
                                  

Alternative Approach  
for  

Authenticating Subflows  
of   

Multipath Transmission Control 
Protocol  

using Application Level Key 

A dissertation submitted for the Degree of Master of 
Science in Computer Science 

T. N. B. Wijethilake 
University of Colombo School of Computing 

2019 
                                                         

                                                                                                 

 



Declaration 
The thesis is my original work and has not been submitted previously for a degree at this or 

any other university/institute. 

To the best of my knowledge it does not contain any material published or written by another 

person, except as acknowledged in the text. 

Student Name: T. N. B. Wijthilake 

Registration Number: 2016MCS115 

Index Number: 16441157      

_____________________ 

Signature:        Date: 

This is to certify that this thesis is based on the work of  

Mr. T. N. B. Wijethilake 

under my supervision. The thesis has been prepared according to the format stipulated and is 

of acceptable standard. 

Certified by: 

Supervisor Name: Dr. Kasun de Zoysa        

_____________________ 

Signature:         Date:  

!ii



Abstract 
Multipath Transmission Control Protocol (MPTCP) is an extension to Transmission Control 

Protocol (TCP) proposed by the Internet Engineering Task Force (IETF). The main intention 

of MPTCP was to use multiple network interfaces in a single network connection 

simultaneously. MPTCP create multiple TCP connections, which are known as subflows 

between two hosts. With the use of multiple connections, the throughput of the connection can 

be improved. Due to the availability of redundant connections, MPTCP can recover from 

network connection failures efficiently without noticing the application.  

It is clear that there is a number of advantages related to MPTCP. But researchers have 

identified that there are a considerable amount of security threats related to the connections 

initiated by MPTCP. These connections are vulnerable to a number of attacks like DoS 

attacks, flooding attacks, connection hijacking and so on. MPTCP shares a set of keys when 

establishing the first connection, also known as the first subflow and use these shared keys to 

authenticate the next subflows created by the hosts. These keys were in plain text format. One 

of the main reason for the security vulnerabilities is the exchange of keys in plain text format.  

A number of solutions were proposed to mitigate these security vulnerabilities. Using an 

encryption mechanism to secure the keys and changing the header formats are some of them. 

But this research is inspired by one of the proposed solutions to use external keys to 

authenticate the subflows. It has proposed to use new socket APIs to obtain the keys from the 

application level to authenticate the connection. But still, there is no proper implementation of 

this solution. Therefore as a proof of concept, this research has explored some alternate 

mechanism to use external keys to authenticate the subflows generated by the MPTCP with 

minimum modifications to the currently available MPTCP version. 

It has conducted a number of experiments on top of MPTCP in order to understand the 

behavior of the protocol, such as configuring of web server with MPTCP and connecting 

MPTCP enabled client so on. The final outcome of the research has been implemented on the 

Linux kernel and several experiments were conducted to examine the robustness of the 

solution, performance. Finally, the solution has evaluated whether the solution has achieved 

the requirement to use the external keys to authenticate the subflows.  

!iii



Acknowledgement 
This research would not have been possible without the support and the guidance of helpful 

people around me. I would like to express my gratitude towards my supervisor Dr. Kasun de 

Zoysa for the guidance and the support given. It would have been impossible to conduct the 

research and complete the thesis without the support of my co-supervisor Dr. Kasun 

Gunawardana. 

My special thanks and appreciation goes to Dr. Chamath Keppetiyagama, who helped me to 

explore new avenues in my research area. 

I am highly indebted to the project coordinators and the UCSC staff for the constant support 

and guidance given. 

My heart full of gratitude goes towards my parents, who always helped me to achieve my 

goals without any hesitation. Finally, I would like to thank all of my friends and colleagues 

who helped me to complete this task successfully.  

  

!iv



Table of Contents 
List of Figures vii 

List of Tables viii 

List of Acronyms ix 

Chapter 1: Introduction 1 
1.1 Multipath TCP 1 

1.2 Known Exploits 4 

1.3 Problem Statement 5 

1.4 Goal and Objectives 6 

1.5 Structure of Dissertation 6 

1.6 Summary 7 

Chapter 2: Background and Literature Review 8 
2.1 Multipath TCP Implementation 8 

2.1.1 Initiating Multipath TCP connection 9 
2.1.2 Joining new subflow to the existing connection 11 

2.2 Security Analysis and Threats 13 
2.2.1 ADD_ADDER attack 13 
2.2.2 DoS attack on MP_JOIN 14 
2.2.3 SYN flooding amplification 15 
2.2.4 Eavesdropper in initial key exchange 15 
2.2.5 SYN/JOIN attack 15 

2.3 Proposed Solutions 16 
2.3.1 Asymmetric key exchange 16 
2.3.2 MPTCPsec 17 
2.3.3 ADD_ADDR2 17 
2.3.4 Using external keys to secure MPTCP 18 

Chapter 3: Research Methodology 19 
3.1 Stage 1 - Configure MPTCP 20 

3.2 Stage 2 - Install existing solutions and Explore behavior of MPTCP with TCP sockets 21 

3.3 Stage 3 - Investigate applicability of external key to authenticate subflow 21 

3.4 Stage 4 - Evaluation 22 

Chapter 4: Proposed Solution 23 
4.1 Additional information from client to server 29 

4.1.1 Changing MPTCP options 29 
4.1.2 Use existing fields to send information from client to server 29 

4.2 Transfer user space information to kernel space 30 
!v



4.2.1 Using the proc file system 30 
4.2.2 Netlink Sockets 30 
4.4.3 Using sin_zero of TCP socket 31 

4.3 Backward compatibility 32 

4.4 Summary 32 

Chapter 5: Evaluation and Results 34 

5.1 MPTCP Behavior Testing 34 
5.1.1 MPTCP with Apache server 34 
5.1.2 MPTCP with TLS 35 
5.1.3 MPTCP with iOS 35 
5.1.4 MPTCP with TCP sockets 36 

5.2 Testing the developed solutions 37 
5.2.1 Using the same key on both client and server 38 
5.2.2 Using the different keys on client and server 38 
5.2.3 Backward compatibility 41 

5.3 Robustness of the proposed solution 43 

5.4 Performance testing with the proposed kernel modifications 45 

Chapter 6: Conclusion and Future Work 47 

6.1 Future Work 49 

References 50 

Appendix A - Code Modifications 53 

Appendix B - MPTCP with iOS 57

!vi



List of Figures 
Figure 1.1 : Mobile phone using both WiFi and mobile data simultaneously 1 

Figure 1.2 : Normal TCP layers 2 

Figure 1.3 : MPTCP layers 2 

Figure 2.1 : Hierarchy of protocols 8 

Figure 2.2 : Connection establishment 9 

Figure 2.3 : MP_CAPABLE option 10 

Figure 2.4 : MP_JOIN option 12 

Figure 2.5 : ADD_ADDR attack 14 

Figure 3.1 : Stages of the Research 19 

Figure 4.1 : Kernel level, User level and External keys 24 

Figure 4.2 : Function calls in MPTCP 26 

Figure 4.3 : Sending Additional Information 28 

Figure 4.4 : Transfer userspace information to kernel space 28 

Figure 4.5 : MP_JOIN options of SYN packet 29 

Figure 4.6 : Proposed solution 33 

Figure 5.1 : MPTCP handshake 34 

Figure 5.2 : SYN packet of MPTCP 35 

Figure 5.3 : SYN/ACK packet of MPTCP 35 

Figure 5.4 : TLS handshake 36 

Figure 5.5 : MPTCP with iOS 36 

Figure 5.6 : MPTCP in TCP socket 36 

Figure 5.7 : Testing the Proposed solution 37 

Figure 5.8 : Packets captured from eth0 interface with same key 38 

Figure 5.9 : Packets captured from eth1 interface with same key 39 

Figure 5.10 : Packets captured from eth0 interface with different key 40 

Figure 5.11 : Packets captured from eth1 interface with different key 40 

Figure 5.12 : Packets captured from eth0 and eth1 interfaces with no key 41 

Figure 5.13 : Packets captured from eth0 and eth1 interfaces with only the client key 42 

Figure 5.14 : Threat model 43 

Figure 5.15 : Threat model of proposed solution 44 

Figure 5.16 : Summarized results of performance test 46

!vii



List of Tables 
Table 1.1: MPTCP options 3

!viii



List of Acronyms 
DoS Denial of Service 

HMAC Hash-based Machine Authentication Code 

MAC Machine Authentication Code 

MPTCP  Multipath Transmission Control Protocol 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

  

!ix



Chapter 1: Introduction 

TCP, the Transmission Control Protocol is one of the major protocols in the transport layer 

which was introduced in 1981 [1]. The main objective of the TCP was to achieve the 

reliability of the communication channel between two hosts over a packet switching network. 

With the advancement of the technology, most of the modern devices such as laptops, mobile 

phones, and tablet PCs are having more than one network interface, such that Ethernet port, 

wifi, cellular data connection like 4G/LTE and so on. However, most of the time these devices 

use only one network interface at any given time and hence, researchers investigated the 

plausibility of employing the second network interface for different purposes. To increase the 

throughput and to provide redundant connectivity, it was proposed to use more than one 

network interface at the same time. To achieve this, an extension to classical TCP was 

introduced as Multipath TCP (MPTCP) in 2013 [2]. As Figure 1.1 shows, a mobile phone can 

use both the wifi connection and the mobile data simultaneously to connect to the internet 

over the Multipath TCP.  

Figure 1.1 : Mobile phone using both WiFi and mobile data simultaneously 

1.1 Multipath TCP  

Currently, Multipath TCP kernel is available for Linux operating systems, macOS, Android 

and Apple iOS which can be installed separately. According to my knowledge, only Apple 

iOS has implemented MPTCP on its Siri voice assistant application [3]. Multipath TCP uses 

the normal TCP three-way handshake method to create the connections between two hosts. It 

does not change the currently available TCP protocol stack and the header format. All the data 

related to MPTCP are sent by using the TCP "option" field available in the TCP header. 

!1



Following Figure 1.2 shows the normal TCP layers and Figure 1.3 shows the Multipath TCP 

layers. 

 

Figure 1.2 : Normal TCP layers 

Figure 1.3 : MPTCP layers 

To initiate the MPTCP connection between a client and the server, the client sends the normal 

TCP SYN message with the MP_CAPABLE options included in the TCP header. If the server 

is also configured with MPTCP, it will reply to the client using SYN_ACK with 

MP_CAPABLE. And finally, the connection is established with the ACK message from the 

client.  

When sending the MP_CAPABLE SYN message at the beginning, the client sends a key to 

the server in plain text, as the key of the client. The server also sends a key with the 

MP_CAPABLE SYN_ACK message in plain text as the key of the server. Finally, with the 

ACK message, the client sends both the keys to the server to confirm the connection. These 

shared keys are used to generate the HMAC, which will be later used to authenticate the new 

sub-flows that would be initialized between the two nodes [4]. In any case, if one of the hosts 

are not configured with MPTCP, it will automatically be changed into the normal TCP 

connection. So MPTCP is designed to be backward compatible and independent from the 

applications which are being executed on the server.  

