the initial analysis of the
language features like identifying the root words and the variants like Adverbs and adjectives

is implemented.
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APPENDIX A - ANALYSIS OF INPUT SOURCE
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APPENDIX B — CONFUSION GROUPS
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APPENDIX C — SINHALA UNICODE CHART

Position |Decimal [Name

0x0D82

0x0D83

0x0D85

0x0D86

0x0D87

0x0D88

0x0D89

OxOD8A

0x0D8B

0x0D8C

0x0D8D

OxODS8E

0Ox0D8F

0x0D90

0x0D91

0x0D92

0x0D93

0x0D9%4

0x0D95

3458

3459

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

SINHALA SIGN ANUSVARAYA

SINHALA SIGN VISARGAYA

SINHALA LETTER AYANNA

SINHALA LETTER AAYANNA

SINHALA LETTER AEYANNA

SINHALA LETTER AEEYANNA

SINHALA LETTER IYANNA

SINHALA LETTER I'YANNA

SINHALA LETTER UYANNA

SINHALA LETTER UUYANNA

SINHALA LETTER IRUYANNA

SINHALA LETTER IRUUYANNA

SINHALA LETTER ILUYANNA

SINHALA LETTER ILUUYANNA

SINHALA LETTER EYANNA

SINHALA LETTER EEYANNA

SINHALA LETTER AIYANNA

SINHALA LETTER OYANNA

SINHALA LETTER OOYANNA
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&

&t

&

[osk:]
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0x0D96

OxO0D9A

0x0D9B

0x0D9C

0x0D9D

0x0D9E

OxOD9F

O0xODAO

OxODA1

O0xODAZ2

O0xODA3

O0xODA4

OxODAS

OxODAG6

OxODA7

O0xODAS8

0xODA9

3478

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

OxODAA 3498

OxODAB 3499

O0xODAC 3500

O0xODAD 3501

SINHALA LETTER AUYANNA

SINHALA LETTER ALPAPRAANA KAYANNA

SINHALA LETTER MAHAAPRAANA KAYANNA

SINHALA LETTER ALPAPRAANA GAYANNA

SINHALA LETTER MAHAAPRAANA GAYANNA

SINHALA LETTER KANTAJA NAASIKYAYA

SINHALA LETTER SANYAKA GAYANNA

SINHALA LETTER ALPAPRAANA CAYANNA

SINHALA LETTER MAHAAPRAANA CAYANNA

SINHALA LETTER ALPAPRAANA JAYANNA

SINHALA LETTER MAHAAPRAANA JAYANNA

SINHALA LETTER TAALUJA NAASIKYAYA

SINHALA LETTER TAALUJA SANYOOGA

NAAKSIKYAYA

SINHALA LETTER SANYAKA JAYANNA

SINHALA LETTER ALPAPRAANA TTAYANNA

SINHALA LETTER MAHAAPRAANA TTAYANNA

SINHALA LETTER ALPAPRAANA DDAYANNA

SINHALA LETTER MAHAAPRAANA DDAYANNA

SINHALA LETTER MUURDHAJA NAY ANNA

SINHALA LETTER SANYAKA DDAYANNA

SINHALA LETTER ALPAPRAANA TAYANNA
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OxODAE

OxODAF

0x0DBO

0x0DB1

0x0DB3

0x0DB4

0x0DB5

0x0DB6

0x0DB7

0x0DB8

0x0DB9

3502

3503

3504

3505

3507

3508

3509

3510

3511

3512

3513

OxODBA 3514

0x0DBB

3515

0x0DBD 3517

0x0DCO

0x0DC1

0x0DC2

0x0DC3

0x0DC4

0x0DC5

0x0DC6

3520

3521

3522

3523

3524

3525

3526

SINHALA LETTER MAHAAPRAANA TAYANNA

SINHALA LETTER ALPAPRAANA DAYANNA

SINHALA LETTER MAHAAPRAANA DAYANNA

SINHALA LETTER DANTAJA NAYANNA

SINHALA LETTER SANYAKA DAYANNA

SINHALA LETTER ALPAPRAANA PAYANNA

SINHALA LETTER MAHAAPRAANA PAYANNA

SINHALA LETTER ALPAPRAANA BAYANNA

SINHALA LETTER MAHAAPRAANA BAYANNA

SINHALA LETTER MAYANNA

SINHALA LETTER AMBA BAYANNA

SINHALA LETTER YAYANNA

SINHALA LETTER RAYANNA

SINHALA LETTER DANTAJA LAYANNA

SINHALA LETTER VAYANNA

SINHALA LETTER TAALUJA SAYANNA

SINHALA LETTER MUURDHAJA SAYANNA

SINHALA LETTER DANTAJA SAYANNA

SINHALA LETTER HAYANNA

SINHALA LETTER MUURDHAJA LAYANNA

SINHALA LETTER FAYANNA
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O0xODCA 3530

