

	

ECDH Based Key Management
for LoRaWAN Considering Sensor

Node Limitations.

A dissertation submitted for the Degree of Master of
Science in Computer Science

	

E. N. Jayasuriya

University of Colombo School of Computing
2019

 		

ii

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: E. N. Jayasuriya

Registration Number: 2016/MCS/045

Index Number: 16440459

Signature: Date: 20.07.2019

This is to certify that this thesis is based on the work of

Mr. Eranda Namal Jayasuriya

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name:

Signature: Date:

iii

Abstract

LoRaWAN is Low Power Wide Area Network which uses LoRa radio technology as its sensor

node level communication. LPWANs select LoRa as radio technology because of its long-distance

communication ability with lower power consumption. Sensor networks have sensitive data and

they should transfer to Application servers securely. Cryptographic algorithms need more

computational power and memory space for their cryptographic calculations. These battery

powered sensor devices have limited memory, limited processing power, limited battery power,

and lower bandwidth with LoRa. Hence, all these limitations should consider while implementing

security solutions. LoRaWAN has already implemented a security mechanism to send sensor data

securely to end points, but still it has some security vulnerabilities. Literature review shows the

need for a new key distribution and management mechanism for the LoRaWAN system. LoRa

Alliance and other researchers have suggested improvements to the LoRaWAN existing joining

mechanism and root key based key distribution mechanism. This research identifies the capability

of running Elliptic Curve Diffie Hellman based key distribution and management mechanism,

considering the limitations of the LoRaWAN End Nodes. Capability of running an existing

implementation of ECDH has shown using the literature and experiments that have done in this

work. The calculated power consumption percentage has shown that the power overhead for key

distribution and management is bearable with the proposed mechanism by this research.

iv

Acknowledgment

First of all, I would like to pay my gratitude to my supervisor, Dr. Kasun de Zoysa for his

uninterrupted support and guidance throughout the master's program. I want to acknowledge the

invaluable insights, comments, and support given by my co-supervisor Dr. Kasun Gunawardana.

Then I thank Research Project coordinators Dr. Lasanthi De Silva and Mrs. Kokila Kasuni for their

guidance and keep us on the research track.

I would like to thank Mrs. Harshi Abeyrathne, Mr. Oshan Chinthaka and my dear friends working

at the University of Colombo School of Computing for their great help. Next, want to thank my

friend Mr. Dinith Minura and the other colleagues who did the Masters at University of Colombo

School of Computing for helping me in many ways throughout the year of research. I also thank

Prof. Ng Wee Keong for releasing me for my research work and Mr. Anupa Shamlal for his

guidance and help.

Finally, I would like to thank my parents and my family members for their support for me to

complete this masters program.

