

An approach to identify performance

influence on web services, using

different parallel execution techniques

S.C Rangoda

2019

An approach to identify performance

influence on web services, using

different parallel execution techniques

A dissertation submitted for the Degree of Master of

Computer Science

S.C. Rangoda

University of Colombo School of Computing

2019

i

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name : S.C. Rangoda

Registration Number :2016/MCS/091

Index Number :16440912

Signature: Date:

This is to certify that this thesis is based on the work of

Mr. S.C Rangoda

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name : Dr. Malik Silva

Signature: Date:

Table of Figures

ii

Contents
Table of Figures .. iii

Abbreviations ..iv

Abstract .. v

1 Introduction .. 1

1.1 Motivation ... 2

1.2 Objective.. 2

1.3 Scope ... 2

1.4 Contribution... 3

1.5 Thesis Outline .. 3

2 Literature Review .. 3

2.1 Problem Domain .. 4

2.2 Parallelism Techniques in Web Services ... 4

2.3 Multi-threaded programming concepts & frameworks ... 6

2.4 Impact of application deployment in web service deployment ... 8

2.5 Benchmark performance of a web service .. 8

3 Analysis ... 9

4 Design ... 10

4.1 Introduction ... 10

4.2 Prototype Design ... 10

4.3 Python Based Multiprocessing Implementation.. 13

4.4 Prototype Source Code .. 15

5 Evaluation.. 15

5.1 Functional Test ... 15

5.2 Performance Test ... 16

5.2.1 Performance Test Scenarios ... 16

5.2.2 Data Collection ... 17

5.2.3 Tools .. 17

5.2.4 Design of Deployment .. 17

6 Results and Observations ... 18

6.1 Analysis of Python Based Implementation .. 21

6.2 Jmeter Analysis Report ... 27

7 Conclusion and Future Work .. 30

8 References ... 32

Table of Figures

iii

Table of Figures
FIGURE 1: PARALLELISM TECHNIQUES .. 2
FIGURE 2: LATENCY EVALUATION [4] ... 5
FIGURE 3: THE PROPOSED MODEL FOR PARALLEL EXECUTION [11] ... 6
FIGURE 4: JMETER PERFORMANCE TEST DESIGN [14].. 9
FIGURE 5: WEB SERVICE REQUEST FLOW CHART .. 10
FIGURE 6: DESIGN OF SINGLE THREADED IMPLEMENTATION .. 12
FIGURE 7: THREAD POOL BASED DESIGN ... 12
FIGURE 8: DESIGN OF PROCESS BINDING IMPLEMENTATION .. 13
FIGURE 9: PYTHON REST API DESIGN WITH MULTIPROCESSING BASED PARALLEL IMPLEMENTATION ... 13
FIGURE 10: INBOUND JSON REQUEST .. 14
FIGURE 11 OUTBOUND JSON RESPONSE – SUCCESS ... 14
FIGURE 12 OUTBOUND JSON RESPONSE – FAILURE ... 15
FIGURE 13: PERFORMANCE OF JAVA THREAD-POOL, WHEN NO. OF USERS INCREASED ... 18
FIGURE 14: PERFORMANCE OF JAVA THREAD-POOL IMPLEMENTATION, WHEN NO. OF USERS INCREASED. 18
FIGURE 15: PERFORMANCE OF SINGLE THREADED IMPLEMENTATION, WHEN NO. OF USERS INCREASED 19
FIGURE 16: PERFORMANCE OF PROCESS BINDING TO SPECIFIC CORE, WHEN NO. OF USERS INCREASED 19
FIGURE 17: PERFORMANCE OF SINGLE THREADED IMPLEMENTATION, WHEN PROCESSING COMPLEXITY INCREASED 20
FIGURE 18: PERFORMANCE COMPARISON OF EACH IMPLEMENTATION AGAINST HIGHER COMPLEXITY. 20
FIGURE 19: SINGLE THREADED IMPLEMENTATION - PYTHON MODULE ... 21
FIGURE 20: PERFORMANCE OF SINGLE THREAD IMPLEMENTATION, WHEN INCREASING THE COMPLEXITY - PYTHON MODULE.......... 22
FIGURE 21: PARALLEL PROCESSING IMPLEMENTATION WITH MULTI-PROCESS, PYTHON MODULE ... 22
FIGURE 22: PERFORMANCE OF THE API, WHEN PARALLELLY PROCESS CPU INTENSIVE TASKS - PYTHON 23
FIGURE 23:TEST RESULT OF PARALLELIZE HTTP REQUESTS USING PYTHON MULTIPROCESSING .. 24
FIGURE 24: THROUGHPUT COMPARISON OF EACH PYTHON BASED PARALLEL PROCESSING APPROACH.. 25
FIGURE 25: PROCESS AFFINITY USING TASKSET COMMAND .. 26
FIGURE 26: THROUGHPUT COMPARISON OF PYTHON BASED PARALLEL EXECUTION METHODS, WHEN PROCESS BIND TO A SINGLE

PROCESSOR CORE .. 26
FIGURE 27: COMPARISON RESULT OF PYTHON MULTIPROCESSING PARALLELISM WITH AND WITHOUT CPU BIND 27
FIGURE 28: JMETER REPORT DASHBOARD ... 28
FIGURE 29: JMETER REPORT, TRANSACTION PER SECOND ... 28
FIGURE 30: JMETER REPORT, RESPONSE TIME ... 29

file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154745
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154746
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154747
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154748
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154749
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154750
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154751
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154752
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154753
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154757
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154758
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154759
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154760
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154761
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154762
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154763
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154764
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154765
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154766
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154767
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154768
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154769
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154770
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154770
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154771
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154772
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154773
file:///C:/Users/sashika_rangoda/Documents/personal/project/thesis/examin/Thesis-V3.docx%23_Toc10154774

Abbreviations

iv

Abbreviations

IoT Internet of Things

CPU Central Processing Unit

API Application Programming Interface

http Hyper Text Transfer Protocol

RPC Remote Procedure Call

JVM Java Virtual Machine

GIL Global Interpreter Lock

OS Operating System

REST Representational State Transfer

Abstract

v

Abstract

Communication between software services become an essential requirement in modern

software industry. With the improvement of internet services, connecting existing software

services with each other and provide unlimited services via the internet to the end users

become a crucial requirement for modern businesses. Web services have been introduced as

the standard communication medium between software services and micro services-based

architecture which enrich the usage of web service. IoT services and increasement of smart

devices create high demand for web services. Due to those reasons, performance of web

services become very critical and crucial to the existing and new software services.

