

A Web Based System to Manage

Software Quality Assurance Process

A dissertation submitted for the Degree of Master of

Information Technology

R M L S Rathnayake

University of Colombo School of Computing

2019

i

ABSTRACT

Software quality assurance verifies the activities of the software development life cycle and the

goal is to ensure that the development and maintenance processes are continuously improved

to produce products that meet specifications. The quality assurance of software plays a vital

role in the field of software engineering, compared to many other fields such as electronic

engineering, transportation etc. The QA in the software field is very much more complex due

to the intangibility of the product, invisibility of the product and the opportunity to detect

defects are minimum.

The problem identified is that in order to ensure the quality of software there should be proper

management systems that is used for the entire development cycle of the software in order to

plan, track and manage the software development projects. Most companies developing

software is recording the tasks related to SQA manually this causes data duplication, data

dependence and incompatibility of files. In this project an attempt is made to develop a Software

Quality Assurance web application.

The implemented web-based portal can be used to create and store all the test artifacts such as

test cases, test execution results, defect tracking, result comparison and day to days tasks of

SQA engineers (sprint board) in the software industry. Primary users of this web application

will be software quality assurance engineers who will be designing test cases, executing the

designed test cases, maintaining results of the executed test cases, reporting defects, verifying

defects. The secondary users of this application will be project managers, software engineers,

business analysts and the top management of software companies.

This system can enable organizations worldwide to test high-quality software which meets the

stringent demands of various industries and meet high customer expectations. It encompasses

the software industry experts to maintain the highest level of business integrity and service.

The high-level architecture of the developed web application is the client end will consist of an

angular 5 project that interacts with the user and makes API calls. The server end consists of a

spring boot +JPA (Hibernate) app MySQL DB as database. The web application developed has

been successfully implemented on site. Since the system was designed to be portable, it can be

easily implemented on any organization.

ii

DECLARATION

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: R. M. L. S. Rathnayake

Registration Number: 2016/MIT/061

Index Number: 16550612

Signature: Date:

This is to certify that this thesis is based on the work of

Mr./Ms.

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name:

Signature: Date:

iii

ACKNOWLEDGEMENT

This dissertation arose as an effort of number of people whose contribution in assorted ways in

the realization of this project deserves special mention. It is a pleasure to convey my gratitude

to them all through this humble acknowledgment.

I gratefully acknowledge Mr. K. P. M. K. Silva, supervisor of the project, for his supervision,

advice, and guidance from the very early stage of this project. He provided me with unflinching

encouragement and support in various ways. He was a constant oasis of ideas and passionate in

teaching, which exceptionally inspire and enrich our growth as students, and professionals. I

am indebted to him more than he knows.

I would also acknowledge my parents and all the friends who provided their support in making

this project a success.

Finally, a big thank to each person for the support and the assistance given to make this a

success.

iv

TABLE OF CONTENTS
ABSTRACT .. i

DECLARATION ... ii

ACKNOWLEDGEMENT .. iii

TABLE OF CONTENTS.. iv

Chapter 1 ..1

INTRODUCTION ..1

1.1 Introduction.. 1

1.2 Problem Identified .. 3

1.3 Aims and objectives ... 5

1.4 Scope ... 6

1.5 Structure of the dissertation .. 7

Chapter 2 ..8

BACKGROUND ...8

2.1 Introduction.. 8

2.2 Analysis of existing systems ... 10

2.3 Review of existing systems .. 11

2.4 Existing Web Based Test Management Tools ... 17

Chapter 3 .. 19

METHODOLOGY ... 19

3.1 Introduction.. 19

3.2 System Analysis ... 19

3.2.1 Requirement Analysis .. 19

3.2.2 Functional Requirements .. 20

3.2.3 Use case diagrams for developed system .. 21

3.2.4 Use cases.. 22

3.3 Non - Functional Requirements .. 23

3.4 High-level architecture ... 24

3.5 Database design ... 25

3.6 UI Design ... 26

3.6.1 Login screen of the SQA web application ... 27

3.6.2 Home page of the SQA web application ... 27

3.6.3 Dashboard page of the SQA web application .. 28

3.6.4 User story creation page of the SQA web application ... 29

v

3.6.5 Test case view page of the SQA web application .. 29

3.6.6 Bug creation and managing page of the SQA web application 30

3.7 Technology .. 30

3.8 Summary .. 31

Chapter 4 .. 32

EVALUATION ... 32

4.1 Introduction.. 32

4.2 Evaluation at Different Levels .. 32

4.3 User Acceptance Testing .. 34

4.4 Test Scope.. 35

4.4.1 Risk mitigation checklist .. 39

4.5 Types of Evaluation ... 40

4.5.1 Tested Devices ... 41

4.6 Summary .. 42

Chapter 5 .. 43

CONCLUSION ... 43

5.1 Introduction.. 43

5.2 Achieving the Objectives of the Project .. 43

5.3 Problems Encountered in the Project .. 44

5.4 Limitations of the Currently Developed Solution .. 45

5.5 Further extendibility of the system ... 46

References ... 47

Glossary .. 49

Appendix ... 51

vi

List of Figure

Figure 1.1 Maintenance of test cases in the software QA web application 6

Figure 2.1 Phases of Software Testing Lifecycle .. 8

Figure 2.2 Creating releases the first step in ALM .. 12

Figure 2.3 Tracking Requirements ... 12

Figure 2.4 Creating Test Plans on ALM ... 13

Figure 2.5 Test execution on ALM... 13

Figure 2.6 Defect tracking on ALM ... 14

Figure 2.7 Types of work items on a sprint .. 15

Figure 2.8 Sprint burndown chart ... 15

Figure 2.9 Capacity planning ... 16

Figure 2.10 Test Suite Management ... 16

Figure 2.11 Bug Tracking Feature. ... 17

Figure 3.1 Agile Process of Testing ... 20

Figure 3.2 Use case diagram for the intended system ... 21

Figure 3.3 High level architecture .. 24

Figure 3.4 Database design .. 25

Figure 3.5 Log in screen .. 27

Figure 3.6 Home page of the SQA web application .. 27

Figure 3.7 Dashboard page of the SQA web application ... 28

Figure 3.8 Sprint board of the SQA web application .. 28

Figure 3.9 User story creation page .. 29

Figure 3.10 Test case view page ... 29

Figure 3.11 Bug creation and managing page. .. 30

vii

 List of Tables

Table 2.1 Comparison of proposed system with prevailing system 18

Table 4.1 Risk mitigation checklist .. 39

Table 4.2 Tested devices .. 41

viii

List of Acronyms

UCSC - University of Colombo School of Computing

MIT - Masters in Information Technology

UML - Unified Modeling Language

SDLC - Software Development Life Cycle

UI - User Interfaces

SQA – Software Quality Assurance

HP ALM – Hewlett-Packard -Application Life Cycle Management

EER – Enhanced Entity Relationship

SQL – Structured Query Language

UFT – Unified Functional Testing

CLI – Command Line Interface

IT – Information Technology

API – Application Programming Interface

JPA – Java Persistence API

1

Chapter 01

INTRODUCTION

1.1 Introduction

Software quality assurance (SQA) is a process that ensures that the developed software meets

and complies with defined or standardized quality specifications. SQA is an ongoing process

within the software development life cycle (SDLC) that routinely checks the developed

software to ensure it meets desired quality measures. SQA helps ensure the development of

high-quality software. SQA practices are implemented in most types of software development,

regardless of the underlying software development model being used. In a broader sense, SQA

incorporates and implements software testing methodologies to test software. Rather than

checking for quality after completion, SQA processes test for quality in each phase of

development until the software is complete. With SQA, the software development process

moves into the next phase only once the current/previous phase complies with the required

quality standards [1].