v

Table of Contents

Chapter 1 ... 10	

Introduction .. 10	

1.1 Background .. 10	

1.2 Motivation .. 14	

1.3 Aims and Objective .. 14	

1.4 Research Scope ... 15	

1.5 Research Contribution ... 16	

1.6 Organization of Dissertation .. 16	

Chapter 2 ... 17	

Literature Review ... 17	

2.1 LoRa ... 17	

2.1.1 Overview of Lora ... 17	

2.1.2 Why LoRa for LPWAN... 18	

2.1 LoRaWAN .. 19	

2.1.1 Overview of LoRaWAN .. 19	

2.1.3 Confidentiality ... 22	

2.1.5 Replay Protection .. 23	

2.2 Security Vulnerabilities of LoRaWAN .. 24	

2.3 Key Management for LoRaWAN .. 27	

2.3.1 LoraWAN 1.02 Joining Procedure ... 27	

2.3.2 LoRaWAN 1.1 proposed Joining Procedure .. 28	

2.3.3 Van Leent KDUM ... 29	

2.4 Summary .. 30	

Chapter 3 ... 31	

Methodology and Design .. 31	

3.1 Research Approach .. 31	

3.2 Methodology ... 32	

3.2 Design Concerns ... 34	

3.3 Variable Identification ... 35	

vi

3.4 High-Level System Architecture for Key Distribution ... 36	

3.5 Summary .. 37	

Chapter 4 ... 38	

Experiments and Proposed Solutions ... 38	

4.1 Relationships between variables .. 38	

4.2 Setup LoRaWAN system ... 39	

4.3 Selecting ECC implementation for LoRaWAN ... 44	

4.4 Selecting ECDH key sizes .. 46	

4.5 Key Distribution Mechanism ... 47	

4.5.1 Key Exchange .. 47	

4.5.2 Node Validation ... 49	

4.5.3 Key Rolling .. 51	

4.7 summary ... 54	

Chapter 5 ... 55	

Results and Evaluation ... 55	

5.1 ECC Algorithm Evaluation ... 55	

5.1.1 ECC implementation evaluation ... 55	

5.1.2 Micro-ecc key sizes evaluation .. 58	

5.2 Key Distribution Mechanism Evaluation .. 61	

5.3 Summary .. 62	

Chapter 6 ... 63	

Conclusion and Future Works ... 63	

References: .. 65	

Appendix ... 68	

vii

List of Figures

Figure 1: IOT devices usage and future expectation ... 11	

Figure 2: simple payload structure of a LoRa communication .. 12	

Figure 3: Population Wireless technologies and future expectation ... 13	

Figure 4: LoRaWAN usage over the world .. 14	

Figure 5: Data rate at a time over the number of nodes ... 18	

Figure 6: Time on Air over payload size for different spread factors... 18	

Figure 7: Respective advantages of Sigfox, LoRa, and NB-IoT [10]. .. 19	

Figure 8 : Network Architecture of LoRaWAN [2] .. 20	

Figure 9 : Message formats in LoRaWAN [2] .. 21	

Figure 10: Vulnerability categorization of LoRaWAN [5]. ... 24	

Figure 11: key exchange protocol in LoRaWAN 1.02 .. 28	

Figure 12: proposed key exchange protocol in LoRaWAN 1.1 ... 29	

Figure 13: Identification of dependent and independent variables of key distribution and their
relationships... 36	

Figure 14: Suggested Key distribution for LoRaWAN ... 37	

Figure 15: Overview of a registered Application .. 40	

Figure 16: Settings window of a registered Device ... 41	

Figure 17: Single channel gateway configuration interface ... 42	

Figure 18: ECDH and ECDSA algorithms on the Sensor node ... 45	

Figure 19: Initial key exchange between Sensor node and servers. ... 49	

Figure 20: Initial key exchange with party authentications ... 51	

Figure 21: Rejoin of sensor node initiate by Network Server. ... 52	

Figure 22: ECDH and ECDSA algorithms on Sensor node ... 53	

Figure 23: Flash Memory and Main Memory allocation of ECC implementation.............................. 57	

Figure 24: Flash memory and RAM consumption for different curves of Micro-ecc. 59	

Figure 25: Performances for different curves of Micro-ecc. .. 60	

viii

List of Tables

Table 1: Compare End Node which we use with the Node provide by LoRaWAN 43	

Table 2: key strength comparison of symmetric, asymmetric and Elliptic Curve 47	

Table 3: Memory consumption with and without OTAA. ... 55	

Table 4: RAM allocation at LoRaWAN OTAA .. 56	

Table 5: Memory consumptions for different ECC implementations for 8-bit AVR 57	

Table 6: Memory consumption for both ECDH and ECDSA for Micro-ecc 58	

Table 7: Memory consumption for both ECDH and ECDSA for Micro-ecc 59	

ix

List of Abbreviation

LoRa : Long Range

LoRaWAN : LoRa Wide Area Network

LPWAN : Low Power Wide Area Network

ABP : Activation by Personalise

OTAA : Over the Air Activation

SF : Spread Factor

DH : Diffie Hellman

ECC : Elliptic Curve Cryptography

ECDH : Elliptic Curve Diffie Hellman

ECDSA : Elliptic Curve Digital Signature Algorithm

MAC : Message Authentication Code

MIC : Message Integrity Code

EUI : Extended Unique Identifier

AES : Advanced Encryption Standards

MCU : Micro Controller Unit

ACK : Acknowledgement

IDE : Integrated Development Environment

GPIO : General Purpose Input Output

RAM : Random Access Memory

EEPROM : Electronically Erasable Programmable Memory

SRAM : Static Random Access Memory

SSL : Secure Socket Layer

TLS : Transport Layer Security

HSM : Hardware Secure Module

FLOPS : Floating Point Operations

RSSI : Received Signal Strength Indicator

OS : Operating System

10

Chapter 1

Introduction

Data is emerging as the most valuable asset in the world. All the key domains including Economy,