Web service performance can improve by distributing multiple instances among multiple

nodes where the approach is not always cost effective. Other possible approach would be

parallelly executes the web service requests. Multi-core architecture has been introduced to

execute computer programs parallelly in processor level. To get optimum performance from

this multi-core processors, computer programs should be able to execute parallelly at

processor cores level.

Multi-threaded and Multi-core based parallel execution techniques were mainly evaluated by

implementing prototype REST APIs for matrix multiplication. REST API performance impact

was evaluated against the processor affinity.

When processing complexity increases in serial processing REST API, their performance

(measured by throughput) decreases rapidly. When complexity increases for REST end points

where they have parallelly execution methods, their performance also decreases but

decrease amount is smaller by comparing to the serial processing. There is notable

performance gain for multi-process parallelly executions over the multi-threaded parallel

execution. Best throughput was achieved, when multi-core process binds to specific core of

the processor (applying processor affinity).

 Introduction

1

1 Introduction

Communication efficiency of two parties has been improved in 21 st century than any other

industry or technology. Today people are considering device to device direct communication

without human involving. Those devices might be vehicles, home equipment, sensors etc. This

much of communication efficiency has achieved with the improvement of internet and

hardware devices, especially mobile phones. And people are identified that, to get maximum

use of software product, it should be available as a service, where any other system can

interact over the internet. That enables less processing on end-point devices which helps to

build light weight user friendly mobile end devices. To interact between services, each

software service should have common medium to communicate irrespective of the

technology it was build. Web service has introduced as a standard way to communicate

between software services over the internet.

With the increasement of mobile devices and IoT devices, the demand for web services

increased exponentially. So that performance of critical web services will directly influence to

expand the other services capabilities. For instance, modern society prefers mobile banking

and online purchasing methods than any other payment medium, which makes payment

gateway APIs are more critical. So that, performance of payment gateway API services makes

significant influence on the growth of online payment transactions.

One of the most common approach to improve web service performance is, distribute web

service into multiple instances. But this approach is not economical for all the conditions.

Performance of the web service can obtain, improving the execution efficiency of background

algorithm as well. Impact of this execution efficiency in web service will be evaluated in this

study.

Generally, processor efficiency which is measured by clock speed, can improve the program

execution time. In single core processor, execution of programs happens sequentially. When

there are multiple programs to execute at same time, there is a latency added to the

execution due to context switching. Since clock speed of processors achieved to their

theoretical and physical limits, vendors invented new processor which is having multiple

processing cores. When there are multiple cores available in the processors, best

performance can be achieved by executing programs parallelly in each core of the processor.

In hardware level, there are two types of processors, multi-processors and multi-core

processors. In Multiprocessor systems contain multiple CPUs that are not on the same chip

whereas Multicore processors contain any number of multiple CPUs on a single chip.

Multiprocessor system has a divided cache with long-interconnects and the multicore

processors share the cache with short interconnects (refer Figure 1).

Introduction

2

Multicore processor can speed up processor intensive operations on large data sets by

segmenting those data sets. Each data segment processed by a core in the processor, which

enables parallelly process multiple segments of the data set.

1.1 Motivation

There are many web services developed and maintained by different organizations in various

domains. Recently, demand for those services has increased very rapidly. Some of those

services are not designed and developed to serve this much of user demand. Distributing the

service across many instances is the common approach to solve this problem. But that might

not be fully utilized resources like CPU, unless those programs are implemented using parallel

computing techniques. Increasing hardware capacity without utilizing their features is a

wastage of investment on those resources. Most of the latest CPUs are having multiple cores,

which supports parallel execution in processor level. Identifying the impact on web service

performance by applying parallel execution techniques will be helpful for decision makers to

enrich their solutions by utilizing optimum resources. And the motivation behind this study

also, evaluate possible approaches and motivate the community to follow these approaches

whenever it is applicable.

1.2 Objective

The objective of this project is to find a novel approach to analyze impact of applying parallel

computing techniques on web service performance optimization. The output of this research

is to produce an effective analysis of performance impact of different approaches of parallel

computing in web service implementation. Furthermore, it identifies the relationships

between web service efficiency and parallel computing techniques.

1.3 Scope

Parallelism can be implemented many ways. This study focuses on applying multi-core parallel

programming methods in web service domain. CPU intensive program (like matrix

multiplication) will be implemented using those identified methods. Study will focus on

Figure 1: Parallelism Techniques

Literature Review

3

identifying efficient way of integrating parallel programs into client requests (http request) in

application server. Other required implementation of web services like authentication,

security etc. will not take into the evaluation.

1.4 Contribution

This research produces efficient approaches of parallel processing which can be applied for

CPU intensive executions in web services. This would be the main contribution to computer

science domain which is expected to observe, by conducting this research study.

Existing libraries and frameworks are used to implement prototype designs. For instance,

framework like spring boot can be used to implement web services in java. Following industry

standard frameworks and libraries, make research outcome more valuable for the community

in enterprise application development. Hence, this research contributes not only improve

computer science methodologies but also community in software application development

as well.

1.5 Thesis Outline

Chapter 2 describes background and literature review about current parallel computing

techniques which are used in the field of web service. And current studies in multi-core

programming and their implementations in programming languages like java and python.

Literature review further carried out on, standard methods to evaluate web service

performance.

Chapter 3 describes prototype solutions for analyze research problem. In addition to that,

proposed approach for the implementing parallelism for web services is discussed further

throughout the chapter.

Next, chapter 4 implementation discusses about how the implementation is done for the

design described in chapter 3 and further describes the tools, techniques and algorithms used

for implementing the proposed approach.

Chapter 5 describes about the testing and evaluation phase how the testing and evaluation is

done for the proposed system in above chapters. And it is the process by which a system or

components are compared against requirements and specifications through testing. The

results are evaluated to assess progress of design, performance, supportability, etc.

Finally, in chapter 6, conclusion and future work section conclude the dissertation discussing

about how future work should continue.

2 Literature Review
Literature review was conducted to study and observe the existing research in problem

domain, parallelism techniques applied in web services, multi-threaded programming

concepts and their implementations, web service deployment impact on performance and

standard methods to benchmark performance of web services.

