Alternative Approach
for
Authenticating Subflows
of
Multipath Transmission Control
Protocol
using Application Level Key

A dissertation submitted for the Degree of Master of
Science in Computer Science

T. N. B. Wijethilake
University of Colombo School of Computing
2019

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or
any other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: T. N. B. Wijthilake
Registration Number: 2016MCS115
Index Number: 16441157

Signature: Date:

This is to certify that this thesis is based on the work of
Mr. T. N. B. Wijethilake
under my supervision. The thesis has been prepared according to the format stipulated and is

of acceptable standard.

Certified by:

Supervisor Name: Dr. Kasun de Zoysa

Signature: Date:

ii

Abstract

Multipath Transmission Control Protocol (MPTCP) is an extension to Transmission Control
Protocol (TCP) proposed by the Internet Engineering Task Force (IETF). The main intention
of MPTCP was to use multiple network interfaces in a single network connection
simultaneously. MPTCP create multiple TCP connections, which are known as subflows
between two hosts. With the use of multiple connections, the throughput of the connection can
be improved. Due to the availability of redundant connections, MPTCP can recover from

network connection failures efficiently without noticing the application.

It is clear that there is a number of advantages related to MPTCP. But researchers have
identified that there are a considerable amount of security threats related to the connections
initiated by MPTCP. These connections are vulnerable to a number of attacks like DoS
attacks, flooding attacks, connection hijacking and so on. MPTCP shares a set of keys when
establishing the first connection, also known as the first subflow and use these shared keys to
authenticate the next subflows created by the hosts. These keys were in plain text format. One

of the main reason for the security vulnerabilities is the exchange of keys in plain text format.

A number of solutions were proposed to mitigate these security vulnerabilities. Using an
encryption mechanism to secure the keys and changing the header formats are some of them.
But this research is inspired by one of the proposed solutions to use external keys to
authenticate the subflows. It has proposed to use new socket APIs to obtain the keys from the
application level to authenticate the connection. But still, there is no proper implementation of
this solution. Therefore as a proof of concept, this research has explored some alternate
mechanism to use external keys to authenticate the subflows generated by the MPTCP with

minimum modifications to the currently available MPTCP version.

It has conducted a number of experiments on top of MPTCP in order to understand the
behavior of the protocol, such as configuring of web server with MPTCP and connecting
MPTCP enabled client so on. The final outcome of the research has been implemented on the
Linux kernel and several experiments were conducted to examine the robustness of the
solution, performance. Finally, the solution has evaluated whether the solution has achieved

the requirement to use the external keys to authenticate the subflows.

il

Acknowledgement

This research would not have been possible without the support and the guidance of helpful
people around me. I would like to express my gratitude towards my supervisor Dr. Kasun de
Zoysa for the guidance and the support given. It would have been impossible to conduct the
research and complete the thesis without the support of my co-supervisor Dr. Kasun

Gunawardana.

My special thanks and appreciation goes to Dr. Chamath Keppetiyagama, who helped me to

explore new avenues in my research area.

I am highly indebted to the project coordinators and the UCSC staff for the constant support

and guidance given.
My heart full of gratitude goes towards my parents, who always helped me to achieve my

goals without any hesitation. Finally, I would like to thank all of my friends and colleagues

who helped me to complete this task successfully.

v

Table of Contents

List of Figures vil
List of Tables viii
List of Acronyms 1X
Chapter 1: Introduction 1
1.1 Multipath TCP 1
1.2 Known Exploits 4
1.3 Problem Statement 5
1.4 Goal and Objectives 6
1.5 Structure of Dissertation 6
1.6 Summary 7
Chapter 2: Background and Literature Review 8
2.1 Multipath TCP Implementation 8
2.1.1 Initiating Multipath TCP connection 9
2.1.2 Joining new subflow to the existing connection 11
2.2 Security Analysis and Threats 13
2.2.1 ADD_ADDER attack 13
2.2.2 DoS attack on MP_JOIN 14
2.2.3 SYN flooding amplification 15
2.2.4 Eavesdropper in initial key exchange 15
2.2.5 SYN/JOIN attack 15
2.3 Proposed Solutions 16
2.3.1 Asymmetric key exchange 16
2.3.2 MPTCPsec 17
2.3.3 ADD_ADDR2 17
2.3.4 Using external keys to secure MPTCP 18
Chapter 3: Research Methodology 19
3.1 Stage 1 - Configure MPTCP 20
3.2 Stage 2 - Install existing solutions and Explore behavior of MPTCP with TCP sockets 21
3.3 Stage 3 - Investigate applicability of external key to authenticate subflow 21
3.4 Stage 4 - Evaluation 22
Chapter 4: Proposed Solution 23
4.1 Additional information from client to server 29
4.1.1 Changing MPTCP options 29
4.1.2 Use existing fields to send information from client to server 29
4.2 Transfer user space information to kernel space 30

4.2.1 Using the proc file system
4.2.2 Netlink Sockets
4.4.3 Using sin_zero of TCP socket

4.3 Backward compatibility
4.4 Summary
Chapter 5: Evaluation and Results

5.1 MPTCP Behavior Testing
5.1.1 MPTCP with Apache server
5.1.2 MPTCP with TLS
5.1.3 MPTCP with i0OS
5.1.4 MPTCP with TCP sockets

5.2 Testing the developed solutions
5.2.1 Using the same key on both client and server
5.2.2 Using the different keys on client and server
5.2.3 Backward compatibility

5.3 Robustness of the proposed solution

5.4 Performance testing with the proposed kernel modifications
Chapter 6: Conclusion and Future Work

6.1 Future Work

References

Appendix A - Code Modifications

Appendix B - MPTCP with i10S

30
30
31

32
32
34

34
34
35
35
36

37
38
38
41

43
45
47
49
50
53
57

vi

List of Figures

Figure 1.1 :
Figure 1.2 :
Figure 1.3 :
Figure 2.1 :
Figure 2.2 :
Figure 2.3 :
Figure 2.4 :
Figure 2.5 :
Figure 3.1 :
Figure 4.1 :
Figure 4.2 :
Figure 4.3 :
Figure 4.4 :
Figure 4.5 :
Figure 4.6 :
Figure 5.1 :
Figure 5.2 :
Figure 5.3 :
Figure 5.4 :
Figure 5.5 :
Figure 5.6 :
Figure 5.7 :
Figure 5.8 :
Figure 5.9 :
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

Mobile phone using both WiFi and mobile data simultaneously

Normal TCP layers

MPTCP layers

Hierarchy of protocols

Connection establishment

MP_CAPABLE option

MP_JOIN option

ADD_ADDR attack

Stages of the Research

Kernel level, User level and External keys
Function calls in MPTCP

Sending Additional Information

Transfer userspace information to kernel space
MP_JOIN options of SYN packet

Proposed solution

MPTCP handshake

SYN packet of MPTCP

SYN/ACK packet of MPTCP

TLS handshake

MPTCP with i0OS

MPTCP in TCP socket

Testing the Proposed solution

Packets captured from ethO interface with same key
Packets captured from ethl interface with same key
: Packets captured from ethO interface with different key
: Packets captured from ethl interface with different key

: Packets captured from ethO and eth] interfaces with no key

: Packets captured from ethO and ethl interfaces with only the client key

: Threat model
: Threat model of proposed solution

: Summarized results of performance test

O o0 NN

10
12
14
19
24
26
28
28
29
33
34
35
35
36
36
36
37
38
39
40
40
41

43

44
46

vii

List of Tables

Table 1.1: MPTCP options 3

viii

List of Acronyms

DoS Denial of Service

HMAC Hash-based Machine Authentication Code
MAC Machine Authentication Code

MPTCP Multipath Transmission Control Protocol
TCP Transmission Control Protocol

TLS Transport Layer Security

X

Chapter 1: Introduction

TCP, the Transmission Control Protocol is one of the major protocols in the transport layer
which was introduced in 1981 [1]. The main objective of the TCP was to achieve the
reliability of the communication channel between two hosts over a packet switching network.
With the advancement of the technology, most of the modern devices such as laptops, mobile
phones, and tablet PCs are having more than one network interface, such that Ethernet port,
wifi, cellular data connection like 4G/LTE and so on. However, most of the time these devices
use only one network interface at any given time and hence, researchers investigated the
plausibility of employing the second network interface for different purposes. To increase the
throughput and to provide redundant connectivity, it was proposed to use more than one
network interface at the same time. To achieve this, an extension to classical TCP was
introduced as Multipath TCP (MPTCP) in 2013 [2]. As Figure 1.1 shows, a mobile phone can
use both the wifi connection and the mobile data simultaneously to connect to the internet

over the Multipath TCP.

)

> AW
WX

Figure 1.1 : Mobile phone using both WiFi and mobile data simultaneously

1.1 Multipath TCP

Currently, Multipath TCP kernel is available for Linux operating systems, macOS, Android
and Apple 10S which can be installed separately. According to my knowledge, only Apple
10S has implemented MPTCP on its Siri voice assistant application [3]. Multipath TCP uses
the normal TCP three-way handshake method to create the connections between two hosts. It
does not change the currently available TCP protocol stack and the header format. All the data
related to MPTCP are sent by using the TCP "option" field available in the TCP header.

Following Figure 1.2 shows the normal TCP layers and Figure 1.3 shows the Multipath TCP

layers.

Application
TCP

P

Figure 1.2 : Normal TCP layers

Application
MPTCP
Subflow(TCP) Subflow(TCP)

IP IP

Figure 1.3 : MPTCP layers

To initiate the MPTCP connection between a client and the server, the client sends the normal
TCP SYN message with the MP_CAPABLE options included in the TCP header. If the server
is also configured with MPTCP, it will reply to the client using SYN ACK with
MP_CAPABLE. And finally, the connection is established with the ACK message from the

client.

When sending the MP_CAPABLE SYN message at the beginning, the client sends a key to
the server in plain text, as the key of the client. The server also sends a key with the
MP_CAPABLE SYN_ACK message in plain text as the key of the server. Finally, with the
ACK message, the client sends both the keys to the server to confirm the connection. These
shared keys are used to generate the HMAC, which will be later used to authenticate the new
sub-flows that would be initialized between the two nodes [4]. In any case, if one of the hosts
are not configured with MPTCP, it will automatically be changed into the normal TCP
connection. So MPTCP is designed to be backward compatible and independent from the

applications which are being executed on the server.

If a client needs to create a new sub-flow with the server, it will send a TCP SYN message to
the server with the MP_JOIN option using the client’s second interface. In this case, the client
sends a token to the server to authenticate itself. This token is a part of the HMAC generated
by using the keys shared in the initial key exchange. After sharing the HMACs of keys
between the client and the server, MPTCP will create a new sub-flow between them. Other
than that there is an option called ADD ADDR in MPTCP which can be used to advertise the
available interfaces of a host to other hosts. Some of the MPTCP options are mentioned in the

following Table 1.1 [1].

Creating multiple sub-flows between two hosts requires authentication of one host to another.
The proposed authentication mechanism [2] employs plain text key exchange between two
hosts over a public network, which opens to many security risks. If an attacker got access to
these keys, he or she can create a new sub-flow with the server and even can remove the

connection between with the legitimate client and the server [6].

Symbol Name
MP_CAPABLE Multipath capable
MP_JOIN Join connection
DSS Data sequence signal
ADD ADDR Add address
REMOVE_ADDR Remove address
MP_PRIO Change subflow priority
MP_FAIL Fallback
MP_FASTCLOSE Fast close

Table 1.1: MPTCP options

1.2 Known Exploits

Eavesdropper in the initial handshake is one of the major security threats in MPTCP. Since the
initial keys are exchanged in plain text format, the attacker can get access to the keys and

subsequently hijack the connection.

ADD_ADDR Attack

The ADD_ADDR option of MPTCP was used to advertise the available network interfaces to
other hosts. In an MPTCP enabled client-server environment, the connection is established by
sending MP_JOIN message by the client to the server. But in a situation where free interfaces
available at the server, the server itself can advertise those interfaces and later client can
create a connection with that interface. In the ADD ADDR attack, the attacker takes
advantage of this ADD ADDR message and creates connections with the server as a

legitimate user.

DOS Attack

When two MPTCP capable hosts A and B need to create a new sub-flow with each other, A
sends a SYN+MP JOIN message to B with the token of B generated by A using the keys
shared in the initial key exchange. Token authenticates the connections and creates the new
sub-flow between A and B. If an attacker can send SYN+MP_JOIN with a valid token to B, it

can trigger the joining process.

But there is a limitation to store these half-opened connections per MPTCP connection
depending on the implementation. Therefore by send number of MP_JOIN messages with

different source addresses can exhaust the receiver. This attack is known as DoS attack on

MP_JOIN.

Other

By sending SYN+MP_JOIN messages with different IP addresses and port numbers will
consume the server resources which creates the SYN flooding attack. Also, an attacker can

present in the path when SYN/JOIN exchange happens and can alter the source address of
SYN/JOIN packets. This is the SYN/JOIN attack [7].

There were several solutions proposed for these security vulnerabilities by the Internet

Engineering Task Force (IETF) in the RFC 7430 [7] which will be discussed later.

1.3 Problem Statement

The reason for most of the security threats in MPTCP is due to the exchange of keys in plain
text. As mentioned earlier, there are a number of solutions proposed by IETF for this problem.
Some of the solutions were developed based on the ideas proposed in the RFC7430 [7] and

some are developed by combining available security protocols which will be discussed later.