A QA web application helps development teams ensure software quality. It helps managing

software test cases, delegating test executions to testers, tracking test metrics and test data and

much more. The workflow is flexible so the teams can determine themselves how and when

testing would take place in the application development lifecycle.

In some instances, a manual process is used for SQA practices. Spreadsheets are what most

companies use as a duct-tape solution to a big problem. It might work for small projects or

products, but as many projects grow software field specialists and management need to look for

more sophisticated and productive solutions that will ensure a more systematic process.

To put this in perspective, if an application handles a simple micro service that only handles a

very few functionalities, you might be able to get away with using spreadsheets, as simple

functions translates to very limited amount of test cases.

2

Also, the development team might be a single person or few developers for such a project.

However, trouble occurs when new functions are added and the applications grow both logically

and in design, and how internal modules interact with each other. Therefore, it will be required

to document expected behavior for end points in all configurations/given parameters.

Implementing a quality management system is similar to an art as it is to a science. It is an art

to manage people and a science to have a systematic process approach to quality and

verification.

Software quality assurance is a planned effort to ensure that a software product fulfills these

criteria and has additional attributes specific to the project, e.g., portability, efficiency,

reusability, and flexibility. It is the collection of activities and functions used to monitor and

control a software project so that specific objectives are achieved with the desired level of

confidence. It is not the sole responsibility of the software quality assurance group but is

determined by the consensus of the project manager, project leader, project personnel, and

users. A formal definition of software quality assurance is that is ‘the systematic activities

providing evidence of the fitness for use of the total software product.”

Software quality assurance is achieved through the use of established guidelines for quality

control to ensure the Integrity and prolonged life of software. The relationships between quality

assurance, quality control, the auditing function, and software testing are often confused.

Web based software quality assurance systems are designed to manage and store project QA

information used as web-based applications. Different groups of people such as, Software SQA

engineers, business analysts, programmers or project managers will be let by project

applications a controlled access to information and automated distribution of information. The

objective for collaboration has been getting things done faster, cheaper and better by applying

common knowledge by bringing together a selection of resources and attainments in a project.

Valid collaboration with teams improves productivity, speeds up result-making and optimizes

making of right decisions, it also helps to intercept precious intellectual fortune and time. To

prove such kind of improvement to productivity and to make easier our everyday working life,

it was needed to make an inside system for QA management. Namely, having troubles of

finding right Defect Reports and wasting useful time for sending and searching documents,

3

describing and instructing new employers of the whole QA Process and steps that needs to be

done before beginning to make changes in projects or code in the next cycles has to be solved.

1.2 Problem Identified

In today’s software industry, quality assurance of software plays a vital role. Due to this factor

it is very important that SQA records are properly maintained and recorded with backup for

future use or for a risk mitigation. The results of the tested software are mainly maintained as

test case results in today’s SQA industry.

The problem is that there should be one system to cater to the entire software quality

engineering process, which includes both defect and test case management, and the project

management process.

The existing systems now cater to one of these therefore if there is a system that includes

multiple tasks such as defect and test case management and the project management process it

will simplify day to day activities of QA engineers and other stakeholder employees such as

Project Managers, Developers and Business Analysts.

Following main services should be taken into our consideration when selecting a test

management tool.

 Project management –Create and manage project planning activities, draft sprint plan,

create backlogs against the features and requirements, members.

 Test management and plan – Creating test plans, test suits, test cases, test scenarios or

user stories and activating them as per required duration.

 Test run – Creating test runs, execute test cases, managing members of the testing

process.

 Making test reports - On selected project or against the test plan etc.

 Task management – Create features, manage user stories, Agile sprint task board, burn

down charts etc.

 Capacity planning - Estimate both the amount of work and types of work required to

complete in sprint plan.

4

 Additional features – import/export test cases, integration with other systems,

Dashboards etc.

The proposed solution is to implement a web-based portal that can be used to create and store

all the test artifacts such as test cases, execution results. Furthermore, SSQA engineers can

report defects, change the status of the defects and also compare test results. The application

will enable end users to plan agile related tasks and support an organization using an Agile

Software Development Cycle.

1.3 Aims and objectives

The main objective is to build a web-based system to manage software test management

activities which includes writing manual test cases, executing manual test cases with results,

creating test plans, creating relevant test suites.

A separate feature is developed for defect management the purpose of defect management is to

provide information to improve the development process. This way of defect management is

important in the continuous monitoring of product quality throughout the whole lifecycle of the

product. This feature assists development team and management to know when operational is

support needed for solving and retesting defects. Then the team can identify and analyses the

causes of defect and classify them.

The users that intended to use this software are SSQA engineers, developers, management and

business analysts. This is aimed at simplifying many days-to-day’s activities of SSQA

engineers of a software c company. Customizable, highly configurable dashboards provide

to the management and teams with the flexibility to share information, monitor progress and

trends, and improve the workflow processes.

This application is not restricted to use for a single project and can be used across multiple

projects.

Task Board provides a visualization of flow and status of each sprint task. With it, team can

focus on the status of backlog items as well as work assigned to each team member. Apart from

these, using the capacity-planning tool, team can estimate both the amount of work and types

of work required to complete its sprint plan.

6

1.4 Scope

This project is aimed at implementing a web-based system, which will give complete

traceability for the test management process.

 The developed system facilitate management of testing activities of the software

development projects and collaborate on projects all in one place. It includes create tasks,

user stories and backlogs and features against the epics.

 Create test plans, create manual test cases to check that each of the deliverables meet the

requirements. Organize test cases by adding test cases to test suites, test scenarios based

on a feature and separate them accordingly with sprints and iterations.

A feature is developed to run manual test cases and record the test results for each test step by

denoting their results (Pass / Fail / Block / On hold). Since this is aimed at a software company

that uses the agile software development methodology, it includes test case execution results

as per Sprints and Iterations. Test case maintenance view of the software QA web application

is shown in figure 1.1.

Figure 1.1 Maintenance of test cases in the software QA web application

7

 If users find an issue when testing, users can create bugs with test steps, screenshots, and

comments. Users can also maintain the entire life cycle of bugs and link them with test

cases and backlogs.

