

Self-Healing of Distributed Systems

A dissertation submitted for the Degree of Master of

Computer Science

G.P. Sanjeewa

University of Colombo School of Computing

2019

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any other

university/institute.

To the best of my knowledge it does not contain any material published or written by another person,

except as acknowledged in the text.

Student Name: G.P. Sanjeewa

Registration Number: 2015/MCS/069

Index Number: 15440691

Signature: Date: 2020/06/20

This is to certify that this thesis is based on the work of

Mr. G. P. Sanjeewa

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name: Dr. Kasun Karunanayake

Signature: Date:

21/06/2020

Abstract
Self-healing is a buzzword in distributed computing domain since last decade. During this

study, the evolution of distributed systems with respect to self-healing was studied. Some

of the common architectures used for self-healing of distributed sytems is presented. With

the inception of cloud computing, cloud computing platforms have vastly adopted self-healing

methodologies when running their large scale server farms.

The study was inspired by the project which the author has been working at his company. In the

upcoming sections author has proposed some automated strategies to heal a distributed system

replacing the manual process which involves human intervention. For the implementation of

the suggested methodology, author has proposed a solution based on docker and kubernetes.

Self-healing solution has been implemented on a WSo2 EI cluster. The research has been able

to achieve the self-healing of a VM cluster in VM level. Going further from initial objectives,

auto scaling has been achieved in the VM cluster as well.

Table of Contents

List of Figures iii

List of Tables iv

Abbreviations iv

Chapter 1: Introduction 1

1.1 What is a distributed system? . 1

1.2 What is a self-healing system? . 2

1.3 Motivation . 2

1.4 Aims and Objectives of the Project . 3

1.5 Scope . 3

Chapter 2: Literature Review 4

2.1 Related research work . 4

2.1.1 Maintaining system health . 4

2.1.2 Identification of faulty states . 7

2.1.3 Recovery of system from faulty state 8

2.2 Current research limitations and research gap analysis 9

Chapter 3: Methodology 10

3.1 Monitoring system health . 10

3.2 Identification of faulty states . 11

3.3 Recovery of system from faulty state . 12

Chapter 4: Proposed Solution 15

4.1 Selected Tools and software components . 15

4.1.1 Tools . 15

4.1.2 Software Components . 15

4.2 Building the Solution . 15

4.2.1 Mock API . 16

i

4.2.2 Pod definition . 17

4.2.3 Deployment definition . 18

4.2.4 Node-port service definition . 19

4.2.5 HPA definition . 19

4.3 How the initially defined objectives were achieved 21

Chapter 5: Evaluation and Results 22

5.1 Analysis of implemented solution . 22

5.2 Excising Methodologies . 24

5.3 Comparison of proposed solution and existing solution 25

5.3.1 Time to recover . 26

5.3.2 Human intervention . 26

5.3.3 Root cause analysis . 27

Chapter 6: Conclusion and Future Work 28

6.1 Future work . 28

6.2 Conclusion . 28

References 29

ii

List of Figures

1.1 Simplified Apigate API gateway server setup . 1

2.1 Architecture based monitoring detailed setup [10] 5

2.2 Externalized Dynamic Adaptation Infrastructure [28] 6

3.1 Monitoring and healing model . 11

3.2 Fault identification model . 11

3.3 Healing agent architecture . 13

5.1 Nodes in kubernetes cluster . 22

5.2 Initial pod in kubernetes cluster . 22

5.3 Node-port service . 22

5.4 Replica set . 23

5.5 Horizontal pod auto-scaler . 23

5.6 Deleting a pod . 23

5.7 Apache jmeter set up to apply load . 24

5.8 Apache jmeter set up to apply load . 24

5.9 Initializing a new pod . 25

5.10 Initializing a new pod . 25

5.11 Initializing a new pod . 25

5.12 Deleting pods . 26

5.13 Deleting pods . 26

iii

Abbreviations

ADL Architecture Description Language 1, 8

AM API Manger 1, 15

API Application Programming Interface 1

DEP Digital Enablement Platform 1, 12

EI Enterprise Integrator i, 1, 12,

15, 21,

22

HPA Horizontal Pod Autoscaler ii, 1, 19

HTTP Hypertext Transfer Protocol 1, 19

HTTPS Hypertext Transfer Protocol Secure 1, 19

IGW Internal Gateway 1

IS Identity Server 1, 15

KM Key Manager 1, 12

REST REpresentational State Transfer 1, 15

SLA Service-level Agreement 1, 3

VM Virtual Machine 1, 19

iv

Chapter 1: Introduction

Self-healing of distributed systems is a popular topic in the industry today. When enterprise

software systems increase in complexity, rectification of system faults and recovery from mali-

cious attacks become more difficult, labor-intensive, expensive and error-prone. These factors

have actuated research dealing with the concept of self-healing systems [12].

