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Abstract 
 
 
 
LoRaWAN is Low Power Wide Area Network which uses LoRa radio technology as its sensor 

node level communication. LPWANs select LoRa as radio technology because of its long-distance 

communication ability with lower power consumption. Sensor networks have sensitive data and 

they should transfer to Application servers securely. Cryptographic algorithms need more 

computational power and memory space for their cryptographic calculations. These battery 

powered sensor devices have limited memory, limited processing power, limited battery power, 

and lower bandwidth with LoRa. Hence, all these limitations should consider while implementing 

security solutions. LoRaWAN has already implemented a security mechanism to send sensor data 

securely to end points, but still it has some security vulnerabilities. Literature review shows the 

need for a new key distribution and management mechanism for the LoRaWAN system. LoRa 

Alliance and other researchers have suggested improvements to the LoRaWAN existing joining 

mechanism and root key based key distribution mechanism. This research identifies the capability 

of running Elliptic Curve Diffie Hellman based key distribution and management mechanism, 

considering the limitations of the LoRaWAN End Nodes. Capability of running an existing 

implementation of ECDH has shown using the literature and experiments that have done in this 

work. The calculated power consumption percentage has shown that the power overhead for key 

distribution and management is bearable with the proposed mechanism by this research. 
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Chapter 1 

 

Introduction 
 
 
Data is emerging as the most valuable asset in the world. All the key domains including Economy, 

Education, Health and Business have coupled and are evolving with Information technology. Data 

is the molecule of Information Technology and securing data has become a necessity. This is an 

era which is named as Era of Internet of Things because all the digital media are getting connected 

to the internet. Going beyond the human day today using mobile devices like mobile phones and 

laptops, sensor nodes which may far away from the people are also connected to the Internet.  A 

major portion of cloud data has become sensor data. The portion of those sensor nodes are battery 

powered, should last longer and rarely accessed by people. To reduce power consumption, these 

sensor nodes use Low Power Wide Area Networks to connect to the internet. These sensor nodes 

are equipped with microcontrollers which have limited processing power to make them less power 

consumable. Hence such a sensor system has hundreds to a thousand of sensors they should have 

less maintenance and should be remotely maintainable. When such a sensor system has sensitive 

data, it should use security mechanisms. These security mechanisms are operated on security keys 

and to manage security keys with less maintenance it needs a robust security key management 

protocol. This Research is focusing on how we can distribute and manage the security keys to 

ensure the security aspects of widely spread Low Power Wide Area Network called LoRaWAN 

considering the limitations of its Sensor Nodes. 

 

1.1 Background 
 
At the beginning of the Internet of things era, only a few peoples have the devices which are 

connected to the internet. Then with the technology goes up, an average every people owns a 

device which is connected to the internet. It means the number of devices connected to the internet 

is equal to the world population. Then with the technologies grows up each people have more than 

one day today using IOT devices such as mobile phone, laptop, desktop computer or tablet. Now 
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the world is becoming smart, smart solutions are introducing for each and every field using the 

internet of things. Now homes are becoming smart with electronic devices are controllable control 

through the internet. The vehicle is also connected to IOT for various smart solutions like traffic 

management, tracking, and real-time vehicle condition monitoring. Other than homes and vehicles 

other fields also becoming smart. As examples, Smart grids, smart farms, weather monitoring, 

disaster management systems and over the air parcel delivery can be considered. So in 2020, the 

number of IOT devices owned by a person is expected as six and totally more than fifty billion 

devices are expected. Figure 1 shows the statistics of the usage of IOT throughout the past years 

and also future expectation over the population. 

 
Figure 1: IOT devices usage and future expectation 

 

When considering the Sensor systems, most sensor nodes are not generating data streams with 

high data rates. A sensor reading is typically less than 10 bytes and a data packet is less than 50 

bytes. As an example, a data packet of a tracking device is shown in Figure 2. Most sensor nodes 

of sensor systems are battery powered because they are deployed far away areas where it difficult 

to supply grid power for each and every node. Sensor nodes are typically automotive and can be 

operated remotely. Maintaining them frequently by physically accessing is a huge problem because 

such a system has hundreds to thousands of nodes. So, if a node cannot survive for a long time 

period with a battery, maintenance becomes a huge problem. Examples for such sensor systems 

are weather monitoring sensor systems, fire rescue sensors deployed in rural or forest areas, sound 
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sensors deployed in forests to identify unauthorized human behaviours in forests, soil and plant 

condition monitoring sensors in farms, animal tracking sensors in farms and disaster identification 

sensor systems. So, the conclusion is sensor nodes have fewer data to transmit using less power. 

These sensor nodes are also equipped with less power consuming microcontrollers but those 

microcontrollers provide less processing as well. This happens because power consumption is 

relative to the processing capability. When transmitting data, it wants to transmit for long distances 

because sensors are deployed in far away. Hence a typical network like Wi-Fi is not suitable for 

such a sensor system. This is where it comes Low Power Wide Area Networks (LPWAN) to play. 

LPWANs also use for high battery consuming automotive devices like parcel delivering or security 

monitoring UAVs because they also have the same kind of requirement to transmit data for long 

distances consuming less power. 

 

 
Figure 2: simple payload structure of a LoRa communication 

 

A Low Power Wide Area Network uses a special kind of radio technology which supports 

transmitting for long distances consuming low battery power. Typically, this kind of networks 

does not support high data rates. So, such a network is ideal for sensor systems than typical 

communication networks like 2G, 3D, LTE, Wireline or Wi-Fi. Figure 3 shows the growth of 

different kinds of networks for IOT over Time. It clearly shows that the growth rate of LPWAN is 

higher than other networks. Mekki, Kais, et al. [10] have compared about LoRa, SigFox, and NB-

IoT which are today's leading and emergent radio technologies used in LPWANs. 
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Figure 3: Population Wireless technologies and future expectation 

 

LoRaWAN is such a Low Power Wide Area Networks which is widely spread all over the world. 

LoRaWAN [2][3][4] uses LoRa [1] which is introduced by Semtech as its radio technology and 

powered by LoRa Alliance. LoRaWAN architectures have sensor nodes, LoRa Gateways, 

Network servers, and Application servers. LoRa Radio is using between Sensor nodes and LoRa 

Gateways. Current statistics show that 4398 LoRa gateways and 47919 users have been registered 

in Lora Network [9].  Figure 4 shows the spreading of LoRa gateways all over the world.  



 

 
 
 

14 

  

 

1.2 Motivation 
 
With the availability and sensitivity of sensor data, security has become an utmost important aspect 

for LPWANs. Sensor nodes are resource constrained devices and have to cope with its inherent 

limitations in electricity power, processing capability, and memory. However, implementation of 

security aspect on a sensor node may consume extra resources which are memory and power. This 

extra power consumption reduces the total alive time of a sensor node. Thus, it is important to 

manage these resources in an efficient manner while implementing security aspects for LPWANs. 

LoRaWAN is one of the widely spread secured Low Power Wide Area Network. However, it has 

its own limitations in security implementation. Security keys are important while providing the 

main security aspects authenticity, confidentiality, and Integrity. In LoRaWAN these security keys 

are bounded to the nodes at the time of firmware deployment and it cannot be modified 

dynamically. Therefore, in case of a security key revelation, the particular node should be 

physically accessed to update it with a new key. This problem can be resolved if there is a 

mechanism to distribute security keys dynamically which is known as Key Distribution in the 

information security domain.  

1.3 Aims and Objective 
 
LoRaWAN implementation uses hardcoded root key to generate session keys for secure 

communication of LoRaWAN protocol. Over-The-Air-Activation protocol is used to generate 

Figure 4: LoRaWAN usage over the world 
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those session keys using generated random numbers, EUIs and hardcoded root keys. This research 

aims to introduce an improved Key Management Protocol for LoRa Based Low Power Wide Area 

Networks considering the Limitations of End Node devices. When studying this objective, we have 

identified the following research questions. 

 

a. What are the key distribution algorithms and protocols which can be applied to an LPWAN 

with its processing, memory, network and power limitations? [8] What is the most suitable 

key management protocol with those limitations? 

b. Which implementation is the most suitable for the resource limitations of LoRaWAN 

Node. 

c. How to validate the sensor nodes when exchanging the secret key? 

d. How to improve existing security protocol with the new key derivation mechanism 

considering both power consumption and security level? 

e. How and How often static keys should update in the system to be proactive to ensure the 

system security? 

1.4 Research Scope 
 

a. Software-based Key distribution mechanism for LoRaWAN network is going to introduce 

considering the capabilities of sensor nodes. 

b. Key update and validation against key revelation will be discussed as a part of the key 

distribution mechanism.  

c. Trade-Offs between the security level and resource limitations when exchange symmetric 

key will be discussed. 

d. Mainly focus on key distribution and validation at LoRa communication part with the 

sensor nodes. The internet-based communication part is not focusing here. 

e. Over the Air Activation mechanism and Class, A type messages protocol will be 

considered for this research. 

f. Not going to implement a new encryption, authentication and integrity mechanisms for 

LoRaWAN. 

g. The key exposition problems by physically accessing End Nodes are not going to solve. 

h. The spread factor of LoRa radio technology varies from SF7& to SF12 and spread factor 

has an inversely proportional relationship to the Data Rate. All the improvements are going 
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to do for a selected spread factor (SF9). There are regional specific frequency ranges 

defined by LoRa community, in this research we are going to use 868MHz frequency range. 

i. Different kinds of microcontrollers can be used in sensor nodes which are the End Nodes 

devices of the LoRaWAN. In this research, we consider only one device, LoRa32u4 II 

(Processor: 8MHz, Memory: 32KB, 3.3v) which is technically equivalent to the node 

introduces by LoRa Alliance.  

1.5 Research Contribution 

An improved and resource efficient key distribution and key management protocol for 

LoRaWAN instead of pre-bounded initial root key based key derivation of LoRaWAN protocol. 

This protocol will include key update, key rolling, session key generation, and End node 

validation. 

1.6 Organization of Dissertation 

Rest of this thesis is organized as follows, Chapter 2 provides a study of LoRaWAN using existing 

Literature. The latter half of Chapter 2 explains the literature review on Key Distribution 

algorithms and another approach to use them on microcontrollers which are used for Low Power 

Wide Area Networks. In Chapter 3 we describe the design approach and proposed the architecture 

of our research. Experimental Setup explaining data set used, algorithms used, tools used and 

evaluation metrics used are explained in Chapter 4. Next chapter, which is Chapter 5 describes our 

feature engineering process which is one of the pivotal components in our research. Chapter 6 

provides Results and Analysis of the proposed approach and discuss the results summary. Chapter 

7 concludes the thesis with a Conclusion and potential Future Work available of this research. 
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Chapter 2 

 

Literature Review 

 

This chapter extensively discusses the preliminary study of this research. In the first section, we 

explain LoRa and that why we specify the LoRaWAN among other Low power wide area networks 

which are briefly mentioned in the first chapter. Then we discuss specifications of LoRaWAN and 

Security vulnerabilities of LoRaWAN network. After that, we focus on the security key 

distribution problem and approaches taken by others to improve the key distribution. Finally, we 

approach the problem deeper by studying existing key distribution algorithms and How they can 

perform on microcontrollers which are work as the main board of Network Sensor Nodes. 