The main focus of this research is to explore a method to use the application level information
to authenticate the subflow generation of MPTCP and compare the performance with the
original MPTCP kernel to check whether there is a performance degradation with the

modifications performed.

The current implementation of MPTCP is not going to consider the application level data in
establishing the connections. Therefore it is necessary to find out whether it is important to
consider application level data when establishing the connections and how to take the
application level information to the MPTCP layer. In order to take application level
information to MPTCP, some modifications are needed for the protocol itself. Therefore the
main challenge in the research is to find a proper way to take the application or user space
data to the kernel space with the minimum modification to the Linux kernel and to the socket
APIs. Other than that there should be an authentication mechanism to authenticate the newly

created subflows using the external key obtained from the user space.

1.4 Goal and Objectives

One of the main reason for most of the security vulnerabilities of MPTCP connections is the
exchange of keys in plain text format, which will later use to authenticate the connections.
MPTCPsec [8] and using external keys for the initial handshake [9] are two proposed
solutions for this problem which is going to be considered in this research. MPTCPsec has
implemented on a Linux kernel by the developers for the research purposes which is still in
development stages. So MPTCPsec is not included in the original MPTCP kernel yet. There is
no implementation for the proposed solution to use external keys for the initial handshake.
Therefore the proposed solution will be influenced by the proposal of using external keys for
the initial handshake and the appropriateness of the security solution will be evaluated. Both
of the above-mentioned solutions have used different approaches to solve the problem.
MPTCPsec has implemented the security within the MPTCP layer and the proposal named as
“Securing the Multipath TCP handshake with external keys” [9] has proposed to use the keys

generated in the application layer.

1.5 Structure of Dissertation

The structure of the dissertation is aligned with the main objective of the research. It is
important to get a proper idea about the MPTCP before addressing the research problems
mentioned. Therefore the first part of the thesis is mainly focused on the understanding of
MPTCP in different scenarios and platforms. The latter part of the document will discuss the
design and implementation of the proposed solution. Finally, it will discuss the outcomes and

the contribution of the research.

Chapter 2 starts with a broad description of the MPTCP and the implementation of MPTCP.
Then it will discuss the available security threats of MPTCP and the proposed solutions.

Chapter 3 is about the research methodology. The research is mainly divided into four stages.
Configuration of MPTCP kernel on Linux virtual machine, installing available solutions and
implementing TCP sockets, using external keys to secure MPTCP and testing are the main

stages. More information about these stages will be discussed in Chapter 3.

Chapter 4 contains details about the proposed solution. The solution is divided into three
sections. Obtaining information from the user level to kernel level, transmitting additional
information from the client node to the server node and finally, the backward compatibility of
the solution are the main sections. Chapter 4 will explain the mechanisms used to perform the

above-mentioned requirements.

Chapter 5 contains test results and evaluation. Testing was conducted in four main categories.
First, the behavior of MPTCP was tested. Then the developed solution was tested. Third
categories were to test the robustness of the proposed solution. Finally, the performance of the
proposed solution was tested. Chapter 6 contains the conclusion of the research and future

work.

1.6 Summary

Multipath TCP is one of the most promising new technologies in the computer networking
domain. Due to the development of technology and the communication requirements, it is
necessary to explore new opportunities to increase the throughput of the connection and as
well as the redundancy. Though the MPTCP fulfill these requirements, still there are some
security issues within the MPTCP protocol. Therefore, researchers around the globe are keen
on finding solutions to mitigate the security vulnerabilities of MPTCP. The main intention of
this research is to implement a proposed solution to use external keys to secure initial key
exchange on the Linux kernel and compare it with the original MPTCP protocol, security

wise, and performance wise.

Chapter 2: Background and Literature Review

TCP, the transmission control protocol was designed to create a highly reliable connection
between nodes in a packet switching computer network. It is a connection-oriented protocol.
TCP was implemented in the layered hierarchy of protocols, in between the application layer
and the Internet protocol (IP) layer as shown the Figure 2.1. TCP has one interface to the
application layer and another interface to the IP layer.These interfaces have a set of function
calls, which are used to open and close the connections between the nodes and also to send

and receive data [1].

Application layer
Transport Layer (TCP)
Network layer (IP)

Communication layer

Figure 2.1 : Hierarchy of protocols

One of the limitations in the TCP is, though there are several network interfaces available in
the device, it can only use a single interface to connect to the internet. With the Multipath
TCP protocol, these limitations were addressed. Two of the key benefits of Multipath TCP
mentioned in the RFC 6182 are, to increase the ability to recover the connectivity in a
connection failure without failing the end hosts by using multiple paths and to increase the

efficiency of the connections by using multiple paths [5].

2.1 Multipath TCP Implementation

Multipath TCP is an extension for the original TCP which tries to increase the redundancy of
the connection as well as to increase the throughput. Because of using multiple paths in the
connection, it can easily handle the situations of connection failure without affecting the end

hosts very much.

The multipath TCP connection is started as a normal TCP connection. Even the application

level programs do not have any indication whether it is using Multipath TCP or not. The

application opens a normal TCP socket to begin the communication and the Multipath
functionality is handled by the implementation itself. First, it will create a normal TCP
connection between the hosts and if there are additional interfaces available, the MPTCP

protocol will make use of those interfaces to connect the internet as well.

Consider a device A which has two network interfaces as ethO and ethl which is trying to
connect to a remote server B which as an interface called eth0O. All these interfaces should be
separately addressable (multi-homed interfaces). First, ethO of A make a connection with the
ethO of B as shown in Figure 2.2. After successfully establishing the first connections, device
A will try to make another connection with B using the ethl interface as well, which is called

as a subflow. This is the most abstract process of the Multipath TCP.

A B
ethO ethl ethO
: : SYN
. >
Initial §< SYNIACK :
connection
ACK :
>
SYN :
>
Additional subflow SYN/ACK
using second interface <
: : ACK :
>

Figure 2.2 : Connection establishment

2.1.1 Initiating Multipath TCP connection

As mentioned in the introduction chapter, there is a number of MPTCP options. These options
were inserted into the optional section of the TCP header to perform the MPTCP operations
within the TCP connection. Because of maintaining the structure of the original TCP header,

MPTCEP is totally backward compatible with normal TCP.

In initiating the MPTCP connection, it has to use the MP_CAPABLE option with the normal
TCP SYN, SYN/ACK, ACK packets. When the SYN packet is sent from one host to another,
it declares that the sender is compatible with MPTCP. If the receiver was also compatible with
MPTCP, it will send the MP_CAPABLE option with the SYN/ACK packet. Finally, the
sender will confirm the MPTCP connection by sending MP_CAPABLE with the ACK packet.
Other than checking the compatibility, MP_CAPABLE will perform another important task.
After initiating the MPTCP connection, it has to create additional subflows which related to
the initial connection. To do that there has to be a method to authenticate subflows. For that
MP_ CAPABLE will share key values between the hosts and some flag values. This is a 64bit
key value generated by MPTCP for each and every host. In the initial phase, these keys were
shared in plain text format. Assume that there are two hosts as A and B. As in the previous
example A has two interfaces as ethO and ethl. As shown in Figure 2.3, A will send the SYN
packet to B’s ethO interface with MP_CAPABLE options. This packet contains the key for
host A. If the host B is compatible with MPTCP, it will reply with the SYN/ACK packet
including the MP_CAPABLE options with the key for host B. Then the host A will confirm
that the host B is compatible with MPTCP and send the ACK packet with both the A’ key and
B’key. Then the connection is established and MPTCP can create other subflows to the

connection created.

- -

ethO ethl ethO

SYN+MP_CAPABLE[A’s key, flags]

SYN/ACK+MP_CAPABLE[B’s key, flags]

ACK+MP_CAPABLE[A’s key, B’s key, flags]

Figure 2.3 : MP_CAPABLE option

10

2.1.2 Joining new subflow to the existing connection

As mentioned in the previous section, the main purpose of MP_CAPABLE is to check the
MPTCP compatibility and share the key values between the host. MP_JOIN option is used to
connect a new subflow to an existing connection. For that, the shared key values are needed.
To create a new subflow, the normal TCP three-way handshake method is used. But instead of

using the MP_CAPABLE options, the MP_JOIN option is used.

MP_JOIN option has several formats. In the SYN packet, the MP_JOIN option will send a
token, address ID and random number to the receiver. The token is the hash value of the key
which is shared using the MP_CAPABLE option. Due to the lack of space in the TCP header,
the token is truncated into 32bits. Let's assume that the host A in the previous example needs
to create a new subflow between B. Then A has to create the hash value of B’s key and send it
to the B with the MP_JOIN option. By evaluating the hash value, B will authenticate that the
request comes by the host A. other than the token, MP_JOIN sends a random value, which
can be used to prevent replay attacks and the address ID is to identify the connection. Because
in some cases the IP addresses might be replaced by middleboxes. In that case, it can identify

the connection by the address ID.

If the token value received by B is correct, then it will send the SYN/ACK packet to A with
the MP_JOIN option. In this case, MP_JOIN contains the HMAC of the B’s key and random
value sent by B. if the token is incorrect, then the connection will reset. After receiving the
SYN/ACK by A, again A will respond with the ACK packet including the MP_JOIN option
with the HMAC value of A’s key. Due to the lack of space, the HMAC values were truncated
and send only the first 64bit values. Finally, B will send ACK packet to establish the
connection. Then A can communicate with B by using both the interface. Figure 2.4 shows the

process of MP_JOIN.

11

[] [

ethO ethl ethO

SYN+MP_CAPABLE[A’s key, flags]

; SYN/ACK+MP_CAPABLE[B’s key, flags] :
> s
: ACK+MP_CAPABLEJ[A’s key, B’s key, flags] ;
>

SYN+MP_JOIN[Token-B, Random of A] E

>

H SYN/ACK+MP_JOIN[HMAC-B, Random of B] i

4 E

: ACK+MP_JOIN[HMAC-A] i

>

54 ACK :

Figure 2.4 : MP_JOIN option

ADD_ADDR option

ADD_ADDR option can be used to advertise the additional interfaces available by a device.
This can be done by a server and the clients who are compatible with MPTCP can send
SYN+MP_JOIN packets and create subflows with the particular device. ADD ADDR option
can be used in any MPTCP packet if it has enough space and ADD_ADDR also contains the

address ID of the interface also [4].

REMOVE_ADDR option

In case if any of the announced addresses need to be removed, REMOVE ADDR can be
used. It will announce the address ID of the particular interface and after that, all the
connections with that address will be terminated.

12

2.2 Security Analysis and Threats

As mentioned in the Introduction chapter, there are a number of security threats related to
MPTCP. These attacks can be categorize into three main groups. Off the path attacker, partial
time on path attacker and on path attacker are them. The off-path attacker is an attacker who
is not in the middle of the path of the MPTCP connection. Therefore he cannot eavesdrop the
packets exchanged in the connection. The second attacker is the partial time on path attacker,
which has access to the MPTCP connection, but not for the entire period of the connection.
The final attacker is the on-path attacker, who is on the MPTCP connection, which means he

has access to one of the subflows of the connection [6].

There are two other categories of attackers as eavesdropper and active attackers.
Eavesdroppers collect data from the connection while the active attackers try to change the

data on the connection [6].

2.2.1 ADD_ADDER attack

This is a man in the middle attack. The attacker uses the ADD ADDR option of MPTCP to
perform this attack [2]. Assume that A and B are two hosts connected via an MPTCP
connection, which means they have already shared the security details to create a new
subflow. As shown in Figure 2.5, attacker C was trying to create a man in the middle attack.
First of all, C has created an ACK packet with the ADD ADDR option by including B’s
address as the source address and A’s address as the destination address. Which implies that
the packet was created at B and forwarded to A. In the ADD_ADDR option there is a space to
include the address which is going to advertise. C has used this space to advertise C’s address.
When A received this ACK packet with ADD_ADDR options, it assumed that this came from
real host B and send an SYN+MP_JOIN packet to initiate a new subflow between A and B by
using C’s address as the destination address. As explained in previous sections, this
SYN+MP JOIN packet contains the hash value of the B which was previously shared in the
initial key exchange. When C has received this SYN+ACK packet, it will get the security
details which need to create a connection between C and B. C has used these data to create a
new SYN+MP_JOIN packet and send it to B, by using C’s address as the source address, B’s

address as the destination address and including the hash value of B which collected from the
13

SYN+MP JOIN packet of A. When B received this SYN+MP JOIN packet, it assumed that
this has originated from the real host A and reply to it with SYN/ACK+MP JOIN with
HMAC of A’s key and random value of B. C forwarded this details to A and A assumed these
details come from B. A replied to this by ACK+MP_ JOIN with A’s HMAC. Then C
forwarded the ACK+MP_JOIN to B and B confirmed the connection between A and B via C
as the middleman. ADD_ADDR attack has been categorized as a major threat in MPTCP [4].