 The user can build up different types of test suits Ex: requirement-based test suites,

regression suite, smoke suite, query-based test suites.

 A dashboard is to be developed to propagate test results for the Higher Management and

monitor the ongoing process of the testing activities.

1.5 Structure of the dissertation

Introduction of the project "A Web Based System to Manage Software Quality Assurance

Process" was described in this chapter. In chapter 02, the background information of the project

and information about similar approaches is described. Chapter 03 describes the designing

phase of the project with the methodologies used. And it provides a detailed explanation about

the proposed solution details and the implementation of the project. Project evaluation criteria

and the findings are described in the 04th Chapter. In chapter 05 further works is described

along with the conclusion of the project. References are stated at the end of the dissertation,

which is followed by the appendix.

8

Chapter 2

BACKGROUND

2.1 Introduction

Everyday life has become dependent on software and software-based systems. This strong

dependency on software requires higher investments in quality assurance activities to enable

IT systems to perform reliably. Hence, immense attention should be exercised while

developing a test management tool.

Test management is the process of organizing & controlling test processes, test assets and

artifacts for manual or automated testing projects. The goal of quality assurance process is to

improve test success and thereby increase the software quality. Due to this factor it is very

important that Quality Assurance records are properly maintained and recorded with backup

for future use.

A comprehensive test management tool should be able to track how testing is planned, report

the status of QA activities, and organize test artifacts in a systematic manner through entire

software testing life cycle. The phases of software testing life cycle is shown in figure 2.1.

 Figure 2.1 Phases of Software Testing Lifecycle [2]

9

Below are some tasks and activities that are involved in quality assurance process:

Analysis

 Requirement analysis

 Creating documentation related to testing activities

 Identifying the scope of improvement in Application testing

Planning

 Test plan development

 Test execution planning

 Test scheduling

 Test efforts estimation

 Measuring & tracking test cycles

 Test case Development

 Test case preparation

 Organizing test cases

Execution

 Test execution monitoring

 Defect tracking

 Test result reporting

Test cycle closure

 Test result analysis

 Managing test assets and artifacts

 Checking the testing tasks and test result completeness

There should be one system to cater to the entire software quality engineering process which

includes both defect and test case management and also the project management process.

The problem is existing systems now cater to one of these. Therefore, if there is a system that

includes both defect and test case management and also the project management process it will

simplify the day to day activities of SQA engineers and also other stakeholder employees such

as project managers, developers etc.

10

2.2 Analysis of existing systems

General requirements of the system are listed below:

 Project management

In the recent past most software projects are adopting the agile methodology, so the

proposed project management tool should also be able to support agile. It includes

support for features like Project creation and different types of work items such as User

story creation, Sprints, Capabilities, Epics, Features, Tasks and create Backlogs against

the features.

 Capacity planning and time tracking

Estimate both the amount of work and types of work required to complete in sprint

plan. Easily track how much work the team has completed and has left to do in a sprint

by adding the sprint capacity charts to dashboard.

Estimates and time tracking: Track estimated, completed, and remaining work for tasks

and other work items.

 Test management and plan

The system should allow user to create manual test cases, test scenarios to check that

each of the deliverables meet users' needs and organize test cases by adding test cases

to test suites. Test suites provides a way to group test cases for separate testing

scenarios within a single test plan.

Test plans are used to group together test suites and individual test cases. This includes

regression test suites, smoke test suites, and functional test suites. User can add

individual test cases to a test suite and then link it to the test plan.

 Test run

A feature developed that was to execute Manual Test Cases and record the test results

for each test step by denoting their results (Pass / Fail / Block / On Hold etc.). Summary

of the test results, including pass/fail percentages grouped or filtered against selected

criteria E.g. Test plan or Test suite.

11

 Making test reports on selected project or against the test plan etc. Track the status of

test progress and test runs.

 Task management

Visualize user stories and link tasks to backlog work items. This Agile board can be

used to add work hours to a task and change the status of tasks (New, In-progress,

Closed).

 Bug tracking - Each team can manage bugs on their backlog or along with test plan.

 Charts and dashboards – A Dashboard is developed to escalate test results for the higher

management and monitor the ongoing process of the testing activities it helps to keep

both the team and stakeholders in sync.

2.3 Review of existing systems

1. HP Application Lifecycle Management

HP ALM is well suited for waterfall projects specifically if the teams are novice. It provides

excellent support for project planning, tracking & test management. Top leadership can

efficiently track, measure and report on project milestones & key performance indicators [3].

ALM includes quality assurance features for risk-based test planning and management, version

control, base lining, quality release and cycle management, test scheduling and execution,

integrated manual testing and defect management. HP Quality Center is a quality management

platform that can be used for a single project or across multiple IT projects to manage

application quality across the entire application lifecycle [4].

ALM provides requirements management, release and cycle management, test management,

defect management and integration to all other HP products such as UFT and Load Runner.

12

HP ALM workflow.

 Release specification:

ALM user can organize and track releases and cycles in HP ALM. A cycle which falls within

a release has a set of development and testing efforts in order to achieve a common goal. ALM

users can track the progress of the project in real time by analyzing the releases tree to ensure

if it matches the release goals [5]. Figure 2.2 displays the releases view screen of HP ALM

application.

Figure 2.2 Creating releases the first step in ALM [5]

 Requirements Specifications.

This module in ALM enables users to define, manage and track requirements [5].

Figure 2.3 displays requirement management feature of the HP ALM application.

Figure 2.3 Tracking Requirements [5]

13

 Test Planning

ALM supports maintenance and execution of manual, automation and performance

tests as ALM is seamlessly integrated with all HP products such as HP UFT and HP

Load Runner [5]. Figure 2.4 describes the test plan creation steps in ALM.

Figure 2.4 Creating Test Plans on ALM [5]

 Test Execution

Once the test design is completed, test execution will take place with the help of Test

Lab module [5]. Below figure 2.5 displays the test execution process in HP ALM

system.

Figure 2.5 Test execution on ALM [5]

14

 Defect tracking.

Defect module in HP ALM not only helps users to post the defects but also enables

them to track and gives the overall quality of the release at any stage of the development

process [5]. Below figure 2.6 is the defect management view of HP ALP application.

 Figure 2.6 Defect tracking on ALM [5]

2. Microsoft Team Foundation Server

Team Foundation Server is a Microsoft product that provides source code management,

reporting, requirements management, project management, automated builds, lab

management, testing and release management capabilities. It covers the entire application

lifecycle, and enables DevOps capabilities [6].

Available Features

 Agile tools to plan and track work

Create user stories and backlogs: Plan project by adding a work item for each user story or

requirement that the user intends to develop.

Storyboard: A user story is the smallest unit of work in an agile framework. It’s an end

goal, expressed from the software user’s perspective.

15

 Tasks and issue tracking: User is able to create different types of work items such as User

story creation, Sprints, Capabilities, Epics, Features, Tasks and create Backlogs against the

Features [7]. Figure 2.7 displays available work items in the Microsoft team foundation

server.