1.1 What is a distributed system?

A set of networked computer(server) nodes which collectively perform one complex computa-

tional task is defined as a distributed system. These computers communicate with each other by

passing messages between them[26].

Apigate API gateway is a good example for a distributed system.

Figure 1.1: Simplified Apigate API gateway server setup

1

Here, each server node has a dedicated task while the whole system collectively operates as

an API gateway.

1.2 What is a self-healing system?

It is a property of the system that it can identify when it is not operating correctly and ability to

make necessary adjustments to restore itself (or with human intervention) to normalcy. Just like

a biological systems heal a wound, self-healing systems heal themselves[12]. Self-healing needs

to be happened by the system itself or with some human intervention. Dynamically adapting

to the changes in the environment is expected from a self-healing system. At run-time, system

should be able to deal with the possibilities which were not anticipated in design-time[25].

There are another two terms going closely with self-healing systems; fault-tolerant systems and

survivable systems. In fault-tolerant systems, backup systems stay stand by to take the position

of the main system in case of a malfunction of the main system. This is required to happen

without any service interruption[23]. This standby system is also known as a ’mirror’ systems

[12]. Survivable systems are an extension to the fault-tolerant systems. Survivable systems keep

the system secure in the presence of malicious or arbitrary fault[20].

Self-healing systems consider about taking the current working system back to normalcy rather

than depending on a backup standby system. In this study, our focus is to come up with a

solution which can detect the faulty states and recover from faulty states autonomously without

human intervention.

The term "self-healing" is originated from the natural biological system of humans[12]. Our

body has the ability to heal itself when it is damaged. Let it be a wound, food poisoning, body

tries to recover itself. Human immune system plays a vital role in self-healing in human body.

This has opened a new area in computer science research called artificial immunology[7].

1.3 Motivation

Apigate API gateway is run on a distributed system. At work, we often face scenarios where

the system runs into some of the unintended states. In those states, we have often noticed high

transaction time or complete traffic failure. Then, human interaction is required to get the system

back to a working state. In most of the scenarios, what needs to be done to recover the system is

straight forward. Only problem is the inability of the system to identify that it is in a unintended

2

state and it doesn’t know how to recover from that state. In such a situation human interaction is

required to resolve the issue. Human interaction always come up with financial cost and time.

That affects the overall performance of the system and sometimes we are unable to meet the

SLA provided to the partners who are using API gateway. Therefore, we thought of coming up

with a solution to that problem we are facing in the industry.

1.4 Aims and Objectives of the Project

Main objective of this research is to come up with a solution to self-healing of distributed

systems. Going forward solution will be implemented on Apigate IGW. To come up with a novel

solution, similar approaches will be studied. The knowledge generated from previous researches

will be used to come up with a better solution. A new solution will be developed based on

proposed methodology.

1.5 Scope

Scope of the research was limited to look for a solution to self-healing in distributed systems.

System quality wise parameters like response time was not taken in to consideration in this

study. In this research, I did not consider about self-healing of security threats like phishing

attacks, malware attacks etc. In this research we have considered only on the server level

self-healing. We did not look into application failures. During implementation, self-healing

methodologies were only applied to internal load balancers, external load balancers, database,

digital enablement platforms(DEPs), key managers(KMs) and enterprise integrators(EIs) of

Apigate IGW environment as they are the most critical server nodes. Python script can be used

to automate the solution deployment process.

3

Chapter 2: Literature Review

Researches in self-healing of computer systems go down till 70's[2]. When reading the literature,

it is obvious that the problem has been there since the inception of computers, but the problem

has taken more attention at the beginning of this century when the computer systems started

getting complex.

2.1 Related research work

The related literature can be summarized into three main categories.

1. Maintaining system health

2. Identification of faulty states

3. Recovery of system from faulty states

Following sub subsections will describe the related research work in detail classifying them

to above three categories.

2.1.1 Maintaining system health

Monitoring the system health to maintain proper system health plays a vital role in distributed

systems. Strategies followed in literature to monitor and maintain system health will be described

in this subsection.

Some self-healing distributed systems maintain an agent who will keep monitoring the

system health. In most of the systems which we describe below, follow this agent architecture.

Monitoring process can be continuous or periodical depending on the criticalness of the system.

There are different strategies in literature which are used to monitor and maintain system health

of a distributed system.

2.1.1.1 Maintaining redundant components

Replicating system components to maintain system health is a costly but popular concept. Negpal

et al. [22] has presented a programming methodology for self-assembly of complex structures

4

using a technique inspired by biology. In this research, author has described the mechanism of

deploying multiple identical components to facilitate the redundancy of a distributed system.

Huhns et al. [15] has proposed a different type of redundancy policy for multi-agent systems.

In this approach, two types of decision making algorithms have been used for pre-processing

and post-processing decision making. In this approach, redundant agents have been used to keep

the system running with different algorithms.

2.1.1.2 Using probes

Probing is commonly used to monitor system health. In literature there are several strategies

used to maintain system health using probing.

