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Abstract

Since genomic data exploration became an important area with the completion of the Human
Genome project, the tools and techniques that were used in genomic context were improved.
These tools and techniques for data generation has increased the volume of data available to
researchers and it is being increasing rapidly. However the high dimensional nature of these
data make it difficult to analyze the presented data and make valuable conclusions or

predictions.

These data are presented in different types of formats with several parameters in different data
sources. Thousands of DNA combinations have been identified as indicators of susceptibility
to specific diseases. Categorizing these data using there similarities which can be a hidden

feature, will lead to reveal some important factors of these data collections.

Clustering is one of the major method is been used for data analyzing. In this study | present a
novel approach to cluster the high dimensional genomic data in order to make important and
valuable predictions on available data by taking into account the annotated information about

genes on prostate cancers from online databases such as cBio portal.

These data has different characteristics as numerical, categorical, sparse and dense. Hence
different normalizing methods and different clustering approaches. These different approaches
were carried out having a base of three main clustering algorithms which are K-means,
Hierarchical clustering and DBSCAN clustering. These clustering algorithms were used in
different procedures using several dimensional reduction methods, different data normalizing
methods. Each approach were evaluated using different measurements in order to find the

better approach for genomic data clustering when the data are high dimensional.

Silhouette score and Davies—Bouldin index were used as the messurements of evaluation of
each cluster in each approach. Selected novel hybrid approach of clustering genomic data gives
the best scores for these meassurements confirming the validity of the novel approach in

clustering high dimensional genomic data.
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Chapter 1 Introduction

1.1 Overview

Biology has become an important and a popular area among the sciences and fields in the twentieth
and twenty first century as it helps to reveal some of the significant findings on human species and
other species. It is more useful and predominant when knowledge of biology and knowledge of
information science can be applied together. Bioinformatics can be identified as a hybrid field that
brings these areas together. The contribution of bioinformatics advances made it possible to map

the entire human genome and genomes of many organisms over a decade ago.

Bioinformatics is important to genetic research which involves the study of human DNA to find
out what genes and environmental factors contribute to diseases, because genetic data has a context
[21]. The large scale and very complex data generated in genetic research has to be analyzed to
identify diseases and cures for diseases. Bioinformatics make it possible for researches to study
these data and assist in researching.

Although bioinformatics plays a major role in genetic research, still there are gaps and
inconsistencies those act as barriers to conduct genetic researches effectively. Hence, | will be
addressing some of these issues in this research and analyze whether an information technology

based solution will solve these issues.

1.2 Background

DNA sequencing and genome sequencing are considered as important area in genomic researches
and has also become a useful subject to many other fields. Sequencing in genomic research refers
to the process of determining the order of nucleotides or four bases — adenine, guanine, cytosine
and thymine - of individual genes, large genetic regions, full chromosomes or entire genomes [14].

The genome sequence will represent a valuable shortcut, helping scientists find genes much more
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easily and quickly [15]. These sequences contains some clues on behaviors, characteristics and

the abnormalities or diseases of a particular person [15].

With the introduction of Sanger sequencing technology by F. Sanger DNA sequencing became an
important technique after 1977 [19]. Sanger sequencing is the traditional method for DNA
sequencing and it was the most widely used sequencing method for approximately 25 years [16].

Since then the sequencing technology kept evolving and growing.

The Human Genome project which was started in 1990 was declared complete in 2003 by marking
an important milestone in the genetic research history. The findings of the Human Genome Project
led researchers to better understand the blueprint for building a person. Since then the demand for
cheaper and faster sequencing methods has increased greatly. As a result of this high demand, Next

Generation Sequencing (NGS) or Second-generation sequencing methods were developed [21].
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Figure 1: Increment of the total sequence in bp
The y-axis shows the total sequence in bp. (Blue = GenBank, red = whole genome shotgun [WGS]
sequences.) Each line is double of the previous. The x-axis indicates time. Each line is 6 months

after the previous. Source: http://www.ncbi.nlm.nih.gov/genbank/statistics.

Since genomic data exploration became an important area with the completion of the Human

Genome project, the tools and techniques that were used in genomic context were improved. So

3
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the tools and techniques for data generation has increased the volume of data available to
researchers and it is being increasing rapidly [21]. These data are being used in bioinformatics for
collecting, storing and big data processing the genomes of organisms. Figure 1 shows how the

number of sequences has increased over time.

From the above graph (figure 1), it is clear that the advent of new tools and technologies has
significantly accelerated the pace of biological research & huge amounts of sequence data is

becoming available for new researches.

These data are presented in different types of formats with several parameters in different data
sources. Hence these are stored as high dimensional data from different biological and genetic
studies. Thousands of DNA combinations have been identified as indicators of susceptibility to
specific diseases. Some argue that you might go through life worrying needlessly about a disease
that never appears. On the other hand, spotting those DNA variants and recognizing whether you

are at risk can lead directly to early diagnosis and preventive strategies.

1.3 Problem Overview

The knowledge extracted from data is the key determinant of analyzing the functions of specific
genes in genomic context. The outcome of these analysis will reveal some of the important aspects
of human genome and its functions, such as human origins and disease risks as well as how they
relate to environmental conditions, both past and present. Sometimes it is possible to predict the

future as well when it comes to disease related genes such as cancer causing genes [13].

Genomic data explosion has been remaining as an important area in recent years with the
advancement in several high-throughput biotechnologies such as RNA gene expression
microarrays [16]. Researches which aim exploration of genomic data are mostly rely upon
computational data and place the efforts to determine the entire DNA sequence of number of
individuals in order to map and analyze individual genes [15],and particularly to discover how

genes work in order to prevent or cure diseases.
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However, with the rapid development of advanced technologies, the tools and techniques for data
generation has increased the volume of data available to researchers, specifically in genomics [17].
These data are being used in bioinformatics for collecting, storing and big data processing the
genomes of organisms to discover genome structures and other genomic parameters. These data
sources can be categorized in to two categories as, Nucleotide sequence databases and Protein
sequence databases [18]. Some of these data bases contain data from different studies separately
and data on each study may present with several parameters [30]. Multiple measurements from
multiple studies for each DNA sample can be extracted from these kind of data bases where high

dimensional data set is required for analysis.

Growth of Sequences & Databases
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Figure 2: Increment of data sources

Above graph (Figure 2) shows how the data sources has increased in past few years and how the
data that are available to the researches has been increased. The availability of large number of
genomic data with multiple measurements makes 'meta’ analysis possible, which can be used for
study about the macro-level effects of DNA expression and mutations in the case of disease studies
[32]. This in turn will potentially lead to the possibility of the early detection mortality rates and
make predictions on expected life spans of terminally ill patients based on 'signatures' that could
be derived from the DNA.
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Make predictions on genomic data considering particular attribute or output has become a
challenge as most of the genomic data is presented as unlabeled data in the data sources. To extract
the information and predict on these information, it is important to cluster and label these data
under different important aspect such as expected life spans. If the category of some gene data
with known parameters can be decided using a particular method, it can be used to predict on those

data in different aspect considering the data which already was in the same category [32].

Even though there are several researches which have one on genomic data in order to categorize
them, most of those categorizing methods depend on the data set that they use. So there is a gap
which needs to be filled, so that any kind of genomic data can be categorized and labeled
irrespective of the characteristics of the data. In order to cluster and label these high dimensional
genomic data it is require to explore a novel approach for analyzing and clustering, as a universal

method which will be the main objective of this research [14].

But it contains many challenges when analyzing a massive genomic data set. The high dimensional
nature is one of the main attribute of biological data that has been identified as one of the challenges
in many genomic studies [4] [12]. Normalizing the collected high dimensional data will be needed
a novel approach in order to be successfully applied a naive clustering method. Hence this research
may lead to find out a better approach to normalize the high dimensional data as one of the research

deliverables.

With the aim of addressing the aforementioned problems, this research will carry out to introduce
a new customized clustering method using data from multiple studies, which will reveal macro-
level effects of DNA expression and mutations, and can be used on any of the genomic data by
performing thorough examinations of the existing methods and approaches and the results of them

followed up with a critical evaluation and validation.

1.4 Problem Statement

In bioinformatics community, acquiring of genomic sequence data is usually followed by the

computational analysis in order to draw scientific insights and thereby use them in several domains
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such as in development of personalized medicine, make predictions on some diseases, predict life
span of patients. Unfortunately, even though there are very advanced sequencing technologies
available today, most of the data that are found using these technologies are unlabeled. It will be
very useful if those can be categorize using several parameters to give a valuable label to each data
set such as life span of a cancer patient. Therefore, the following two main problems are addressed

in this research study.

Problem 01

Absence of a normalizing method to normalize high dimensional genomic data by eliminating

redundancy and noisy data without a significant loss of information [4] [12]

Problem 02

Absence of a categorizing method to categorize normalized high dimensional genomic data into
clusters and label them considering characteristics of the data in each cluster [2].

1.5 Significance of the Study

As mentioned in the problem statement, since there are no appropriate method to categorize any
type of genomic data irrespective of the characteristics of the data, for different purposes we may
have to go through different methods. Since the available data is present as unlabeled data some
of the valuable information may be missed if they are not analyzed. But it is difficult when

analyzing these data with the characteristic of high dimensional and large number of data.

Hence to overcome this problem, by using the data from different, multiple studies it is aimed to
carry out a meta-analysis and present an effective, comprehensive clustering method which will
be able to apply on any type of genomic data. The clusters which will be performed by the novel
method will reveal the information on the macro-level effects of DNA expression and mutations.

In the study of diseases it will be really valuable to study macro level effects since it will helpful



CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

to maximize the possibility of the early detection mortality rates and expected life spans of

terminally ill patients based on 'signatures' that could be derived.

This will lead the scientist to decide the method of cure like medicines and therapy methods.
Further these extracted information are important, so that screening can be done early in the case
of terminal diseases such as cancer, even differentiated treatment regimens possibly developed for
those in the different categories and make prediction on valuable aspects like life span of the

patient.

1.6 Research Goals

Research goal defines the main aim of a research study. The final intension of this research study
is to achieve the following research goals.

e Identify different categories of genomic data which will lead to make predictions on
valuable aspects (Ex: Life span of a cancer patient) by presenting a novel clustering
method.

e Introduce a data normalizing method for high dimensional genomic data by eliminating

redundancy and noisy data without a significant loss of information.

1.7  Objectives

The goals of a research are attained via research objectives. Research objectives support the

achievement of research goals.

The main aim of this research study is to find a novel clustering method to cluster the high

dimensional genomic data to label them under valuable aspects.

In this research study, the above defined research goals are attained via the following main

research objectives.
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1. Identify the online biomedical sources from which information on high dimensional
genomic data can be acquired.

2. ldentify the parameters of high dimensional genomic data that can be used to categorize
the data set under important labels

3. Identify a most efficient method to normalize high dimensional genomic data to combine
the data from several studies.

4. Design and implement a method to categorize and label the genomic data

5. Validate the new categorizing method using existing categorized data from several

researches

1.8 Research Scope

1.8.1 Only consider genomic data on Prostate cancer

Since it will be difficult to study all type of genomic data, it is planned to narrow down the research
scope to only one specific type of genomic data which will be cancer related data. According to
the studies conducted, during the year of 2017, 1,688,780 new cancer cases and 600,920 cancer
deaths are estimated to take place in the United States [10]. Also, it was remarked that the rate of
cancer incidence is 20% greater in men than women, and the rate of cancer death is 40% higher in
men [10].

Hence it is aimed to use only the data on prostate cancer as it is the most common cancer type
among male population, even though there are lots of research on breast cancers, comparatively

researches on prostate cancers are low [2].

1.8.2 Use CBIO portal as the data source

As mention in the problem definition, there are large amount of genomic data which is freely
available with an internet access [6]. It is aimed to use CBIO portal as the data source for this
research as it is specially stored cancer specific multidimensional genomic data with an open

access. The CBIO Portal facilitate rapid, intuitive, and high-quality access to molecular profiles
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and clinical attributes from large-scale cancer genomics projects and empowers researchers to

translate these rich data sets into biologic insights and clinical applications [9].

1.8.3 Consider only three selected Features on genomic data

Data analysis will be only used selected features in genomic data. They are,

e Expression level
e Copy number alteration/variation

e Mutation
Genomic data with these features will be extracted from Data CNA, Data clinical and

Data_fusion files which can be downloaded from CBIO portal. One data file may contain about

25000 of data sets with above features which will create a high dimensional data set.

10
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Chapter 2 Literature Review

2.1 Overview

As new sequencing technologies promise a new era in the use DNA sequence, a large number of
genes related to human have been identified along with disease-causing mutations. Today,
different computational methods are available for recording, capturing, analyzing and distribution

of this information which continues to grow exponentially in size and complexity.

In this chapter, we are presenting latest technologies and methods available for gene clustering and

categorizing and their benefits as well as drawbacks.

2.2 Related work

There has been a quite number of gene clustering methods proposed and applied in the literature.
Some of the clustering methods are known as traditional clustering methods, such as Hierarchical
clustering, K-means[13], K-medoid, self-organizing maps (SOM). Some of the clustering methods
such as Model-based clustering and tight clustering are considered as the methods which allow a

noise set of genes [7]. But these methods perform the cluster as a more false positive outcome [7].

K-means algorithm, which is known as a traditional clustering method is a vastly used algorithm
among above methods, as there are considerably high number of researches have conducted on K-
means algorithm. Most of them have been conducted on genomic data and medical data [21]. There
are some researches which have been carried out in order to accelerate the performance of K-
means algorithm on large scale data in life science by analyzing a simple heuristic method. [19]

When it comes to gene clustering, selecting the most suitable clustering method from many
available methods and selecting the corresponding parameters is a challenge. So in literature there
are studies which compare and demonstrate the effectiveness of the clustering methods and their
feasibility to gene clustering. These studies have concluded that a method works well in some
datasets may perform poorly in other datasets as there are different data structure and

characteristics [7].

11
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Some researches have compared a selected clustering method with other clustering methods in
order to identify the benefits and the drawbacks of that method, as well as to identify the most
suitable data set and its characteristics to apply the selected clustering method. K-means algorithm
has been analyzed in this manner with some selected clustering methods in the literature [18].
Discussing how various combinations of data mining classification algorithms are used on medical
data for efficient classification of the data is another research which carried out under comparing
the existing clustering methods [19]. There are some of the researches which have been conducted
to present the major challenges and key issues in designing clustering methods, hence point out
some of the emerging and useful research directions, considering semi — supervised clustering,
ensemble clustering and simultaneous feature selection during data clustering and large scale data

clustering [20].

There are number of studies which have been done on genomic data which can be identified in a
vast range of gene types. Some have used the genomic data from human genome while others have
been conducted on microorganisms [14]. Supervised clustering methods and unsupervised
clustering methods such as hierarchical clustering method, K- Means, SOM have been investigated
to model the relationships between gene expression data and gene functions automatically in

microorganism [14].

Studying the behavior of cancer causing genes is common in study of genomic data. There are
some of the studies which have used images of the scanned slides of breast cancer tumors. Log
(base 2) ratios were used to flag the aberrant spots and slide regions [1] of those images. Then the
hierarchical agglomerative clustering using the statistical package BRB-ARRAYTOOLS software
was applied to these normalized log ratios [1]. Also both compact linkage and average linkage and
both Euclidean and one minus Pearson correlation distance metrics were used for the analysis [1].
Natural subclasses of breast tumors were classified using unsupervised, hierarchical clustering

approach considering ER status of the tumor as the end result of this research.