2.1 LoRa 

2.1.1 Overview of Lora 

Lora is a radio technology invented by Semtech Corporation and introduced by Lora Allions. It 

uses chirp base modulation which is a kind of frequency modulation for transmitting bits. Data 

rate is very low in this radio technology because of the chirp base modulation. Lora technology is 

using all over the world and different regions allow different frequency bands for LoRa 

communication. There are three frequency bands using now 868Mhz ISM band for European 

countries, 433MHz for Asian region countries and 915MHz range for American region countries. 

Amount of data which can contain in a LoRa payload is limited. Message payload size is 

proportional to the time it takes to deliver the whole message (Time on Air). Lora has defined 

several spread factors (SF) to maintain a trade-off between message payload size to deliver and 

time on air (Figure 5). A frequency range has several LoRa channels and the Maximum number 

of nodes in a channel for the communication at a time is also limited. The Maximum number of 

devices in the channel depends on the payload sizes (Figure 6). Communication range of a device 

basically depends on the radio electronic component in the Lora Radio module and the power of 

antenna that uses with the Lora module. As an example, 20 dB power Lora radio module with a 5 
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dbi antenna supports for 3 km communication range in an open area. There are devices which can 

transmit for 10 km with an appropriate antenna. The data rate is the main limitation of Lora 

communication when applying Lora communication for the applications. 

 

 

2.1.2 Why LoRa for LPWAN 

Low power wide area networks are sensor networks which consist less power consuming, long-

range communicating sensor nodes. In kind of networks, transmitting distance and power 

consumption have an inversely proportional relation, hence when selecting a communication 

technology for an LPWAN we want to consider a feature analysis of this kind of networks. Mekki, 

Kais et al. [10] have compared about three communication technologies LoRa, SigPox, and NB-

IoT which are today's leading and emergent radio technologies used for LPWANs. These three 

technologies are using three different radio modulation technologies. They have analysed Battery 

life, Quality of Service, Payload Length, Latency Performance, Scalability, Communication 

Range, Coverage, Deployment and Cost for LoRa SigPox and NB-IoT as shown in Figure 7. We 

want to agree for a trade-off because maximizing all the performance variables are not possible 

hence some of them they are inversely proportional to some other variables. For battery powered 

sensor networks power consumption is more considerable. According to this analysis both LoRa 

Figure 6: Time on Air over payload size for 
different spread factors 

Figure 5: Data rate at a time over the number 
of nodes 
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and SigPox have similar power consumption for this research, we select LoRa because it uses as 

the radio technology of most widely spread LPWAN as we discussed in Chapter 1. 

 

 

                             
Figure 7: Respective advantages of Sigfox, LoRa, and NB-IoT [10]. 

 

 

 

2.1 LoRaWAN 

2.1.1 Overview of LoRaWAN 

LoRaWAN is the low power wide area network which uses LoRa as radio technology and 

deployed in more than one hundred countries. LoRaWAN is a proprietary product of Lora 

Alliance. LoRa AllianceTM et al. [2] specify LoRaWAN’s newest specification of the implemented 

version. A Lora network has mainly four components of sensor nodes, Lora gateway, Network 

server, and application server. Sensor node and Lora gateways communicate using LoRa. From 

the gateway to Application server’s communication happens through the TCP/IP. Network server 

manages the sensor nodes applications and gateways. Figure 8 shows the Network architecture of 

the system with its main components.   
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LoraWAN consists of three message classes. Class A is the end to end bidirectional 

communication between Lora devices and gateways. Uplink is followed by two short downlink 

windows in this class. Class B is defined to receive time synchronized beacons from the gateways. 

End-devices of Class C have nearly continuously open receive windows, only closed when 

transmitting. Class C consumes more power than A and B classes. Only the Class A type messages 

are going to consider in this research for improving the security key distribution.  

LoraWAN has three layers in its message protocol physical layer, network layer and transport layer 

and Figure 9 explains the packet structures of different layers. In the physical layer, a packet 

contains a preamble, physical header, header checksum, payload, and checksum. This physical 

layer is handled by Lora modulation and it does nothing with LoraWAN. Network and transport 

layers handle by the LoraWAN. Physical layer payload may be MAC payload or joint request or 

join the response. This join request and response messages belong to device activation mechanism 

which discusses in the next subsection of this chapter. MIC is used for integrity checking and 

authentication at the network server. Frames handle by the application server for application-

specific functionalities. Other than this message formats Newest specification of LoraWAN has 

discussed control messages which are exchanging between sensor nodes and Lora gateways for 

networking and controlling purposes. 

Figure 8 : Network Architecture of LoRaWAN [2] 
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2.1.2 Device Enrollment 

Lora End Node devices want to join to the LoraWAN Network to communicate with the 

application server through the Lora Gateways. LoRa AllianceTM et al. [3] describes the backend 

network architectures and two End Device activation mechanisms Over-The-Air-Activation 

(OTTA) and Activate-By-Personalize(ABP). According to the LoRaWAN™ Specification v1.0.2 

[2], OTTA mechanism the End node devices are deployed with AppEUI, DevEUI, AppKey. Here 

EUIs are 64bit identifiers to uniquely identify end node devices and Application. The AppKey is 

a pre-bounded root key to the End Node Device at the production level, This AppKey is private to 

the application and set up on the Network server by the application owner in his account. This 

AppKey is also used by the application server for End to End Security. The End Node Devices 

send a join request to Network Server for joining the network. This join request contains a 

randomly generated value (Dev Nonce), AppEUI and DeviceEUI. The request is digitally signed 

using AppKey as described in the function below for authentication and integrity. 

𝐽𝑜𝑖𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑚𝑠𝑔	 = 	𝐴𝑝𝑝𝐸𝑈𝐼		|		𝐷𝑒𝑣𝐸𝑈𝐼		|		𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒			

𝐶𝑚𝑎𝑐		 = 		𝑎𝑒𝑠128_𝑐𝑚𝑎𝑐(	𝐴𝑝𝑝𝐾𝑒𝑦,𝑀𝐻𝐷𝑅		|		𝐽𝑜𝑖𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑚𝑠𝑔)	

Figure 9 : Message formats in LoRaWAN [2] 
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Network server reply to End device by join-accept response message which contains AppNonce, 

end-device address (DevAddr) along with configuration data for RF delays (RxDelay) and 

channels to use (CFList). This accepting response is encrypted and signed with AppKey using 

AES 128 Algorithms as below.  

𝐽𝑜𝑖𝑛_𝑎𝑐𝑐𝑒𝑝𝑡_𝑚𝑠𝑔 = 	𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒	|	𝑁𝑒𝑡𝐼𝐷	|	𝐷𝑒𝑣𝐴𝑑𝑑𝑟	|	𝐷𝐿𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠	|	𝑅𝑥𝐷𝑒𝑙𝑎𝑦	|	𝐶𝐹𝐿𝑖𝑠𝑡	

𝑐𝑚𝑎𝑐		 = 	𝑎𝑒𝑠128_𝑐𝑚𝑎𝑐(𝐴𝑝𝑝𝐾𝑒𝑦,𝑀𝐻𝐷𝑅	|	𝑗𝑜𝑖𝑛_𝑎𝑐𝑐𝑒𝑝𝑡_𝑚𝑠𝑔	)	

𝑎𝑒𝑠128_𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐴𝑝𝑝𝐾𝑒𝑦, 𝑗𝑜𝑖𝑛 − 𝑎𝑐𝑐𝑒𝑝𝑡_𝑚𝑠𝑔	|	𝑐𝑚𝑎𝑐	)	

          

 Typically, decrypting function consumes more power than Encryption function, hence network 

server uses decryption function to provide confidentiality and End-Nodes uses Encryption function 

to retrieve the plain message.  Then End-Node devices can generate session keys to provide 

security aspects using AppNonce, DevNonce and AppKey.  

 	

𝑁𝑤𝑘𝑆𝐾𝑒𝑦	 = 		𝑎𝑒𝑠128_𝑒𝑛𝑐(	𝐴𝑝𝑝𝐾𝑒𝑦, 0𝑥01		|		𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒		|		𝑁𝑒𝑡𝐼𝐷		|		𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒		|		𝑝𝑎𝑑	)	

𝐴𝑝𝑝𝑆𝐾𝑒𝑦	 = 		𝑎𝑒𝑠128_𝑒𝑛𝑐(	𝐴𝑝𝑝𝐾𝑒𝑦, 0𝑥02		|		𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒		|		𝑁𝑒𝑡𝐼𝐷		|		𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒		|		𝑝𝑎𝑑	)	

  

 In Activation by Personalize (ABP) mechanism they don’t have a joining mechanism, the session 

keys for confidential authentication and integrity purposes are pre-bounded to the End Node 

Devices at the production stage. 

2.1.3 Confidentiality       

Once a Node has joined a LoRa network, either through OTAA or ABP, all the messages should 

be encrypted using a security key to provide confidentiality. As specified in LoraWAN 

specification 1.0.2 [2] encryption is done using AppSkey from End Node device to the Application 

Server. NwkSkey is also used for encryption when it sends messages to the Network server. Only 

the network server contains the Nonces generates by End Node and itself. Hence application Server 

also able to generate the AppSkey through the Network server. Now, this AppSkey is held by three 

parties and it improves the probability of key compromisation we will discuss this later in this 

chapter. To provide the confidentiality it uses one out of these two session keys along with the 
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AES 128 Symmetric Key algorithm in Counter mode (CTR). AES CTR is a block cipher and it 

uses a counter value for the encryption instead of a chaining mechanism. An important feature of 

all messages in LoRa is that the counters for sent (FCntUp) and received (FCntDown) messages 

are maintained by the Node and Network Server and that these counters never repeat. For 

encryption and decryption, a keystream (S) is produced as follows: 

       

𝑖	 = 	1. . 𝑘	𝑤ℎ𝑒𝑟𝑒	

𝑘	 = 	𝑐𝑒𝑖𝑙(𝑙𝑒𝑛(𝐹𝑅𝑀𝑃𝑎𝑦𝑙𝑜𝑎𝑑)	/	16)	

𝐴𝑖	 = 	 (0𝑥01	|	(0𝑥00	 ∗ 	4)	|	𝐷𝑖𝑟	|	𝐷𝑒𝑣𝐴𝑑𝑑𝑟	|	𝐹𝐶𝑛𝑡𝑈𝑝	𝑜𝑟	𝐹𝐶𝑛𝑡𝐷𝑜𝑤𝑛	|	0𝑥00	|	𝑖)		

𝑆𝑖	 = 	𝑎𝑒𝑠128_𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝐾, 𝐴𝑖), 𝑓𝑜𝑟	𝑖	 = 	1. . 𝑘	

𝑆	 = 	𝑆1|𝑆2|. . |𝑆𝑘	

          

The keystream includes the FCntUp or FCntDown values, which should mean that the keystream 

never repeats in the Node’s lifetime. The FRMPayload is then XOR’d with the keystream to 

encrypt or decrypt the data. Other data such as the FPort and FCNTUp are sent unencrypted. 

 

     

2.1.4 Integrity and Authentication      
The MAC Payload section of messages are signed to prevent manipulation of the cipher-text, or 

of other values such as the DevAddr, FCntUp or FCntDown values. For join request message MIC 

is calculated using AppKey which is the hardcoded Key for OTAA mechanism as described in 

2.12. Message integrity code for all the other messages are calculated using NwkSkey and Network 

server checks the integrity when message receives to detect unauthorized message manipulation. 