1. Architecture based monitoring

Figure 2.1: Architecture based monitoring detailed setup [10]

Garlan et al.[10] suggest a monitoring system with 3 layer architecture as mentioned in

figure 2.1. In this research, probes are deployed in actual system which keeps monitoring

system parameters. Probes send information of the system to "Probe bus". Gauges in

level two use the information sent from "probes" and interpret the received data in higher

level model properties. Extracted information is sent to "Gauge reporting bus". Gauge

consumers are in the third layer. This layer uses the gauge values to take system level

decisions like display warnings and alerts, decision on system repair or to get the status

5

of the system.

2. Decision and control layer

A similar approach has been suggested by Kaiser at el. [16]. to add self-healing features

to legacy systems. Here, they have used gauges and probes to obtain system properties

and interpret the same in higher level model properties. Apart from that they have used

an extra layer called "Decision and control layer" which obtain information from gauge

reporting bus to optimize the deployment of gauges and probes.

3. Feedback control loop

Figure 2.2: Externalized Dynamic Adaptation Infrastructure [28]

Valetto at el. [28] have proposed the same "probes and gauges" approach. Apart from

that, they have introduced a feedback control loop for automatic reconfiguration of probes

and gauges. This can be implemented on any legacy system. The model introduced

here is independent from the running system. When designing probes and gauges, the

architecture of the system must be closely followed. A probe here is an individual sensor

attached to running program or a component of running program. Feedback system

controls the parameters of running system as well. So, there is some dependency caused

by self-healing mechanism. Anyway, the researchers have kept the interruption at a

6

minimal level.

4. Adaptive mirroring

Combs el al. [5] propose a mirroring architecture for self-healing of distributed systems.

This assumes there are substitutes available for the failing systems. In this paper, authors

have used "probe" concept to get the information of failing components.

5. Gathering data from functional layers using sensors

Two types of sensors are introduced here to collect the information of the system. State

sensors collect information about the state of the system while analysis sensors gather

information about messages flowing through the system.

2.1.1.3 Log analysis

Normally, most of the computer systems generate logs of different types. There are application

specific logs as well as the logs related to server health. In literature, we can find researches

which analyze real time logs to identify the problems in live systems.

Michael et. al [17] propose a performance monitoring system for Windows servers. They have

come up with a service called WatchTower which monitors all the running terminals. This

service is similar to UNIX daemon. User interaction is not required to start the service and

WatchTower service starts automatically at system start up. WatchTower analyses all the open

command lines and consoles to get the current status of the system.

In literature related to fault-tolerant computing, there are researches which are using error logs

of the system to identify the failures of the system [24][3][24][18][19][27].

Kishor et. al [14] present a software rejuvenation model which monitors for application level

failures of a system. In this paper various techniques to follow in design, test, debug and

operation phases of the software are described. Parameters which vary with software aging are

also taken into consideration. In this approach, the rejuvenation process identifies the issue and

tries to restart only few processes to resolve the issue. If that fails, it can even restart the whole

system to heal it.

2.1.2 Identification of faulty states

The next famous topic when it comes to self-healing systems is identification of faulty states

in the system. The data received through system level probes, log analysis needs to be gauged

7

properly to identify whether the system has reached the threshold. Like in a biological system,

failure in one component should be able to recover without affecting other components of the

system.

Identification of faulty states can be classified into two subtopics according to the literature

analysis; identification of missing components or missing messages from the system and system

monitoring models which has the sense of system architecture.

2.1.2.1 Identification of missing components or missing messages from the

system

Negpal et al. [22] have come up with a self-repair architecture based on agents. Here they

have proposed a monitoring model which it can sense the missing of neighbour components of

the system. The architecture of the software system is agent based. Every agent is replicated

and surrounded by these replicated agents. When the replicated agents sense their neighbour is

missing, one of the replicated agents take the place of the dead agent. George et al. [11] have

also pointed out that any failure in system can be identified by missing of messages from the

failed component.

Aldrich et al. [1] point out their strategy to identify missing components is, not receiving the

response to a query. In this approach they have embedded two different methods to identify

system availability; periodic announcements from systems and retries to connect to component.

Dabrowski et al.[6] mention that missing of scheduled announcements indicate that the

announcing component is malfunctioning or a network failure.

2.1.2.2 System monitoring model

Garlan et al. [9] mention that monitored values of the system can be mapped to the architectural

properties of the system to identify whether the components are functioning properly. This is

the concept adopted by most ADLs [4][8][28]. Merideth et al. [21] propose when a fault is

detected continuously probing the system can improve the survivability of the system.

2.1.3 Recovery of system from faulty state

In previous sections, we discussed about different monitoring mechanisms available and how to

identify whether the system is in an unhealthy state. In this section we will analyze the literature

8

related to recovery of the system from faulty states. Any self-healing system should consists of

policies which heal the system when it is in an unhealthy state. The literature related to recovery

mechanisms for self-healing can be classified into two main categories; maintaining redundancy

and usage of architectural models to heal the system.