!2



If a client needs to create a new sub-flow with the server, it will send a TCP SYN message to 

the server with the MP_JOIN option using the client’s second interface. In this case, the client 

sends a token to the server to authenticate itself. This token is a part of the HMAC generated 

by using the keys shared in the initial key exchange. After sharing the HMACs of keys 

between the client and the server, MPTCP will create a new sub-flow between them. Other 

than that there is an option called ADD_ADDR in MPTCP which can be used to advertise the 

available interfaces of a host to other hosts. Some of the MPTCP options are mentioned in the 

following Table 1.1 [1]. 

Creating multiple sub-flows between two hosts requires authentication of one host to another. 

The proposed authentication mechanism [2] employs plain text key exchange between two 

hosts over a public network, which opens to many security risks. If an attacker got access to 

these keys, he or she can create a new sub-flow with the server and even can remove the 

connection between with the legitimate client and the server [6]. 

Table 1.1: MPTCP options 

!3

Symbol Name

MP_CAPABLE Multipath capable

MP_JOIN Join connection

DSS Data sequence signal

ADD_ADDR Add address

REMOVE_ADDR Remove address

MP_PRIO Change subflow priority

MP_FAIL Fallback

MP_FASTCLOSE Fast close



1.2 Known Exploits 

Eavesdropper in the initial handshake is one of the major security threats in MPTCP. Since the 

initial keys are exchanged in plain text format, the attacker can get access to the keys and 

subsequently hijack the connection.  

ADD_ADDR Attack 

The ADD_ADDR option of MPTCP was used to advertise the available network interfaces to 

other hosts. In an MPTCP enabled client-server environment, the connection is established by 

sending MP_JOIN message by the client to the server. But in a situation where free interfaces 

available at the server, the server itself can advertise those interfaces and later client can 

create a connection with that interface. In the ADD_ADDR attack, the attacker takes 

advantage of this ADD_ADDR message and creates connections with the server as a 

legitimate user.  

DOS Attack 

When two MPTCP capable hosts A and B need to create a new sub-flow with each other, A 

sends a SYN+MP_JOIN message to B with the token of B generated by A using the keys 

shared in the initial key exchange. Token authenticates the connections and creates the new 

sub-flow between A and B. If an attacker can send SYN+MP_JOIN with a valid token to B, it 

can trigger the joining process. 

But there is a limitation to store these half-opened connections per MPTCP connection 

depending on the implementation. Therefore by send number of MP_JOIN messages with 

different source addresses can exhaust the receiver. This attack is known as DoS attack on 

MP_JOIN.  

!4



Other 

By sending SYN+MP_JOIN messages with different IP addresses and port numbers will 

consume the server resources which creates the SYN flooding attack. Also, an attacker can 

present in the path when SYN/JOIN exchange happens and can alter the source address of 

SYN/JOIN packets.  This is the SYN/JOIN attack [7].  

There were several solutions proposed for these security vulnerabilities by the Internet 

Engineering Task Force (IETF) in the RFC 7430 [7] which will be discussed later. 

1.3 Problem Statement 

The reason for most of the security threats in MPTCP is due to the exchange of keys in plain 

text. As mentioned earlier, there are a number of solutions proposed by IETF for this problem. 

Some of the solutions were developed based on the ideas proposed in the RFC7430 [7] and 

some are developed by combining available security protocols which will be discussed later.  

The main focus of this research is to explore a method to use the application level information 

to authenticate the subflow generation of MPTCP and compare the performance with the 

original MPTCP kernel to check whether there is a performance degradation with the 

modifications performed.  

The current implementation of MPTCP is not going to consider the application level data in 

establishing the connections. Therefore it is necessary to find out whether it is important to 

consider application level data when establishing the connections and how to take the 

application level information to the MPTCP layer. In order to take application level 

information to MPTCP, some modifications are needed for the protocol itself. Therefore the 

main challenge in the research is to find a proper way to take the application or user space 

data to the kernel space with the minimum modification to the Linux kernel and to the socket 

APIs. Other than that there should be an authentication mechanism to authenticate the newly 

created subflows using the external key obtained from the user space.  

!5



1.4 Goal and Objectives 

One of the main reason for most of the security vulnerabilities of MPTCP connections is the 

exchange of keys in plain text format, which will later use to authenticate the connections. 

MPTCPsec [8] and using external keys for the initial handshake [9] are two proposed 

solutions for this problem which is going to be considered in this research. MPTCPsec has 

implemented on a Linux kernel by the developers for the research purposes which is still in 

development stages. So MPTCPsec is not included in the original MPTCP kernel yet. There is 

no implementation for the proposed solution to use external keys for the initial handshake. 

Therefore the proposed solution will be influenced by the proposal of using external keys for 

the initial handshake and the appropriateness of the security solution will be evaluated. Both 

of the above-mentioned solutions have used different approaches to solve the problem. 

MPTCPsec has implemented the security within the MPTCP layer and the proposal named as 

“Securing the Multipath TCP handshake with external keys” [9] has proposed to use the keys 

generated in the application layer. 

1.5 Structure of Dissertation  

The structure of the dissertation is aligned with the main objective of the research. It is 

important to get a proper idea about the MPTCP before addressing the research problems 

mentioned. Therefore the first part of the thesis is mainly focused on the understanding of 

MPTCP in different scenarios and platforms. The latter part of the document will discuss the 

design and implementation of the proposed solution. Finally, it will discuss the outcomes and 

the contribution of the research.  

Chapter 2 starts with a broad description of the MPTCP and the implementation of MPTCP. 

Then it will discuss the available security threats of MPTCP and the proposed solutions.  

Chapter 3 is about the research methodology. The research is mainly divided into four stages. 

Configuration of MPTCP kernel on Linux virtual machine, installing available solutions and 

implementing TCP sockets, using external keys to secure MPTCP and testing are the main 

stages. More information about these stages will be discussed in Chapter 3.  

!6



Chapter 4 contains details about the proposed solution. The solution is divided into three 

sections. Obtaining information from the user level to kernel level, transmitting additional 

information from the client node to the server node and finally, the backward compatibility of 

the solution are the main sections. Chapter 4 will explain the mechanisms used to perform the 

above-mentioned requirements.  

Chapter 5 contains test results and evaluation. Testing was conducted in four main categories. 

First, the behavior of MPTCP was tested. Then the developed solution was tested. Third 

categories were to test the robustness of the proposed solution. Finally, the performance of the 

proposed solution was tested. Chapter 6 contains the conclusion of the research and future 

work.     

1.6 Summary 

Multipath TCP is one of the most promising new technologies in the computer networking 

domain. Due to the development of technology and the communication requirements, it is 

necessary to explore new opportunities to increase the throughput of the connection and as 

well as the redundancy. Though the MPTCP fulfill these requirements, still there are some 

security issues within the MPTCP protocol. Therefore, researchers around the globe are keen 

on finding solutions to mitigate the security vulnerabilities of MPTCP. The main intention of 

this research is to implement a proposed solution to use external keys to secure initial key 

exchange on the Linux kernel and compare it with the original MPTCP protocol, security 

wise, and performance wise.  

!7



Chapter 2: Background and Literature Review 

TCP, the transmission control protocol was designed to create a highly reliable connection 

between nodes in a packet switching computer network. It is a connection-oriented protocol. 

TCP was implemented in the layered hierarchy of protocols, in between the application layer 

and the Internet protocol (IP) layer as shown the Figure 2.1. TCP has one interface to the 

application layer and another interface to the IP layer.These interfaces have a set of function 

calls, which are used to open and close the connections between the nodes and also to send 

and receive data [1].  

Figure 2.1 : Hierarchy of protocols 

One of the limitations in the TCP is, though there are several network interfaces available in 

the device, it can only use a single interface to connect to the internet. With the Multipath 

TCP protocol, these limitations were addressed. Two of the key benefits of Multipath TCP 

mentioned in the RFC 6182 are, to increase the ability to recover the connectivity in a 

connection failure without failing the end hosts by using multiple paths and to increase the 

efficiency of the connections by using multiple paths [5].  

2.1 Multipath TCP Implementation  

Multipath TCP is an extension for the original TCP which tries to increase the redundancy of 

the connection as well as to increase the throughput. Because of using multiple paths in the 

connection, it can easily handle the situations of connection failure without affecting the end 

hosts very much. 

The multipath TCP connection is started as a normal TCP connection. Even the application 

level programs do not have any indication whether it is using Multipath TCP or not. The 

!8



application opens a normal TCP socket to begin the communication and the Multipath 

functionality is handled by the implementation itself. First, it will create a normal TCP 

connection between the hosts and if there are additional interfaces available, the MPTCP 

protocol will make use of those interfaces to connect the internet as well.  

Consider a device A which has two network interfaces as eth0 and eth1 which is trying to 

connect to a remote server B which as an interface called eth0. All these interfaces should be 

separately addressable (multi-homed interfaces). First, eth0 of A make a connection with the 

eth0 of B as shown in Figure 2.2. After successfully establishing the first connections, device 

A will try to make another connection with B using the eth1 interface as well, which is called 

as a subflow. This is the most abstract process of the Multipath TCP.  

 

Figure 2.2 : Connection establishment

2.1.1 Initiating Multipath TCP connection 

As mentioned in the introduction chapter, there is a number of MPTCP options. These options 

were inserted into the optional section of the TCP header to perform the MPTCP operations 

within the TCP connection. Because of maintaining the structure of the original TCP header, 

MPTCP is totally backward compatible with normal TCP.  

!9

A B

eth0 eth0 eth1 
SYN 

SYN/ACK

ACK

SYN

SYN/ACK

ACK

Initial  
connection

Additional subflow  
using second interface



In initiating the MPTCP connection, it has to use the MP_CAPABLE option with the normal 

TCP SYN, SYN/ACK, ACK packets. When the SYN packet is sent from one host to another, 

it declares that the sender is compatible with MPTCP. If the receiver was also compatible with 

MPTCP, it will send the MP_CAPABLE option with the SYN/ACK packet. Finally, the 

sender will confirm the MPTCP connection by sending MP_CAPABLE with the ACK packet. 

Other than checking the compatibility, MP_CAPABLE will perform another important task. 

After initiating the MPTCP connection, it has to create additional subflows which related to 

the initial connection. To do that there has to be a method to authenticate subflows. For that 

MP_CAPABLE will share key values between the hosts and some flag values. This is a 64bit 

key value generated by MPTCP for each and every host. In the initial phase, these keys were 

shared in plain text format. Assume that there are two hosts as A and B. As in the previous 

example A has two interfaces as eth0 and eth1. As shown in Figure 2.3, A will send the SYN 

packet to B’s eth0 interface with MP_CAPABLE options. This packet contains the key for 

host A. If the host B is compatible with MPTCP, it will reply with the SYN/ACK packet 

including the MP_CAPABLE options with the key for host B. Then the host A will confirm 

that the host B is compatible with MPTCP and send the ACK packet with both the A’ key and 

B’key. Then the connection is established and MPTCP can create other subflows to the 

connection created.  