Education, Health and Business have coupled and are evolving with Information technology. Data

is the molecule of Information Technology and securing data has become a necessity. This is an

era which is named as Era of Internet of Things because all the digital media are getting connected

to the internet. Going beyond the human day today using mobile devices like mobile phones and

laptops, sensor nodes which may far away from the people are also connected to the Internet. A

major portion of cloud data has become sensor data. The portion of those sensor nodes are battery

powered, should last longer and rarely accessed by people. To reduce power consumption, these

sensor nodes use Low Power Wide Area Networks to connect to the internet. These sensor nodes

are equipped with microcontrollers which have limited processing power to make them less power

consumable. Hence such a sensor system has hundreds to a thousand of sensors they should have

less maintenance and should be remotely maintainable. When such a sensor system has sensitive

data, it should use security mechanisms. These security mechanisms are operated on security keys

and to manage security keys with less maintenance it needs a robust security key management

protocol. This Research is focusing on how we can distribute and manage the security keys to

ensure the security aspects of widely spread Low Power Wide Area Network called LoRaWAN

considering the limitations of its Sensor Nodes.

1.1 Background

At the beginning of the Internet of things era, only a few peoples have the devices which are

connected to the internet. Then with the technology goes up, an average every people owns a

device which is connected to the internet. It means the number of devices connected to the internet

is equal to the world population. Then with the technologies grows up each people have more than

one day today using IOT devices such as mobile phone, laptop, desktop computer or tablet. Now

11

the world is becoming smart, smart solutions are introducing for each and every field using the

internet of things. Now homes are becoming smart with electronic devices are controllable control

through the internet. The vehicle is also connected to IOT for various smart solutions like traffic

management, tracking, and real-time vehicle condition monitoring. Other than homes and vehicles

other fields also becoming smart. As examples, Smart grids, smart farms, weather monitoring,

disaster management systems and over the air parcel delivery can be considered. So in 2020, the

number of IOT devices owned by a person is expected as six and totally more than fifty billion

devices are expected. Figure 1 shows the statistics of the usage of IOT throughout the past years

and also future expectation over the population.

Figure 1: IOT devices usage and future expectation

When considering the Sensor systems, most sensor nodes are not generating data streams with

high data rates. A sensor reading is typically less than 10 bytes and a data packet is less than 50

bytes. As an example, a data packet of a tracking device is shown in Figure 2. Most sensor nodes

of sensor systems are battery powered because they are deployed far away areas where it difficult

to supply grid power for each and every node. Sensor nodes are typically automotive and can be

operated remotely. Maintaining them frequently by physically accessing is a huge problem because

such a system has hundreds to thousands of nodes. So, if a node cannot survive for a long time

period with a battery, maintenance becomes a huge problem. Examples for such sensor systems

are weather monitoring sensor systems, fire rescue sensors deployed in rural or forest areas, sound

12

sensors deployed in forests to identify unauthorized human behaviours in forests, soil and plant

condition monitoring sensors in farms, animal tracking sensors in farms and disaster identification

sensor systems. So, the conclusion is sensor nodes have fewer data to transmit using less power.

These sensor nodes are also equipped with less power consuming microcontrollers but those

microcontrollers provide less processing as well. This happens because power consumption is

relative to the processing capability. When transmitting data, it wants to transmit for long distances

because sensors are deployed in far away. Hence a typical network like Wi-Fi is not suitable for

such a sensor system. This is where it comes Low Power Wide Area Networks (LPWAN) to play.

LPWANs also use for high battery consuming automotive devices like parcel delivering or security

monitoring UAVs because they also have the same kind of requirement to transmit data for long

distances consuming less power.

Figure 2: simple payload structure of a LoRa communication

A Low Power Wide Area Network uses a special kind of radio technology which supports

transmitting for long distances consuming low battery power. Typically, this kind of networks

does not support high data rates. So, such a network is ideal for sensor systems than typical

communication networks like 2G, 3D, LTE, Wireline or Wi-Fi. Figure 3 shows the growth of

different kinds of networks for IOT over Time. It clearly shows that the growth rate of LPWAN is

higher than other networks. Mekki, Kais, et al. [10] have compared about LoRa, SigFox, and NB-

IoT which are today's leading and emergent radio technologies used in LPWANs.

13

Figure 3: Population Wireless technologies and future expectation

LoRaWAN is such a Low Power Wide Area Networks which is widely spread all over the world.