2.1.3.1 Maintaining Redundancy

Nagpal et. al. [22] have mentioned about self-assembly in self-healing systems. In this approach,

system maintains an agent architecture. Each agent has several replicated agents around it. When

an agent is dead, one of the replications take the place of the agent to maintain proper system

functionality. George et al. [11] state that failure can occur in network path or the component

itself. In this research they have followed the analogy of a biological system. There are several

replicated nodes which keeps transmitting their existence. Once that signals are not received, a

replicated node will take up the operations.

2.1.3.2 Architectural models to heal the system

Cheng et. al. [4] propose a repair strategy using information provided by gauges. This method

initially identifies the cause of problem and then repair the system. This repair strategy is tightly

coupled with the system architecture. Valetto et al. [28] have proposed a high level repair

strategy consisting a feedback loop. Feedback loop gets the input from gauges and adjust the

system accordingly to maintain proper system functionality.

2.2 Current research limitations and research gap analysis

Most of the systems described above are not implemented in commercial systems. For an

example, the methodology described by Cheng et al. [4] and Valetto et al. [28] are hardly bind

with the architecture of the system. So, implementing self-healing in these methods require a

good understanding of the system architecture. In general there are legacy systems in industrial

distributed systems. So, trying to understand those systems is bit challenging. So, generally

industry will not accept such systems if it is not really required.

Most of the researches were targeting on probing the system. There were several approaches in

the literature for probing computer systems. Gauging and healing actions were not that attracted

by researchers. In our study we will focus more on gauging and healing actions.

9

Chapter 3: Methodology

There are lots of examples out there when it comes to industrial distributed systems. Telephone

networks, computer networks(world wide web), wireless sensor networks are popular among

them.

In this research we are planning take an API gateway as the distributed system to apply self-

healing. To be more specific, we will be using Apigate API gateway as the system to implement

self-healing. Simplified network diagram of Apigate API gateway can be found in figure 1.1.

3.1 Monitoring system health

Defining the correct behaviour and faulty behavior of a system is challenging. There is no clear

cut boundary between faulty behaviour and the accepted behaviour. There is kind of a fuzzy

state where it is not clear whether the system is in faulty state or not. So, we are required to

define a threshold to distinguish two behaviours of the system. System health check can be done

continuously or periodically. Anyway this health check mechanism needs to be able to identify

correctly the fuzzy separation zone.

It is required to have an agent to monitor the system health. Agent can be a component of the

system or an independent agent. Agent needs to monitor the component-wise system health

periodically or continuously depending on the criticalness of the system.

High level implementation plan can be seen in figure 3.1.

As described earlier, there is an agent deployed in the distributed system as the monitoring/healing

agent. In this implementation, we are using an already available server node as the agent for

monitoring and healing.

In this monitoring and healing node, we have installed nagios. Nagios is a free and open-

source software application which can monitor systems, networks and infrastructure. Nagios

can monitor all server nodes in distributed system.Specifically, it can monitor memory usage,

CPU usage of all server nodes in the network and the network connectivity to each server node.

Furthermore, it can monitor disk usage of each partition in the distributed system. So, basically

nagios is acting as the monitoring agent in the system.

10

https://www.apigate.com/

Figure 3.1: Monitoring and healing model

3.2 Identification of faulty states

In literature review section, several identification methodologies to grab the faulty states were

discussed. Usage of gauges and usage of architectural models were the main identification

methodologies used in literature. In this implementation, we will be using a methodology which

is closely related to gauges.

Figure 3.2: Fault identification model

As discussed in the previous section, nagios will be used as the monitoring service. There is a

separate python script running along with nagios service in the same server node. This python

script is capable of accessing nagios using the APIs exposed by nagios service. There is a gauge

11

implementation done in this python script which can raise a flag when a parameter value exceeds

a pre-defined threshold. So, identification of faulty states can be done using this python script

which acts as the agent for identifying the faulty states.

3.3 Recovery of system from faulty state

The faulty component is required to be healed. In a biological system, when there is a wound, it

will recover without disturbing normal body functions. The same is expected from the distributed

system. It is required to heal without disturbing other functioning components. To assist this

process, there needs to be adequate redundant components to take over the system in case of a

failure of a component.

The recovery action is always attached to the architecture of the distributed system. This required

to be planned with a thorough analysis of the system. As discussed earlier, there needs to be

an agent who will monitor the component heath and perform the recovery process. It can be a

different server node or a part of the distributed system. It is mentioned in literature[13] that the

characteristics of a self-healing system usually match with software agent architecture, which is

a multi-agent design style; and can perceive their environment.

Apigate API gateway has already implemented redundancy to some extend(check figure 1.1).