The 4-byte Message Integrity Code (MIC) is calculated as follows: 

       

𝑀𝑠𝑔	 = 	𝑀𝐻𝐷𝑅	|	𝐹𝐻𝐷𝑅	|	𝐹𝑃𝑜𝑟𝑡	|	𝐹𝑅𝑀𝑃𝑎𝑦𝑙𝑜𝑎𝑑	

𝐵0	 = 	 (0𝑥49	|	4 ∗ 0𝑥00	|	𝐷𝑖𝑟	|	𝐷𝑒𝑣𝐴𝑑𝑑𝑟	|	𝐹𝐶𝑛𝑡𝑈𝑝	𝑜𝑟	𝐹𝐶𝑛𝑡𝐷𝑜𝑤𝑛	|	0𝑥00	|	𝑙𝑒𝑛(𝑚𝑠𝑔)	)		

𝑚𝑎𝑐	 = 	𝑎𝑒𝑠128_𝑐𝑚𝑎𝑐(𝑁𝑤𝑘𝑆𝐾𝑒𝑦, 𝐵0	|	𝑚𝑠𝑔)	

 

2.1.5 Replay Protection  

Message replay attack which is also known as playback attack is network attack which transmits 

messages maliciously or fraudulently repeated or delayed. Lorawan uses message counters to 
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protect network over replay attack. For each End node device, there are two frame counters Frame 

Count UP(FCntUP) for uplink messages and Frame Count Down (FCntDown) for downlink 

messages. There is a limit value called Max Frame count Gap (MAX_FCNT_GAP) to keep sync 

in the uplink and downlink messages. 

 

2.2 Security Vulnerabilities of LoRaWAN 

LoraWAN has tried to provide the main security aspects confidentiality, integrity, authenticity, 

and availability up to a certain level we discussed them in the above section. Many people have 

studied about the security vulnerabilities of the LoRaWAN Network. Out of the Yang et al. [5] 

have analysed and categorized main possible attacks over a LoRaWAN Network into three 

categories confidentiality, availability and integrity as shown in Figure 10.  They have examined 

replay attack for ABP-activated nodes, eavesdropping, Bit-Flipping attack, Acknowledgement 

spoofing, and LoRa class B attacks. They have also presented a proof-of-concept experiment for 

each of these attacks. Their suggestions to mitigate these attacks are briefly explained below.  

 

Figure 10: Vulnerability categorization of LoRaWAN [5]. 

 

● To prevent the replay attack ABP activated devices should use non-volatile memory as 

newly proposed LoRaWAN specification-1.1[4] which will be implemented in the future 

to avoid the frame counter resetting. For OTAA activated nodes, after overflowing the 
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counter, a replay attack is possible but doing the activation procedure again avoid this 

problem and moreover for ABP activated nodes devices can be reconfigured to change the 

session keys. However, reconfiguring nodes in a sensor network is not practical also for 

OTAA activated nodes key management is not practical when hardcoded root keys are 

revealed. 

● Eavesdropping is possible while this AES block cipher uses a monotonically increasing 

counter. Using a random value will solve this up to a certain level but rekeying is needed 

when counter overflow is reached. Hence MCU’s use for End node devices having a 

limited memory maintaining storage of pre-used nonces are also challengeable. 

● Integrity checking is done at the Network Server using NwkSKey and decryption of 

payload at the Application Server using AppSKey but there is no integrity check at the 

Application server so Bit-Flipping attack is possible between Network Server and 

Application Server. This problem also is not solved by the new specification v1.1. They 

have proposed to implement another MIC for integrity checking at Application server to 

avoid this bit-flipping attack. 

● Thus, the spread-spectrum technique use in LoRa with high spreading factor takes a long 

time for transmission. Hence selective jamming is possible with LoRa, then ACK spoof is 

can be easily done and newly propose specification v1.1 also exist this problem. And 

replaying previously recorded ACK’s is also possible. To mitigate this problem, they 

suggest to include a cryptographic checksum to the ACK. 

 Other message classes of LoRaWAN also vulnerable to security attacks but we don’t discuss them 

in here this research. E Aras et al. [6] also have explored the security vulnerabilities of LoRa.  They 

discuss compromising the device and network keys, jamming techniques, replay attacks, and 

Wormhole attacks. They have concluded their exploration by highlighting the need for new key 

distribution mechanism and frame counter generation for AES CTR instead of pushing those to 

the developers end. 

Woo-Jin Sung et al. [11] have analysed the replay attack in LoRaWAN network when joining an 

End Node Device to the Network via OTAA for both fixed devices and moving devices. Instead 

of identifying a device using the Dev-Nonce they have proposed a way to distinguish the End Node 

Devices from the attackers. Their suggestion is a lower level identification of devices using the 

RSSI as a countermeasure and more over a proprietary Hand-Shaking between End Node Devices 

and Application server. However, their proposition is needed to be verified in practice. 
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Hence the root keys are hardcoded in Devices and distributed with the Network server and 

Application server, joining procedure of the End Node Devices to the Network is the most 

vulnerable point in compromising the security keys for plain text recovery and also for other 

security vulnerabilities discussed above in this section. Several researchers have research on 

vulnerabilities of the OTAA mechanism and explore the improvements and mechanisms to secure 

the joining procedure. S Tomasin et al. [12] have examined the possibility of DoS attack due to 

the regeneration of an already used Dev-Nonce in the End Node devices. Possibility of detecting 

a replay attack at the Network server also have discussed by them. They have used SX1272 LoRa 

radio modem for their experiments and proposed the possible attack strategies. 

Kevin Feichtinger et al. [7] also research on the vulnerabilities of Over The Air Activation of 

LoRaWAN and introduced a hybrid cryptosystem to encrypt the join request. This hybrid crypto-

system uses already implemented a symmetric cryptosystem and hardcoded AppKey to encrypt 

the join request of OTAA mechanism. The regional differences of LoRaWAN ISM bands taken 

into consideration by them to ensure the applicability of their solution for all bands. They have 

suggested implementing and evaluate presented handshake by them to compare the performance 

with the existing mechanism. Furthermore, suggest a replacement of DevEUI of join-request with 

timing information as further researches. 

LoRaWAN specification v1.1 [4] is proposed by LoRa to address the limitations of their latest 

deployed specification v1.0.2 [2]. In ov1.0.2 and previous specifications the Application Session 

key is handled by the Network server and also the Application key which is the hardcoded root 

key is also defined at Network Server. The main security keys have distributed among three parties, 

in v1.1 mainly they have introduced a set of new keys. Two root keys NwkKey and AppKey for 

Network layer and Application layer, three session keys are derived using these two root keys 

FNwkSIntKey, SNwkSIntKey for message integrity purpose and NwkSEncKey for confidentiality 

purposes of MAC command between End Node Devices and Network server. For previous uplink 

and downlink frame counters, they have introduced separate uplink counters for separate sources 

instead of one counter for all uplink messages in previous specifications. However, the Key 

Distribution and is still not handled by the LoRaWAN protocol because of two RootKeys. 

This preliminary study of LoRaWAN shows the security vulnerabilities and the approaches of 

others to mitigate those vulnerabilities and attacks. As a summarization following options are 

available to improve the security in LoRaWAN protocol. 
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● Alternative cryptographic algorithm to AES in CTR to provide more confidentiality with 

considering the limitations of the End Node Devices. 

● An alternative mechanism for security aspects of LoRaWAN instead of proposed new 

complex specification v 1.1 of LoRaWAN which is still vulnerable to the attacks. 

● Explore the applicability of the suggested device activation mechanisms, improve them or 

new suggestions. 

● Exploration of key distribution mechanism which supports to improve all the security 

aspects of LoRaWAN system and improve the maintainability of key deploying.  

For this research, we are going to explore the possibility of using a key distribution algorithm to 

skip the joining mechanism with hardcoded root keys in OTAA. For these capabilities of End Node 

devices with their processing, memory and power limitations have to be considered in detail when 

selecting an already existing Key Distribution algorithm.  

 

2.3 Key Management for LoRaWAN 

2.3.1 LoraWAN 1.02 Joining Procedure 

In section 2.1.2 of this chapter, we discussed the devices enrolment procedure of LoRaWAN 

network. ABP uses pre-shared session keys for secure communications. OTAA do key 

management by generating session keys based on the pre-shared root key which called as AppKey. 

Network server generates session keys for both itself and for the Application server. Hence no end 

to end communication between the sensor node and Application Server. Figure 11 shows the 

message flow of OTAA joining mechanism of LoRaWAN specification 1.02. In section 2.3 we 

discussed the vulnerabilities of Join request and proposed solutions by the researchers. But the 

revelation of AppKey makesthat sensor to an unsecure state. Key revelation possibility is high 

because it duplicates at both sensor node and Network server. If network server attacked whole 

system become insecure. The main problem is it wants to access each node physically to update 

the Appkey. This not practical when maintaining the system. 
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Figure 11: key exchange protocol in LoRaWAN 1.02 

 

2.3.2 LoRaWAN 1.1 proposed Joining Procedure 
 
Because of the vulnerabilities of existing key management of the joining procedure LoRaWAN 

system. LoRaAllience is proposing new version of the joining procedure by changing the entire 

system in their specification 1.1 [4]. They have proposed two root keys, NwkKey as root key for 

network server and AppKey as the root key of the application server. These two root keys are 

embedded to the Lora chip of the sensor node in the hardware level. These root keys are known 

by the Join Server which is newly proposed server for the LoRaNetwork. When Network server 

receives the join request it forwards the request to Join the server. Two session keys are generated 

at the Join server and deliver the relevant session key to the Network server and Application server. 

This key distribution is visualized in Figure 12 as a high-level diagram. In this key distribution, 

all the root keys are store in Join server so this architecture may fall in a single point of failure to 

be insecure the whole system. This new architecture of LoRa Alliance is still not released as a 

production. LoRa chips with hardware level embedded keys and algorithms are still not available 

in the system. Migration of existing LoRaWAN networks to this architecture is also needed big 

effort and cost. 
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Figure 12: proposed key exchange protocol in LoRaWAN 1.1 

 

2.3.3 Van Leent KDUM 
 
Van Leent et al. [8] from the Cybersecurity academy of Netherlands also has studied the 

vulnerabilities of existing Sensor node joining procedure and key distribution. To mitigate those 

vulnerabilities, they raised the need for key distribution mechanism for the existing LoRaWAN 

architecture. They studied about LoRa, LoRaWAN existing key management and security status 

of the system. They have discussed different types of cryptographic algorithms including key 

distribution algorithms. They analyse the power consumption of key distribution and 

authentication algorithms by referring to the existing literature. They have selected the Elliptic 

curve Diffie Hellman (ECDH163r) algorithm for key distribution and Elliptic curve Digital 

Signature Algorithm (ECDSA163) as Digital Signature algorithm to verify the shared public keys. 

But the existing literature that he refers to analyse the key distribution algorithms are not relevant 

to the limitations that we met at LoRa end nodes. Most of the general cryptographic algorithms are 

not compatible with the 8-bit word size microcontrollers and their processing and memory 

constraints. They haven't discussed the strength of 163r curve to provide the equivalent for KD as 

existing strength of the system. Therefore, there is a need for an analysis of key distribution 

algorithms with the limitations of LoRaWAN End Devices to find a key distribution mechanism 

which suits for the limitation of Lora End Nodes. They haven’t discussed the key rolling 
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mechanism for the static security keys. The system should analyse the different scenarios where 

existing static key revelation is possible. 

