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Abstract 

Since genomic data exploration became an important area with the completion of the Human 

Genome project, the tools and techniques that were used in genomic context were improved. 

These tools and techniques for data generation has increased the volume of data available to 

researchers and it is being increasing rapidly. However the high dimensional nature of these 

data make it difficult to analyze the presented data and make valuable conclusions or 

predictions. 

These data are presented in different types of formats with several parameters in different data 

sources. Thousands of DNA combinations have been identified as indicators of susceptibility 

to specific diseases. Categorizing these data using there similarities which can be a hidden 

feature, will lead to reveal some important factors of these data collections. 

Clustering is one of the major method is been used for data analyzing. In this study I present a 

novel approach to cluster the high dimensional genomic data in order to make important and 

valuable predictions on available data by taking into account the annotated information about 

genes on prostate cancers from online databases such as cBio portal. 

These data has different characteristics as numerical, categorical, sparse and dense. Hence 

different normalizing methods and different clustering approaches. These different approaches 

were carried out having a base of three main clustering algorithms which are K-means, 

Hierarchical clustering and DBSCAN clustering. These clustering algorithms were used in 

different procedures using several dimensional reduction methods, different data normalizing 

methods. Each approach were evaluated using different measurements in order to find the 

better approach for genomic data clustering when the data are high dimensional. 

Silhouette score and Davies–Bouldin index were used as the messurements of evaluation of 

each cluster in each approach. Selected novel hybrid approach of clustering genomic data gives 

the best scores for these meassurements confirming the validity of the novel approach in 

clustering high dimensional genomic data.
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Chapter 1 Introduction 
 

1.1 Overview  
 

Biology has become an important and a popular area among the sciences and fields in the twentieth 

and twenty first century as it helps to reveal some of the significant findings on human species and 

other species. It is more useful and predominant when knowledge of biology and knowledge of 

information science can be applied together. Bioinformatics can be identified as a hybrid field that 

brings these areas together. The contribution of bioinformatics advances made it possible to map 

the entire human genome and genomes of many organisms over a decade ago.  

 

Bioinformatics is important to genetic research which involves the study of human DNA to find 

out what genes and environmental factors contribute to diseases, because genetic data has a context 

[21]. The large scale and very complex data generated in genetic research has to be analyzed to 

identify diseases and cures for diseases. Bioinformatics make it possible for researches to study 

these data and assist in researching.  

 

Although bioinformatics plays a major role in genetic research, still there are gaps and 

inconsistencies those act as barriers to conduct genetic researches effectively. Hence, I will be 

addressing some of these issues in this research and analyze whether an information technology 

based solution will solve these issues. 

 

1.2 Background  
 

DNA sequencing and genome sequencing are considered as important area in genomic researches 

and has also become a useful subject to many other fields. Sequencing in genomic research refers 

to the process of determining the order of nucleotides or four bases – adenine, guanine, cytosine 

and thymine - of individual genes, large genetic regions, full chromosomes or entire genomes [14]. 

The genome sequence will represent a valuable shortcut, helping scientists find genes much more 
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easily and quickly [15].  These sequences contains some clues on behaviors, characteristics and 

the abnormalities or diseases of a particular person [15]. 

 

With the introduction of Sanger sequencing technology by F. Sanger DNA sequencing became an 

important technique after 1977 [19].  Sanger sequencing is the traditional method for DNA 

sequencing and it was the most widely used sequencing method for approximately 25 years [16]. 

Since then the sequencing technology kept evolving and growing. 

 

The Human Genome project which was started in 1990 was declared complete in 2003 by marking 

an important milestone in the genetic research history. The findings of the Human Genome Project 

led researchers to better understand the blueprint for building a person. Since then the demand for 

cheaper and faster sequencing methods has increased greatly. As a result of this high demand, Next 

Generation Sequencing (NGS) or Second-generation sequencing methods were developed [21]. 

 

 

Figure 1: Increment of the total sequence in bp 

The y-axis shows the total sequence in bp. (Blue = GenBank, red = whole genome shotgun [WGS] 

sequences.) Each line is double of the previous. The x-axis indicates time. Each line is 6 months 

after the previous. Source: http://www.ncbi.nlm.nih.gov/genbank/statistics. 

 

Since genomic data exploration became an important area with the completion of the Human 

Genome project, the tools and techniques that were used in genomic context were improved. So 

http://www.ncbi.nlm.nih.gov/genbank/statistics
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the tools and techniques for data generation has increased the volume of data available to 

researchers and it is being increasing rapidly [21]. These data are being used in bioinformatics for 

collecting, storing and big data processing the genomes of organisms. Figure 1 shows how the 

number of sequences has increased over time. 

 

From the above graph (figure 1), it is clear that the advent of new tools and technologies has 

significantly accelerated the pace of biological research & huge amounts of sequence data is 

becoming available for new researches. 

 

These data are presented in different types of formats with several parameters in different data 

sources. Hence these are stored as high dimensional data from different biological and genetic 

studies. Thousands of DNA combinations have been identified as indicators of susceptibility to 

specific diseases. Some argue that you might go through life worrying needlessly about a disease 

that never appears. On the other hand, spotting those DNA variants and recognizing whether you 

are at risk can lead directly to early diagnosis and preventive strategies. 

 

1.3 Problem Overview  
 

The knowledge extracted from data is the key determinant of analyzing the functions of specific 

genes in genomic context. The outcome of these analysis will reveal some of the important aspects 

of human genome and its functions, such as human origins and disease risks as well as how they 

relate to environmental conditions, both past and present. Sometimes it is possible to predict the 

future as well when it comes to disease related genes such as cancer causing genes [13].  

 

Genomic data explosion has been remaining as an important area in recent years with the 

advancement in several high-throughput biotechnologies such as RNA gene expression 

microarrays [16]. Researches which aim exploration of genomic data are mostly rely upon 

computational data and place the efforts to determine the entire DNA sequence of number of 

individuals in order to map and analyze individual genes [15],and particularly to discover how 

genes work in order to prevent or cure diseases.  
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However, with the rapid development of advanced technologies, the tools and techniques for data 

generation has increased the volume of data available to researchers, specifically in genomics [17]. 

These data are being used in bioinformatics for collecting, storing and big data processing the 

genomes of organisms to discover genome structures and other genomic parameters. These data 

sources can be categorized in to two categories as, Nucleotide sequence databases and Protein 

sequence databases [18]. Some of these data bases contain data from different studies separately 

and data on each study may present with several parameters [30]. Multiple measurements from 

multiple studies for each DNA sample can be extracted from these kind of data bases where high 

dimensional data set is required for analysis.  

 

 

Figure 2: Increment of data sources 

Above graph (Figure 2) shows how the data sources has increased in past few years and how the 

data that are available to the researches has been increased. The availability of large number of 

genomic data with multiple measurements makes 'meta' analysis possible, which can be used for 

study about the macro-level effects of DNA expression and mutations in the case of disease studies 

[32]. This in turn will potentially lead to the possibility of the early detection mortality rates and 

make predictions on expected life spans of terminally ill patients based on 'signatures' that could 

be derived from the DNA.  
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Make predictions on genomic data considering particular attribute or output has become a 

challenge as most of the genomic data is presented as unlabeled data in the data sources. To extract 

the information and predict on these information, it is important to cluster and label these data 

under different important aspect such as expected life spans. If the category of some gene data 

with known parameters can be decided using a particular method, it can be used to predict on those 

data in different aspect considering the data which already was in the same category [32]. 

 

Even though there are several researches which have one on genomic data in order to categorize 

them, most of those categorizing methods depend on the data set that they use. So there is a gap 

which needs to be filled, so that any kind of genomic data can be categorized and labeled 

irrespective of the characteristics of the data. In order to cluster and label these high dimensional 

genomic data it is require to explore a novel approach for analyzing and clustering, as a universal 

method which will be the main objective of this research [14].  

 

But it contains many challenges when analyzing a massive genomic data set. The high dimensional 

nature is one of the main attribute of biological data that has been identified as one of the challenges 

in many genomic studies [4] [12]. Normalizing the collected high dimensional data will be needed 

a novel approach in order to be successfully applied a naïve clustering method. Hence this research 

may lead to find out a better approach to normalize the high dimensional data as one of the research 

deliverables.  

 

With the aim of addressing the aforementioned problems, this research will carry out to introduce 

a new customized clustering method using data from multiple studies, which will reveal macro-

level effects of DNA expression and mutations, and can be used on any of the genomic data by 

performing thorough examinations of the existing methods and approaches and the results of them 

followed up with a critical evaluation and validation. 

 

1.4 Problem Statement  

 

In bioinformatics community, acquiring of genomic sequence data is usually followed by the 

computational analysis in order to draw scientific insights and thereby use them in several domains 
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such as in development of personalized medicine, make predictions on some diseases, predict life 

span of patients. Unfortunately, even though there are very advanced sequencing technologies 

available today, most of the data that are found using these technologies are unlabeled. It will be 

very useful if those can be categorize using several parameters to give a valuable label to each data 

set such as life span of a cancer patient. Therefore, the following two main problems are addressed 

in this research study. 

 

Problem 01 

 

Absence of a normalizing method to normalize high dimensional genomic data by eliminating 

redundancy and noisy data without a significant loss of information [4] [12] 

 

Problem 02 

 

Absence of a categorizing method to categorize normalized high dimensional genomic data into 

clusters and label them considering characteristics of the data in each cluster [2]. 

 

1.5 Significance of the Study 

 

As mentioned in the problem statement, since there are no appropriate method to categorize any 

type of genomic data irrespective of the characteristics of the data, for different purposes we may 

have to go through different methods. Since the available data is present as unlabeled data some 

of the valuable information may be missed if they are not analyzed. But it is difficult when 

analyzing these data with the characteristic of high dimensional and large number of data. 

 

Hence to overcome this problem, by using the data from different, multiple studies it is aimed to 

carry out a meta-analysis and present an effective, comprehensive clustering method which will 

be able to apply on any type of genomic data. The clusters which will be performed by the novel 

method will reveal the information on the macro-level effects of DNA expression and mutations. 

In the study of diseases it will be really valuable to study macro level effects since it will helpful 
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to maximize the possibility of the early detection mortality rates and expected life spans of 

terminally ill patients based on 'signatures' that could be derived.  

 

This will lead the scientist to decide the method of cure like medicines and therapy methods. 

Further these extracted information are important, so that screening can be done early in the case 

of terminal diseases such as cancer, even differentiated treatment regimens possibly developed for 

those in the different categories and make prediction on valuable aspects like life span of the 

patient.  

 

1.6 Research Goals  

 
Research goal defines the main aim of a research study. The final intension of this research study 

is to achieve the following research goals.  

 Identify different categories of genomic data which will lead to make predictions on 

valuable aspects (Ex: Life span of a cancer patient) by presenting a novel clustering 

method.  

 Introduce a data normalizing method for high dimensional genomic data by eliminating 

redundancy and noisy data without a significant loss of information. 

 

 

1.7  Objectives  

 
The goals of a research are attained via research objectives. Research objectives support the 

achievement of research goals.  

 

The main aim of this research study is to find a novel clustering method to cluster the high 

dimensional genomic data to label them under valuable aspects. 

 

 In this research study, the above defined research goals are attained via the following main 

research objectives.  
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1. Identify the online biomedical sources from which information on high dimensional 

genomic data can be acquired.  

2. Identify the parameters of high dimensional genomic data that can be used to categorize 

the data set under important labels 

3. Identify a most efficient method to normalize high dimensional genomic data to combine 

the data from several studies.  

4. Design and implement a method to categorize and label the genomic data 

5. Validate the new categorizing method using existing categorized data from several 

researches 

 

1.8 Research Scope  
 

1.8.1 Only consider genomic data on Prostate cancer  

 

Since it will be difficult to study all type of genomic data, it is planned to narrow down the research 

scope to only one specific type of genomic data which will be cancer related data. According to 

the studies conducted, during the year of 2017, 1,688,780 new cancer cases and 600,920 cancer 

deaths are estimated to take place in the United States [10]. Also, it was remarked that the rate of 

cancer incidence is 20% greater in men than women, and the rate of cancer death is 40% higher in 

men [10].  

 

Hence it is aimed to use only the data on prostate cancer as it is the most common cancer type 

among male population, even though there are lots of research on breast cancers, comparatively 

researches on prostate cancers are low [2].  

 

1.8.2 Use CBIO portal as the data source  

 

As mention in the problem definition, there are large amount of genomic data which is freely 

available with an internet access [6]. It is aimed to use CBIO portal as the data source for this 

research as it is specially stored cancer specific multidimensional genomic data with an open 

access. The CBIO Portal facilitate rapid, intuitive, and high-quality access to molecular profiles 
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and clinical attributes from large-scale cancer genomics projects and empowers researchers to 

translate these rich data sets into biologic insights and clinical applications [9].  

 

 

1.8.3 Consider only three selected Features on genomic data  

 

Data analysis will be only used selected features in genomic data. They are,  

 Expression level  

 Copy number alteration/variation  

 Mutation  

 

Genomic data with these features will be extracted from Data_CNA, Data_clinical and 

Data_fusion files which can be downloaded from CBIO portal. One data file may contain about 

25000 of data sets with above features which will create a high dimensional data set. 
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Chapter 2 Literature Review 

 

2.1 Overview  

 
As new sequencing technologies promise a new era in the use DNA sequence, a large number of 

genes related to human have been identified along with disease-causing mutations. Today, 

different computational methods are available for recording, capturing, analyzing and distribution 

of this information which continues to grow exponentially in size and complexity.  

In this chapter, we are presenting latest technologies and methods available for gene clustering and 

categorizing and their benefits as well as drawbacks.  

2.2 Related work 

 

There has been a quite number of gene clustering methods proposed and applied in the literature. 

Some of the clustering methods are known as traditional clustering methods, such as Hierarchical 

clustering, K-means[13], K-medoid, self-organizing maps (SOM). Some of the clustering methods 

such as Model-based clustering and tight clustering are considered as the methods which allow a 

noise set of genes [7]. But these methods perform the cluster as a more false positive outcome [7]. 

K-means algorithm, which is known as a traditional clustering method is a vastly used algorithm 

among above methods, as there are considerably high number of researches have conducted on K-

means algorithm. Most of them have been conducted on genomic data and medical data [21]. There 

are some researches which have been carried out in order to accelerate the performance of K- 

means algorithm on large scale data in life science by analyzing a simple heuristic method. [19] 

When it comes to gene clustering, selecting the most suitable clustering method from many 

available methods and selecting the corresponding parameters is a challenge. So in literature there 

are studies which compare and demonstrate the effectiveness of the clustering methods and their 

feasibility to gene clustering. These studies have concluded that a method works well in some 

datasets may perform poorly in other datasets as there are different data structure and 

characteristics [7].  
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Some researches have compared a selected clustering method with other clustering methods in 

order to identify the benefits and the drawbacks of that method, as well as to identify the most 

suitable data set and its characteristics to apply the selected clustering method. K-means algorithm 

has been analyzed in this manner with some selected clustering methods in the literature [18]. 