LoRaWAN [2][3][4] uses LoRa [1] which is introduced by Semtech as its radio technology and

powered by LoRa Alliance. LoRaWAN architectures have sensor nodes, LoRa Gateways,

Network servers, and Application servers. LoRa Radio is using between Sensor nodes and LoRa

Gateways. Current statistics show that 4398 LoRa gateways and 47919 users have been registered

in Lora Network [9]. Figure 4 shows the spreading of LoRa gateways all over the world.

14

1.2 Motivation

With the availability and sensitivity of sensor data, security has become an utmost important aspect

for LPWANs. Sensor nodes are resource constrained devices and have to cope with its inherent

limitations in electricity power, processing capability, and memory. However, implementation of

security aspect on a sensor node may consume extra resources which are memory and power. This

extra power consumption reduces the total alive time of a sensor node. Thus, it is important to

manage these resources in an efficient manner while implementing security aspects for LPWANs.

LoRaWAN is one of the widely spread secured Low Power Wide Area Network. However, it has

its own limitations in security implementation. Security keys are important while providing the

main security aspects authenticity, confidentiality, and Integrity. In LoRaWAN these security keys

are bounded to the nodes at the time of firmware deployment and it cannot be modified

dynamically. Therefore, in case of a security key revelation, the particular node should be

physically accessed to update it with a new key. This problem can be resolved if there is a

mechanism to distribute security keys dynamically which is known as Key Distribution in the

information security domain.

1.3 Aims and Objective

LoRaWAN implementation uses hardcoded root key to generate session keys for secure

communication of LoRaWAN protocol. Over-The-Air-Activation protocol is used to generate

Figure 4: LoRaWAN usage over the world

15

those session keys using generated random numbers, EUIs and hardcoded root keys. This research

aims to introduce an improved Key Management Protocol for LoRa Based Low Power Wide Area

Networks considering the Limitations of End Node devices. When studying this objective, we have

identified the following research questions.

a. What are the key distribution algorithms and protocols which can be applied to an LPWAN

with its processing, memory, network and power limitations? [8] What is the most suitable

key management protocol with those limitations?

b. Which implementation is the most suitable for the resource limitations of LoRaWAN

Node.

c. How to validate the sensor nodes when exchanging the secret key?

d. How to improve existing security protocol with the new key derivation mechanism

considering both power consumption and security level?

e. How and How often static keys should update in the system to be proactive to ensure the

system security?

1.4 Research Scope

a. Software-based Key distribution mechanism for LoRaWAN network is going to introduce

considering the capabilities of sensor nodes.

b. Key update and validation against key revelation will be discussed as a part of the key

distribution mechanism.

c. Trade-Offs between the security level and resource limitations when exchange symmetric

key will be discussed.

d. Mainly focus on key distribution and validation at LoRa communication part with the

sensor nodes. The internet-based communication part is not focusing here.

e. Over the Air Activation mechanism and Class, A type messages protocol will be

considered for this research.

f. Not going to implement a new encryption, authentication and integrity mechanisms for

LoRaWAN.

g. The key exposition problems by physically accessing End Nodes are not going to solve.

h. The spread factor of LoRa radio technology varies from SF7& to SF12 and spread factor

has an inversely proportional relationship to the Data Rate. All the improvements are going

16

to do for a selected spread factor (SF9). There are regional specific frequency ranges

defined by LoRa community, in this research we are going to use 868MHz frequency range.

i. Different kinds of microcontrollers can be used in sensor nodes which are the End Nodes

devices of the LoRaWAN. In this research, we consider only one device, LoRa32u4 II

(Processor: 8MHz, Memory: 32KB, 3.3v) which is technically equivalent to the node

introduces by LoRa Alliance.

1.5 Research Contribution

An improved and resource efficient key distribution and key management protocol for

LoRaWAN instead of pre-bounded initial root key based key derivation of LoRaWAN protocol.

This protocol will include key update, key rolling, session key generation, and End node

validation.

1.6 Organization of Dissertation

Rest of this thesis is organized as follows, Chapter 2 provides a study of LoRaWAN using existing

Literature. The latter half of Chapter 2 explains the literature review on Key Distribution

algorithms and another approach to use them on microcontrollers which are used for Low Power

Wide Area Networks. In Chapter 3 we describe the design approach and proposed the architecture

of our research. Experimental Setup explaining data set used, algorithms used, tools used and

evaluation metrics used are explained in Chapter 4. Next chapter, which is Chapter 5 describes our

feature engineering process which is one of the pivotal components in our research. Chapter 6

provides Results and Analysis of the proposed approach and discuss the results summary. Chapter

7 concludes the thesis with a Conclusion and potential Future Work available of this research.