 

2.4 Summary 

We started this chapter with the background study of the LoRaWAN system. We discussed LoRa 

technology and why LoRa suitable for wide area networks as radio technology. Then we discuss 

the LoRaWAN Network, its architecture how it works, different types of communications and so 

on. Hence this research focuses on security, then we move to discuss the security in LoRaWAN. 

We discuss sensor device enrollment to the network, how it provides main security aspects such 

as confidentiality, integrity, authentication and replay protection. Many researchers have 

conducted on the security issues of the LoRaWAN network, we have discussed the identified 

security issues by the research community. Several researchers have raised the importance of 

having a key distribution for the LoRaWAN and we discuss how key distribution handled in 

existing implementation and new proposals. Finally, we conclude the literature review by 

identifying the research gap of the proposed solutions for the key distribution of LoRaWAN 

Network. 
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Chapter 3 

 

Methodology and Design    
      
This chapter outlines the proposed solution and the experimental designs for LoRaWAN key 

exchange. We discuss the direction of our research based on the conclusion of the literature review. 

Then we decide what kind of approach we should use for this research to resolve the research 

questions. Variable identification for key distribution mechanism in the context of LoRaWAN 

with its limitations is going to consider. Then the high-level experimental design for the ECDH 

protocol evaluation will be discussed. And also, we introduce the high-level architecture of the key 

distribution mechanism which is proposed by this research. 

 

3.1 Research Approach 
 
LoRaWAN is a system for sensor networks which has a long range of communication capability 

with Lora chips on sensor devices. In chapter two we have discussed the security vulnerabilities 

identified by many researchers. Most of those vulnerabilities are related to an existing joining 

procedure which is called Over The Air Activation (OTAA) in LoRaWAN. Lora Alliance is 

introducing a new security approach for OTAA joining procedure [4]. Van Leent et al. [8] has also 

introduced a key management protocol for LoRaWAN which will mitigate the security 

vulnerabilities of existing joining procedure. They have analysed the performances of existing key 

exchange mechanisms and have selected Elliptic Curve Diffie Hellman (ECDH) [24] key 

distribution mechanism as the most appropriate key distribution mechanism for LoRaWAN. Their 

analysis has not discussed the capability of running ECDH on LoRaWAN sensor nodes which 

have limited processing, memory and power. We designed this research to evaluate the practical 

applicability of Elliptic Curve Diffie Hellman key exchange on LoraWAN nodes and to propose a 

key exchange mechanism to exchange keys between three parties which improves the system 

security. 
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There are three research approaches using in the research community, quantitative qualitative and 

mixed approach. Discovering and selecting a suitable ECC implementation is a performance 

evaluation of selected implementations of ECC algorithm by analyzing their resource requirement 

on Lora end nodes. Hence this analysis deals with performance measures on Lora nodes and this 

is playing with numbers, when considering the security, it is a qualitative fact but we can discuss 

the security strength of different ECC curves using existing literature which describe the strength 

using the key size used by the algorithm. Finally, we can categorize this part as a quantitative 

approach.  

As the second part of this research, we propose a mechanism of key exchange between three parties 

of LoRaWAN system. Actually, this is based on the case study of the LoraWAN Sensor node 

joining mechanism and we try to propose a key distribution mechanism which improves the 

security level of the system. We discussed the security level of the mechanism which will be 

proposed by this research by building logic conditions using existing literature, then this part of 

the research can be considered as a qualitative approach of the research.   

 

3.2 Methodology 
 
Improving the system security is the objective of this research. We propose a key exchange 

mechanism for LoRaWAN Network considering its sensor node limitations to improve its security 

level. As Van Leent et al. [8] have presented the ECDH as the appropriate algorithm by analyzing 

the existing literature. Here we have considered the capability of running ECDH on LoRaWAN 

sensor nodes and applicability of ECDH to the LoRaWAN system. We broke down this work to 

several steps when achieving our goal. 

 

1. Variable identification for key distribution on sensor nodes 

2. Identifying relations between variables 

3. Setup simple LoRaWAN system  

4. Selecting existing implementation of ECDH 

5. Experimenting to select the key sizes of ECDH 

6. Designing key exchange mechanism between three parties 

7. Implementing proof of concept of key exchange for LoRaWAN Node 
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After identifying variables and relations between them, we set up a simple LoRaWAN system with 

one End Node Device, one channel LoRa Gateway and one Application. We used this setup to 

identify component registration process and Node Activation process. In component registration, 

we identified Lora Gateway registration, End Node Device registration, and Application 

registration.  

To integrate the ECDH base key exchange for LoRaWAN we want to implement the algorithm at 

two environments at special purpose embedded OS with fewer resources at Sensor Node side and 

general-purpose computers which not be a bottleneck for ECDH key exchange algorithms. There 

are various kinds of Elliptic Curves which have different resource consumptions, different security 

strengths. LoRaWAN End Node Device which is called as The Things Node [14] is powered with 

a microcontroller which has 8-bit word length. Most battery-powered sensor nodes use 8-bit word 

size microcontrollers. They also have relatively less processing power, less Random-Access 

Memory and also less flash memory. However, they consume less power consumption, hence they 

use for battery-powered sensor nodes. When selecting an ECDH implementation for LoRaWAN 

key exchange, we compared the performance analysis of different ECDH implementation using 

existing literature to select an ECDH implementation for LoRaWAN. Furthermore, we did 

experiments to measure the resource consumption of curve operations for the implementations 

which are still not in the existing literature. Flash memory consumption and memory for global 

variables are measured using the Arduino platform [44]. We measured Random Access Memory 

consumption by calculating the free space of memory using heap pointer and stack pointer. Instead 

of using electronic devices to measure power consumption, we measured the time consumption 

operations in the key exchange process. In cryptographic algorithms like Elliptic Curve operations 

they don’t have any point of using sleep operations. For Elliptic Curve operations they also don’t 

use GPIO1 operations instead of ALU2 operations. Then we can say the power consumption of 

operation is proportional to the time consumption of that operations under conditions mentioned 

above. We also considered security strengths like resistant to side channel attacks when selecting 

the Elliptic Curve implementation with the use of existing literature. 

After selecting an Elliptic Curve implementation for 8-bit microcontrollers, we wanted to select a 

key size of the selected Elliptic Curve to provide sufficient security for the system. Using a longer 

key size consumes relatively higher resources. We set up experiments with the necessary variable 

                                                
1 GPIO:- General purpose input output which allow user to interact with computer using voltage inputs and 
outputs. 
2 ALU:- Arithmetic and Logic Unit. 
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and function definitions to exchange two secrets. Then we measured flash memory allocation, 

memory for global data, stack data and time consumption for each operation in the same way we 

described previously in this section. 

Next step was to design the message flow to exchange two secret session keys between End Node 

Device, Application Server and between End Node Device, Network Server. We designed this key 

exchange to minimize the communications between End Node Device and other two servers 

because we need to minimize the power consumption of Key Exchange process to minimize the 

overhead on End Node Device and let it run for its maximum time. In the next chapter, we discuss 

the above steps in detail with experiments and results. 

 

3.2 Design Concerns 
 
We have proposed a key distribution mechanism for LoRaWAN and there are four parties involved 

in the communication of this system as we discussed in section one of chapter two under the 

overview of LoRaWAN. Sensor nodes, Lora Gateway, Network server, Application Server are the 

four parties and out of this four Lora Gateway switch the communication medium between Lora 

Radio and Internet. It blindly forwards all the received packets to the network server or to sensor 

nodes not being aware of the content. Sensor nodes send their data to the application server through 

the network server. Network server has the functionality of managing sensor nodes and 

Application server. Sensors want to communicate with both the Network server and Application 

server. But the application data should not reveal to the Network server.  

As Van Leent et al. [8] discovered in their research, generally ECDH is better as an algorithm in 

performance for secure key exchange and management. But the ability to run ECDH on a sensor 

node and also exchange keys with two parties may cause an unexpected effect to the sensor node. 

Because the sensor node consists of a microcontroller which categorized as a specific purpose 

computing unit with limited resources. Sensor nodes have limitations on processing power, flash 

memory which store program data, SRAM and battery power. Hence using high resource 

consuming cryptographic algorithm like ECDH on sensor nodes is not straight forward as running 

them on general purpose computers. Limitations of sensor nodes are the main concern of this 

research when introducing the key exchange mechanism for LoRaWAN.  

Basically, the ECDH algorithm describes the key exchange between two parties. But in LoRaWAN 

it participate three parties in communication. Therefore, we concerned the key exchange between 

three parties to ensure the end to end communication between sensor nodes and application server. 
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Authentication of end parties is also a need when exchanging the security keys. Hence 

authentication of sensor nodes was also a concern of this research. 

 

3.3 Variable Identification 
 
When performing the key distribution between a sensor node and another device, we wanted to 

consider the security level and the limitations of the sensor node. For dealing with this, we 

identified system variable which involves key distribution on LoRaWAN sensor nodes. 

 

● ECDH implementation for 8-bit microcontrollers 

● Share secret 

● Symmetric key 

● Security level 

● Power consumption 

● Memory consumption 

 

These variables can categorize to two parts, independent variables and dependent variables. Figure 

13 describes the variable categorization and their high-level relations. 

Purpose of using a key distribution mechanism is to share a secret key between two parties. Then 

using this shared secret, both parties can generate a symmetric key for security purposes like data 

encryption. Symmetric key can be generated or derived from shared secret using a different kind 

of Algorithms. When providing security, ethic is hiding the secret keys instead of hiding 

algorithms. Hence the system security totally depends on the shared secret, we considered both 

share secret and symmetric key as independent variables. Other three variables which are security 

level, power consumption, and memory consumption depends on the shared secret size which is 

shared using the ECDH protocol. To have different shared secrets we wanted to use different 

curves ECDH algorithm. Different curves provide different security levels and resource 

consumption is also different. 
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Figure 13: Identification of dependent and independent variables of key distribution and their 
relationships. 

After selecting the shared secret size, we wanted to design key exchange between three parties. 
Sensor node should communicate with both Network server and Application server bidirectionally. 
When designing the key exchange between three parties we considered three dependent variables 
memory consumption, power consumption and security level. 

 

3.4 High-Level System Architecture for Key Distribution 
 
With the result of the experiments, we designed a Key Distribution mechanism which uses ECDH 

as the base cryptographic algorithm. Here with this Architecture, we propose the algorithms, 

different types of keys, main variables for each party take part in LoRa Key Distribution. And we 

present a message flow for efficiently distribute the secrets between sensor node, network server, 

and the application server. Here we present the high-level architecture for LoRa WAN key 

distribution as visualize in Figure 14 and at the end of this research, we present the architecture in 

detail. In high-level architecture, a sensor node takes part in two key distributions one for the 
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Application server and another one for the Network server. Sensor node should contain its private 

key, the public keys of all including itself and a shared secret for each other party. Lora gateway 

is also a party take part in Lora communication but it doesn’t take part in key distribution protocol. 

Its functionality is to forward packets blindly between two networks Lora radio and internet.  