Cancer classification is another area where analyzing genomic data will be interested. Cancer
classification will be important when identifying new cancer classes or when assigning tumors to
known classes [2]. Classify the cancers based on gene expression monitoring for leukemia cancer

and predict cancer classes independent from previous biological knowledge is one of the research

12
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comes in the literature. Before apply the classification method in order to find the correlation
between the expressions patterns of the genes in their data set, a method called “neighborhood
analysis” were developed [2]. Then the self-organizing map (SOM) technique was applied on the

data set to classify the tumor classes.

Using deep learning is another trend in classification genomic data in the literature of classification
human genomic data. This comes under the unsupervised classification methods. There are quite
few methods have been proposed to detect cancer using gene expression data. This method has
also mainly applied on gene expression data aiming the cancer detection and cancer type analysis.
The main advantage of this method over other cancer detection approaches is the possibility of
applying data from various types of cancer to automatically form features which help to enhance

the detection and diagnosis of a specific one [12].

In most of the methods which used deep learning method, the focus was on how to learn features
and reduce the dimensionality of the gene expression data. The majority of these methods use
manually designed feature selectors to reduce the dimensionality of gene expression and select
informative sets of genes. The potential problems with these feature selection methods are
scalability and generality of features. But there are researches which were aimed to provide the
potential to overcome problems of traditional approaches with feature dimensionality as well as

very limited size data set.

Doing predictions is one of the main target of classification genomic data. These predictions can
be on type of cancer, type of medicine, group of geographic population. A research has been
conducted to successfully predict geographic population groups and is consistent against all the
genotypic data set consisting of all the chromosomes (Figure 3). It shows that the inferred featured

from the genotypic data with higher clustering and classification accuracy [21].

13
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Figure 3: Population scale cluster of 5 groups from chr 22 (between actual and predicted)

Integrating the data from different types of cancers to automatically form features which help to
enhance the detection and diagnosis of a specific cancer type is one of the researches which has
addressed the nature of high dimensional data in the area of gene expression data [12]. Principal
component analysis (PDA) has been used to reduce the dimensionality of the feature space. The
approach used in this research consists of two parts. Feature learning phase and classifier learning
phase. For the second part of the feature learning phase they have used an auto encoder neural

network which is an unsupervised feature learning method [12].

Most of the researches in cancer classification, gene expression is one of the key features which is
used for the classification under clinically relevant subgroups. Refining the results of these studies
is another trend in the research field. Hierarchical clustering based on patterns of expression has
been used on breast tumor genomic data in such researches and have concluded the idea that many
of these breast tumor subtypes represent biologically distinct disease entities [8].
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Chapter 3 Research Design & Methodology

3.1 Overview

The research design phase plays a major role in a research. It defines the structure that is followed
in a research and thereby giving direction and systemizing the research. In this chapter, the design
phases of the research methodology that we are adopting for our research is discussed. We have
divided the research design and methodology into four main phases as shown in Figure 4. The first
phase will be discussed in detail in this chapter itself whereas the other three phases will be

discussed in the consecutive chapters in detail.

3.2 Analyze nature of data and resources

The focus of this research in biological scenario is to categorize genomic data on cancers in a
convenient manner and thereby to predict on some of the important area which will be effect on
patient’s status such as life span. Therefore, it is crucial to understand the biological terms, data
and resources that are needed to conduct the research. This phase focuses on analyzing and

studying the nature of data being used and the sources that we will be using in the study.

Phase 1: Analyze nature of data & resources

\/

Phase 2: Data preparation

\V4

Phase 3: Design & implementation

\/

Phase 4: Evaluation

Figure 4: Block diagram of research design phase
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3.2.1. Biological background

What is DNA

Our bodies have around 210 different types of cells. Each cell does a different job to help our body
to function. There are blood cells, bone cells, and cells that make our muscles. Cells get their
instructions on what to do from DNA. DNA acts sort of like a computer program. The cell is the

computer or the hardware and the DNA is the program or code.

What is gene?

The DNA Code

The DNA code is held by the different letters of the nucleotides. As the cell "reads" the instructions
on the DNA the different letters represent instructions. Every three letters makes up a word called

a codon.

ATC TGA GGA AAT GAC CAG

Genes

Within each string of DNA are sets of instructions called genes. A gene tells a cell how to make a
specific protein. Proteins are used by the cell to perform certain functions, to grow, and to survive.

CNA (Copy number alteration)

Copy number alteration is one of the main feature in DNA that is going to be used in this research.
This copy number alteration can be happen in three ways. They are,

Insertion — In insertion some different nucleotide will be added to the DNA sequence and the

DNA sequence will be altered because of this newly added nucleotide (Figure 5).
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Before Insertion After Insertion
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\ Inserted

inserte Chromosome 20 area
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Chromosome 4

Figure 5: Insertion

Deletion — In deletion one or more nucleotide will be deleted from the DNA sequence so that the
DNA sequence will get altered (Figure 6).

Deleted area

Before Alfter
delstion deletion

Figure 6: Deletion

Duplication — In duplication particular DNA part will get duplicate so that the DNA sequence
will be altered (Figure 7).
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Before
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Figure 7: Duplication

Expression Levels

The process by which the heritable information in a gene, the sequence of DNA base pairs, is made
into a functional gene product, such as protein or RNA. Interpret this using z-score

Mutations

A mutation is a mistake or a change in a living thing’s DNA. DNA, or deoxyribonucleic acid, is a
chain of chemical units found in each cell of a living thing. The chemical units are arranged in a
particular sequence, or order. This sequence forms a kind of code, called a genetic code, which
tells cells what to do. If the chain gets out of order, breaks, or changes in some other way, a

mutation

3.2.2. Data representation in selected data source

In this research we are using cBioPortal as the main data resource which is an open-access, open-
source resource. It allows the users to access multidimensional cancer genomic data sets as it stores

the data on one type of cancer from several studies. It allows the users rapid, intuitive, and high-
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quality access to molecular profiles and clinical attributes from large-scale cancer genomics
projects so that the researches can reach the relevant data easily. So that researches are encouraged
to analyze these data and apply the investigated, observed outcomes into biologic insights and
clinical applications.

This data source is currently using hg19/GRCh37 as the version of human reference genome. The
data sets are categorized under each cancer types such as Adenoid Cystic Carcinoma, Bladder
Cancer, Breast cancer, Prostrate cancer etc...so that the researches can easily access the required
cancer type. All these data are presented using different types of file formats for different types of
data.

Analyze file types and the meaning of presented data

One of the main objectives of the research is to identify a data normalizing method for the data set
which is going to be use for the research. The data set is also from biological back ground and it
contains thousands of data. Hence it is important to have good understanding on the presented data

and how they have presented in the data source.

cBioportal contains data sets from different studies for different cancer types. One type of cancer
contains data from different studies and one study contains different types of data, such as DNA
data, RNA data, Sequence data and clinical data. The arrangement is to download one set of data

of one study under preferred cancer type. These downloaded data is stored in different file formats.

These files are mainly in two formats one is meta files and other one is data files. There are three
main types of meta files, cancer study, cancer type and clinical data. Cancer study data file contains
meta data about cancer study such as type of cancer, cancer study identifier, name, description
etc... (Figure 8). Cancer type data file contains some basic information on cancer type (Figure 9).
In clinical data file is used to capture both clinical attributes and the mapping between patient and

sample ids (Figure 10). The software supports multiple samples per patient.
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type_of_cancer: brca

cancer_study_identifier: brca_joneslab_2e13

name: Breast Cancer (Jones Lab 2813)

short_name: BRCA (Jones)

description: Comprehensive profiling of 183 breast cancer samples. Generated by the Jones Lab 2813.
add_global_case list: true

Figure 8: Meta file — Cancer study

genetic_alteration_type: CANCER_TYPE
datatype: CANCER_TYPE
data_filename: cancer_type.txt

Figure 9: Meta file — Cancer Type

cancer_study_identifier: brca_tcga_pub
genetic_alteration_type: CLINICAL
datatype: SAMPLE_ATTRIBUTES
data_filename: data_clinical_ sample.txt

Figure 10: Meta file — Clinical Data

As shown in above examples, these files only contain some of the basic information on the study
and the clinical data. But data in data files are more interested for researches. There are three main
areas which have being used for several analysis and consider as valuable data sets which can be

used for different research works.

Copy number alteration, Mutations and Expression are the three main features that are focused on
the data files. These data files may contains about 40000 rows and 300 columns in one file.

Copy number alteration is one of the predominant feature researches use for their experiments.
These data is presented in one of the data files in cBioportal as data CNA file. CNA — Copy
number alterations and copy number variations can be considered as the same meaning but the
context that they are being using is different. Copy number alterations/aberrations (CNAs) are
changes in copy number that have arisen in somatic tissue like in a tumor, copy number variations
(CNVs) originated from changes in copy number in germline cells (and are thus in all cells of the
organism). In the data_CNA file, they have used a standard convention to store these CNAs

corresponding to each cancer gene. In the file the rows represent the cancer genes and the columns
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represent the positions of the particular gene. Each cell has a value which represent the type of the
CAN in that position (Figure 11) [9]. For this representation they have used -2,-1, 0, 1, 2 these

indicate the copy-number level per gene as below,

R IS I T

e -2 or Deep Deletion indicates a deep loss, possibly a homozygous deletion

e -1 or Shallow Deletion indicates a shallow loss, possible a heterozygous deletion

e 0Oisdiploid

e 1 or Gain indicates a low-level gain (a few additional copies copies, often broad)

e 2 or Amplification indicate a high-level amplification (more copies, often focal)

Hugo_Symbol
ACAP3
ACTRT2
AGRN
ANKRDG5
ATAD3A
ATAD3B

& |ATAD3C

10
11
12

AURKAIPL
B3GALTG
Clorf159
Clorfl70

~ |Entrez_Gene_Id - |MO_1008

116983
140625
375790
441869
55210
83858
219233
54998
126792
54991
84808

[a]

D E F G
MO_1012 MO_1013 MO_1014

e = A = =

1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
-1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0

Figure 11: Data file — Copy number alteration

Mutations are another predominant feature that is popular among researches. data_mutation is the

file all the mutations are stored in a particular study in cBioportal (Figure 12). Unless the

data_CNA file this data_mutation file contains different types of data such as consequence, variant

type and variant classification. Compared to data_ CNA file it is difficult to normalize the data

mutation file as it contains categorical data and numerical data.
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A B C D E F G H I J
1 |Hugo_Symbaol ¥ |Entrez_Gene| ¥ | Center ¥ | NCBI_Build | * | Chromosorn * | Start_Positi * | End_Positi = | Strand * | Consequence ¥ |Variant_Classification | ™
2 |MFsD4 0 GRCh37 1 205561496 205561496 + intron_variant Intron
3 |YEATS2 0 GRCh37 3 183476809 183476809 + intron_variant Intron
4 |AGXT2 0 GRCh37 5 35013905 35013806 + intron_variant Intron
5 |PPFIBP1 0o GRCh37 12 27809471 27809471 + intron_variant Intron
6 | AXINZ 0 GRCh37 17 63533732 63533733 + inframe_insertion In_Frame_Ins
7 |ZNF512B 0 GRCh37 20 62669916 62669917 + 5_prime_UTR_variant 5'UTR
8 |AFF2 0 GRCh37 X 148072999 148073000 + 3_prime_UTR_variant 3'UTR
9 |AFAP1LZ 0 GRCh37 10 116060077 116060077 + synonymaous_variant Silent
10 | DAaAM2 0o GRCh37 6 39845111 35843111 + missense_variant Missense_Mutation
11 |SERPINE1 0 GRCh37 7 100780246 100780246 + intron_variant Intron
12 |PTGS1 1] GRCh37 9 125143686 125143686 + missense_variant Missense_Mutation
13 |BCRP4 0 GRCh37 22 22976061 22976061 + non_coding_transcript_exor RNA
14 |PTRF 0 GRCh37 17 40556954 40556554 + synonymaous_variant Silent
15 |Unknown 1] GRCh37 Y 16952711 16952711 + missense_variant Missense_Mutation
16 |FAMATC 0 GRCh37 X 37028089 37028089 + stop_gained MNonsense_Mutation

Figure 12: Data file — Mutations

In cBioportal data repository, the expression data will be stored in a text file which will be comes
under data file category, named “data RNA Seq expression median”. mRNA expression data
(Figure 13) will be captured in this data file. Relative expression of an individual gene and tumor
to the gene's expression distribution in a reference population are computed for mRNA and
microRNA expression data. These values indicates the number of standard deviations away from
the mean of expression in the reference population (Z-score). When determine whether a gene is
up-regulated or down regulated compared to the normal sample this value is used. Positive values
are considered as up-regulated and the negative values are considered as down — regulated. Usually
up-regulated means more highly expressed compared to the reference whereas down-regulated

means expressed lower compared to the reference.

In the data file of expression it contains gene name in the rows, the gene positions in the columns

and the corresponding mRNA z-score in the each cell.

For all above mentioned data files, there are no any duplicate rows as the cBioPortal assumes that
gene samples or the patients under the same ID are actually same. This feature is important for
those whom interested on doing cross — cancer queries where each sample should only be counted

once.
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A B C D £ F G H 1 J K L
1 |Hugo_Symbol TP_2061 SC_9091 SC_5086 MO_1339  MO_1337 MO_1336  SC_9031 SC_5081 SC_9080 MO_1316  TP_2054
2 |TSPANG 20.3368 21.8531 9.01695 2.67599 29.9337 18.5017 15.7969 15.6013 9.62213 3.27844 12.0758
3 |TNMD 24.2916  0.0544865  0.290446  0.197679  0.0193053 0.0676174  0.139121  0.799781  0.169728  0.0438365  0.477692
1 |DPM1 65.1505 44,195 21.2943 14.2233 31.4973 36.749 21.8691 23.2285 18.0494 17.8712 26,9127
5 5CYL3 4.76349 3.75481 6.3755 7.97018 3.88717 3.66265 2.43133 424313 4.64524 3.55485 3.80477
6 |Clorfl12 9.99885 4.7276 2.2718 4,39341 3.9529 1.2665 6.54716 2.72779 1.46983 1.57429 4.14498
7 |FGR 1.99079  0.730616 150864  0.500941 1.27728  0.969921 2.32612 1.08999  0.878045  0.601742 3.98334
3 |cFH 205.011 3.25467 19.4796 5.32644 7.25127 15.9903 50.9661 3.84089 10.0713 3.27271 15.665
9 |Fucaz 32.5074 40.9347 76.0724 16.24 31.8633 37.0815 34,4196 28.2846)  15.8989 28.8406 34,6159
10 |GCLC 8.70495 13.2357 11.7022 17.5745 7.73095 3.51084 18.9727 13.8806 18.006 4.23331 4.97244
11 |NFYA 11.6676 17.8369 11.4551 18.9659 12.4486 3.87788 15.5476 15.3461 6.81659 11.7216 9.80352
12 |Clorf201 3.43842 2.01001 4,85523 9.93914 5.32684 9.40896 12.4845 5.95551 14.2026 5.39751 3.07889
13 |NIPAL3 5.35016 3.14275 16.6142 161.146 12.9333 10.7467 46.4991 242378 167.571 5.01117 11.1247
14 |LASIL 35.3631 8.05313 14.3632 26.1676 79.8441 35.9094 21.4289 21.3224 15.7047 38.2385 25.5157
15 |ENPP4 3.43264 2.31886 10,6503 27.8731 3.06031 6.47079 13.359 9.31398 8.01535 11.2648 7.28731

Figure 13: Data file — Expressions

Identifying data types and categorizing

In order to categorize a data set according to their similarities and dissimilarities, it is important to
have a clear view on the data set as well as the types of data since the process which is going to be
used will depend on the structure of the data set and the types of the data. These collected data

mainly can be categorized into two categories as numerical data and categorical data.