As you can see in figure 1.1, there are two nodes of external load balancers, internal load

balancers and and databases. Pure intention of having two nodes is to take the operation by

stand by node when the main node is out of service. DEP, EI and KM nodes have three from

each. That is intended to improve the capacity of API gateway since one node cannot handle the

traffic of API gateway alone. Apart from handling the traffic, having multiple nodes also enable

the redundancy of the the system. When one node is failed, other two nodes can continue the

operation until the faulty node joins the operation after recovery.

In ExtLB, IntLB and DB nodes, there is a service called keepalived, which enables the fault-

tolerant capability. With keepalived service, one virtual ip is exposed to the rest of the nodes

in the distributed system. When a node is out of operation, virtual ip will route the requests to

stand-by node and the situation is handled without any service impact.

So, Apigate API gateway has already implemented fault-tolerant features in some layers(IntLB,

ExtLB and DB). For other layers(DEP, EI and KM), we can implement fault-tolerant features

with the available resources. But that is not the goal of this research. When a system is equipped

with fault-tolerant features, it doesn’t mean the system is self-healing. Having fault-tolerant

12

ability is a good feature for a system. Still, having self-healing ability is the icing on the cake.

In previous two sections, we discussed on probing the system using nagios and gauging the

values received from probes using custom python script which acts as the healing agent is shown

in figure 3.3.

Figure 3.3: Healing agent architecture

Python script has defined the gauges for system parameters. When the parameters reach the

gauge, healing agent can act as specified in the program. As mentioned in the figure 3.3, healing

agent can directly control all server nodes in distributed system. If the agent identifies a known

error behavior it will act as it is programmed. At the initial phase we will identify high memory

usages, high CPU consumption of server nodes. When the memory usage or CPU consumption

is high, healing agent will heal the node with following algorithm.

1. When the affected agent is IntLB, ExtLB or DB

keepalived service switches the operation to stand by node in this scenario. Once the

operation is switched to stand by node, affected node will be restarted by the healing

agent. Then keepalived service will switch back the operation to this healed node.

2. When the affected agent is KM, DEP or EI

These nodes are load balanced through load balancers as mentioned in figure 1.1. So,

13

once a node doesn’t function properly, healing agent will detach the node from related load

balancer. Then healing agent restarts the affected node and attach it back to respective

load balancer.

14

Chapter 4: Proposed Solution

This research was inspired by the work currently I’m carrying out in my company. So, I thought

of implementing the solution on a component of the system which my team manage currently.

As I described in chapter 1, my team is managing an API gateway which consists of several

layers of open-source software like WSo2 AM, WSo2 EI, WSo2 IS, nginx load balancers and

mySQL databases. For the solution implementation I selected WSo2 EI since we can simply

deploy an REST API using WSo2 EI.

4.1 Selected Tools and software components

For the solution implementation I used several open-source tools and software components.

4.1.1 Tools

As tools, I used docker and kubernetes to develop the solution. Docker was used to pull the

docker container images from docker hub which is the largest open platform for containerized

images. After deploying the simple REST API, again docker was used to bundle the software

stack back as another docker image. Kubernetes was the container orchestration platform which

was used to deploy and orchestrate the containers.

4.1.2 Software Components

As software components, the only software component which was used is the WSo2 EI docker

image which is publicly available in docker hub. Docker image was downloaded from docker

hub. WSo2 recommends to use the docker image from their private repository hosted at

wso2.com for production environments. Still I used the image from docker hub since this is just

a demonstration and not a production grade deployment.

4.2 Building the Solution

The solution is implemented using docker and kubernetes. To build the solution, there were five

major components I had to look at.

15

1. Mock API

2. Pod definition

3. Deployment definition

4. Node-port service definition

5. HPA definition

4.2.1 Mock API

Mock API mocks a real API behaviour. Without calling an actual back-end, the response is hard

coded in a mock API. In my solution I have used a mock API to put load on WSo2 EI. Mock

API code is taken from http://lahiruwrites.blogspot.com

<api xmlns="http://ws.apache.org/ns/synapse"\

name="SimpleAPI" context="/simple">

<resource methods="GET">

<inSequence>

<payloadFactory media-type="xml">

<format>

<Response xmlns="">

<status>OK</status>

<code>1</code>

</Response>

</format>

<args/>

</payloadFactory>

<respond/>

</inSequence>

</resource>

</api>

This API is configured inside WSo2 EI and a modified docker image is used for the demon-

stration.

Below is the test API call.

16

http://lahiruwrites.blogspot.com

curl --location --request \

GET 'http://192.168.8.111:30010/simple/'

Sample response is as below.

<status>OK</status>

4.2.2 Pod definition

Pod definition is the smallest element in a kubernetes deployment. It is the wrapper on top of a

docker container. So, to wrap up the WSo2 EI image, we have to define a pod. Here is the pod

definition file.

apiVersion: apps/v1

kind: Pod

metadata:

name: ei-pod

labels:

type: ei

version: 6.6.0

spec:

containers:

- name: integrator

image: pradeepsanjeewa/wso2eiwithsimplemockapi:latest

resources:

limits:

cpu: 500m

requests:

cpu: 200m

Here, I have used the modified docker image (pradeepsanjee-

wa/wso2eiwithsimplemockapi:latest) for the pod. CPU resources are limited to 500

millicpu cores.