 

Figure 14: Suggested Key distribution for LoRaWAN 

 

3.5 Summary 
 

In this chapter, we discussed our approach for research on using ECDH as the cryptographic 

algorithm for Key Distribution in LoRaWAN. We stated with the facts found in the literature 

review and built our approach. Then we discussed how we identified the system variables, their 

categorization, and relations. We briefly explained the methodology and the steps of reaching the 

goal. Finally, we proposed the high-level key distribution architecture for LoRaWAN Network 

using the ECDH as the cryptographic algorithm to ensure all the security aspects of the system. 
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Chapter 4 

 

Experiments and Proposed Solutions 

4.1 Relationships between variables 
 
We identified the variables of the LoRaWAN system when providing the data security of 

LoRaWAN communication. To secure the sensor data, AES encryption is used in the existing 

architecture and a common key which is called as a symmetric key should be shared between the 

parties who are going to encrypt or decrypt the data. Using Elliptic Curve Diffie Hellman key 

exchange we can share a common secret between two parties. Then we can generate the session 

key at both parties using the shared secret. To generate the session key, we can use an algorithm 

such as hashing or simply we can take the first N bits of the shared secret if the shared secret is 

larger than the expected symmetric key. However symmetric key generation using the shared 

secret cannot improve the system security. We cannot use any other secret in this key generation 

because then sharing this other secret would be another problem. With this argument, we can 

decide that the security level of the symmetric key is relatively proportional to the security level 

of the secret which shared by the key distribution mechanism. We summarise these arguments 

which can be considered as the facts in data security in the following two equations. 

 

● 𝐷𝑎𝑡𝑎	𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝑜𝑓	𝑎	𝐿𝑜𝑅𝑎𝑊𝐴𝑁	𝑚𝑒𝑠𝑠𝑎𝑔𝑒		𝛼		𝐾𝑒𝑦	𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝑘𝑒𝑦		
	

● 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝑘𝑒𝑦		𝛼		𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	𝑜𝑓	𝑡ℎ𝑒	𝑠ℎ𝑎𝑟𝑒𝑑	𝑠𝑒𝑐𝑟𝑒𝑡			
 
Our main focus is to test the ability of ECDH with the sensor node limitations, all variables that 

we identified should be tested with the sensor device. We want to maximize the security level 

LoRaWAN system. Limitations at the sensor node is the bottleneck of the system in power, 

memory and processing. Hence, the sensor node may be a barrier when maximizing the security 

level of key distribution. When considering the Elliptic Curve Cryptography there are several 

standard Elliptic curves. Performance and security features are different from curve to curve. When 

considering a specific curve, we can use it to share different sizes of secrets. The public key and 

private key pair directly related to the shared secret. Running an Elliptic curve cryptography 

algorithm consumes relatively a more power of sensor node and a considerable amount of memory. 
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Both power and memory consumption relatively proportional to the key sizes using in the 

algorithm. And also, both power and memory consumptions depend on the selected curve 

implementation. Following two equations represent the proportional relationship of key sizes and 

curve implementation to power and memory consumption. 

 

● 𝑃𝑜𝑤𝑒𝑟	𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑘𝑒𝑦	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛		𝛼			𝑘𝑒𝑦𝑠𝑖𝑧𝑒	&	𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	

● 𝑀𝑒𝑚𝑜𝑟𝑦	𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑘𝑒𝑦	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛		𝛼		𝑘𝑒𝑦𝑠𝑖𝑧𝑒	&	𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	

 
In this research, we select suitable implementation of ECC for 8-bit microcontrollers using existing 

both existing literature and our experiments. Then the selection of the key size for the selected 

implementation will discuss with our experiments. The intention of selecting both implementation 

and key size is having a trade-off between security and resource consumption. 

 

4.2 Setup LoRaWAN system 
 
LoRaWAN existing system has four main components as we mentioned in previous chapters. They 

are Sensor Nodes, LoRa Gateway, Network Server, Application Server. The network server is 

provided by them and we need to set up other three components and register them in their server 

which is the network server. First, we need to Register our Application in the Network Server. We 

should select a message handling service URL and should add a unique identifier for the 

Application which called Application EUI. Handler service is the service which does the message 

exchange service for the network server. LoRa has setup different handler services for different 

regions. This EUI should be Hardcoded in each End node as well as in the Application Server. It 

ensures the communication between the Application and the relevant End Nodes. Network server 

forward received packets by filtering them using their Application EUI. Figure 15 shows the 

details of the already registered Application in the Network Server. See Appendix 1 for the Joining 

details of Devices at the Network Server. 
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Figure 15: Overview of a registered Application 

 
 
After registered the Application We can add the devices for the Application. We want to set 

Application EUI, Device EUI and App Key. Application EUI is common for an Application and 

Application EUI and App Key should be unique for each End Node Device. When registering a 

Node, the joining mechanism (OTAA or ABP) also should be selected. For ABP devices Network 

session key and Application session key should add instead of App Key. For OTAA devices, 

Network session key and Application session key are generated when a device is joined to the 

network. For both joining methods device MAC addresses are received when they connected to 

the Network server.  Settings window of a Device which in Figure 16 shows the variables we set 

at the registration of the Device. 
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Figure 16: Settings window of a registered Device 

 
 

In this research, we investigate the capability of running ECDH base key exchange on Sensor 

Node. Application Server is a computer which may be a server version or a general-purpose 

computer which has enough resources for cryptographic algorithms of Key Exchange mechanism. 

Hence, we do not need to focus on the Application Server side and we are not going to Implement 

and setup an Application server.  

A LoRa gateway needs to switch the messages between two networks LoRa network and the 

internet. The Things Gateway [25] introduce by LoRa Alliance support for multi-channel and 

multi-frequency bands and cost also high for these gateways. We do not use End Node Devices of 

different frequency bands. Hence, we setup a single channel gateway for our experiments. We use 

ESP8266 [26] wifi embedded microcontroller chip as the processor and RFM95 [27] LoRa radio 

chip which supports 868 MHz frequency range for our LoRaWAN gateway. We use ESP Single 

Channel Gateway library for Arduino as the firmware of our gateway. We set the Things Network 

Network server IP to forward the received LoRa packets to the Network server. We set the SSID 
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and password of a wifi network to connect the gateway to the internet. This single channel gateway 

also has a tiny web server to set the configurations and we use that to set the configurations like 

LoRaWAN spread factor. All the settings we use at our gateway shows at the Figure 17. 

 

 
Figure 17: Single channel gateway configuration interface 

 

For the sensor devices, LoRa Alliance introduces a sensor node which is called as “The Things 

Node” [14] and a breakout board called “The Things Uno” [13] for designing the sensor nodes. 

LoRa Alliance design application-specific custom sensor nodes for user requested designs with 

the required sensors for user applications. Both devices consist of the same microcontroller 

Atmega32u4 [15]  and same radio module RN2483 [16]. For our experiments, we use LoRa32u4II 

[18] breakout board which consist of the same microcontroller but consist of a different LoRa radio 

chip which is SX1276 [17].  LoRa32u4II have 28672 Bytes flash memory for code and data space, 

2.500KB of Static RAM, 1KB of EEPROM, 8MHz clock speed at 3.3V and 8-bit word size.  

SX1276 radio chip that uses in LoRa32u4II is low in cost in the market and support for low 

communication ranges with compared to RN2483 chip. Both of these radio chips use LoRa 

modulation as the data modulation technique and this research consider the capability of running 

the Key Exchange mechanism using ECDH. Hence using a different radio chip of a different 

manufacturer doesn’t affect for our experiments. Table 1 summarizes the differences of 

LoRaWAN sensor node and the Node we use in this research. 



 

 
 
 

43 

device Microcontroller LoRa Radio chip 

The Things Node ATMega32u4 RN2483 

The Things Uno ATMega32u4 RN2483 

LoRa32u4 II ATMega32u4 SX1276 
 

Table 1: Compare End Node which we use with the Node provide by LoRaWAN  
 

 
Then we want to configure the End node devices with the parameters which we set at the Network 

server. We use the Arduino-MCCI library [28] version 2.3.2 for the firmware of the sensor node 

device which is an extended version of the IBM Arduino-LMIC library [19]. This library supports 

LoRaWAN 1.02 specifications which are the current product ready version of LoRawan. We Setup 

LoRa Node with Spread Factor 9, LoRa channel ‘1’ as the LoRa radio configurations. LoRaWAN 

facilitates different communication features, but we do our experiments with minimum features 

which must be there to continue communication between LoRaWAN components. MCCI library 

allows users to configure the project by modifying ‘project_config/lmic_project_config.h’ at the 

root directory of the library and we refer the configuration instruction in library `README.md`. 

The microcontroller used in Sensor Node executes the processor instructions sequentially. When 

no interrupts occur, extra features of LoRaWAN do not cause for Joining procedures power 

consumption and stack memory allocation. But these features cause for overall power consumption 

of the Sensor Node. However, these extra features of LoRaWAN cause for global data space and 

flash memory space. We disable the extra features of MCCI implementation and measure the flash 

memory and global data usage for OTAA of the Things Node.  

We do the experiment to measure resource consumption of Session key exchanging process of 

existing implementation which is LoRaWAN specification 1.02. We use Arduino IDE to measure 

the flash memory allocation and memory allocation for global data as we discussed in the 

Methodology section in chapter 3. First, we disable the joining by defining “DISABLE_JOIN” in 

lmic_project_config.h header file under the “project_config” directory of MCCI library and 

measure memory allocations. Then we do the same experiment with enabling the joining. We use 

“Memory Free” library [37] to measure the main memory allocation at run time. We measure free 

space of RAM at initiate joining, send join request, join success and send data and we calculate 

RAM allocation at each time. We discuss the obtained results in the evaluation chapter by 

suggesting the key exchange mechanism.  
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4.3 Selecting ECC implementation for LoRaWAN 
 
Van Leent Analysed performance of cryptographic algorithms such as RSA [36], Diffie Hellman 

[38], Elliptic Curve Diffie Hellman (ECDH) [24] using existing literature as we mentioned in the 

literature review. They suggest having a new key distribution mechanism instead of OTAA in 

LoRaWAN using ECDH algorithm. They also suggest using ECDSA [39] algorithm to avoid the 

vulnerabilities of exposing to the man in the middle attacks. Now it has different types of elliptic 

curves and different implementations. Some of them are very high in resource consumption.   

When integrating ECDH key exchange to LoRaWAN, first we need to check the resource 

availability of the system for ECDH. We consider RAM space consumption, time consumption 

and flash memory consumption to check the resource availability. It is sufficient to check the 

resource availability at the End Node devices which is the resource bottleneck of the system. When 

selecting the ECC implementation for LoRaWAN we first check the flash memory availability to 

integrate different implementations of ECC. LoRaWAN stack implementation, application 

implementations, key exchange implementation and hardcoded variables all should be stored at 

the flash memory. we check the available code space after allocating space to LoRaWAN stack 

and there should be enough space for application code after implementing the key exchange. 

 After selecting the implementations, we check the availability of RAM to run the system with 

LoRa stack, key exchange and application. This type of microcontrollers executes the processes 

sequentially and we disable the LoRaWAN interrupts for our experiment setup. Hence key 

exchange \does not run parallelly with other processes and stack allocates only for one process at 

a time. However global data for all programs allocate some SRAM memory space. The remain 

RAM space is available for the running process. We check whether the remaining RAM is enough 

or not for the key exchange processes and select matching implementations out of previously 

selected implementations. 