A Initial connection between A and B B

ethO < >

eth0
ethl

3. C send SYN+MP_JOIN sent by A to
B by including B’s address as
destination address and C’s address as

1. C send ACK with ADD_ADDR to
A with B’s address as the source

address and A’s address as the
source address.

ggzt:::;ion while advertising C’s h hl 4. B reply this packet with SYN/

. ¥ -)
2. Areply with SYN+MP_JOIN with eth0 et 11(\51(MP_JOIN with HMAC of B’s
the hash of B’s key . .
5 C send the ACKAMP JOIN to A 7. C send the ACK+MP7J(.)IN.Wh1ch

. = send by A to B. B reply to it with ACK

by changing the source address to packet and confirms the connection
C’s address and destination address ’
to A’s address. C

6. A reply to this packet with
ACK+MP_JOIN with A’s HMAC.

Figure 2.5 : ADD_ADDR attack

2.2.2 DoS attack on MP_JOIN

As explained earlier, the MP_JOIN option is used in MPTCP to create new subflow between
two hosts. Which means both the hosts had already shared their security details between them.
An attacker can use the MP_JOIN option to exploit attack on MPTCP connection. By sending
SYN+MP_JOIN packets to a host with a valid token, the host will open a connection. There is
a maximum number of half-open connections can be maintained by a host according to the
implementation. When that number is exceeded, the host becomes exhausted. An attacker can
send a number of SYN+MP_JOIN packets by changing the source address by using the token.
To perform this attack, the attacker should have the 32bit token which was shared in the initial
key exchange. Which means that the attacker should eavesdrop the connection when it is

initiating [6].

14

2.2.3 SYN flooding amplification

This is a denial of service attack [16]. Attackers send a number of SYN packets to a port and
this made half-open connections. Due to this, there will be not enough resources to create a
legitimate connection. In MPTCP, an attacker can send regular SYN packet to open an
MPTCP session and perform this attack by sending a number of SYN+MP JOIN packets
with different source addresses. With this process, the server can be exhausted with less cost

to the attacker [7].

2.2.4 Eavesdropper in initial key exchange

One of the main security issues in MPTCP is exchanging the keys in plain text format. In this
attack, the attacker has collected the keys by listening to the initial key exchange and after
that, the attacker can create new subflows using the keys [6]. By using these keys the attacker

can totally hijack the connection and even remove the legitimate hosts from the connection.

2.2.5 SYN/JOIN attack

To perform this attack, the attacker should be in the connection path. The source address of
the SYN+MP_JOIN packet was altered by the attacker [6]. This can be used to create man in

the middle attacks also.

15

2.3 Proposed Solutions

As mentioned in the above sections, a number of security problems were identified [6] in the
MPTCP protocol and high-level solutions were also proposed in RFC 7430 [7]. Using hash
chains [10], using SSL [9] and tcperypt [17] are some of the proposed solutions. Some of the

related solutions are given below.

2.3.1 Asymmetric key exchange

MPTCP shares a set of keys in the initial handshake to authenticate subflows lately. But the
main security issue in this process is the above-mentioned keys are in plain text format. Using
asymmetric key exchange is one proposed solution for this security issue[11]. Due to the
space limitation in the TCP packet, it was difficult to implement asymmetric keys exchange.
To overcome this problem Kim and others [11] have proposed to use Elliptic curve Diftie-
Helman key exchange [12]. Because of using the Elliptic curve, the space requirement was
less, therefore the TCP payload was needed to send the key information. But for the key
negotiation part, it was needed four-way handshake rather than the normal TCP three-way

handshake.

In the Elliptic key exchange, two values were used to generate the shared key. Consider there
are two hosts A and B. A has its own two values of x and y. With the initial
SYN+MP CAPABLE packet, A has sent its x value to B. Then, B replied with
ACK+MP CAPABLE and its x values. Then again B sent its y value using
SYN+MP_CAPABLE. Finally, A has replied with ACK+MP_ CAPABLE and its y value.
Then the initial key exchange ended and both the nodes calculated their shared value using

the Diffie-Helman algorithm.

In the MP_JOIN process, A has to send a token to B to authenticate the connection. In this
proposed solution, A has sent the token in plain text and HMAC of the token created using the
shared key. Thought the token is on plain text, the attacker cannot authenticate it because of

the HMAC value created using the shared key.

16

2.3.2 MPTCPsec

MPTCP secure (MPTCPsec) was proposed to satisfy two main objectives, which are detecting
and recovering from packet injection attacks and to protect application level data [8]. To reach
these objectives, they have divided the protocol into three phases. Encryption suite
negotiation, secure handshake and securing data and control are the three phases. Key
negotiation is one of the main activity in the original MPTCP. But in MPTCPsec, they have
identified that sending keys in MP_CAPABLE was the main issue. Therefore they have
removed the keys from MP_CAPABLE options and modified it by introducing their own
option called MPTCPesn[8], which used to negotiate the encryption options between the

nodes.

For the secure handshake in MPTCPsec, they have influenced their solution by several
technologies such as tcperypt[17], TLS[19] and TCP-ENOJ[18]. They have used the chosen
secure protocol and the MPTCPesn to derive the keys and session IDs. Protecting the data is
another feature of MPTCPsec. They have used AHEAD algorithms [13] for securing the data.
In MPTCP number of TCP options were used. To protect the integrity of this TCP options,
MPTCPsec calculated an authentication tag and append that to the TCP payload. Therefore it

can be validated whether the middleboxes have altered the content of the TCP options.

2.3.3 ADD_ADDR2

The ADD_ADDR option is used in MPTCP to advertise the available interfaces of a host. By
using this option, attackers can exploit man in the middle attacks MPTCP connections. To
reduce this vulnerability, a solution was proposed to change the format of the ADD ADDR
option to the ADD ADDR2 option [4]. The proposed solution is to create a new field in
ADD ADDR option to include a HMAC value. Data of the HMAC 1is the address ID,
advertised IP address and the port number. The key for the HMAC is the key which was
shared in the initial key exchange. If the attacker eavesdrops the initial key exchange, still

there is a possibility to exploit this attack.

17

2.3.4 Using external keys to secure MPTCP

Exchanging keys in plain text is one of the main security issues in MPTCP. One of the
solutions were proposed for this problem was to use external keys such as SSL or TLS keys to
authenticate the MPTCP connection. These SSL or TLS keys are already negotiated in the
application layer. The proposed solution [9] has suggested a mechanism to transfer the
application layer keys to MPTCP layer two types of sockets. One is
MPTCP_ENABLE APP KEY, which is used to inform the MPTCP protocol that the
application level keys are used to authenticate the connection and MPTCP_KEY is used to

provide the application level key to the MPTCP layer.

Another solution was suggested in MPTLS [14], to use TLS with MPTCP to overcome some
of the security issues in MPTCP. With some modifications to both the MPTCP and TLS, it has
created tighter coupling with MPTCP layer and TLS. It has been evaluated that the TLS is

working properly with MPTCP without any performance issues [15].

18

Chapter 3: Research Methodology

The main focus of the research is to authenticate the subflows generated by the Multipath
TCP connection. Before modifying and exploring the opportunities to achieve the main goal
of the research, it should have a proper understanding of the behavior of the Multipath TCP
protocol itself. Therefore the available version of MPTCP has to be installed and configured.
Then the approaches of the other researchers has to be understood by exploring their proposed
solutions. With the knowledge and the experience gained by exploring MPTCP and other
solutions, the method to implement the proposed solution has to be created. Finally, the

implemented solution has to be tested and evaluated.

By considering the above-mentioned requirements, the flow of the research was divided into

four stages. Figure 3.1 shows the stages of the research.

Stage 1
Configure MPTCP
Stage 2 \

Install existing solutions
Explore behavior of MPTCP with
TCP sockets

Investigate applicability of external

J

Stage 3

key to authenticate subflow

!

Stage 4

Evaluation

Figure 3.1 : Stages of the Research
19

3.1 Stage 1 - Configure MPTCP

Before going deep into the MPTCP, it is important to understand the behavior of the protocol
in the real working environment. Therefore the first step of stage one is to install and
configure MPTCP. The stable version of the MPTCP [20] can be installed in the Linux
environment using the public apt-repository [21]. The version used for the research is version
0.94 and Ubuntu 16.04 LTS was used as the Linux operating systems to implement MPTCP
kernel. After installing the MPTCP kernel, the virtual machine needs to be booted with the
MPTCP kernel to get the MPTCP functionalities.

Likewise, two virtual machines were created and connected through the virtual network
interface provided by the Virtual Box [22]. After that, one virtual machine can be configured
as a server machine by installing the Apache server [23] and a simple website can be hosted.
The second virtual machine can be configured as the client machine by including two network
interfaces connected to the same virtual network created by the Virtual Box. The hosted
website can be requested using the client virtual machine. Because both the virtual machines
are configured with MPTCP, a Multipath TCP connection will be established between the two
virtual machines. The packets transferred between two machines can be captured using

Wireshark and the results are presented in Chapter 5.

It was important to check whether the TLS or SSL is compatible with MPTCP [15]. TLS was
configured on the server as the second step of the first stage and the same client-server
experiment was conducted to capture the packets using Wireshark. The results were discussed

in Chapter 5.

The source file of the MPTCP implementation can be downloaded from the Git repository of
the developers [24]. The third step of the first stage is to get familiar with the code of MPTCP
and compiling and installing the kernel. Before compiling the code, some configurations need
to be done with the kernel and it is not as straightforward as installing from the apt-repository.
The same client-server experiment can be done with the compiled and installed kernel to

observe the behavior of MPTCP.

20

One of the commercially available implementations of MPTCP is in the Apple iOS [3].
Network packets transferred on the Apple iPhone can be captured using the Apple Xcode
application and some inbuilt command line tools. The final step of the first stage is to capture
these packets and observe the behavior of MPTCP on iPhones. These captured packets are

analyzed using Wireshark and the results are in Chapter 5.

3.2 Stage 2 - Install existing solutions and Explore behavior of MPTCP with
TCP sockets

The first step of the second stage is to install the currently available solution on Linux
environment and observe the behavior of them. In this research, the MPTCPsec is considered
as the available solution and the most recent implantation can be downloaded from the
BitBucket of the developers [25]. In this experiment, the latest version available on the
BiTBucket was used which was committed on the 15th of January 2017. MPTCPsec kernel
was compiled and installed on Ubuntu virtual machine and the client-server experiment

explained in stage one was used to observe the behavior of the MPTCPsec implementation.

The second step of the second stage is to conduct some experiments with TCP sockets in the
MPTCP environment. Different kind of TCP sockets was implemented using C language and
executed on both the client and server machines to observer the behavior of MPTCP with

normal TCP sockets.

3.3 Stage 3 - Investigate applicability of external key to authenticate

subflow

The main intention of this research is to explore whether the external keys can be used to
authenticate the subflows generated by the MPTCP protocol. For that, the behavior of the
MP _JOIN option has to be understood and the MPTCP kernel needs to be modified to

perform the necessary operations.

21

The first step of the third stage is to identify the behavior of the MP_JOIN option. For that,
the MPTCP kernel has to be explored and need to identify the functions in the Linux which

used to authenticate the newly created subflows.

The second step is to identify the opportunities or methods to take the user level key to the
kernel level. If it is possible to take the user level key to the kernel level, then it can be used to
authenticate the subflows. The third step is to explore a mechanism to authenticate the
subflows by using the external keys which were taken from the user space and to send the

additional information from the client side to the server side.

3.4 Stage 4 - Evaluation

The modified version of the MPTCP kernel needs to be installed in virtual machines and the
client-server experiment needs to be done using TCP sockets to observe the behavior of the
protocol. The performance of the proposed solution has to be compared with the original

MPTCP protocol implementation to check whether there is performance degradation.

22

Chapter 4: Proposed Solution

As explained in the previous sections, the keys shared in plain text format are used to generate
the tokens which are used to authenticate the subflows. Because of sharing the keys in plain
text format it is open to a number of security threats. The main objective of this research is to
explore the applicability of using external keys to authenticate the subflows created by

MPTCP which eventually reduces the opportunity for the attackers to hijack the connection.

Before discussing the technical details of the proposed solution, it is more appropriate to
understand the stages of the solution in a descriptive manner. As discussed in Chapter 2, when
initiating the first connection between two hosts, MPTCP has used the MP_CAPABLE
option. With this option, it had confirmed whether both the hosts are compatible with MPTCP
and shared the keys which need to authenticate the next subflows. MP_JOIN options are used
to connect the second subflow to the main connection by using the shared keys to
authenticate. The solution proposed in this research is to use external keys to authenticate the
second subflows generated by MPTCP. In this case, there are two assumptions made as given

below.

« Both the hosts has to be agreed on the external keys before initiating the second subflow.

« The external keys have to be secure.

As an example, TLS keys can be considered as the external keys, because both the parties
have agreed on the keys and the keys are already secured. But within this research, it is not
going to consider the external key agreement mechanisms. Figure 4.1 shows the abstract

picture of the solution proposed by this research.

The functionalists of the MPTCP are included in the Kernel of the operating system. Kernel
of the operating system contains most of the basic operations related to the control and the
communication of the hardware components connected. All the other services of the operating
system are built on top of the kernel. When making modifications to the components of

MPTCP means that eventually making modifications to the kernel of the operating system.

23

Obviously, this is not an easy task to perform and it should have a considerable amount of

technical knowledge to work with the Kernel of the operating system.

Client Server

Both the
parties has to

agree on the #~ User Space
external keys) I

User Space 4~

v

Kernel Space Kernel Space
A N\

Network Connection
Hardware Level < > Hardware Level
N | 4

Figure 4.1 : Kernel level, User level and External keys

Even though the operating system has used the functions in the Kernel, generally the kernel
level of the operating system is not directly accessible by the end users of the computer
system. The normal users of the computers are interacting with the programs on the
application level. These programs and applications eventually use the functions in the Kernel
level via the operating system to execute the operations on the hardware level of the computer
system. Therefore it is clear that the application level or the user space which the end user is
interacting is external when considering from the Kernel level where the functions of MPTCP

has implemented.