 Figure 2.7 Types of work items on a sprint [7]

 Estimates and time tracking: Track estimated, completed, and remaining work for tasks

and other work items.

 Plan sprints, Velocity & forecasting, Manage resources and Sprint burn down charts.

 Monitor progress and review team patterns from sprint burn down charts [8]. The

following figure 2.8 shows an example of a sprint burn down graph.

 Figure 2.8 Sprint burndown chart [8]

 Build sprint backlog, add tasks, and load balance work across team as you plan your

sprint.

16

 Use velocity charts and forecast tools to estimate work that can be completed in future

sprints [9]. Below figure 2.9 displays an example of a velocity planning graph.

Figure 2.9 Capacity planning [9]

 Test Management

User can create manual test cases, test scenarios by adding test cases to test suites. Test

suites separate testing scenarios within a single test plan [10]. Below figure 2.10 displays

test suite management process in Microsoft team foundation sever.

Figure 2.10 Test Suite Management [10]

17

 Bug tracking feature.

User can track bugs on the Agile board and link them to a test case. Below figure 2.11 is

the bug creation page in TFS.

Figure 2.11 Bug Tracking Feature [11].

2.4 Existing Web Based Test Management Tools

1. Jira

Jira is a proprietary issue tracking product developed by Atlassian which allows bug

tracking and agile project management. Jira is a commercial software product that can be

licensed for running on-premises or available as a hosted application [12].

2. qTest

qTest provides software testing and development teams with an easy to learn, easy to use,

lightning fast, scalable test management that seamlessly integrates with JIRA, other ALMs,

and automation tools. qTest is one of the fastest growing test management solutions on the

market today amongst the other Agile testing and development teams [13].

3. TestLink

This is one of the very few open source test management tools that is available for use in

the market. It is a web-based tool with typical features like requirement management, test

case creation, and maintenance, test runs, tracking bugs, reports, integration with common

issue trackers etc. [13]

18

4. PractiTest

PractiTest is a SaaS end-to-end QA management system with some of the most advanced

and interesting features. With PractiTest, Testers are able to focus on quality and their

actual work rather than side tasks [13].

Following table 2.1 contains a summarized comparison among the features available in

developed system and the prevailing systems.

Table 2.1 Comparison of proposed system with prevailing system

Feature Developed

System

TFS ALM Jira Test Link

Agile support Yes

Yes No Yes Yes

Test case, Test

suite and Test

Plan creation

Yes

Yes Yes No Yes

Requirement

traceability

Yes

Yes

Yes

Yes

Yes

Defect

Reporting

Yes

Yes

Yes

Yes

Yes

Dashboard Yes Yes Yes Yes No

Most Systems mentioned above are enterprise solutions and require a large financial allocation

in order to use it. Therefore, the application developed will be a good solution for organizations

who are looking forward to manage both Test Case management and project management

without purchasing the application and is most suitable to start up IT companies and also small-

scale software companies.

ALM and TestLink does not have project management functions such as sprint planning, agile

dashboards etc. JIRA does not have test management functionalities. Therefore the developed

web application can be redefined as a hybrid solution for both test case management and project

management functionalities.

https://www.capterra.com/p/105192/Rezlynx/

19

Chapter 3

METHODOLOGY

3.1 Introduction

In any project, analyzing and design are the core aspects. That is the main idea, which is being

generated throughout the previous chapters. This chapter contains information about the project

analyzing and the design. Development methodology is further discussed in order to provide a

clear idea about the developed system. The analyzing part of this chapter contains the details

about the system and the justifications. The design section explains the architecture of the

system and a brief explanation of the workflow.

Designing the correct system must be carried out through selecting proper design techniques and

methods. Agile Methodology is used to develop the system. Testing is integrated throughout the

project lifecycle, enabling regular inspection of the working product as it develops. This allows us

to make necessary adjustments. In agile development, change is accepted. Instead the timescale is

fixed and requirements emerge and evolve as the product is developed.

3.2 System Analysis

The final outcome of this project is a a web based system developed to manage the process of

software quality engineering and project management process which includes writing test cases,

executing Test Cases with results, creating test plans, creating relevant test suites etc. The users

who intended to use this software are SSQA engineers, Developers, Management and Business

Analysts. This is aimed at simplifying many day to day activities of SQA engineers and other

stake holders of a Software Company.

3.2.1 Requirement Analysis

Requirements analysis is critical to the success of a development project. Requirements must

be actionable, measurable, testable, related to identified business needs or opportunities, and

defined to a level of detail sufficient for system design

Testing is the process or activity that checks the functionality and correctness of software

according to specified user requirements in order to improve the quality and reliability of

20

system. It is an expensive, time consuming, and critical approach in system development, which

requires proper planning of overall testing process.

A successful test is one that finds the errors. It executes the program with explicit intention of

finding error, i.e., making the program fail. It is a process of evaluating system with an intention

of creating a strong system and mainly focuses on the weak areas of the system or software

3.2.2 Functional Requirements

This requirement for this system is to build a Software Quality Assurance Management system

including the software project management activities. Which is inclusive of the process of

software testing such as:

Create Test Plans, create manual test cases to check that each of the deliverables meet the

requirement, execute test cases, create bugs, organize test cases by adding test cases to test

suites, test scenarios based on a feature. Figure 3.1 displays three main types of test management

artifacts.

Figure 3.1 Agile Process of Testing [14]

The system which facilitates project management activities of the software development

projects and collaborate on projects all in one place. It includes create Epics, create Features

against the Epics, create User Stories and Backlogs. User will be able to create tasks and report

time daily basis.

21

3.2.3 Use case diagrams for developed system

The below figure 3.2 is the high level use case diagram of the developed software QA

application.

Figure 3.2 Use case diagram for the intended system

22

3.2.4 Use cases

The users in the system are the employees and the administrators. Only the authenticated users

have been allowed to perform the software operations. The following use cases are the high

level functional requirements.

Employee view

• Employee can login to the system

• Employee will have a vertical navigation panel

• Employee can create test plans

• Employee can organize test cases by adding test cases to test suites

• Employee can create test cases to each feature

• Employee can add test steps to each test case

• Employee can copy test cases to different suites

• Employee can execute test cases

• Employee can create bugs to each test cases

• Employee can update status of a defect according to defect lifecycle

• Employee can create epics

• Employee can create feature list against the Epics

• Employee will see assigned Agile boards

• Employee can go in to the Agile board and create backlog items

• Employee can add backlog items to each sprint.

• Employee can create sprint to each Agile board

• Employee will see burndown chart

• Employee can view dashboard

Admin view

• Admin user can login to the system.

• Admin user will have a vertical navigation panel.

23

• Admin user has an Agile board list.

• Admin user can create an Agile board.

• Admin user can assign employees to each Agile board.

• Admin user can view employee list.

• Admin user can create an employee.