Discussing how various combinations of data mining classification algorithms are used on medical 

data for efficient classification of the data is another research which carried out under comparing 

the existing clustering methods [19]. There are some of the researches which have been conducted 

to present the major challenges and key issues in designing clustering methods, hence point out 

some of the emerging and useful research directions, considering semi – supervised clustering, 

ensemble clustering and simultaneous feature selection during data clustering and large scale data 

clustering [20]. 

There are number of studies which have been done on genomic data which can be identified in a 

vast range of gene types. Some have used the genomic data from human genome while others have 

been conducted on microorganisms [14]. Supervised clustering methods and unsupervised 

clustering methods such as hierarchical clustering method, K- Means, SOM have been investigated 

to model the relationships between gene expression data and gene functions automatically in 

microorganism [14]. 

Studying the behavior of cancer causing genes is common in study of genomic data. There are 

some of the studies which have used images of the scanned slides of breast cancer tumors. Log 

(base 2) ratios were used to flag the aberrant spots and slide regions [1] of those images. Then the 

hierarchical agglomerative clustering using the statistical package BRB-ARRAYTOOLS software 

was applied to these normalized log ratios [1]. Also both compact linkage and average linkage and 

both Euclidean and one minus Pearson correlation distance metrics were used for the analysis [1]. 

Natural subclasses of breast tumors were classified using unsupervised, hierarchical clustering 

approach considering ER status of the tumor as the end result of this research.  

Cancer classification is another area where analyzing genomic data will be interested. Cancer 

classification will be important when identifying new cancer classes or when assigning tumors to 

known classes [2]. Classify the cancers based on gene expression monitoring for leukemia cancer 

and predict cancer classes independent from previous biological knowledge is one of the research 
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comes in the literature. Before apply the classification method in order to find the correlation 

between the expressions patterns of the genes in their data set, a method called “neighborhood 

analysis” were developed [2]. Then the self-organizing map (SOM) technique was applied on the 

data set to classify the tumor classes.  

Using deep learning is another trend in classification genomic data in the literature of classification 

human genomic data. This comes under the unsupervised classification methods. There are quite 

few methods have been proposed to detect cancer using gene expression data. This method has 

also mainly applied on gene expression data aiming the cancer detection and cancer type analysis. 

The main advantage of this method over other cancer detection approaches is the possibility of 

applying data from various types of cancer to automatically form features which help to enhance 

the detection and diagnosis of a specific one [12].  

In most of the methods which used deep learning method, the focus was on how to learn features 

and reduce the dimensionality of the gene expression data. The majority of these methods use 

manually designed feature selectors to reduce the dimensionality of gene expression and select 

informative sets of genes. The potential problems with these feature selection methods are 

scalability and generality of features. But there are researches which were aimed to provide the 

potential to overcome problems of traditional approaches with feature dimensionality as well as 

very limited size data set.   

Doing predictions is one of the main target of classification genomic data. These predictions can 

be on type of cancer, type of medicine, group of geographic population. A research has been 

conducted to successfully predict geographic population groups and is consistent against all the 

genotypic data set consisting of all the chromosomes (Figure 3). It shows that the inferred featured 

from the genotypic data with higher clustering and classification accuracy [21]. 
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Figure 3: Population scale cluster of 5 groups from chr 22 (between actual and predicted) 

Integrating the data from different types of cancers to automatically form features which help to 

enhance the detection and diagnosis of a specific cancer type is one of the researches which has 

addressed the nature of high dimensional data in the area of gene expression data [12]. Principal 

component analysis (PDA) has been used to reduce the dimensionality of the feature space. The 

approach used in this research consists of two parts. Feature learning phase and classifier learning 

phase. For the second part of the feature learning phase they have used an auto encoder neural 

network which is an unsupervised feature learning method [12]. 

Most of the researches in cancer classification, gene expression is one of the key features which is 

used for the classification under clinically relevant subgroups. Refining the results of these studies 

is another trend in the research field. Hierarchical clustering based on patterns of expression has 

been used on breast tumor genomic data in such researches and have concluded the idea that many 

of these breast tumor subtypes represent biologically distinct disease entities [8]. 
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Chapter 3 Research Design & Methodology  
 

3.1 Overview  
 

The research design phase plays a major role in a research. It defines the structure that is followed 

in a research and thereby giving direction and systemizing the research. In this chapter, the design 

phases of the research methodology that we are adopting for our research is discussed. We have 

divided the research design and methodology into four main phases as shown in Figure 4. The first 

phase will be discussed in detail in this chapter itself whereas the other three phases will be 

discussed in the consecutive chapters in detail.  

 

3.2 Analyze nature of data and resources  
 

The focus of this research in biological scenario is to categorize genomic data on cancers in a 

convenient manner and thereby to predict on some of the important area which will be effect on 

patient’s status such as life span. Therefore, it is crucial to understand the biological terms, data 

and resources that are needed to conduct the research. This phase focuses on analyzing and 

studying the nature of data being used and the sources that we will be using in the study. 

 

 

 

 

 

 

 

  

Figure 4: Block diagram of research design phase 

 

 

 

 



 

16 
 

CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA 

3.2.1. Biological background 

 

What is DNA 

 

Our bodies have around 210 different types of cells. Each cell does a different job to help our body 

to function. There are blood cells, bone cells, and cells that make our muscles.  Cells get their 

instructions on what to do from DNA.  DNA acts sort of like a computer program.  The cell is the 

computer or the hardware and the DNA is the program or code.  

 

What is gene? 

 

The DNA Code 

 

The DNA code is held by the different letters of the nucleotides. As the cell "reads" the instructions 

on the DNA the different letters represent instructions. Every three letters makes up a word called 

a codon.  

 ATC TGA GGA AAT GAC CAG 

 

Genes  

 

Within each string of DNA are sets of instructions called genes. A gene tells a cell how to make a 

specific protein. Proteins are used by the cell to perform certain functions, to grow, and to survive. 

 

CNA (Copy number alteration) 

 

Copy number alteration is one of the main feature in DNA that is going to be used in this research. 

This copy number alteration can be happen in three ways. They are, 

Insertion – In insertion some different nucleotide will be added to the DNA sequence and the 

DNA sequence will be altered because of this newly added nucleotide (Figure 5). 
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Figure 5: Insertion 

Deletion – In deletion one or more nucleotide will be deleted from the DNA sequence so that the 

DNA sequence will get altered (Figure 6). 

 

Figure 6: Deletion 

Duplication – In duplication particular DNA part will get duplicate so that the DNA sequence 

will be altered (Figure 7). 
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Figure 7: Duplication 

Expression Levels 

 

The process by which the heritable information in a gene, the sequence of DNA base pairs, is made 

into a functional gene product, such as protein or RNA. Interpret this using z-score 

Mutations 

 

A mutation is a mistake or a change in a living thing’s DNA. DNA, or deoxyribonucleic acid, is a 

chain of chemical units found in each cell of a living thing. The chemical units are arranged in a 

particular sequence, or order. This sequence forms a kind of code, called a genetic code, which 

tells cells what to do. If the chain gets out of order, breaks, or changes in some other way, a 

mutation 

 

3.2.2. Data representation in selected data source  

 

In this research we are using cBioPortal as the main data resource which is an open-access, open-

source resource. It allows the users to access multidimensional cancer genomic data sets as it stores 

the data on one type of cancer from several studies. It allows the users rapid, intuitive, and high-
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quality access to molecular profiles and clinical attributes from large-scale cancer genomics 

projects so that the researches can reach the relevant data easily. So that researches are encouraged 

to analyze these data and apply the investigated, observed outcomes into biologic insights and 

clinical applications. 

 

This data source is currently using hg19/GRCh37 as the version of human reference genome. The 

data sets are categorized under each cancer types such as Adenoid Cystic Carcinoma, Bladder 

Cancer, Breast cancer, Prostrate cancer etc…so that the researches can easily access the required 

cancer type. All these data are presented using different types of file formats for different types of 

data. 

 

Analyze file types and the meaning of presented data  

 

One of the main objectives of the research is to identify a data normalizing method for the data set 

which is going to be use for the research. The data set is also from biological back ground and it 

contains thousands of data. Hence it is important to have good understanding on the presented data 

and how they have presented in the data source. 

 

cBioportal contains data sets from different studies for different cancer types. One type of cancer 

contains data from different studies and one study contains different types of data, such as DNA 

data, RNA data, Sequence data and clinical data. The arrangement is to download one set of data 

of one study under preferred cancer type. These downloaded data is stored in different file formats. 

 

These files are mainly in two formats one is meta files and other one is data files. There are three 

main types of meta files, cancer study, cancer type and clinical data. Cancer study data file contains 

meta data about cancer study such as type of cancer, cancer study identifier, name, description 

etc… (Figure 8). Cancer type data file contains some basic information on cancer type (Figure 9).  

In clinical data file is used to capture both clinical attributes and the mapping between patient and 

sample ids (Figure 10). The software supports multiple samples per patient. 
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Figure 8: Meta file – Cancer study 

 

 

Figure 9: Meta file – Cancer Type 

 
Figure 10: Meta file – Clinical Data 

As shown in above examples, these files only contain some of the basic information on the study 

and the clinical data. But data in data files are more interested for researches. There are three main 

areas which have being used for several analysis and consider as valuable data sets which can be 

used for different research works.  

 

Copy number alteration, Mutations and Expression are the three main features that are focused on 

the data files. These data files may contains about 40000 rows and 300 columns in one file.  

 

Copy number alteration is one of the predominant feature researches use for their experiments. 

These data is presented in one of the data files in cBioportal as data_CNA file. CNA – Copy 

number alterations and copy number variations can be considered as the same meaning but the 

context that they are being using is different. Copy number alterations/aberrations (CNAs) are 

changes in copy number that have arisen in somatic tissue like in a tumor, copy number variations 

(CNVs) originated from changes in copy number in germline cells (and are thus in all cells of the 

organism). In the data_CNA file, they have used a standard convention to store these CNAs 

corresponding to each cancer gene. In the file the rows represent the cancer genes and the columns 
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represent the positions of the particular gene. Each cell has a value which represent the type of the 

CAN in that position (Figure 11) [9]. For this representation they have used -2,-1, 0, 1, 2 these 

indicate the copy-number level per gene as below, 

 

 -2 or Deep Deletion indicates a deep loss, possibly a homozygous deletion 

 -1 or Shallow Deletion indicates a shallow loss, possible a heterozygous deletion 

 0 is diploid 

 1 or Gain indicates a low-level gain (a few additional copies copies, often broad) 

 2 or Amplification indicate a high-level amplification (more copies, often focal) 

 

 

Figure 11: Data file – Copy number alteration 

Mutations are another predominant feature that is popular among researches. data_mutation is the 

file all the mutations are stored in a particular study in cBioportal (Figure 12). Unless the 

data_CNA file this data_mutation file contains different types of data such as consequence, variant 

type and variant classification. Compared to data_CNA file it is difficult to normalize the data 

mutation file as it contains categorical data and numerical data. 
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Figure 12: Data file – Mutations 

  

In cBioportal data repository, the expression data will be stored in a text file which will be comes 

under data file category, named “data_RNA_Seq_expression_median”. mRNA expression data 

(Figure 13) will be captured in this data file. Relative expression of an individual gene and tumor 

to the gene's expression distribution in a reference population are computed for mRNA and 

microRNA expression data. These values indicates the number of standard deviations away from 

the mean of expression in the reference population (Z-score). When determine whether a gene is 

up-regulated or down regulated compared to the normal sample this value is used. Positive values 

are considered as up-regulated and the negative values are considered as down – regulated. Usually 

up-regulated means more highly expressed compared to the reference whereas down-regulated 

means expressed lower compared to the reference.  

 

In the data file of expression it contains gene name in the rows, the gene positions in the columns 

and the corresponding mRNA z-score in the each cell.  

 

For all above mentioned data files, there are no any duplicate rows as the cBioPortal assumes that 

gene samples or the patients under the same ID are actually same. This feature is important for 

those whom interested on doing cross – cancer queries where each sample should only be counted 

once. 
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Figure 13: Data file – Expressions 

Identifying data types and categorizing  

 

In order to categorize a data set according to their similarities and dissimilarities, it is important to 

have a clear view on the data set as well as the types of data since the process which is going to be 

used will depend on the structure of the data set and the types of the data. These collected data 

mainly can be categorized into two categories as numerical data and categorical data. 

 

Numerical data 

 

This has the meaning of measurement of something, such as height, weight, number of shares. 

Statisticians also call numerical data quantitative data. Numerical data can be further broken into 

two types: discrete and continuous. 

 

Discrete data represent items that can be counted; they take on possible values that can be listed 

out. The list of possible values may be fixed (-2, -1, 0, 1, 2); or it may go from 0, 1, 2, on to infinity.  

In the data that is focused for the research, some of the data can be categorized under this discrete 

data which is numeric data. The first data set which comes under data files, CNA data is one 

example, CNA data set only contains the values of -2, -1, 0, 1, and 2.  

 

Continues data is another data type which comes under numerical data, their possible values cannot 

be counted and can only be described using intervals on the real number line. In the data set mRNA 

Z- score which comes under expression data, can be identified as continues data but it has both 

negative and positive values. 
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Categorical data 

 

Categorical data represent characteristics such as a person’s gender, marital status, and hometown. 

Categorical data can take on numerical values (such as “1” indicating male and “2” indicating 

female), but those numbers don’t have mathematical meaning.  

Most of the values which is in mutation file are comes under this data type. Variant type (DEL, 

INS, SNP), Variant classification (RNA, Silent, Intron..), consequence are some of the data fields 

comes under categorical data. 
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Chapter 4 Data Preparation  

 
4.1 Overview  

The previous chapter provided an outline of the design and methodology of the research study. The 

purpose of this chapter is to discuss the data preparation phase of the research in detail. This chapter 

discusses how data was collected and how the data was prepared according to the data types. 

 

4.2 Data Collection and preparation 
 

Since this research is based on genomic data which needs high technology and expertise 

knowledge to be collected data collection is focused on collecting secondary data which is already 

in data resources and data repositories. cBioportal is the selected data source as the convenient 

data repository as it is focused on vast range of cancer genomic data and it gives the free access to 

interactive exploration of multidimensional cancer genomics data sets.  