Figure 2.3 : MP_CAPABLE option 

!10

A B

eth0 eth0 eth1 

SYN+MP_CAPABLE[A’s key, flags]

SYN/ACK+MP_CAPABLE[B’s key, flags]

ACK+MP_CAPABLE[A’s key, B’s key, flags]



2.1.2 Joining new subflow to the existing connection 

As mentioned in the previous section, the main purpose of MP_CAPABLE is to check the 

MPTCP compatibility and share the key values between the host. MP_JOIN option is used to 

connect a new subflow to an existing connection. For that, the shared key values are needed. 

To create a new subflow, the normal TCP three-way handshake method is used. But instead of 

using the MP_CAPABLE options, the MP_JOIN option is used.  

MP_JOIN option has several formats. In the SYN packet, the MP_JOIN option will send a 

token, address ID and random number to the receiver. The token is the hash value of the key 

which is shared using the MP_CAPABLE option. Due to the lack of space in the TCP header, 

the token is truncated into 32bits. Let's assume that the host A in the previous example needs 

to create a new subflow between B. Then A has to create the hash value of B’s key and send it 

to the B with the MP_JOIN option. By evaluating the hash value, B will authenticate that the 

request comes by the host A. other than the token, MP_JOIN sends a random value, which 

can be used to prevent replay attacks and the address ID is to identify the connection. Because 

in some cases the IP addresses might be replaced by middleboxes. In that case, it can identify 

the connection by the address ID.  

If the token value received by B is correct, then it will send the SYN/ACK packet to A with 

the MP_JOIN option. In this case, MP_JOIN contains the HMAC of the B’s key and random 

value sent by B. if the token is incorrect, then the connection will reset. After receiving the 

SYN/ACK by A, again A will respond with the ACK packet including the MP_JOIN option 

with the HMAC value of A’s key. Due to the lack of space, the HMAC values were truncated 

and send only the first 64bit values. Finally, B will send ACK packet to establish the 

connection. Then A can communicate with B by using both the interface. Figure 2.4 shows the 

process of MP_JOIN.

!11



 

Figure 2.4 : MP_JOIN option 

ADD_ADDR option 

ADD_ADDR option can be used to advertise the additional interfaces available by a device. 

This can be done by a server and the clients who are compatible with MPTCP can send 

SYN+MP_JOIN packets and create subflows with the particular device. ADD_ADDR option 

can be used in any MPTCP packet if it has enough space and ADD_ADDR also contains the 

address ID of the interface also [4].  

REMOVE_ADDR option 

In case if any of the announced addresses need to be removed, REMOVE_ADDR can be 

used. It will announce the address ID of the particular interface and after that, all the 

connections with that address will be terminated. 

!12

A B

eth0 eth0 eth1 

SYN+MP_CAPABLE[A’s key, flags]

SYN/ACK+MP_CAPABLE[B’s key, flags]

ACK+MP_CAPABLE[A’s key, B’s key, flags]

SYN+MP_JOIN[Token-B, Random of A]

SYN/ACK+MP_JOIN[HMAC-B, Random of B]

ACK+MP_JOIN[HMAC-A]

ACK



2.2 Security Analysis and Threats 

As mentioned in the Introduction chapter, there are a number of security threats related to 

MPTCP. These attacks can be categorize into three main groups. Off the path attacker, partial 

time on path attacker and on path attacker are them. The off-path attacker is an attacker who 

is not in the middle of the path of the MPTCP connection. Therefore he cannot eavesdrop the 

packets exchanged in the connection. The second attacker is the partial time on path attacker, 

which has access to the MPTCP connection, but not for the entire period of the connection. 

The final attacker is the on-path attacker, who is on the MPTCP connection, which means he 

has access to one of the subflows of the connection [6]. 

There are two other categories of attackers as eavesdropper and active attackers. 

Eavesdroppers collect data from the connection while the active attackers try to change the 

data on the connection [6]. 

2.2.1 ADD_ADDER attack 

This is a man in the middle attack. The attacker uses the ADD_ADDR option of MPTCP to 

perform this attack [2]. Assume that A and B are two hosts connected via an MPTCP 

connection, which means they have already shared the security details to create a new 

subflow. As shown in Figure 2.5, attacker C was trying to create a man in the middle attack. 

First of all, C has created an ACK packet with the ADD_ADDR option by including B’s 

address as the source address and A’s address as the destination address. Which implies that 

the packet was created at B and forwarded to A. In the ADD_ADDR option there is a space to 

include the address which is going to advertise. C has used this space to advertise C’s address. 

When A received this ACK packet with ADD_ADDR options, it assumed that this came from 

real host B and send an SYN+MP_JOIN packet to initiate a new subflow between A and B by 

using C’s address as the destination address. As explained in previous sections, this 

SYN+MP_JOIN packet contains the hash value of the B which was previously shared in the 

initial key exchange. When C has received this SYN+ACK packet, it will get the security 

details which need to create a connection between C and B. C has used these data to create a 

new SYN+MP_JOIN packet and send it to B, by using C’s address as the source address, B’s 

address as the destination address and including the hash value of B which collected from the 
!13



SYN+MP_JOIN packet of A. When B received this SYN+MP_JOIN packet, it assumed that 

this has originated from the real host A and reply to it with SYN/ACK+MP_JOIN with 

HMAC of A’s key and random value of B. C forwarded this details to A and A assumed these 

details come from B.  A replied to this by ACK+MP_JOIN with A’s HMAC. Then C 

forwarded the ACK+MP_JOIN to B and B confirmed the connection between A and B via C 

as the middleman. ADD_ADDR attack has been categorized as a major threat in MPTCP [4].  

Figure 2.5 : ADD_ADDR attack 

2.2.2 DoS attack on MP_JOIN 

As explained earlier, the MP_JOIN option is used in MPTCP to create new subflow between 

two hosts. Which means both the hosts had already shared their security details between them. 

An attacker can use the MP_JOIN option to exploit attack on MPTCP connection. By sending 

SYN+MP_JOIN packets to a host with a valid token, the host will open a connection. There is 

a maximum number of half-open connections can be maintained by a host according to the 

implementation. When that number is exceeded, the host becomes exhausted. An attacker can 

send a number of SYN+MP_JOIN packets by changing the source address by using the token. 

To perform this attack, the attacker should have the 32bit token which was shared in the initial 

key exchange. Which means that the attacker should eavesdrop the connection when it is 

initiating [6].

!14

C

eth0 eth1 

B

eth0 
eth0 

3. C send SYN+MP_JOIN sent by A to 
B by including B’s address as 
destination address and C’s address as 
source address. 
4. B reply this packet with SYN/
ACK+MP_JOIN with HMAC of B’s 
key. 
7. C send the ACK+MP_JOIN which 
send by A to B. B reply to it with ACK 
packet and confirms the connection.

Initial connection between A and B

eth1 

1. C send ACK with ADD_ADDR to 
A with B’s address as the source 
address and A’s address as the 
destination while advertising C’s 
address. 
2. A reply with SYN+MP_JOIN with 
the hash of B’s key 
5. C send the ACK+MP_JOIN to A 
by changing the source address to 
C’s address and destination address 
to A’s address. 
6. A reply to this packet with 
ACK+MP_JOIN with A’s HMAC. 

A



2.2.3 SYN flooding amplification 

This is a denial of service attack [16]. Attackers send a number of SYN packets to a port and 

this made half-open connections. Due to this, there will be not enough resources to create a 

legitimate connection. In MPTCP, an attacker can send regular SYN packet to open an 

MPTCP session and perform this attack by sending a number of SYN+MP_JOIN packets 

with different source addresses. With this process, the server can be exhausted with less cost 

to the attacker [7]. 

2.2.4 Eavesdropper in initial key exchange 

One of the main security issues in MPTCP is exchanging the keys in plain text format. In this 

attack, the attacker has collected the keys by listening to the initial key exchange and after 

that, the attacker can create new subflows using the keys [6]. By using these keys the attacker 

can totally hijack the connection and even remove the legitimate hosts from the connection.

2.2.5 SYN/JOIN attack 

To perform this attack, the attacker should be in the connection path. The source address of 

the SYN+MP_JOIN packet was altered by the attacker [6]. This can be used to create man in 

the middle attacks also.

!15



2.3 Proposed Solutions 

As mentioned in the above sections, a number of security problems were identified [6] in the 

MPTCP protocol and high-level solutions were also proposed in RFC 7430 [7].  Using hash 

chains [10], using SSL [9] and tcpcrypt [17] are some of the proposed solutions. Some of the 

related solutions are given below.  

2.3.1 Asymmetric key exchange 

MPTCP shares a set of keys in the initial handshake to authenticate subflows lately. But the 

main security issue in this process is the above-mentioned keys are in plain text format. Using 

asymmetric key exchange is one proposed solution for this security issue[11]. Due to the 

space limitation in the TCP packet, it was difficult to implement asymmetric keys exchange. 

To overcome this problem Kim and others [11] have proposed to use Elliptic curve Diffie-

Helman key exchange [12]. Because of using the Elliptic curve, the space requirement was 

less, therefore the TCP payload was needed to send the key information. But for the key 

negotiation part, it was needed four-way handshake rather than the normal TCP three-way 

handshake.   

In the Elliptic key exchange, two values were used to generate the shared key. Consider there 

are two hosts A and B. A has its own two values of x and y. With the initial 

SYN+MP_CAPABLE packet, A has sent its x value to B. Then, B replied with 

ACK+MP_CAPABLE and its x values. Then again B sent its y value using 

SYN+MP_CAPABLE. Finally, A has replied with ACK+MP_CAPABLE and its y value. 

Then the initial key exchange ended and both the nodes calculated their shared value using 

the Diffie-Helman algorithm.  

In the MP_JOIN process, A has to send a token to B to authenticate the connection. In this 

proposed solution, A has sent the token in plain text and HMAC of the token created using the 

shared key. Thought the token is on plain text, the attacker cannot authenticate it because of 

the HMAC value created using the shared key.  

!16



2.3.2 MPTCPsec

MPTCP secure (MPTCPsec) was proposed to satisfy two main objectives, which are detecting 

and recovering from packet injection attacks and to protect application level data [8]. To reach 

these objectives, they have divided the protocol into three phases. Encryption suite 

negotiation, secure handshake and securing data and control are the three phases. Key 

negotiation is one of the main activity in the original MPTCP. But in MPTCPsec, they have 

identified that sending keys in MP_CAPABLE was the main issue. Therefore they have 

removed the keys from MP_CAPABLE options and modified it by introducing their own 

option called MPTCPesn[8], which used to negotiate the encryption options between the 

nodes. 