17

Chapter 2

Literature Review

This chapter extensively discusses the preliminary study of this research. In the first section, we

explain LoRa and that why we specify the LoRaWAN among other Low power wide area networks

which are briefly mentioned in the first chapter. Then we discuss specifications of LoRaWAN and

Security vulnerabilities of LoRaWAN network. After that, we focus on the security key

distribution problem and approaches taken by others to improve the key distribution. Finally, we

approach the problem deeper by studying existing key distribution algorithms and How they can

perform on microcontrollers which are work as the main board of Network Sensor Nodes.

2.1 LoRa

2.1.1 Overview of Lora

Lora is a radio technology invented by Semtech Corporation and introduced by Lora Allions. It

uses chirp base modulation which is a kind of frequency modulation for transmitting bits. Data

rate is very low in this radio technology because of the chirp base modulation. Lora technology is

using all over the world and different regions allow different frequency bands for LoRa

communication. There are three frequency bands using now 868Mhz ISM band for European

countries, 433MHz for Asian region countries and 915MHz range for American region countries.

Amount of data which can contain in a LoRa payload is limited. Message payload size is

proportional to the time it takes to deliver the whole message (Time on Air). Lora has defined

several spread factors (SF) to maintain a trade-off between message payload size to deliver and

time on air (Figure 5). A frequency range has several LoRa channels and the Maximum number

of nodes in a channel for the communication at a time is also limited. The Maximum number of

devices in the channel depends on the payload sizes (Figure 6). Communication range of a device

basically depends on the radio electronic component in the Lora Radio module and the power of

antenna that uses with the Lora module. As an example, 20 dB power Lora radio module with a 5

18

dbi antenna supports for 3 km communication range in an open area. There are devices which can

transmit for 10 km with an appropriate antenna. The data rate is the main limitation of Lora

communication when applying Lora communication for the applications.

2.1.2 Why LoRa for LPWAN

Low power wide area networks are sensor networks which consist less power consuming, long-

range communicating sensor nodes. In kind of networks, transmitting distance and power

consumption have an inversely proportional relation, hence when selecting a communication

technology for an LPWAN we want to consider a feature analysis of this kind of networks. Mekki,

Kais et al. [10] have compared about three communication technologies LoRa, SigPox, and NB-

IoT which are today's leading and emergent radio technologies used for LPWANs. These three

technologies are using three different radio modulation technologies. They have analysed Battery

life, Quality of Service, Payload Length, Latency Performance, Scalability, Communication

Range, Coverage, Deployment and Cost for LoRa SigPox and NB-IoT as shown in Figure 7. We

want to agree for a trade-off because maximizing all the performance variables are not possible

hence some of them they are inversely proportional to some other variables. For battery powered

sensor networks power consumption is more considerable. According to this analysis both LoRa

Figure 6: Time on Air over payload size for
different spread factors

Figure 5: Data rate at a time over the number
of nodes

19

and SigPox have similar power consumption for this research, we select LoRa because it uses as

the radio technology of most widely spread LPWAN as we discussed in Chapter 1.

Figure 7: Respective advantages of Sigfox, LoRa, and NB-IoT [10].

2.1 LoRaWAN

2.1.1 Overview of LoRaWAN

LoRaWAN is the low power wide area network which uses LoRa as radio technology and

deployed in more than one hundred countries. LoRaWAN is a proprietary product of Lora

Alliance. LoRa AllianceTM et al. [2] specify LoRaWAN’s newest specification of the implemented

version. A Lora network has mainly four components of sensor nodes, Lora gateway, Network

server, and application server. Sensor node and Lora gateways communicate using LoRa. From

the gateway to Application server’s communication happens through the TCP/IP. Network server

manages the sensor nodes applications and gateways. Figure 8 shows the Network architecture of

the system with its main components.

20

LoraWAN consists of three message classes. Class A is the end to end bidirectional

communication between Lora devices and gateways. Uplink is followed by two short downlink

windows in this class. Class B is defined to receive time synchronized beacons from the gateways.

End-devices of Class C have nearly continuously open receive windows, only closed when

transmitting. Class C consumes more power than A and B classes. Only the Class A type messages

are going to consider in this research for improving the security key distribution.