In the cBioportal the data set of different studies have listed under corresponding cancer type. One 

cancer type may contains data sets from about five, six studies. These data can be easily 

downloaded to the local environment. For this research three data sets from three studies under 

prostate cancer are downloaded. Each data set has meta data files as well as data files. The meta 

files only contains the meta data such as information on the study and the information on the 

cancer. The data files which are downloaded are interested on this research as it contains inside 

data on the cancer (Please refer 3.2.1.1. for more information on data). Data on copy number 

alteration (CNA), Mutations and Expression take in to consideration throughout the research. 

 

4.2.1 Data preparation 

Since one of the main objective of the research is normalizing the collected data in order to use the 

data set for new approach to a clustering method data preparation, preprocessing and data analysis 

are considered as important steps and may have several iteration according to the approach of the 

clustering method. 
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The three main files which are going to be used for the research should be combined together in 

order to normalize one data set. But these three data sets may contain different gene set from one 

another, also different sample sets from one another. To combine all the data in to one set, the 

common genes of all the three data set and the common sample sets in three data sets. 

 

 

 

 

  

Figure 14: Representation of data set combination 

 

Intersection of gene sets of all three data sets and intersection of sample sets of all three data sets 

as showed in figure 14 will be taken in to consideration of this research. 

Both numerical and categorical data are included in the data set as explained in chapter 3. 

Converting categorical data in to numerical data is one of the main challenge in this data set as the 

data on mutation mostly contains categorical data and one feature contains considerable number 

of parameters. Some of the convenient methods which were in the literature were carried out in 

the process of converting the categorical data to numerical data. 

As discussed above, to compare two entries of data and find the similarities and the dissimilarities 

in order to categorize the data categorical data need to be converted in to comparable format. Thus, 

we convert them into numerical variables. Below are the some of the methods which were used to 

convert a categorical (string) input to numerical nature. 

 

All the categorical data comes under the mutation data set. Consequence, Variant classification, 

variant type, Tumor_Seq_Allele1, Tumor_Seq_Allele2 are some of the identified categorical data 

which will be interested in clustering process. Below are some of the used methods for converting 

categorical data in to numerical data. 
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Label Encoder 

 

 

This method is used to transform non-numerical labels to numerical labels (or nominal categorical 

variables). This method was applied on Tumor_Seq_Allele1, Tumor_Seq_Allele2. In the mutation 

data set Tumor_Seq_Allele1 and Tumor_Seq_Allele2 are compared with the Reference_Allele 

and store whether the allele has copied correctly. (Figure 15) 

 

 
Figure 15: Before application of label encoder 

 

In the mutation data set reference allele was removed and Tumor_Seq_Allele1, 

Tumor_Seq_Allele2 allele only present whether it has copied correctly or not. (Figure 16) If the 

Tumor_Seq_Allele has not changed, it will be represented using ‘1’ if the Tumor_Seq_Allele has 

not changed it will be represented by ‘0’. 

 

 
 

Figure 16: Application of label encoder 

Dummy Coding 

Another method used for converting categorical data in to numerical data is dummy coding. 

Variant type was converted to numerical variable using this dummy coding method. Variant type 
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feature has three main values as SNP. DEL and INS. Three different dummy variables were created 

for to represent those values. Presence of a value is represent by 1 and absence is represented by 

0. For every value present, one dummy variable will be created. Look at the representation below 

to convert a categorical variable using dummy variable. (Figure 17) 

 

Figure 17: Application of dummy variables 

  

There are some of the drawbacks with this normalized data set. Some of the features were 

eliminated as those features have considerable number of values hence it is difficult to normalize 

it using dummy variables. Replace those values with a number is also not worked as levels can’t 

be defined for those values. Also there is a known challenge with nominal categorical variable it 

may decrease performance of a model. As the value ‘1’ in CNA data and value ‘1’ in dummy 

variables are represent two different meanings. 

Hence for the first phase of the research, to apply different clustering methods and compare them 

in orders to get an approach to a new clustering method we decided to use only one set of data. 

After get to a conclusion on novel approach of the clustering method, normalized data set will be 

used and the validity of the data set is also can be measured by analyzing the result we will get 

after applying the clustering method. 
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Chapter 5 Design & Implementation  

 
5.1 Overview 

  

This chapter illustrates the process followed in order to construct a new approach for a clustering 

method by analyzing collected data and analyzing known clustering methods by applying them on 

the prepared data set. Initially, the focus is given to categorize data according to different 

measurements under medical aspect so that clear view on the data set and the high level idea on 

nature of the clusters can be explained. Then apply selected clustering methods for the data set and 

compare the outcomes was carried out. 

5.2 Analyze the data set 

 
Data set was analyzed according to the features before approach with the clustering methods as it 

gives an over view of the arrangement of the data set. The data set was analyzed and visualized in 

different aspects. 

 

In one data set that is focused for the 1st phase of the clustering contains 114 samples of 81 patients.  

In the analysis we could identify that there are two categories according to the cancer type. They 

are Prostate cancer NOS and Prostate Cancer. The distribution among those two cancer types is as 

shown in figure18. According to this feature the data set will be clustered in to two. 

 

 

Figure 18: Cancer Type Classification 

  

 

The selected data set contains 114 samples from 81 patients. Several samples may contain from 

one patient. Figure 19 shows how the sample distribution has happened across patients. 
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Figure 19: Sample Classification 

 

All the genes in the data set contains some kind of mutation in it. These mutations play a major 

role in having the particular cancer or not. Analysis on this aspect is also will be more important 

when understanding the clusters that will be formed in the next phase of the research. 

 

 

Figure 20: Mutation count 

  

According to the mutation count of the each sample the distribution is as shown in the figure 20. 

Most of the samples (about 45 samples) contains about 20-40 mutations in one sample. The amount 



 

31 
 

CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA 

of mutation that the least number of samples contain is 100 – 120. Depending on the number of 

mutation we can define seven clusters as shown in the graph. 

 

Copy number alteration and mutations are important aspects which are considered throughout this 

research. It was interested checking whether those two features have any connection in this sample 

set. Number of mutations in each sample and the fraction of copy number altered genome were 

considered as the variables and check the connection by plotting a graph between those two axes. 

Most of the samples (About 100) were led in an area which is parallel to the x- axis (Fraction of 

copy number altered genome). It implies most of the sample sets have number mutations in a 

particular range of values and there are small number of outliers as shown in figure 21. 

 

 

Figure 21: Mutation count vs CNA 

  

Considering the area, the identified tumor is again the data set can be categorized. Some of the 

features of the genes differ according to these areas when clustering this data set considering all 

the similarities and the dissimilarities this fact may also may considered. 
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Figure 22: Tumor Disease anatomic site 

  

Using all the three sets, copy number alteration, mutations and expression level analysis was 

carried out where we could find out the different levels of mutations and the samples which those 

mutations are with. According to the figure 22. In the graph the amplifications are the most 

prominent mutation type then the deletions. It is clear that there are different types of mutations 

and some of the sample sets contains amplifications in them and other samples don’t include them.  

 

5.3 Application of selected clustering methods 

 
If different clustering methods are applied to a same data set, different cluster sets will be created. 

There is no any rule or procedure to verify which cluster set is the most appropriate when 

considering the features of those data. For example rows below table (Table 1) present the 

clustering methods and column of the table shows the clusters which were created by the 

corresponding clustering methods. When comparing each set of clusters of each clustering 

methods some similarities can be found in some clusters. For example A, B clusters which were 

formed by P clustering method and the Q clustering method shows some similarity same as C 

cluster which was formed by Q, R, and S clustering methods shows similarity. If we can find those 
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similar clusters which we identified exploring through the clustering methods using one clustering 

method or using some particular steps that would be really helpful in data analysis. Exploring such 

method to identify the most appropriate cluster set or to perform most suitable cluster set by 

introducing some sequential steps is the main target of this research. 

 

 
A B C D 

P 
    

Q 
    

R 
    

S 
    

T 
    

 

Table 1: Different clusters form different methods 

With the idea of the similarities of samples which explained in section 5.2 as the next step some 

known clustering methods which were selected from the literature were applied to the data set. 

The selected clustering methods are K-means clustering method, hierarchical clustering method 

and DBSCAN method. 

 

As the first phase of this process K- means clustering method and hierarchical clustering method 

were applied to the data set and compared the results gained from both clustering methods using 

cluster method validations. 
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Figure 23: Mutation types classification 

 

5.3.1. K- Means Clustering method 

 

As per the literature on clustering algorithms, K-means clustering is one of the simplest and 

popular unsupervised machine learning algorithms [22]. These unsupervised clustering algorithms 

only use input data and form clusters without referring to known, or labelled, outcomes (Figure 

24). 

 

The algorithm works as follows: 

 

1. First k points, called means, will be initialized randomly. 

2. Each item will be categorized to its closest mean and the mean’s coordinates will be, which 

are the averages of the items categorized in that mean so far. 
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3. Then the above two steps will be repeated for a given number of iterations and at the end, 

we have our clusters. 

 

 

Figure 24: Steps of K-means clustering 

 

Here target number of cluster will be defined as k, which refers to the number of centroids you 

need in the dataset. A centroid is the imaginary or real location representing the center of the 

cluster. Every data point is allocated to each of the clusters through reducing the in-cluster sum of 

squares [37]. 

 

In other words, the K-means algorithm identifies k number of centroids, and then allocates every 

data point to the nearest cluster, while keeping the centroids as small as possible. 
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In partitioning clustering, where K means clustering include defining the number of cluster that 

we need our data set to be clustered should be given as an input to the algorithm. So the K- means 

clustering requires the user to specify the number of clusters k to be generated [37]. 

 

Even though the user can define any number as the number of clusters, there is an optimal number 

which we can define as the number of clusters [22]. The optimal number of clusters is somehow 

subjective and depends on the method used for measuring similarities and the parameters used for 

partitioning. 

 

One of the most popular method of finding optimal number of clusters is elbow method. 

 

Elbow method 

 

Elbow  method  is  a  method  which  looks  at  the  percentage  of variance  explained  as  a  

function  of  the  number  of  clusters [35]. This  method  exists  upon  the  idea  that  one  should  

choose  a number of clusters so that adding another cluster doesn't give much better modelling of 

the data. In this method a plotted diagram will be created. Here the percentage of variance 

explained by the clusters will be plotted against the number of clusters [34].  The first clusters will 

add much information but at some point the marginal gain will drop dramatically and gives an 

angle in the graph.  

1. Initialize $k=1$ 

2. Start  

3. Increment the value of $k 

4. Measure the cost of the optimal quality solution 

5. If at some point the cost of the solution drops dramatically 

6. That‟s the true $k$. 

7. End 

Based on pre-evaluated cluster number, the cluster nodes start the   computations   and   divide   

themselves   in   the   clusters according to the pre-evaluation.  The  cluster  nodes  divide 

themselves  in  the  pre-evaluated  number  of  clusters  using Euclidean   distance   calculation.   

The   cluster   formation   is performed using the K-Means algorithm.   
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Figure 25: Selecting optimal number of clusters 

 

In order to find the optimal number of clusters diagrams were plotted using the percentage of 

variance explained by the clusters against the number of clusters. The diagram was plotted several 

times graphs (Figure 25) reducing the number of cluster to ensure the optimal number of clusters 

by improving the elbow shape of the graph. 

 

The graphs which were plotted without dimensional reduction show that the optimal number of 

clusters can be found in between 0 – 20. In order to have a clear number for this dimensional 

reduction process were carried out on top of the data set and then applied the elbow method [35]. 

 

Dimensional reduction will not be used when clustering the data as each value of each gene is 

important when deciding some kind of disease or deciding on cancers or any type of curing 

method. 

 

Dimensional reduction using PCA (Principal Component Analysis) 

 

PCA is often useful to measure data in terms of its principal components rather than on a normal 

x-y axis. They are the directions where there is the most variance, the directions where the data is 

most spread out. 
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As above mentioned even after the PCA applied on the data set, the diagram was plotted several 

graph (Figure 26) times to have a better elbow shape. The last plotted graph using 2-10 number of 

clusters shows a better elbow shape where the optimal number of clusters is shows as three. 

 

 

 

 

  

Figure 26: Selecting optimal number of clusters after PCA 

 

Approach 1 

 

 

 

 

 

 

Figure 27: Approach one 

CNA data set 

K- Means Clustering Algorithm 
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Then the k- means clustering algorithm was applied to the data set giving the input of number of 

data as three. As the 1st step none of the dimension reduction methods were applied when applying 

the clustering method. After applying the K-means algorithm three clusters were performed using 

Euclidean distance measure as follows (Figure 27) [22]. Three clusters were performed (Figure 

28) as 0, 1 and 2. Corresponding sample ID’s are shown in below table (Refer Appendix A). 

 

 Cluster 0 – 19 data points 

 Cluster 1 – 57 data points 

 Cluster 2 – 42 data points 

 

After clustering the data using K means clustering algorithm, Silhouette score was calculated for 

each data point in order to find the how well the each data point matches with their clusters. 

 

Silhouette score 

 

Silhouette analysis can be used to study the separation distance between the resulting clusters. 

This measure has a range of 1- (-1). This measure gives the idea of how close each data point in 

one cluster to points in neighboring clusters [29].   

 

 

Figure 28: Clusters using K-means without dimensional reduction 
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 Silhouette coefficients near +1 indicate that the sample is far away from the neighboring clusters 

[28]. A value of 0 indicates that the sample is on or very close to the decision boundary between 

two neighboring clusters and negative values indicate that those samples might have been assigned 

to the wrong cluster. 

 

As per the above diagrams (Graph 1) there are some data points which are positive values as well 

as negative values. These data points with the negative values might be in the wrong cluster. These 

data points are as follows (Table 2), 

Sample Score 

'MO_1040'  -0.0204 

'MO_1054'  -0.0061 

'MO_1114'  -0.0148 

'6115242'  -0.0072 

'SC_9036' -0.01 

'SC_9055'  -0.0061 

'SC_9073' -0.0103 

'SC_9094'  -0.0093 

 

Table 2: Data points which have negative values for silhouette score  

The average silhouette score for this set of cluster is calculated as 0.0258. 

 

As the 2nd step same data set was clustered after dimension reduction. As the dimensional reduction 

techniques three popular techniques were selected. They are, 

 t-SNE 

 PCA 

 ICA 

Approach 2 

 

  

 

 

 

Figure 29: Approach two 

CNA data set 

Apply Dimensional reduction method 

(TSNE, PCA, ICA) 

Preprocessed data 

Apply K-means clustering 
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Graph 1: Silhouette score for approach one 

 

Most of the time when analyzing and visualizing the high dimensional data, dimensional reduction 

is carried out as a main step [26]. There are different types of methods which can be used for this 

dimensional reduction. t-SNE one of the most popular dimensionality reduction method which is 

proposed by Geoffry Hinton’s group back in 2008. 
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t-SNE creates a low dimensional mapping using the local relationships between points. This is 

aiming to capture nonlinear structures not linear projections. t-SNE use Gaussian distribution to 

create a probability distribution which defines the relationships in dimensional space. 