Finally, we consider the time consumption for key exchange for different key sizes of the selected 

implementations to select the better implementation of ECC for LoRaWAN. The execution time 

of ECDH cause for the battery life of the Sensor Node because cryptographic computations 

consume more processing power. However, Key Exchange is used to share a symmetric key and 

this operation does not happen frequently because of that taking a few seconds to exchange keys 

is also bearable. 

Zhe Liu et al. from a Microsoft research group propose FourQ [20] as a more efficient and secure 

implementation of Elliptic Curve. They have used IAR Embedded Workbench [40] which is a 
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proprietary development platform for their testings and evaluations with 8-bit, 16-bit and 32-bit 

microcontroller architectures. We consider the experiment results which target 8-bit 

microcontrollers because in this research we target 8-bit microcontrollers. As the 8-bit 

microcontroller, they target ATxmega256A3 [45] which consist of more memory and processing 

resources, 32 MHz clock speed, 256 KB flash, 4 KB EEPROM, 16 KB SRAM. However, this 

microcontroller is power consumable than ATmega32u4 which we use in LoRaWAN nodes. Zhe 

Liu et al. have analysed and evaluated performance and memory consumptions of their 

implementation “FourQ” with Curve25519 [23] and µKummer [41] ECC implementations. We 

use their analysis and our experiments to select the ECC implementation for LoRaWAN. 

 

 
Figure 18: ECDH and ECDSA algorithms on the Sensor node 

 
 
We set up an experiment to test the ability to run ECDH on LoRaWAN Node. Design of the 

experiment shows in Figure 18. We test micro-ecc [22] which is an implementation of standard 

SECP curves [29], nano-ecc [42] which is a fork of initial micro-ecc and also curve25519. Our 

experimental setup consists of a LoRa32u4 II module connected to a pc via a serial connection. 

Here we set up with the minimal requirement to test the running capability ECDH key exchange, 

ECDS, and ECDS verification on the same node. Hence, source code burned to the microcontroller 

with variables for two key pairs, signature, verification string and a message string. 

We consider the memory consumption to select the ECC implementation for LoRaWAN. We use 

the results of Zhe Liu et al.’s FourQ evaluation and results of our experimental setup discussed 
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above. All the results show that remain flash memory space after setting up LoRaWAN is not 

enough for any implementation. Hence, we need a new implementation of the LoRaWAN stack 

which consumes less memory. However, we select micro-ECC library implemented by Kmacky 

which implements the SECP curves for different key sizes as the suitable ECC implementation for 

LoRaWAN Nodes to try with LoRa stack because it consumes less code space compared to other 

implementations. We discuss the results which we use to evaluate and selection of micro-ecc 

implementation at the evaluation chapter. 

 

4.4 Selecting ECDH key sizes 
 
An Elliptic Curve implementation can support one or more key sizes. As an example, curve 25519 

only supports 256-bit private key size and Kmacky’s micro implementation supports 4 key sizes. 

Configuring an implementation of an ECC implementation with different key sizes are also 

considered as different curves. Different key sizes provide different security levels and the security 

level is proportional to the key size. OpenSSL also uses Elliptic Curve Diffie Hellman in sharing 

the session key for transport layer security (SSL/TLS). OpenSSL wiki [21] discuss the security 

levels of asymmetric key cryptographic and Elliptic curve cryptography comparing with 

symmetric key security levels. The standard of measuring Security level of asymmetric key and 

ECC cryptography is comparison with the symmetric key security levels. As an example, security 

level of 3072 asymmetric key sizes and security level of 256 Elliptic Curve key size are equal to 

the security level of 128-bit symmetric key security level. A symmetric key security level is 

measured with the time takes to brute force the key. The standard comparison between 

Asymmetric, ECC and Symmetric keys is shown in table 2. 
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Symmetric Key Length Standard asymmetric Key 
Length 

Elliptic Curve Key 
Length 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 512 

 
Table 2: key strength comparison of symmetric, asymmetric and Elliptic Curve  

 

LoRaWAN provides 128-bit confidential level for its sensor data. Hence, key distribution should 

provide equal or higher security level in key exchange mechanism and otherwise, the symmetric 

key will be breached easily through key exchange mechanism than brute forcing it. We have 

selected micro-ecc as a suitable implementation for the LoRaWAN End Nodes. Micro-ecc consists 

of two types of elliptic curves for 256-bit key sizes, Koblitz curve and random curve. In SEC2 

standard these two curves names as secp256k1, secp256r1 respectively. Micro-ecc also supports 

other key sizes 160, 192, 224 bits as random curves. At the Evaluation chapter, we discuss the 

selection of key size for LoRaWAN key exchange.  

 

4.5 Key Distribution Mechanism 

4.5.1 Key Exchange 
 
In LoRaWAN architecture we register Our Applications and End Node devices at the Network 

server. Then the Network server maintains the communication between End Nodes and 

Application server. Receive packets from End Nodes through Gateways, Handle End Node joining 

and re-joining. In existing OTAA joining mechanism End node sends a generated random number 
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to the Network server. Then Network server generate another random number and send it back to 

the End node. Then both parties generate two session keys and Network server also sends the 

generated session key of the Application Server to the Application Server. At the literature review, 

we discuss the vulnerabilities of this existing OTAA and proposed solutions to it. Using a key 

exchange mechanism is one proposed solution to increase the security of Joining mechanism. 

 In our research, we have selected a suitable implementation of ECC and a key size for the selected 

implementation. Then we need to introduce a key exchange mechanism using Elliptic Curve 

Cryptography. We want to introduce the message flow between LoRa End Node and both 

Application Server and Network Server. Our aim is to reduce the resource consumption at the End 

Node device. Sensor node has very limited memory space and also limited battery power. Hence, 

we should reduce code lines, static variables, run-time variables to make this memory efficient. 

Also, executions of cryptographic functions and the number of communications for key exchange 

should be reduced. Initially, when a node joins the network, the node should be registered at the 

Network server under the relevant Application. They use 64-bit Extended Unique Identifiers (EUI) 

to identify the End Node Devices and Applications. After End Node Devices Deployed, it wants 

to initiate the communication from the End Node Device side. To have secure communication 

between three parties, we want to exchange two secrets from the sensor node. As mentioned in the 

scope we assume that we have already secured communication channel between the Network 

server and Application server. According to LoRaWAN architecture sensor node communicate 

between Application Server through the Network server. Hence, we try to exchange two secrets 

using a single communication cycle.  First, Sensor Node generates an ECC key pair and shares the 

public key to both Network server and Application server. Both Application server and Network 

server generates keys pairs and send their public keys as a single message to Sensor Node through 

the Network Server. Then Sensor Node can generate two secrets for two servers. LoRaWAN stack 

needs a 128-bit session key. We can use a hash algorithm or simply first 128 bit of shares secret 

as the session key. Figure 19 shows the message flow of the proposed key exchange mechanism 

for the LoRaWAN network.  
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Figure 19: Initial key exchange between Sensor node and servers. 

 

4.5.2 Node Validation 
 
When exchanging secrets to generate session keys we should authenticate all the parties take part 

in the key exchange. Otherwise bogus parties can act as real parties. In general, Diffie Hellman 

Key Exchange is vulnerable to man in the middle attack. Hence, ECDH also vulnerable to man in 

the middle attack. Authentication mechanisms can use to prevent the man in the middle attack also. 

With Elliptic Cryptography, Elliptic Curve Digital Signature Algorithm can be used to authenticate 

a party. In LoRaWAN System we want to Authenticate all three parties, End Node Devices, 

Application Server and also Network Server. Typically, public keys of End parties are 

authenticated with public key certificates which are issued by Trusted Certification Authorities. 

But for LoRaWAN System it is not practical to use public key certificates hence the nodes are self-

survived. 

When a new Node Deployed, it initiates communication by doing the key exchange. At this time 

sensor node want to authenticate its identity to other parties. Hence, Application server is already 

 
P1 - ECC private key of End Node 
g1 - ECC public key of End Node 
 
P2 - ECC private key of Network server 
g2 - ECC public key of Network server 
 
P3 - ECC private key of Application 
Server 

 
S1 - shared secret between Node and Network server 
S2 - shared secret between Node and Application server 
 
SK1 - session key between Node and Network server 
SK 2 - session key between Node and Application server 
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authenticated to the system, it is enough to authenticate the identity of End node to one of two 

servers. Network Server is a third-party common Server for many applications and there should 

be an end to end communication between Sensor Nodes and Applications Server. Hence, we decide 

to authenticate all the Sensor Nodes to its application server. If authentication of a node fails, then 

Application Server can request to the Network server to ignore that End Node Device. We 

introduce a unique root secret for each End Node Device then this should be known by the relevant 

application. The revelation of a secret of a node does not affect other nodes or servers but revelation 

root secrets at Application Server effect for all End Nodes. As a solution for this, at the Application 

server side, a Hardware Secure Module (HSM) [33] can be used to secure all the root secrets of 

end nodes. To authenticate the identity of the two Servers, we introduce a root elliptic curve key 

pair for the Application Server. The public key of the Application Server key pair wants to share 

with all the Sensor Nodes relevant to that Application. The revelation of the public key at a sensor 

node is not a problem because it is the public key but revelation of the private key of Application 

needs to update all sensor node and Application to re-setup the security. Figure 20 describes the 

steps of key exchange with authentication. First Sensor Node generates a key pair and sends public 

key and Device EUI to the servers. Here we send Device EUI to identify the Node at the Network 

server then it can redirect the message to relevant Application Server. Then key pairs generated at 

two servers and also secrets generate using Sensor Nodes public key. At the Application server 

concatenation of public keys of both servers are signed and send to the Sensor Node. Then Sensor 

Node can authenticate received public keys of both servers and generate two secrets and session 

keys to securely communicate with two servers independently. Finally, to authenticate the Sensor 

Node it encrypts its root secret using generated session key of Application Server and sends it to 

Application Server through the Network server. Application Server Authenticate the Sensor Node 

by comparing the root secret and inform Network Server with the authentication status. 
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Figure 20: Initial key exchange with party authentications 

 

4.5.3 Key Rolling 
 
Key rolling can be done in two ways with this system. One is using the existing session key to 

encrypt a new session key and share it with other parties. This should be done before someone 

breach the existing session key. After a suspect situation of attack, we cannot trust the existing key 

anymore because of that rejoin is required. Sensor nodes are automated and they don’t have 

resources to run any intelligence programs with them to detect suspicious situations. Hence, 

Network server should initiate a key exchange process. If Network servers ask Sensor node to 

initiate join, it creates some communication overhead on Sensor node and more communication 

steps need more power. And if the sensor node initiates the rejoin it should wait until the server 

P1 - ECC private key of End Node 
g1 - ECC public key of End Node 
 
P2 - ECC private key of Network server 
g2 - ECC public key of Network server 
 
P3 - ECC private key of Application Server 
g3 - ECC public key of Application Server 

root_secret_S - Root secret of sensor node 
pA - Root private ECC key of Application Server 
gA - Root public ECC key of Application Server 
 
S1 - Shared secret between Node and Network server 
S2 - Shared secret between Node and Application 
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SK1 - Session key between Node and Network server 
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responses to complete the session key generation. In our solution, instead of asking the Sensor 

Node to initiate Network Server can initiate the rejoin as describe the steps in Figure 21.  