Literature Review

4

2.1 Problem Domain

It is critical to have efficient web services to improve overall performance of the applications.

As describe by the G M Tere1 et al [1], there are six important techniques which can be applied

to improve performance of Restful web services. Fast manipulation of strings, streaming large

representations, compressing SOAP response, partial representation, using caching

techniques and using conditional methods are the possible techniques which are applied to

improve performance of Restful web services.

REST and SOAP based web services are platform and programming language independent,

and both architectures have loosely coupled client and server [3]. RESTful web services are

web applications build upon the representational state transfer architecture. They expose

resources through web URIs, and use the four main HTTP methods to create, retrieve, update

and delete resources [10]. REST technology is generally known as more robust Simple Object

Access Protocol (SOAP) technology because REST uses less bandwidth and has very less

complexity when it compares with SOAP.

Service oriented architecture became most widely used standard paradigm to develop

business applications over the internet, like Business to Business (B2B) and Business to

Consumer (B2C) applications. These applications mainly based on web service interactions

which represent objects, whose methods can be called through internet. This required to

serialize and deserialize objects or data and it is a costly process in term of performance of

the web service. By transparently parallelizing web service calls on multicore systems using

OpenMP, web service applications can be efficiently parallelized on multicore systems [4].

2.2 Parallelism Techniques in Web Services

According to the S´ebastien Salva et al [4] there are two main approaches to parallelize web

service request in multicore systems, using task pool paradigm and pipeline paradigm. Having

a task pool to parallelize the web service requests is a basic method where one task represent

one web service call. In this solution, if n threads are available, n calls can be easily done in

parallel, assuming n cores are available.

In pipeline paradigm, web service call steps are executed successively and completely

independent. Research has identified four stages of web service request, which can execute

parallelly in pipelined method.

• Serialization stage (S)

• Web service call stage (C)

• Deserialization stage (D)

• Stage for the persistency (P)

This approach requires at least four cores in the processer to avoid thread interleaving and

achieves a better use of resources. After analyzing web service response time over the

Literature Review

5

threads, they have shown, pipeline approach gives much better results over thread pool,

specially when higher number of threads are used (refer Figure 2).

Pipeline parallelism organizes a parallel program as a linear sequence of stages and each stage

processed elements of a data stream passed to the next stage. Pipeline parallelism is a well-

known and best suited parallel programming technique for streaming applications even

though it can apply many use cases [15]. In “on-the-fly” pipeline parallelism, structure of the

pipeline emerges as the program executes rather than being specified before. Which allows

programmer to specify a pipeline, where the structure is determined during the pipeline’s

execution. This model can be applied in web service implementation as well.

Figure 2: Latency Evaluation [4]

Literature Review

6

Parallel processing can obtain by dividing program into multiple web services and client

request will be served by referring many back-end webservices (refer Figure 3) by the

application server [11]. This approach more towards to the distributed program. Dividing

program into multiple web services added more communication latency and when one

service depends on another, it cannot process parallelly. When individual web service does

not able to process independently without depend on any other service, that will not be able

to give efficient execution to the web application which invoke by the client. Building many

web services requires many computational resources and applying parallel programming

concepts to enhance execution efficiency of individual programs do not evaluated in the

study.

2.3 Multi-threaded programming concepts & frameworks

Performance of web services has improved by using programming languages which has fully

supported event-driven architecture [5]. Node.JS is one such language which has hidden

event-loop support behind the convenient programming interface [6] which allows the

developer to treat event-driven programming as a set of callback function invocations, taking

advantage of the functional nature of the language. Main drawback of this model is, whenever

it had to depend on some legacy back-end web service which has high latency, whole process

needs to be wait due to the single-threaded, sequential event loop architecture. There is

another major limitation in this event driven framework, which is impossibility of sharing a

common memory space among processes. Programming model of Node. Scala has introduced

to address above limitations which has features of a parallel programming model based on

Figure 3: The Proposed Model for Parallel Execution [11]

Literature Review

7

asynchronous call-back invocations. This framework enables blocking methods to invocate

without blocking the service and concurrent requests running on different threads while

safely sharing the state.

Java is a widely used and more popular programming language which has numerous high-

performance implementations [8]. Java has two ways of parallel execution mechanisms,

Remote Method Invocation and java threading API. From java 1.5 onwards the concurrent

package provides more support for multithreaded programming.

Spring batch is a lightweight comprehensive batch processing framework for java-based

enterprise application development [12]. When batch processing applies to online user

interactions such as web service, data should be accessible simultaneously and it should be

able to process within few seconds. To achieve this, spring batch uses parallel processing

which is implemented using additional threads to process in parallel. Spring batch uses two

modes of parallel processing, single process, multi-threaded and multi-process. There are four

main categories of parallelism spring batch supported [12].

• Multi-threaded Step (single process)

• Parallel Steps (single process)

• Remote Chunking of Step (multi process)

• Partitioning a Step (single or multi process)

There are suitable problems which can be applied in each method. And integrating this

parallel batch processing methods might not be suitable for all web service requirements

unless web service requires to query large back-end database or processing through many

files. In such scenarios, this will give performance improvement to the web service.

OpenMP is an industry standard for shared memory parallel programming [9]. Java has its

own native threads model for shared memory programming, but it has some drawbacks

which impact to the performance when compare with the OpenMP standard. To get

maximum efficiency from shared memory multi-core architecture, it is required to execute

exactly one thread per processor CPU and to keep these threads running during the whole

lifetime of the parallel program. To achieve this, it is required to have runtime library to

dispatch tasks to threads and provide efficient synchronization between the threads. This has

not supported or implemented by java native thread model [9].

Multithreading and multiprocessing are two main parallel models used by programming

languages to give ability of parallelly execute programs [18]. The key difference between

multiprocessing and multithreading is that multiprocessing allows a system to have more than

two CPUs added to the system whereas multithreading lets a process generate multiple

threads to increase the computing speed of a system. Multiprocessing system executes

multiple processes simultaneously whereas, the multithreading system let execute multiple

threads of a process simultaneously [19]. Based on these two approaches programming

languages built their parallel execution methods. For instance, Java supports multithreading

approach, whereas python supports multiprocessing approach.