 

As the 2nd step t-SNE dimensional reduction technique were applied to the data set. Then again 

applied the k means clustering algorithm to analyze whether the clusters formed after t-SNE 

dimensional reduction is more accurate [27] (Figure 29). 

 

Table in appendix B shows the clusters that were formed after t-SNE dimensional reduction. There 

are some data points which change the corresponding cluster which were performed in earlier step 

(Figure 30). 

 

 

Figure 30: Clusters after K- means with t-SNE dimensional reduction 

 

The average silhouette score and the separate silhouette score for each data point were calculated 

for these clusters in order to find out the correctness of the clusters. The average silhouette score 

for these clusters is 0.01922. Each silhouette score for each data point is as follows (Graph 2). 
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Graph 2: Silhouette score for approach two 
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Same as the 1st step negative values can be seen in this step also which means some of the data 

points might be in wrong cluster. Those data points are as follows (Table 3), 

 

Data point Score 

'MO_1013' -0.0033 

'MO_1176'  -0.0057 

'MO_1249'  -0.016 

'MO_1262'  -0.0107 

'6115234'  -0.0268 

'6115251'  -0.0034 

'1115156' -0.0088 

'6115118'  -0.0017 

'6115121'  -0.0264 

'6115122' -0.0073 

'6115123'  -0.0098 

'SC_9007'  -0.0069 

'SC_9009'  -0.0046 

'SC_9016'  -0.005 

'SC_9030'  -0.0085 

'SC_9034'  -0.0004 

'SC_9046'  -0.0009 

'SC_9047'  -0.0041 

'SC_9054'  -0.0081 

'SC_9063'  -0.0135 

'SC_9071'  -0.0112 

'SC_9080'  -0.0246 

'SC_9086'  -0.0039 

'SC_9092'  -0.0184 

'TP_2009'  -0.0175 

'TP_2060'  -0.0061 

'TP_2061'  -0.0149 

 

Table 3: Data points which have negative values for silhouette score  

 

Approach 3 

When comparing with the data points which has negative values in the 1st step number of data 

point is higher than earlier. Which means the cluster set in step 1 is more accurate than these 

clusters. 
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As the 3rd step another dimensional reduction method were applied for the data set and then applied 

k means clustering. PCA dimensional reduction method were applied here. 

 

Principal component analysis (PCA) is a method which is used to create set of linearly uncorrelated 

variables called principal components using orthogonal transformation (Figure 31). 

Table in appendix C shows the clusters performed after PCA dimensional reduction. 

 

Figure 31: Clusters after K- means with PCA dimensional reduction 

The average silhouette score for this cluster set is 0.02310. Corresponding silhouette score for each 

value is shown in appendix D. 

 

Negative values as well as positive values can be also seen here. The data points which has negative 

values are as follows (Table 4), 

Data point Score 

'MO_1014'  -4.39E-03 

'1115154'  -1.43E-03 

'1115157'  -4.69E-03 
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'6115118'  -5.84E-04 

'SC_9034'  -6.54E-03 

'SC_9092'  -4.02E-03 

'SC_9097'  -5.93E-03 

Table 4: Data points which have negative values for silhouette score  

 

Approach 4 

As the next step ICA dimensional reduction technique was used before applying the k means 

clustering method. ICA stands for Independent Components Analysis. In ICA it consider that each 

sample of data is a mixture of independent components and it aims to find these independent 

components (Figure 32). 

 

Table in appendix E shows the clusters which were performed by k means clustering after applying 

ICA dimensional reduction technique for the data set. 

 

Figure 32: Clusters after K- means with ICA dimensional reduction 

The average silhouette score for this cluster set is 0.023100687694212127. Corresponding 

silhouette score for each value is as follows (Graph 3), 
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Graph 3: Silhouette score for approach three 
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In this method also there are some data points which got negative values as the silhouette score. 

Data point Score 

'MO_1013' -0.0033 

'MO_1176'  -0.0057 

'MO_1249'  -0.016 

'MO_1262'  -0.0107 

'6115234'  -0.0268 

'6115251'  -0.0034 

'1115156' -0.0088 

'6115118'  -0.0017 

'6115121'  -0.0264 

'6115122' -0.0073 

'6115123'  -0.0098 

'SC_9007'  -0.0069 

'SC_9009'  -0.0046 

'SC_9016'  -0.005 

'SC_9030'  -0.0085 

'SC_9034'  -0.0004 

'SC_9046'  -0.0009 

'SC_9047'  -0.0041 

'SC_9054'  -0.0081 

'SC_9063'  -0.0135 

'SC_9071'  -0.0112 

'SC_9080'  -0.0246 

'SC_9086'  -0.0039 

'SC_9092'  -0.0184 

'TP_2009'  -0.0175 

'TP_2060'  -0.0061 

'TP_2061'  -0.0149 

Table 5: Data points which have negative values for silhouette score 

When considering all four steps which carried out k means clustering method, above (Table 5) are 

the data points with negative silhouette score in all the steps. 

 

Approach 5 

Apply one hot encoding on CNA data and then K-means clustering 

 

CNA data set consists of categorical data but they have been represented as numerical data as 

explain in the ‘Data representation in selected data source’ section above. It only includes 
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numerical numbers -2, -1, 0, 1, 2, representing five different categories. In above sections K-means 

clustering algorithm were carried out on top of these data without converting the categorical data 

into numerical data. As the next step these data will be converted to categorical data using one hot 

encoding method which, a process by which categorical variables are converted into a form that 

could be provided to ML algorithms to do a better job in prediction (Figure 33). 

 

With this data set three clusters were performed using K-means clustering with the average 

silhouette score of -0.0937. The distribution of the clusters are as below.  

 

 

Figure 33: Clusters applying one hot encoding on CNA data and then K-means clustering 

This distribution of cluster points doesn’t show good density of each cluster and the good 

separation of clusters. Hence dimensional reduction method were applied on top this data set in 

order to find whether any better cluster set can be performed.  

 

Approach 6 

 

Then dimensional reduction method was applied as applying one hot method will create a data set 

with large number of zeros. Hence dimensional reduction need to be carried out. As the 

dimensional reduction method PCA method was used. Then K-means clustering method was 
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applied for this preprocessed data set (27). Clusters (Refer appendix F) were performed after this 

method with the average silhouette score of 0.3812. 

 

 

 

 

 

 

 

Figure 34: Approach Three 

 

Figure 35: Clusters after approach three 

 

As per the graph above (Figure 35) distribution of the clusters are better than the above phases 

which were carried out without converting the categorical data into numerical data. 

 

 

Apply PCA dimensional reduction on CNA 

data 

Apply One Hot method on CNA data 

Apply K-means clustering 
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Approach 7 

 

Since above method gives better clusters, same method was applied on the corresponding 

expression data set for the same genes and the same sample set, which is a dense data set. PCA 

dimension reduction method was applied on this data set 1st then k-means clustering method was 

used. Created clusters (Refer appendix G) were compared with the above clusters in order to 

identify the similarities and the dissimilarities with those clusters (Figure 36). 

 

 

 

Figure 36: Approach four 

 

Figure 37: Clusters after approach four 

For the dense data set above (Figure 37) three clusters were performed using k-means clustering 

method with the average silhouette score of 0.5847. 

 

 

Apply PCA dimensional reduction on 

Expression data 

Apply K-means clustering 
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5.3.2. Hierarchical Clustering method 

 

Hierarchical clustering is also a well-known clustering method in the literature. In this method a 

dendogram will be used to cluster the data points in to clusters [38]. The endpoint is a set of 

clusters, where each cluster is distinct from each other cluster, and the objects within each cluster 

are broadly similar to each other. 

 

In the very 1st step each data point will be consider as different clusters. Then it recursively execute 

the below steps (Figure 38). 

(1) Identify the two clusters that are closest together, and  

(2) Merge the two most similar clusters. 

This continues until all the clusters are merged together. This is illustrated in the diagrams below. 

 

 

 

Figure 38: Steps of Hierarchical clustering algorithm 

  

As the next step of the research the data set was clustered using this hierarchical clustering method. 

Eucledian distance, Manhatan distance and Minkowski distance measures were used when 

clustering the data set using hierarchical clustering method. Similar dendogram was populated by 

all three measures (Figure 39). 
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Figure 39: Dendogram using hierarchical clustering algorithm 

Then the dendogram were cut where three clusters were generated. But here two clusters got one 

data point in each and other 116 data points were included in one cluster. Hence this dendogram 

was used to identify the outliers [35]. 

Result of this dendogram and results of all the clustering steps which used K- means clustering 

above were used to identify the outliers. Data points which has negative values as silhouette score 

in above steps and the data points which have connected to the dendogram very lastly were 

compared and the same data points which were in most of those categories were selected as the 

outliers. 

Below highlighted cells (Table 6) shows the data points which were recognized as a outlier at least 

three times. Below are the data points which will be considered as outliers, 

'6115118'  

'SC_9034'  

'SC_9092'  

'MO_1054'  

'SC_9046'  

'MO_1176'  

'6115242'  
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Table 6: Selecting outliers 

 

5.3.2. DBSCAN (Density-based spatial clustering of applications with noise) Clustering 

method 

 

In density based clustering, areas which have higher density other than other areas are highlighted 

as the lusters. Other areas which have less number of data points which can be considered as sparse 

areas usually treated as the noise and the border points. DBSCAN is one of the most popular 

density based clustering methods. 

One of the data set which was described in chapter 3 has dense data which is known as expression 

data. Since all the above clustering processes were applied on CNA data, in this step expression 

data will be used to apply the clustering algorithm. This data set includes expression data of 

selected genes for the selected samples. In the original data set there were about 40000 genes, 

when comparing to the corresponding CNA data set it only has about 25000 genes. Expression 

data set was prepared as the CNA and the expression data set have same gene set. 

DBSCAN clustering method was used to cluster the expression data [31]. This algorithm was run 

on the expression data set changing the parameters which have defined in DBSCAN clustering 
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method in order to find clusters with high similarity among the data points. Below are the 

parameters which were used for clustering the data set [33]. 

 

eps: the minimum distance between two points. It means that if the distance between two points 

is lower or equal to this value (eps), these points are considered neighbors. 

minPoints: the minimum number of points to form a dense region. For example, if we set the 

minPoints parameter as 5, then we need at least 5 points to form a dense region. 

 

Since the main objective of the research is explore a novel clustering method, might be a hybrid 

method connecting the outputs of each different clustering method, some of the outputs of K-

means clustering method will be used as the input to the DBSCAN method [27]. Hence number of 

effective clusters which was found using elbow method will be used for the DBSCAN clustering 

method. As the first step DBSCAN clustering method was used to cluster the dense data set, 

expression data set for the same gene set and the same sample set as the CNA data set to make 

three clusters [31] (Figure 40). 

Approach 8 

 

 

 

 

Figure 40: Approach eight 

Since the number of clusters are defined by the parameters which have mentioned above, 

DBSCAN algorithm was tuned using different values for those parameters and found out the 

values which perform three clusters. 

Below are the values which performed three clusters, 

eps:  0.15151515151515152 min_samples:  2.0 Number of clusters:  3 

eps:  0.15454545454545454 min_samples:  2.0 Number of clusters:  3 

Expression data set 

DBSCAN Clustering Algorithm 
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eps:  0.1575757575757576 min_samples:  2.0 Number of clusters:  3 

eps:  0.1606060606060606 min_samples:  2.0 Number of clusters:  3 

eps:  0.19090909090909092 min_samples:  3.0 Number of clusters:  3 

eps:  0.19393939393939397 min_samples:  3.0 Number of clusters:  3 

eps:  0.196969696969697 min_samples:  3.0 Number of clusters:  3 

eps:  0.2 min_samples:  3.0 Number of clusters:  3 

eps:  0.20303030303030306 min_samples:  3.0 Number of clusters:  3 

eps:  0.20606060606060608 min_samples:  3.0 Number of clusters:  3 

eps:  0.2090909090909091 min_samples:  3.0 Number of clusters:  3 

eps:  0.21212121212121215 min_samples:  3.0 Number of clusters:  3 

eps:  0.21515151515151518 min_samples:  4.0 Number of clusters:  3 

eps:  0.2181818181818182 min_samples:  4.0 Number of clusters:  3 

eps:  0.22121212121212125 min_samples:  4.0 Number of clusters:  3 

eps:  0.22424242424242427 min_samples:  4.0 Number of clusters:  3 

eps:  0.2272727272727273 min_samples:  4.0 Number of clusters:  3 

eps:  0.23030303030303031 min_samples:  4.0 Number of clusters:  3 

eps:  0.23333333333333336 min_samples:  4.0 Number of clusters:  3 

eps:  0.2363636363636364 min_samples:  4.0 Number of clusters:  3 

eps:  0.2393939393939394 min_samples:  4.0 Number of clusters:  3 

eps:  0.24242424242424246 min_samples:  4.0 Number of clusters:  3 

eps:  0.24545454545454548 min_samples:  4.0 Number of clusters:  3 

eps:  0.2484848484848485 min_samples:  4.0 Number of clusters:  3 

eps:  0.2515151515151516 min_samples:  4.0 Number of clusters:  3 

eps:  0.2545454545454546 min_samples:  4.0 Number of clusters:  3 

eps:  0.25757575757575757 min_samples:  3.0 Number of clusters:  3 

eps:  0.2606060606060606 min_samples:  3.0 Number of clusters:  3 

eps:  0.26363636363636367 min_samples:  3.0 Number of clusters:  3 

eps:  0.2666666666666667 min_samples:  3.0 Number of clusters:  3 

eps:  0.26969696969696977 min_samples:  3.0 Number of clusters:  3 

eps:  0.27272727272727276 min_samples:  3.0 Number of clusters:  3 

eps:  0.27575757575757576 min_samples:  3.0 Number of clusters:  3 

eps:  0.2787878787878788 min_samples:  3.0 Number of clusters:  3 

eps:  0.28181818181818186 min_samples:  3.0 Number of clusters:  3 

eps:  0.2848484848484849 min_samples:  3.0 Number of clusters:  3 

eps:  0.2878787878787879 min_samples:  3.0 Number of clusters:  3 

eps:  0.29090909090909095 min_samples:  2.0 Number of clusters:  3 

eps:  0.29090909090909095 min_samples:  4.0 Number of clusters:  3 

eps:  0.29393939393939394 min_samples:  4.0 Number of clusters:  3 

eps:  0.296969696969697 min_samples:  4.0 Number of clusters:  3 

eps:  0.30000000000000004 min_samples:  4.0 Number of clusters:  3 

eps:  0.3030303030303031 min_samples:  4.0 Number of clusters:  3 

 

Each of these value pairs were used at a time and observed the distribution of the clusters and 

calculate the average silhouette score. Then select the parameters which gives the best silhouette score 

and the best distribution of the clusters. 

eps=0.3030303030303031, min_samples=4.0 were selected as the most effective parameter values 

for this data set. Below are the clusters (Refer appendix H) (Figure 41) which were perform by 

DBSCAN clustering for the above parameter values with the average silhouette score of 0.0474806 
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Figure 41: Clusters after approach eight 

Approach 9 

Then the same algorithm were tried out after dimension reduction of the dense data set using TSNE 

and PCA as the dimension reduction methods. From these two approaches applying PCA gave 

better clusters compared to applying TSNE method as clusters with PCA dimension reduction got 

higher average silhouette score value compared to the other one (Figure 42). The clusters gained 

through this method is as follows (Refer appendix I) (Figure 43), 

 

 

 

 

Figure 42: Approach nine 

 

Expression data set 

Apply Dimensional reduction method 

(TSNE, PCA, ICA) 

Preprocessed data 

Apply DBSCAN clustering 
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Figure 43: Clusters after approach nine 

 

Approach 10 

Since we are trying to compare the clustering methods and options as much as possible, then find 

a better way to perform better clusters, this DBSCAN method was applied also on the CNA data 

set which were preprocessed using one hot method. Here PCA method was used as the dimension 

reduction method (Figure 44). Using this method three clusters were performed (Refer appendix 

J) (Figure 45) with the average silhouette score is of -0.13301 and a better distribution of clusters. 