• Admin user can view dashboard.

3.3 Non - Functional Requirements

As the basic requirement of this project it can be defines as a process which assists SQA engineers

in Software companies to track the daily activities and record their work.

 Performance Requirements

Efficiency of the system is another main requirement of the project. The output of the system needed

to be provided to the user real time. Lateness of the system will not be good since the user has to

wait more time to get the result from the system. The SQA engineers use these data that are tracked

as test case results.

Response Time – Response time of the system should be within an acceptable time period (2000ms

– 3000ms)

Capacity - The System must support several people at a time.

User-interface - The user-interface screen shall respond within 5000 milliseconds.

 Accuracy

Accuracy of the system is considered as a main requirement of the project. SQA engineers depend

on the output that is being provided by the system, Because of risk in delivering a Project.

 Security

Security is another main aspect that needs to be achieved from the developed system

The system should be more reliable because the SQA engineers use these data that are tracked as

test case results they depend on the application in identifying the process and the correct result

should be transmitted to them when they use the application. The system should be tested perfectly

before the application is released.

24

Errors - The system shall keep a log of all the errors.

The system should have the ability to evolve with the time. Once the changes that need to be done

are identified while the user use the system, they can be applied and provided to the users as a new

release of the application.

3.4 High-level architecture

Client end consists of an angular 5 project that interacts with the user and makes API calls. The

server end consists of a spring boot +JPA (Hibernate) app MySQL DB as database. Below figure

3.3 describes the high level architecture of the developed system.

 Figure 3.3 High level architecture

This consist of main two user roles Admin and Engineer (employee). Admin can create an

employee. Admin can create an agile board (Agile board represents each project that employee

25

assign to). Employee can log on to the system and see the agile board list (Agile board represents

each project that employee assign to). On click agile board employee goes to backlog item list.

Employee can create a backlog item. Employee can create sprints for each agile board. Backlog

items be added to each sprint in sprint planning. Employee can create a feature list for each sprint.

That each feature can have test cases and each test case can have bugs.

3.5 Database design

Good designing is very important in developing a good system. To convert the analyzed

requirements into code, designing should be done in a proper way. Database design illustrates

the table structure of the database, the relationships among tables and how each entity joins

with other entities of the database. This information has been depicted using EER Diagram.

Below figure 3.4 displays the database design of the system.

Figure 3.4 Database design

26

3.6 UI Design

The user of the developed system requires that the developed software should be user friendly,

have security access, and ensure the privacy of the administrator and produce results in timely

manner. The users are frequently exposed day-to-day tasks, so the system interface to the user

must be simple and understandable. The web pages must be user-friendly and must be in an

easy-to-use style. The user must be able to easily switch among various I/O screens. The

product is well designed so that it can be used easily by layman and also the users who are

novices to the system.

The system should be designed in such a way that only authorized users should be allowed to

login to the system. The user interface should be as interactive as possible. A user-friendly

interface must be provided so that the user can easily interact with the system and comprehend

things in a quicker and easier way. The system must provide reliable and up-to-date

information.

The application should be efficient so that the user does not spend much time in training.

Consistency will increase the confidence of the user in the reliability of the application. The

user must be limited with a small set of operations to achieve the result. The application should

be visually and conceptually clear. The interface should accommodate user mistakes easily and

fast. It should minimize the errors and should handle them peacefully. Interfaces below,

27

3.6.1 Login screen of the SQA web application

Figure 3.5 - Log in screen

3.6.2 Home page of the SQA web application

Figure 3.6 Home page of the SQA web application

28

3.6.3 Dashboard page of the SQA web application

Figure 3.7 Dashboard page of the SQA web application

3.6.3 Sprint board of the SQA web application

Figure 3.8 Sprint board of the SQA web application

29

3.6.4 User story creation page of the SQA web application

Figure 3.9 User story creation page

3.6.5 Test case view page of the SQA web application

Figure 3.10 Test case view page

30

3.6.6 Bug creation and managing page of the SQA web application

Figure 3.11 Bug creation and managing page.

3.7 Technology

 Java 1.8

Java web development platform is among the most required web development services. Java is

an object-oriented language with a thoroughly worked through object model. It can be used to

develop both standalone and web applications and suits both purposes equally well [15].

 STS (spring tool suit)

Spring Tools 4 is the next generation of spring tooling for your favorite coding environment.

Largely rebuilt from scratch, it provides excellent support for developing Spring-based

enterprise applications, whether you prefer Eclipse, Visual Studio Code, or Atom IDE [16].

 Nodejs

Node.js is an open-source, cross-platform JavaScript run-time environment that executes

JavaScript code outside of a browser. Node.js lets developers use JavaScript to write command

line tools and for server-side scripting—running scripts server-side to produce dynamic web

page content before the page is sent to the user's web browser [17].

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Runtime_system
https://en.wikipedia.org/wiki/Server-side_scripting
https://en.wikipedia.org/wiki/Dynamic_web_page
https://en.wikipedia.org/wiki/Dynamic_web_page

31

 Angular/ Angular CLI

The Angular CLI is a command-line interface tool that you use to initialize, develop, scaffold,

and maintain Angular applications. You can use the tool directly in a command shell, or

indirectly through an interactive UI such as Angular Console [18].

 Visual Studio Code

Visual Studio Code is a source-code editor developed by Microsoft for Windows, Linux and

macOS. It includes support for debugging, embedded Git control and GitHub, syntax

highlighting, intelligent code completion, snippets, and code refactoring. It is highly

customizable, allowing users to change the theme, keyboard shortcuts, preferences, and install

extensions that add additional functionality [19].

3.8 Summary

This chapter describes about the analyzing and design of the system. The system is a web application

and it provides a smooth flow for Software SQA engineers in a Software Company to do their daily

tasks.

32

Chapter 4

EVALUATION

4.1 Introduction

The main purpose of the project is to provide a better flow for Software Quality Assurance

Process and project management process where both SQA engineers and Developers of the

software industry such as QA Leads, Project Managers, Team members and Top-Level

managers can work smoothly and accurately on a day-to-day basis.

This chapter is dedicated to discuss on the evaluation of project with respect to the objectives

as well as the data that is being used as assistance to the project. In this chapter the testing

strategies and test scenarios are mentioned. Also, it shows that how the developed system is

accepted by the user.

Evaluation is a collection of activities and functions used to monitor and control a software

project so that specific objectives are achieved with the desired level of confidence. A formal

definition of software testing is “the systematic activities providing evidence of the fitness for

use of the total software product”.

Agile development methodology is the process of establishing requirements, designing,

building and testing a system in a series of short development cycles. Since we use Agile

methodology there is a testing activity for every development activity.

4.2 Evaluation at Different Levels

The evaluation of the solution has been carefully planned and categorically assessed. It was

done with the help of an evaluation plan. Evaluation plan address all the stages of the

development life cycle of the project. All necessary activities were broken down and the primary

decisions were taken place considering the project at very first stage by submitting written

project proposal, requirements feasibility and clearness of problem domain, appropriateness of

technologies and adequate resources.