LoraWAN has three layers in its message protocol physical layer, network layer and transport layer

and Figure 9 explains the packet structures of different layers. In the physical layer, a packet

contains a preamble, physical header, header checksum, payload, and checksum. This physical

layer is handled by Lora modulation and it does nothing with LoraWAN. Network and transport

layers handle by the LoraWAN. Physical layer payload may be MAC payload or joint request or

join the response. This join request and response messages belong to device activation mechanism

which discusses in the next subsection of this chapter. MIC is used for integrity checking and

authentication at the network server. Frames handle by the application server for application-

specific functionalities. Other than this message formats Newest specification of LoraWAN has

discussed control messages which are exchanging between sensor nodes and Lora gateways for

networking and controlling purposes.

Figure 8 : Network Architecture of LoRaWAN [2]

21

2.1.2 Device Enrollment

Lora End Node devices want to join to the LoraWAN Network to communicate with the

application server through the Lora Gateways. LoRa AllianceTM et al. [3] describes the backend

network architectures and two End Device activation mechanisms Over-The-Air-Activation

(OTTA) and Activate-By-Personalize(ABP). According to the LoRaWAN™ Specification v1.0.2

[2], OTTA mechanism the End node devices are deployed with AppEUI, DevEUI, AppKey. Here

EUIs are 64bit identifiers to uniquely identify end node devices and Application. The AppKey is

a pre-bounded root key to the End Node Device at the production level, This AppKey is private to

the application and set up on the Network server by the application owner in his account. This

AppKey is also used by the application server for End to End Security. The End Node Devices

send a join request to Network Server for joining the network. This join request contains a

randomly generated value (Dev Nonce), AppEUI and DeviceEUI. The request is digitally signed

using AppKey as described in the function below for authentication and integrity.

𝐽𝑜𝑖𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑚𝑠𝑔	 = 	𝐴𝑝𝑝𝐸𝑈𝐼		|		𝐷𝑒𝑣𝐸𝑈𝐼		|		𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒			

𝐶𝑚𝑎𝑐		 = 		𝑎𝑒𝑠128_𝑐𝑚𝑎𝑐(𝐴𝑝𝑝𝐾𝑒𝑦,𝑀𝐻𝐷𝑅		|		𝐽𝑜𝑖𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑚𝑠𝑔)	

Figure 9 : Message formats in LoRaWAN [2]

22

Network server reply to End device by join-accept response message which contains AppNonce,

end-device address (DevAddr) along with configuration data for RF delays (RxDelay) and

channels to use (CFList). This accepting response is encrypted and signed with AppKey using

AES 128 Algorithms as below.

𝐽𝑜𝑖𝑛_𝑎𝑐𝑐𝑒𝑝𝑡_𝑚𝑠𝑔 = 	𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒	|	𝑁𝑒𝑡𝐼𝐷	|	𝐷𝑒𝑣𝐴𝑑𝑑𝑟	|	𝐷𝐿𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠	|	𝑅𝑥𝐷𝑒𝑙𝑎𝑦	|	𝐶𝐹𝐿𝑖𝑠𝑡	

𝑐𝑚𝑎𝑐		 = 	𝑎𝑒𝑠128_𝑐𝑚𝑎𝑐(𝐴𝑝𝑝𝐾𝑒𝑦,𝑀𝐻𝐷𝑅	|	𝑗𝑜𝑖𝑛_𝑎𝑐𝑐𝑒𝑝𝑡_𝑚𝑠𝑔)	

𝑎𝑒𝑠128_𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐴𝑝𝑝𝐾𝑒𝑦, 𝑗𝑜𝑖𝑛 − 𝑎𝑐𝑐𝑒𝑝𝑡_𝑚𝑠𝑔	|	𝑐𝑚𝑎𝑐)	

 Typically, decrypting function consumes more power than Encryption function, hence network

server uses decryption function to provide confidentiality and End-Nodes uses Encryption function

to retrieve the plain message. Then End-Node devices can generate session keys to provide

security aspects using AppNonce, DevNonce and AppKey.

 	

𝑁𝑤𝑘𝑆𝐾𝑒𝑦	 = 		𝑎𝑒𝑠128_𝑒𝑛𝑐(𝐴𝑝𝑝𝐾𝑒𝑦, 0𝑥01		|		𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒		|		𝑁𝑒𝑡𝐼𝐷		|		𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒		|		𝑝𝑎𝑑)	

𝐴𝑝𝑝𝑆𝐾𝑒𝑦	 = 		𝑎𝑒𝑠128_𝑒𝑛𝑐(𝐴𝑝𝑝𝐾𝑒𝑦, 0𝑥02		|		𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒		|		𝑁𝑒𝑡𝐼𝐷		|		𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒		|		𝑝𝑎𝑑)	

 In Activation by Personalize (ABP) mechanism they don’t have a joining mechanism, the session

keys for confidential authentication and integrity purposes are pre-bounded to the End Node

Devices at the production stage.