17

4.2.3 Deployment definition

Even though we defined the pod in previous sub section, that won’t be directly used in the

kubernetes deployment. Pod definition is embedded inside the deployment definition.

apiVersion: apps/v1

kind: Deployment

metadata:

name: ei-deployment

labels:

type: ei-dep

spec:

template:

metadata:

name: ei-pod

labels:

type: ei

version: 6.6.0

spec:

containers:

- name: integrator

image: pradeepsanjeewa/wso2eiwithsimplemockapi:latest

resources:

limits:

cpu: 500m

requests:

cpu: 200m

replicas: 1

selector:

matchLabels:

type: ei

version: 6.6.0

Here, I have defined the kubernetes deployment embedding the pod definition. In the

deployment definition, we can mention the number of replicas to be available at a given time.

18

So, once that is defined, even if a pod starts to malfunction, another pod is initiated by kubernetes

platform to maintain the defined number of replicas.

4.2.4 Node-port service definition

To expose the ports of a pod to host computer(or VM) I’m using the node-port service. Node-port

service definition is as below.

apiVersion: v1

kind: Service

metadata:

name: ei-service

spec:

type: NodePort

ports:

- targetPort: 8280

port: 8280

nodePort: 30010

name: http

- targetPort: 9443

port: 9443

nodePort: 30011

name: https

selector:

type: ei

version: 6.6.0

Here I have exposed two ports in pod; 8280 and 9443. 8280 is the port which accepts HTTP

requests. So, to hit API calls, we need to keep open this port. 9443 is the HTTPS carbon console

port where we can view all the deployed carbon apps(API files).

4.2.5 HPA definition

HPA definition file defines all the matrices it needs to monitor to trigger a new pod. If the

defined matrices are exceeded, a new pod will be initialized. Below are some matrices HPA can

monitor.

19

1. Pod CPU usage

2. Pod memory usage

3. custom matrices

Under custom matrices related to this study, we can use parameters like response time from

down-stream, log pattern monitoring and response code monitoring, For this study I’m using

only CPU usage.

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: hpa-deployment

spec:

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: ei-deployment

minReplicas: 1

maxReplicas: 6

metrics:

- type: Resource

resource:

name: cpu

target:

type: Utilization

averageUtilization: 200

Here we have defined the matrices to consider for scaling up the pods in the cluster. Average

CPU utilization is provided as 200% for a pod. If that limit is exceeded spinning up new pods

starts. Here we have defined minReplicas to two and maxReplicas to six. So, HPA can scale the

cluster up to six replicas and it will keep minimum of one replica at a given time.

20

4.3 How the initially defined objectives were achieved

The initial objective of the research was to come up with a better methodology for self-healing

of distributed systems. In the implementation I have mentioned how we can come up with a

self-healing distributed system for a WSO2 EI layer. When we define the number of replicas

in deployment definition, it makes sure it always keep the defined number of pods in the

environment. If a pod malfunctions, platform spin up a new pod to match the number of pods

defined in the deployment definition. In this way, self-healing part of the distributed system can

be achieved.

Going forward from the initially defined objectives, we can define a HPA which monitors

the system matrices and custom matrices to scale up the number of nodes in cluster to serve

traffic spikes or high traffic periods like promotions. HPA overrides the replicas configuration

in deployment definition file and increase the number of pods (replicas) if the matrices are hit.

In this way, the distributed system can auto scale to serve more traffic without degradation of

the performance like response time.

21

Chapter 5: Evaluation and Results

This chapter evaluates the pros and cons of the suggested self-healing and scaling method with

the existing methods. Furthermore, achieved results for the implementation will be described

here.

5.1 Analysis of implemented solution

As described in the previous section, a deployment definition is used to initialize the kubernetes

deployment. Once the deployment is created, one pod with WSo2 EI is deployed in a worker

node. Here I have used three VMs for the implementation; one kubernetes master node and two

worker nodes.

Figure 5.1: Nodes in kubernetes cluster

Following is the deployment running in kubernetes cluster.

Figure 5.2: Initial pod in kubernetes cluster

As I described in the previous chapter, a node-port service is used to expose the ports of the

pod through the ports of kubernetes nodes.

Figure 5.3: Node-port service

Since the deployment definition defined the number of replicas as one, one replica of the

pod is available.

22

Figure 5.4: Replica set

HPA is defined to spin up new pods in case the cpu utilization exceeds 200%.

Figure 5.5: Horizontal pod auto-scaler

Deployment definition has explicitly defined the number of replicas as one. Therefore it

tries to keep live one replica/pod at any given time. If the pod starts to be unresponsive, stuck

or destroyed, a new pod will be initiated by kubernetes. This is demonstrated in the figure 5.6.