33

 Requirement analysis

The main evaluation of the system begins at the first phase of the project with the start of

gathering data that is related to the domain. After requirement gathering requirements are

analyzed and the possibility of incorporating the requirements in the system to be development

is also studied. Finally, a Requirement Specification document is created which serves the

purpose of guideline for the next phase of the model.

Then the Test Planning was started and acceptance test design was conducted after the

requirements analysis is completed.

Verification activities: Requirements reviews.

Validation activities: Creation of user acceptance test cases

Test Basis for acceptance test design: Use cases, User requirements.

 System Design

Functional test cases, component test cases and Integration test cases are developed based on

the system design. Doing this at an early stage provides more time for the actual test execution

later.

The component tests and integration tests are an essential part of any development process and

helps eliminate the maximum faults and errors at a very early stage. Component tests can be

designed at this stage based on the internal module designs.

Verification activities: Design reviews.

Validation activities: Creation and review of test cases.

 Testing

Throughout the development lifecycle of this project, a series of system tests and

validations were done in order to ensure the quality of the final system. System testing

is directly associated with the system design phase. System tests check the entire system

functionality during the implementation of the system each module was tested

individually. After completing integration of modules, the whole system was tested as

a whole.

34

4.3 User Acceptance Testing

Acceptance testing is basically related to the business requirements testing. Here testing is done

to validate that the business requirements are met in the user environment and tests are based

on test cases developed in early stages.

User acceptance testing plays a major role in evaluation of a product. The user acceptance

testing for this project was done mainly by providing a prototype of the product for few users

and getting their feedbacks.

The implemented system targets a specific user category. It is a product for the people who are

working in the Software Industry. However, the importance of this type of a system may not

be understandable at once for a person with lesser technical knowledge. Therefore, for this user

acceptance test, group of people with some technological knowledge background about using

systems were selected. Since it’s difficult to find a user base that are all Non-technical and

familiar with systems, system was tested among both the people who are technically expertise

as well has people who are Non-Technical.

A questionnaire was prepared in order to evaluate the implemented system. Following

characteristics were targeted in the given questionnaire.

• Usability of the system - For how extent the Engineers can use the system and

find it useful.

The level of ease to learn and what kind of problems they face.

• Reliability of the system - The extent to which the system is expected to perform

its intended functionality.

• Accuracy of the system - To which extent the response of the system is correct

and data provided and retrieved through the system is accurate.

• Effectiveness of the system - Time taking to provide a result to the end users and

how efficient and effective the system it. Less waiting time or had to wait more

than they expected.

• Importance of the system to the users - The extent to which this system is useful

to the society.

35

• Final evaluation of the system as a whole - Overall idea of users about the process

and workflow of the application.

According to the results of evaluation it was possible to identify areas where further

improvements are needed. Results show that the accuracy of the system and reliability has

to be improved. Also, it is noticeable that many users have decided that Software Quality

Assurance Process Management Application is an important concept and such a system is

important to the society.

4.4 Test Scope

Employee view.

Test cases were developed based on the below use cases and scenarios.

• User can login to the system.

Test Scenarios:

Verify whether the Admin user and Employ can login to the system.

Verify error messages displayed for the user who has entered incorrect credentials.

Verify UI elements are properly aligned in login page.

• User will have a vertical navigation panel.

Test Scenarios:

Verify whether the user can navigate to different pages using left navigation.

Verify only admin can navigate to the admin panel through left navigation.

Verify UI elements are properly aligned in left navigation panel.

• Employee can create Test Plans.

Test Scenarios:

Verify user is able to create test plan in Test page.

36

• Employee can organize test cases by adding test cases to test suites.

Test Scenarios:

Verify whether the user is able to create test suite.

Verify whether the user can add test cases to test suite.

• Employee can create test cases to each feature.

Test Scenarios:

Verify user can create test cases.

Verify whether the mandatory fields are available when creation a test case.

Verify whether the user can attach test cases to any feature.

• Employee can add test steps to each test case.

Test Scenarios:

Verify whether the user can add test steps to a test cases.

• Employee can copy test cases to different suites.

Test Scenarios:

Verify whether the user can add same test case to a different suite.

• Employee can execute test cases.

Test Scenarios:

Verify whether the user can open test case and see the test steps.

Verify whether the user can change the status of a test case.

Ex: Not executed to pass, Fail to Pass, etc.

• Employee can create bugs to each test cases.

Test Scenarios:

Verify whether the user is able to create a Bug if status of a test case is fail.

Verify all fields are available in Bug creation page.

Verify created bug can be opened.

Verify Employee can update status of a defect according to defect lifecycle.

37

• Employee can create Epics.

Test Scenarios:

Verify whether the Employee can create Epics.

• Employee can create Feature list against the Epics.

Test Scenarios:

Verify whether the Employee can create Feature lists.

Verify whether the user can attach Features to an Epic.

• Employee will see assigned Agile boards.

Test Scenarios:

Verify whether the Employee can navigate to the Agile board through left navigation.

Verify whether the user can see assigned Agile board.

• Employee can go in to the Agile board and create backlog items.

Test Scenarios:

Verify whether the user can create backlog items.

Verify all mandatory fields are available when creating a backlog.

• Employee can add backlog items to each sprint.

Test Scenarios:

Verify whether the user can add backlog items to a spring.

Verify whether the user can change the sprint of a backlog item.

• Employee can create sprint to each Agile board.

Test Scenarios:

Verify whether the user can create a sprint.

38

• Employee will see burn down chart.

Test Scenarios:

Verify whether the user can see the burn down chart for a selected sprint.

Verify UI elements are properly aligned.

• Admin and Employee can view dashboard.

Test Scenarios:

Verify whether the users have access to dashboard.

Verify UI elements are properly aligned.

Admin view.

• Admin has an Agile board list.

Test Scenarios:

Verify whether the admin users can see access to dashboard.

Verify UI elements are properly aligned.

• Admin has an Agile board list.

Test Scenarios:

Verify whether the admin users can Agile board list.

• Admin can assign employees to each Agile board.

Test Scenarios:

Verify whether the admin users can assign each Employee to an Agile board.

• Admin can create an employee.

Test Scenarios:

Verify whether the admin users can create employee accounts.

Verify whether admin user can manage employee list.

Admin can view employee list.

39

Above Test Scenarios are the most important sections of the application. Since these

needed to be identified accurately and given the output to the users in an insignificant

amount of time.

4.4.1 Risk mitigation checklist

Below table 4.1 consists of the risk mitigation checklist that done to conduct a system

evaluation

Table 4.1Risk mitigation checklist

Test Scope Passed?

(Yes/No)

Has the system been tested with a fresh database? Yes

Has the set up checked in a fresh machine? Yes

Have the following been done?