The external key means the secret shared between two hosts which obtained from the
application level or the user space. As shown in Figure 4.1, this key has to be transferred from
the user space to the kernel space. After that, the keys have to be used in the kernel level to
authenticate the subflows. Therefore in this research, transferring the key values from the

application level to the kernel level has identified as one of the main tasks.

When the external keys are available in the kernel level, it can be used to generate the
authenticating material. The external key itself cannot be used as the authentication material.
However, it is possible to achieve an extra level of security when the external key is combined
with another component. Therefore generating the authentication material is one of the most

important steps identified in this proposed solution.

24

After generating the authentication material on the client of the connection, it has to be sent to
the server for the authentication purpose. The mechanism of sending additional information
from one side of the connection to the other is more challenging, due to the limited space of
the TCP header and the MPTCP options. It has to find a proper method to transfer the

additional authentication material from client end to the server end.

Finally, this research proposes to use the authentication material transferred from the client to
the server to validate the connection. If the authentication material sent from the client is
identified as valid, the server can accept the newly created subflow and join it to the available

connection. If not the subflow has to be dropped.

As explained in the above paragraphs, the methodology proposed in this research to
authenticate the subflows using external keys can be categorized into four main tasks as
mentioned below. From here onwards more technical aspects of the proposed solution are

discussed based on the main four tasks mentioned below.

Send the external key from the user space to the kernel space.

Generate the authentication material using the external key obtained from the user space.

» Send the authentication material to the server from the client.

Authenticate the subflow using the authentication material and if it is not a legitimate

connection, then subflow has to be dropped.

As mentioned in the previous sections, MPTCP has used different MPTCP options to initiate
the connection between two hosts. MP_CAPABLE option is used to check whether both the
hosts are compatible with MPTCP and also the MP_CAPABLE option is used to exchange the
authentication keys in the plain text format. MP_JOIN option is used to initiate the second
subflow between the two hosts while using the keys shared with the MP_CAPABLE option.
Though the keys were shared in the MP_CAPABLE option, MP_JOIN has used these keys to
authenticate the newly created subflows. As explained earlier, the main focus of this research
is to authenticate the subflows by using the external keys from the user space to provide an
extra level of security. Therefore it is better to have a clear idea about the behavior of the

MP_JOIN, before making any changes to the MPTCP operations.

25

When initiating the normal TCP connection, it has used the well known TCP three ways
handshake with SYN, SYN/ACK and ACK packets. MPTCP also has used these three packets
to initiate the MPTCP connection, but it has included the MPTCP options in the TCP options
space. According to the proposed solution of this research, the authentication should perform
when initiating the second subflow. For that, the MPTCP has used the MP_JOIN option. In
order to implement the solution proposed by this research, the operation of the MP_JOIN

option has to be properly understood.

Though it has described in a conceptual manner in the thesis, all these packet generations
were defined in a number of functions in the Kernel of the operating system. Figure 4.2 shows
the functions called in the Linux Kernel when creating the SYN packet in MPTCP connection
[30]. SYN packet is created in the client and it has to be received by the server to initiate the

connection.

(tcp_rcv_state_process())

(mptcp_conn_request())

(tcp_v4_connect())

(tcp_connect())

(tep_connect_init())

(mptcp_connect_init())

(tep_transmit_skb())

(tep_syn_options())

(mptcp_syn_options())

(tcp_options_write())

(mptcp_options_write())

(IP layer)

SYN sending

(mptcp _parse_options())

(tcp_conn_request())

(mptcp_reqsk_init())

(mptcp _parse_options())

(tep_make_synack())

(tep_synack_options())

(mptcp_synack options())

(tcp_options_write())

(mptcp_options_write())

(IP layer)

SYN sending

Figure 4.2 : Function calls in MPTCP

As shown in Figure 4.2 there are a number of functions defined in the Linux kernel to perform

the necessary operations to initiate the MPTCP connection. The most important Kernel

26

functions have to be identified which are relevant for the generation of SYN, SYN/ACK and
ACK packets used in the TCP handshake. Not all the functions in Figure 4.2 are relevant for

this research, but the identified functions are discussed later.

The mptcp _syn_options() function defined on the mptcp output.c file of the MPTCP kernel is
one of the functions identified to be modified in order to implement the proposed solution.
This function is used to set the parameters which are necessary to create MPTCP subflows
including the token values. The mptcp syn options() function is executed in the client side,
which will need to modify in order to include the authentication materials generate using

external keys in the process of authentication.

The mptcp _parse_request() is the next function which was identified as an important function
to modify in this process. As shown in Figure 4.2, this function is executed on the server end
which used to obtain the information sent from the client end. Within this
mptcp_parse_request() all the information in the TPC SYN packet are assigned in the local
data structure at the server end. Therefore this function can be modified to obtain the
authentication material send for the client end and validate it to initiate the second subflow of

MPTCP connection.

There was two major challenges in this research, which was to send additional information
from client side to the server included in MPTCP options and to obtain the key from the user
level to the kernel level which has to be used to authenticate the MPTCP subflow. For that,
several avenues were identified and explored to recognize the best solution which can be
implemented with the minimum modification to the kernel. Figure 4.3 shows the different
approaches followed in order to send additional information in MPTCP options and Figure
4.4 show the methods explored to find a better way to transfer the key value from the user

space to the kernel space.

27

Send Additional Information
in MPTCP options

Use existing field to send

Changing MPTCP options information from client to server

Figure 4.3 : Sending Additional Information

Transfer userspace
information to kernel space

Using the proc Netlink Sockets Using sin_zero of
file system TCP socket

Figure 4.4 : Transfer userspace information to kernel space

28

4.1 Additional information from client to server

As shown in Figure 4.3, two approaches were explored to identify the better way to send

additional information from client to server with minimum modifications to the kernel.

4.1.1 Changing MPTCP options

As explained before, the interested packet in this research is the SYN packet of the second
subflow. Figure 4.5 shows the MP_JOIN option for the SYN packet. It has several fields such
as kind, length, subtypes, several flags, address id, receivers token and senders random
number. The first approach is to add a new field in the MP_JOIN option of the SYN packet to
send data from the client to the server. The mp _join struct was defined at the mptcp.h header
and when inserting a new field with 32-bit size, it clashes with some other MPTCP option
packet size definitions. Therefore when inserting a new field in the header options, most of
the parts of the MPTCP kernel needs to be modified. Though the main idea of the research is
to prove the concept of using external keys in the authentication process, an alternative

solution was explored with fewer modifications to the Linux kernel.

Kind Lenght Subtype Address ID

Receiver’s Token (32bit)

Senders Random Number (32bit)

Figure 4.5 : MP_JOIN options of SYN packet

4.1.2 Use existing fields to send information from client to server

As explained in previous sections, the proposed solution of this research is to send the
authentication material from client side to the server side by combining with the key obtained
from the user space. In the considered implementation of the MPTCP, it will send the token of
the receiver with the MP_JOIN SYN packet. Theoretically, this token should know by the
server, because it is the key of itself. So the client sends this token to the server to authenticate

itself.

29

Therefore in the proposed solution, this token value is XORed with the key obtained from the
user space and use the space defined for the token in the MP_JOIN option to send the XORed
token to the server from the client to authenticate the second subflow. For the proof of
concept, it has only computed the XOR value rather than calculating complex HMAC values.
With this approach, no additional space was needed in the MP_JOIN option. Therefore within

the limited space in the TCP options, this solution was implemented successfully.

4.2 Transfer user space information to kernel space

The biggest and the most time consumed challenge in the research was to identify the proper
method to obtain data from user space to the kernel space which can be used to authenticate
the subflows in MPTCP. Several avenues were identified as shown in Figure 4.4 and explored

to pick out the best possible solution with fewer modifications to the kernel.

4.2.1 Using the proc file system

Proc is a pseudo file system in the Linux operating systems which can be accessed from /proc
[27]. This is an interface to the kernel data structure and most of the files in the proc directory
are read-only. Some of them are writable and can be used to modify kernel variable. With this
approach, a new proc directory has to be created in the /proc directory and the key value has
to be written in the newly created proc directory. This can be done from the user space. After
that, this value has to be accessed by the kernel file. The problems encountered were that this
proc directory generation and value assigning has to be done before the invoking of TCP
sockets. Other than that the value in the proc file has to be read by the kernel. For that, a
separate kernel function has to be created. By using that function the key value on the proc
file has to be written to a kernel variable. Which means when the kernel initiating a TCP

connection, it has to read proc files and assign the values to the variables.

4.2.2 Netlink Sockets

Netlink [28] is a Linux kernel interface which can be used to communicate between kernel

space and the user space, and also between different user processes also. With this method,

30

two programs need to be executed. One program should be in the user space and the other
program should be in the kernel space. This will create a connection between user space and

the kernel space, and transfer data from user space to the kernel space.

4.4.3 Using sin_zero of TCP socket

The sockaddr in is a data structure in the TCP sockets. This data structure contains the
necessary information to create a TCP connection between two hosts. Protocol, port number
and address are some of the information contains in the sockaddr in data structure. Other than
that there is another char array called sin_zero which is used as padding [29]. This space is not
used by the sockets when creating the connections. Therefore, theoretically, this space can be
used to transfer data from user space to the kernel space, if it is not dropped when the
information is transferred from user space to kernel space. This was further explored to
identify the behavior of the sin_zero variable and tracked the functions which transfer the data

from user space to kernel space.

Compared to other solutions, using the sin_zero easier to send data from the user space. Char
value can be easily copied to the sin_zero character array when creating the TCP socket.
Therefore no need to customize the socket APIs. But the challenge was to retrieve the data
from the kernel space. Theoretically, the sin _zero data should be received by the kernel space,

if it was not dropped by the system calls.

Two methods were tried to obtain the data from sin_zero character array from the kernel
space. One method was to explore the system call functions of socket.c to retrieve the data
from the sockaddr in data structure. The other method was to use the inet functions of
af inet.c to retrieve the data. Implementation was straight forward when using the inet
functions of af inet.c rather than editing the system call functions of socket.c. Therefore the
inet _bind() function and the inet stream connect() functions were modified to retrieve the
data from sin_zero. More information about the implementation and the functions mentioned

are given in Appendix A.

31

4.3 Backward compatibility

The backward compatibility is one of the important features in MPTCP. Which means if the
host machines were not compatible with MPTCP, it will automatically change into the
original TCP connection. Therefore the proposed solution in this research also has to be
backward compatible. Which means if any of the machines was not configured with the

proposed solution, it should use the normal MPTCP authentication mechanism.

To achieve this requirement, slight modifications for the code has to be done. It has to check
whether the sin_zero value is set from the user level or not. If the value is set, it has to use the

proposed solution and if not it has to use the original MPTCP authentication mechanism.

All the code segments and functions discussed in this section are further described in

Appendix A.

4.4 Summary

MPTCP has used a set of keys to authenticate the subflows. The main security issue was that
these keys were in plain text format. As described in this chapter the proposed solution is to

use an external key to authenticate the subflows.

In order to achieve this goal, there were several challenges to face, such as obtaining
information from the user level and transfer them to the kernel level, creating the
authentication material, sending the authentication material from client to the server and

finally authenticate the connection.

The user space key was transferred to the kernel space by using the sin_zero character array
of the sockaddr_in data structure of TCP socket and the data was obtained by the kernel space
using the inet functions of at inet.c with minimum modifications to the existing kernel
implementations. The authentication material was generated by XORing the token value and

the external keys. This authentication material was sent to the server using the available token

32

space in the SYN+MP_JOIN packet and the authentication material was validated at the

server. Figure 4.6 shows the proposed solution.

ethO ethl ethO

SYN+MP_CAPABLE[A’s key, flags]

: ! SYN/ACK+MP CAPABLE[B’s key, flags] :

: ! ACK+MP CAPABLE[As key, B’s key, flags] :

E E E Instead of B’ token in the original
H . SYN+MP_JOIN[Feken-B, Random of A] . MPTCP SYN+MP_JOIN,

E E XOR(B’s Token, External key) E XOR(B’s Token, External key)
H H ' will send to the server in the

' ' »: proposed solutions

: ! SYN/ACK+MP_JOIN[HMAC-B, Random of B] |

: <] If the

E E E XOR(B’s Token, External key)
H H ACK+MP_JOIN[HMAC-A] '+ isvalid, connection continues. If
H H »: the value is invalid, the second

: : H connection will close.

' ' ACK '

Figure 4.6 : Proposed solution

33

Chapter 5: Evaluation and Results

As mentioned in the research methodology, the initial stage of this research is to understand

the behavior of MPTCP. For that, the MPTCP kernel was installed on Ubuntu 16.04 LTS and

several experiments were done. Rather than using real client-server environment for the

testing of the implemented solution, it was decided to use virtual environment which can be

easily maintained and configured for different scenarios.

5.1 MPTCP Behavior Testing

As described in Chapter 3, before implementing the proposed solution in Linux Kernel the

behavior of the original MPTCP has to be understood properly. Therefore some experiments

were conducted on a controlled environment created by virtual machines as mentioned before.

5.1.1 MPTCP with Apache server

Apache server was installed and a simple web page was hosted on one virtual machine.