For the secure handshake in MPTCPsec, they have influenced their solution by several 

technologies such as tcpcrypt[17], TLS[19] and TCP-ENO[18]. They have used the chosen 

secure protocol and the MPTCPesn to derive the keys and session IDs. Protecting the data is 

another feature of MPTCPsec. They have used AHEAD algorithms [13] for securing the data. 

In MPTCP number of TCP options were used. To protect the integrity of this TCP options, 

MPTCPsec calculated an authentication tag and append that to the TCP payload. Therefore it 

can be validated whether the middleboxes have altered the content of the TCP options.  

2.3.3 ADD_ADDR2 

The ADD_ADDR option is used in MPTCP to advertise the available interfaces of a host. By 

using this option, attackers can exploit man in the middle attacks MPTCP connections. To 

reduce this vulnerability, a solution was proposed to change the format of the ADD_ADDR 

option to the ADD_ADDR2 option [4]. The proposed solution is to create a new field in 

ADD_ADDR option to include a HMAC value. Data of the HMAC is the address ID, 

advertised IP address and the port number. The key for the HMAC is the key which was 

shared in the initial key exchange. If the attacker eavesdrops the initial key exchange, still 

there is a possibility to exploit this attack.  

!17



2.3.4 Using external keys to secure MPTCP 

Exchanging keys in plain text is one of the main security issues in MPTCP. One of the 

solutions were proposed for this problem was to use external keys such as SSL or TLS keys to 

authenticate the MPTCP connection. These SSL or TLS keys are already negotiated in the 

application layer. The proposed solution [9] has suggested a mechanism to transfer the 

appl ica t ion layer keys to MPTCP layer two types of sockets . One i s 

MPTCP_ENABLE_APP_KEY, which is used to inform the MPTCP protocol that the 

application level keys are used to authenticate the connection and MPTCP_KEY is used to 

provide the application level key to the MPTCP layer. 

Another solution was suggested in MPTLS [14], to use TLS with MPTCP to overcome some 

of the security issues in MPTCP. With some modifications to both the MPTCP and TLS, it has 

created tighter coupling with MPTCP layer and TLS. It has been evaluated that the TLS is 

working properly with MPTCP without any performance issues [15].

!18



Chapter 3: Research Methodology 

The main focus of the research is to authenticate the subflows generated by the Multipath 

TCP connection. Before modifying and exploring the opportunities to achieve the main goal 

of the research, it should have a proper understanding of the behavior of the Multipath TCP 

protocol itself. Therefore the available version of MPTCP has to be installed and configured. 

Then the approaches of the other researchers has to be understood by exploring their proposed 

solutions. With the knowledge and the experience gained by exploring MPTCP and other 

solutions, the method to implement the proposed solution has to be created. Finally, the 

implemented solution has to be tested and evaluated.  

By considering the above-mentioned requirements, the flow of the research was divided into 

four stages. Figure 3.1 shows the stages of the research. 

Figure 3.1 : Stages of the Research  

!19

Stage 1 
Configure MPTCP

Stage 2 
Install existing solutions 
Explore behavior of MPTCP with 
TCP sockets

Stage 3 
Investigate applicability of external 
key to authenticate subflow

Stage 4 
Evaluation 



3.1 Stage 1 - Configure MPTCP 

Before going deep into the MPTCP, it is important to understand the behavior of the protocol 

in the real working environment. Therefore the first step of stage one is to install and 

configure MPTCP. The stable version of the MPTCP [20] can be installed in the Linux 

environment using the public apt-repository [21]. The version used for the research is version 

0.94 and Ubuntu 16.04 LTS was used as the Linux operating systems to implement MPTCP 

kernel. After installing the MPTCP kernel, the virtual machine needs to be booted with the 

MPTCP kernel to get the MPTCP functionalities.  

Likewise, two virtual machines were created and connected through the virtual network 

interface provided by the Virtual Box [22]. After that, one virtual machine can be configured 

as a server machine by installing the Apache server [23] and a simple website can be hosted. 

The second virtual machine can be configured as the client machine by including two network 

interfaces connected to the same virtual network created by the Virtual Box. The hosted 

website can be requested using the client virtual machine. Because both the virtual machines 

are configured with MPTCP, a Multipath TCP connection will be established between the two 

virtual machines. The packets transferred between two machines can be captured using 

Wireshark and the results are presented in Chapter 5.  

It was important to check whether the TLS or SSL is compatible with MPTCP [15]. TLS was 

configured on the server as the second step of the first stage and the same client-server 

experiment was conducted to capture the packets using Wireshark. The results were discussed 

in Chapter 5.  

The source file of the MPTCP implementation can be downloaded from the Git repository of 

the developers [24]. The third step of the first stage is to get familiar with the code of MPTCP 

and compiling and installing the kernel. Before compiling the code, some configurations need 

to be done with the kernel and it is not as straightforward as installing from the apt-repository. 

The same client-server experiment can be done with the compiled and installed kernel to 

observe the behavior of MPTCP. 

!20



One of the commercially available implementations of MPTCP is in the Apple iOS [3]. 

Network packets transferred on the Apple iPhone can be captured using the Apple Xcode 

application and some inbuilt command line tools. The final step of the first stage is to capture 

these packets and observe the behavior of MPTCP on iPhones. These captured packets are 

analyzed using Wireshark and the results are in Chapter 5.  

3.2 Stage 2 - Install existing solutions and Explore behavior of MPTCP with 
TCP sockets 

The first step of the second stage is to install the currently available solution on Linux 

environment and observe the behavior of them. In this research, the MPTCPsec is considered 

as the available solution and the most recent implantation can be downloaded from the 

BitBucket of the developers [25]. In this experiment, the latest version available on the 

BiTBucket was used which was committed on the 15th of January 2017. MPTCPsec kernel 

was compiled and installed on Ubuntu virtual machine and the client-server experiment 

explained in stage one was used to observe the behavior of the MPTCPsec implementation. 

The second step of the second stage is to conduct some experiments with TCP sockets in the 

MPTCP environment. Different kind of TCP sockets was implemented using C language and 

executed on both the client and server machines to observer the behavior of MPTCP with 

normal TCP sockets.  

3.3 Stage 3 - Investigate applicability of external key to authenticate 

subflow 

The main intention of this research is to explore whether the external keys can be used to 

authenticate the subflows generated by the MPTCP protocol. For that, the behavior of the 

MP_JOIN option has to be understood and the MPTCP kernel needs to be modified to 

perform the necessary operations.  

!21



The first step of the third stage is to identify the behavior of the MP_JOIN option. For that, 

the MPTCP kernel has to be explored and need to identify the functions in the Linux which 

used to authenticate the newly created subflows.  

The second step is to identify the opportunities or methods to take the user level key to the 

kernel level. If it is possible to take the user level key to the kernel level, then it can be used to 

authenticate the subflows. The third step is to explore a mechanism to authenticate the 

subflows by using the external keys which were taken from the user space and to send the 

additional information from the client side to the server side.  

3.4 Stage 4 - Evaluation 

The modified version of the MPTCP kernel needs to be installed in virtual machines and the 

client-server experiment needs to be done using TCP sockets to observe the behavior of the 

protocol. The performance of the proposed solution has to be compared with the original 

MPTCP protocol implementation to check whether there is performance degradation.  

!22



Chapter 4: Proposed Solution 

As explained in the previous sections, the keys shared in plain text format are used to generate 

the tokens which are used to authenticate the subflows. Because of sharing the keys in plain 

text format it is open to a number of security threats. The main objective of this research is to 

explore the applicability of using external keys to authenticate the subflows created by 

MPTCP which eventually reduces the opportunity for the attackers to hijack the connection. 

Before discussing the technical details of the proposed solution, it is more appropriate to 

understand the stages of the solution in a descriptive manner. As discussed in Chapter 2, when 

initiating the first connection between two hosts, MPTCP has used the MP_CAPABLE 

option. With this option, it had confirmed whether both the hosts are compatible with MPTCP 

and shared the keys which need to authenticate the next subflows. MP_JOIN options are used 

to connect the second subflow to the main connection by using the shared keys to 

authenticate. The solution proposed in this research is to use external keys to authenticate the 

second subflows generated by MPTCP. In this case, there are two assumptions made as given 

below.  

• Both the hosts has to be agreed on the external keys before initiating the second subflow.  

• The external keys have to be secure.  

As an example, TLS keys can be considered as the external keys, because both the parties 

have agreed on the keys and the keys are already secured. But within this research, it is not 

going to consider the external key agreement mechanisms. Figure 4.1 shows the abstract 

picture of the solution proposed by this research. 

The functionalists of the MPTCP are included in the Kernel of the operating system.  Kernel 

of the operating system contains most of the basic operations related to the control and the 

communication of the hardware components connected. All the other services of the operating 

system are built on top of the kernel. When making modifications to the components of 

MPTCP means that eventually making modifications to the kernel of the operating system. 

!23



Obviously, this is not an easy task to perform and it should have a considerable amount of 

technical knowledge to work with the Kernel of the operating system. 

 

Figure 4.1 : Kernel level, User level and External keys 

Even though the operating system has used the functions in the Kernel, generally the kernel 

level of the operating system is not directly accessible by the end users of the computer 

system. The normal users of the computers are interacting with the programs on the 

application level. These programs and applications eventually use the functions in the Kernel 

level via the operating system to execute the operations on the hardware level of the computer 

system. Therefore it is clear that the application level or the user space which the end user is 

interacting is external when considering from the Kernel level where the functions of MPTCP 

has implemented.  

The external key means the secret shared between two hosts which obtained from the 

application level or the user space. As shown in Figure 4.1, this key has to be transferred from 

the user space to the kernel space. After that, the keys have to be used in the kernel level to 

authenticate the subflows. Therefore in this research, transferring the key values from the 

application level to the kernel level has identified as one of the main tasks.  

When the external keys are available in the kernel level, it can be used to generate the 

authenticating material. The external key itself cannot be used as the authentication material.  

However, it is possible to achieve an extra level of security when the external key is combined 

with another component. Therefore generating the authentication material is one of the most 

important steps identified in this proposed solution.  

!24



After generating the authentication material on the client of the connection, it has to be sent to 

the server for the authentication purpose. The mechanism of sending additional information 

from one side of the connection to the other is more challenging, due to the limited space of 

the TCP header and the MPTCP options. It has to find a proper method to transfer the 

additional authentication material from client end to the server end. 

Finally, this research proposes to use the authentication material transferred from the client to 

the server to validate the connection. If the authentication material sent from the client is 

identified as valid, the server can accept the newly created subflow and join it to the available 

connection. If not the subflow has to be dropped.   

As explained in the above paragraphs, the methodology proposed in this research to 

authenticate the subflows using external keys can be categorized into four main tasks as 

mentioned below. From here onwards more technical aspects of the proposed solution are 

discussed based on the main four tasks mentioned below.  