2.1.3 Confidentiality

Once a Node has joined a LoRa network, either through OTAA or ABP, all the messages should

be encrypted using a security key to provide confidentiality. As specified in LoraWAN

specification 1.0.2 [2] encryption is done using AppSkey from End Node device to the Application

Server. NwkSkey is also used for encryption when it sends messages to the Network server. Only

the network server contains the Nonces generates by End Node and itself. Hence application Server

also able to generate the AppSkey through the Network server. Now, this AppSkey is held by three

parties and it improves the probability of key compromisation we will discuss this later in this

chapter. To provide the confidentiality it uses one out of these two session keys along with the

23

AES 128 Symmetric Key algorithm in Counter mode (CTR). AES CTR is a block cipher and it

uses a counter value for the encryption instead of a chaining mechanism. An important feature of

all messages in LoRa is that the counters for sent (FCntUp) and received (FCntDown) messages

are maintained by the Node and Network Server and that these counters never repeat. For

encryption and decryption, a keystream (S) is produced as follows:

𝑖	 = 	1. . 𝑘	𝑤ℎ𝑒𝑟𝑒	

𝑘	 = 	𝑐𝑒𝑖𝑙(𝑙𝑒𝑛(𝐹𝑅𝑀𝑃𝑎𝑦𝑙𝑜𝑎𝑑)	/	16)	

𝐴𝑖	 = 	 (0𝑥01	|	(0𝑥00	 ∗ 	4)	|	𝐷𝑖𝑟	|	𝐷𝑒𝑣𝐴𝑑𝑑𝑟	|	𝐹𝐶𝑛𝑡𝑈𝑝	𝑜𝑟	𝐹𝐶𝑛𝑡𝐷𝑜𝑤𝑛	|	0𝑥00	|	𝑖)		

𝑆𝑖	 = 	𝑎𝑒𝑠128_𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝐾, 𝐴𝑖), 𝑓𝑜𝑟	𝑖	 = 	1. . 𝑘	

𝑆	 = 	𝑆1|𝑆2|. . |𝑆𝑘	

The keystream includes the FCntUp or FCntDown values, which should mean that the keystream

never repeats in the Node’s lifetime. The FRMPayload is then XOR’d with the keystream to

encrypt or decrypt the data. Other data such as the FPort and FCNTUp are sent unencrypted.

2.1.4 Integrity and Authentication
The MAC Payload section of messages are signed to prevent manipulation of the cipher-text, or

of other values such as the DevAddr, FCntUp or FCntDown values. For join request message MIC

is calculated using AppKey which is the hardcoded Key for OTAA mechanism as described in

2.12. Message integrity code for all the other messages are calculated using NwkSkey and Network

server checks the integrity when message receives to detect unauthorized message manipulation.

The 4-byte Message Integrity Code (MIC) is calculated as follows:

𝑀𝑠𝑔	 = 	𝑀𝐻𝐷𝑅	|	𝐹𝐻𝐷𝑅	|	𝐹𝑃𝑜𝑟𝑡	|	𝐹𝑅𝑀𝑃𝑎𝑦𝑙𝑜𝑎𝑑	

𝐵0	 = 	 (0𝑥49	|	4 ∗ 0𝑥00	|	𝐷𝑖𝑟	|	𝐷𝑒𝑣𝐴𝑑𝑑𝑟	|	𝐹𝐶𝑛𝑡𝑈𝑝	𝑜𝑟	𝐹𝐶𝑛𝑡𝐷𝑜𝑤𝑛	|	0𝑥00	|	𝑙𝑒𝑛(𝑚𝑠𝑔))		

𝑚𝑎𝑐	 = 	𝑎𝑒𝑠128_𝑐𝑚𝑎𝑐(𝑁𝑤𝑘𝑆𝐾𝑒𝑦, 𝐵0	|	𝑚𝑠𝑔)	

2.1.5 Replay Protection

Message replay attack which is also known as playback attack is network attack which transmits

messages maliciously or fraudulently repeated or delayed. Lorawan uses message counters to

24

protect network over replay attack. For each End node device, there are two frame counters Frame

Count UP(FCntUP) for uplink messages and Frame Count Down (FCntDown) for downlink

messages. There is a limit value called Max Frame count Gap (MAX_FCNT_GAP) to keep sync

in the uplink and downlink messages.