Another virtual machine was configured as a client machine with two network interfaces.

Both the machines were connected to the internal network of the Virtual Box [33]. Then the

web page was requested by the client’s web browser and the packets were captured using

Wireshark. As shown in Figure 5.1, the connection was established using MPTCP. The

packets captured were analyzed by the Wireshark [26]. Figure 5.2 shows the SYN packet

from the client with the keys send by the client. SYN/ACK packet is shown in Figure 5.3 with

the keys send by the server.

Iter ... <3 />

‘\\ Apply a display filte

i+

No. Time Source Destination Protocol Length Info
1 0.000000000 PcsCompu_6f:f.. Broadcast ARP 60 Who has 192.168.1.107 Tell 192.16 gl
2 0.000022770 PcsCompu_60:6.. PcsCompu_6f:fl.. ARP 42 192.168.1.10 is at 08:00:27:60:68
3 0.000202857 192.168.1.200 192.168.1.10 MPTCP 86 38922 + 80 [SYN] Seq=0 Win=29200 |
4 0.000233979 192.168.1.10 192.168.1.200 MPTCP 86 80 - 38922 [SYN, ACK] Seq=0 Ack=1
5 0.000596349 192.168.1.200 192.168.1.10 MPTCP 94 38922 - 80 [ACK] Seq=1 Ack=1 Win=]
6 0.000608560 192.168.1.200 192.168.1.10 MPTCP y. ACK 5#1 0 [ACK
7 0.000854234 192.168.1.200 192.168.1.10 HTTP 496 GET / HTTP/1.1
8 0.000896192 192.168.1.10 192.168.1.200 MPTCP 74 80 - 38922 [ACK] Seg=1 Ack=411 Wil
9 0.001223788 PcsCompu_bf:d.. Broadcast ARP 60 Who has 192.168.1.10?7 Tell 192.16{
10 0.001238586 PcsCompu_60@:6.. PcsCompu_bf:d2.. ARP 42 192.168.1.10 is at 08:00:27:60:68
11 0.001447178 192.168.1.100 192.168.1.10 MPTCP 86 44635 + 80 [SYN] Seq=0 Win=29200 |
12 0.001473763 192.168.1.10 192.168.1.100 MPTCP 90 80 - 44635 [SYN, ACK] Seq=0 Ack=1
13 0.002390406 192.168.1.100 192.168.1.10 MPTCP 90 44635 -« 80 [ACK] Seg=1 Ack=1 Win=!
14 0.002429363 192.168.1.10 192.168.1.100 MPTCP 74 [TCP Window Update] 80 - 44635 [Al

Figure 5.1 : MPTCP handshake

34

5.1.2 MPTCP with TLS

As mentioned in the previous sections, the proposed solution has to use an external key to
authenticate the subflows. TLS was taken as an example for the key negotiation method.
Therefore the compatibility of TLS with MPTCP was also tested. After installing TLS on the
server, the same client-server test was conducted and the MPTCP was worked without any

error. Figure 5.4 shows the initial handshake of MPTCP and TLS.

5.1.3 MPTCP with iOS

The major commercial implementation of MPTCP was in the Apple 10S. Network packets
transferred in Apple iPhone was captured using Xcode app and command line tools provided
by Apple. These packets were analyzed using Wireshark and the iOS has used MPTCP
protocol as shown in Figure 5.5. More details about the usage of MPTCP on 108 is discussed

in Appendix B.

» TCP Option - Window scale: 7 (multiply by 128)
¥ Multipath Transmission Control Protocol: Multipath Capable
Kind: Multipath TCP (30)
Length: 12
0000 = Multipath TCP subtype: Multipath Capable (@)
. 0000 = Multipath TCP version: 0
» Multipath TCP flags: @0x81
Sender's Key: 2639258237341735811
[Subflow token generated from key: 207731094]
[Subflow expected IDSN: 15124743060294464361 (64bits version)]
» [Timestamps]
v [MPTCP analysis]
[Master flow: Master is tcp stream 0]
[Stream index: 0]

CP_subflow sjcggg %g(s)' 10]
0000 08 00 27 60 68 3e 27 6f f1 g4] 08 00 45 00 <+ Th>ae Tosf] - E

00 48 ad 3e 40 00 40 06 16 4f c@ a8 01 cB c0 a8 H>@ @
01 0a 98 0a 00 50 02 04 92 4c 00 00 00 00 do 02 P
72 10 60 49 00 00 02 04 05 b4 04 02 08 0a 84 d4 r'I

roo

Figure 5.2 : SYN packet of MPTCP

| ¥ Multipath Transmission Control Protocol: Multipath Capable
1 Kind: Multipath TCP (30) |
1 Length: 12 |
0000 = Multipath TCP subtype: Multipath Capable (@)
+... 000@ = Multipath TCP version: 0
¥ Multipath TCP flags: @x81
1... = Checksum required: 1
] .0.. = Extensibility: 0
wess 2..1 = Use HMAC-SHAL: 1
| ..00 000. = Reserved: 0x00
Sender's Key: 753870420601154479
[Subflow token generated from key: 435859905]
[Subflow expected IDSN: 1046034476655734569 (64bits version)]
» [SEQ/ACK analysis]

08 00 27 6f f1 d4 08 @@ 27 60 68 3e 08 00 45 00 ‘o “h> E

00 48 00 00 40 00 40 06 b6 8d cO a8 01 0a c@ ad H @@

01 c8 00 50 98 0a a5 8a 60 fe 02 04 92 4d do 12 P : M

6f 90 84 5d 00 00 02 04 05 b4 04 02 08 0a 30 41 o] 0A
0040 60 42 84 d4 fe 9d 01 03 03 07 1le Oc 00 81 0a 76 ‘B 5 v

Figure 5.3 : SYN/ACK packet of MPTCP

35

5.1.4 MPTCP with TCP sockets

If the devices are configured with MPTCP, when opening a TCP socket it should initiate a

MPTCP connection. Since there are no separate MPTCP sockets, most of the experiments in

this research were conducted using TCP sockets. Therefore it is better to test the behavior of

MPTCP with TCP sockets. TCP client and server sockets were implemented using the C

programming language and executed on two virtual machines connected via the virtual

network of Virtual box. Network packets were captured in the server machine and were

analyzed using Wireshark. The results show in Figure 5.6 proves that it has used MPTCP

protocol to communicate and it has created two subflows using the two interfaces of the client

machine.

LIl o STOp Capluring packets

Time

1 0.000000000
2 1.117848704
3 18.167697218
4 19.908733115

7 47.418769291

9 47.419080066
10 47.419133251

13 47.420019475
14 47.420054903
15 47.486893796
16 47.487334070
17 47.487745741

12 A7 AoT01TIOA

Source
192.168.1.100
feB80::d013:ae...
192.168.1.200
feB80: :eb7e:89..

192.168.1.100

192.168.1.100
192.168.1.10

-
©
N
[
o
@
e e
=
5]

Destination
224.0.0.251
ff02::fb
224.0.0.251
ffo2::fb

192.168.1.10

192.168.1.10
192.168.1.100

192.168.1.

192.168.1.200
192.168.1.200
192.168.1.10
192.168.1.10
107 1co 1 1aa

Protocol

Length Info
Standard query 0x0000 PTR _nfs._

MDNS 203 Standard query 0x0000 PTR _nfs._
MDNS 183 Standard query 0x0000 PTR _nfs._
MDNS 203 Standard query 0x0000 PTR _nfs._t¢

MPTCP

TLSv1.2
MPTCP

MPTCP

603 Client Hello
74 443 - 49734 [ACK] Seq=1 Ack=518 W,

94 49734 -+ 443 [ACK] Sel

34631 -+ 443 [ACK] Seg=1 Ack=1 Win:
MPTCP 74 [TCP Window Update] 443 - 34631 [J
TLSv1.2 238 Server Hello, Change Cipher Spec,
MPTCP 74
TLSv1.2 137
MbTrD Ta ana

Figure 5.4 : TLS handshake

34631 - 443 [ACK] Segq=1 Ack=153 W.
Change Cipher Spec, Encrypted Han(

. A0T72A TAFV] Can-1 A-L_CEO W

)

No. Time Source Destination Protocol Length Info
[1 0. 10.22.221.224 10.22.221.255 UDP 86 63785 -+ 61117 Len=44
H 2 3.481800 10.22.220.117 224.0.0.251 MDNS 103 Standard query 0x0011 PTR _D2CA51]
! 3 3.840885 Apple_ee:a9:4f Broadcast ARP 42 Vvho has 10.22.221.2547 Tell 10.22
! 4 3.847249 ArubaNet_6e:6.. Apple_ee:a9:4f ARP 42 10.22.221.254 is at 00:0b:86:6e:6!
‘ 5 3.847301 10.22.221.10 17.252.236.143 TLSv1.2 119 Application Data
i 6 4.198966 17.252.236.143 10.22.221.10 TLSv1.2 119 Application Data
i 7 4.199077 10.22.221.10 17.252.236.143 TCP 66 49925 + 5223 [ACK] Seq=54 Ack=54 |\
! 8 4.582599 10.22.221.10 17.252.172.5 MPTCP 1384 50057 - 443 [ACK] Seq=1 Ack=1 Win:
| 9 4.582613 10.22.221.10 17.252.172.5 TLSv1.2 470 Application Data
i 10 4.582707 10.22.221.10 17.252.172.5 TLSv1.2 114 Application Data —
i 11 4.631575 17.252.172.5 10.22.221.10 MPTCP 62 443 - 50057 [ACK] Seqg=1 Ack=1311\
: 12 4.631579 17.252.172.5 10.22.221.10 MPTCP 62 443 - 50057 [ACK] Seg=1 Ack=1707 \
i 13 4.631982 17.252.172.5 10.22.221.10 MPTCP 62 443 - 50057 [ACK] Seg=1 Ack=1747 \
! 14 4 RO 17 282 172 & 1@ 722 2721 14 TIQuw1 2 114 Annliratian Nata
Figure 5.5 : MPTCP with i0OS

Time Source Destination Protocol Length Info

[1 0.000000000 PcsCompu_6f:f.. Broadcast ARP 60 Who has 192.168.1.107 Te—

2 0.000033948

5 0.000601104

0.000791989

8 0.000938149
9 0.001037540
10 0.001295599
11 0.001449692
12 0.001548943
13 o anic1anan

PcsCompu_60:

192.168.1.200

192.168.1. 192.168.1
192.168.1.200 192.168.1
192.168.1.10 192.168.1
192.168.1.200 192.168.1.
192.168.1.10 192.168.1
192.168.1.10 192.168.1
105 1co 1 maa 1an 1co 1

6.. PcsCompu_6f:fl.. ARP

192.168.1.

10 MPTCP

.200 IPA
.10 MPTCP
.200 IPA
10 MPTCP
.200 IPA
.200 IPA
1a moT o

105 unknown @x73

42 192.168.1.10 is at 08:0€

94 51348 -+ 5000 [ACK] Seg=1

74 51348 - 5000 [ACK] Seg=1

105 unknown @x73

74 51348 - 5000 [ACK] Seg=1

1514 unknown @x73
102 unknown @x67

74 cadac

Figure 5.6 : MPTCP in TCP socket

. cana TArYl Can-a

36

5.2 Testing the developed solutions

As discussed in Chapter 3, after having a better idea about the MPTCP and the behavior of
subflow, the next step is to develop the proposed solutions. All the details related to the

implementation of the proposed solutions are mentioned in Chapter 4.

Testing the developed solution can be broken down into three sections as shown in Figure 5.7.
The user level key is assigned to the sin_zero variable as mentioned in the previous sections.
In the first test case, it has to check whether the connection was established when both the
ends use the same external key. In the second test case, it has to use different keys on both
ends and check whether the connection has established or not. Finally, it has to check whether
the solution is backward compatible with not assigning any value to sin zero. In that case, it

should use the original MPTCP authentication mechanism and establish the connections.

Testing the proposed
solution

Using the same key on both Using the different Backward

client and sever . compatibility
keys on client and

server

Figure 5.7 : Testing the Proposed solution

Simple TCP socket program was used to test the implementation of the proposed solution.
These programs were written in C programing language. The socket application of the server
has sent a string of data to the socket application at the client. The client application has
displayed the information sent by the server on the terminal. While this simple socket
programming executing on the client-server environment, the network packets were captured
on both ends by using Wireshark application. These network packets were analyzed to test the

proposed solution by the research.

37

5.2.1 Using the same key on both client and server

According to the proposed solution by this research, when using the same key on both the
server and the client, the MPTCP connection should start properly. It has to authenticate the
second subflow using the authentication material generated by the key obtained from the user
space. Therefore it should start the second subflow by using the available network interface of
the client machine. The connection was established using TCP sockets from both the server
and client machines and the packets were captured using the Wireshark applications. Figure
5.8 shows the packets send from interface eth0 of the client and Figure 5.9 shows the packets
send from interface eth/ of the client. By analyzing the packets, it can come to a conclusion
that both the interfaces has successfully completed the three-way handshake and established

the MPTCP connection on both the interfaces successfully.

Capturing from enp0s8
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

mae N QesEFISZEAQQAE

hd
[[ip-addr==192.168.1.200 4 [X] ~| Expression... +

No. Time Source Destination Protocol Lengtt Info -
1 0.000000000 192.168.1.200 192.168.1.10 Seq=0 Win=29200 Len..