Numerical data

This has the meaning of measurement of something, such as height, weight, number of shares.
Statisticians also call numerical data quantitative data. Numerical data can be further broken into

two types: discrete and continuous.

Discrete data represent items that can be counted; they take on possible values that can be listed
out. The list of possible values may be fixed (-2, -1, 0, 1, 2); or it may go from 0, 1, 2, on to infinity.
In the data that is focused for the research, some of the data can be categorized under this discrete
data which is numeric data. The first data set which comes under data files, CNA data is one

example, CNA data set only contains the values of -2, -1, 0, 1, and 2.

Continues data is another data type which comes under numerical data, their possible values cannot
be counted and can only be described using intervals on the real number line. In the data set MRNA
Z- score which comes under expression data, can be identified as continues data but it has both

negative and positive values.
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Categorical data

Categorical data represent characteristics such as a person’s gender, marital status, and hometown.
Categorical data can take on numerical values (such as “1” indicating male and “2” indicating
female), but those numbers don’t have mathematical meaning.

Most of the values which is in mutation file are comes under this data type. Variant type (DEL,
INS, SNP), Variant classification (RNA, Silent, Intron..), consequence are some of the data fields
comes under categorical data.
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Chapter 4 Data Preparation

4.1 Overview

The previous chapter provided an outline of the design and methodology of the research study. The
purpose of this chapter is to discuss the data preparation phase of the research in detail. This chapter

discusses how data was collected and how the data was prepared according to the data types.

4.2 Data Collection and preparation

Since this research is based on genomic data which needs high technology and expertise
knowledge to be collected data collection is focused on collecting secondary data which is already
in data resources and data repositories. cBioportal is the selected data source as the convenient
data repository as it is focused on vast range of cancer genomic data and it gives the free access to

interactive exploration of multidimensional cancer genomics data sets.

In the cBioportal the data set of different studies have listed under corresponding cancer type. One
cancer type may contains data sets from about five, six studies. These data can be easily
downloaded to the local environment. For this research three data sets from three studies under
prostate cancer are downloaded. Each data set has meta data files as well as data files. The meta
files only contains the meta data such as information on the study and the information on the
cancer. The data files which are downloaded are interested on this research as it contains inside
data on the cancer (Please refer 3.2.1.1. for more information on data). Data on copy number

alteration (CNA), Mutations and Expression take in to consideration throughout the research.

4.2.1 Data preparation

Since one of the main objective of the research is normalizing the collected data in order to use the
data set for new approach to a clustering method data preparation, preprocessing and data analysis
are considered as important steps and may have several iteration according to the approach of the
clustering method.
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The three main files which are going to be used for the research should be combined together in
order to normalize one data set. But these three data sets may contain different gene set from one
another, also different sample sets from one another. To combine all the data in to one set, the
common genes of all the three data set and the common sample sets in three data sets.

Set C

Figure 14: Representation of data set combination

Intersection of gene sets of all three data sets and intersection of sample sets of all three data sets

as showed in figure 14 will be taken in to consideration of this research.

Both numerical and categorical data are included in the data set as explained in chapter 3.
Converting categorical data in to numerical data is one of the main challenge in this data set as the
data on mutation mostly contains categorical data and one feature contains considerable number
of parameters. Some of the convenient methods which were in the literature were carried out in

the process of converting the categorical data to numerical data.

As discussed above, to compare two entries of data and find the similarities and the dissimilarities
in order to categorize the data categorical data need to be converted in to comparable format. Thus,
we convert them into numerical variables. Below are the some of the methods which were used to

convert a categorical (string) input to numerical nature.

All the categorical data comes under the mutation data set. Consequence, Variant classification,
variant type, Tumor_Seq_Allelel, Tumor_Seq_Allele2 are some of the identified categorical data
which will be interested in clustering process. Below are some of the used methods for converting

categorical data in to numerical data.
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Label Encoder

This method is used to transform non-numerical labels to numerical labels (or nominal categorical
variables). This method was applied on Tumor_Seq_Allelel, Tumor_Seq_Allele2. In the mutation
data set Tumor_Seq_Allelel and Tumor_Seq_Allele2 are compared with the Reference_Allele

and store whether the allele has copied correctly. (Figure 15)

Reference_Allele * | Tumor_Seq_Allelel | ¥ | Tumor_Seq_Allele2 -

c c
A A

AG AG

T T -

- TGG

- CLGGE
- A

G G c

c c T

T T A

G G A

c c A

G G A

G G A

c c T

G G c

A A c

Figure 15: Before application of label encoder

In the mutation data set reference allele was removed and Tumor_Seq_Allelel,
Tumor_Seq_Allele2 allele only present whether it has copied correctly or not. (Figure 16) If the
Tumor_Seq_Allele has not changed, it will be represented using ‘1’ if the Tumor_Seq_Allele has

not changed it will be represented by ‘0’.

Tumor_Seq_Allelel Tumor_Seq_Allele2

il =R R
o o o o oo

Figure 16: Application of label encoder

Dummy Coding

Another method used for converting categorical data in to numerical data is dummy coding.

Variant type was converted to numerical variable using this dummy coding method. Variant type
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feature has three main values as SNP. DEL and INS. Three different dummy variables were created
for to represent those values. Presence of a value is represent by 1 and absence is represented by
0. For every value present, one dummy variable will be created. Look at the representation below
to convert a categorical variable using dummy variable. (Figure 17)

N o P Q
Variant_Type DEL INS SMNP
r F F
DEL 1 0 0
r r r
DEL 1 0 0
r F F
DEL 1 0 0
r r r
DEL 1 0 0
r r r
INS 0 1 0
F F F
INS 0 1 0
r r r
INS 0 1 0
r r r
SNP 0 0 1
F F r
SNP 0 0 1
r r r
SNP 0 0 1
F F r
SNP 0 0 1
r r r
SNP 0 0 1
r r r
SNP 0 0 1
F F F
SNP 0 0 1
r r r
SNP 0 0 1

Figure 17: Application of dummy variables

There are some of the drawbacks with this normalized data set. Some of the features were
eliminated as those features have considerable number of values hence it is difficult to normalize
it using dummy variables. Replace those values with a number is also not worked as levels can’t
be defined for those values. Also there is a known challenge with nominal categorical variable it
may decrease performance of a model. As the value ‘1’ in CNA data and value ‘1’ in dummy

variables are represent two different meanings.

Hence for the first phase of the research, to apply different clustering methods and compare them
in orders to get an approach to a new clustering method we decided to use only one set of data.
After get to a conclusion on novel approach of the clustering method, normalized data set will be
used and the validity of the data set is also can be measured by analyzing the result we will get

after applying the clustering method.
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Chapter 5 Design & Implementation

5.1 Overview

This chapter illustrates the process followed in order to construct a new approach for a clustering
method by analyzing collected data and analyzing known clustering methods by applying them on
the prepared data set. Initially, the focus is given to categorize data according to different
measurements under medical aspect so that clear view on the data set and the high level idea on
nature of the clusters can be explained. Then apply selected clustering methods for the data set and

compare the outcomes was carried out.

5.2 Analyze the data set

Data set was analyzed according to the features before approach with the clustering methods as it
gives an over view of the arrangement of the data set. The data set was analyzed and visualized in

different aspects.

In one data set that is focused for the 1 phase of the clustering contains 114 samples of 81 patients.
In the analysis we could identify that there are two categories according to the cancer type. They
are Prostate cancer NOS and Prostate Cancer. The distribution among those two cancer types is as
shown in figure18. According to this feature the data set will be clustered in to two.

[i JE 20
Cancer Type # ~ Freq
B Prostate Cancer, NOS 70 51.40%
B Prostate Cancer 44 358.60%

Figure 18: Cancer Type Classification

The selected data set contains 114 samples from 81 patients. Several samples may contain from

one patient. Figure 19 shows how the sample distribution has happened across patients.
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# of Samples Per Patient

'\

# of Samples Per Patient # Freq
m1 64 79.0%
m2 1113.6%
m4 2 2.5%
m5 2 2.5%
m3 1 1.2%
m7 1 1.2%

Figure 19: Sample Classification

All the genes in the data set contains some kind of mutation in it. These mutations play a major
role in having the particular cancer or not. Analysis on this aspect is also will be more important

when understanding the clusters that will be formed in the next phase of the research.

Mutation Count

40
30
20
10

20 40 60 80 100 120 >120

Figure 20: Mutation count

According to the mutation count of the each sample the distribution is as shown in the figure 20.

Most of the samples (about 45 samples) contains about 20-40 mutations in one sample. The amount
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of mutation that the least number of samples contain is 100 — 120. Depending on the number of

mutation we can define seven clusters as shown in the graph.

Copy number alteration and mutations are important aspects which are considered throughout this
research. It was interested checking whether those two features have any connection in this sample
set. Number of mutations in each sample and the fraction of copy number altered genome were
considered as the variables and check the connection by plotting a graph between those two axes.
Most of the samples (About 100) were led in an area which is parallel to the x- axis (Fraction of
copy number altered genome). It implies most of the sample sets have number mutations in a

particular range of values and there are small number of outliers as shown in figure 21.

Mutation Count ws. CNA
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Fraction of copy number altered genome

Figure 21: Mutation count vs CNA
Considering the area, the identified tumor is again the data set can be categorized. Some of the

features of the genes differ according to these areas when clustering this data set considering all

the similarities and the dissimilarities this fact may also may considered.
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Tumor Disease Anatomic Site

Wl

o\

Tumeor Disease Anatomic Site # Freq
M Prostate 34 29.8%
B Lymph node 2521 9%

Bone 2320.2%
M Liver 16 14.0%
M Pelvic mass 4 35%
M lLung 3 26%
B EBrain 3 26%

Soft tissue 1 0.9%
M Skull base 1 0.9%
M Retroperitoneal mass 1 09%
M Epidural 1 09%
M Eladder 1 0.9%
M Adrenal 1 0.9%

Figure 22: Tumor Disease anatomic site

Using all the three sets, copy number alteration, mutations and expression level analysis was
carried out where we could find out the different levels of mutations and the samples which those
mutations are with. According to the figure 22. In the graph the amplifications are the most
prominent mutation type then the deletions. It is clear that there are different types of mutations

and some of the sample sets contains amplifications in them and other samples don’t include them.

5.3 Application of selected clustering methods

If different clustering methods are applied to a same data set, different cluster sets will be created.
There is no any rule or procedure to verify which cluster set is the most appropriate when
considering the features of those data. For example rows below table (Table 1) present the
clustering methods and column of the table shows the clusters which were created by the
corresponding clustering methods. When comparing each set of clusters of each clustering
methods some similarities can be found in some clusters. For example A, B clusters which were
formed by P clustering method and the Q clustering method shows some similarity same as C
cluster which was formed by Q, R, and S clustering methods shows similarity. If we can find those
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similar clusters which we identified exploring through the clustering methods using one clustering
method or using some particular steps that would be really helpful in data analysis. Exploring such
method to identify the most appropriate cluster set or to perform most suitable cluster set by
introducing some sequential steps is the main target of this research.

Table 1: Different clusters form different methods

With the idea of the similarities of samples which explained in section 5.2 as the next step some
known clustering methods which were selected from the literature were applied to the data set.
The selected clustering methods are K-means clustering method, hierarchical clustering method
and DBSCAN method.

As the first phase of this process K- means clustering method and hierarchical clustering method

were applied to the data set and compared the results gained from both clustering methods using
cluster method validations.
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N Inframe Mutation (unknown significance) M Missense Mutation (unknown significance) @ Truncating Mutation (putative driver) ¥ Truncating Mutation (unknown significance) I Amplification I Deep Deletion Mo alterations

Figure 23: Mutation types classification

5.3.1. K- Means Clustering method

As per the literature on clustering algorithms, K-means clustering is one of the simplest and
popular unsupervised machine learning algorithms [22]. These unsupervised clustering algorithms
only use input data and form clusters without referring to known, or labelled, outcomes (Figure
24).

The algorithm works as follows:
1. First k points, called means, will be initialized randomly.

2. Each item will be categorized to its closest mean and the mean’s coordinates will be, which

are the averages of the items categorized in that mean so far.
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3. Then the above two steps will be repeated for a given number of iterations and at the end,

we have our clusters.

)

/ Input number of clusters /

.

Calculate centroid

v

Calculate Distance

‘L

Group based on minimum distance

Figure 24: Steps of K-means clustering

Here target number of cluster will be defined as k, which refers to the number of centroids you
need in the dataset. A centroid is the imaginary or real location representing the center of the
cluster. Every data point is allocated to each of the clusters through reducing the in-cluster sum of

squares [37].

In other words, the K-means algorithm identifies k number of centroids, and then allocates every

data point to the nearest cluster, while keeping the centroids as small as possible.
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In partitioning clustering, where K means clustering include defining the number of cluster that
we need our data set to be clustered should be given as an input to the algorithm. So the K- means

clustering requires the user to specify the number of clusters k to be generated [37].

Even though the user can define any number as the number of clusters, there is an optimal number
which we can define as the number of clusters [22]. The optimal number of clusters is somehow
subjective and depends on the method used for measuring similarities and the parameters used for

partitioning.

One of the most popular method of finding optimal number of clusters is elbow method.

Elbow method

Elbow method is a method which looks at the percentage of variance explained as a
function of the number of clusters [35]. This method exists upon the idea that one should
choose a number of clusters so that adding another cluster doesn't give much better modelling of
the data. In this method a plotted diagram will be created. Here the percentage of variance
explained by the clusters will be plotted against the number of clusters [34]. The first clusters will
add much information but at some point the marginal gain will drop dramatically and gives an
angle in the graph.

1. Initialize $k=1%

2. Start

3. Increment the value of $k

4. Measure the cost of the optimal quality solution

5. If at some point the cost of the solution drops dramatically

6. That"s the true $k$.

7. End

Based on pre-evaluated cluster number, the cluster nodes start the computations and divide
themselves in the clusters according to the pre-evaluation. The cluster nodes divide
themselves in the pre-evaluated number of clusters using Euclidean distance calculation.

The cluster formation is performed using the K-Means algorithm.
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Figure 25: Selecting optimal number of clusters

In order to find the optimal number of clusters diagrams were plotted using the percentage of
variance explained by the clusters against the number of clusters. The diagram was plotted several
times graphs (Figure 25) reducing the number of cluster to ensure the optimal number of clusters
by improving the elbow shape of the graph.

The graphs which were plotted without dimensional reduction show that the optimal number of
clusters can be found in between 0 — 20. In order to have a clear number for this dimensional

reduction process were carried out on top of the data set and then applied the elbow method [35].
Dimensional reduction will not be used when clustering the data as each value of each gene is
important when deciding some kind of disease or deciding on cancers or any type of curing

method.