 

 

 

 

 

Figure 44: Approach ten 

Apply PCA dimensional reduction on CNA 

data 

Apply One Hot method on CNA data 

Apply DBSCAN clustering 
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Figure 45: Clusters after approach ten 

Approach 11 

The next clustering approach will be carried out using both the data sets, CNA and expression data 

set at once, in order to explore the distribution and the similarities of the clusters which will be 

gain using both the features. For this method CNA data which were preprocessed using one hot 

method and the expression data will be used. PCA dimension reduction method was applied on 

both the data sets (Figure 46). Clusters were performed with the average silhouette score of 0.1553 

and distribution as below (Figure 47) (Refer appendix K). 

 

 

 

 

Figure 46: Approach eleven 

Apply PCA dimensional reduction on both 

data sets 

Apply One Hot method on CNA data 

Apply DBSCAN clustering 
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Figure 47: Clusters after approach eleven 

Approach 12 

As the next phase of applying DBSCAN on expression data set, outliers which were identified in 

the phase of applying K-means clustering on CNA data set, were removed from the expression 

data set. Then again apply DBSCAN clustering on the filtered data set (Figure 48). 

Since the data set has filter out from the outliers, the values for the parameters (eps, min_samples) 

should be calculated again. Most suitable parameter values were identified considering number of 

clusters and the average silhouette score. Parameter values which performed three clusters were identified 

first and then the silhouette score was considered. 

 

 

Figure 48: Approach twelve 

 

Remove outliers from expression data set Apply DBSCAN clustering 
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eps=0.31818181818181823, min_samples=2.0 values were selected as the parameter values for 

applying the DBSCAN clustering on the expression data set without outlier. Three clusters were 

performed (Figure 49) (Refer appendix L) with above parameter values and the average silhouette 

score of 0.101227. 

 

 

Figure 49: Clusters after approach twelve 

Approach 13 

As the next step of applying DBSCAN clustering method both the data set CNA and expression 

data sets were used at once as the inputs to the DBSCAN clustering method. CNA data set and the 

expression data set were store in two different 2D arrays. The value of the particular gene for 

particular sample is considered with the value of the expression data of that same gene for the same 

sample (Figure 50).  

Considering both the points, DBSCAN method was applied on both the data sets. Below is the 

clusters which were performed using this method with the average silhouette score of 0.04748047. 

Even though there is a very little gain on silhouette score compared to the clusters which were performed 

using only expression data, the distribution (Figure 51) of the clusters are different from each other.  
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Figure 50: Approach Thirteen 

 

 

Figure 51: Clusters after approach thirteen 

 

Approach 14 

As the final approach of performing clusters of this research, outliers which were identified in K-

means application phase, were removed from both the data sets, CNA and expression data set. 

Here CNA data set was preprocessed using one hot method and dimension reduction was done by 

using PCA method. Then apply the DBSCAN clustering for both the data set using same steps as 

the above process (Figure 52). This method performed three clusters (Refer appendix M) with the 

Apply PCA dimensional reduction on CNA 

data 

Apply One Hot method on CNA data 

Apply DBSCAN clustering on both data 

sets 
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average silhouette score of 0.30222757, highest score from all the procedures that were carried out earlier 

without dimension reduction (Figure 53).  

 

Figure 52: Approach fourteen 
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Figure 53: Clusters after approach fourteen 

As the another step preprocessed CNA data set with one hot and the dense data set was filter out 

from the outliers which were identified in the earlier steps. Then dimension reduction was done 

using PCA technique in the both data sets. Then DBSCAN clustering method was carried out for 

both the data sets. But there were no any significant difference in the clusters when comparing to 

the step which followed the same above steps with the outliers. Average silhouette score was (-

0.1553) same as the above mention step and the distribution of the data points in the clusters were 

almost same. 
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Chapter 6 Evaluation  
 

6.1 Overview 
In this chapter, we present the evaluation that was carried out to assess the validity of the method 

designed and explored to identify a better clustering method for high dimensional unlabeled 

genomic data. There are mainly two approaches to evaluate this hybrid clustering method. 

6.2 External Evaluation 

In external evaluation, clustering results are evaluated based on data that was not used for 

clustering, such as known class labels and external benchmarks. Such benchmarks consist of a set 

of pre-classified items, and these sets are often created by (expert) humans [7]. So in the evaluation 

process of this research it will be utilized another data set from the same data source which is again 

not labeled and high dimensional genomic data. This data set is utilized in order to validate the 

clusters that will be the result of novel hybrid clustering method. 

 

Figure 54: Elbow curve for the test data set 

Selected full data set has CNA data set and expression data set separately. This CNA data set has 

107 samples and expression data set has 49 samples. Both have 18609 features which are different 

genes. All the approaches which were carried out throughout this research were again applied on 

this new test data set and compared the results in order to validate this hybrid method, showing 

that better clusters with better scores for measurements indexes can be performed using this hybrid 

method on another data set which was not used for the experimental purpose. 
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Elbow method was used on new CNA data set in order to find the efficient number of clusters 

(Figure 54). Most appropriate number of clusters were five. Rest of the approaches were carried 

out considering that the number of clusters is five. 

The results are shown in the below table with the approach carried out. As explained above 1st four 

methods was used to identify outliers with the dendogram which were performed by hierarchical 

clustering method (Figure 55). The dendogram which was performed for this data set is shown 

below.  

 

Figure 55: Dendogram for the test data set 

The outliers for this data set was identified by comparing the silhouette score which was gained 

for each data points for above all five methods. Identified outliers are shown in the below table 

(Table 7). 

Method Followed Avg. Silhouette Score Avg. Davies–

Bouldin index 

Davies–Bouldin index for each cluster 

0.18 2.6 1.85 2.44 1.96 3.53 3.53 
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Raw CNA data with 

K-means clustering 

 

Apply TSNE on CNA 

data then K-means 

clustering 

0.18 2.6 1.85 2.44 1.96 3.53 3.53 

 

Apply PCA on CNA 

data then K-means 

clustering 

0.16 2.6 1.85 2.44 1.96 3.53 3.53 

 

0.19 2.6 1.85 2.44 1.96 3.53 3.53 
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Apply ICA on CNA 

data then K-means 

clustering 

 

Apply one hot 

method on CNA data 

then PCA dimention 

reduction then K-

means clustering 

0.5 23.17 14.3 49.68 1.21 49.68 0.902 

 

Apply one hot 

method on CNA data 

then K-means 

clustering 

0.16 1.6 1.42 1.84 1.29 1.88 1.88 

 

Apply one hot 

method on CNA data, 

0.6 0.5 0.1 0.6 0.3 0.66 0.69 



 

69 
 

CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA 

then PCA for both the 

data sets then K-

means clustering  

 

Apply DBSCAN for 

Expression data set 

0.42 0.60 1.61 0.69 0.39 0.61 0.61 

 

Apply PCA on 

expression data then 

DBSCAN clustering  

0.5 0.9 1.2 0.8 0.8 0.8 1.2 

 

0.2 0.77 0.23 0.89 0.84 0.78 0.62 
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Apply one hot on 

CNA data then PCA 

for CNA data sets 

then DBSCAN 

clustering 

 

Remove outliers 

apply one hot method 

on CNA data and 

then PCA only on 

CNA data, then apply 

DBSCAN on both the 

data sets 

0.5 0.57 1.4 0.21 0.27 0.42 0.57 

 

Table 7: Comparison of evaluation measurements for test data set 

According to the results of the explained procedure it is clear that presented novel approach has 

given the best scores for the measurement index values. 

 

6.2 Internal Evaluation  

If we are going to use clustering data itself to evaluate the result it is called as internal evaluation. 

Having high intra cluster similarity and low inter cluster similarity is one of the characteristics of 

an effective clustering methods. Hence, the clustering method that will be the final outcome of this 

research will be evaluated by using these measurements. 

There are three main measures which are used for internal evaluation in cluster evaluation. They 

are, 

 Davies–Bouldin index 

 Dunn index 
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 Silhouette coefficient 

These messures can be used for evaluate clusters which were performed by particular clustering 

method. These messurements gives a score for each cluster so that the clusters can be evaluated 

internally [23].  

Since this reseach was an explorative research each and every time clusters was performed internal 

evaluation was carried out [25]. Hence the most effective clusters can be identified in the every 

step. Silhouette coefficient was used in every step inorder to do the internal evaluation [24]. Hence 

internal evaluation has been carried out thrugh out the research. 

Since the result of Silhouette coefficient is used for the exploration part of the research, another 

messurment technique need to be used in the evaluation phase [39].  Hence Davies–Bouldin index 

was used to evaluate the clusters in each step and the final cluster set. 

Davies–Bouldin index 

Following formula can be used for calculate the Davies–Bouldin index 

 

n = Number of clusters 

Cx = the centroid of cluster x 

σ x = the average distance of all elements in cluster x 

d(Ci, cj) = the distance between centroids 

A better clustering algorithm will always perform clusters with low intra cluster distance which 

should have high intra cluster similarity [40]. When considering inter cluster distance good cluster 

set may have high inter cluster distance and low inter cluster similarity. A cluster with these 

qualities will have a low Davies–Bouldin index, the clustering algorithm that produces a collection 

of clusters with the smallest Davies–Bouldin index is considered the best algorithm based on this 

criterion [40]. 

https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index
https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index
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The Davies–Bouldin index values get for the each step which have been done in the methodology 

section to perform clusters are as follows with the corresponding value for silhouette score in the 

each step. 

Method Followed Avg. Silhouette 

Score 

Avg. Davies–

Bouldin index 

Davies–Bouldin index for each cluster 

Raw CNA data with K-means clustering 0.320 1.563 1.63 1.42 1.63 

Apply TSNE on CNA data then K-means clustering 0.212 1.563 1.63 1.42 1.63 

Apply PCA on CNA data then K-means clustering 0.311 1.563 1.63 1.42 1.63 

Apply ICA on CNA data then K-means clustering 0.307 1.563 1.65 1.42 1.63 

Apply one hot method on CNA data then PCA 

dimention reduction then K-means clustering 

0.233 1.13 1.02 1.33 1.01 

Apply one hot method on CNA data then K-means 

clustering 

-0.09 167845171 Large value Large value Large 

value 

Apply one hot method on CNA data, then PCA for 

both the data sets then K-means clustering  

0.5  0.6 0.5 0.6 0.6 

Apply DBSCAN for Expression data set 0.047 1.56 1.61 1.61 1.4 

Apply DBSCAN for both CNA and Expression data 0.047 1.56 1.61 1.61 1.4 

Apply PCA on expression data then DBSCAN 

clustering  

0.03 1.8 2.5 2.5 0.6 

Apply one hot on CNA data then PCA for CNA data 

sets then DBSCAN clustering 

-0.13 0.9 1.06 1.06 0.6 

Apply one hot on CNA data then PCA for both the 

data sets then DBSCAN clustering 

-0.15 4.5 6.3 6.3 0.9 

Remove outliers apply DBSCAN for both data sets -0.1553 4.53 6.34 6.34 0.92 

Remove outliers apply one hot method on CNA data 

and then PCA only on CNA data, then apply 

DBSCAN on both the data sets 

0.464 0.5643 0.577 0.584 0.532 

Table 8: Comparison of evaluation measurements 
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When consider the above table (Table 8), the clustering approaches which have got nearly same 

value for the average silhouette score, have got nealy same values also for the average Davies–

Bouldin index. So the approaches which used for perform clusters can be evaluated using these 

messurements. The procedure which follows to evaluate the clusters can be confirmed using the 

score values of the Davies–Bouldin index for each cluster. 
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Chapter 8 Results & Analysis 
 

8.1 Overview  

This chapter presents the overall findings of this research study and the analysis and discussion 

of them. 

 

8.2 Results and analysis on each clustering approaches 

There are several clustering approach which were followed in order to find a better clustering 

approach for high dimensional unlabeled genomic data. Here the main focus was on main three 

clustering algorithms which were used heavily in the literature. They are k-means clustering 

algorithm, Hierarchical clustering algorithm and DBSCAN clustering algorithm. 

These algorithm was applied in different ways on two main data sets which are CNA data set and 

expression data set using different preprocessing methods. The clusters which were produced using 

these different methods were evaluated using different measurements like silhouette score and 

Davies–Bouldin index. 

This analysis will be carried out using these meassurements and analysing the clusters comparing 

the data points in each clusters which were perormed using different methods. 

 

Approches with K-means clustering 

 

When consider the values for the measurement indexes in the t able 8 it shows that there is no any 

considerable impact when using dimension reduction methods such as ICA, TNSE and PCA on 

CNA data and the apply K-means clustering compared to the approach where K-means clustering 

apply directly on the CNA data set. 
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Method Followed Avg. 

Silhouette 

Score 

Avg. Davies–

Bouldin index 

Davies–Bouldin index for each 

cluster 

Row CNA data with K-means clustering 0.320 1.563 1.63 1.42 1.63 

Apply TSNE on CNA data then K-means 

clustering 

0.212 1.563 1.63 1.42 1.63 

Apply PCA on CNA data then K-means 

clustering 

0.311 1.563 1.63 1.42 1.63 

Apply ICA on CNA data then K-means 

clustering 

0.307 1.563 1.65 1.42 1.63 

 

Table 9: Comparison of evaluation measurements 

 

There are small differences of the average silhouette score but average Davies–Bouldin index is 

almost same for all the approaches (Table 9). 