• Send the external key from the user space to the kernel space.  

• Generate the authentication material using the external key obtained from the user space.  

• Send the authentication material to the server from the client.  

• Authenticate the subflow using the authentication material and if it is not a legitimate 

connection, then subflow has to be dropped.   

As mentioned in the previous sections, MPTCP has used different MPTCP options to initiate 

the connection between two hosts. MP_CAPABLE option is used to check whether both the 

hosts are compatible with MPTCP and also the MP_CAPABLE option is used to exchange the 

authentication keys in the plain text format. MP_JOIN option is used to initiate the second 

subflow between the two hosts while using the keys shared with the MP_CAPABLE option. 

Though the keys were shared in the MP_CAPABLE option, MP_JOIN has used these keys to 

authenticate the newly created subflows. As explained earlier, the main focus of this research 

is to authenticate the subflows by using the external keys from the user space to provide an 

extra level of security. Therefore it is better to have a clear idea about the behavior of the 

MP_JOIN, before making any changes to the MPTCP operations. 

!25



When initiating the normal TCP connection, it has used the well known TCP three ways 

handshake with SYN, SYN/ACK and ACK packets. MPTCP also has used these three packets 

to initiate the MPTCP connection, but it has included the MPTCP options in the TCP options 

space. According to the proposed solution of this research, the authentication should perform 

when initiating the second subflow. For that, the MPTCP has used the MP_JOIN option. In 

order to implement the solution proposed by this research, the operation of the MP_JOIN 

option has to be properly understood.  

Though it has described in a conceptual manner in the thesis, all these packet generations 

were defined in a number of functions in the Kernel of the operating system. Figure 4.2 shows 

the functions called in the Linux Kernel when creating the SYN packet in MPTCP connection 

[30]. SYN packet is created in the client and it has to be received by the server to initiate the 

connection.  

Figure 4.2 : Function calls in MPTCP 

As shown in Figure 4.2 there are a number of functions defined in the Linux kernel to perform 

the necessary operations to initiate the MPTCP connection. The most important Kernel 

!26

tcp_v4_rcv()

tcp_rcv_state_process()

mptcp_conn_request()

mptcp_parse_options()

tcp_conn_request()

mptcp_reqsk_init()

mptcp_parse_options()

tcp_make_synack()

tcp_synack_options()

mptcp_synack_options()

tcp_options_write()

mptcp_options_write()

IP layer

SYN sending

tcp_v4_connect()

tcp_connect()

tcp_connect_init()

tcp_syn_options()

mptcp_syn_options()

tcp_options_write()

mptcp_options_write()

IP layer

SYN sending

mptcp_connect_init()

tcp_transmit_skb()



functions have to be identified which are relevant for the generation of SYN, SYN/ACK  and 

ACK packets used in the TCP handshake. Not all the functions in Figure 4.2 are relevant for 

this research, but the identified functions are discussed later. 

The mptcp_syn_options() function defined on the mptcp_output.c file of the MPTCP kernel is 

one of the functions identified to be modified in order to implement the proposed solution. 

This function is used to set the parameters which are necessary to create MPTCP subflows 

including the token values. The mptcp_syn_options() function is executed in the client side, 

which will need to modify in order to include the authentication materials generate using 

external keys in the process of authentication. 

The mptcp_parse_request() is the next function which was identified as an important function 

to modify in this process. As shown in Figure 4.2, this function is executed on the server end 

which used to obtain the information sent from the client end. Within this 

mptcp_parse_request() all the information in the TPC SYN packet are assigned in the local 

data structure at the server end. Therefore this function can be modified to obtain the 

authentication material send for the client end and validate it to initiate the second subflow of 

MPTCP connection. 

There was two major challenges in this research, which was to send additional information 

from client side to the server included in MPTCP options and to obtain the key from the user 

level to the kernel level which has to be used to authenticate the MPTCP subflow. For that, 

several avenues were identified and explored to recognize the best solution which can be 

implemented with the minimum modification to the kernel. Figure 4.3 shows the different 

approaches followed in order to send additional information in MPTCP options and Figure 

4.4 show the methods explored to find a better way to transfer the key value from the user 

space to the kernel space. 

!27



 

  
Figure 4.3 : Sending Additional Information 

 

Figure 4.4 : Transfer userspace information to kernel space  

!28

Send Additional Information 
in MPTCP options

Changing MPTCP options Use existing field to send 
information from client to server

Transfer userspace 
information to kernel space

Using the proc 
file system

Using sin_zero of 
TCP socket Netlink Sockets



4.1 Additional information from client to server 

As shown in Figure 4.3, two approaches were explored to identify the better way to send 

additional information from client to server with minimum modifications to the kernel. 

4.1.1 Changing MPTCP options 

As explained before, the interested packet in this research is the SYN packet of the second 

subflow. Figure 4.5 shows the MP_JOIN option for the SYN packet. It has several fields such 

as kind, length, subtypes, several flags, address id, receivers token and senders random 

number. The first approach is to add a new field in the MP_JOIN option of the SYN packet to 

send data from the client to the server. The mp_join struct was defined at the mptcp.h header 

and when inserting a new field with 32-bit size, it clashes with some other MPTCP option 

packet size definitions. Therefore when inserting a new field in the header options, most of 

the parts of the MPTCP kernel needs to be modified. Though the main idea of the research is 

to prove the concept of using external keys in the authentication process, an alternative 

solution was explored with fewer modifications to the Linux kernel. 

Figure 4.5 : MP_JOIN options of SYN packet 

4.1.2 Use existing fields to send information from client to server 

As explained in previous sections, the proposed solution of this research is to send the 

authentication material from client side to the server side by combining with the key obtained 

from the user space. In the considered implementation of the MPTCP, it will send the token of 

the receiver with the MP_JOIN SYN packet. Theoretically, this token should know by the 

server, because it is the key of itself. So the client sends this token to the server to authenticate 

itself.  

Kind Lenght Subtype Address ID

Receiver’s Token (32bit)

Senders Random Number (32bit)

!29



Therefore in the proposed solution, this token value is XORed with the key obtained from the 

user space and use the space defined for the token in the MP_JOIN option to send the XORed 

token to the server from the client to authenticate the second subflow. For the proof of 

concept, it has only computed the XOR value rather than calculating complex HMAC values. 

With this approach, no additional space was needed in the MP_JOIN option. Therefore within 

the limited space in the TCP options, this solution was implemented successfully.  

4.2 Transfer user space information to kernel space 

The biggest and the most time consumed challenge in the research was to identify the proper 

method to obtain data from user space to the kernel space which can be used to authenticate 

the subflows in MPTCP. Several avenues were identified as shown in Figure 4.4 and explored 

to pick out the best possible solution with fewer modifications to the kernel.  

4.2.1 Using the proc file system 

Proc is a pseudo file system in the Linux operating systems which can be accessed from /proc 

[27]. This is an interface to the kernel data structure and most of the files in the proc directory 

are read-only. Some of them are writable and can be used to modify kernel variable. With this 

approach, a new proc directory has to be created in the /proc directory and the key value has 

to be written in the newly created proc directory. This can be done from the user space. After 

that, this value has to be accessed by the kernel file. The problems encountered were that this 

proc directory generation and value assigning has to be done before the invoking of TCP 

sockets. Other than that the value in the proc file has to be read by the kernel. For that, a 

separate kernel function has to be created. By using that function the key value on the proc 

file has to be written to a kernel variable. Which means when the kernel initiating a TCP 

connection, it has to read proc files and assign the values to the variables. 

4.2.2 Netlink Sockets 

Netlink [28] is a Linux kernel interface which can be used to communicate between kernel 

space and the user space, and also between different user processes also. With this method, 

!30



two programs need to be executed. One program should be in the user space and the other 

program should be in the kernel space. This will create a connection between user space and 

the kernel space, and transfer data from user space to the kernel space.  

4.4.3 Using sin_zero of TCP socket  

The sockaddr_in is a data structure in the TCP sockets. This data structure contains the 

necessary information to create a TCP connection between two hosts. Protocol, port number 

and address are some of the information contains in the sockaddr_in data structure. Other than 

that there is another char array called sin_zero which is used as padding [29]. This space is not 

used by the sockets when creating the connections. Therefore, theoretically, this space can be 

used to transfer data from user space to the kernel space, if it is not dropped when the 

information is transferred from user space to kernel space. This was further explored to 

identify the behavior of the sin_zero variable and tracked the functions which transfer the data 

from user space to kernel space. 

Compared to other solutions, using the sin_zero easier to send data from the user space. Char 

value can be easily copied to the sin_zero character array when creating the TCP socket. 

Therefore no need to customize the socket APIs. But the challenge was to retrieve the data 

from the kernel space. Theoretically, the sin_zero data should be received by the kernel space, 

if it was not dropped by the system calls.  

Two methods were tried to obtain the data from sin_zero character array from the kernel 

space. One method was to explore the system call functions of socket.c to retrieve the data 

from the sockaddr_in data structure. The other method was to use the inet functions of 

af_inet.c to retrieve the data. Implementation was straight forward when using the inet 

functions of af_inet.c rather than editing the system call functions of socket.c. Therefore the 

inet_bind() function and the __inet_stream_connect() functions were modified to retrieve the 

data from sin_zero. More information about the implementation and the functions mentioned 

are given in Appendix A. 

!31



4.3 Backward compatibility 

The backward compatibility is one of the important features in MPTCP. Which means if the 

host machines were not compatible with MPTCP, it will automatically change into the 

original TCP connection. Therefore the proposed solution in this research also has to be 

backward compatible. Which means if any of the machines was not configured with the 

proposed solution, it should use the normal MPTCP authentication mechanism.  

To achieve this requirement, slight modifications for the code has to be done. It has to check 

whether the sin_zero value is set from the user level or not. If the value is set, it has to use the 

proposed solution and if not it has to use the original MPTCP authentication mechanism.  

All the code segments and functions discussed in this section are further described in 

Appendix A. 

4.4 Summary 

MPTCP has used a set of keys to authenticate the subflows. The main security issue was that 

these keys were in plain text format. As described in this chapter the proposed solution is to 

use an external key to authenticate the subflows. 

In order to achieve this goal, there were several challenges to face, such as obtaining 

information from the user level and transfer them to the kernel level, creating the 

authentication material, sending the authentication material from client to the server and 

finally authenticate the connection.  

The user space key was transferred to the kernel space by using the sin_zero character array 

of the sockaddr_in data structure of TCP socket and the data was obtained by the kernel space 

using the inet functions of at_inet.c with minimum modifications to the existing kernel 

implementations. The authentication material was generated by XORing the token value and 

the external keys. This authentication material was sent to the server using the available token 

!32



space in the SYN+MP_JOIN packet and the authentication material was validated at the 

server. Figure 4.6 shows the proposed solution. 