Dimensional reduction using PCA (Principal Component Analysis)

PCA is often useful to measure data in terms of its principal components rather than on a normal
X-y axis. They are the directions where there is the most variance, the directions where the data is

most spread out.
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As above mentioned even after the PCA applied on the data set, the diagram was plotted several
graph (Figure 26) times to have a better elbow shape. The last plotted graph using 2-10 number of
clusters shows a better elbow shape where the optimal number of clusters is shows as three.

175000 A 200000 1
150000 - 175000 +
125000 - 150000 4
125000
100000 4
100000 A
75000 4
75000 A
50000 A 50000
25000 - 25000 -
04 04
o 20 40 &0 80 100 120 140 o 20 40 B0 80 100
160000 1 100000 4
140000 50000 1
120000 A
80000 A
100000 A
0000
80000 4
G0000 A
E0000 4
40000 1 50000
20000 - 40000
O _I T T T T T 300{“} L T T T T T T T T
o 10 20 30 40 50 2 5 7 9 10
Figure 26: Selecting optimal number of clusters after PCA
Approach 1

K- Means Clustering Algorithm

¥

CNA data set

Figure 27: Approach one
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Then the k- means clustering algorithm was applied to the data set giving the input of number of
data as three. As the 1%t step none of the dimension reduction methods were applied when applying
the clustering method. After applying the K-means algorithm three clusters were performed using
Euclidean distance measure as follows (Figure 27) [22]. Three clusters were performed (Figure

28) as 0, 1 and 2. Corresponding sample ID’s are shown in below table (Refer Appendix A).

e Cluster 0 — 19 data points
e Cluster 1 — 57 data points
e Cluster 2 — 42 data points

After clustering the data using K means clustering algorithm, Silhouette score was calculated for

each data point in order to find the how well the each data point matches with their clusters.

Silhouette score

Silhouette analysis can be used to study the separation distance between the resulting clusters.
This measure has a range of 1- (-1). This measure gives the idea of how close each data point in
one cluster to points in neighboring clusters [29].
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Figure 28: Clusters using K-means without dimensional reduction
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Silhouette coefficients near +1 indicate that the sample is far away from the neighboring clusters
[28]. A value of 0 indicates that the sample is on or very close to the decision boundary between
two neighboring clusters and negative values indicate that those samples might have been assigned

to the wrong cluster.

As per the above diagrams (Graph 1) there are some data points which are positive values as well
as negative values. These data points with the negative values might be in the wrong cluster. These

data points are as follows (Table 2),

Sample Score
'MO_1040' -0.0204
'MO_1054' -0.0061
'MO_1114' -0.0148
'6115242' -0.0072
'SC_9036' -0.01
'SC_9055' -0.0061
'SC_9073' -0.0103
'SC_9094' -0.0093

Table 2: Data points which have negative values for silhouette score

The average silhouette score for this set of cluster is calculated as 0.0258.

As the 2" step same data set was clustered after dimension reduction. As the dimensional reduction
techniques three popular techniques were selected. They are,

e t-SNE

e PCA

e |ICA
Approach 2

Apply Dimensional reduction method Apply K-means clustering
(TSNE, PCA, ICA)

¥ ¥

CNA data set » Preprocessed data

Figure 29: Approach two
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Silhouette score

'TP_2061'
'TP_2032"
'TP_2001"
'SC_9093 —
'SC_9083'
'SC_9077 ———
'SC_9062"
'SC_9058'
'SC_9050'
'SC_9046'
'SC_9036'—
'SC_9030"
'SC_9023'
'SC_9017"
'SC_9009"
'6115123"
'6115117"
'1115156'
'6115250"
'6115234'
'6115219'
'1115161'
'MO_1316'
'MO_1244'
'MO_1219"
'MO_1184'
'MO_1128'
'MO_1095™
'MO_1054'—
'MO_1013"
004 002

o

0.02 0.04 0.06 0.08 0.1 0.12 0.14

M Score

Graph 1: Silhouette score for approach one

Most of the time when analyzing and visualizing the high dimensional data, dimensional reduction
is carried out as a main step [26]. There are different types of methods which can be used for this
dimensional reduction. t-SNE one of the most popular dimensionality reduction method which is

proposed by Geoffry Hinton’s group back in 2008.
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t-SNE creates a low dimensional mapping using the local relationships between points. This is

aiming to capture nonlinear structures not linear projections. t-SNE use Gaussian distribution to

create a probability distribution which defines the relationships in dimensional space.

As the 2" step t-SNE dimensional reduction technique were applied to the data set. Then again

applied the k means clustering algorithm to analyze whether the clusters formed after t-SNE

dimensional reduction is more accurate [27] (Figure 29).

Table in appendix B shows the clusters that were formed after t-SNE dimensional reduction. There

are some data points which change the corresponding cluster which were performed in earlier step

(Figure 30).
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Figure 30: Clusters after K- means with t-SNE dimensional reduction

The average silhouette score and the separate silhouette score for each data point were calculated

for these clusters in order to find out the correctness of the clusters. The average silhouette score

for these clusters is 0.01922. Each silhouette score for each data point is as follows (Graph 2).
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Score

'TP—2061—
"TP_2032"
‘TP_200T" —
'SC_9093"
'SC_9083'
'SC_9072'_
'SC 06T
'SC_9058"
'SC_9050 ——
'SC_9046=
'SC_9036' -
'SC_9030—
'SC_9023"
'SC_9017'__ ———
'SC_9009—
6115423 —
'6115117' ~
11115356
'6115250' " —
6145234:
6115219 — —
1115161 ——
'MO_1316'
MO TIAT
'MO_1219'
'MO_1184"
'MO_1128'
'MO_1095'
'MO_1054' ——
'MO_1013'—
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Graph 2: Silhouette score for approach two
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Same as the 1% step negative values can be seen in this step also which means some of the data

points might be in wrong cluster. Those data points are as follows (Table 3),

Data point Score
'MO_1013' -0.0033
'MO_1176' -0.0057
'MO_1249' -0.016
'MO_1262' -0.0107
'6115234' -0.0268
'6115251" -0.0034
'1115156' -0.0088
'6115118' -0.0017
'6115121" -0.0264
'6115122' -0.0073
'6115123' -0.0098
'SC_9007' -0.0069
'SC_9009' -0.0046
'SC_9016' -0.005
'SC_9030' -0.0085
'SC_9034' -0.0004
'SC_9046' -0.0009
'SC_9047' -0.0041
'SC_9054' -0.0081
'SC_9063' -0.0135
'SC_9071" -0.0112
'SC_9080' -0.0246
'SC_9086' -0.0039
'SC_9092' -0.0184
"TP_2009' -0.0175
"TP_2060' -0.0061
"TP_2061' -0.0149

Table 3: Data points which have negative values for silhouette score

Approach 3

When comparing with the data points which has negative values in the 1% step number of data
point is higher than earlier. Which means the cluster set in step 1 is more accurate than these

clusters.

44



CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

As the 3" step another dimensional reduction method were applied for the data set and then applied

k means clustering. PCA dimensional reduction method were applied here.

Principal component analysis (PCA) is a method which is used to create set of linearly uncorrelated
variables called principal components using orthogonal transformation (Figure 31).

Table in appendix C shows the clusters performed after PCA dimensional reduction.
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Figure 31: Clusters after K- means with PCA dimensional reduction

The average silhouette score for this cluster set is 0.02310. Corresponding silhouette score for each

value is shown in appendix D.

Negative values as well as positive values can be also seen here. The data points which has negative

values are as follows (Table 4),

Data point Score
‘MO_1014" -4.39E-03
'1115154" -1.43E-03
'1115157* -4.69E-03
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'6115118" -5.84E-04
'SC_9034" -6.54E-03
'SC_9092" -4.02E-03
'SC_9097" -5.93E-03

Table 4: Data points which have negative values for silhouette score

Approach 4

As the next step ICA dimensional reduction technique was used before applying the k means
clustering method. ICA stands for Independent Components Analysis. In ICA it consider that each
sample of data is a mixture of independent components and it aims to find these independent

components (Figure 32).

Table in appendix E shows the clusters which were performed by k means clustering after applying
ICA dimensional reduction technique for the data set.
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Figure 32: Clusters after K- means with ICA dimensional reduction

The average silhouette score for this cluster set is 0.023100687694212127. Corresponding

silhouette score for each value is as follows (Graph 3),

46



CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA
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Graph 3: Silhouette score for approach three
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In this method also there are some data points which got negative values as the silhouette score.

Data point Score
'MO_1013' -0.0033
‘MO_1176" -0.0057
'MO_1249° -0.016
'MO_1262" -0.0107
'6115234' -0.0268
'6115251" -0.0034
'1115156' -0.0088
'6115118' -0.0017
'6115121" -0.0264
'6115122' -0.0073
'6115123" -0.0098
'SC_9007 -0.0069
'SC_9009* -0.0046
'SC_9016' -0.005
'SC_9030 -0.0085
'SC_9034" -0.0004
'SC_9046" -0.0009
'SC_9047' -0.0041
'SC_9054' -0.0081
'SC_9063' -0.0135
'SC_9071 -0.0112
'SC_9080" -0.0246
'SC_9086" -0.0039
'SC_9092' -0.0184
'TP_2009" -0.0175
'TP_2060" -0.0061
'TP_2061' -0.0149

Table 5: Data points which have negative values for silhouette score

When considering all four steps which carried out k means clustering method, above (Table 5) are

the data points with negative silhouette score in all the steps.

Approach 5

Apply one hot encoding on CNA data and then K-means clustering

CNA data set consists of categorical data but they have been represented as numerical data as

explain in the ‘Data representation in selected data source’ section above. It only includes
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numerical numbers -2, -1, 0, 1, 2, representing five different categories. In above sections K-means
clustering algorithm were carried out on top of these data without converting the categorical data
into numerical data. As the next step these data will be converted to categorical data using one hot
encoding method which, a process by which categorical variables are converted into a form that

could be provided to ML algorithms to do a better job in prediction (Figure 33).

With this data set three clusters were performed using K-means clustering with the average
silhouette score of -0.0937. The distribution of the clusters are as below.
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Figure 33: Clusters applying one hot encoding on CNA data and then K-means clustering

This distribution of cluster points doesn’t show good density of each cluster and the good
separation of clusters. Hence dimensional reduction method were applied on top this data set in

order to find whether any better cluster set can be performed.

Approach 6

Then dimensional reduction method was applied as applying one hot method will create a data set
with large number of zeros. Hence dimensional reduction need to be carried out. As the

dimensional reduction method PCA method was used. Then K-means clustering method was
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applied for this preprocessed data set (27). Clusters (Refer appendix F) were performed after this

method with the average silhouette score of 0.3812.

Apply One Hot method on CNA data

¥

Apply PCA dimensional reduction on CNA
data

o

Apply K-means clustering

Figure 34: Approach Three
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Figure 35: Clusters after approach three

As per the graph above (Figure 35) distribution of the clusters are better than the above phases

which were carried out without converting the categorical data into numerical data.
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Approach 7

Since above method gives better clusters, same method was applied on the corresponding
expression data set for the same genes and the same sample set, which is a dense data set. PCA
dimension reduction method was applied on this data set 1% then k-means clustering method was
used. Created clusters (Refer appendix G) were compared with the above clusters in order to

identify the similarities and the dissimilarities with those clusters (Figure 36).

Apply PCA dimensional reduction on » Apply K-means clustering
Expression data

Figure 36: Approach four
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Figure 37: Clusters after approach four

For the dense data set above (Figure 37) three clusters were performed using k-means clustering

method with the average silhouette score of 0.5847.
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5.3.2. Hierarchical Clustering method

Hierarchical clustering is also a well-known clustering method in the literature. In this method a
dendogram will be used to cluster the data points in to clusters [38]. The endpoint is a set of
clusters, where each cluster is distinct from each other cluster, and the objects within each cluster

are broadly similar to each other.

In the very 1% step each data point will be consider as different clusters. Then it recursively execute
the below steps (Figure 38).

(1) Identify the two clusters that are closest together, and

(2) Merge the two most similar clusters.

This continues until all the clusters are merged together. This is illustrated in the diagrams below.
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Figure 38: Steps of Hierarchical clustering algorithm

As the next step of the research the data set was clustered using this hierarchical clustering method.
Eucledian distance, Manhatan distance and Minkowski distance measures were used when
clustering the data set using hierarchical clustering method. Similar dendogram was populated by

all three measures (Figure 39).
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Figure 39: Dendogram using hierarchical clustering algorithm

Then the dendogram were cut where three clusters were generated. But here two clusters got one
data point in each and other 116 data points were included in one cluster. Hence this dendogram

was used to identify the outliers [35].

Result of this dendogram and results of all the clustering steps which used K- means clustering
above were used to identify the outliers. Data points which has negative values as silhouette score
in above steps and the data points which have connected to the dendogram very lastly were
compared and the same data points which were in most of those categories were selected as the

outliers.

Below highlighted cells (Table 6) shows the data points which were recognized as a outlier at least

three times. Below are the data points which will be considered as outliers,

'6115118"
'SC_9034'
'SC_9092"
'‘MO_1054"
'SC_9046'
'‘MO_1176"
'6115242"
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Data point] Score Data point Score Data point Score Sample Score

'MO 1013" | -0.0033 'MO 1014 -4.3%9E-03 'MC 1013' -0.0033 'MC 1040' | -0.0204 'S5C_S001'
'MO 1176 | -0.0057 "1115154" -1.43E-03 'MO 1176" -0.0057 'MO 1054' | -0.0061 'MO 1054"
‘MO 1245° -0.016 "1115157" -4.69E-03 'MO_ 1249 -0.016 'MO 1114" | -0.0148 '5C_9046"
'MO 1262' | -0.0107 "6115118" -5.84E-04 'MO 1262' -0.0107 '6115242' | -0.0072 '5C 9062'
"6115234"' | -0.0268 'SC_9034° -6.54E-03 '6115234" -0.0268 '5C_9036" -0.01 '5C_9032°
"6115251"' | -0.0034 'SC_9052° -4.02E-03 '6115251" -0.0034 '5C_9055" | -0.0061 'MO 1176
"1115156"' | -0.0088 'S5C_9097" -5.93E-03 '1115156" -0.0088 '5C_9073" | -0.0103 'MO_1118"
"6115118"' | -0.0017 '6115118" -0.0017 '5C_9094"' | -0.0093 '6115242"
"6115121" | -0.0264 '6115121" -0.0264

"6115122' | -0.0073 'glisizz’ -0.0073

"6115123" | -0.0098 "§115123" -0.0088

'SC_9007' | -0.006%9 '5C_%007" -0.0069

'SC_9009' | -0.0046 '5C_%00%" -0.0046

'SC_9016° -0.005 '5C_9016" -0.005

'SC_9030' | -0.0085 '5C_%030" -0.0085

'SC 9034 | -0.0004 '5C_9034' -0.0004

'SC_9046' | -0.0009 '5C_S9046' -0.0009

'SC_5S047" | -0.0041 'SC_904T7' -0.0041

'SC_9054' | -0.0081 '5C_9054" -0.0081

'SC_9063' | -0.0135 '5C_9063" -0.0135

'SC_S071' | -0.0112 'SC_9071' -0.0112

'SC_9080' | -0.0246 '5C_%080" -0.0246

'SC_9086' | -0.003%9 '5C_9%086" -0.003%9

'SC 9092 | -0.0184 '5C_5S052' -0.0184

'TP_2009' | -0.0175 'TP_2009' -0.0175

'TP_2060' | -0.0061 'TP_2060" -0.0061

'TP_2061" | -0.0149 'TP_2061" -0.0149

Table 6: Selecting outliers

5.3.2. DBSCAN (Density-based spatial clustering of applications with noise) Clustering
method

In density based clustering, areas which have higher density other than other areas are highlighted
as the lusters. Other areas which have less number of data points which can be considered as sparse
areas usually treated as the noise and the border points. DBSCAN is one of the most popular

density based clustering methods.