Literature Review

8

Multithreading programs in python is little bit tricky since python interpreter has a thread-

safe mechanism of global interpreter lock. An interpreter that uses GIL always allows exactly

one thread to execute at a time, even it runs on a multi-core processor. Due to this behavior

python is restricted to use single OS thread, which cannot make use of the multiple cores and

processors available on modern hardware. Having multiple threads to execute a program

does not give a performance gain, since eventually all threads are executed as a serial process

in OS level. As an alternative solution for parallel processing, python has multiprocessing

library which provides simple API for the use of parallelism based on processes.

2.4 Impact of application deployment in web service deployment

Webservice response time varies according to their deployment. It can gain some potential

latency benefits across three popular cloud infrastructure services, Amazon EC2, Google

Compute Engine (GCE), and Microsoft Azure [2]. Study has discovered, the RTT (Round Trip

Time) of webservice request can reduce up to 20% when a webservice is deployed across the

three cloud services compared to deployments on one of these cloud services. They have

observed three significant observations for this latency benefits. When webservices shift from

single-cloud to multi-cloud deployments, their routing inefficiencies which exist user and their

nearby cloud data center is vary. When web service is hosted multiple cloud services,

whatever datacenter which is closed to the user can serve to the request quickly. It also

discovered that, when users in several locations will continue to incur RTTs greater than

100ms even when webservices span three large-scale cloud services.

2.5 Benchmark performance of a web service

Over the past decades many performance modeling formalisms and prediction techniques for

software architectures have been developed but there is lacking a performance model to

predict the performance of a software system. Measuring performance of a software,

normally requires extensive experience and complex time-consuming manual steps [3].

Research has proposed a query language, Descartes Query Language (DQL) which is a

language to express the demanded performance metrics for prediction as well as the goals

and constraints in the specific prediction scenario. It reduces the manual effort which heavily

required in software performance testing.

Apache Jmeter is an open source java-based web application load testing tool [13]. It can use

to test performance on static and dynamic web resources. As shown in Figure 4, Jmeter can

simulate number of users for web application. It has ability to load and performance test

many different applications including SOAP or REST webservices

Analysis

9

3 Analysis
Importance of high performed web services and revolutionized web service architecture from

RPC to micro services has discussed in initial part of the literature review. Many approaches

are taken into improve web service performance. Most of them are focused on distributed

technologies. Applying parallel processing techniques are limited in web service domain even

though there are many techniques and implementations are available. The use of pipeline

parallelism in core web service components like serialization, deserialization, http request call

etc. are evaluated in previous studies. But there are many frameworks and tools are available

for web service implementation, which has those capabilities build-in. The impact on applying

parallelism in business logic of web service has not thoroughly evaluated.

With the technology improvement of computer hardware, venders are invented multicore

processors which enhance parallel executions in hardware level as well. It is a kind of

extended architecture of hyperthreaded into hardware level. The OpenMP API uses this

shared memory multicore processors for executing programs parallelly. All programming

languages does not fully support to this OpenMP technique, and java has its own

implementation for OpenMP like parallelism.

Parallelism can be done in two ways, dividing whole set of large data set into pieces and

process each piece parallelly. In this scenario all instances are doing same task. Other way of

doing is, divide whole process into multiple tasks and each task perform parallelly, called as

pipeline parallelism. Both approaches are possible to use with web service and their suitability

will decide depends on the processing task.

Since this study it is mainly focused on how parallelism can improve performance of web

service. One of those parallel approach should evaluate with distributing multiple instances

of web service.

Figure 4: JMeter Performance Test Design [14]

Design

10

4 Design
To evaluate better parallelism approach for web service, it is required to build prototype

implementations and measure their performance. Since each implementation is going to

compare each other, it is required to implement similar kind of restful API in each approach.

4.1 Introduction
To analyze the impact of pipeline parallelism and data parallelism of web service in multi-core

processor, both approaches are implemented as prototypes and their response times, was

evaluated. As a use case for this comparison, the matrix multiplication was used. The

prototype web service gives result of multiplying two matrixes with any number of rows.

Limiting fix number of matrixes will reduce the complexity of the web service but allowing

any number of rows provide enough work load to compare the two approaches.

4.2 Prototype Design
Following steps are executed whenever client request comes to the designed API endpoint.

Generally, request goes through validation process, multiplication process and response

generation. Logical flow of web service, which is in Figure 5, elaborates logical view of the

API.

Prototype has implemented using java and python languages. Both languages have built-in

libraries for parallel processing, but they have used different techniques for their parallel

processing. Implementing same Rest API end-point in both languages, enables to evaluate

their parallel processing efficiency.

Figure 5: Web Service Request Flow Chart

Design

11

Main sub tasks of each process can be listed as follows.

• Request Validation

There are two main validations should be taken in place prior to begin any processing.

▪ Validate json request body

▪ Validate two matrixes

Incoming request should have valid json request body as described by the RestFul web

service API. To multiply two matrixes, the number of columns of the 1st matrix must

be equal to number of rows of the 2nd matrix. Requests which satisfy both conditions

are taken into processing otherwise those requests are marked as failures.

• Request Processing

Multiplying two matrixes will be performed by this task. Implementation of this task

depends on the parallelism method. To apply data parallelism, this task should be

implemented as a sequential program. To apply pipeline parallelism, this should be

divided into multiple sub processes.

Applying generic algorithm in combinational problem like tuple multiplication can

increase the efficiency of execution [16]. The generic algorithm can derive pipelines

for matrix multiplication and shortest paths computation. The algorithm which

describes in [16] for n x n matrix multiplication has complexity of O (n3).

• Success / Failure Response

Body of Response message will create based on the either result of request validation

or request processing steps.

• Send Response

Adds other required parameters like, http code, headers etc. to the message body and

generated valid json response message to the client request.

Data parallelism can be applied for multiplication process of the matrix. Value of each element

in result matrix, is independent from the other elements. So that production of row and

column can calculate parallelly. To observe the difference, sequential processing algorithm

also implemented as shown in Figure 6.

Design

12

For concurrent processing, java provides multi-threaded execution. When number of tasks

are not static and very large, using java threads for concurrent execution might be very risky

approach. If there are defined number of threads, whenever the number of concurrent

execution tasks go beyond that, it will fail. If it allows to create any number of threads, then

there is a possibility for JVM to go out of memory. Java provides thread pool, which is much

better approach for this scenario.