Converting the categorical data which is in CNA data set to numerical data using one hot method 

and then apply K-means clustering without using dimention reduction is the most failed approach 

among the approaches which were carried out through this reseach. The meassurement indexes 

have got very large values for this clustering approach (Table 10). 

Method Followed Avg. 

Silhouette 

Score 

Avg. Davies–

Bouldin index 

Davies–Bouldin index for each 

cluster 

Apply one hot method on CNA data then 

K-means clustering 

-0.09 167845171 Large 

value 

Large 

value 

Large 

value 

 

Table 10: Comparison of evaluation measurements 
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Use one hot method on the CNA data set and then apply PCA method to dimension reduction and 

apply k-means clustering on these preprocessed data shows considerable improvement when 

consider the values for the measurement indexes for that method (Table 11). 

Method Followed Avg. 

Silhouette 

Score 

Avg. Davies–

Bouldin index 

Davies–Bouldin index for each 

cluster 

Apply one hot method on CNA data then 

PCA dimention reduction then K-means 

clustering 

0.233 1.13 1.02 1.33 1.01 

 

Table 11: Comparison of evaluation measurements 

Using one hot for CNA data and then apply PCA for both the data set which are preprocessed 

CNA and expression data set and apply k-means for perform clusters has the best score among the 

approaches which uses k-means as the main clustering algorithm (Table 12).  

Method Followed Avg. 

Silhouette 

Score 

Avg. Davies–

Bouldin index 

Davies–Bouldin index for each 

cluster 

Apply one hot method on CNA data, then 

PCA for both the data sets then K-means 

clustering  

0.5  0.6 0.5 0.6 0.6 

 

Table 12: Comparison of evaluation measurements 

Approches with DBSCAN clustering 

 

There are several approaches carried out using DBSCAN clustering method on both the data sets, 

separately and as a combined data set. The measurement indexes were calculated for these 

clustering approaches as well. 

When considering these measurement indexes it shows that there’s no any considerable impact 

when clustering only expression data using DBSCAN method compared to clustering the data set 
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using both CNA and expression data without using any conversion method such as one hot method 

or any dimension reduction method such as PCA, on any of the data set (Table 13). 

Method Followed Avg. 

Silhouette 

Score 

Avg. Davies–

Bouldin index 

Davies–Bouldin index for each 

cluster 

Apply DBSCAN for Expression data set 0.047 1.56 1.61 1.61 1.4 

Apply DBSCAN for both CNA and 

Expression data 

0.047 1.56 1.61 1.61 1.4 

 

Table 13: Comparison of evaluation measurements 

When analyzing the other approach which were carried out with DBSCAN clustering method. 

There are three approaches which got almost the same results. They are (Table 14), 

 Apply DBSCAN clustering only on the CNA data which were converted from categorical 

data to numerical data using one hot method and apply PCA for dimension reduction. 

 Apply DBSCAN clustering on both the CNA data which were converted from categorical 

data to numerical data using one hot method and expression data set after applying PCA 

for dimension reduction. 

 Remove outliers from both the data sets and then use DBSCAN for both the data sets 

without using any preprocessing methods. 

Method Followed Avg. 

Silhouette 

Score 

Avg. Davies–

Bouldin index 

Davies–Bouldin index for each 

cluster 

Apply one hot on CNA data then PCA for 

CNA data sets then DBSCAN clustering 

-0.13 0.9 1.06 1.06 0.6 

Apply one hot on CNA data then PCA for 

both the data sets then DBSCAN 

clustering 

-0.15 4.5 6.3 6.3 0.9 
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Remove outliers apply DBSCAN for both 

data sets 

-0.1553 4.53 6.34 6.34 0.92 

 

Table 14: Comparison of evaluation measurements 

Last approach with the DBSCAN clustering method got the highest values for all the measurement 

indexes. In this approach CNA data set was clustered using k-means clustering in three steps, 

 Without any dimension reduction 

 With TNSE dimension reduction 

 With ICA dimension reduction 

 With PCA dimension reduction 

Then the CNA data set was clustered using hierarchical clustering method and drew the dendogram 

so that how and in which order the data points get joined with the clusters will be cleared.  

By analyzing above four methods outliers were identified. Then outliers were removed from both 

CNA and expression data sets. Since CNA data has categorical data, this data set was converted 

to numerical data using one hot method. But any preprocesses method was not carried out on the 

expression data set. Then DBSCAN clustering was applied on both the data sets. The measurement 

values for this method is as follows (Table 15), 

Method Followed Avg. 

Silhouette 

Score 

Avg. Davies–

Bouldin index 

Davies–Bouldin index for each 

cluster 

Remove outliers apply one hot method on 

CNA data and then PCA only on CNA 

data, then apply DBSCAN on both the 

data sets 

0.464 0.5643 0.577 0.584 0.532 

 

Table 15: Comparison of evaluation measurements 

As the next phase of the analysis, best cluster of each approach will be compare with the 

corresponding cluster which were performed by the found hybrid method. Apply one hot method on 
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CNA data, then PCA for both the data sets then applying K-means clustering approach has the lowest which 

is the best Davies–Bouldin index for the 1st and 2nd clusters. Those two clusters were compared with the 1st 

and 2nd cluster of the final results which got form the novel hybrid method. 

The 1st cluster of above method got 41 data points, and the 1st cluster of the hybrid method got 32 data 

points, out of those 32 data points 28 data points are also include in the 1st cluster which were performed 

by above mentioned method. 

Also in the 2nd cluster of above method has 67 data points, and the 2nd cluster of the hybrid method has 60 

points, out of that 60 points 52 points are also include in the 1st cluster of above metioned method. 

When considering about the 3rd cluster, Apply PCA on expression data then Apply DBSCAN method and 

Apply one hot method on CNA data then apply PCA on both the data sets and apply DBSCAN clustering 

method have the best Davies–Bouldin index for 3rd cluster. Hence these two clusters were compared with 

the 3rd cluster which were performed by the hybrid method.  

In the above mentioned two clusters there are 3 data point in one cluster and 5 data points in the 

other clusters respectively. The corresponding cluster which performed by the novel method has 

3 data points. Three out of these three data points are include in the cluster which performed by 

the above mentioned 2nd method. Two out of three data points are also include in the cluster which 

was performed by the above mentioned 1st method. 
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Chapter 9 Conclusion 
 

9.1 Overview 
 

As is the case with any research, there are several limitations inherent in this study which were 

unavoidable. This chapter presents a summary of the research, limitations and following that, the 

recommendations for future work are provided. 

9.2 Summary 

This paper presents a novel approach which we propose for the clustering high dimensional 

genomic data. It includes a method which can be considere as a hybrid method as it is an approach 

which includes some of the known clustering methods, K-means, hierarchicla and DBSCAN. 

Several approches were carried out using different steps of each in order to perform a better cluster 

set. Internal evaluation phase carried out in each approach to identify better clusters in order to 

proceed futher.  

The summary details of the evaluation messurements such as silhouette score and Davies–Bouldin 

index were used to assess the novel approach. Internal evaluation as well as the external evaluation 

shows that the novel approach has a better results when comparing to the other approaches which 

were carried out through out the research. Overall performance measures of the novel clustering 

approach as well as the similarity measure of the each cluster seperatly were carried out to assess 

the quality of the novel method. The values achieved as discussed previously proved that this 

method can be used in performing better clusters of high dimensional genomic data. Hence we can 

state that our novel method is successful in performing clusters with better similarities among the 

data points. 

 

9.3 Limitations 
 

Due to time constraint we are unable to evaluate each clusters we gain through different method 

using bio medical knowledge of a domain expert. Since we have tried out nearly sixteen different 

method of clustering approaches. Each approach we got three clusters, all together there are 48 

clusters to be evaluated considering how they are related in bio medical domain. Since this is a 
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time consuming task we decided to evaluate these clusters using computational methods such as 

inter cluster similarity and intra cluster similarity. While doing the research in order to decide the 

next step we used silhouette score as one of such methods. 

No labels are attached to the performed clusters as they are not thoroughly evaluated using 

biomedical knowledge is another drawback of this research. Even though we performed clusters 

with high values for the measurement indexes there is no real meaning of those clusters when 

considering the biological aspect. 

This method is built using main two data sets which is CNA data and expression data. The genomic 

data which is not under these categories are not tested with this method. CNA data set is used for 

the 1st phase of the method, for the 2nd phase both the data sets were used. 

Another limitation that we noticed is, when preparing the data set we got intersect of the features 

of both the data sets. Hence we had to remove some of the genes from the expression data set. 

There might be some important data is been removed because of this step. 

Due to time limitation we have used only three main clustering algorithms for this research which 

were frequently used in literature. But there can be some different clustering algorithms which will 

give better outputs when combining them as did in this research.  

This method has only tested with genomic data hence we can’t recommend this method for any 

other data categories. For the methodology of the research we used one genomic data set and for 

the evaluation phase of the research used another genomic data set. Hence we can’t ensure that 

this method will work for any other type of data. 

 

9.4 Suggestions for Future Work 
 

While this thesis has presented the potential of clustering the unlabeled genomic data and can be 

lead to identify some important information on those data, many opportunities for extending the 

scope of this thesis remain. Hence, in this section we are suggesting some future research directions 

that could improve the mutation recognition and analysis process. 
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The most important next step will be evaluate the clustering results using bio medical knowledge 

of a domain expert and tune the method. As we are focusing on genomic data it is important to 

evaluate these clusters using bio medical knowledge so that we can decide the correctness of the 

clusters. Using those results we can tune the method more to give more accurate clusters. 

We can test this method on data which is not genomic data. Because we have used this method 

only on genomic data with two data sets. We can try this method on some other data set and 

evaluate the output so that we can generalize this method to be used on any data set. 

When preprocessing the data sets we had to remove some of the genes which we considered as the 

features of the data set as CNA and the expression data set does not contain the same gene set. 

When removing some of these data, some of the important data might have been removed. Tune 

this method to use the data set as it is without removing any of them can be considered as another 

future work. 

To explore this method we have only used three main clustering methods, K-means, hierarchical 

and DBSCAN. As a future work we can expand the number of selected clustering methods. We 

can try out different clustering method and combine the results with this method to tune the method 

in order to achieve better outputs. 
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Appendix A: Clusters when apply K-means on CNA data set 
 

0 1 2 

'1115244' '1115156' '1115153' 

'6115121' '6115115' '1115154' 

'6115227' '6115117’ '1115157' 

'6115250' '6115118' '1115161' 

'MO_1114' '6115122' '1115183' 

'MO_1179' '6115123' '1115202' 

'MO_1184' '6115224' '6115114' 

'MO_1219' '6115233' '6115219'  

'SC_9007' '6115234' '6115237' 

'SC_9017' '6115247' '6115242' 

'SC_9022' '6115251' 'MO_1013' 

'SC_9038' 'MO_1020' 'MO_1014' 

'SC_9057' 'MO_1040' 'MO_1071' 

'SC_9059' 'MO_1054' 'MO_1095' 

'SC_9063' 'MO_1084' 'MO_1128' 

'SC_9086' 'MO_1094' 'MO_1161' 

'SC_9099' 'MO_1118' 'MO_1202' 

'TP_2054' 'MO_1124' 'MO_1221' 

'TP_2061' 'MO_1176'    'MO_1232' 

 'MO_1192' 'MO_1249' 

 'MO_1215' 'SC_9008' 

 'MO_1241' 'SC_9009’ 

 'MO_1244' 'SC_9010' 

 'MO_1262' 'SC_9016' 

 'MO_1277' 'SC_9018' 

 'MO_1316' 'SC_9023' 

 'MO_1336' 'SC_9028' 

 'MO_1337' 'SC_9030' 

 'MO_1339' 'SC_9034' 

 'SC_9001' 'SC_9037' 

 'SC_9012' 'SC_9047' 

 'SC_9019' 'SC_9049' 

 'SC_9026' 'SC_9060' 

 'SC_9029' 'SC_9061' 

 'SC_9031' 'SC_9062' 

 'SC_9032' 'SC_9068' 

 'SC_9036' 'SC_9071' 
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 'SC_9043' 'SC_9073' 

 'SC_9046' 'SC_9083' 

 'SC_9048' 'SC_9091' 

 'SC_9050' 'TP_2009' 

 'SC_9054' 'TP_2060' 

 'SC_9055'  

 'SC_9058'  

 'SC_9072'  

 'SC_9080'  

 'SC_9081'  

 'SC_9092'  

 'SC_9093'  

 'SC_9094'  

 'SC_9097'  

 'TP_2001'  

 'TP_2010'  

 'TP_2020'  

 'TP_2032'  

 'TP_2034'  

 'TP_2064'  
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Appendix B: Clusters when apply K-means on CNA data set with 

TNSE dimensional reduction 
 

0 1 2 

'1115154' '6115115' '1115153' 

'1115157' '6115117’ '1115156' 

'1115161' '6115122' '1115183' 

'1115244' '6115224' '1115202' 

'6115118' '6115233' '6115114' 

'6115219' '6115234' '6115121' 

'6115227' '6115237' '6115123' 

'6115242' '6115247' 'MO_1013' 

'6115250' 'MO_1020' 'MO_1095' 

'6115251' 'MO_1054' 'MO_1161' 

'MO_1014' ‘MO_1071’ 'MO_1174' 

'MO_1040' 'MO_1084' 'MO_1249' 

'MO_1114' 'MO_1094' 'MO_1262' 

'MO_1128' 'MO_1118' 'SC_9007' 

'MO_1179' 'MO_1124' 'SC_9009’ 

'MO_1184' 'MO_1192' 'SC_9016' 

'MO_1202' 'MO_1215' 'SC_9018' 

'MO_1219' 'MO_1241' 'SC_9028' 

'MO_1221' 'MO_1244' 'SC_9034' 

'MO_1231' 'MO_1277' 'SC_9036' 

'MO_1339' 'MO_1316' 'SC_9037' 

'SC_9008' 'MO_1336' 'SC_9046' 

'SC_9010' 'MO_1337' 'SC_9047' 

'SC_9017' 'SC_9001' 'SC_9054' 

'SC_9022' 'SC_9012' 'SC_9060' 

'SC_9023' 'SC_9019' 'SC_9062' 

'SC_9030' 'SC_9026' 'SC_9063' 

'SC_9038' 'SC_9027' 'SC_9068' 

'SC_9049' 'SC_9031' 'SC_9071' 

'SC_9055' 'SC_9032' 'SC_9072' 

'SC_9057' 'SC_9043' 'SC_9073' 