OxODCF 3535

0x0DDO0 3536

0x0ODD1 3537

0x0DD2 3538

0x0DD3 3539

0x0DD4 3540

0x0ODD6 3542

0x0DD8 3544

0x0ODD9 3545

OxODDA 3546

0x0DDB 3547

0x0ODDC 3548

0x0DDD 3549

OxODDE 3550

OxODDF 3551

OxODF2 3570

OxODF3 (3571

OxODF4 (3572

SINHALA SIGN AL-LAKUNA

SINHALA VOWEL SIGN AELA-PILLA

SINHALA VOWEL SIGN KETTI AEDA-PILLA

SINHALA VOWEL SIGN DIGA AEDA-PILLA

SINHALA VOWEL SIGN KETTI IS-PILLA

SINHALA VOWEL SIGN DIGA IS-PILLA

SINHALA VOWEL SIGN KETTI PAA-PILLA

SINHALA VOWEL SIGN DIGA PAA-PILLA

SINHALA VOWEL SIGN GAETTA-PILLA

SINHALA VOWEL SIGN KOMBUVA

SINHALA VOWEL SIGN DIGA KOMBUVA

SINHALA VOWEL SIGN KOMBU DEKA

SINHALA VOWEL SIGN KOMBUVA HAA AELA-

PILLA

SINHALA VOWEL SIGN KOMBUVA HAA DIGA

AELA-PILLA

SINHALA  VOWEL
GAYANUKITTA

SIGN KOMBUVA

SINHALA VOWEL SIGN GAYANUKITTA

SINHALA VOWEL SIGN DIGA GAETTA-PILLA

SINHALA VOWEL SIGN DIGA GAYANUKITTA

SINHALA PUNCTUATION KUNDDALIYA
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APPENDIX D -SOURCE CODE

Normalization Engine

public String applyVowelNormalizationRules(String wordString) {

String modifiedWordString = wordString;

/*
Sinhala Code point range in decimal 3456-3583 *
Y/
// Start Replace the Vowels with modifies to the proper character
if (wordString.charAt(0) == 3461 && wordString.charAt(1) == 3535) { // SINHALA LETTER
AAYANNA

modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3462));

StringBuilder tempWordStringl = new StringBuilder(modifiedWordString);

tempWordString1.deleteCharAt(1);

modifiedWordString = tempWordString1.toString();

} else if (wordString.charAt(0) == 3461 && wordString.charAt(1) == 3536) { // SINHALA LETTER
AEYANNA

modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3463));

StringBuilder tempWordString2 = new StringBuilder(modifiedWordString);

tempWordString2.deleteCharAt(1);

modifiedWordString = tempWordString2.toString();

} else if (wordString.charAt(0) == 3461 && wordString.charAt(1) == 3537) { // SINHALA LETTER
AEEYANNA

modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3464));

StringBuilder tempWordString3 = new StringBuilder(modifiedWordString);

tempWordString3.deleteCharAt(1);

modifiedWordString = tempWordString3.toString();

} else if (wordString.charAt(0) == 3467 && wordString.charAt(1) == 3551) { // SINHALA LETTER
UUYANNA

modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3468));

StringBuilder tempWordString4 = new StringBuilder(modifiedWordString);

tempWordString4.deleteCharAt(1);

modifiedWordString = tempWordString4.toString();

} else if (wordString.charAt(0) == 3545 && wordString.charAt(1) == 3473) { // SINHALA LETTER
AIYANNA

modifiedWordString = wordString.replace(Character.toString(wordString.charAt(1)),
Character.toString((char) 3475));

StringBuilder tempWordString5 = new StringBuilder(modifiedWordString);

tempWordString5.deleteCharAt(0);

modifiedWordString = tempWordString5.toString();

} else if (wordString.charAt(0) == 3476 && wordString.charAt(1) == 3551) { // SINHALA LETTER
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AUYANNA

modifiedWordString = wordString.replace(Character.toString(wordString.charAt(0)),
Character.toString((char) 3478));