 

Figure 4.6 : Proposed solution 

!33

A B

eth0 eth0 eth1 

SYN+MP_CAPABLE[A’s key, flags]

SYN/ACK+MP_CAPABLE[B’s key, flags]

ACK+MP_CAPABLE[A’s key, B’s key, flags]

SYN+MP_JOIN[Token-B, Random of A]  
XOR(B’s Token, External key)

SYN/ACK+MP_JOIN[HMAC-B, Random of B]

ACK+MP_JOIN[HMAC-A]

ACK

If the  
XOR(B’s Token, External key)  
is valid, connection continues. If 
the value is invalid, the second 

connection will close.

Instead of B’ token in the original 
MPTCP SYN+MP_JOIN, 

XOR(B’s Token, External key) 
will send to the server in the 

proposed solutions



Chapter 5: Evaluation and Results 

As mentioned in the research methodology, the initial stage of this research is to understand 

the behavior of MPTCP. For that, the MPTCP kernel was installed on Ubuntu 16.04 LTS and 

several experiments were done. Rather than using real client-server environment for the 

testing of the implemented solution, it was decided to use virtual environment which can be 

easily maintained and configured for different scenarios. 

5.1 MPTCP Behavior Testing 

As described in Chapter 3, before implementing the proposed solution in Linux Kernel the 

behavior of the original MPTCP has to be understood properly. Therefore some experiments 

were conducted on a controlled environment created by virtual machines as mentioned before.  

5.1.1 MPTCP with Apache server 

Apache server was installed and a simple web page was hosted on one virtual machine. 

Another virtual machine was configured as a client machine with two network interfaces. 

Both the machines were connected to the internal network of the Virtual Box [33]. Then the 

web page was requested by the client’s web browser and the packets were captured using 

Wireshark. As shown in Figure 5.1, the connection was established using MPTCP. The 

packets captured were analyzed by the Wireshark [26]. Figure 5.2 shows the SYN packet 

from the client with the keys send by the client. SYN/ACK packet is shown in Figure 5.3 with 

the keys send by the server.  

Figure 5.1 : MPTCP handshake 

!34



5.1.2 MPTCP with TLS 

As mentioned in the previous sections, the proposed solution has to use an external key to 

authenticate the subflows. TLS was taken as an example for the key negotiation method. 

Therefore the compatibility of TLS with MPTCP was also tested. After installing TLS on the 

server, the same client-server test was conducted and the MPTCP was worked without any 

error. Figure 5.4 shows the initial handshake of MPTCP and TLS.    

5.1.3 MPTCP with iOS 

The major commercial implementation of MPTCP was in the Apple iOS. Network packets 

transferred in Apple iPhone was captured using Xcode app and command line tools provided 

by Apple. These packets were analyzed using Wireshark and the iOS has used MPTCP 

protocol as shown in Figure 5.5. More details about the usage of MPTCP on iOS is discussed 

in Appendix B. 

Figure 5.2 : SYN packet of MPTCP 

Figure 5.3 : SYN/ACK packet of MPTCP 

!35



5.1.4 MPTCP with TCP sockets 

If the devices are configured with MPTCP, when opening a TCP socket it should initiate a 

MPTCP connection. Since there are no separate MPTCP sockets, most of the experiments in 

this research were conducted using TCP sockets. Therefore it is better to test the behavior of 

MPTCP with TCP sockets. TCP client and server sockets were implemented using the C 

programming language and executed on two virtual machines connected via the virtual 

network of Virtual box. Network packets were captured in the server machine and were 

analyzed using Wireshark. The results show in Figure 5.6 proves that it has used MPTCP 

protocol to communicate and it has created two subflows using the two interfaces of the client 

machine.  

Figure 5.4 : TLS handshake 

Figure 5.5 : MPTCP with iOS 

Figure 5.6 : MPTCP in TCP socket  

!36



5.2 Testing the developed solutions 

As discussed in Chapter 3, after having a better idea about the MPTCP and the behavior of 

subflow, the next step is to develop the proposed solutions. All the details related to the 

implementation of the proposed solutions are mentioned in Chapter 4.  

Testing the developed solution can be broken down into three sections as shown in Figure 5.7. 

The user level key is assigned to the sin_zero variable as mentioned in the previous sections. 

In the first test case, it has to check whether the connection was established when both the 

ends use the same external key. In the second test case, it has to use different keys on both 

ends and check whether the connection has established or not. Finally, it has to check whether 

the solution is backward compatible with not assigning any value to sin_zero. In that case, it 

should use the original MPTCP authentication mechanism and establish the connections. 

Figure 5.7 : Testing the Proposed solution 

Simple TCP socket program was used to test the implementation of the proposed solution. 

These programs were written in C programing language. The socket application of the server 

has sent a string of data to the socket application at the client. The client application has 

displayed the information sent by the server on the terminal. While this simple socket 

programming executing on the client-server environment, the network packets were captured 

on both ends by using Wireshark application. These network packets were analyzed to test the 

proposed solution by the research.  

!37

Testing the proposed 
solution

Using the same key on both 
client and sever

Backward 
compatibilityUsing the different 

keys on client and 
server 



5.2.1 Using the same key on both client and server 

According to the proposed solution by this research, when using the same key on both the 

server and the client, the MPTCP connection should start properly. It has to authenticate the 

second subflow using the authentication material generated by the key obtained from the user 

space. Therefore it should start the second subflow by using the available network interface of 

the client machine. The connection was established using TCP sockets from both the server 

and client machines and the packets were captured using the Wireshark applications. Figure 

5.8 shows the packets send from interface eth0 of the client and Figure 5.9 shows the packets 

send from interface eth1 of the client. By analyzing the packets, it can come to a conclusion 

that both the interfaces has successfully completed the three-way handshake and established 

the MPTCP connection on both the interfaces successfully. 

Figure 5.8 : Packets captured from eth0 interface with same key 

5.2.2 Using the different keys on client and server 

According to the proposed solution, the external key is only known by the client and the 

server. If the client needs to create another subflow, it should provide a valid authentication 

material. According to the assumptions made in this research, the external keys are secure and 

known only by the client and the server. If an attacker tries to create a subflow with an 

!38



exciting connection, the attacker has to provide an authentication material which is generated 

using a different external key and it is not the valid one. Theoretically, when using two 

different keys on the server and the client, the server should not start the second subflow. 

When the key used by the client is different from the key used by the server, the server 

authentication process fails. Therefore the protocol should refrain from authenticating the 

second subflow. According to the proposed solution of this research, this is the expected 

behavior for this kind of a scenario. If the client fails to provide the correct authentication 

material, the server should refuse the connection and assume that the connection is initiated 

by a malicious party.  

Figure 5.9 : Packets captured from eth1 interface with same key 

To test this scenario, two different keys were used in server and client when starting the 

sockets, and the data sent was captured using the Wireshark application. Figure 5.10 shows 

the captured and filtered packets send from the client’s eth0 interface and Figure 5.11 shows 

the packets sent from the eth1 interface of the client.  

According to the captured packets, it is clear that the first connection was successfully 

established with the server because the three ways handshake was successfully completed. 

But when observing Figure 5.11, it is clear that the three ways handshake has stopped at the 

!39



SYN_ACK stage. Because the protocol fails to complete the authentication and due to that 

reason it has dropped the connection.  

Therefore the main intention of the research was successfully achieved. Which means without 

having the correct user level information, the second subflow cannot be initiated. 

 

Figure 5.10 : Packets captured from eth0 interface with different key 
 

Figure 5.11 : Packets captured from eth1 interface with different key  

!40



5.2.3 Backward compatibility  

If any of the nodes are not configured with the proposed solution to use user space 

information to authenticate the MPTCP subflow, it should automatically use the original 

MPTCP. To test whether it worked, the sockets have to be set without assigning any value to 

sin_zero variable.  

In order to check the backward compatibility of the proposed solution, the connection was 

established by using the client and the server applications without providing any external key. 

Figure 5.12 shows the packets captured on both the eth0 and eth1 interfaces of the client and 

it has successfully established the MPTCP connection. Which shows that it has used normal 

MPTCP instead of the proposed solution. Therefore the solution is backward compatible if 

both the client and server does not use the proposed solution.  

But according to the current implementation, if one of the server or client has used the 

proposed solution and other does not, the backward compatibility won’t work properly. To 

verify that scenario, an external key was used at the client and no key was used at the server. 

Figure 5.13 shows the packets captured while creating a connection between the hosts. So it is 

clear that the MPTCP connection was not successfully created. Theoretically, it should create 

a MPTCP connection properly. But the second subflow has not joined to the connection. The 

solution needs to be improved to handle this kind of situation and this is further discusses in 

the future work section.  

Figure 5.12 : Packets captured from eth0 and eth1 interfaces with no key  
!41



Figure 5.13 : Packets captured from eth0 and eth1 interfaces with only the client key 

!42



5.3 Robustness of the proposed solution 

As mentioned in the problem statement, one of the main reasons for the security threats in 

MPTCP is the exchange of keys in plain text format at the initial handshake. There is a 

number of methods proposed to secure the key exchange using different technologies. But the 

main focus of this research is to secure the creation of new subflows by authenticating the 

subflows using the key from user space or application level. The proposed solution in this 

research is to transfer user space key to the kernel space and use the key to create 

authentication material. Later this authentication material is sent to the server to authenticate 

the subflows.  As described in the previous sections, the implantation was perfectly working 

as designed in Chapter 3. Though it has proved that the solution is working on 

implementation vise, it has to be robust and should provide the solution for the threat that was 

discussed this research. 

Figure 5.14 : Threat model  

To clearly represent the security problem, a threat model can be used. Figure 5.14 is the 

abstract threat model represented using data flow diagram of the security threat that has 

discussed in Chapter 2 about exchanging the keys in plain text format.  

The client requests a second subflow to connect to the server using the MP_JOIN + SYN 

packet. By using the authentication process of the original MPTCP protocol, the server 

!43



decides whether the request has come by the legitimate client. But as discussed in Chapter 2, 

the attacker can request to join to the connection using the MP_JOIN + SYN packet, by using 

the eavesdropped keys in the initial key exchange. Theoretically, the attacker can get access to 

the connection if the keys are correct.  

But with the proposed solution in this research, the attacker should have another set of keys to 

authenticate the connection. Figure 5.15 shows the threat model drawn using data flow 

diagrams for the proposed solution. Both the client and the server should have the user space 

keys for the authentication. When the request is sent by the client to the server, the server has 

to use the MPTCP authentication process to authenticate the connections. But with the 

proposed solution, it has included another layer of an authentication mechanism. The 

authentication material created by XORing the token and external key has sent to the server 

by the client. The server compares the mentioned authentication material to evaluate the client 

request. If the authentication process of the proposed solution validates the client 

authentication material, then the MPTCP protocol allows the new subflow to initiate. 

Figure 5.15 : Threat model of proposed solution 
  

As the proof concept, by assuming that the key obtained from the user space is secure, it can 

be considered that the proposed mechanism provides a robust solution to authenticate the 

subflow generated by Multipath TCP.  