‘ 2 0.000237210 192.168.1.10 192.168.1.200 MPTCP 86 5000 — 41962 [SYN, ACK] Seq=0 Ack=1 Wi..

3 0.000597468 192.168.1.200 192.168.1.10 MPTCP 94 41962 ~ 5000 [ACK] Seq=1 Ack=1 Win=293..
4 0. 57296 192.168.1. 20 192.168.1.1 MPTCP 2 [TCP O AC 1] 41962 — 5000 [AC

. 5 0.001418588 192.168.1.10 192.168.1.200 IPA 105 unknown ©x73
6 0.001605993 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x73
7 0.001818985 192.168.1.200 192.168.1.10 MPTCP 74 41962 ~ 5000 [ACK] Seq=1 Ack=20 Win=29..
8 0.001843934 192.168.1.200 192.168.1.10 MPTCP 74 41962 ~ 5000 [ACK] Seq=1 Ack=1448 Win=..
9 0.001938660 192.168.1.10 192.168.1.200 IPA 1514 unknown @x67
10 0.002002233 192.168.1.10 192.168.1.200 IPA 99 unknown 0x66
11 0.002140811 192.168.1.10 192.168.1.200 IPA 1514 unknown 0x73
12 0.002301406 192.168.1.200 192.168.1.10 MPTCP 74 41962 - 5000 [ACK] Seq=1 Ack=2876 Win=..
13 0.002319702 192.168.1.200 192.168.1.10 MPTCP 74 41962 -~ 5000 [ACK] Seq=1 Ack=2889 Win=..
14 0.002435773 192.168.1.10 192.168.1.200 IPA 1514 unknown 0x67
15 0.002527396 192.168.1.200 192.168.1.10 MPTCP 74 41962 ~ 5000 [ACK] Seq=1 Ack=4317 Win=..
16 0.002578348 192.168.1.10 192.168.1.200 IPA 99 unknown 0x66
17 0.002773780 192.168.1.200 192.168.1.10 MPTCP 74 41962 ~ 5000 [ACK] Seq=1 Ack=5745 Win=..
18 0.002867932 192.168.1.10 192.168.1.200 IPA 1514 unknown 0x73
19 0.003031891 192.168.1.10 192.168.1.200 IPA 1514 unknown @x67
20 0.003093195 192.168.1.200 192.168.1.10 MPTCP 74 41962 ~ 5000 [ACK] Seq=1 Ack=5758 Win=.. o

» Frame 1: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface 0

» Ethernet II, Src: PcsCompu_6a:1f:45 (08:00:27:6a:17:45), Dst: PcsCompu_6f:fl:af (08:00:27:6f:f1:af)
» Internet Protocol Version 4, Src: 192.168.1.200, Dst: 192.168.1.10

» Transmission Control Protocol, Src Port: 41962, Dst Port: 5000, Seq: ©, Len: @

08 00 27 6f f1 af 08 00 27 6a 1f 45 08 00 45 00 'o 'J'EE -
00 48 17 7f 40 00 40 06 9f Oe cO a8 01 c8 cO a8 H @@ -
@ 7 enp0s8: <live capture in progress> Packets: 9944 - Displayed: 4811 (48.4%) Profile: Default

Figure 5.8 : Packets captured from ethO interface with same key

5.2.2 Using the different keys on client and server

According to the proposed solution, the external key is only known by the client and the
server. If the client needs to create another subflow, it should provide a valid authentication
material. According to the assumptions made in this research, the external keys are secure and

known only by the client and the server. If an attacker tries to create a subflow with an

38

exciting connection, the attacker has to provide an authentication material which is generated
using a different external key and it is not the valid one. Theoretically, when using two
different keys on the server and the client, the server should not start the second subflow.
When the key used by the client is different from the key used by the server, the server
authentication process fails. Therefore the protocol should refrain from authenticating the
second subflow. According to the proposed solution of this research, this is the expected
behavior for this kind of a scenario. If the client fails to provide the correct authentication
material, the server should refuse the connection and assume that the connection is initiated

by a malicious party.

*enp0s8
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
| 7 - BE T & = =
o & © X[amdEF IS =5 QQUQE
[[ip-addr==192.168.1.100 [X] ~| Expression... +
No. Time Source Destination Protocol Lengtt Info =
[69 0.0 0828 9 0e 9 68 0 P P 86 6 000 eq=0 9200 e
70 0.011751504 192.168.1.10 192.168.1.100 MPTCP 90 5000 ~ 36317 [SYN, ACK] Seq=0 Ack=1 Wi..
72 0.012047783 192.168.1.100 192.168.1.10 MPTCP 90 36317 - 5000 [ACK] Seq=1 Ack=1 Win=122..
73 0.012095009 192.168.1.10 192.168.1.100 MPTCP 74 [TCP Window Update] 5000 — 36317 [ACK]..
74 0.012192428 192.168.1.10 192.168.1.100 IPA 96 unknown ©x6d
75 0.012381625 192.168.1.100 192.168.1.10 MPTCP 74 36317 —~ 5000 [ACK] Seq=1 Ack=11 Win=12..
| 77 0.013434592 192.168.1.10 192.168.1.100 IPA 102 unknown ©x67
| 79 0.013750797 192.168.1.100 192.168.1.10 MPTCP 74 36317 -~ 5000 [ACK] Seq=1 Ack=27 Win=12..
| 80 0.013828024 192.168.1.10 192.168.1.100 IPA 1514 unknown ©x73
‘I 82 0.014167405 192.168.1.100 192.168.1.10 MPTCP 74 36317 ~ 5000 [ACK] Seq=1 Ack=1455 Win=..
| 85 0.015014581 192.168.1.10 192.168.1.100 IPA 1514 unknown ©x67
| 88 0.015574389 192.168.1.100 192.168.1.10 MPTCP 74 36317 ~ 5000 [ACK] Seq=1 Ack=2883 Win=..
‘| 90 0.015704488 192.168.1.10 192.168.1.100 IPA 1514 unknown ©x67
93 0.016105510 192.168.1.100 192.168.1.10 MPTCP 74 36317 ~ 5000 [ACK] Seq=1 Ack=4311 Win=..
94 0.016220244 192.168.1.10 192.168.1.100 IPA 1514 unknown ©x67
97 0.016535984 192.168.1.100 192.168.1.10 MPTCP 74 36317 ~ 5000 [ACK] Seq=1 Ack=5739 Win=..
99 0.016999194 192.168.1.10 192.168.1.100 IPA 1514 unknown ©x67
103 0.017244554 192.168.1.100 192.168.1.10 MPTCP 74 36317 ~ 5000 [ACK] Seq=1 Ack=7167 Win=..
105 0.017632298 192.168.1.10 192.168.1.100 IPA 1514 unknown ©0x73
107 0.017896980 192.168.1.100 192.168.1.10 MPTCP 74 36317 — 5000 [ACK] Seq=1 Ack=8595 Win=.. o
» Frame 69: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface @
» Ethernet II, Src: PcsCompu_e9:bc:36 (08:00:27:e9:bc:36), Dst: PcsCompu_6f:fi:af (08:00:27:6f:f1:af)
» Internet Protocol Version 4, Src: 192.168.1.100, Dst: 192.168.1.10
» Transmission Control Protocol, Src Port: 36317, Dst Port: 5000, Seq: ©, Len: ©
08 00 27 6f f1 af 08 00 27 e9 bc 36 08 00 45 00 'o 6 E -
00 48 82 f2 40 00 40 06 33 ff cO a8 01 64 cO a8 H @@ 3 d v
O 7 wireshark_enp0s8_20190414224030_jXD42v.pcapng Packets: 9944 - Displayed: 5129 (51.6%) Profile: Default

Figure 5.9 : Packets captured from ethl interface with same key

To test this scenario, two different keys were used in server and client when starting the
sockets, and the data sent was captured using the Wireshark application. Figure 5.10 shows
the captured and filtered packets send from the client’s eth0 interface and Figure 5.11 shows

the packets sent from the eth/ interface of the client.

According to the captured packets, it is clear that the first connection was successfully

established with the server because the three ways handshake was successfully completed.

But when observing Figure 5.11, it is clear that the three ways handshake has stopped at the

39

SYN ACK stage. Because the protocol fails to complete the authentication and due to that

reason it has dropped the connection.

Therefore the main intention of the research was successfully achieved. Which means without

having the correct user level information, the second subflow cannot be initiated.

*enp0s8
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
. - = - - . Nl Y =
AN 4 ©® RN AQessEFEISZEQAQAQE
[Wip-addr==192.168.1.200 ~| Expression... =+
No. Time Source Destination Protocol Lengtt Info -
1 0.000000000 192.168.1.200 224.0.0.251 MDNS 87 Standard query 0x0000 PTR _ipps._tcp.1..

oals 2l 5000 [ACK] Seq=1 Ack=1 Win=293..
8 7.072889699 192.168.1.10 192.168.1.200 IPA 105 unknown ©x73
9 7.073220079 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x73
10 7.073305867 192.168.1.200 192.168.1.10 MPTCP 74 41960 -~ 5000 [ACK] Seq=1 Ack=20 Win=29..
11 7.073647265 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x67
12 7.073854779 192.168.1.200 192.168.1.10 MPTCP 74 41960 ~ 5000 [ACK] Seq=1 Ack=1448 Win=..
13 7.073968688 192.168.1.10 192.168.1.200 IPA 99 unknown 0x66
14 7.074208362 192.168.1.200 192.168.1.10 MPTCP 74 41960 ~ 5000 [ACK] Seq=1 Ack=2876 Win=..
15 7.074405099 192.168.1.200 192.168.1.10 MPTCP 74 41960 -~ 5000 [ACK] Seq=1 Ack=2889 Win=..
16 7.074623099 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x73
17 7.074698037 192.168.1.10 192.168.1.200 IPA 102 unknown ©x67
18 7.074984048 192.168.1.200 192.168.1.10 MPTCP 74 41960 - 5000 [ACK] Seq=1 Ack=4317 Win=..
19 7.075001925 192.168.1.200 192.168.1.10 MPTCP 74 41960 ~ 5000 [ACK] Seq=1 Ack=4333 Win=..
20 7.076006786 192.168.1.10 192.168.1.200 IPA 105 unknown ©x73
21 7.076238049 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x73
22 7.076437141 192.168.1.200 192.168.1.10 MPTCP 74 41960 ~ 5000 [ACK] Seq=1 Ack=4352 Win=.. o

» Frame 69: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface 0

» Ethernet II, Src: PcsCompu_6a:1f:45 (08:00:27:6a:1f:45), Dst: PcsCompu_6f:fl:af (08:00:27:6f:f1:af)
» Internet Protocol Version 4, Src: 192.168.1.200, Dst: 192.168.1.10

» Transmission Control Protocol, Src Port: 41960, Dst Port: 5000, Seq: 1, Ack: 30144, Len: ©

08 00 27 6f f1 af 08 G0 27 6a 1f 45 08 @0 4500 - 'o---- 'J'E-'E -
00 3c T4 63 40 00 40 06 c2 35 cO a8 01 c8 cO a8 <c@@ ‘5 - v

@ 7 wireshark_enp0s8_20190414223850_B5gCxe.pcapng Packets: 5251 - Displayed: 5239 (99.8%) = Profile: Default

Figure 5.10 : Packets captured from ethO interface with different key

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

7 = = Km px . s @B 2 B E
Al J© XN FeEnEF IS EQAQAQE
[WTip.addr==192.168.1.100 -] Expression... = +
No. Time Source Destination Protocol Lengtt Info
2 0.011584585 192.168.1.100 224.0.0.251 MDNS 87 Standard query ©x0000 PTR _ipps._tcp.loc..

71 7.084109105 192.168.1.10 192.168.1.100 54 5000 -~ 43563 [RST, ACK] Seq

Frame 71: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface @

Ethernet II, Src: PcsCompu_6f:fl:af (08:00:27:6f:f1:af), Dst: PcsCompu_e9:bc:36 (08:00:27:e9:bc:36)
Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.100

Transmission Control Protocol, Src Port: 5000, Dst Port: 43563, Seq: 1, Ack: 1, Len: ©

»
»
4
»

08 00 27 e9 bc 36 08 B0 27 6f f1 af @8 G0 4500 ' 6 'o - E- -
00 28 75 4f 40 00 40 06 41 c2 c@ a8 01 Oa c@ a8 - (u0@ @ A

@ 7 wireshark_enp0s8_20190414223850_B5gCxe.pcapng Packets: 5251 - Displayed: 3 (0.1%) Profile: Default

4

Figure 5.11 : Packets captured from ethl interface with different key

40

5.2.3 Backward compatibility

If any of the nodes are not configured with the proposed solution to use user space
information to authenticate the MPTCP subflow, it should automatically use the original
MPTCP. To test whether it worked, the sockets have to be set without assigning any value to

sin_zero variable.

In order to check the backward compatibility of the proposed solution, the connection was
established by using the client and the server applications without providing any external key.
Figure 5.12 shows the packets captured on both the eth0 and eth! interfaces of the client and
it has successfully established the MPTCP connection. Which shows that it has used normal
MPTCP instead of the proposed solution. Therefore the solution is backward compatible if

both the client and server does not use the proposed solution.