As shown in Figure 7, java thread pool has proposed to implement parallel execution of two

matrixes. The number of threads in the pool is equal to number of rows in matrix one, but it

will be fixed when row number goes beyond to 100. This will eliminate, JVM is going out of

memory when ever the request comes with large matrix.

Even though programmatically parallelize the program into multiple threads, those threads

are waited for processor scheduler to pick them for execution in a core of the processor.

Schedular is an operating system owns program, who decides which process is going to

execute and how long will it allow for execution at the processor level. This is totally beyond

the control of JVM or any other program level.

Figure 7: Thread Pool based Design

Figure 6: Design of Single Threaded Implementation

Design

13

The impact of this scheduler process can be evaluated when there is a dedicated core

available for the program execution. Figure 8 shows the binding process of the program to

processor core by using java OpenHFT [17] library.

4.3 Python Based Multiprocessing Implementation

Python has multiprocessing module which includes a very simple and intuitive API for dividing

work between multiple processes [20]. Flask is a lightweight but very powerful python web

framework which can use to build RESTful web service in minimum steps. So that python

multiprocessing module and flask web framework has selected to implement the prototype

implementation.

Figure 8: Design of Process Binding Implementation

Figure 9: Python Rest API design with multiprocessing based parallel implementation

Design

14

As shown in Figure 9, apache web server is deployed in front of flask rest API service since it is

recommended deployment to get maximum performance from flask web framework.

Accepted API definitions are listed below.

Accepted json request body is shown in Figure 10.

{
 "requestId":2238,
 "matrixOne":{
 "columnCount":3,
 "rows":[
 {
 "value":"1,2,3"
 },
 {
 "value":"4,5,6"
 }
]
 },
 "matrixTwo":{
 "columnCount":2,
 "rows":[
 {
 "value":"7,8"
 },
 {
 "value":"9,10"
 },
 {
 "value":"11,12"
 }
]
 }
}

Figure 10: Inbound Json Request

RequestId should be unique for each request and response message will map with this id. Two

matrixes attach as separate objects and each row of the matrix should be attach in the order

of matrix.

Success response (in Figure 11) and failure response (in Figure 12) are listed below.

{
 "requestId":"2238",
 "rows":[
 [
 58,
 64
],
 [
 139,
 154
]
]
}

Figure 11 Outbound Json Response – success

Evaluation

15

Failure Response

{
 "requestId": 2243,
 "errorCode": "001",
 "errorMessage": "Invalid number of columns and rows for

multiplication"
}

Figure 12 Outbound Json Response – failure

4.4 Prototype Source Code
Prototype implementation is available in github, which is an open source repository. It

delivers as open source project, where community can contribute near future.

• Url: https://github.com/sashikaR/mcs

Project build steps and other required third-party software installations are described in

README guide of the project.

5 Evaluation
Performance of web service measures using the TPS (transactions per second) or throughput.

Throughput gives number of client requests which can process and success within given time

period. To get higher value for this threshold, it is essential to have less response time for

client requests. So that response time (or latency) takes as the main measurement to compare

the performance of web services.

Using load testing tool like Apache Jmeter, which is well recognized, industry standard

performance testing tool will standardize client traffic generation process. Jmeter gives

throughput and average latency with reliable and accurate figures. Analyzing statistics which

gives by Jmeter report, the impact of parallelizing matrix multiplication over sequential

execution process can be evaluated.

In this research also, response time and throughput of each web service implementation,

takes as the measurements to compare their performance. Utilization of resources like CPU,

Memory disk I/O etc. also collect as the test artifacts. These statistics are important to

evaluate the cost of each web service to serve higher number of client requests.

As a first phase of the evaluation process, system accuracy will be tested. When system

provides accurate results consistently across all implementations, their performance will be

tested, as the second phase of the evaluation process.

5.1 Functional Test
Since prototype implementations are not having complex algorithms, unit tests will cover the

functional test of the system. Junit has used to automate unit tests and those tests are

https://github.com/sashikaR/mcs

Evaluation

16

executed when build the system using apache maven build tool. So that accuracy of each

implementation will be tested prior to their performance evaluation.

5.2 Performance Test
In order to evaluate the impact on restful web services by applying multi-core parallel

execution techniques, response time of the web service request will be analyzed. Response

time depends on execution efficiency of the program. It can evaluate either hitting large

number of requests or increasing the processing complexity. Processing complexity will

achieve by increasing the number of rows and columns of the two matrixes which are going

to multiply. Following performance test scenarios are identified, which can use to evaluate

efficiency of each parallel processing approach of restful web services.

5.2.1 Performance Test Scenarios

Objective of the test T-A01 to T-A03 is, evaluate web service performance of each approach

when number of client requests (concurrent users) are increased. Same behavior evaluates

when processing complexity of the matrix getting increase as well. Analyzing results of

following test scenarios (in Table 1), it can be decided how each approach behaves when they

are getting higher number of requests with different processing complexities.

 Table 1: Performance Test Scenarios

Test ID Rest API End Point Concurrent Users Matrix Complexity

T-A01 S / M / AF 10 Low

T-A02 S / M / AF 30 Low

T-A03 S / M / AF 60 Low

T-B01 S / M / AF 10 Medium

T-B02 S / M / AF 30 Medium

T-B03 S / M / AF 60 Medium

T-C01 S / M / AF 10 High

T-C02 S / M / AF 30 High

T-C03 S / M / AF 60 High

T-D01 S 10 Low

T-D02 S 10 Medium

T-D03 S 10 High

Index key table (refer Table 2) is shown below.

Table 2: Index

Key Value

S Rest API Implementation 1, without parallel execution
model

M Rest API Implementation 2, with java thread pool-based
execution model

AF Rest API Implementation 3, with binding execution
process to processor core

Low Complexity Matrixes with 30 X 20 and 30 X 20

Evaluation

17

Medium
Complexity

Matrixes with 1000 X 50 and 1000 X 20

High Complexity Matrixes with 2000 X 50 and 2000 X 20

5.2.2 Data Collection

To provide detail reliable analysis, following measurements are collected by the time tests are

executed.

• Average response time

• Throughput

• CPU utilization

• Memory usage

Jvm monitoring tools like jconsole, jmc, hawtios etc can be used to verify thread blocks and

Jvm memory usage in each implementation.