!44



5.4 Performance testing with the proposed kernel modifications 

In the implementation of the proposed solution, the Linux kernel was modified by inserting 

new code segments, variables, and functions. Due to these modifications, there should be 

some change in the performance of the kernel. In this research, the performance of the kernel 

was not considered. But it is important to check whether there is any performance 

improvement or performance degradation due to the modifications done to the kernel. 

A simple experiment was conducted to measure the performance of the modified kernel and 

compared it with some other kernels to evaluate the performance. The experiment was to send 

a file from one node to another and measure the time taken. Four files were generated using 

Linux terminal with 10MB, 20MB, 50MB, and 100MB capacities to transfer from one host to 

another. The main requirement of this experiment is to compare the performance of the 

original MPTCP with the modified MPTCP with the proposed solution by this research. 

Therefore all four files with different capacities were transferred and time was measured. 

Figure 5.16 shows the final result of the experiment. It has shown that the performance of 

both the modified MPTCP and original MPTCP are almost the same. But there is a 

considerable difference with the TCP and MPTCPsec. But both the TCP and MPTCPsec 

kernels have used only single subflow to transfer data. It can assume that the main reason for 

this can be the problems related to the optimization of the MPTCP kernel. Because the 

MPTCP kernel is still on the experiment level. 

!45



Figure 5.16 : Summarized results of performance test  

!46



Chapter 6: Conclusion and Future Work 

The Transmission Control Protocol (TCP) is a widely used network protocol to make a 

reliable connection between two hosts. It has utilized a single network interface of a host to 

initiate the connection. But with the development of technology, most of the devices have 

more than one network interface, such as Ethernet, Wifi and so on. Multipath Transmission 

Control Protocol (MPTCP) has been introduced as an extension for the original Transmission 

Control Protocol to use more than one network interface when creating a single network 

connection. 

Multipath TCP has not altered the headers of the original TCP protocol. Instead, it has used 

the TCP options space in the TCP header to send the additional information related to 

Multipath TCP. Multipath TCP contains a number of options. Such as MP_CAPABLE to 

check whether the hosts are compatible with MPTCP and MP_JOIN to join a new subflow the 

connection. In MPTCP, the network connections created between two hosts are known as 

subflows. MPTCP shares a set of keys when initiating the first subflow. These keys are used 

to authenticate the subflows that are created later. The important fact to consider is that the 

keys are in plain text format. 

Though Multipath TCP has advantages such as redundancy and increase of throughput, it has 

created a number of security threats. When studying the security threats, it has been identified 

that one of the main reasons for the security threats is the exchange of authentication keys in 

plain text format. Attackers can create a number of attacks by using these keys. 

Some of the security issues were identified and solutions were proposed for specific scenarios 

such as ADD_ADDR attack[4]. However, this does not provide the solution for the general 

issue of sharing keys in plain text format and use them to authenticate the subflows. Still, 

some solutions are on the development stage. If the authentication process of the subflows 

gets improved, the security issues of MPTCP can be minimized. Therefore some alternate 

methods to authenticate the subflows has to be explored and that is the main objective of this 

research. As a suggestion for that, this research was focused to explore the methods of using 

the information from user space to authenticate the subflows. 

!47



The research was conducted in three main stages as mentioned below.  

• Obtain the keys from user space and transfer to the kernel space as the network connection 

is established in the kernel space of the operating system. 

• Generate the authentication material using the user space key and send it from the client to 

the server.  

• Authenticate the subflow using the authentication material by the server.  

Before altering the MPTCP, the behavior of the protocol was identified by conducting several 

experiments. In order to implement the proposed solution, the important functions of the 

MPTCP kernel were identified and modified as required. After exploring several avenues, a 

method was identified to import the key from user space to the kernel space. Then the key 

was used to generate the authentication material to be sent to the server. At the server, the 

subflow was authenticated by using the authentication material sent by the client. If the 

authentication material is valid, the subflow was created. Otherwise, the subflow is dropped 

by MPTCP. As a proof of concept, this proposed solution has shown that the user space 

information can be used to authenticate the newly generated subflows in Multipath TCP.  

In Multipath TCP, backward compatibility is an important feature. If any of the hosts are not 

compatible with Multipath TCP, it will automatically change to the original TCP connection. 

Therefore this proposed solution should be backward compatible. As mentioned in Chapter 5, 

the current implementation will change to original Multipath TCP if both the hosts are not 

using external keys to authenticate the connection. This has to be improved to switch to 

original Multipath TCP if one host is configured with the proposed solution and the other is 

not configured with the proposed solution. In this regard, the optimization of the kernel was 

not considered. Therefore the performance of the network connections is not at the desired 

level.  

Other than the advantages, there are some disadvantages by using this user level information, 

which is the Transport layer depends on the Application layer when initiating the network 

connection. It violates the abstraction of the OSI layers. 

!48



6.1 Future Work 

With the proposed solution it has shown that the key from user space or the application level 

can be used to authenticate the subflows generated by MPTCP. Which means that this 

solution can be improved to a state where the application has the control to use multiple paths 

in the network connection or not. Assume if there is a huge amount of data to transfer between 

two nodes and the application can decide to use multiple paths to improve the throughput. On 

the other hand, if there is only a very small amount of information to transfer, such as to open 

a web page, there is no need to incorporate multiple paths in the connection. In such cases, the 

application can decide not to use multiple paths. Therefore this concept can be extended to a 

level which the application has the control of using MPTCP or TCP for the connection. 

!49



References  

[1] Postel, J. (1981). Transmission Control Protocol. Marina del Rey, Calif: Inst. 

[2] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath 

Operation with Multiple Addresses,” RFC Editor, RFC6824, Jan. 2013. 

[3]"Observing Siri : the three-way handshake — MPTCP", Blog.multipath-tcp.org, 2018. 

[Online]. Available: http://blog.multipath-tcp.org/blog/html/2014/02/24/observing_siri.html. 

[4] F. Demaria, “Security Evaluation of Multipath TCP,” p. 87 

[5] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural Guidelines for 

Multipath TCP Development,” RFC Editor, RFC6182, Mar. 2011. 

[6] M. Bagnulo, “Threat Analysis for TCP Extensions for Multipath Operation with Multiple 

Addresses,” RFC Editor, RFC6181, Mar. 2011. 

[7] M. Bagnulo, C. Paasch, F. Gont, O. Bonaventure, and C. Raiciu, “Analysis of Residual 

Threats and Possible Fixes for Multipath TCP (MPTCP),” RFC Editor, RFC7430, Jul. 2015. 

[8] M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure, “Securing multipath TCP: Design & 

implementation,” in IEEE INFOCOM 2017 - IEEE Conference on Computer 

Communications, Atlanta, GA, USA, 2017, pp. 1–9. 

[9] C. Paasch and O. Bonaventure, “draft-paasch-mptcp-ssl-00 - securing the multipath tcp 

handshake with external keys,” 2013. 

 [10] J. Díez, M. Bagnulo, F. Valera, and I. Vidal, “Security for multipath TCP: a constructive 

approach,” International Journal of Internet Protocol Technology, vol. 6, no. 3, p. 146, 2011. 

[11] D.-Y. Kim and H.-K. Choi, “Efficient design for secure multipath TCP against 

eavesdropper in initial handshake,” in 2016 International Conference on Information and 

Communication Technology Convergence (ICTC), Jeju, 2016, pp. 672–677. 

[12] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller, “Elliptic Curve 

Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS),” RFC Editor, 

RFC4492, May 2006. 

[13] D. McGrew, “An Interface and Algorithms for Authenticated Encryption,” RFC Editor, 

RFC5116, Jan. 2008. 

[14] O. Bonaventure, “MPTLS : Making TLS and Multipath TCP stronger together draft-

bonaventure-mptcp-tls-00,” 2015. 

!50



[15] A. Hamza, M. I. Lali, and F. Javid, “Study of MPTCP with Transport Layer Security,” 

Emerging Technologies, p. 6. 

[16] “Eddy - 2007 - TCP SYN Flooding Attacks and Common Mitigations.pdf.” . 

[17] A. Bittau, D. Giffin, M. Handley, D. Mazieres, Q. Slack and E. Smith, “Cryptographic 

protection of TCP Streams (tcpcrypt) draft-ietf-tcpinc-tcpcrypt-10,” 2018. 

[18] A. Bittau, D. Giffin, M. Handley, D. Mazieres and E. Smith, “TCP-ENO: Encryption 

Negotiation Option draft-ietf-tcpinc-tcpeno-18,” 2018. 

[19] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,”  

RFC 5246, 2018. 

[20]"MultiPath TCP - Linux Kernel implementation : Main - Home Page browse", Multipath-

tcp.org, 2018. [Online]. Available: https://www.multipath-tcp.org. 

[21] "MultiPath TCP - Linux Kernel implementation : Users - Apt Repository browse", 

Multipath-tcp.org, 2018. [Online]. Available: https://multipath-tcp.org/pmwiki.php/Users/

AptRepository. 

[22]"Downloads – Oracle VM VirtualBox", Virtualbox.org, 2018. [Online]. Available: https://

www.virtualbox.org/wiki/Downloads. 

[23]D. Group, "Welcome! - The Apache HTTP Server Project", Httpd.apache.org, 2018. 

[Online]. Available: https://httpd.apache.org/. 

[24]"MultiPath TCP - Linux Kernel implementation : Users - Do It Yourself browse", 

Multipath-tcp.org, 2018. [Online]. Available: https://multipath-tcp.org/pmwiki.php/Users/

DoItYourself.  

[25]"MPTCPsec-team / MPTCPsec — Bitbucket", Bitbucket.org, 2018. [Online]. Available: 

https://bitbucket.org/account/user/mptcpsecteam/projects/PROJ. 

[26]"Wireshark · Go Deep.", Wireshark.org, 2018. [Online]. Available: https://

www.wireshark.org. 

[27] "proc(5) - Linux manual page", Man7.org, 2019. [Online]. Available: http://man7.org/

linux/man-pages/man5/proc.5.html. [Accessed: 19- Feb- 2019]. 

[28]"netlink(7) - Linux manual page", Man7.org, 2019. [Online]. Available: http://man7.org/

linux/man-pages/man7/netlink.7.html. [Accessed: 19- Feb- 2019]. 

[29]"struct sockaddr_in, struct in_addr", Gta.ufrj.br, 2019. [Online]. Available: https://

www.gta.ufrj.br/ensino/eel878/sockets/sockaddr_inman.html. [Accessed: 19- Feb- 2019]. 

[30] M. Jadin and G. Tihon, “Secure MultiPath TCP,” p. 118. 

!51

https://multipath-tcp.org/pmwiki.php/Users/AptRepository
https://multipath-tcp.org/pmwiki.php/Users/AptRepository
https://www.wireshark.org
https://www.wireshark.org


[31]"Use Multipath TCP to create backup connections for iOS", Apple Support, 2019. 