One of the data set which was described in chapter 3 has dense data which is known as expression
data. Since all the above clustering processes were applied on CNA data, in this step expression
data will be used to apply the clustering algorithm. This data set includes expression data of
selected genes for the selected samples. In the original data set there were about 40000 genes,
when comparing to the corresponding CNA data set it only has about 25000 genes. Expression
data set was prepared as the CNA and the expression data set have same gene set.

DBSCAN clustering method was used to cluster the expression data [31]. This algorithm was run
on the expression data set changing the parameters which have defined in DBSCAN clustering
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method in order to find clusters with high similarity among the data points. Below are the

parameters which were used for clustering the data set [33].

eps: the minimum distance between two points. It means that if the distance between two points

is lower or equal to this value (eps), these points are considered neighbors.

minPoints: the minimum number of points to form a dense region. For example, if we set the

minPoints parameter as 5, then we need at least 5 points to form a dense region.

Since the main objective of the research is explore a novel clustering method, might be a hybrid
method connecting the outputs of each different clustering method, some of the outputs of K-
means clustering method will be used as the input to the DBSCAN method [27]. Hence number of
effective clusters which was found using elbow method will be used for the DBSCAN clustering
method. As the first step DBSCAN clustering method was used to cluster the dense data set,
expression data set for the same gene set and the same sample set as the CNA data set to make
three clusters [31] (Figure 40).

Approach 8

DBSCAN Clustering Algorithm

¥

Expression data set

Figure 40: Approach eight

Since the number of clusters are defined by the parameters which have mentioned above,
DBSCAN algorithm was tuned using different values for those parameters and found out the

values which perform three clusters.

Below are the values which performed three clusters,

eps: 0.15151515151515152 min_samples: 2.0 Number of clusters: 3
eps: 0.15454545454545454 min_samples: 2.0 Number of clusters: 3
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eps: 0.1575757575757576 min_samples: 2.0 Number of clusters: 3
eps: 0.1606060606060606 min_samples: 2.0 Number of clusters: 3
eps: 0.19090909090909092 min_samples: 3.0 Number of clusters: 3
eps: 0.19393939393939397 min_samples: 3.0 Number of clusters: 3
eps: 0.196969696969697 min_samples: 3.0 Number of clusters: 3
eps: 0.2 min_samples: 3.0 Number of clusters: 3

eps: 0.20303030303030306 min_samples: 3.0 Number of clusters: 3
eps: 0.20606060606060608 min_samples: 3.0 Number of clusters: 3
eps: 0.2090909090909091 min_samples: 3.0 Number of clusters: 3
eps: 0.21212121212121215 min_samples: 3.0 Number of clusters: 3
eps: 0.21515151515151518 min_samples: 4.0 Number of clusters: 3
eps: 0.2181818181818182 min_samples: 4.0 Number of clusters: 3
eps: 0.22121212121212125 min_samples: 4.0 Number of clusters: 3
eps: 0.22424242424242427 min_samples: 4.0 Number of clusters: 3
eps: 0.2272727272727273 min_samples: 4.0 Number of clusters: 3
eps: 0.23030303030303031 min_samples: 4.0 Number of clusters: 3
eps: 0.23333333333333336 min_samples: 4.0 Number of clusters: 3
eps: 0.2363636363636364 min_samples: 4.0 Number of clusters: 3
eps: 0.2393939393939394 min_samples: 4.0 Number of clusters: 3
eps: 0.24242424242424246 min_samples: 4.0 Number of clusters: 3
eps: 0.24545454545454548 min_samples: 4.0 Number of clusters: 3
eps: 0.2484848484848485 min_samples: 4.0 Number of clusters: 3
eps: 0.2515151515151516 min_samples: 4.0 Number of clusters: 3
eps: 0.2545454545454546 min_samples: 4.0 Number of clusters: 3
eps: 0.25757575757575757 min_samples: 3.0 Number of clusters: 3
eps: 0.2606060606060606 min_samples: 3.0 Number of clusters: 3
eps: 0.26363636363636367 min_samples: 3.0 Number of clusters: 3
eps: 0.2666666666666667 min_samples: 3.0 Number of clusters: 3
eps: 0.26969696969696977 min_samples: 3.0 Number of clusters: 3
eps: 0.27272727272727276 min_samples: 3.0 Number of clusters: 3
eps: 0.27575757575757576 min_samples: 3.0 Number of clusters: 3
eps: 0.2787878787878788 min_samples: 3.0 Number of clusters: 3
eps: 0.28181818181818186 min_samples: 3.0 Number of clusters: 3
eps: 0.2848484848484849 min_samples: 3.0 Number of clusters: 3
eps: 0.2878787878787879 min_samples: 3.0 Number of clusters: 3
eps: 0.29090909090909095 min_samples: 2.0 Number of clusters: 3
eps: 0.29090909090909095 min_samples: 4.0 Number of clusters: 3
eps: 0.29393939393939394 min_samples: 4.0 Number of clusters: 3
eps: 0.296969696969697 min_samples: 4.0 Number of clusters: 3
eps: 0.30000000000000004 min_samples: 4.0 Number of clusters: 3
eps: 0.3030303030303031 min_samples: 4.0 Number of clusters: 3

Each of these value pairs were used at a time and observed the distribution of the clusters and
calculate the average silhouette score. Then select the parameters which gives the best silhouette score

and the best distribution of the clusters.

eps=0.3030303030303031, min_samples=4.0 were selected as the most effective parameter values
for this data set. Below are the clusters (Refer appendix H) (Figure 41) which were perform by

DBSCAN clustering for the above parameter values with the average silhouette score of 0.0474806
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Figure 41: Clusters after approach eight

Approach 9

Then the same algorithm were tried out after dimension reduction of the dense data set using TSNE
and PCA as the dimension reduction methods. From these two approaches applying PCA gave
better clusters compared to applying TSNE method as clusters with PCA dimension reduction got

higher average silhouette score value compared to the other one (Figure 42). The clusters gained

through this method is as follows (Refer appendix 1) (Figure 43),

Apply Dimensional reduction method
(TSNE, PCA, ICA)

Apply DBSCAN clustering

¥

¥

Expression data set

>

Preprocessed data

Figure 42: Approach nine
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Figure 43: Clusters after approach nine

Approach 10

Since we are trying to compare the clustering methods and options as much as possible, then find
a better way to perform better clusters, this DBSCAN method was applied also on the CNA data
set which were preprocessed using one hot method. Here PCA method was used as the dimension
reduction method (Figure 44). Using this method three clusters were performed (Refer appendix
J) (Figure 45) with the average silhouette score is of -0.13301 and a better distribution of clusters.

Apply One Hot method on CNA data

A

Apply PCA dimensional reduction on CNA
data

Apply DBSCAN clustering

o

Figure 44: Approach ten
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Figure 45: Clusters after approach ten
Approach 11

The next clustering approach will be carried out using both the data sets, CNA and expression data
set at once, in order to explore the distribution and the similarities of the clusters which will be
gain using both the features. For this method CNA data which were preprocessed using one hot
method and the expression data will be used. PCA dimension reduction method was applied on
both the data sets (Figure 46). Clusters were performed with the average silhouette score of 0.1553

and distribution as below (Figure 47) (Refer appendix K).

Apply One Hot method on CNA data

¥

Apply PCA dimensional reduction on both » Apply DBSCAN clustering
data sets

Figure 46: Approach eleven
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Approach 12

As the next phase of applying DBSCAN on expression data set, outliers which were identified in
the phase of applying K-means clustering on CNA data set, were removed from the expression

Figure 47: Clusters after approach eleven

data set. Then again apply DBSCAN clustering on the filtered data set (Figure 48).

Since the data set has filter out from the outliers, the values for the parameters (eps, min_samples)
should be calculated again. Most suitable parameter values were identified considering number of

clusters and the average silhouette score. Parameter values which performed three clusters were identified

first and then the silhouette score was considered.

Remove outliers from expression data set

o

Apply DBSCAN clustering

Figure 48: Approach twelve
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eps=0.31818181818181823, min_samples=2.0 values were selected as the parameter values for
applying the DBSCAN clustering on the expression data set without outlier. Three clusters were

performed (Figure 49) (Refer appendix L) with above parameter values and the average silhouette
score of 0.101227.
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Figure 49: Clusters after approach twelve

Approach 13

As the next step of applying DBSCAN clustering method both the data set CNA and expression
data sets were used at once as the inputs to the DBSCAN clustering method. CNA data set and the
expression data set were store in two different 2D arrays. The value of the particular gene for
particular sample is considered with the value of the expression data of that same gene for the same
sample (Figure 50).

Considering both the points, DBSCAN method was applied on both the data sets. Below is the
clusters which were performed using this method with the average silhouette score of 0.04748047.
Even though there is a very little gain on silhouette score compared to the clusters which were performed

using only expression data, the distribution (Figure 51) of the clusters are different from each other.
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Apply PCA dimensional reduction on CNA » Apply DBSCAN clustering on both data
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Figure 50: Approach Thirteen
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Figure 51: Clusters after approach thirteen

Approach 14

As the final approach of performing clusters of this research, outliers which were identified in K-
means application phase, were removed from both the data sets, CNA and expression data set.
Here CNA data set was preprocessed using one hot method and dimension reduction was done by
using PCA method. Then apply the DBSCAN clustering for both the data set using same steps as

the above process (Figure 52). This method performed three clusters (Refer appendix M) with the
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average silhouette score of 0.30222757, highest score from all the procedures that were carried out earlier

without dimension reduction (Figure 53).

Find the effective number of clusters using elbow method
on CHA data set

Apply hierarchical
clustering on CNA data
set

Apply K-means on CNA Apply ICA, TSNE, and PCA
data using above found on CNA dats sat separately
number of clusters and apply K-means

Caleulate Avg Silhoustte - .
coefficient and Silhouette Ide.nt:-fytla:;j} ":]lom;d data
coefficient for sach data points pounts to the dendogram

Identify data points which
have negative values for
Silhouette coefficient

l

Compare the data points
which got negative values
from all four step

Remove selected data points
from both the data sets

¥

Get the intersect of the
genes (features) of both data
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¥
zlppgfaDBSCAN using both Apply one hot method on
© data sets CNA data st
T 4
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Figure 52: Approach fourteen
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Figure 53: Clusters after approach fourteen

As the another step preprocessed CNA data set with one hot and the dense data set was filter out
from the outliers which were identified in the earlier steps. Then dimension reduction was done
using PCA technique in the both data sets. Then DBSCAN clustering method was carried out for
both the data sets. But there were no any significant difference in the clusters when comparing to
the step which followed the same above steps with the outliers. Average silhouette score was (-
0.1553) same as the above mention step and the distribution of the data points in the clusters were

almost same.
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Chapter 6 Evaluation

6.1 Overview
In this chapter, we present the evaluation that was carried out to assess the validity of the method

designed and explored to identify a better clustering method for high dimensional unlabeled

genomic data. There are mainly two approaches to evaluate this hybrid clustering method.
6.2 External Evaluation

In external evaluation, clustering results are evaluated based on data that was not used for
clustering, such as known class labels and external benchmarks. Such benchmarks consist of a set
of pre-classified items, and these sets are often created by (expert) humans [7]. So in the evaluation
process of this research it will be utilized another data set from the same data source which is again
not labeled and high dimensional genomic data. This data set is utilized in order to validate the

clusters that will be the result of novel hybrid clustering method.

Elbow curve
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Figure 54: Elbow curve for the test data set

Selected full data set has CNA data set and expression data set separately. This CNA data set has
107 samples and expression data set has 49 samples. Both have 18609 features which are different
genes. All the approaches which were carried out throughout this research were again applied on
this new test data set and compared the results in order to validate this hybrid method, showing
that better clusters with better scores for measurements indexes can be performed using this hybrid

method on another data set which was not used for the experimental purpose.
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Elbow method was used on new CNA data set in order to find the efficient number of clusters
(Figure 54). Most appropriate number of clusters were five. Rest of the approaches were carried

out considering that the number of clusters is five.

The results are shown in the below table with the approach carried out. As explained above 1% four
methods was used to identify outliers with the dendogram which were performed by hierarchical
clustering method (Figure 55). The dendogram which was performed for this data set is shown

below.

Dendogram
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Figure 55: Dendogram for the test data set

The outliers for this data set was identified by comparing the silhouette score which was gained
for each data points for above all five methods. Identified outliers are shown in the below table
(Table 7).