When we try to delete a pod, it automatically spin up a new pod. In that way, self-healing can

be achieved in VM level.

Figure 5.6: Deleting a pod

Going further from self-healing, there is a HPA defined as shown in figure 5.5. Using the

defined HPA, auto scaling of the cluster can be achieved. We can consider matrices like,

1. CPU utilization

2. Memory utilization

3. Custom matrices

For demonstration purposes CPU utilization has been used as the matrix. To increase

resource usage load needs to be applied on the kubernetes cluster. Apache jmeter has been used

for that as shown in figure 5.7 and 5.8.

When the load is applied on the system, CPU utilization increases. When the CPU utilization

exceeds 200%, new pods are initialized as shown in figures 5.9, 5.10, 5.11.

When the load applied through jmeter is stopped, hpa removes the extra pods and take the

number of pods back to minimum number of pods defined in the hpa definition.

In this way, auto scaling can be achieved in the defined kubernetes environment.

23

Figure 5.7: Apache jmeter set up to apply load

Figure 5.8: Apache jmeter set up to apply load

5.2 Excising Methodologies

The research was inspired by the current work my team is carrying out in my company. When

there is an issue with an excising server, that will be identified through the monitoring system

like kibana or a complaint may be received from a customer. Then DevOps team log into servers

and look for the server which is malfunctioning. Once the server is identified, that server is

24

Figure 5.9: Initializing a new pod

Figure 5.10: Initializing a new pod

Figure 5.11: Initializing a new pod

removed from the cluster manually. Then DevOps team analyze logs to identify the problem

with the server, fix it and attach back to cluster. That is the normal procedure used in any of the

on-prem server farm / distributed system.

5.3 Comparison of proposed solution and existing solution

There are several matrices to consider when comparing the two systems for pros and cons.

25

Figure 5.12: Deleting pods

Figure 5.13: Deleting pods

5.3.1 Time to recover

Time for the recovery is the most crucial factor when it comes to an outage of a production

system. When look at this from client’s perspective, this is leakage of revenue. From manage

service team’s perspective, this can impact the impact the SLAs and finally result in penalties.

When the proposed solution is used, system recovers within less than a minute(only depends on

the time to spin up a new pod).

When it comes to an manually managed typical server farm, this will take 10 minutes or

more for the recovery.

So, there is a good advantage to apply the proposed solution when considered from the

perspective of time to recovery.

5.3.2 Human intervention

In a production outage human intervention is not required when the suggested solution is applied.

If the manual method is used, human intervention is needed to login to the system. Human

26

intervention comes with a cost as well. So, with the suggested solution, we can get rid of human

intervention to attend to the issue and saves revenue as well.

5.3.3 Root cause analysis

Once there is an production outage, manage service team is required to come up with the root

cause. Root cause analysis is mostly carried out though analyzing logs. Identify and distinguish

between logs is not straightforward in a kubernetes setup if that in not previously defined.

When it comes to on-prem servers, there are log locations within the servers. Even if the

logs are rotated, they are properly structured and easy to find. In that way the root cause analysis

may be easy with on-prem servers while it is bit challenging with kubernetes.

27

Chapter 6: Conclusion and Future Work

6.1 Future work

When it comes to future work, there is a lot remaining in this area when going forward. In my

study I have considered an on-prem distributed system. I didn’t touch cloud computing much

in this research. So, in future someone can start from cloud computing which is getting much

popularity these days.

In my research I considered from the perspective of the virtual machine(container /pod).

May be in the next phase, application level analysis like log analysis, status code analysis can be

added for identifying systems state. That would be much accurate rather than depending of the

system matrices like cpu usage and memory usage.

How to determine self healing without using kubernetes will be a good area to look at. May

be someone can come up with a better tool to address the self-healing problem.

6.2 Conclusion

As described in chapter 5, we can come up with a self healing vm (container) cluster with the

proposed kubernetes setup. So, here we have achieved the main objective. Taking few steps

forward from the initially set goal, we have achieved an auto scaling cluster of vms which has

the ability to scale up and down depending on the matrices set like cpu usage or memory usage.

Furthermore I’m planning to apply the same for the project I’m currently working at company

to achieve better results in term of recovery time when there is an issue in a server.

28

References

[1] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin. Architecture-centric programming

for adaptive systems. In Proceedings of the first workshop on Self-healing systems, pages

93–95, 2002.

[2] A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, and D. K. Rubin. The

star (self-testing and repairing) computer: An investigation of the theory and practice of

fault-tolerant computer design. IEEE Transactions on Computers, 100(11):1312–1321,

1971.

[3] M. F. Buckley and D. P. Siewiorek. Vax/vms event monitoring and analysis. In

Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers,

pages 414–423. IEEE, 1995.

[4] S.-W. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and N. Hu. Software

architecture-based adaptation for grid computing. In Proceedings 11th IEEE

International Symposium on High Performance Distributed Computing, pages 389–398.