But according to the current implementation, if one of the server or client has used the
proposed solution and other does not, the backward compatibility won’t work properly. To
verify that scenario, an external key was used at the client and no key was used at the server.
Figure 5.13 shows the packets captured while creating a connection between the hosts. So it is
clear that the MPTCP connection was not successfully created. Theoretically, it should create
a MPTCP connection properly. But the second subflow has not joined to the connection. The
solution needs to be improved to handle this kind of situation and this is further discusses in

the future work section.

[W [ip.addr==192.168.1.100| ~] Expression... +

No. Time Source Destination Protocol Lengtt Info =
320298082 192 .16 92.168.1.10_ 86 36189 — 5000 [SYN] Se..

320646072

1. 1.1 5000 [ACK] Se..
80 1.320667041 192.168.1.10 192.168.1.100 MPTCP 74 [TCP Window Update] 5.
81 1.320731775 192.168.1.10 192.168.1.100 IPA 96 unknown Ox6d
84 1.321012785 192.168.1.100 192.168.1.10 MPTCP 74 36189 — 5000 [ACK] Se..
85 1.321160094 192.168.1.10 192.168.1.100 IPA 1514 unknown ©x67
86 1.321176059 192.168.1.10 192.168.1.100 IPA 99 unknown 0x66

[X¥] '] Expression... +

Protocol Lengtt Info e
5000 [SYN] Se..

"5000 [ACK] Se.

| 31356604

168.1.200 IPA 105 unknown 6x73

8 1.313738175 192.168.1.10 192.

9 1.313961843 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x73

10 1.314126016 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x67

11 1.314164489 192.168.1.200 192.168.1.10 MPTCP 74 40048 - 5000 [ACK] Se..
12 1.314289205 192.168.1.200 192.168.1.10 MPTCP 74 40048 ~ 5000 TACK] Se.. '+

Figure 5.12 : Packets captured from eth0Q and eth1 interfaces with no key
41

([Tip.addr==192.168.1.10lf -] Expression... =+
No. Time Source Destination Protocol Lengtt Info
66 0.0052966 92.168 00 92.168 0 PTCP 86 000 eq
(W [ip.addr==192.168.1.200 -] Expression... =+
No. Time Source Destination Protocol Lengtt Info [~
57 0.004616461 192.16 .200 192.168.1.10 MPTCP 74 40052 — 5000 [ACK] Se..
58 0.004658837 192.1687.1.10 192.168.1.200 IPA 99 unknown ©x66 |
59 0.004769176 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x73
60 0.004895097 192.168.1.200 192.168.1.10 MPTCP 74 40052 — 5000 [ACK] Se..
61 0.004901338 192.168.1.200 192.168.1.10 MPTCP 74 40052 - 5000 [ACK] Se..
N 62 0.004987746 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x67
63 0.005024833 192.168.1.10 192.168.1.200 IPA 99 unknown ©x66
64 0.005126690 192.168.1.10 192.168.1.200 IPA 1514 unknown ©x73
1 0.005174892 _167.168.1.200 1 MPICh 74 30052 5000 -

ib Frame 65: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface 0

» Fthernet TT Sre:

Pralfnmnu Qd-2R*Ah (AR-AA*27-Qd 2R Ah)

Nat -

Dealfoamni 21-Rd-AA (AR

AN+ 27-21-2d AR

Figure 5.13 : Packets captured from ethO and ethl interfaces with only the client key

42

5.3 Robustness of the proposed solution

As mentioned in the problem statement, one of the main reasons for the security threats in
MPTCP is the exchange of keys in plain text format at the initial handshake. There is a
number of methods proposed to secure the key exchange using different technologies. But the
main focus of this research is to secure the creation of new subflows by authenticating the
subflows using the key from user space or application level. The proposed solution in this
research is to transfer user space key to the kernel space and use the key to create
authentication material. Later this authentication material is sent to the server to authenticate
the subflows. As described in the previous sections, the implantation was perfectly working
as designed in Chapter 3. Though it has proved that the solution is working on
implementation vise, it has to be robust and should provide the solution for the threat that was

discussed this research.

I
|
|
1

Requesting Second:
— Subflow
Client 1

Authentication

Material
\ Original Authe

nticationproces
3

Server Socket

Requesting Second Se
Subflow S o

Attacker SS

Figure 5.14 : Threat model

To clearly represent the security problem, a threat model can be used. Figure 5.14 is the
abstract threat model represented using data flow diagram of the security threat that has

discussed in Chapter 2 about exchanging the keys in plain text format.

The client requests a second subflow to connect to the server using the MP_JOIN + SYN

packet. By using the authentication process of the original MPTCP protocol, the server

43

decides whether the request has come by the legitimate client. But as discussed in Chapter 2,
the attacker can request to join to the connection using the MP_JOIN + SYN packet, by using
the eavesdropped keys in the initial key exchange. Theoretically, the attacker can get access to

the connection if the keys are correct.

But with the proposed solution in this research, the attacker should have another set of keys to
authenticate the connection. Figure 5.15 shows the threat model drawn using data flow
diagrams for the proposed solution. Both the client and the server should have the user space
keys for the authentication. When the request is sent by the client to the server, the server has
to use the MPTCP authentication process to authenticate the connections. But with the
proposed solution, it has included another layer of an authentication mechanism. The
authentication material created by XORing the token and external key has sent to the server
by the client. The server compares the mentioned authentication material to evaluate the client
request. If the authentication process of the proposed solution validates the client

authentication material, then the MPTCP protocol allows the new subflow to initiate.

Obtain the key from

]
|
I Userspace I Userspace Key
|

Requesting Second :

Subflow Authentication
— N — Material ™S .
Client 1 Server Socket Original Authe
\ /\(nticationproces
3
Subflow Created
\
\ Verification
Obtain the key from S Verification
Userspace ~
\\ Authentication
Requesting Second NS Material
Subflow So o
~
Userspace Key S ~ Authenticate
~ with

Externalkey

Attacker

Figure 5.15 : Threat model of proposed solution

As the proof concept, by assuming that the key obtained from the user space is secure, it can
be considered that the proposed mechanism provides a robust solution to authenticate the

subflow generated by Multipath TCP.

44

5.4 Performance testing with the proposed kernel modifications

In the implementation of the proposed solution, the Linux kernel was modified by inserting
new code segments, variables, and functions. Due to these modifications, there should be
some change in the performance of the kernel. In this research, the performance of the kernel
was not considered. But it is important to check whether there is any performance

improvement or performance degradation due to the modifications done to the kernel.

A simple experiment was conducted to measure the performance of the modified kernel and
compared it with some other kernels to evaluate the performance. The experiment was to send
a file from one node to another and measure the time taken. Four files were generated using
Linux terminal with 10MB, 20MB, 50MB, and 100MB capacities to transfer from one host to
another. The main requirement of this experiment is to compare the performance of the
original MPTCP with the modified MPTCP with the proposed solution by this research.
Therefore all four files with different capacities were transferred and time was measured.
Figure 5.16 shows the final result of the experiment. It has shown that the performance of
both the modified MPTCP and original MPTCP are almost the same. But there is a
considerable difference with the TCP and MPTCPsec. But both the TCP and MPTCPsec
kernels have used only single subflow to transfer data. It can assume that the main reason for
this can be the problems related to the optimization of the MPTCP kernel. Because the

MPTCP kernel is still on the experiment level.

45

File Size

I Proposed solution M Normal MPTCP [TCP

10MB(10240kb)

20MB(20480kb)

50MB(51200kb)

100MB(102400kb)

0 40 80 120

Time Taken in seconds

Figure 5.16 : Summarized results of performance test

B MPTCPsec

160

46

Chapter 6: Conclusion and Future Work

The Transmission Control Protocol (TCP) is a widely used network protocol to make a
reliable connection between two hosts. It has utilized a single network interface of a host to
initiate the connection. But with the development of technology, most of the devices have
more than one network interface, such as Ethernet, Wifi and so on. Multipath Transmission
Control Protocol (MPTCP) has been introduced as an extension for the original Transmission
Control Protocol to use more than one network interface when creating a single network

connection.

Multipath TCP has not altered the headers of the original TCP protocol. Instead, it has used
the TCP options space in the TCP header to send the additional information related to
Multipath TCP. Multipath TCP contains a number of options. Such as MP_CAPABLE to
check whether the hosts are compatible with MPTCP and MP_JOIN to join a new subflow the
connection. In MPTCP, the network connections created between two hosts are known as
subflows. MPTCP shares a set of keys when initiating the first subflow. These keys are used
to authenticate the subflows that are created later. The important fact to consider is that the

keys are in plain text format.

Though Multipath TCP has advantages such as redundancy and increase of throughput, it has
created a number of security threats. When studying the security threats, it has been identified
that one of the main reasons for the security threats is the exchange of authentication keys in

plain text format. Attackers can create a number of attacks by using these keys.

Some of the security issues were identified and solutions were proposed for specific scenarios
such as ADD_ADDR attack[4]. However, this does not provide the solution for the general
issue of sharing keys in plain text format and use them to authenticate the subflows. Still,
some solutions are on the development stage. If the authentication process of the subflows
gets improved, the security issues of MPTCP can be minimized. Therefore some alternate
methods to authenticate the subflows has to be explored and that is the main objective of this
research. As a suggestion for that, this research was focused to explore the methods of using

the information from user space to authenticate the subflows.

47

The research was conducted in three main stages as mentioned below.

« Obtain the keys from user space and transfer to the kernel space as the network connection
is established in the kernel space of the operating system.

+ Generate the authentication material using the user space key and send it from the client to
the server.

« Authenticate the subflow using the authentication material by the server.

Before altering the MPTCP, the behavior of the protocol was identified by conducting several
experiments. In order to implement the proposed solution, the important functions of the
MPTCP kernel were identified and modified as required. After exploring several avenues, a
method was identified to import the key from user space to the kernel space. Then the key
was used to generate the authentication material to be sent to the server. At the server, the
subflow was authenticated by using the authentication material sent by the client. If the
authentication material is valid, the subflow was created. Otherwise, the subflow is dropped
by MPTCP. As a proof of concept, this proposed solution has shown that the user space

information can be used to authenticate the newly generated subflows in Multipath TCP.

In Multipath TCP, backward compatibility is an important feature. If any of the hosts are not
compatible with Multipath TCP, it will automatically change to the original TCP connection.
Therefore this proposed solution should be backward compatible. As mentioned in Chapter 5,
the current implementation will change to original Multipath TCP if both the hosts are not
using external keys to authenticate the connection. This has to be improved to switch to
original Multipath TCP if one host is configured with the proposed solution and the other is
not configured with the proposed solution. In this regard, the optimization of the kernel was
not considered. Therefore the performance of the network connections is not at the desired

level.

Other than the advantages, there are some disadvantages by using this user level information,
which is the Transport layer depends on the Application layer when initiating the network

connection. It violates the abstraction of the OSI layers.

48

6.1 Future Work

With the proposed solution it has shown that the key from user space or the application level
can be used to authenticate the subflows generated by MPTCP. Which means that this
solution can be improved to a state where the application has the control to use multiple paths
in the network connection or not. Assume if there is a huge amount of data to transfer between
two nodes and the application can decide to use multiple paths to improve the throughput. On
the other hand, if there is only a very small amount of information to transfer, such as to open
a web page, there is no need to incorporate multiple paths in the connection. In such cases, the
application can decide not to use multiple paths. Therefore this concept can be extended to a

level which the application has the control of using MPTCP or TCP for the connection.

49

References

[1] Postel, J. (1981). Transmission Control Protocol. Marina del Rey, Calif: Inst.

[2] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath
Operation with Multiple Addresses,” RFC Editor, RFC6824, Jan. 2013.

[3]"Observing Siri : the three-way handshake — MPTCP", Blog.multipath-tcp.org, 2018.
[Online]. Available: http://blog.multipath-tcp.org/blog/html/2014/02/24/observing_siri.html.
[4] F. Demaria, “Security Evaluation of Multipath TCP,” p. 87

[5] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural Guidelines for
Multipath TCP Development,” RFC Editor, RFC6182, Mar. 2011.

[6] M. Bagnulo, “Threat Analysis for TCP Extensions for Multipath Operation with Multiple
Addresses,” RFC Editor, RFC6181, Mar. 2011.

[7] M. Bagnulo, C. Paasch, F. Gont, O. Bonaventure, and C. Raiciu, “Analysis of Residual
Threats and Possible Fixes for Multipath TCP (MPTCP),” RFC Editor, RFC7430, Jul. 2015.
[8] M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure, “Securing multipath TCP: Design &
implementation,” in [EEE INFOCOM 2017 - IEEE Conference on Computer
Communications, Atlanta, GA, USA, 2017, pp. 1-9.

[9] C. Paasch and O. Bonaventure, “draft-paasch-mptcp-ssl-00 - securing the multipath tcp
handshake with external keys,” 2013.

[10] J. Diez, M. Bagnulo, F. Valera, and 1. Vidal, “Security for multipath TCP: a constructive
approach,” International Journal of Internet Protocol Technology, vol. 6, no. 3, p. 146, 2011.
[11] D.-Y. Kim and H.-K. Choi, “Efficient design for secure multipath TCP against
eavesdropper in initial handshake,” in 2016 International Conference on Information and
Communication Technology Convergence (ICTC), Jeju, 2016, pp. 672—-677.

[12] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller, “Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS),” RFC Editor,
RFC4492, May 2006.

[13] D. McGrew, “An Interface and Algorithms for Authenticated Encryption,” RFC Editor,
RFC5116, Jan. 2008.