Method Followed Avg. Silhouette Score Avg. Davies— | Davies—Bouldin index for each cluster

Bouldin index

0.18 2.6 1.85 244 1.96 3.53

3.53

66




CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Raw CNA data with - P .
K-means clustering .. Te s v
1 P '.." 'lf-'. H .., -‘
| N . ) . .
> N . . i
. i ceupLoIge
cinzrel 2
T0 4 & C|negeL ¢
. CinzeL 3
®  C|nAELS
ey . CinzgeL 1
Apply TSNE on CNA | 0.18 2.6 1.85 2.44 1.96 353 | 353
data then K-means
clustering »? o Cluster1
e Cluster 2
e Cluster 3
10 e Cluster 4
s Cluster 5
e . Centroids
> ® - Py ;. .0 ’ o’.
P X R L :" .' * .
0 * = ot .o .,
.. .
. %o
-2 0 2 4
X
Apply PCA on CNA | 0.16 2.6 1.85 2.44 1.96 353 | 353
data then K-means
clustering
TEST
0.6
0.4
0.2 . L] B l.
. i": ‘:-.' %
0o '?t,- . e -,
e Cluster1 * o ,-..°'
e Cluster 2 . . L
-0.2 @ Cluster3 . * . e
s 1w,
04 Centroids . T .
—075 -050 -025 D000 025 050 075 1.00
X
0.19 2.6 1.85 244 1.96 3.53 3.53

67




CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Apply ICA on CNA TEST
data then K-means 031 o oGl
clustering . s Chumers
: Cluster 5
Centroids
0.14 .
.. L ] o
004 ¢ o . . oo .:.-'
-ﬂ b A ° . ..- . % o °
L ) . o * o
-0.1 i “ |‘ ®
o' o
—0‘,15 —0?10 —0?05 0.60 0.05 O.EI.O 0.15
X
Apply one  hot | 0.5 23.17 143 49.68 1.21 49.68 0.902
method on CNA data
then PCA dimention - e Clusterl
. 801 o o e Cluster 2
reduction then K- o Cluster3
60+ e Cluster 4
means clustering Cluster 5
Centroids
404
> 20 L] :
'] F Y *
0+ . . ]
—201 l.. '.. . te [ ]
—40 :
76‘0 4‘10 -20 0 20 4b 60 80 100
Apply one hot | 0.16 1.6 1.42 1.84 1.29 1.88 1.88
method on CNA data
then K-means
X
clustering I S S 0 0 b e
—T00 4 .
—i2 4 ¢
=201 *
52 ®
> 0d ° . ®
a4 * o . . * . ° .
204 . . . R . R .
e (C|n2feL 3
24 e cneeLs . . ° .
® C|neeL 1 .
Apply one hot | 0.6 0.5 0.1 0.6 0.3 0.66 0.69

method on CNA data,

68




CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

then PCA for both the
data sets then K- -0t -0s oo oS xo:d oe os o
means clustering sl X ' e
00 A
0'5 A * -
] 0'¢ A .
CceufLoIgR
[ CInzgek 2
L ] L] C|n2rek ¢
og4 L] L] C|nefsk 3
. ® (Cjnerels
° ® el T
Apply DBSCAN for | 0.42 0.60 1.61 0.69 0.39 061 | 061
Expression data set
100 | . R .
504 . . . [
0+ . ° . * ° - °
-50 . ’ '
- e Cluster1
~100 4 . e Cluster2
. e Cluster 3
e Cluster 4
_150 4 * . Cluster 5
100 50 0 100
X
Apply PCA on | 05 0.9 1.2 0.8 0.8 0.8 1.2
expression data then
DBSCAN CIUStering . A . C:uster 1
. e Cluster 2
081 . ® Cluster3
. e Cluster 4
0.6 4 Cluster 5
0.4 1 *
0.2 1 -
0.01 . --
-0.2 ‘.:c --- -
04 -02 00 02 04 0.6 08 10
X
0.2 0.77 0.23 0.89 0.84 0.78 0.62

69




CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Apply one hot on
CNA data then PCA
for CNA data sets

then DBSCAN
clustering
Remove outliers

apply one hot method
on CNA data and
then PCA only on
CNA data, then apply
DBSCAN on both the
data sets

100 4

50 4

—100 4

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

T
—60

0.5

0.8+

0.6

0.4 4

0.2 4

0.0

—0.2 4

T T
=40 -20

0.57

14 0.21 0.27 0.42 0.57

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

-

T T
-0.2 0.0

T
0.4

T
0.8

T
10

Table 7: Comparison of evaluation measurements for test data set

According to the results of the explained procedure it is clear that presented novel approach has
given the best scores for the measurement index values.

6.2 Internal Evaluation

If we are going to use clustering data itself to evaluate the result it is called as internal evaluation.

Having high intra cluster similarity and low inter cluster similarity is one of the characteristics of

an effective clustering methods. Hence, the clustering method that will be the final outcome of this

research will be evaluated by using these measurements.

There are three main measures which are used for internal evaluation in cluster evaluation. They

are,

e Davies—Bouldin index
e Dunn index
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e Silhouette coefficient

These messures can be used for evaluate clusters which were performed by particular clustering
method. These messurements gives a score for each cluster so that the clusters can be evaluated

internally [23].

Since this reseach was an explorative research each and every time clusters was performed internal
evaluation was carried out [25]. Hence the most effective clusters can be identified in the every
step. Silhouette coefficient was used in every step inorder to do the internal evaluation [24]. Hence

internal evaluation has been carried out thrugh out the research.

Since the result of Silhouette coefficient is used for the exploration part of the research, another
messurment technique need to be used in the evaluation phase [39]. Hence Davies—Bouldin index

was used to evaluate the clusters in each step and the final cluster set.

Davies—Bouldin index
Following formula can be used for calculate the Davies—Bouldin index

1 <& g +oj
DB = — E ; _
- mdx(d )

il o} (€5, f:j}

n = Number of clusters

Cx = the centroid of cluster x

o x = the average distance of all elements in cluster x
d(Ci, cj) = the distance between centroids

A better clustering algorithm will always perform clusters with low intra cluster distance which
should have high intra cluster similarity [40]. When considering inter cluster distance good cluster
set may have high inter cluster distance and low inter cluster similarity. A cluster with these
qualities will have a low Davies—Bouldin index, the clustering algorithm that produces a collection
of clusters with the smallest Davies—Bouldin index is considered the best algorithm based on this

criterion [40].

71


https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index
https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index

CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

The Davies—Bouldin index values get for the each step which have been done in the methodology

section to perform clusters are as follows with the corresponding value for silhouette score in the

each step.
Method Followed Avg. Silhouette | Avg. Davies— | Davies—Bouldin index for each cluster
Score Bouldin index
Raw CNA data with K-means clustering 0.320 1.563 1.63 1.42 1.63
Apply TSNE on CNA data then K-means clustering | 0.212 1.563 1.63 1.42 1.63
Apply PCA on CNA data then K-means clustering | 0.311 1.563 1.63 1.42 1.63
Apply ICA on CNA data then K-means clustering 0.307 1.563 1.65 1.42 1.63
Apply one hot method on CNA data then PCA | 0.233 1.13 1.02 1.33 1.01

dimention reduction then K-means clustering

Apply one hot method on CNA data then K-means | -0.09 167845171 Large value | Large value | Large
clustering value
Apply one hot method on CNA data, then PCA for | 0.5 0.6 0.5 0.6 0.6

both the data sets then K-means clustering

Apply DBSCAN for Expression data set 0.047 1.56 1.61 1.61 1.4
Apply DBSCAN for both CNA and Expression data | 0.047 1.56 1.61 1.61 14
Apply PCA on expression data then DBSCAN | 0.03 1.8 25 2.5 0.6
clustering

Apply one hot on CNA data then PCA for CNA data | -0.13 0.9 1.06 1.06 0.6

sets then DBSCAN clustering

Apply one hot on CNA data then PCA for both the | -0.15 4.5 6.3 6.3 0.9
data sets then DBSCAN clustering

Remove outliers apply DBSCAN for both data sets | -0.1553 4.53 6.34 6.34 0.92

Remove outliers apply one hot method on CNA data | 0.464 0.5643 0.577 0.584 0.532
and then PCA only on CNA data, then apply
DBSCAN on bhoth the data sets

Table 8: Comparison of evaluation measurements
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When consider the above table (Table 8), the clustering approaches which have got nearly same
value for the average silhouette score, have got nealy same values also for the average Davies—
Bouldin index. So the approaches which used for perform clusters can be evaluated using these
messurements. The procedure which follows to evaluate the clusters can be confirmed using the

score values of the Davies—Bouldin index for each cluster.
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Chapter 8 Results & Analysis

8.1 Overview

This chapter presents the overall findings of this research study and the analysis and discussion
of them.

8.2 Results and analysis on each clustering approaches

There are several clustering approach which were followed in order to find a better clustering
approach for high dimensional unlabeled genomic data. Here the main focus was on main three
clustering algorithms which were used heavily in the literature. They are k-means clustering

algorithm, Hierarchical clustering algorithm and DBSCAN clustering algorithm.

These algorithm was applied in different ways on two main data sets which are CNA data set and
expression data set using different preprocessing methods. The clusters which were produced using
these different methods were evaluated using different measurements like silhouette score and

Davies—Bouldin index.

This analysis will be carried out using these meassurements and analysing the clusters comparing

the data points in each clusters which were perormed using different methods.

Approches with K-means clustering

When consider the values for the measurement indexes in the t able 8 it shows that there is no any
considerable impact when using dimension reduction methods such as ICA, TNSE and PCA on
CNA data and the apply K-means clustering compared to the approach where K-means clustering

apply directly on the CNA data set.
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Method Followed Avg. Avg. Davies— | Davies—Bouldin index for each
Silhouette Bouldin index | cluster
Score
Row CNA data with K-means clustering | 0.320 1.563 1.63 1.42 1.63
Apply TSNE on CNA data then K-means | 0.212 1.563 1.63 1.42 1.63
clustering
Apply PCA on CNA data then K-means | 0.311 1.563 1.63 1.42 1.63
clustering
Apply ICA on CNA data then K-means | 0.307 1.563 1.65 1.42 1.63
clustering

Table 9: Comparison of evaluation measurements

There are small differences of the average silhouette score but average Davies—Bouldin index is

almost same for all the approaches (Table 9).

Converting the categorical data which is in CNA data set to numerical data using one hot method
and then apply K-means clustering without using dimention reduction is the most failed approach
among the approaches which were carried out through this reseach. The meassurement indexes

have got very large values for this clustering approach (Table 10).

Method Followed Avg. Avg. Davies— | Davies—Bouldin index for each
Silhouette Bouldin index | cluster
Score
Apply one hot method on CNA data then | -0.09 167845171 Large Large Large
K-means clustering value value value

Table 10: Comparison of evaluation measurements
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Use one hot method on the CNA data set and then apply PCA method to dimension reduction and
apply k-means clustering on these preprocessed data shows considerable improvement when

consider the values for the measurement indexes for that method (Table 11).

Method Followed Avg. Avg. Davies— | Davies—Bouldin index for each
Silhouette Bouldin index | cluster
Score
Apply one hot method on CNA data then | 0.233 1.13 1.02 1.33 1.01

PCA dimention reduction then K-means

clustering

Table 11: Comparison of evaluation measurements
Using one hot for CNA data and then apply PCA for both the data set which are preprocessed
CNA and expression data set and apply k-means for perform clusters has the best score among the

approaches which uses k-means as the main clustering algorithm (Table 12).

Method Followed Avg. Avg. Davies— | Davies—Bouldin index for each
Silhouette Bouldin index | cluster
Score
Apply one hot method on CNA data, then | 0.5 0.6 0.5 0.6 0.6

PCA for both the data sets then K-means

clustering

Table 12: Comparison of evaluation measurements

Approches with DBSCAN clustering

There are several approaches carried out using DBSCAN clustering method on both the data sets,
separately and as a combined data set. The measurement indexes were calculated for these

clustering approaches as well.

When considering these measurement indexes it shows that there’s no any considerable impact

when clustering only expression data using DBSCAN method compared to clustering the data set
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using both CNA and expression data without using any conversion method such as one hot method

or any dimension reduction method such as PCA, on any of the data set (Table 13).

Method Followed Avg. Avg. Davies— | Davies-Bouldin index for each
Silhouette Bouldin index | cluster
Score
Apply DBSCAN for Expression data set | 0.047 1.56 1.61 1.61 1.4
Apply DBSCAN for both CNA and | 0.047 1.56 1.61 1.61 1.4

Expression data

Table 13: Comparison of evaluation measurements

When analyzing the other approach which were carried out with DBSCAN clustering method.

There are three approaches which got almost the same results. They are (Table 14),

e Apply DBSCAN clustering only on the CNA data which were converted from categorical
data to numerical data using one hot method and apply PCA for dimension reduction.

e Apply DBSCAN clustering on both the CNA data which were converted from categorical
data to numerical data using one hot method and expression data set after applying PCA
for dimension reduction.

e Remove outliers from both the data sets and then use DBSCAN for both the data sets

without using any preprocessing methods.

Method Followed Avg. Avg. Davies— | Davies-Bouldin index for each
Silhouette Bouldin index | cluster
Score
Apply one hot on CNA data then PCA for | -0.13 0.9 1.06 1.06 0.6

CNA data sets then DBSCAN clustering

Apply one hot on CNA data then PCA for | -0.15 4.5 6.3 6.3 0.9
both the data sets then DBSCAN

clustering

77



CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Remove outliers apply DBSCAN for both | -0.1553 4,53 6.34 6.34 0.92
data sets

Table 14: Comparison of evaluation measurements

Last approach with the DBSCAN clustering method got the highest values for all the measurement

indexes. In this approach CNA data set was clustered using k-means clustering in three steps,

e Without any dimension reduction
e With TNSE dimension reduction
e With ICA dimension reduction
e With PCA dimension reduction

Then the CNA data set was clustered using hierarchical clustering method and drew the dendogram

so that how and in which order the data points get joined with the clusters will be cleared.

By analyzing above four methods outliers were identified. Then outliers were removed from both
CNA and expression data sets. Since CNA data has categorical data, this data set was converted
to numerical data using one hot method. But any preprocesses method was not carried out on the
expression data set. Then DBSCAN clustering was applied on both the data sets. The measurement

values for this method is as follows (Table 15),

Method Followed Avg. Avg. Davies— | Davies—Bouldin index for each
Silhouette Bouldin index | cluster
Score
Remove outliers apply one hot method on | 0.464 0.5643 0.577 0.584 0.532

CNA data and then PCA only on CNA
data, then apply DBSCAN on both the

data sets

Table 15: Comparison of evaluation measurements

As the next phase of the analysis, best cluster of each approach will be compare with the

corresponding cluster which were performed by the found hybrid method. Apply one hot method on
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CNA data, then PCA for both the data sets then applying K-means clustering approach has the lowest which
is the best Davies—Bouldin index for the 1% and 2™ clusters. Those two clusters were compared with the 1%

and 2" cluster of the final results which got form the novel hybrid method.

The 1% cluster of above method got 41 data points, and the 1% cluster of the hybrid method got 32 data
points, out of those 32 data points 28 data points are also include in the 1% cluster which were performed

by above mentioned method.

Also in the 2™ cluster of above method has 67 data points, and the 2™ cluster of the hybrid method has 60
points, out of that 60 points 52 points are also include in the 1% cluster of above metioned method.

When considering about the 3" cluster, Apply PCA on expression data then Apply DBSCAN method and
Apply one hot method on CNA data then apply PCA on both the data sets and apply DBSCAN clustering
method have the best Davies—Bouldin index for 3" cluster. Hence these two clusters were compared with
the 3 cluster which were performed by the hybrid method.

In the above mentioned two clusters there are 3 data point in one cluster and 5 data points in the
other clusters respectively. The corresponding cluster which performed by the novel method has
3 data points. Three out of these three data points are include in the cluster which performed by
the above mentioned 2" method. Two out of three data points are also include in the cluster which

was performed by the above mentioned 1% method.
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Chapter 9 Conclusion

9.1 Overview

As is the case with any research, there are several limitations inherent in this study which were
unavoidable. This chapter presents a summary of the research, limitations and following that, the

recommendations for future work are provided.

9.2 Summary

This paper presents a novel approach which we propose for the clustering high dimensional
genomic data. It includes a method which can be considere as a hybrid method as it is an approach
which includes some of the known clustering methods, K-means, hierarchicla and DBSCAN.
Several approches were carried out using different steps of each in order to perform a better cluster
set. Internal evaluation phase carried out in each approach to identify better clusters in order to

proceed futher.

The summary details of the evaluation messurements such as silhouette score and Davies—Bouldin
index were used to assess the novel approach. Internal evaluation as well as the external evaluation
shows that the novel approach has a better results when comparing to the other approaches which
were carried out through out the research. Overall performance measures of the novel clustering
approach as well as the similarity measure of the each cluster seperatly were carried out to assess
the quality of the novel method. The values achieved as discussed previously proved that this
method can be used in performing better clusters of high dimensional genomic data. Hence we can
state that our novel method is successful in performing clusters with better similarities among the

data points.

9.3 Limitations

Due to time constraint we are unable to evaluate each clusters we gain through different method
using bio medical knowledge of a domain expert. Since we have tried out nearly sixteen different
method of clustering approaches. Each approach we got three clusters, all together there are 48

clusters to be evaluated considering how they are related in bio medical domain. Since this is a
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time consuming task we decided to evaluate these clusters using computational methods such as
inter cluster similarity and intra cluster similarity. While doing the research in order to decide the

next step we used silhouette score as one of such methods.