StringBuilder tempWordString6 = new StringBuilder(modifiedWordString);

tempWordString6.deleteCharAt(1);

modifiedWordString = tempWordString6.toString();

}

return modifiedWordString;

}

public String applyConsonantNormalizationRules(String innerText) {

// TODO : Add rule to correct kroo
int lengthOfString = innerText.length();

for (int currentPos = 0; currentPos < lengthOfString;) {
if (innerText.charAt(currentPos) == 3545) { // SINHALA VOWEL SIGN KOMBUVA

if (currentPos + 3 <= lengthOfString) { // String of 4 chars starting from kombuwa
if ((innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <= 3526)
&& innerText.charAt(currentPos + 2) == 3535 && innerText.charAt(currentPos + 3) == 3530)
{// kombuwa Consonant alapilla hal kireema

innerText = insertCharAt(innerText, (char) 3549, currentPos + 3);
innerText = deleteCharAt(innerText, currentPos);

innerText = deleteCharAt(innerText, currentPos + 1);

innerText = deleteCharAt(innerText, currentPos + 2);

lengthOfString = innerText.length();
currentPos += 2;

} else if (currentPos + 2 <= lengthOfString) { // string of 3 chars starting from kombuwa

if ((innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <= 3526)
&& innerText.charAt(currentPos + 2) == 3535) { // kombuwa consonant and adapilla

innerText = insertCharAt(innerText, (char) 3548, currentPos + 2);
innerText = deleteCharAt(innerText, currentPos);
innerText = deleteCharAt(innerText, currentPos + 2);

lengthOfString = innerText.length();
currentPos += 2;

} else if ((innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <=
3526)
&& (innerText.charAt(currentPos + 2) == 3551 || innerText.charAt(currentPos + 2) ==
3571)) { // kombuwa consonant and gayanu kiththa

innerText = insertCharAt(innerText, (char) 3550, currentPos + 2);
innerText = deleteCharAt(innerText, currentPos);
innerText = deleteCharAt(innerText, currentPos + 2);

lengthOfString = innerText.length();
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currentPos += 2;

} else if (innerText.charAt(currentPos + 1) == 3545
&& (innerText.charAt(currentPos + 2) >= 3482 && innerText.charAt(currentPos + 2) <=
3526)) { // kombuwa combuwa and consonant

innerText = insertCharAt(innerText, (char) 3547, currentPos + 3);
innerText = deleteCharAt(innerText, currentPos);
innerText = deleteCharAt(innerText, currentPos);

lengthOfString = innerText.length();
currentPos +=2;

} else if ((innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <=
3526)
&& (innerText.charAt(currentPos + 2) == 3551 || innerText.charAt(currentPos + 2) ==
3530)) { // kombuwa consonant and hal kireema

innerText = insertCharAt(innerText, (char) 3546, currentPos + 2);
innerText = deleteCharAt(innerText, currentPos);
innerText = deleteCharAt(innerText, currentPos + 2);

lengthOfString = innerText.length();
currentPos += 2;

} else if (innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <=
3526) {// kombuwa and consonant

innerText = swapCharacters(innerText, currentPos, currentPos + 1);
currentPos += 2;

}else{

currentPos++;

}

} else if (currentPos + 1 <= lengthOfString) { // string of 2 chars tarting from kombuwa

if (innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <= 3526) {
// kombuwa and consonant

innerText = swapCharacters(innerText, currentPos, currentPos + 1);
currentPos += 2;

}else{
currentPos++;

}

}else {

currentPos++; // TODO implement Later

}

} else if (currentPos + 1 <=lengthOfString) { //kombuwa and consonant at the end of a word

if (innerText.charAt(currentPos + 1) >= 3482 && innerText.charAt(currentPos + 1) <=3526) { //
kombuwa and consonant

innerText = swapCharacters(innerText, currentPos, currentPos + 1);
currentPos += 2;
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}else {
currentPos++;

}

}else {

currentPos++;

}

}else {

currentPos++;

}
}

return innerText;