[Online]. Available: https://support.apple.com/lv-lv/HT201373. [Accessed: 21- Jan- 2019]. 

[32]"Improving Network Reliability Using Multipath TCP | Apple Developer 

Documentation", Developer.apple.com, 2019. [Online]. Available: https:/ /

d e v e l o p e r. a p p l e . c o m / d o c u m e n t a t i o n / f o u n d a t i o n / u r l s e s s i o n c o n f i g u r a t i o n /

improving_network_reliability_using_multipath_tcp. [Accessed: 21- Jan- 2019]. 

[33]"Chapter6.Virtual Networking", Virtualbox.org, 2019. [Online]. Available: https://

www.virtualbox.org/manual/ch06.html. 

!52



Appendix A - Code Modifications 

This appendix contains the information related to the code modifications done to the Linux 

kernel. As described in Chapter 4, the number of inbuilt functions of Linux kernel have 

modified in order to implement the proposed solutions. All the modifications done to the 

kernel files are given below.  

mptcp.h 

This header file is located in the /include/net of the MPTCP Linux kernel. Two new variables 

were introduced to the kernel to store the token generated by the MPTCP kernel and to store 

the key received from the user space. Line number 5 and 6 of Listing A.1 shows the relevant 

code segment of the declaration of new variables in the kernel. A new function has to be 

defined to generate the XORed version of the token by taking the external key and token 

generated by MPTCP as the inputs. Line number 10 of the Listing A.1 shows the function 

prototype defined in the header file.  

Listing A.1 : mptcp.h header file 

af_inet.c 

af_inet.c is one of the most important files. Transferring user space key to the kernel space 

was done by modifying the functions available in the af_inet.c file. Listing A.2 shows the 

sockaddr_in data structure which used when defining TCP sockets. sin_zero is the variable 

shows in line number 10, which used to transfer external key from the user space to kernel 

space.  
!53

1.  /*
2.      varibale to store token
3.      variable to store external key
4.  */
5.  extern int token_tnb; //store token
6.  extern long external_key_tnb; //external key
7.
8.  //XOR funtion with the token and the key
9.
10. int xor_token_key_tnb(int token, int key);



Listing A.2 : sockaddr_in data structure 

There are two functions in the af_inet.c file which is important in obtaining the user space key 

to the kernel space. First one is the inet_bind() function, which is used by the server to bind 

the TCP socket. This function has access to the sockaddr_in data structure which mentioned 

in the above section. Therefore the line segment shown in Listing A.3 was added to the 

function to obtain the key from the user space on the server. 

Listing A.3 : inet_bind() 

The second most important function in af_inet.c is __inet_stream_connect() which is used by 

the client when creating the TCP socket. With this function, the sockaddr_in data structure 

can be accessed and the user space key can be passed to the kernel level. Listing A.4 shows 

the code segment which included in the __inet_stream_connect() function.  

Listing A.4 : __inet_stream_connect() 

!54

1. /* Structure describing an Internet (IP) socket address. */
2. #if  __UAPI_DEF_SOCKADDR_IN
3. #define __SOCK_SIZE__ 16    /* sizeof(struct sockaddr)  */
4. struct sockaddr_in {
5.   __kernel_sa_family_t  sin_family; /* Address family   */
6.   __be16    sin_port; /* Port number      */
7.   struct in_addr  sin_addr; /* Internet address   */
8.
9.   /* Pad to size of `struct sockaddr'. */
10.  unsigned char   __pad[__SOCK_SIZE__ - sizeof(short int) -
11.      sizeof(unsigned short int) - sizeof(struct in_addr)];
12.};
13.#define sin_zero  __pad   /* for BSD UNIX comp. -FvK  */
14.#endif

1. //server uses this function
2.  kstrtol(addr->sin_zero, 10, &external_key_tnb);

1. struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
2. kstrtol(addr->sin_zero, 10, &external_key_tnb);//at client



mptcp_ctrl.c 

The function which is used to XOR the external key with the token generated by MPTCP 

protocol is defined in the mptcp_ctrl.c file. Listing A.5 shows the code of the function.  

Listing A.5 : __inet_stream_connect() 

mptcp_output.c 

The function mptcp_syn_options() is used by the client to create the MPTCP SYN packet. 

According to the proposed solution, the client needs to generate the XORed token and send it 

to the server to authenticate the new subflow. Therefore the relevant code segment can be 

included in mptcp_syn_options() function to perform the task. Listing A.6 shows the code 

segment included to execute the intendant operation. The if statement in line number 1 of 

Listing A.6 is used to check whether the external key is set in the socket or not. If the external 

key is not assigned, then the protocol will use the original MPTCP in order to achieve 

backward compatibility of the proposed solution. 

Listing A.6 : mptcp_syn_options() 

!55

1. //XOR funtion with the token and the key
2. int xor_token_key_tnb(int token, int key){
3.     //this function XOR the token and the external key.
4.     return token^key;
5. }

1. if(external_key_tnb==0||external_key_tnb==“0"){
2.    opts->mp_join_syns.token = mpcb->mptcp_rem_token;       
3. }else{
4.     opts->mp_join_syns.token  =  xor_token_key_tnb(mpcb-

>mptcp_rem_token,external_key_tnb);
5. }



mptcp_input.c 

The mptcp_input.c file contains the function called mptcp_parse_options(), which is used by 

the server to parse the MPTCP options to a higher level. Therefore this can be used to 

compare the XORed token send from the client and authenticate the connection. Code 

segment shown in Listing A.7 is used to compare the XORed tokens and establish the 

connection. 

  

Listing A.7 : mptcp_parse_options() 

!56

1.   if(external_key_tnb==0||external_key_tnb=="0"){
2.                 mopt->mptcp_rem_token = mpjoin->u.syn.token;
3.             }else{
4.                 if  (mpjoin->u.syn.token  == 

xor_token_key_tnb(token_tnb,external_key_tnb)) {
5.                 mopt->mptcp_rem_token = token_tnb;
6.                 break;
7.                 } else {
8.                 pr_info("XORed token doesnot matched. MP_JOIN 

dropped”);
9.                 }
10.            }



Appendix B - MPTCP with iOS 

As mentioned in Chapter 3, Apple iOS has included MPTCP on the operating system [31]. To 

understand the behavior of MPTCP on iOS some experiment was conduction and the 

summarized version of the results was included in this Appendix.  

For MPTCP to use, there should be more than one network interface. Mobile phones have a 

WiFi interface and cellular interface. Therefore both WiFi connection and the cellular 

connection or the mobile data connection is considered when conducting the experiments. 

Apple iOS has a feature called WiFi-Assist [32] which uses mobile data to support WiFi 

connection. Therefore in this experiment, Wifi_assist also considered as a variable to check 

whether there is a connection between MPTCP and the Wifi-Assist. Apple has mentioned that 

they are using MPTCP for the Siri application [3]. Therefore a question was asked from Siri 

and the network packets of iPhone were captured using Command line tools of macOS. Other 

than that the official web site of MPTCP research group which is configured with MPTCP, 

was opened using Safari web browser of iPhone and network packets were captured. Table B.

1 shows the summarized results of the experiment conducted. The symbol “✓” shows the 

options which were activated and symbol “✗” shows that the options were inactivated. The 

final column of Table B.1 shows the result of each and every experiment.  

According to the results shown in Table B.1, it is clear that the MPTCP protocol is used only 

for the Siri application, but not to load the other web site. There is no direct connection 

between the Wifi Assist feature with the usage of MPTCP in Siri application. 

!57



!58

Experiment 
No

Wifi Mobile data Wifi 
Assists  

Siri Web Page Result 
(Use of MPTCP)

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓ ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ ✗

8 ✓ ✓ ✓ ✗

9 ✓ ✓ ✓ ✗

10 ✓ ✓ ✗

11 ✓ ✓ ✓ ✗

12 ✓ ✓ ✗

Table B.1 : Results of MPTCP iOS experiment


	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1: Introduction
	Figure 1.1 : Mobile phone using both WiFi and mobile data simultaneously
	1.1 Multipath TCP

	Figure 1.2 : Normal TCP layers
	Figure 1.3 : MPTCP layers
	Table 1.1: MPTCP options
	1.2 Known Exploits
	1.3 Problem Statement
	1.4 Goal and Objectives
	1.5 Structure of Dissertation
	1.6 Summary
	Chapter 2: Background and Literature Review

	Figure 2.1 : Hierarchy of protocols
	2.1 Multipath TCP Implementation

	Figure 2.2 : Connection establishment
	Figure 2.3 : MP_CAPABLE option
	Figure 2.4 : MP_JOIN option
	2.2 Security Analysis and Threats

	Figure 2.5 : ADD_ADDR attack
	2.3 Proposed Solutions
	Chapter 3: Research Methodology

	Figure 3.1 : Stages of the Research
	3.1 Stage 1 - Configure MPTCP
	3.2 Stage 2 - Install existing solutions and Explore behavior of MPTCP with TCP sockets
	3.3 Stage 3 - Investigate applicability of external key to authenticate subflow
	3.4 Stage 4 - Evaluation
	Chapter 4: Proposed Solution

	Figure 4.1 : Kernel level, User level and External keys
	Figure 4.2 : Function calls in MPTCP
	Figure 4.3 : Sending Additional Information
	Figure 4.4 : Transfer userspace information to kernel space
	4.1 Additional information from client to server

	Figure 4.5 : MP_JOIN options of SYN packet
	4.2 Transfer user space information to kernel space
	4.3 Backward compatibility
	4.4 Summary

	Figure 4.6 : Proposed solution
	Chapter 5: Evaluation and Results
	5.1 MPTCP Behavior Testing

	Figure 5.1 : MPTCP handshake
	Figure 5.2 : SYN packet of MPTCP
	Figure 5.3 : SYN/ACK packet of MPTCP
	Figure 5.4 : TLS handshake
	Figure 5.5 : MPTCP with iOS
	Figure 5.6 : MPTCP in TCP socket
	5.2 Testing the developed solutions

	Figure 5.7 : Testing the Proposed solution
	Figure 5.8 : Packets captured from eth0 interface with same key
	Figure 5.9 : Packets captured from eth1 interface with same key
	Figure 5.10 : Packets captured from eth0 interface with different key
	Figure 5.11 : Packets captured from eth1 interface with different key
	Figure 5.12 : Packets captured from eth0 and eth1 interfaces with no key
	Figure 5.13 : Packets captured from eth0 and eth1 interfaces with only the client key
	5.3 Robustness of the proposed solution

	Figure 5.14 : Threat model
	Figure 5.15 : Threat model of proposed solution
	5.4 Performance testing with the proposed kernel modifications

	Figure 5.16 : Summarized results of performance test
	Chapter 6: Conclusion and Future Work
	6.1 Future Work
	References
	Appendix A - Code Modifications
	Appendix B - MPTCP with iOS