Creation of test cases Yes

Environment compatibility testing as requested Yes

System Integration Testing Yes

Performance Testing Yes

Typos and spell check

 UI Yes

 Messages Yes

 Alerts Yes

Usability testing / Consistency testing

UI Consistency (as per the UI guideline) Yes

Use of mandatory fields (Mandatory field validation and control coloring Yes

Exceptional data handling (Data inputs with special characters and symbols Yes

Input field types and lengths validations

(Check for celling limits)

Yes

Navigation (Tab Options, Unwanted user clicks) Yes

40

4.5 Types of Evaluation

There are different types of evaluations methods depending on how the system is

evaluated and the purpose of evaluation. A user-based evaluation is considered in

evaluating the system, and to accomplish that, the progress of the workflow process of

the organization is being continuously monitored.

• What is evaluated?

How accurate the data retrieval is when there are query based scenarios to retrieve data.

How the manual process is improved with the proper approach and how the quality of

life of the people who are employed in the QA Industry has improved with the use of

the developed system.

• What is the purpose of the evaluation?

The purpose of the evaluation is ultimately to achieve the project goal and the

objectives. People who are working for the QA Industry should be able to overcome

the difficulties in the manual process. Therefore, it should be evaluated whether the

goals are achieved properly or not.

• Who is interested in the evaluation?

Interested parties of the evaluation process are basically the people who are the end

users. If the project is successfully achieving the objectives and the goal, then this

project can be extended to deliver.

• How will they use the findings?

People who are working for the QA Engineering Process can use the findings of the

evaluation result in identifying the process. How much of data they can retrieve and

how efficient and accurate the new process is.

41

What questions should be answered?

• What are the processes in the project management and QA management that

are automated?

• Are the results regarding test case executions accurate?

• As the process become more efficient and effective?

• What is the level of user friendliness in the system?

• What kinds of enhancements should be applied and how the approach should

be taken?

4.5.1 Tested Devices

The system can be installed into Windows machines all the devices have the ability to

install the developed application. Implemented system has been tested in various

Environments. Tested devices shown in below table 4.2

 Table 4.2 Tested devices

 Tested Device Operating System

HP – i3 – Pro book Windows 7

HP – i3 – Pro book Windows 8

 DELL – Inspiron Windows 7

 DELL – Inspiron Windows 10

Cross Browser Testing was conducted in the below Browser Versions:

Google Chrome - Version 71.0.3578.98 (Official Build) (64-bit)

Mozilla Firefox - Version 63.0.3 (64-bit)

Internet Explorer - Version 11.0.9600.19180

42

4.6 Summary

In this chapter all the evaluation criteria of the system along with the results gained by

evaluations are presented. The summary of feedbacks from questionnaire is presented as

a chart. Finally, it describes areas to be improved based on the results. Next chapter will

be focused on conclusion of the system based on the achieved objectives, problems

encountered and limitations of the system. Also, further expandability of the system is

discussed.

43

Chapter 5

CONCLUSION

5.1 Introduction

The main purpose of the project is to provide a better flow for a software quality engineering

process which includes writing test cases, executing test cases with results, creating test plans,

creating relevant test suites etc. The users who intended to use this software are SQA engineers,

developers, management and business analysts. This is aimed at simplifying many day to day

activities of SQA engineers of a software company This project was successful in implementing

a web based system to manage software quality engineering process which includes writing test

cases, executing test cases with results, creating test plans, creating relevant test suites etc. The

users who intended to use this software are SQA engineers, developers.

Various aspects of the project are being discussed throughout the whole dissertation. A full

description about the problem and the developed solution for that problem, the final product as

well as the technologies being used were discussed. The design of the project, its

implementation, and the evaluation was the focus in last few chapters.

This chapter will mainly conclude the dissertation. It is dedicated to provide a description about

the overall achievement of the project, the objectives achieved, and problems encountered

throughout the project under the scope and time and actions taken to overcome those problems.

Finally, how the project can be further developed in order to eliminate the problems

encountered, the future extendibility is discussed.

5.2 Achieving the Objectives of the Project

In order to achieve the objectives a successful software project management application has to

provide features to create test cases and execute test cases, check the overall status of test

execution, to categorize test cases, create a bug when there is a failure in test cases, create Epics,

create features, create user stories, create tasks, see the agile board, time reporting, see burn

down chart and a user-friendly interface for users for the easy access is very important.

44

The below objectives were achieved from an engineer’s point of view

• The user is able to manage, organize and track all testing efforts and keep all user stories

in a central place.

• Easily accessible test artifacts with entire team and organize test suites and test plans.

• Execute tests and record results using application’s modern user interface.

• Summary dashboard for projects, bugs, test plans and runs.

• Using the application, track time for each task that how much time has been spent on the

particular task from start to end.

• Enable team to track tasks and visualize process so team knows how projects and tasks

are progressing.

For the individual companies:

• Keep better schedules

• Increased productivity

• Better visibility

5.3 Problems Encountered in the Project

Technological Challenges faced:

Spring Boot (via Maven), and frontend code, in the project, have been very integrated. Maven

is expecting a certain directory structure that has been generally incompatible with front-end

code. This forced me into moving the front-end project down in src/main/resources and make

configuration changes that could be haphazard and unreliable as compared to a native, Nodejs

based front-end project.

During the time of development, the database changes were identified. It was very difficult task

for me to change the database structure due to ambiguous requirements.

45

Due to lack of knowledge in AngularJS I had to find solutions for below questions.

How to post a json to a service?

How to route the components?

How to access the reactive form data from the type script file?

How the “Two-way” data binding in angular works?

What are lifecycle hooks and basic usage?

How to interact between Parent and Child components?

How to create a service in angular?

5.4 Limitations of the Currently Developed Solution

• The system was implemented as an assist for the employees of a Software company. A

main limitation was that a mobile application could not be made.

• Need to be able to import text or CSV files for test cases, test plans, test lab, and Defects.t

• Need to be able to copy or move items from the test suite to other test suites.

• Need to be able to select multiple test cases and attach them to the defect. Currently the

user can only attach one.

• Quarry based search not supported.

• Next limitation is that there is no way to interact with other systems. (APIs)

Even though there can be limitations of the currently developed system, they can be addressed

and eliminated by taking necessary actions and further developing the system.

46

5.5 Further extendibility of the system

As the further development of the system, we mainly focus on how to overcome the limitations

that are were presented in the previous section. There were two major limitations discussed

there and those have to be addressed one by one to provide a better system through further

development.

The following can be increased with a mobile app:

1. Easy Time tracking

2. Better visibility for higher management (Dashboard feature)

3. Better visibility for the team (Burn down chart)

It is important to provide APIs to interact with the application. Thus, users can upload test cases

and transfer user stories from their existing systems.

A feature can be implemented to import and export data from the application. Eg: test cases,

bugs, etc.

Furthermore a search feature could be implemented to retrieve data from the application using

complex queries.

Drag and Drop feature could also be implemented to copy or move items.