}

public String applySpecialConsonantRules(String innerText) {

int lengthOfString = innerText.length();

char[] charSet = {3482, 3484, 3495, 3497, 3501, 3508, 3510};

for (int currentPos = 0; currentPos < lengthOfString;) {

if (currentPos + 5 <= lengthOfString) { // string of 6 chars starting from a consonant
if (containsChar(innerText.charAt(currentPos), charSet)) { // starting character is a consonant from

the charSet

if (innerText.charAt(currentPos + 1) == 3546 && innerText.charAt(currentPos + 2) == 8205
&& innerText.charAt(currentPos + 3) == 3515 && innerText.charAt(currentPos + 4) == 3535
&& innerText.charAt(currentPos + 5) == 3530) { // Sinhala Char Kroo
innerText = swapCharacters(innerText, currentPos + 1, currentPos + 5);
innerText = replaceCharAt(innerText, currentPos + 4, 3549);
innerText = deleteCharAt(innerText, currentPos + 5);

lengthOfString = innerText.length();
currentPos = currentPos + 4;

}else {
currentPos++;

}
}else {

currentPos++;

}

}else {
currentPos++;

}
}

return innerText;

}

Dictionary Match
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public List<String> readFromWordLexicon() {

File textFile = new File(".\\word_list.txt");
List<String> wordList = new ArrayList<>();

try {

BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(textFile),
"UTF-8"));
String st;
while ((st = br.readLine()) != null) {
wordList.add(st);
// log.info(st);
}
br.close();
} catch (FileNotFoundException ex) {
log.error(ex);
} catch (IOException ex) {
log.error(ex);

}

return wordList;

public boolean findDictionaryMatch(String word, List<String> wordList) {
return wordList.contains(word);

Confusion Pairs

public String applyConfusionRules(String word) {

String tempWord;
if (this.findDictionaryMatch(word, wordList)) {
return word;
}else {
for (inti= 0; i < confusionRuleArray.length; i++) {
if (word.contains(confusionRuleArray[i][0])) { //matching the confusion rule R->L
tempWord = word.replaceFirst(confusionRuleArray[i][0], confusionRuleArray[i][1]);
if (findDictionaryMatch(tempWord, wordList)) {
return tempWord;

}else{
return word;
}
// log.info("confusion rule found" + confusionRuleArray[i][0] + " " + confusionRuleArray[i][1] + " "
+word);
// log.info("replaced WOrd : " + word.replaceFirst(confusionRuleArray[i][0],

confusionRuleArray[i][1]));
} else if (word.contains(confusionRuleArray[i][1])) {

tempWord = word.replaceFirst(confusionRuleArray[i][1], confusionRuleArray[i][0]);
if (findDictionaryMatch(tempWord, wordList)) {
return tempWord;
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}else {
return word;
}
}
}

// return word;

}

return word;

}

Invoking the Tesseract OCR engine to obtain Output

public String performOcr(String filePath) {

String hocrOutput = null;
File imageFile = new File(filePath);

Tesseract hocrlnstance = new Tesseract();// /NA Interface Mapping
hocrinstance.setLanguage("sin");

hocrinstance.setHocr(true);

hocrinstance.setDatapath(".");

try {
hocrOutput = hocrInstance.doOCR(imageFile);

} catch (TesseractException e) {
System.err.println(e.getMessage());

}

return hocrOutput;

}

Invoking the corrections during post-processing

public void runOcrErrorCorrectionEngine(File ocrOutputString) {

String innerSpanContent;
String innerText;
String normalizedInnerText;

try {
Document inputHtmlDoc = Jsoup.parse(ocrOutputString, "UTF-8");

PrintWriter writer = new PrintWriter(ocrOutputString, "UTF-8");
wordList = this.readFromWordLexicon();
confusionRuleArray = this.readConfusionPairs();

//Choose each word in the output
for (Element span : inputHtmlDoc.select("span.ocrx_word")) {

innerSpanContent = span.html();
innerText = span.text();

normalizedInnerText = applyVowelNormalizationRules(innerText); // Apply Vowel Normalization
rules

normalizedInnerText = applyConsonantNormalizationRules(normalizedInnerText); // Apply
Consonant Normalization rules
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/7

normalizedInnerText = applySpecialConsonantRules(normalizedInnerText);
log.info("before confusion :" + normalizedInnerText);

normalizedInnerText = applyConfusionRules(normalizedInnerText); //Apply confusion rules
log.info("after confusion :" + normalizedInnerText);

innerSpanContent = innerSpanContent.replace(innerText, normalizedInnerText);
log.info(innerText + ": " + this.findDictionaryMatch(normalizedInnerText, wordList));
span.html(innerSpanContent);

}

writer.write(inputHtmlDoc.html());
writer.flush();
writer.close();

} catch (IOException ex) {
log.error(ex.getMessage(), ex);

}
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