No labels are attached to the performed clusters as they are not thoroughly evaluated using
biomedical knowledge is another drawback of this research. Even though we performed clusters
with high values for the measurement indexes there is no real meaning of those clusters when

considering the biological aspect.

This method is built using main two data sets which is CNA data and expression data. The genomic
data which is not under these categories are not tested with this method. CNA data set is used for

the 1%t phase of the method, for the 2" phase both the data sets were used.

Another limitation that we noticed is, when preparing the data set we got intersect of the features
of both the data sets. Hence we had to remove some of the genes from the expression data set.

There might be some important data is been removed because of this step.

Due to time limitation we have used only three main clustering algorithms for this research which
were frequently used in literature. But there can be some different clustering algorithms which will

give better outputs when combining them as did in this research.

This method has only tested with genomic data hence we can’t recommend this method for any
other data categories. For the methodology of the research we used one genomic data set and for
the evaluation phase of the research used another genomic data set. Hence we can’t ensure that

this method will work for any other type of data.

9.4 Suggestions for Future Work

While this thesis has presented the potential of clustering the unlabeled genomic data and can be
lead to identify some important information on those data, many opportunities for extending the
scope of this thesis remain. Hence, in this section we are suggesting some future research directions

that could improve the mutation recognition and analysis process.
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The most important next step will be evaluate the clustering results using bio medical knowledge
of a domain expert and tune the method. As we are focusing on genomic data it is important to
evaluate these clusters using bio medical knowledge so that we can decide the correctness of the

clusters. Using those results we can tune the method more to give more accurate clusters.

We can test this method on data which is not genomic data. Because we have used this method
only on genomic data with two data sets. We can try this method on some other data set and

evaluate the output so that we can generalize this method to be used on any data set.

When preprocessing the data sets we had to remove some of the genes which we considered as the
features of the data set as CNA and the expression data set does not contain the same gene set.
When removing some of these data, some of the important data might have been removed. Tune
this method to use the data set as it is without removing any of them can be considered as another

future work.

To explore this method we have only used three main clustering methods, K-means, hierarchical
and DBSCAN. As a future work we can expand the number of selected clustering methods. We
can try out different clustering method and combine the results with this method to tune the method
in order to achieve better outputs.
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Appendix A: Clusters when apply K-means on CNA data set

0 1 2
1115244 1115156 1115153
'6115121' 6115115 1115154
'6115227" 6115117 1115157
6115250 '6115118' 1115161
'MO_1114 6115122 1115183
'MO_1179 '6115123' 1115202
'MO_1184 '6115224' 6115114
'MO_1219 6115233 6115219
'SC_9007" '6115234' '6115237"
'SC_9017" '6115247" 6115242
'SC_9022' '6115251' 'MO_1013'
'SC_9038' 'MO_1020' 'MO_1014'
'SC_9057" 'MO_1040' 'MO_1071'
'SC_9059' 'MO_1054' 'MO_1095'
'SC_9063' 'MO_1084' 'MO_1128'
'SC_9086' 'MO_1094' 'MO_1161'
'SC_9099' 'MO_1118' 'MO_1202'
“TP_2054' 'MO_1124 'MO_1221'
“TP_2061' 'MO_1176' 'MO_1232"
'MO_1192 'MO_1249
'MO_1215' 'SC_9008'
'MO_1241' 'SC_9009”
'MO_1244' 'SC_9010'
'MO_1262 'SC_9016'
'MO_1277' 'SC_9018'
'MO_1316' 'SC_9023'
'MO_1336' 'SC_9028'
'MO_1337' 'SC_9030'
'MO_1339' 'SC_9034'
'SC_9001' 'SC_9037"
'SC_9012' 'SC_9047"
'SC_9019' 'SC_9049'
'SC_9026' 'SC_9060'
'SC_9029' 'SC_9061'
'SC_9031' 'SC_9062"
'SC_9032' 'SC_9068'
'SC_9036' 'SC_9071'
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'SC_9043' 'SC_9073'
'SC_9046' 'SC_9083'
'SC_9048' 'SC_9091'
'SC_9050' “TP_2009'
'SC_9054' "TP_2060'
'SC_9055'
'SC_9058'
'SC_9072'
'SC_9080'
'SC_9081'
'SC_9092'
'SC_9093'
'SC_9094'
'SC_9097'
"TP_2001'
“TP_2010'
TP_2020'
"TP_2032'
"TP_2034'
“TP_2064'
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Appendix B: Clusters when apply K-means on CNA data set with
TNSE dimensional reduction

0 1 2
1115154' '6115115' 1115153'

1115157' 6115117 1115156'

1115161' '6115122' 1115183'

1115244' '6115224' 1115202'

'6115118' '6115233' '6115114'

'6115219' '6115234' '6115121'

'6115227" '6115237" '6115123'

'6115242' '6115247" 'MO_1013'
'6115250' 'MO_1020' 'MO_1095'
'6115251' 'MO_1054' 'MO_1161'
'MO_1014' ‘MO_1071’ 'MO_1174'
'MO_1040' 'MO_1084' 'MO_1249'
'MO_1114' 'MO_1094' 'MO_1262'
'MO_1128' 'MO_1118' 'SC_9007"
'MO_1179' 'MO_1124' 'SC_9009’
'MO_1184' 'MO_1192' 'SC_9016'
'MO_1202 'MO_1215' 'SC_9018'
'MO_1219' 'MO_1241' 'SC_9028'
'MO_1221' 'MO_1244' 'SC_9034'
'MO_1231' 'MO_1277' 'SC_9036'
'MO_1339' 'MO_1316' 'SC_9037'
'SC_9008' 'MO_1336' 'SC_9046'
'SC_9010' 'MO_1337" 'SC_9047'
'SC_9017' 'SC_9001' 'SC_9054'
'SC_9022 'SC_9012" 'SC_9060"
'SC_9023' 'SC_9019' 'SC_9062"
'SC_9030' 'SC_9026' 'SC_9063'
'SC_9038' 'SC_9027" 'SC_9068'
'SC_9049' 'SC_9031' 'SC_9071'
'SC_9055' 'SC_9032' 'SC_9072'
'SC_9057" 'SC_9043' 'SC_9073'
'SC_9059 'SC_9048' 'SC_9080"
'SC_9061' 'SC_9050" 'SC_9097"
'SC_9072 'SC_9058' “TP_2037'
'SC_9083' 'SC_9081' “TP_2064'
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'SC_9086' 'SC_9091'
'SC_9093' “TP_2001'
‘SC_9094’ “TP_2009'
'SC_9099' TP_2010'
"TP_2054' TP_2020'
TP_2032'
“TP_2060'
“TP_2061'
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Appendix C: Clusters when apply K-means on CNA data set with
PCA dimensional reduction

0 1 2
1115154’ 6115117’ 1115153'
1115157" '6115118' 1115154'
1115161' '6115224' 1115156'
1115244’ '6115233' 1115183'
'6115121' '6115234' 1115202'
'6115219' '6115247" '6115114'
'6115227" '6115251' '6115115'
'6115250' 'MO_1020' '6115122"
'MO_1013' 'MO_1040' '6115123'
'MO_1114' 'MO_1084' '6115237"
'MO_1179' 'MO_1094' 'MO_1014'
'MO_1184' 'MO_1118' 'MO_1054'
'MO_1202' 'MO_1124' 'MO_1071'
'MO_1219' 'MO_1192' 'MO_1095'
'MO_1221' 'MO_1215' 'MO_1128'
'MO_1232' 'MO_1244' 'MO_1161'
'MO_1249' 'MO_1262' 'MO_1174'
'MO_1339' 'MO_1277' 'MO_1241'
'SC_9007" 'MO_1316' 'SC_9008'
'SC_9010' 'MO_1336' 'SC_9009’
'SC_9016' 'MO_1337' 'SC_9018'
'SC_9017' 'SC_9001' 'SC_9023'
'SC_9022' 'SC_9012' 'SC_9023'
'SC_9023' 'SC_9019' 'SC_9026'
'SC_9034' 'SC_9027" 'SC_9028'
'SC_9038' 'SC_9031' 'SC_9036'
'SC_9047' 'SC_9032' 'SC_9037"
'SC_9055' 'SC_9043' 'SC_9048'
'SC_9057' 'SC_9046' 'SC_9049'
'SC_9059' 'SC_9050' 'SC_9061'
'SC_9060' 'SC_9054' 'SC_9062'
'SC_9063' 'SC_9058' 'SC_9068'
'SC_9071' 'SC_9080' 'SC_9083'
'SC_9072' 'SC_9081' 'SC_9091'
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'SC_9073' 'SC_9092' TP_2009'
'SC_9086' 'SC_9093' TP_2020'
'SC_9094' 'SC_9097' ‘TP_2034'
'SC_9099' “TP_2001' “TP_2060'
“TP_2054' TP_2010'
“TP_2061' "TP_2032'

“TP_2064'
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Appendix D: Silhouette Score for each point

Data point Score
'MO_1013' 4.38E-03
‘MO_1014" -4.39E-03
'MO_1020" 1.86E-02
‘MO_1040" 1.67E-03
'MO_1054" 3.55E-02
‘MO_1071" 3.83E-02
‘MO_1084" 4.43E-02
'MO_1094" 6.61E-02
'MO_1095 1.88E-02
'‘MO_1114 3.38E-02
'MO_1118" 2.43E-02
'MO_1124" 1.32E-02
'MO_1128' 2.50E-02
'MO_1161" 2.33E-02
'MO_1176' 9.45E-03
'MO_1179" 2.88E-02
'MO_1184" 3.46E-02
'MO_1192" 6.46E-02
'MO_1202" 4.49E-03
'MO_1215' 3.35E-02
'MO_1219" 9.01E-02
'MO_1221" 3.93E-04
'MO_1232" 4.11E-03
'MO_1241" 9.49E-03
'MO_1244' 2.01E-02
'MO_1249" 8.45E-03
'MO_1262" 9.33E-03
'MO_1277" 4.13E-02
'MO_1316" 7.02E-02
'MO_1336' 2.08E-02
'MO_1337" 5.34E-02
'MO_1339" 4.57E-03
'1115161" 1.51E-02
'1115183" 3.13E-02
'1115202' 3.14E-02
1115244 3.75E-02
'6115219' 5.30E-04
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'6115224" 3.09E-02
'6115227" 4.07E-02
'6115233" 2.81E-02
'6115234" 5.20E-03
'6115237" 8.09E-03
'6115242" 1.65E-02
'6115247" 7.03E-03
'6115250" 2.94E-02
'6115251" 7.08E-03
'1115153" 1.23E-02
'1115154" -1.43E-03
'1115156" 1.37E-02
‘1115157 -4.69E-03
'6115114" 2.68E-02
'6115115 1.39E-02
‘6115117 2.70E-02
'6115118" -5.84E-04
'6115121" 2.30E-02
'6115122" 7.52E-03
'6115123" 1.47E-02
'SC_9001" 8.89E-02
'SC_9007" 7.35E-03
'SC_9008' 3.07E-02
'SC_9009 3.51E-02
'SC_9010' 4.69E-03
'SC_9012 3.83E-02
'SC_9016' 5.80E-03
'SC_9017" 6.59E-02
'SC_9018' 8.31E-03
'SC_9019' 2.79E-02
'SC_9022 3.61E-02
'SC_9023' 1.38E-02
'SC_9026' 3.47E-02
'SC_9028" 6.76822255e-02 2

'SC_9029' 9.93E-03
'SC_9030" 3.29E-02
'SC_9031" 4.00E-02
'SC_9032 6.27E-03
'SC_9034" -6.54E-03
'SC_9036' 3.97E-02
'SC_9037" 3.67E-02
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'SC_9038' 4.20E-02
'SC_9043' 1.63E-02
'SC_9046' 1.66E-02
'SC_9047" 1.10E-02
'SC_9048' 9.85E-03
'SC_9049' 2.83E-02
'SC_9050" 3.99E-02
'SC_9054' 4.00E-04
'SC_9055' 1.64E-02
'SC_9057" 1.17E-02
'SC_9058' 4.02E-02
'SC_9059' 4.99E-02
'SC_9060" 7.69E-04
'SC_9061' 1.00E-02
'SC_9062" 2.45E-02
'SC_9063' 1.52E-03
'SC_9068" 2.19E-02
'SC_9071' 1.89E-02
'SC_9072' 1.94E-03
'SC_9073' 2.31E-02
'SC_9080" 7.13E-02
'SC_9081' 1.52E-02
'SC_9083' 1.62E-03
'SC_9086' 6.38E-03
'SC_9091’ 2.59E-02
'SC_9092' -4.02E-03
'SC_9093' 5.43E-05
'SC_9094' 3.04E-02
'SC_9097" -5.93E-03
'SC_9099' 6.49E-02
“TP_2001' 4.73E-03
“TP_2009' 3.29E-02
"TP_2010° 1.45E-02
“TP_2020° 2.16E-02
“TP_2032' 1.80E-02
“TP_2034' 1.69E-02
“TP_2054' 2.63E-02
“TP_2060" 7.41E-02
“TP_2061' 9.25E-03
‘TP_2064" 2.68E-04
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Appendix E: Clusters when apply K-means on CNA data set with
ICA dimensional reduction

0 1 2
6115242’ 6115117’ ‘1115157
1115161' '6115118' 1115153'
1115244’ '6115224' 1115154'
'6115121' '6115233' 1115156'
'6115219' '6115234' 1115183'
'6115227" '6115247" 1115202'
6115250 '6115251' '6115114"
'MO_1013' 'MO_1020' '6115115'
'MO_1114' 'MO_1040' '6115122"
'MO_1179' 'MO_1084' '6115123'
'MO_1184' 'MO_1094' '6115237"
'MO_1202' 'MO_1118' 'MO_1014'
'MO_1219' 'MO_1124' 'MO_1054'
'MO_1232' 'MO_1192' 'MO_1071'
'MO_1249' 'MO_1215' 'MO_1095'
'MO_1339 'MO_1244' 'MO_1128'
'SC_9007" 'MO_1262' 'MO_1161'
'SC_9010' 'MO_1277' 'MO_1174'
'SC_9016' 'MO_1316' 'MO_1221'
'SC_9017" 'MO_1336' 'MO_1241'
'SC_9022' 'MO_1337' 'SC_9008'
'SC_9023' 'SC_9001' 'SC_9009’
'SC_9034' 'SC_9012' 'SC_9018'
'SC_9038' 'SC_9019' 'SC_9026'
'SC_9047' 'SC_9029' 'SC_9028'
'SC_9055' 'SC_9031' 'SC_9030'
'SC_9057' 'SC_9032' 'SC_9036'
'SC_9059' 'SC_9043' 'SC_9037"
'SC_9060' 'SC_9046' 'SC_9048'
'SC_9063' 'SC_9050' 'SC_9049'
'SC_9071' 'SC_9054' 'SC_9061'
'SC_9072' 'SC_9058' 'SC_9062'
'SC_9073' 'SC_9080' 'SC_9068'
'SC_9086' 'SC_9081' 'SC_9083'
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'SC_9094' 'SC_9092' 'SC_9091'
'SC_9099' 'SC_9093' 'SC_9097"
“TP_2054' “TP_2001' “TP_2009'
“TP_2061' TP_2010' “TP_2020'
"TP_2032' ‘TP_2034'
"TP_2064' TP_2060'
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Appendix F: Clusters performed by approach three