 

 
 

Figure 21: Re-join of sensor node initiate by Network Server. 

 
 
Network server initiates the re-join of a Sensor Node by generating an ECC key pair for him and 

forward public key to the Application Server to create an authenticated message. The application 

server also generates a key pair and send the two public keys and the signature of them with 

Applications root private key. Then the Sensor Node receives join request with other parties’ 

public keys. The sensor node can check the authentication of public keys and generate the session 

keys for both parties. Then Sensor Node can encrypt its root secret by new session key and send it 

with the public key to severs.  The application can verify the Sensor Node by decrypting and 

checking the secret and both servers can generate the session keys. 

 

 

4.6 Proof of concept implementation for Sensor Node 
 
After identifying the appropriate implementation, key sizes and designed message flow we need 

an experimental design to test the capability of running the ECDH key exchange mechanism at the 

Sensor Node. When selecting implementation and at the evaluation of it we show that with existing 

LoRaWAN stack and implementation for two key exchange it remains very limited flash space(6% 

of total flash memory) for Application Code. Hence, we use general LoRa communication stack 
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for our experiment instead of heavy LoRaWAN stack. We design the experiment setup with two 

sensor nodes and a general-purpose computer as shown in Figure 22. Both Sensor Nodes have the 

same code with variables and parameters which needs for key exchange between three parties. We 

measure the flash memory, memory allocation for global data, stack memory allocation at run time 

and time consumption for cryptographic operations in key exchange mechanism at Sensor Node. 

We define variables for key exchange between three parties according to the proposed design. We 

execute cryptographic functions according to that design. But we don’t implement Application 

server or Network Server sides. Instead of two servers, we use another LoRa node simulate the 

messages for three party key exchange. For a symmetric key generation, we use a simple 

mechanism which is selecting the first 128 bits out of 256-bit shared secret instead of using the 

hash function. This is not a security problem because 256 ECDH also provides 128-bit security 

level. We discuss the obtained results in the evaluation chapter. 

 
Figure 22: ECDH and ECDSA algorithms on Sensor node 
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4.7 summary 
 
We identified the relations between identified variables for the key exchange mechanism for 

LoRaWAN. Before suggesting a solution, we set up the LoRaWAN system and investigate the 

resource availability of the Sensor Node. Then we discuss the selection of ECC implementation 

for LoRaWAN using existing literature and our experiments. Then we discuss the experiments to 

select a suitable key size for the key exchange. After that, we propose the basic key exchange 

mechanism for LoRaWAN. At the next part, we discuss the End party authentication of the key 

distribution and suggest the detailed design with a minimum number of message parsing for the 

key exchange. Finally, we discuss the re-joining of a Sensor Node to the system and proposed the 

steps to re-join with the minimum number of steps at the Sensor Node side for reducing the power 

consumption. 
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Chapter 5 
 

Results and Evaluation 

5.1 ECC Algorithm Evaluation 

5.1.1 ECC implementation evaluation 
 
Before selecting the ECC implementation for LoRaWAN we set up the LoRaWAN network and 

investigate the resource availability at the Sensor Node with minimum features of LoRaWAN 

stack as discussed in the previous chapter.  
 

Features Memory usage (Bytes) 

Debug Level Interrupts Ping Beacon OTAA Flash Memory Global Data  

0 ᙭ ᙭ ᙭ ᙭ 16370 1196 

0 ᙭ ᙭ ᙭ √ 18532 1286 

 

Table 3: Memory consumption with and without OTAA. 

 

According to the results measured in Table 3, OTAA needs 2162 (18532-16370 = 2162) bytes out 

of flash memory size 28672 Bytes, which is approximately 7.54% flash memory. It uses 90 bytes 

which is 3.6 % of main memory size 2.5 KB. This statistic says that OTAA joining mechanism 

consumes relatively fewer resources at End Node. We also measure the main memory consumption 

of OTAA joining mechanism and observed main memory consumption at different stages as in 

Table 4. We observed maximum SRAM allocation at the data sending stage after Node joined to 

the Network. We also measure the time consumption for the OTAA joining procedure. It takes 

5500 milliseconds on average with transmission times.  
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Status  SRAM3 Allocation (Bytes) 

Init join 1333 

Send join request 1363 

Joined 1345 

Send Data 1381 

 

Table 4: RAM allocation at LoRaWAN OTAA 

 

In the previous chapter under ECC implementation selection, we discuss four implementations 

of Elliptic Curve for 8-bit AVR microcontrollers. Liu, Zhe, et al. have analysed and evaluated 

the resource consumptions of the other two implementations µKummer and Curve 25529 with 

their implementation FourQ. We want to evaluate ECC implementation with both key 

exchange and digital signature functionalities for our work. However, at Liu, Zhe, et al. 

evaluation digital signature algorithm is not there for Curve 25519. Hence, we take the 

evaluation results of µKummer and FourQ from Liu, Zhe, et al. work and we did experiments 

as describe in the previous chapter for Curve 25519 and SECP curves of Micro-ecc 

implementation. All the curves evaluate here provide 128-bit security strength. 
 

Implementation Function Parameters Memory 

Code + data stack 

µKummer ECDH - > 9,490 812 

ECDSA - > 16,516 992 

FourQ / 
SchnorrQ 

ECDH w4 = 4, v5 = 4 30,820 + 980 2601 

w = 5, v = 5 35,484 + 980 2601 

ECDSA wp6 = 6 38,334 + 858 4957 

wp = 8 56,678 + 858 4957 

                                                
3 Static Random-Access Memory which uses flip-flops to store bits. 
4 W: window size of ECC scalar multiplication 
5 V: number of internal tables of ECC scalar multiplication 
6 wp: 
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Curve 25519 ECDH - 11,408 + 468 512 

ECDSA - 24,890 + 494 570 

Micro-Ecc 
Secp256r1 

ECDH ol7 = 2 11502+559 646 

ECDSA ol = 2  14108+528 710 

Micro-Ecc 
Secp256k1 

ECDH ol = 2 11578+559 646 

ECDSA ol = 2 14184+527 710 

 

Table 5: Memory consumptions for different ECC implementations for 8-bit AVR 

 

According to Table 4, 12302 bytes of free flash memory space and 1364 of free RAM space is 

available with minimum features (without OTAA joining feature) of LoRaWAN stack. FourQ 

cannot run in any way in LoRaWAN Sensor node because required flash and RAM is very high 

than total space of the Sensor Node. To run the ECDSA algorithm with required variables it needs 

more than the available free space at the Sensor Node.  

 

 
Figure 23: Flash Memory and Main Memory allocation of ECC implementation 

 
Stack graphs in Figure 23 show the total of flash memory allocations and main memory 

allocations for ECDH and EDSA for each implementation. Curve 25519 consumes lesser main 

memory but needs higher flash memory than free. And it is more than 80% of total flash 

memory for Curve25519 ECDSA. The µKummer and micro-ecc consume relatively less space 

                                                
7 ol - compiler optimization level for avr gcc 



 

 
 
 

58 

and Micro-ecc is the lesser. However, only ECDSA of µKummer consumes than 50% of Sensor 

node flash space and for micro-ecc it is less than 50%. An open source implementation of 

µKummer 8-bit AVR is also not available. Hence, we select Micro-ecc as the suitable 

implementation. Furthermore, to test the capability of using Micro-ecc. For that, we test with 

both ECDH and ECDSA with in the same code and obtained results in Table 7. It consumes 

less than flash memory usage for µKummer ECDSA and this verifies that Micro-ecc is more 

suitable than µKummer in memory wise.

 

Implementation function parameters code+data ram 

Micro-Ecc 
Secp256r1 

ECDH, ECDSA ol = 2 14702 + 655 841 

Micro-Ecc 
Secp256k1 

ECDH, ECDSA ol = 2 14778 + 655 841 

 
Table 6: Memory consumption for both ECDH and ECDSA for Micro-ecc  

 

5.1.2 Micro-ecc key sizes evaluation 
 
As we discussed in previous chapter, after selecting the Micro-ecc implementation we do 
experiments to select a suitable key size. The experiment results are evaluated here in memory 
wise, efficiency wise and security level wise. 
 
 

5.1.2.1 Memory allocation 
 
According to the experimental setup of key size evaluation that we discussed in the previous 

chapter, we obtained results and here we graph memory them as visualized in Figure 24. It shows 

the memory allocation out of total space for both flash and RAM spaces. See Appendix 2 for the 

obtained results. Memory wise, we cannot observe a significant difference for different curves 

which represents different key sizes. 
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Figure 24: Flash memory and RAM consumption for different curves of Micro-ecc.

 

5.1.2.2 Time consumption 
 
We measure the time consumption for different cryptographic functions of ECC with the same 

experimental setup for key size selection. Time consumptions are obtained for secret generation, 

key generation, signature generation and signature verification. Original results can see in 

Appendix 3 and here Table 7 shows the Average values for time consumption of each function.  
 

Curve Key gen (ms) Secret gen (ms) signature gen (ms) signature verify (ms) total 
160r1 2162 1996 2607 2299 9064 
192r1 3322 3321 3769 3851 14263 

224r1 5030 5031 5608 5877 21546 
256r1 8236 8238 9021 9512 35007 
256k1 6870 6871 7555 7577 28873 
 

Table 7: Time consumption for both ECDH and ECDSA for Micro-ecc. 
 

We visualized these results as a stack graph in Figure 25.  According to the graph, short key sizes 

are more efficient than the higher key sizes. Higher key sizes provide higher security level than 

lower keys. Micro-ecc implementation provides two curves for 256 key size. 256r1 which known 

as random curve and 256k1 which known as Koblitz curve. In performance wise, Koblitz curve is 

better in all cryptographic functions. 



 

 
 
 

60 

 

Figure 25: Performances for different curves of Micro-ecc. 

 

5.1.2.3 Safety Level 
 
We evaluate the key sizes in memory consumption wise and efficiency wise. Now we want to 

evaluate security wise. D. J. Bernstein and T. Lange have examined the safety of different 

elliptic curves [30]. They have discussed the safeness of Elliptic Curves against 11 security 

requirements. Curves in micro-ecc doesn’t satisfy all 11 security requirements. Both 

secp256k1, secp256r1 doesn’t satisfy 4 security requirements out of 11 and secp224r1 doesn’t 

satisfy 5 security requirements. However, they provide a sufficient security level. The most 

popular cryptocurrency platforms Bitcoin [31] and Ethereum [32] also still uses secp256k1 

curve because of its efficiency and safety.  Hence here we propose to use secp256k1 standard 

curve for LoRaWAN End node. The security can be increased by doing the key exchange 

periodically. If so then we can also move to secp224r1 which is more resource efficient with 

the security level equals to 112-bit symmetric key. 
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5.2 Key Distribution Mechanism Evaluation 
 
According to our experiment design for proof of concept key distribution in previous chapter we 

do the key exchange between Two LoRa nodes as the proof of concept and we includes all 

parameters and call number of executions of each cryptographic functions which needs to 

exchange keys between three parties as our Key exchange solution design in previous chapter. 