'SC_9059' 'SC_9048' 'SC_9080' 

'SC_9061' 'SC_9050' 'SC_9097' 

'SC_9072' 'SC_9058' 'TP_2037' 

'SC_9083' 'SC_9081' 'TP_2064' 
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'SC_9086' 'SC_9091'  

'SC_9093' 'TP_2001'  

‘SC_9094’ 'TP_2009'  

'SC_9099' 'TP_2010'  

'TP_2054' 'TP_2020'  

 'TP_2032'  

 'TP_2060'  

 'TP_2061'  
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Appendix C: Clusters when apply K-means on CNA data set with 

PCA dimensional reduction 
 

0 1 2 

'1115154' '6115117’ '1115153' 

'1115157' '6115118' '1115154' 

'1115161' '6115224' '1115156' 

'1115244' '6115233' '1115183' 

'6115121' '6115234' '1115202' 

'6115219' '6115247' '6115114' 

'6115227' '6115251' '6115115' 

'6115250' 'MO_1020' '6115122' 

'MO_1013' 'MO_1040' '6115123' 

'MO_1114' 'MO_1084' '6115237' 

'MO_1179' 'MO_1094' 'MO_1014' 

'MO_1184' 'MO_1118' 'MO_1054' 

'MO_1202' 'MO_1124' 'MO_1071' 

'MO_1219' 'MO_1192' 'MO_1095' 

'MO_1221' 'MO_1215' 'MO_1128' 

'MO_1232' 'MO_1244' 'MO_1161' 

'MO_1249' 'MO_1262' 'MO_1174' 

'MO_1339' 'MO_1277' 'MO_1241' 

'SC_9007' 'MO_1316' 'SC_9008' 

'SC_9010' 'MO_1336' 'SC_9009’ 

'SC_9016' 'MO_1337' 'SC_9018' 

'SC_9017' 'SC_9001' 'SC_9023' 

'SC_9022' 'SC_9012' 'SC_9023' 

'SC_9023' 'SC_9019' 'SC_9026' 

'SC_9034' 'SC_9027' 'SC_9028' 

'SC_9038' 'SC_9031' 'SC_9036' 

'SC_9047' 'SC_9032' 'SC_9037' 

'SC_9055' 'SC_9043' 'SC_9048' 

'SC_9057' 'SC_9046' 'SC_9049' 

'SC_9059' 'SC_9050' 'SC_9061' 

'SC_9060' 'SC_9054' 'SC_9062' 

'SC_9063' 'SC_9058' 'SC_9068' 

'SC_9071' 'SC_9080' 'SC_9083' 

'SC_9072' 'SC_9081' 'SC_9091' 
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'SC_9073' 'SC_9092' 'TP_2009' 

'SC_9086' 'SC_9093' 'TP_2020' 

'SC_9094' 'SC_9097' 'TP_2034' 

'SC_9099' 'TP_2001' 'TP_2060' 

'TP_2054' 'TP_2010'  

'TP_2061' 'TP_2032'  

 'TP_2064'  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

92 
 

CATEGORIZING UNLABELED HIGHDIMENSIONAL GENOMIC DATA 

Appendix D: Silhouette Score for each point 

  
Data point Score 

'MO_1013' 4.38E-03 

'MO_1014'  -4.39E-03 

'MO_1020'  1.86E-02 

'MO_1040'  1.67E-03 

'MO_1054'  3.55E-02 

'MO_1071'  3.83E-02 

'MO_1084' 4.43E-02 

'MO_1094'  6.61E-02 

'MO_1095'  1.88E-02 

'MO_1114'  3.38E-02 

'MO_1118'  2.43E-02 

'MO_1124'  1.32E-02 

'MO_1128'  2.50E-02 

'MO_1161' 2.33E-02 

'MO_1176'  9.45E-03 

'MO_1179'  2.88E-02 

'MO_1184'  3.46E-02 

'MO_1192'  6.46E-02 

'MO_1202'  4.49E-03 

'MO_1215'  3.35E-02 

'MO_1219' 9.01E-02 

'MO_1221'  3.93E-04 

'MO_1232'  4.11E-03 

'MO_1241'  9.49E-03 

'MO_1244'  2.01E-02 

'MO_1249'  8.45E-03 

'MO_1262'  9.33E-03 

'MO_1277' 4.13E-02 

'MO_1316'  7.02E-02 

'MO_1336'  2.08E-02 

'MO_1337'  5.34E-02 

'MO_1339'  4.57E-03 

'1115161'  1.51E-02 

'1115183'  3.13E-02 

'1115202' 3.14E-02 

'1115244'  3.75E-02 

'6115219'  5.30E-04 
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'6115224'  3.09E-02 

'6115227'  4.07E-02 

'6115233'  2.81E-02 

'6115234'  5.20E-03 

'6115237' 8.09E-03 

'6115242'  1.65E-02 

'6115247'  7.03E-03 

'6115250'  2.94E-02 

'6115251'  7.08E-03 

'1115153'  1.23E-02 

'1115154'  -1.43E-03 

'1115156' 1.37E-02 

'1115157'  -4.69E-03 

'6115114'  2.68E-02 

'6115115'  1.39E-02 

'6115117'  2.70E-02 

'6115118'  -5.84E-04 

'6115121'  2.30E-02 

'6115122' 7.52E-03 

'6115123'  1.47E-02 

'SC_9001'  8.89E-02 

'SC_9007'  7.35E-03 

'SC_9008'  3.07E-02 

'SC_9009'  3.51E-02 

'SC_9010'  4.69E-03 

'SC_9012' 3.83E-02 

'SC_9016'  5.80E-03 

'SC_9017'  6.59E-02 

'SC_9018'  8.31E-03 

'SC_9019'  2.79E-02 

'SC_9022'  3.61E-02 

'SC_9023'  1.38E-02 

'SC_9026' 3.47E-02 

'SC_9028'  6.76822255e-02  2 

'SC_9029'  9.93E-03 

'SC_9030'  3.29E-02 

'SC_9031'  4.00E-02 

'SC_9032'  6.27E-03 

'SC_9034'  -6.54E-03 

'SC_9036' 3.97E-02 

'SC_9037'  3.67E-02 
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'SC_9038'  4.20E-02 

'SC_9043'  1.63E-02 

'SC_9046'  1.66E-02 

'SC_9047'  1.10E-02 

'SC_9048'  9.85E-03 

'SC_9049' 2.83E-02 

'SC_9050'  3.99E-02 

'SC_9054'  4.00E-04 

'SC_9055'  1.64E-02 

'SC_9057'  1.17E-02 

'SC_9058'  4.02E-02 

'SC_9059'  4.99E-02 

'SC_9060' 7.69E-04 

'SC_9061'  1.00E-02 

'SC_9062'  2.45E-02 

'SC_9063'  1.52E-03 

'SC_9068'  2.19E-02 

'SC_9071'  1.89E-02 

'SC_9072'  1.94E-03 

'SC_9073' 2.31E-02 

'SC_9080'  7.13E-02 

'SC_9081'  1.52E-02 

'SC_9083'  1.62E-03 

'SC_9086'  6.38E-03 

'SC_9091'  2.59E-02 

'SC_9092'  -4.02E-03 

'SC_9093' 5.43E-05 

'SC_9094'  3.04E-02 

'SC_9097'  -5.93E-03 

'SC_9099'  6.49E-02 

'TP_2001'  4.73E-03 

'TP_2009'  3.29E-02 

'TP_2010'  1.45E-02 

'TP_2020' 2.16E-02 

'TP_2032'  1.80E-02 

'TP_2034'  1.69E-02 

'TP_2054'  2.63E-02 

'TP_2060'  7.41E-02 

'TP_2061'  9.25E-03 

'TP_2064' 2.68E-04 
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Appendix E: Clusters when apply K-means on CNA data set with 

ICA dimensional reduction 

 
0 1 2 

‘6115242’ '6115117’ ‘1115157’ 

'1115161' '6115118' '1115153' 

'1115244' '6115224' '1115154' 

'6115121' '6115233' '1115156' 

'6115219' '6115234' '1115183' 

'6115227' '6115247' '1115202' 

'6115250' '6115251' '6115114' 

'MO_1013' 'MO_1020' '6115115' 

'MO_1114' 'MO_1040' '6115122' 

'MO_1179' 'MO_1084' '6115123' 

'MO_1184' 'MO_1094' '6115237' 

'MO_1202' 'MO_1118' 'MO_1014' 

'MO_1219' 'MO_1124' 'MO_1054' 

'MO_1232' 'MO_1192' 'MO_1071' 

'MO_1249' 'MO_1215' 'MO_1095' 

'MO_1339' 'MO_1244' 'MO_1128' 

'SC_9007' 'MO_1262' 'MO_1161' 

'SC_9010' 'MO_1277' 'MO_1174' 

'SC_9016' 'MO_1316' 'MO_1221' 

'SC_9017' 'MO_1336' 'MO_1241' 

'SC_9022' 'MO_1337' 'SC_9008' 

'SC_9023' 'SC_9001' 'SC_9009’ 

'SC_9034' 'SC_9012' 'SC_9018' 

'SC_9038' 'SC_9019' 'SC_9026' 

'SC_9047' 'SC_9029' 'SC_9028' 

'SC_9055' 'SC_9031' 'SC_9030' 

'SC_9057' 'SC_9032' 'SC_9036' 

'SC_9059' 'SC_9043' 'SC_9037' 

'SC_9060' 'SC_9046' 'SC_9048' 

'SC_9063' 'SC_9050' 'SC_9049' 

'SC_9071' 'SC_9054' 'SC_9061' 

'SC_9072' 'SC_9058' 'SC_9062' 

'SC_9073' 'SC_9080' 'SC_9068' 

'SC_9086' 'SC_9081' 'SC_9083' 
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'SC_9094' 'SC_9092' 'SC_9091' 

'SC_9099' 'SC_9093' 'SC_9097' 

'TP_2054' 'TP_2001' 'TP_2009' 

'TP_2061' 'TP_2010' 'TP_2020' 

 'TP_2032' 'TP_2034' 

 'TP_2064' 'TP_2060' 
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Appendix F: Clusters performed by approach three 
 

0 1 2 

1115153 1115154 6115117 

1115156 1115157 6115123 

1115161 1115183 6115224 

1115244 1115202 6115233 

6115114 6115115 6115234 

6115227 6115118 MO_1020 

6115247 6115121 MO_1084 

6115250 6115122 MO_1094 

6115251 6115219 MO_1124 

MO_1040 6115237 MO_1176 

MO_1054 6115242 MO_1192 

MO_1071 MO_1013 MO_1215 

MO_1095 MO_1014 MO_1244 

MO_1118 MO_1114 MO_1277 

MO_1128 MO_1161 MO_1316 

MO_1179 MO_1202 MO_1336 

MO_1184 MO_1221 MO_1337 

MO_1219 MO_1232 SC_9001 

MO_1262 MO_1241 SC_9022 

SC_9007 MO_1249 SC_9029 

SC_9008 MO_1339 SC_9031 

SC_9012 SC_9009 SC_9032 

SC_9018 SC_9010 SC_9036 

SC_9019 SC_9016 SC_9043 

SC_9028 SC_9017 SC_9050 

SC_9034 SC_9023 SC_9060 

SC_9037 SC_9026 SC_9061 

SC_9046 SC_9030 SC_9080 

SC_9047 SC_9038 SC_9086 

SC_9048 SC_9054 SC_9092 

SC_9049 SC_9055 TP_2001 

SC_9057 SC_9058 TP_2009 

SC_9063 SC_9059 TP_2010 

SC_9071 SC_9062 TP_2034 

SC_9073 SC_9068 
 

SC_9081 SC_9072 
 

SC_9091 SC_9083 
 

TP_2020 SC_9093 
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TP_2032 SC_9094 
 

TP_2054 SC_9097 
 

TP_2060 SC_9099 
 

 
TP_2061 

 

 
TP_2064 
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Appendix G: Clusters performed by approach four 
 

0 1 2 

1115153 1115156 1115161 

1115154 6115115 1115202 

1115157 6115121 1115244 

1115183 6115123 6115117 

6115114 6115224 6115118 

6115122 6115250 6115227 

6115219 MO_1071 6115233 

MO_1013 MO_1084 6115234 

MO_1014 MO_1094 6115237 

MO_1020 MO_1179 6115242 

MO_1054 MO_1184 6115247 

MO_1095 MO_1219 6115251 

MO_1114 MO_1336 MO_1040 

MO_1124 SC_9001 MO_1118 

MO_1128 SC_9016 MO_1176 

MO_1161 SC_9017 MO_1232 

MO_1192 SC_9018 MO_1244 

MO_1202 SC_9023 MO_1262 

MO_1215 SC_9026 MO_1316 

MO_1221 SC_9029 SC_9007 

MO_1241 SC_9031 SC_9036 

MO_1249 SC_9034 SC_9038 

MO_1277 SC_9037 SC_9058 

MO_1337 SC_9046 SC_9081 

MO_1339 SC_9048 SC_9092 

SC_9008 SC_9071 SC_9097 

SC_9009 SC_9072 
 

SC_9010 SC_9091 
 

SC_9012 SC_9094 
 

SC_9019 TP_2009 
 

SC_9022 TP_2020 
 

SC_9028 TP_2054 
 

SC_9030 
  

SC_9032 
  

SC_9043 
  

SC_9047 
  

SC_9049 
  

SC_9050 
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SC_9054 
  

SC_9055 
  

SC_9057 
  

SC_9059 
  

SC_9060 
  

SC_9061 
  

SC_9062 
  

SC_9063 
  

SC_9068 
  

SC_9073 
  

SC_9080 
  

SC_9083 
  

SC_9086 
  

SC_9093 
  

SC_9099 
  

TP_2001 
  

TP_2010 
  

TP_2032 
  

TP_2034 
  

TP_2060 
  

TP_2061 
  

TP_2064 
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Appendix H: Clusters performed by approach five 
 

0 1 2 

'SC_9091'  'TP_2061'  'MO_1176'  

'MO_1336'  'SC_9086'  'SC_9097'  

'SC_9031' 'MO_1339'  '6115237' 

'SC_9081'  'MO_1337'  
 

'SC_9080'  'SC_9068'  
 

'MO_1316'  'SC_9062'  
 

'TP_2054'  'SC_9061'  
 

'SC_9073'  'SC_9060'  
 

'SC_9072'  'SC_9057' 
 

'SC_9071' 'MO_1221'  
 

'MO_1277'  'SC_9055'  
 

'MO_1202'  'SC_9038'  
 

'SC_9063'  'SC_9050' 
 

'MO_1262' 'MO_1192'  
 

'MO_1249'  'SC_9049'  
 

'MO_1244'  'SC_9047'  
 