5.2.3 Tools

There are many tools available for software performance testing like Apache Jmeter,

LoadRunner, The Grinder etc. Out of those tools, apache Jmeter is used as the performance

test tool, because it is an open source tool which has built-in support for Rest API load testing.

It gives statistics like average latency, throughput etc with offline html reports including

graphical representations.

To measure CPU, Memory etc, linux SAR (System Activity Report), command line tool will be

used. SAR is a system monitor command, used to report on various system loads, including

CPU activity, memory/paging, interrupts, device load etc.

5.2.4 Design of Deployment

All web services are deployed in one web container, which is provided by spring boot

framework and multiple rest web services are differentiated by their resource url. Figure 13

illustrates how each REST Web Service deployed and client requests are going to generate.

Results and Observations

18

6 Results and Observations
Results are observed separately for Java based implementations and Python based

implementations. Java based matrix multiplication REST API services are tested and compared

by increasing number of concurrent users and increasing the complexity of matrix

multiplication. And those results are compared with the results which is taken from java

affinity-based approach.

30.3 34.4 28.6

328

871

2088

0

500

1000

1500

2000

2500

M-R30-U10 M-R30-U30 M-R30-U60

Java Thread-Pool

Throughput Avg. Latency

Figure 13: Performance of java thread-pool, when no. of users increased

Figure 14: Performance of java thread-pool implementation, when no. of users increased.

Results and Observations

19

Figure 15: Performance of single threaded implementation, when no. of users increased

Figure 16: Performance of process binding to specific core, when no. of users increased

As shown in Figure 14, when number of concurrent users are increased (from 10 – 30 to 60),

there is no significant improvement in throughput. But average latency has increased

significantly. Even though internal thread-pool has 30 threads to serve for each request to

process, spring boot uses singleton pattern to serve http request. Which can be made many

requests were queued inside java web container.

When compare with other approaches, single threaded sequential execution gives higher

throughput in this complexity where each matrix of the request is having 30 rows (refer Figure

15). When number of concurrent users are increased, throughput is decreased by a small

number. Which shows that, some http requests are delayed at web application server. That

can be happened when each request processing time is higher than the incoming requests

rate.

231.8
217.3 220.5

42

132

260

0

50

100

150

200

250

300

S-R30-U10 S-R30-U30 S-R30-U60

Java Single Thread

Throughput Avg.Latency

63.1
117.9 97.3

157

253

615

0

100

200

300

400

500

600

700

AF-R30-U10 AF-R30-U30 AF-R30-U60

Java Affinity

Throughput Avg. Latency

Results and Observations

20

Throughput of java affinity is higher than the thread-pool implementation (refer Figure 16).

Even though it is less than single threaded implementation, throughput has increased, when

number of concurrent users are increased. There is some overhead added to the process

when binding it to the core of the processor. This is not directly managed by the JVM. JVM

access operating system libraries via java native threads. Execution time for these processes

also added to the latency of client request.

As shown in Figure 17, throughput of single threaded implementation has decreased when the

complexity of the matrix multiplication increased (number of rows from 30, 200,600,1000).

This behavior is proved that, whenever the task requires higher CPU processing power,

performance of sequential program decrease.

54.6 43.1 7.1

181 229

1402

0

200

400

600

800

1000

1200

1400

1600

S-R1000-U10 AF-R1000-U10 M-R1000-U10

Performace against of higher complexity

Throughput Avg.Latency

Figure 18: Performance comparison of each implementation against higher complexity.

231.8

169

126.6

54.6
42

59 66

181

0

50

100

150

200

250

S-R30-U10 S-R200-U10 S-R600-U10 S-R1000-U10

Performance of Single Thread with Higher
Complexity

Throughput Avg.Latency

Figure 17: Performance of single threaded implementation, when processing complexity increased

Results and Observations

21

Figure 18 shows how each implementation behave when matrix has 1000 rows. When

complexity goes higher, throughput gap between single thread and java affinity goes lower.

Since JVM cannot afford thread pool with equal number of rows in matrix, it has given 100

thread pool size as the maximum value.

6.1 Analysis of Python Based Implementation
Python based matrix multiplication REST API services are also tested and compared by

increasing number of concurrent users and increasing the complexity of matrix multiplication.

Python uses multi processes for their parallel executions instead of multi-threaded approach

which is used by Java. Python multi-process has applied in two ways to evaluate web service

performance.

1. Parallelly processed tuple multiplication (column and row of the matrix) in each web service

request.

2. Parallelly processed incoming HTTP request, where matrix multiplication process sequentially in

each request.

Apart from above approaches, linux based affinity (process binding to specific processor core) also

tested with python-based implementation.

As shown in Figure 19, single threaded implementation’s throughput has increased when

number of user threads increased from 10 to 60. Since response time also increased, there is

a maximum value for this API’s throughput. After that it will decrease even though number of

users increased. When compare with java-based implementation, there is no significant

difference in term of throughput of the web service.

222.9
245.5 239.9

43

121

249

0

50

100

150

200

250

300

S-R5-U10 S-R5-U30 S-R5-U60

Single Thread - Python

Throughput Avg. Latency

Figure 19: Single Threaded Implementation - Python Module

Results and Observations

22

When multiplication complexity increases, throughput of the API goes down even number of

user threads are increased from 10,30 to 60. In low complexity (Figure 20), throughput has

increased when number of users are increased. So that we can identify that how much of

impact can be happened whenever the required processing power increased.

When compare with same result of single thread implementation, python multi-process

library gives less performance when implementation has less processing requirement. That

might be mainly due to the parallel processing overhead (not being truly embarrassingly

parallel), which is added additionally to the serial matrix multiplication. The throughput of API

180.2
162.2 176.5

55

184

388

0

50

100

150

200

250

300

350

400

450

S-R15-U10 S-R15-U30 S-R15-U60

Single Thread with Higher Complexity Python

Throughput Avg.Latency

46 54.2 53.4

386

551

1119

0

200

400

600

800

1000

1200

1400

M-R5-U10 M-R5-U30 M-R5-U60

Multi-Processes Model
Python

Throughput Avg.Latency

Figure 20: Performance of single thread implementation, when increasing the complexity - Python
Module

Figure 21: Parallel processing implementation with multi-process, Python module

Results and Observations

23

also does not increase significantly with the increasement of number of user threads (refer

Figure 21).