IEEE, 2002.

[5] N. Combs and J. Vagle. Adaptive mirroring of system of systems architectures. In

Proceedings of the first workshop on Self-healing systems, pages 96–98, 2002.

[6] C. Dabrowski and K. Mills. Understanding self-healing in service-discovery systems. In

Proceedings of the first workshop on Self-healing systems, pages 15–20, 2002.

[7] S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer immunology. Communications of

the ACM, 40(10):88–96, 1997.

[8] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:

Architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):46–54,

2004.

[9] D. Garlan and B. Schmerl. Model-based adaptation for self-healing systems. In

Proceedings of the first workshop on Self-healing systems, pages 27–32, 2002.

29

[10] D. Garlan, B. Schmerl, and J. Chang. Using gauges for architecture-based monitoring and

adaptation. 2001.

[11] S. George, D. Evans, and S. Marchette. A biological programming model for

self-healing. In Proceedings of the 2003 ACM workshop on Survivable and

self-regenerative systems: in association with 10th ACM Conference on Computer and

Communications Security, pages 72–81, 2003.

[12] D. Ghosh, R. Sharman, H. Rao, and S. Upadhyaya. Self-healing systemssurvey and

synthesis. Decision Support Systems, 42:2164–2185, 2007.

[13] E. Grishikashvili. Investigation into self-adaptive software agents development.

Distributed Multimedia Systems Engineering Research Group Technical Report, 2001.

[14] Y. Hong. Closed loop design for software rejuvenation. In Proc. Workshop on

Self-Healing, Adaptive, and Self-Managed Systems, 2002, 2002.

[15] M. N. Huhns, V. T. Holderfield, and R. L. Z. Gutierrez. Robust software via agent-based

redundancy. In Proceedings of the second international joint conference on Autonomous

agents and multiagent systems, pages 1018–1019, 2003.

[16] G. Kaiser. Autonomizing legacy systems. In invited talk at the Almaden Institute

Symposium on Autonomic Computing, April, pages 10–12, 2002.

[17] M. Knop, J. Schopf, and P. Dinda. Windows performance monitoring and data reduction

using watchtower. In 11th IEEE Symposium on High-Performance Distributed

Computing (HPDC11), volume 35, 2002.

[18] I. Lee, R. K. Iyer, and D. Tang. Error/failure analysis using event logs from fault tolerant

systems. In [1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First

International Symposium, pages 10–17. IEEE, 1991.

[19] T.-T. Lin and D. P. Siewiorek. Error log analysis: statistical modeling and heuristic trend

analysis. IEEE Transactions on reliability, 39(4):419–432, 1990.

[20] M. G. Merideth. Enhancing survivability with proactive fault-containment. In DSN

Student Forum, Citeseer, volume 20. Citeseer, 2003.

[21] M. G. Merideth and P. Narasimhan. Proactive containment of malice in survivable

distributed systems. In Security and Management, pages 3–9. Citeseer, 2003.

30

[22] R. Nagpal, A. Kondacs, and C. Chang. Programming methodology for

biologically-inspired self-assembling systems. In AAAI Spring Symposium on

Computational Synthesis, pages 173–180, 2003.

[23] V. P. Nelson. Fault-tolerant computing: Fundamental concepts. Computer, 23(7):19–25,

1990.

[24] R. K. Sahoo, M. Bae, R. Vilalta, J. Moreira, S. Ma, and M. Gupta. Providing persistent

and consistent resources through event log analysis and predictions for large-scale

computing systems. In Workshop on Self-Healing, Adaptive, and Self-Managed Systems,

2002.

[25] B. Satzger. Self-healing distributed systems. 2008.

[26] A. S. Tanenbaum and M. Van Steen. Distributed systems: principles and paradigms.

Prentice-Hall, 2007.

[27] M. M. Tsao. Trend analysis and fault prediction. 1984.

[28] G. Valetto and G. Kaiser. A case study in software adaptation. In Proceedings of the first

workshop on Self-healing systems, pages 73–78, 2002.

31

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	What is a distributed system?
	What is a self-healing system?
	Motivation
	Aims and Objectives of the Project
	Scope

	Literature Review
	Related research work
	Maintaining system health
	Identification of faulty states
	Recovery of system from faulty state

	Current research limitations and research gap analysis

	Methodology
	Monitoring system health
	Identification of faulty states
	Recovery of system from faulty state

	Proposed Solution
	Selected Tools and software components
	Tools
	Software Components

	Building the Solution
	Mock API
	Pod definition
	Deployment definition
	Node-port service definition
	hpa definition

	How the initially defined objectives were achieved

	Evaluation and Results
	Analysis of implemented solution
	Excising Methodologies
	Comparison of proposed solution and existing solution
	Time to recover
	Human intervention
	Root cause analysis

	Conclusion and Future Work
	Future work
	Conclusion

	References