LoRaWAN Stack with basic functions of micro-ecc cryptography implementation consumes 94% 

of flash memory. Normal LoRa communication stack with required variables and functions for 

three party key exchange consumes 72% of Flash Memory and it consumes 1050 bytes of  memory 

for global data and 1229 bytes of total RAM space allocation of the sensor node. Total RAM 

allocation is 48% at the Sensor Node. According to key exchange design it needs one key pair 

generation, two secret generation, one ECDSA verification and one AES encryption. According 

to Micro-ecc evaluation results we can calculate the time consumption for ECDH cryptographic 

functions. 

 
𝑐𝑟𝑦𝑝𝑡𝑜𝑇𝑖𝑚𝑒	 = 	𝑘𝑒𝑦𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	 + 	2 ∗ 𝑠𝑒𝑐𝑟𝑒𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 	𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒	𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	 + 	𝐴𝐸𝑆𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜 

6870	 +	(6871 ∗ 2) 	+ 	7577	 = 	28189	𝑚𝑠 

 

According to this calculation it takes 28.2 seconds which means almost half a minute for ECDH 

cryptographic calculations. This time is without two communication steps of proposed key 

exchange message flow from sensor node and network delays. OTAA consumes 5.5 second for 

whole joining procedure. Our key exchange consumes more than 6 times time compared to OTAA. 

But security wise this key exchange is more secure than OTAA.  

We also want to discuss the security strength of our selected secret According to Wikipedia fastest 

supercomputer’s performance is 143.5 PFLOPS8 in 2018 [34] and according M. Arora’s 

calculation [35] 7.5*1016 years needs a supercomputer to bruteforce the 128-bit secret. According 

to him, even 7 billion people in the world have super computers, this calculation takes millions of 

years. However, key can be revealed without brute forcing the symmetric keys. Breaking 

secp256k1 as D. J. Bernsteinn et al. shows or even a random try for guessing the symmetric key 

can be a success. But these possibilities are very rare. Hence, we can consider key rolling to 

increase the system security. 

                                                
8 The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) 
and P in FLOPS means penta(1015) 
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ECDH key exchange with ECDSA is more secure than OTAA re-joining. Hence, it doesn’t need 

frequent key rolling or re key exchange.  

According to ATmega32u4 datasheet [15] Active microcontroller consumes 4.7mA with 8MHz 

clock speed, 3.6v and at 25C0. This voltage and speed are same as the specification of LoRaWAN 

Sensor Node. According to Figure 21 it needs two communications for a node to do the key 

exchange for re-joining. Max message length is length of “pubKey1|pubKey2|signature” which is 

64+64+64=192 Bytes.  Table 1 of E. Aras et. al [6] shows 122 Bytes per second data rate for SF10 

spread factor which also supports high distance communication. Then time for message 

transmission is 192/122 = 1.57 seconds. If we assume a maximum of 2 seconds per message, then 

it takes less than 4 second communication time for two communication messages of new re-

joining. In this section we calculate crypto-time which is 28.2 seconds. Now the total calculated 

re-joining time is 28.2 + 4 = 32.2 seconds. With the network delays, we can take a maximum of 

60 seconds which is almost double of calculated time for a re-join. 

If user decide to do a key distribution for each day and with maximally one minute 

communication time with network delays, node consumes 4.7mA*(1*60/3600) h which is 

0.07834mAh of battery capacity per day. Per a year it is 0.079mAh * 3600 which is 28.6 mAh and 

if we use a 3.7v, 4800mAh Li-Ion single battery to power the node, it consumes 28.6/4800 mAh 

which is 0.6% of total capacity from the battery. This is bearable and less capacity consumption 

percentage with  4800mAh Li-Ion single battery which is available in local market. 

 

5.3 Summary 
 
We discuss experiment designs and proposed solution at the previous chapter and this chapter 

evaluate the results obtained at each experiment. First, we discuss LoRaWAN resource 

consumption results. Then we evaluate ECC implementation results and key size selection 

results. Finally, we discuss the strengthens and weaknesses of the proposed solution. Under the 

evaluation of proposed key exchange, we discuss the ability to run it on the sensor node with 

its memory constraints. Then we discuss the security strengths and requirement of rejoining. 

At the end, we discuss power consumption and overhead for the Sensor nodes battery life. 
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Chapter 6 
 

Conclusion and Future Works 
 
We studied the Current status of IOT and the emergence of Low Power Wide Area Networks. 

Then we focus the LoRaWAN which is the most widely spread LPWAN in the world. Hence 

Security is the main concern of each system we studied the LoRaWAN Security. Our literature 

review highlights the security vulnerabilities End Node Device joining mechanism of the 

LoRaWAN. We Discussed the existing joining mechanism and proposed solutions to increase the 

security of Sensor Device Joining. Few researchers have raised the need of a key exchange 

mechanism and we found one ECDH base proposal solution using existing literature. We identified 

the gap of not focusing the Sensor Node Device limitations when integrating ECDH for 

LoRaWAN. 

Our work identifies the capability of running ECDH based key exchange at LoRaWAN End Node 

Devices. We do our research limiting to specifications of exact End Node of LoRaWAN system. 

We found an ECC implementation which can perform with the Node limitations. Evaluating 

resource requirements of four implementations of ECC we select Micro-ecc implementation for 

LoRaWAN Key exchange. We also evaluate different curves support by Micro-ecc against 

memory consumption, efficiency and security strengths and select secp256k1 standard Koblitz 

curve which uses 256 keys size and provide 128-bit level security strength. We proposed a key 

distribution mechanism with minimum message parsing to save the Sensor Node battery power.  

This solution exchange two secrets to communicate between Network Server and Application 

server from the Sensor Node. We use a root secret at End Node side and root ECC key pair at 

Application server side to provide the authentication for the key exchange. See all the source codes 

we use for testing and the source code for proof of concept at the GitHub [43]. 

Our work only implements a proof of work to prove the capability of running micro-ecc based key 

exchange for LoRaWAN Sensor Node. For future works, it needs to implement the full system 
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with the ECDH key exchange. Flash memory limitation is the main constraint we found for ECDH 

implementation at sensor Node. We see more efficient and secure ECC implementations which 

cannot perform on LoRaWAN Node because of memory limitations. For future work, we suggest 

doing research to select the most suitable microcontroller for Low Power Wide Area Networks. In 

this case, it needs to consider more flash memory and ram availability and less power consumption. 

Cost of the microcontroller also should consider. In our research, we use only the existing 

implementations of ECC and LoRaWAN stack. Some of ECC implementation is not available for 

8-bit AVR microcontrollers. Implement a more resource efficient, power efficient and secure ECC 

implementation for 8-bit AVRs is also a need the sensor network area. 
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Appendix 
 
Appendix 1 
 
A1.1 Registered LoRaWAN gateway status at Network Server 
 

 
 
 
A1.2 Received Join Request at Network Server 

 
 
 
A1.3 Generated Join Accept message at Network Server 
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Appendix 2 
 
A2.1 Memory allocation results for Micro-ecc different Key Sizes. 
 

Curve 
Flash Memory 
Allocated 

Flash MEmory 
Free 

Allocated Space 
of Ram 

Free Space of 
Ram 

160r1 14302 14370 723 1837 

192r1 13828 14844 761 1799 

224r1 14064 14608 801 1759 

256r1 14702 13970 841 1719 

256k1 14778 13894 841 1719 
 
 
Appendix 3 
 
A3.1 Time consumption results of cryptographic functions for micro-ecc 160r1 
 
160r1    

keygen secret gen sign verify 

2364 1989 2357 2240 

2268 1997 2906 2302 

2087 1992 2450 2382 

2001 1995 2531 2284 

1996 1997 2446 2291 

2177 1996 2628 2329 

1994 1993 2808 2300 

1996 1991 2441 2249 
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1996 1986 2454 2341 

2363 1995 2459 2181 

2890 1999 2529 2380 

2001 1992 3275 2273 

2089 1998 2716 2339 

2107 1999 2374 2236 

2005 1993 2552 2308 

2191 2001 2577 2314 

2109 2005 2378 2337 

2005 2001 2377 2339 

2429 2003 3093 2318 

2175 1997 2785 2233 

Averages :    

2162.15 1995.95 2606.8 2298.8 
 
 
A3.2 Time consumption results of cryptographic functions for micro-ecc 192r1 
 
192r1    

keygen secret gen sign verify 

3333 3313 3758 3861 

3318 3314 3752 3926 

3314 3314 3748 3889 

3312 3312 3748 3826 

3313 3307 3752 3943 

3311 3308 3751 3765 

3315 3318 3750 3832 

3309 3316 3752 3825 

3316 3307 3750 3701 

3314 3322 3756 3797 

3318 3330 3785 3774 

3330 3328 3786 4018 

3333 3336 3778 3914 

3334 3333 3780 3914 

3328 3328 3791 3873 

3324 3326 3789 3809 
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3330 3328 3787 3848 

3330 3330 3788 3859 

3334 3332 3785 3877 

3326 3328 3791 3787 

Averages :    

3322.1 3321.5 3768.85 3851.9 
 
 
A3.3 Time consumption results of cryptographic functions for micro-ecc 224r1 
 
224r1    

keygen secret gen sign verify 

4986 5026 5595 5939 

5020 5040 5599 5892 

5026 5022 5593 5904 

5036 5040 5630 5872 

5046 5042 5597 5907 

5030 5034 5607 5851 

5034 5022 5601 5773 

5026 5030 5612 5873 

5024 5024 5603 5853 

5030 5032 5601 5843 

5030 5034 5620 5972 

5046 5027 5604 5908 

5038 5039 5634 5853 

5046 5024 5593 6009 

5028 5029 5600 5884 

5029 5026 5634 5909 

5032 5034 5615 5772 

5032 5030 5606 5771 

5028 5034 5599 5869 

5030 5034 5626 5890 

Averages :    

5029.85 5031.15 5608.45 5877.2 
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A3.4 Time consumption results of cryptographic functions for micro-ecc 156r1 
 
256r1    

keygen secret gen sign verify 

8233 8231 9097 9484 

8108 8215 8976 9573 

8210 8210 8968 9552 

8209 8221 9062 9329 

8278 8286 9112 9701 

8262 8283 8994 9528 

8231 8243 9019 9693 

8233 8221 8981 9400 

8223 8266 9072 9718 

8268 8267 9073 9748 

8258 8211 8956 9478 

8202 8206 8970 9288 

8251 8262 9074 9653 

8265 8211 8955 9647 

8255 8223 9022 9322 

8210 8211 8974 9523 

8276 8283 9113 9323 

8282 8223 8980 9603 

8260 8263 9036 9505 

8214 8215 8976 9278 

Averages :    

8236.4 8237.55 9020.5 9517.3 
 
 
A3.5 Time consumption results of cryptographic functions for micro-ecc 256k1 
 
256k1    

keygen secret gen sign verify 

6848 6873 7547 7670 

6873 6869 7555 7670 

6873 6871 7555 7420 

6865 6867 7559 7694 
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6873 6867 7560 7628 

6878 6873 7551 7506 

6877 6877 7563 7572 

6875 6867 7557 7348 

6865 6871 7549 7633 

6873 6875 7551 7528 

6869 6867 7555 7874 

6875 6863 7557 7385 

6869 6871 7559 7799 

6873 6869 7557 7483 

6867 6867 7557 7672 

6871 6877 7555 7471 

6866 6878 7549 7559 

6867 6875 7551 7661 

6869 6867 7562 7420 

6871 6872 7551 7542 

Averages :    

6869.85 6870.8 7555 7576.75 
 
 
 