0 1 2
1115153 1115154 6115117
1115156 | 1115157 6115123
1115161 1115183 | 6115224
1115244 | 1115202 6115233
6115114 = 6115115 6115234
6115227 6115118 MO_1020
6115247 = 6115121 MO_1084
6115250 | 6115122  MO_1094
6115251 6115219 MO _1124
MO_1040 | 6115237 MO_1176
MO_1054 6115242 | MO_1192
MO_1071 | MO_1013 MO_1215
MO_1095 | MO_1014 | MO_1244
MO_1118 MO_1114 | MO_1277
MO_1128 | MO_1161 MO_1316
MO_1179 MO_1202 | MO_1336
MO_1184 | MO_1221 MO_1337
MO_1219 MO_1232  SC_9001
MO 1262 MO_1241 SC_9022
SC_9007 | MO_1249  SC_9029
SC_9008 = MO_1339 SC_9031
SC_9012 | SC_9009 @ SC_9032
SC_9018 | SC_9010 @ SC_9036
SC_9019 | SC_9016 & SC_9043
SC_9028 | SC_9017 @ SC_9050
SC_9034 | SC_9023 = SC_9060
SC_9037 | SC_9026 @ SC_9061
SC_9046 | SC_9030 = SC_9080
SC_9047 | SC_9038 @ SC_9086
SC_9048 | SC_9054 = SC_9092
SC_9049 | SC_9055 @ TP_2001
SC_9057 | SC_9058 @ TP_2009
SC_9063 | SC_9059  TP_2010
SC 9071 | SC_9062 @ TP_2034
SC_9073 | SC_9068

SC 9081 | SC_9072

SC 9091 | SC_9083

TP 2020 | SC_9093
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TP 2032 | SC_9094
TP 2054 | SC_9097
TP 2060 | SC_9099
TP_2061
TP_2064
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Appendix G: Clusters performed by approach four

1115153 1115156 1115161
1115154 | 6115115 1115202
1115157 6115121 | 1115244
1115183 | 6115123 6115117
6115114 6115224 6115118
6115122 6115250 6115227
6115219 MO 1071 6115233
MO_1013 | MO_1084 | 6115234
MO_1014 MO _1094 | 6115237
MO_1020 | MO_1179 6115242
MO_1054 MO _1184 | 6115247
MO_1095 | MO_1219 = 6115251
MO_1114 | MO_1336 MO_1040
MO_1124 SC 9001 | MO_1118
MO_1128 | SC_9016 MO_1176
MO_1161 SC 9017 | MO_1232
MO_1192 | SC_9018 | MO_1244
MO_1202 SC 9023 | MO_1262
MO_1215 SC 9026 | MO_1316
MO_1221 | SC_9029 | SC_9007
MO_1241 | SC_9031  SC_9036
MO_1249 | SC_9034  SC_9038
MO_1277 | SC_9037 = SC_9058
MO_1337 | SC_9046  SC_9081
MO_1339 | SC_9048  SC_9092
SC_9008 | SC_9071 @ SC_9097
SC_9009 | SC_9072

SC_9010 | SC_9091

SC_9012 | SC_9094

SC_9019 | TP_2009

SC 9022 | TP_2020

SC 9028 | TP_2054

SC_9030

SC_9032

SC_9043

SC_9047

SC_9049

SC_9050
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SC_9054
SC_9055
SC_9057
SC_9059
SC_9060
SC_9061
SC_9062
SC_9063
SC_9068
SC_9073
SC_9080
SC_9083
SC_9086
SC_9093
SC_9099
TP_2001
TP_2010
TP_2032
TP 2034
TP_2060
TP_2061
TP 2064
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Appendix H: Clusters performed by approach five

0 1 2
'SC_9091' TP_2061' 'MO_1176'
'MO_1336' 'SC_9086' 'SC_9097'
'SC_9031' ‘MO_1339' '6115237"
'SC_9081' 'MO_1337'

'SC_9080' ‘SC_9068'

'MO_1316' 'SC_9062'

“TP_2054' 'SC_9061'

'SC_9073' 'SC_9060'

'SC_9072' 'SC_9057'

'SC_9071' 'MO_1221'

'MO_1277' 'SC_9055'

'MO_1202" 'SC_9038'

'SC_9063' 'SC_9050'

'MO_1262' '‘MO_1192'

'MO_1249 'SC_9049'

'MO_1244 'SC_9047'

'MO_1241' 'SC_9043'

'SC_9059' 'SC_9030'

'SC_9058' TP_2032'

'MO_1232' 'SC_9028'

'MO_1219' 'SC_9022'

'MO_1215' 'SC_9019'

'SC_9054 'MO_1128'

'SC_9048' 'MO_1114"

'SC_9046' 'SC_9010'

'MO_1184 'SC_9009'

'MO_1179 'SC_9008'

'SC_9018' TP_2001'

'SC_9037" 'MO_1054"

'SC_9036' 'MO_1014'

'SC_9034' ‘MO_1013'

'SC_9032' TP_2064'

TP 2034’ 'SC_9093'

'MO_1161' *SC_9099'

'SC_9029' 6115219’

'SC_9026' ‘6115114

“TP_2020' '1115183'

'SC_9023' '6115118'
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'SC_9017'
'SC_9016'
'MO_1124'
'MO_1118'
'SC_9012'
'SC_9007"
“TP_2009'
“TP_2010'
'MO_1095'
'SC_9001'
'MO_1094'
'MO_1084'
'MO_1071'
'MO_1040'
'MO_1020'
“TP_2060'
'SC_9083'
'SC_9092'
'SC_9094'
'6115251'
'6115247"
'6115242'
'6115122'
1115202'
'6115117'
'6115115'
1115161'
'6115233'
'6115123'
1115153'
'6115121'
1115156'
1115154’
'6115227'
'6115234'
'6115224'
1115244’
1115157'
6115250’

102



CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Appendix I: Clusters performed by approach six

0 1 2

1115154 1115161 | MO_1176
1115156 = 6115117 | SC_9097
1115157 | 6115234 SC_9031
1115183 6115251
1115202 | MO_1040
1115244 | MO_1316
6115114 = SC_9036
6115115 = SC_9080
6115118 | SC_9091
6115121

6115122

6115123

6115219

6115224

6115227

6115233

6115237

6115242

6115247

6115250

MO_1013
MO_1014
MO_1020
MO_1054
MO_1071
MO_1084
MO_1094
MO_1095

MO _1114

MO 1118

MO _1124
MO_1128
MO_1161

1115153

MO_1179
MO_1184

MO _1192
MO_1202
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

MO_1215
MO_1219
MO_1221
MO_1232
MO_1241
MO_1244
MO_1249
MO_1262
MO_1277
MO_1336
MO_1337
MO_1339
SC_9001
SC_9007
SC_9008
SC_9009
SC_9010
SC_9016
SC_9017
SC_9018
SC_9019
SC_9022
SC_9023
SC_9026
SC_9028
SC_9029
SC_9030
SC_9032
SC_9034
SC_9037
SC_9038
SC_9043
SC_9046
SC_9047
SC_9048
SC_9049
SC_9050
SC_9054
SC_9055
SC_9057
SC_9058
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

SC_9059
SC_9060
SC_9061
SC_9062
SC_9063
SC_9068
SC_9071
SC_9072
SC_9073
SC_9081
SC_9083
SC_9086
SC_9092
SC_9093
SC_9094
SC_9012
SC_9099
TP_2001
TP_2009
TP_2010
TP_2020
TP_2032
TP_2034
TP 2054
TP_2060
TP_2061
TP_2064
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Appendix J: Clusters performed by approach seven

0 1 2

SC 9007 MO_1202 1115153
SC 9018 MO 1176 | 1115154
SC 9034 sSc_ 9097 | 1115156
SC 9047 SC_ 9062 = 1115157
SC 9091 ' 6115237 1115161
TP_2060 1115183
1115202
1115244
6115114
6115115
6115117
6115118
6115121
6115122
6115123
6115224
6115227
6115233
6115234
6115237
6115242
6115247
6115250
6115251
MO_1013
MO_1014
MO_1020
MO_1040
MO_1054
MO_1071
MO_1084
MO_1094
MO_1095
MO _1114
MO 1118
MO _1124
MO_1128
MO_1161
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

MO_1176
MO_1179
MO_1184
MO_1192
MO_1215
MO_1219
MO_1221
MO_1232
MO_1244
MO_1249
MO_1262
MO_1277
MO_1316
MO_1336
MO_1337
MO_1339
SC_9001
SC_9008
SC_9009
SC_9010
SC_9012
SC_9016
SC_9017
SC_9019
SC_9022
SC_9023
SC_9028
SC_9029
SC_9030
SC_9031
SC_9032
SC_9036
SC_9037
SC_9038
SC_9043
SC_9046
SC_9048
SC_9049
SC_9050
SC_9054
SC_9055
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

SC_9057
SC_9058
SC_9059
SC_9060
SC_9061
SC_9063
SC_9068
SC_9071
SC_9072
SC_9073
SC_9080
SC_9081
SC_9083
SC_9086
SC_9092
SC_9093
SC_9094
SC_9097
SC_9099
TP_2001
TP_2009
TP_2010
TP_2020
TP 2032
TP_2034
TP_2054
TP_2061
TP_2064
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Appendix K: Clusters performed by approach eight

0 1 2
1115154 | 6115227 @ 1115153
1115156 = 6115237 SC_9012
1115157 | 6115242
1115161  MO_1118
1115183  MO_1176
1115202 | MO_1232
1115244 | MO_1244
6115114 | MO_1262
6115115 = SC_9007
6115117 | SC_9097
6115118
6115121
6115122
6115123
6115219
6115224
6115233
6115234
6115247
6115250
6115251
MO_1013
MO_1014
MO_1020
MO_1040
MO_1054
MO_1071
MO_1084
MO_1094
MO_1095
MO 1114
MO _1124
MO_1128
MO_1161
MO_1179
MO_1184
MO_1192
MO_1202
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

MO_1215
MO_1219
MO_1221
MO_1241
MO_1249
MO_1277
MO_1316
MO_1336
MO_1337
MO_1339
SC_9001
SC_9008
SC_9009
SC_9010
SC_9016
SC_9017
SC_9018
SC_9019
SC_9022
SC_9023
SC_9026
SC_9028
SC_9029
SC_9030
SC_9031
SC_9032
SC_9034
SC_9036
SC_9037
SC_9038
SC_9043
SC_9046
SC_9047
SC_9048
SC_9049
SC_9050
SC_9054
SC_9055
SC_9057
SC_9058
SC_9059
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

SC_9060
SC_9061
SC_9062
SC_9063
SC_9068
SC_9071
SC_9072
SC_9073
SC_9080
SC_9081
SC_9083
SC_9086
SC_9091
SC_9092
SC_9093
SC_9094
SC_9099
TP_2001
TP_2009
TP_2010
TP_2020
TP 2032
TP_2034
TP 2054
TP_2060
TP 2061
TP 2064
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Appendix L: Clusters performed by approach nine

0 1 2
“TP_2061' 'SC_9091' 'MO_1244'
'SC_9086' 'MO_1336' 'MO_1176'
'MO_1339" 'SC_9031' 'SC_9097"
'MO_1337" 'SC_9081' '6115237"
SC_9068" 'SC_9080"

'SC_9062" 'MO_1316'

'SC_9061* TP_2054'

'SC_9060" 'SC_9073'

'SC_9057" 'SC_9072'

'MO_1221" 'SC_9071'

'SC_9055' 'MO_1277'

'SC_9038' 'MO_1202'

'SC_9050" 'SC_9063'

'MO_1192" 'MO_1262'

'SC_9049" MO_1249'

'SC_9047* 'MO_1241'

'SC_9043' 'SC_9059'

'SC_9030* 'SC_9058'

"TP_2032' MO_1232'

'SC_9028" 'MO_1219'

'SC_9022' 'MO_1215'

'SC_9019" 'SC_9054'

'MO_1128" 'SC_9048'

'MO_1114' 'SC_9046'

'SC_9010* MO_1184'

'SC_9009" 'MO_1179'

'SC_9008" 'SC_9018'

“TP_2001* 'SC_9037"

'MO_1054" 'SC_9036'

'MO_1014" 'SC_9034'

MO_1013" SC_9032'

“TP_2064' TP_2034'

'SC_9093" 'MO_1161'

SC_9099" 'SC_9029'

'6115219" 'SC_9026'

6115114" TP_2020'

'1115183" 'SC_9023'
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

'6115118" 'SC_9017'
'SC_9016'
MO_1124'
'MO_1118'
'SC_9012"
'SC_9007'
‘TP_2009'
TP_2010'
'MO_1095'
'SC_9001'
MO_1094'
'MO_1084"
'MO_1071'
'MO_1040'
'MO_1020'
‘TP_2060"
'SC_9083'
'SC_9092'
'SC_9094'
'6115251"
'6115247"
'6115242'
'6115122'
'1115202'
'6115117"
'6115115'
'1115161'
6115233'
'6115123"
'1115153"
'6115121'
'1115156'
1115154’
6115227"
'6115234'
'6115224'
1115244’
'1115157"
'6115250'
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

Appendix M: Clusters performed by approach eleven

0 1 2
'1115153" 1115183' 'MO_1176'
'1115154" '6115114' 'SC_9097'
1115156 6115219’ '6115237'
'1115157" 'MO_1244

'1115161" 'MO_1013'

'1115202" 'MO_1014'

1115244 'MO_1114

'6115115' 'MO_1128'

'6115117" MO_1161'

'6115121" 'MO_1192"

'6115122" MO_1221'

'6115123" 'MO_1337"

'6115224" 'MO_1339

'6115227" 'SC_9008'

'6115233" SC_9009'

'6115234" 'SC_9010'

'6115247" 'SC_9019'

'6115250" SC_9022'

'6115251" 'SC_9028'

"MO_1020" 'SC_9030"

"MO_1040" 'SC_9038'

'‘MO_1071" 'SC_9043'

MO_1084" 'SC_9047"

'‘MO_1094" SC_9049'

'MO_1095' 'SC_9050"

'MO_1124" 'SC_9055'

'MO_1179" 'SC_9057"

"MO_1184" SC_9060'

'MO_1202" 'SC_9061'

"MO_1215' 'SC_9062"

'MO_1219" 'SC_9063'

"MO_1232' 'SC_9068'

'MO_1241" 'SC_9086'

'MO_1249" 'SC_9093'

"MO_1262" 'MO_1118'

'MO_1277" 'SC_9099'

MO_1316" “TP_2001'
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CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA

'MO_1336' “TP_2010'
'SC_9001* TP_2032'
'SC_9012" “TP_2061'
'SC_9016* “TP_2064'
'SC_9017"
'SC_9018'
'SC_9023"
'SC_9026'
'SC_9029"
'SC_9031'
SC_9032'
'SC_9036*
'SC_9037"
'SC_9048"
'SC_9054'
'SC_9058"
'SC_9059"
'SC_9071'
'SC_9072"
SC_9073'
'SC_9080"
'SC_9081'
'SC_9083"
'SC_9091*
SC_9094'
“TP_2009"
"TP_2020"
“TP_2034'
"TP_2054'
"TP_2060"
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