'MO_1241'  'SC_9043'  
 

'SC_9059'  'SC_9030'  
 

'SC_9058'  'TP_2032'  
 

'MO_1232'  'SC_9028' 
 

'MO_1219'  'SC_9022'  
 

'MO_1215'  'SC_9019'  
 

'SC_9054'  'MO_1128'  
 

'SC_9048'  'MO_1114'  
 

'SC_9046' 'SC_9010'  
 

'MO_1184'  'SC_9009'  
 

'MO_1179'  'SC_9008'  
 

'SC_9018'  'TP_2001'  
 

'SC_9037'  'MO_1054'  
 

'SC_9036'  'MO_1014' 
 

'SC_9034' 'MO_1013'  
 

'SC_9032'  'TP_2064'  
 

'TP_2034'  'SC_9093'  
 

'MO_1161'  'SC_9099'  
 

'SC_9029'  '6115219'  
 

'SC_9026'  '6115114'  
 

'TP_2020'  '1115183'  
 

'SC_9023'  '6115118'  
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'SC_9017'  
  

'SC_9016' 
  

'MO_1124'  
  

'MO_1118'  
  

'SC_9012'  
  

'SC_9007'  
  

'TP_2009' 
  

'TP_2010'  
  

'MO_1095'  
  

'SC_9001' 
  

'MO_1094'  
  

'MO_1084'  
  

'MO_1071'  
  

'MO_1040'  
  

'MO_1020'  
  

'TP_2060'  
  

'SC_9083'  
  

'SC_9092' 
  

'SC_9094'  
  

'6115251'  
  

'6115247'  
  

'6115242'  
  

'6115122' 
  

'1115202'  
  

'6115117'  
  

'6115115'  
  

'1115161'  
  

'6115233'  
  

'6115123'  
  

'1115153'  
  

'6115121'  
  

'1115156'  
  

'1115154' 
  

'6115227'  
  

'6115234'  
  

'6115224'  
  

'1115244'  
  

'1115157'  
  

'6115250' 
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Appendix I: Clusters performed by approach six 
 

0 1 2 

1115154 1115161 MO_1176  

1115156 6115117 SC_9097  

1115157 6115234 SC_9031 

1115183 6115251 
 

1115202 MO_1040 
 

1115244 MO_1316 
 

6115114 SC_9036 
 

6115115 SC_9080 
 

6115118 SC_9091 
 

6115121 
  

6115122 
  

6115123 
  

6115219 
  

6115224 
  

6115227 
  

6115233 
  

6115237 
  

6115242 
  

6115247 
  

6115250 
  

MO_1013 
  

MO_1014 
  

MO_1020 
  

MO_1054 
  

MO_1071 
  

MO_1084 
  

MO_1094 
  

MO_1095 
  

MO_1114 
  

MO_1118 
  

MO_1124 
  

MO_1128 
  

MO_1161 
  

1115153 
  

MO_1179 
  

MO_1184 
  

MO_1192 
  

MO_1202 
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MO_1215 
  

MO_1219 
  

MO_1221 
  

MO_1232 
  

MO_1241 
  

MO_1244 
  

MO_1249 
  

MO_1262 
  

MO_1277 
  

MO_1336 
  

MO_1337 
  

MO_1339 
  

SC_9001 
  

SC_9007 
  

SC_9008 
  

SC_9009 
  

SC_9010 
  

SC_9016 
  

SC_9017 
  

SC_9018 
  

SC_9019 
  

SC_9022 
  

SC_9023 
  

SC_9026 
  

SC_9028 
  

SC_9029 
  

SC_9030 
  

SC_9032 
  

SC_9034 
  

SC_9037 
  

SC_9038 
  

SC_9043 
  

SC_9046 
  

SC_9047 
  

SC_9048 
  

SC_9049 
  

SC_9050 
  

SC_9054 
  

SC_9055 
  

SC_9057 
  

SC_9058 
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SC_9059 
  

SC_9060 
  

SC_9061 
  

SC_9062 
  

SC_9063 
  

SC_9068 
  

SC_9071 
  

SC_9072 
  

SC_9073 
  

SC_9081 
  

SC_9083 
  

SC_9086 
  

SC_9092 
  

SC_9093 
  

SC_9094 
  

SC_9012 
  

SC_9099 
  

TP_2001 
  

TP_2009 
  

TP_2010 
  

TP_2020 
  

TP_2032 
  

TP_2034 
  

TP_2054 
  

TP_2060 
  

TP_2061 
  

TP_2064 
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Appendix J: Clusters performed by approach seven 
 

0 1 2 

SC_9007 MO_1202 1115153 

SC_9018 MO_1176  1115154 

SC_9034 SC_9097  1115156 

SC_9047 SC_9062 1115157 

SC_9091 6115237 1115161 

TP_2060 
 

1115183 
  

1115202 
  

1115244 
  

6115114 
  

6115115 
  

6115117 
  

6115118 
  

6115121 
  

6115122 
  

6115123 
  

6115224 
  

6115227 
  

6115233 
  

6115234 
  

6115237 
  

6115242 
  

6115247 
  

6115250 
  

6115251 
  

MO_1013 
  

MO_1014 
  

MO_1020 
  

MO_1040 
  

MO_1054 
  

MO_1071 
  

MO_1084 
  

MO_1094 
  

MO_1095 
  

MO_1114 
  

MO_1118 
  

MO_1124 
  

MO_1128 
  

MO_1161 
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MO_1176 

  
MO_1179 

  
MO_1184 

  
MO_1192 

  
MO_1215 

  
MO_1219 

  
MO_1221 

  
MO_1232 

  
MO_1244 

  
MO_1249 

  
MO_1262 

  
MO_1277 

  
MO_1316 

  
MO_1336 

  
MO_1337 

  
MO_1339 

  
SC_9001 

  
SC_9008 

  
SC_9009 

  
SC_9010 

  
SC_9012 

  
SC_9016 

  
SC_9017 

  
SC_9019 

  
SC_9022 

  
SC_9023 

  
SC_9028 

  
SC_9029 

  
SC_9030 

  
SC_9031 

  
SC_9032 

  
SC_9036 

  
SC_9037 

  
SC_9038 

  
SC_9043 

  
SC_9046 

  
SC_9048 

  
SC_9049 

  
SC_9050 

  
SC_9054 

  
SC_9055 
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SC_9057 

  
SC_9058 

  
SC_9059 

  
SC_9060 

  
SC_9061 

  
SC_9063 

  
SC_9068 

  
SC_9071 

  
SC_9072 

  
SC_9073 

  
SC_9080 

  
SC_9081 

  
SC_9083 

  
SC_9086 

  
SC_9092 

  
SC_9093 

  
SC_9094 

  
SC_9097 

  
SC_9099 

  
TP_2001 

  
TP_2009 

  
TP_2010 

  
TP_2020 

  
TP_2032 

  
TP_2034 

  
TP_2054 

  
TP_2061 

  
TP_2064 
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Appendix K: Clusters performed by approach eight 
 

0 1 2 

1115154 6115227 1115153 

1115156 6115237 SC_9012 

1115157 6115242 
 

1115161 MO_1118 
 

1115183 MO_1176 
 

1115202 MO_1232 
 

1115244 MO_1244 
 

6115114 MO_1262 
 

6115115 SC_9007 
 

6115117 SC_9097 
 

6115118 
  

6115121 
  

6115122 
  

6115123 
  

6115219 
  

6115224 
  

6115233 
  

6115234 
  

6115247 
  

6115250 
  

6115251 
  

MO_1013 
  

MO_1014 
  

MO_1020 
  

MO_1040 
  

MO_1054 
  

MO_1071 
  

MO_1084 
  

MO_1094 
  

MO_1095 
  

MO_1114 
  

MO_1124 
  

MO_1128 
  

MO_1161 
  

MO_1179 
  

MO_1184 
  

MO_1192 
  

MO_1202 
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MO_1215 
  

MO_1219 
  

MO_1221 
  

MO_1241 
  

MO_1249 
  

MO_1277 
  

MO_1316 
  

MO_1336 
  

MO_1337 
  

MO_1339 
  

SC_9001 
  

SC_9008 
  

SC_9009 
  

SC_9010 
  

SC_9016 
  

SC_9017 
  

SC_9018 
  

SC_9019 
  

SC_9022 
  

SC_9023 
  

SC_9026 
  

SC_9028 
  

SC_9029 
  

SC_9030 
  

SC_9031 
  

SC_9032 
  

SC_9034 
  

SC_9036 
  

SC_9037 
  

SC_9038 
  

SC_9043 
  

SC_9046 
  

SC_9047 
  

SC_9048 
  

SC_9049 
  

SC_9050 
  

SC_9054 
  

SC_9055 
  

SC_9057 
  

SC_9058 
  

SC_9059 
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SC_9060 
  

SC_9061 
  

SC_9062 
  

SC_9063 
  

SC_9068 
  

SC_9071 
  

SC_9072 
  

SC_9073 
  

SC_9080 
  

SC_9081 
  

SC_9083 
  

SC_9086 
  

SC_9091 
  

SC_9092 
  

SC_9093 
  

SC_9094 
  

SC_9099 
  

TP_2001 
  

TP_2009 
  

TP_2010 
  

TP_2020 
  

TP_2032 
  

TP_2034 
  

TP_2054 
  

TP_2060 
  

TP_2061 
  

TP_2064 
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Appendix L: Clusters performed by approach nine 
 

0 1 2 

'TP_2061'  'SC_9091'  'MO_1244'  

'SC_9086'  'MO_1336'  'MO_1176'  

'MO_1339'  'SC_9031' 'SC_9097'  

'MO_1337'   'SC_9081'  '6115237' 

SC_9068'  'SC_9080'  
 

'SC_9062'  'MO_1316'  
 

'SC_9061'  'TP_2054'  
 

'SC_9060'  'SC_9073'  
 

'SC_9057' 'SC_9072'  
 

'MO_1221'  'SC_9071' 
 

'SC_9055'  'MO_1277'  
 

'SC_9038'  'MO_1202'  
 

'SC_9050' 'SC_9063'  
 

 'MO_1192'  'MO_1262' 
 

'SC_9049'  MO_1249'  
 

'SC_9047'  'MO_1241'  
 

'SC_9043'  'SC_9059'  
 

'SC_9030'  'SC_9058'  
 

'TP_2032'  MO_1232'  
 

'SC_9028' 'MO_1219'  
 

'SC_9022'  'MO_1215'  
 

'SC_9019'  'SC_9054'  
 

'MO_1128'  'SC_9048'  
 

'MO_1114'  'SC_9046' 
 

'SC_9010'  MO_1184'  
 

'SC_9009'  'MO_1179'  
 

'SC_9008'  'SC_9018'  
 

'TP_2001'  'SC_9037'  
 

'MO_1054'  'SC_9036'  
 

'MO_1014' 'SC_9034' 
 

MO_1013'  SC_9032'  
 

'TP_2064'  'TP_2034'  
 

'SC_9093'  'MO_1161'  
 

SC_9099'  'SC_9029'  
 

'6115219'   'SC_9026'  
 

6115114'  'TP_2020'  
 

'1115183'  'SC_9023'  
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'6115118'  'SC_9017'  
 

  'SC_9016' 
 

  MO_1124'  
 

  'MO_1118'  
 

  'SC_9012'  
 

  'SC_9007'  
 

  'TP_2009' 
 

  TP_2010'  
 

  'MO_1095'  
 

  'SC_9001' 
 

  MO_1094'  
 

  'MO_1084'  
 

  'MO_1071'  
 

  'MO_1040'  
 

  'MO_1020'  
 

  'TP_2060'  
 

  'SC_9083'  
 

  'SC_9092' 
 

  'SC_9094'  
 

  '6115251'  
 

  '6115247'  
 

  '6115242'  
 

  '6115122' 
 

  '1115202'  
 

  '6115117'  
 

  '6115115'  
 

  '1115161'  
 

  6115233'  
 

  '6115123'  
 

  '1115153'  
 

  '6115121'  
 

  '1115156'  
 

  '1115154' 
 

  6115227'  
 

  '6115234'  
 

  '6115224'  
 

  '1115244'  
 

  '1115157'  
 

  '6115250' 
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Appendix M: Clusters performed by approach eleven 
 

0 
1 2 

'1115153'  '1115183'  'MO_1176'  

'1115154'  '6115114'  'SC_9097'  

'1115156'  6115219'  '6115237' 

'1115157'  'MO_1244'   

'1115161'  'MO_1013'  
 

'1115202' 'MO_1014'  
 

1115244'  'MO_1114'  
 

'6115115'  'MO_1128' 
 

'6115117'  MO_1161'  
 

'6115121'  'MO_1192'  
 

'6115122'  MO_1221'  
 

'6115123' 'MO_1337'  
 

'6115224'  'MO_1339'  
 

'6115227'  'SC_9008' 
 

'6115233'  SC_9009'  
 

'6115234'  'SC_9010'  
 

'6115247' 'SC_9019' 
 

 '6115250'  SC_9022'  
 

'6115251'  'SC_9028'  
 

'MO_1020'  'SC_9030'  
 

'MO_1040'  'SC_9038'  
 

'MO_1071' 'SC_9043'  
 

MO_1084'  'SC_9047'  
 

'MO_1094'  SC_9049'  
 

'MO_1095'  'SC_9050'  
 

'MO_1124'  'SC_9055'  
 

'MO_1179'  'SC_9057'  
 

'MO_1184'  SC_9060'  
 

'MO_1202'  'SC_9061'  
 

'MO_1215'  'SC_9062'  
 

'MO_1219' 'SC_9063'  
 

'MO_1232'  'SC_9068'  
 

'MO_1241'  'SC_9086'  
 

'MO_1249'  'SC_9093' 
 

'MO_1262'  'MO_1118'  
 

'MO_1277' 'SC_9099'  
 

MO_1316'  'TP_2001'  
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'MO_1336'  'TP_2010'  
 

'SC_9001'  TP_2032'  
 

'SC_9012'  'TP_2061'  
 

'SC_9016'  'TP_2064' 
 

'SC_9017'   
 

'SC_9018'   
 

'SC_9023'   
 

'SC_9026'   
 

'SC_9029'   
 

'SC_9031'  
 

SC_9032'   
 

'SC_9036'   
 

'SC_9037'   
 

'SC_9048'  
 

'SC_9054'   
 

'SC_9058'   
 

'SC_9059'  
 

'SC_9071'   
 

'SC_9072'  
 

SC_9073'   
 

'SC_9080'   
 

'SC_9081'   
 

'SC_9083'   
 

'SC_9091'   
 

SC_9094'   
 

'TP_2009'   
 

'TP_2020'  
 

'TP_2034'   
 

'TP_2054'   
 

'TP_2060'   
 

 

 

 