Figure 22 illustrates the performance of the web service, when number of user requests are

increased with high CPU intensive tasks. Throughput is decreased, but not in a significant

amount as in serial processing. Approximately there is a loss of 50 request per second in serial

processing, when its complexity of the processing increased. But in parallel processing, there

is around 15 request per second loss when its complexity of the processing increased in same

amount. This reveals that, parallelize algorithm between multiple cores does not give

significant performance improvement when it requires high CPU power. So that, instead of

parallelize program, the incoming http requests to python flask web server, processed

parallelly among the available CPU cores.

38.5 36.6 35.1

258

816

1701

0

200

400

600

800

1000

1200

1400

1600

1800

M-R15-U10 M-R15-U30 M-R15-U60

Multi-Threaded - Python
High Complexity

Throughput Avg.Latency

Figure 22: Performance of the API, when parallelly process cpu intensive tasks - Python

Results and Observations

24

As shown in the Figure 23, multiprocessing http requests gives highest throughput when

increasing the complexity of processing power. Following throughput comparison chart

illustrates how each parallel processing approach behave, when it gets different levels of

complexities for processing.

When comparing each approach, single threaded processing which does not have any

parallelism, gives highest throughput, when the processing complexity is lower. (in our

example, less than 200 rows in the matrix). But when processing power increases, (in this

example, number of rows in the matrix from 200, 600 to 1000) multiprocessing incoming http

request to web server gives highest throughput over the single processing. And it is important

to note that, applying multiprocessing approach to algorithm (in this example, parallelize

multiplying each matrix row and column) does not added significant advantage as shown in

figure 23. The main reason might be, when multiprocessing approach applies in matrix

multiplication, it requires shared memory variable to hold the value of multiplied tuple. And

same time, there are more processes queued in this approach because of the number of

available cores are less than the required number of processes for each request. So that

latency which adds to the data communication between cores and queueing many processes,

makes overall processing much slower, which impacts to the API throughput.

125.1

72.8
36.2 23.1

79

138

276

431

0

50

100

150

200

250

300

350

400

450

500

ps-R30-U10 ps-R200-U10 ps-R600-U10 ps-R1000-U10

Multiprocessing - Http Request

Throughput Avg.Latency

Figure 23:Test result of parallelize http requests using python multiprocessing

Results and Observations

25

This result yields that, applying parallel processing among the processor cores always does

not give the efficient result when processing web service request. It depends on the

processing complexity of the algorithm, shared memory usage and number of queued

processes.

Above observation makes a strong argument to evaluate web service behavior when its

execution binds to a single core of the processor. When execution binds to a specific core of

the processor, it does not need to depend on any other processor core or shared memory,

when executing parallelly. But it creates heavy workload to the single core and remaining

cores will be idle from the processing.

Linux operating system has command line tool (taskset) which can attach process to specific

core of the processor. As shown in Figure 25, taskset command used to bind python web

service process to processor core-0.

R-30 R-200 R-600 R-1000

Multiprocess-Loop 37.4 18.3 8.1 5.2

Single Threaded Process 159 47.8 18.1 10.7

Multiprocess-HttpRequests 125.1 72.8 36.2 23.1

0

20

40

60

80

100

120

140

160

180

Throughput Comparison
when complexity increases

Figure 24: Throughput comparison of each python based parallel processing approach.

Results and Observations

26

Same performance test which is executed to compare web service throughputs of python

multiprocessing, has been executed after python process bind to single processor core.

Results are graphed as shown in Figure 26.

217.4

84.1

53

84.9

38
24.5

323.9

171.3

120.9

0

50

100

150

200

250

300

350

R-200 R-600 R-1000

Process Affinity - CPU 0

SingleThreadProcess Multiprocess-Loop Multiprocess-HttpRequests

Figure 25: Process affinity using taskset command

Figure 26: Throughput comparison of python based parallel execution methods, when process bind to a single processor
core

Results and Observations

27

Python multiprocessing-based matrix multiplication implementations are performed much

better when its bind to single core rather than it allows to use any of available cores.

The Figure 27 shows, how best parallelism approach of python multiprocessing model behave

when its process bind to single CPU core. Even though throughput gradually decrease when

processing complexity increases, CPU bind approach gives much better result in each test

cycle. Which indicates that, shared memory access time and process wait time for a CPU is a

costly approach whenever web service has an algorithm which requires shared memory for

its execution.

6.2 Jmeter Analysis Report

Apache jmeter 5.x.x version gives functionality to generate offline report, based on the test

result. Since, generating html report is CPU and memory intensive task, jmeter generates

reports after the test execution. Sample report’s dashboard (refer Figure 28), Transaction Per

Second analysis graph (refer Figure 29) and Response Time analysis graphs (refer Figure 30) are

listed below. The attached details of the report are taken from the test of parallel processing

with 10 jmeter threads with 30 rows in the matrix.

Jmeter Dashboard

As shown Figure 28, Jmeter dashboard shows test duration, pass and fail number of requests,

detail summary of throughput etc. This overview makes the decision-making process simpler,

by verifying threshold values are within the accepted range. Transaction Per Second graph

(in Figure 29) gives the visibility of consistency of throughput, throughout the test execution

duration. Generally, response time analysis graphs (in Figure 30) are helpful to troubleshoot

issues and compare performance of web requests, and in this study, it can be used for

evaluating REST API performance. When majority of the requests are receiving response time

in same range, that API performs very consistently. Even though final throughput of the API

Figure 27: Comparison result of python multiprocessing parallelism with and without CPU bind

323.9

171.3

120.9

72.8
36.2 23.1

0

50

100

150

200

250

300

350

R-200 R-600 R-1000

R
ES

T
A

P
I T

h
ro

u
gh

p
u

t

Rows in Matrix

Comparison of Python Multiprocessing with &
without CPU Bind

Multiprocess-HttpRequests-cpu0 Multiprocess-HttpRequests-All-cpu

Results and Observations

28

is higher than the other APIs, when its response time fluctuates unevenly (without having bell

shape curve) that API implementation can not be recommended over the other APIs.