47

References

[1] Tutorials Point India Limited, "SQA Components," 2019. [Online]. Available:

https://www.tutorialspoint.com/software_quality_management/software_quality_managemen

t_sqa_components.htm.

[2] Software Testing Class, "Software Testing Life Cycle (STLC)," 2019. [Online].

Available: https://www.softwaretestingclass.com/software-testing-life-cycle-stlc/.

[3] Trust Radius, "Micro Focus Application Lifecycle Management / Quality Center

(ALM/QC)," 2019. [Online]. Available: https://www.trustradius.com/compare-

products/micro-focus-application-lifecycle-management-quality-center-alm-qc-vs-wrike.

[4] Wikimedia Foundation, Inc., "HP Application Lifecycle Management," 2019. [Online].

Available: https://en.wikipedia.org/wiki/HP_Application_Lifecycle_Management.

[5] Guru99 Tech Pvt Ltd, "Create Releases & Cycles in HP ALM (Quality Center)," 2019.

[Online]. Available: https://www.guru99.com/hp-alm-release-specifications.html.

[6] Wikimedia Foundation, Inc., "Team Foundation Server," 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Team_Foundation_Server.

[7] Microsoft Corporation, "Add, update, and follow a work item," 2019. [Online].

Available: https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/add-work-items.

[8] Microsoft Corporation, "Monitor sprint burndown," 2019. [Online]. Available:

https://docs.microsoft.com/en-us/azure/devops/boards/sprints/sprint-burndown?view=azure-

devops.

[9] Microsoft Corporation, "Scrum and sprint planning tools," 2019. [Online]. Available:

https://docs.microsoft.com/en-us/azure/devops/boards/sprints/scrum-sprint-planning-

tools?view=azure-devops.

[10] Microsoft Corporation, "Create manual test cases," 2019. [Online]. Available:

https://docs.microsoft.com/en-us/azure/devops/test/create-test-cases?view=azure-devops.

[11] Microsoft Corporation, "Define, triage, and manage bugs," 2019. [Online]. Available:

https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/manage-bugs?view=azure-

devops.

[12] Wikimedia Foundation, Inc., "Jira (software)," 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Jira_(software).

[13] Guru99 Tech Pvt Ltd, "Best 25 Test Management Tools in 2019," 2019. [Online].

Available: https://www.guru99.com/top-20-test-management-tools.html.

48

[14] Microsoft Corporation, "Track work with user stories, issues, bugs, features, and epics,"

2019. [Online]. Available: https://docs.microsoft.com/en-us/azure/devops/boards/work-

items/about-work-items?view=azure-devops.

[15] Magic web solutions, "Java as a web development platform," 2019. [Online]. Available:

https://www.magicwebsolutions.co.uk/blog/java-as-a-web-development-platform.htm.

[16] Pivotal Software, Inc., "Spring Tool," 2019. [Online]. Available: https://spring.io/tools.

[17] Wikimedia Foundation, Inc., "Node.js," 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Node.js.

[18] Google inc., "Angular CLI Overview and Command Reference," 2019. [Online].

Available: https://angular.io/cli.

[19] Medium, "Cool Extensions to Make Programming Life Easier," 2019. [Online].

Available: https://medium.com/@micaonthego/vs-code-cool-extensions-to-make-

programming-life-easier-48bb428d45c3.

[20] Amazon Web Services, Inc., "DevOps and AWS," 2019. [Online]. Available:

https://aws.amazon.com/devops/.

[21] Wikimedia Foundation, Inc., "Burn down chart," 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Burn_down_chart.

[22] Linchpin SEO, "Agile Process and Method Overview," 2019. [Online]. Available:

https://linchpinseo.com/the-agile-method/.

[23] Nulab, Inc., "ER diagrams vs. EER diagrams: what’s the difference?," 2019. [Online].

Available: https://cacoo.com/blog/er-diagrams-vs-eer-diagrams-whats-the-difference/.

[24] Wikimedia Foundation, Inc., "LoadRunner," 2019. [Online]. Available:

https://en.wikipedia.org/wiki/LoadRunner.

[25] Microsoft Corporation, "Azure Test Plans | Azure DevOps Server 2019 | Run manual

tests," 2019. [Online]. Available: https://docs.microsoft.com/en-us/azure/devops/test/run-

manual-tests?view=azure-devops.

49

Glossary

Database - is an organized collection of data for one or more purposes, usually in digital form.

Graphical User Interface - is a type of user interface that allows users to interact with electronic

devices with images rather than text commands.

Internet - is a global system of interconnected computer networks that use the standard

Java - Java is a programming language and computing platform

Objects Oriented Development - is a standard approach to software development based on

objects and its instances

Structured Query Language - is a database computer declarative language designed for

managing data in relational database management systems (RDBMS).

Unified Modeling Language (UML) - is a standardized general-purpose modeling language in

the field of object-oriented engineering. This includes a set of graphic notations techniques to

create visual models of object-oriented software-intensive systems.

DevOps - is the combination of cultural philosophies, practices, and tools that increases an

organization's ability to deliver applications and services at high velocity: evolving and

improving products at a faster pace than organizations using traditional software development

and infrastructure management processes [20].

Burn down Chart - is a graphical representation of work left to do versus time. The outstanding

work (or backlog) is often on the vertical axis, with time along the horizontal. That is, it is a run

chart of outstanding work. It is useful for predicting when all of the work will be completed

[21].

50

Agile – The Agile Method is a particular approach to project management that is utilized in

software development. This method assists teams in responding to the unpredictability of

constructing software. It uses incremental, iterative work sequences that are commonly known

as sprints [22].

EER Diagram - Enhanced entity-relationship (EER) diagrams are basically an expanded upon

version of ER diagrams. EER models are helpful tools for designing databases with high-level

models. With their enhanced features, you can plan databases more thoroughly by delving into

the properties and constraints with more precision [23].

LoadRunner - It is used to test applications, measuring system behavior and performance under

load. LoadRunner can simulate thousands of users concurrently using application software,

recording and later analyzing the performance of key components of the application [24].

51

Appendix

End user feedback form:

 Job Title:

………………………………………………………………………………………………..

Ratings:

1 – Strongly disagree 2 – Disagree 3 – Possibly

4 – Agree 5 – Strongly agree

What do you think about the following features of the system?

Rate them according the scale given above.

 Option Rate

1. Usability of the system is good

2. User friendliness of the system is high

3. Look and feel of the system throughout all the forms is consistent

4. Instructions given in the system are understandable

5. Error messages are informative and understandable

6. Menus, forms and navigation methods are uniform and consistent

7. Navigation through the system is intuitive and easily understandable

8. Entering data in to forms can be carried out easily

9. Finding the needed information can be done without difficulty

10. Reports, attendance reviews and other transactions can be done easily

11. Adequate information is provided in the reports

12. The required functionalities have been implemented in the system

13. There is a marked improvement in the system compared to the old

manual system

14. The new system is beneficial to the company