[14] O. Bonaventure, “MPTLS : Making TLS and Multipath TCP stronger together draft-
bonaventure-mptcp-tls-00,” 2015.

50

[15] A. Hamza, M. 1. Lali, and F. Javid, “Study of MPTCP with Transport Layer Security,”
Emerging Technologies, p. 6.

[16] “Eddy - 2007 - TCP SYN Flooding Attacks and Common Mitigations.pdf.” .

[17] A. Bittau, D. Giffin, M. Handley, D. Mazieres, Q. Slack and E. Smith, “Cryptographic
protection of TCP Streams (tcperypt) draft-ietf-tcpinc-tcperypt-10,” 2018.

[18] A. Bittau, D. Giffin, M. Handley, D. Mazieres and E. Smith, “TCP-ENO: Encryption
Negotiation Option draft-ietf-tcpinc-tcpeno-18,” 2018.

[19] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,”
RFC 5246, 2018.

[20]"MultiPath TCP - Linux Kernel implementation : Main - Home Page browse", Multipath-
tep.org, 2018. [Online]. Available: https://www.multipath-tcp.org.

[21] "MultiPath TCP - Linux Kernel implementation : Users - Apt Repository browse",
Multipath-tcp.org, 2018. [Online]. Available: https://multipath-tcp.org/pmwiki.php/Users/
AptRepository.

[22]"Downloads — Oracle VM VirtualBox", Virtualbox.org, 2018. [Online]. Available: https://
www.virtualbox.org/wiki/Downloads.

[23]D. Group, "Welcome! - The Apache HTTP Server Project", Httpd.apache.org, 2018.
[Online]. Available: https://httpd.apache.org/.

[24]"MultiPath TCP - Linux Kernel implementation : Users - Do It Yourself browse",
Multipath-tcp.org, 2018. [Online]. Available: https://multipath-tcp.org/pmwiki.php/Users/
DoltYourself.

[25]"MPTCPsec-team / MPTCPsec — Bitbucket", Bitbucket.org, 2018. [Online]. Available:
https://bitbucket.org/account/user/mptcpsecteam/projects/PROJ.

[26]"Wireshark - Go Deep.", Wireshark.org, 2018. [Online]. Available: https://

www.wireshark.org.

[27] "proc(5) - Linux manual page", Man7.org, 2019. [Online]. Available: http://man7.org/
linux/man-pages/man5/proc.5.html. [Accessed: 19- Feb- 2019].

[28]"netlink(7) - Linux manual page", Man7.org, 2019. [Online]. Available: http://man7.org/
linux/man-pages/man7/netlink.7.html. [Accessed: 19- Feb- 2019].

[29]"struct sockaddr in, struct in_addr", Gta.ufrj.br, 2019. [Online]. Available: https://
www.gta.uftj.br/ensino/eel878/sockets/sockaddr_inman.html. [Accessed: 19- Feb- 2019].

[30] M. Jadin and G. Tihon, “Secure MultiPath TCP,” p. 118.

51

https://multipath-tcp.org/pmwiki.php/Users/AptRepository
https://multipath-tcp.org/pmwiki.php/Users/AptRepository
https://www.wireshark.org
https://www.wireshark.org

[31]"Use Multipath TCP to create backup connections for i0S", Apple Support, 2019.
[Online]. Available: https://support.apple.com/lv-1Iv/HT201373. [Accessed: 21- Jan- 2019].
[32]"Improving Network Reliability Using Multipath TCP | Apple Developer
Documentation", Developer.apple.com, 2019. [Online]. Available: https://
developer.apple.com/documentation/foundation/urlsessionconfiguration/
improving_network reliability using multipath tcp. [Accessed: 21- Jan- 2019].
[33]"Chapter6.Virtual Networking", Virtualbox.org, 2019. [Online]. Available: https://

www.virtualbox.org/manual/ch06.html.

52

Appendix A - Code Modifications

This appendix contains the information related to the code modifications done to the Linux
kernel. As described in Chapter 4, the number of inbuilt functions of Linux kernel have
modified in order to implement the proposed solutions. All the modifications done to the

kernel files are given below.

mptcp.h

This header file is located in the /include/net of the MPTCP Linux kernel. Two new variables
were introduced to the kernel to store the token generated by the MPTCP kernel and to store
the key received from the user space. Line number 5 and 6 of Listing A.1 shows the relevant
code segment of the declaration of new variables in the kernel. A new function has to be
defined to generate the XORed version of the token by taking the external key and token
generated by MPTCP as the inputs. Line number 10 of the Listing A.1 shows the function
prototype defined in the header file.

/*
varibale to store token
variable to store external key
*/
extern int token_ tnb; //store token
extern long external key tnb; //external key

//XOR funtion with the token and the key

= W oo Jo Ul WN B

0. int xor token key tnb(int token, int key);

Listing A.1 : mptcp.h header file

af_inet.c

af inet.c is one of the most important files. Transferring user space key to the kernel space
was done by modifying the functions available in the af inet.c file. Listing A.2 shows the
sockaddr in data structure which used when defining TCP sockets. sin_zero is the variable
shows in line number 10, which used to transfer external key from the user space to kernel

space.
53

1. /* Structure describing an Internet (IP) socket address. */
2. #if _ UAPI DEF SOCKADDR IN

3. #define SOCK _SIZE 16 /* sizeof(struct sockaddr) */
4. struct sockaddr in {

5. _ kernel sa family t sin family; /* Address family */
6. __belé6 sin_port; /* Port number */

7. struct in addr sin addr; /* Internet address */
8.
9. /* Pad to size of “struct sockaddr'. */

10. wunsigned char __pad[__SOCK _SIZE - sizeof(short int) -
11. sizeof(unsigned short int) - sizeof(struct in addr)];
12.};

13.#define sin zero _ pad /* for BSD UNIX comp. -FvK */

14 .#endif

Listing A.2 : sockaddr_in data structure

There are two functions in the af inet.c file which is important in obtaining the user space key
to the kernel space. First one is the inet bind() function, which is used by the server to bind
the TCP socket. This function has access to the sockaddr in data structure which mentioned
in the above section. Therefore the line segment shown in Listing A.3 was added to the

function to obtain the key from the user space on the server.

1. //server uses this function
2. kstrtol(addr->sin zero, 10, &external key tnb);

Listing A.3 : inet_bind()

The second most important function in af inet.c is __inet stream connect() which is used by
the client when creating the TCP socket. With this function, the sockaddr in data structure
can be accessed and the user space key can be passed to the kernel level. Listing A.4 shows

the code segment which included in the inet stream connect() function.

1. struct sockaddr in *addr = (struct sockaddr in *)uaddr;
2. kstrtol(addr->sin_zero, 10, &external key tnb);//at client

Listing A.4: _inet stream_connect()

54

mptcp_ctrl.c

The function which is used to XOR the external key with the token generated by MPTCP

protocol is defined in the mptcp ctrl.c file. Listing A.5 shows the code of the function.

. //XOR funtion with the token and the key

. int xor token key tnb(int token, int key){

//this function XOR the token and the external key.
return token’key;

U W N
e o e

Listing A.5: _ inet stream_connect()

mptcp_output.c

The function mptcp syn_options() is used by the client to create the MPTCP SYN packet.
According to the proposed solution, the client needs to generate the XORed token and send it
to the server to authenticate the new subflow. Therefore the relevant code segment can be
included in mptcp _syn_options() function to perform the task. Listing A.6 shows the code
segment included to execute the intendant operation. The if statement in line number 1 of
Listing A.6 is used to check whether the external key is set in the socket or not. If the external

key is not assigned, then the protocol will use the original MPTCP in order to achieve

backward compatibility of the proposed solution.

. if (external key tnb==0||external key tnb==“0"){
opts->mp join syns.token = mpcb->mptcp rem token;
. telse{

opts->mp join syns.token = xor token key tnb(mpcb-
>mptcp_rem token,external key tnb);

-}

=S W N R
. .

wv

Listing A.6 : mptcp_syn_options()

55

mptcp_input.c

The mptcp _input.c file contains the function called mptcp parse options(), which is used by
the server to parse the MPTCP options to a higher level. Therefore this can be used to
compare the XORed token send from the client and authenticate the connection. Code

segment shown in Listing A.7 is used to compare the XORed tokens and establish the

connection.

1. if(external key tnb==0||external key tnb=="0")({

2. mopt->mptcp rem token = mpjoin->u.syn.token;

3. }else{

4. if (mpjoin->u.syn.token ==

xor_ token key tnb(token tnb,external key tnb)) {

5. mopt->mptcp rem token = token tnb;

6. break;

7. } else {

8. pr_info("XORed token doesnot matched. MP_ JOIN
dropped”);

9. }

10. }

Listing A.7 : mptcp_parse_options()

56

Appendix B - MPTCP with iOS

As mentioned in Chapter 3, Apple 10S has included MPTCP on the operating system [31]. To
understand the behavior of MPTCP on iOS some experiment was conduction and the

summarized version of the results was included in this Appendix.

For MPTCP to use, there should be more than one network interface. Mobile phones have a
WiFi interface and cellular interface. Therefore both WiFi connection and the cellular
connection or the mobile data connection is considered when conducting the experiments.
Apple 10S has a feature called WiFi-Assist [32] which uses mobile data to support WiFi
connection. Therefore in this experiment, Wifi_assist also considered as a variable to check
whether there is a connection between MPTCP and the Wifi-Assist. Apple has mentioned that
they are using MPTCP for the Siri application [3]. Therefore a question was asked from Siri
and the network packets of iPhone were captured using Command line tools of macOS. Other
than that the official web site of MPTCP research group which is configured with MPTCP,
was opened using Safari web browser of iPhone and network packets were captured. Table B.
1 shows the summarized results of the experiment conducted. The symbol “v” shows the
options which were activated and symbol “X” shows that the options were inactivated. The

final column of Table B.1 shows the result of each and every experiment.
According to the results shown in Table B.1, it is clear that the MPTCP protocol is used only

for the Siri application, but not to load the other web site. There is no direct connection

between the Wifi Assist feature with the usage of MPTCP in Siri application.

57

Experiment Wifi Mobile data Wifi Siri Web Page Result

No Assists (Use of MPTCP)
1 v v v v v
2 v 4 v
3 v v 4 v
4 v v v
5 v 4 4 v
6 4 4 v
7 v v 4 v X
8 v v v X
9 v 4 v X

10 v v X
11 v v X
12 v X

Table B.1 : Results of MPTCP iOS experiment

	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1: Introduction
	Figure 1.1 : Mobile phone using both WiFi and mobile data simultaneously
	1.1 Multipath TCP

	Figure 1.2 : Normal TCP layers
	Figure 1.3 : MPTCP layers
	Table 1.1: MPTCP options
	1.2 Known Exploits
	1.3 Problem Statement
	1.4 Goal and Objectives
	1.5 Structure of Dissertation
	1.6 Summary
	Chapter 2: Background and Literature Review

	Figure 2.1 : Hierarchy of protocols
	2.1 Multipath TCP Implementation

	Figure 2.2 : Connection establishment
	Figure 2.3 : MP_CAPABLE option
	Figure 2.4 : MP_JOIN option
	2.2 Security Analysis and Threats

	Figure 2.5 : ADD_ADDR attack
	2.3 Proposed Solutions
	Chapter 3: Research Methodology

	Figure 3.1 : Stages of the Research
	3.1 Stage 1 - Configure MPTCP
	3.2 Stage 2 - Install existing solutions and Explore behavior of MPTCP with TCP sockets
	3.3 Stage 3 - Investigate applicability of external key to authenticate subflow
	3.4 Stage 4 - Evaluation
	Chapter 4: Proposed Solution

	Figure 4.1 : Kernel level, User level and External keys
	Figure 4.2 : Function calls in MPTCP
	Figure 4.3 : Sending Additional Information
	Figure 4.4 : Transfer userspace information to kernel space
	4.1 Additional information from client to server

	Figure 4.5 : MP_JOIN options of SYN packet
	4.2 Transfer user space information to kernel space
	4.3 Backward compatibility
	4.4 Summary

	Figure 4.6 : Proposed solution
	Chapter 5: Evaluation and Results
	5.1 MPTCP Behavior Testing

	Figure 5.1 : MPTCP handshake
	Figure 5.2 : SYN packet of MPTCP
	Figure 5.3 : SYN/ACK packet of MPTCP
	Figure 5.4 : TLS handshake
	Figure 5.5 : MPTCP with iOS
	Figure 5.6 : MPTCP in TCP socket
	5.2 Testing the developed solutions

	Figure 5.7 : Testing the Proposed solution
	Figure 5.8 : Packets captured from eth0 interface with same key
	Figure 5.9 : Packets captured from eth1 interface with same key
	Figure 5.10 : Packets captured from eth0 interface with different key
	Figure 5.11 : Packets captured from eth1 interface with different key
	Figure 5.12 : Packets captured from eth0 and eth1 interfaces with no key
	Figure 5.13 : Packets captured from eth0 and eth1 interfaces with only the client key
	5.3 Robustness of the proposed solution

	Figure 5.14 : Threat model
	Figure 5.15 : Threat model of proposed solution
	5.4 Performance testing with the proposed kernel modifications

	Figure 5.16 : Summarized results of performance test
	Chapter 6: Conclusion and Future Work
	6.1 Future Work
	References
	Appendix A - Code Modifications
	Appendix B - MPTCP with iOS