Figure 29: Jmeter Report, Transaction Per Second

Figure 28: Jmeter Report Dashboard

Results and Observations

29

Figure 30: Jmeter Report, Response Time

Conclusion and Future Work

30

7 Conclusion and Future Work
This study has been opened new aspect to examine when there is a requirement to improve

performance of a web service. The efficiency of each parallel execution method against the

complexity of execution algorithm, has discovered. The possible approaches to maximum

utilization of CPU cores for the program execution and the amount of efficiency which can be

obtained through that method also elaborated and discussed.

Following approaches of web service implementations are evaluated against the increasing

number of users and increasing the processing complexity of algorithm.

• Java based single threaded sequential processing

• Java based parallel processing using multi-thread pool-based implementation

• Single core process binding (java affinity)

• Python based single process

• Python based multiprocessing, algorithm level

• Python based multiprocessing, http request

• Linux process binding

It is observed that, in each case whenever processing complexity increases, the web service

throughput is decreased. But amount of decrease is vary according to the approach. Best

result has observed when python web service process binds to a specific core of the

processor. When there are more CPU cores available, binding to a specific core would be a

resource wastage. In such cases, there will be two possible approaches to consider. Deploying

multiple instances of same REST API service, where each instance binds to a specific core of

the processor. Otherwise program should be able to process parallelly such a way that, each

parallel process does not depend on other process, specially sharing the data.

Web service can give optimum result when it is able to process incoming http requests

parallelly among the cores of the processor instead of creating multiple threads to process.

Unless there is a data sharing between parallel executions, creating multiple threads for

redundant work much slower than creating multiple processes, where each process can

execute in different core of the processor. Because of that python multiprocessing library

gives advantage over the java multi-threaded pool-based implementation.

It is also discovered that, efficiency of parallel execution depends on the complexity algorithm

and CPU processing power. So that good assessment of required CPU processing power per

request and expected number of requests per second, are the main pillars of selecting

suitable parallel execution model for a web service.

When ever there is a requirement to improve web service performance by optimizing its

execution on multi-core environment, it is recommended to test and evaluate results by

binding web service instance into specific core of the processor together with other

approaches.

Conclusion and Future Work

31

In future, it is expected to have web service frameworks which can dynamically select suitable

API endpoint to process by analyzing the web service API request complexity. For instance,

whenever there is an API request with large number of rows in matrix, it will select parallel

execution method otherwise it will select sequential method. Combination of both

approaches will give most efficient response for many user requests.

As a continuation of this research or get maximum benefits out of this study, it is suggested

to study and build a general framework, which can support parallelism and processor affinity,

irrespective of business logic implementation.

 References

32

8 References

[1]. Tere G.M.; Mudholkar R.R.; Jadhav B.T. (2014), Improving Performance of RESTful Web

Services, IOSR Journal of Computer Science (IOSR-JCE) e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 12-16, (ICAET-2014)

[2]. Zhe W.U.; Harsha V. Madhyastha, Understanding the Latency Benefits of Multi-Cloud

Webservice Deployments, April 2013 ACM SIGCOMM Computer Communication Review:

Volume 43 Issue 2, April 2013

[3]. Fabian Gorsler; Fabian Brosig; Samuel Kounev, Performance Queries for Architecture-

Level Performance Models,Proceedings of the 5th ACM/SPEC international conference on

Performance engineering, March 2014 ICPE '14

[4]. S´ebastien Salva; Cl´ement Delamare; C´edric Bastoul3, Web Service Call Parallelization

Using OpenMP

[5]. Daniele Bonetta; Danilo Ansaloni; Achille Peternier; Cesare Pautasso; Walter Binder,

Node.Scala: Implicit Parallel Programming for High-Performance Web Services, University of

Lugano (USI), Switzerland

[6]. Tilkov, S.; Vinoski, S., Node.js: Using JavaScript to Build High-Performance Net-work

Programs. Internet Computing, IEEE 14(6), 80{83 (2010)

[7]. Michael Klemm; Ronald Veldema; Matthias Bezold; and Michael Philippsen, A Proposal

for OpenMP for Java

[8]. R. Veldema; R. F. H. Hofman; R. A. F. Bhoedjang; H. E. Bal., Runtime optimizations for a

Java DSM implementation. In 2001 joint ACM-ISCOPE Conf. on Java Grande, pages 153–162,

Palo Alto, CA, USA, June 2001.

[9]. J. M. Bull; M. E. Kambites, JOMP - an OpenMP like Interface for Java

[10]. Roy Thomas Fielding, Architectural Styles and the Design of Network-based Software

Architectures, 2000

[11]. Alp Kut; Derya Birant, An Approach for Parallel Execution of Web Services, Department

of Computer Engineering, Dokuz Eylul University

[12]. Docs.spring.io. (2018). 1. Spring Batch Introduction. [online] Available at:

https://docs.spring.io/spring-batch/trunk/reference/html/spring-batch-intro.html [Accessed

1 Sep. 2018].

[13]. Jmeter.apache.org. (2018). Apache JMeter - Apache JMeter™. [online] Available at:

https://jmeter.apache.org/ [Accessed 8 Sep. 2018].

[14]. Guru99.com. (2018). [online] Available at: https://www.guru99.com/jmeter-

performance-testing.html [Accessed 4 Sep. 2018].

References

33

[15]. I-Ting Angelina Lee; Charles E. Leiserson; Tao B. Schardl; Jim Sukha; Zhunping Zhang, On-

the-Fly Pipeline Parallelism

[16]. Per Brinch Hansen, A Generic Multiplication Pipeline, July 1991, School of Computer and

Information Science Syracuse University Syracuse, New York.

[17]."OpenHFT/Java-Thread-Affinity", GitHub, 2019. [Online]. Available:

https://github.com/OpenHFT/Java-Thread-Affinity. [Accessed: 29- Apr- 2019].

[18]. Wltrimbl.github.io, 2019. [Online]. Available: https://wltrimbl.github.io/2014-06-10-

spelman/intermediate/python/04-multiprocessing.html. [Accessed: 01- May- 2019].

[19]. "Parallel Programming in Python with ease", The Nadig Blog, 2019. [Online]. Available:

http://madhugnadig.com/articles/parallel-processing/2017/01/25/parallel-programming-in-

python-with-ease.html. [Accessed: 01- May- 2019].

[20]. "16.6. multiprocessing — Process-based “threading” interface — Python 2.7.16

documentation", Docs.python.org, 2019. [Online]. Available:

https://docs.python.org/2/library/multiprocessing.html. [Accessed: 01- May- 2019].