2.2 Security Vulnerabilities of LoRaWAN

LoraWAN has tried to provide the main security aspects confidentiality, integrity, authenticity,

and availability up to a certain level we discussed them in the above section. Many people have

studied about the security vulnerabilities of the LoRaWAN Network. Out of the Yang et al. [5]

have analysed and categorized main possible attacks over a LoRaWAN Network into three

categories confidentiality, availability and integrity as shown in Figure 10. They have examined

replay attack for ABP-activated nodes, eavesdropping, Bit-Flipping attack, Acknowledgement

spoofing, and LoRa class B attacks. They have also presented a proof-of-concept experiment for

each of these attacks. Their suggestions to mitigate these attacks are briefly explained below.

Figure 10: Vulnerability categorization of LoRaWAN [5].

● To prevent the replay attack ABP activated devices should use non-volatile memory as

newly proposed LoRaWAN specification-1.1[4] which will be implemented in the future

to avoid the frame counter resetting. For OTAA activated nodes, after overflowing the

25

counter, a replay attack is possible but doing the activation procedure again avoid this

problem and moreover for ABP activated nodes devices can be reconfigured to change the

session keys. However, reconfiguring nodes in a sensor network is not practical also for

OTAA activated nodes key management is not practical when hardcoded root keys are

revealed.

● Eavesdropping is possible while this AES block cipher uses a monotonically increasing

counter. Using a random value will solve this up to a certain level but rekeying is needed

when counter overflow is reached. Hence MCU’s use for End node devices having a

limited memory maintaining storage of pre-used nonces are also challengeable.

● Integrity checking is done at the Network Server using NwkSKey and decryption of

payload at the Application Server using AppSKey but there is no integrity check at the

Application server so Bit-Flipping attack is possible between Network Server and

Application Server. This problem also is not solved by the new specification v1.1. They

have proposed to implement another MIC for integrity checking at Application server to

avoid this bit-flipping attack.

● Thus, the spread-spectrum technique use in LoRa with high spreading factor takes a long

time for transmission. Hence selective jamming is possible with LoRa, then ACK spoof is

can be easily done and newly propose specification v1.1 also exist this problem. And

replaying previously recorded ACK’s is also possible. To mitigate this problem, they

suggest to include a cryptographic checksum to the ACK.

 Other message classes of LoRaWAN also vulnerable to security attacks but we don’t discuss them

in here this research. E Aras et al. [6] also have explored the security vulnerabilities of LoRa. They

discuss compromising the device and network keys, jamming techniques, replay attacks, and

Wormhole attacks. They have concluded their exploration by highlighting the need for new key

distribution mechanism and frame counter generation for AES CTR instead of pushing those to

the developers end.

Woo-Jin Sung et al. [11] have analysed the replay attack in LoRaWAN network when joining an

End Node Device to the Network via OTAA for both fixed devices and moving devices. Instead

of identifying a device using the Dev-Nonce they have proposed a way to distinguish the End Node

Devices from the attackers. Their suggestion is a lower level identification of devices using the

RSSI as a countermeasure and more over a proprietary Hand-Shaking between End Node Devices

and Application server. However, their proposition is needed to be verified in practice.

26

Hence the root keys are hardcoded in Devices and distributed with the Network server and

Application server, joining procedure of the End Node Devices to the Network is the most

vulnerable point in compromising the security keys for plain text recovery and also for other

security vulnerabilities discussed above in this section. Several researchers have research on

vulnerabilities of the OTAA mechanism and explore the improvements and mechanisms to secure

the joining procedure. S Tomasin et al. [12] have examined the possibility of DoS attack due to

the regeneration of an already used Dev-Nonce in the End Node devices. Possibility of detecting

a replay attack at the Network server also have discussed by them. They have used SX1272 LoRa

radio modem for their experiments and proposed the possible attack strategies.

Kevin Feichtinger et al. [7] also research on the vulnerabilities of Over The Air Activation of

LoRaWAN and introduced a hybrid cryptosystem to encrypt the join request. This hybrid crypto-

system uses already implemented a symmetric cryptosystem and hardcoded AppKey to encrypt

the join request of OTAA mechanism. The regional differences of LoRaWAN ISM bands taken

into consideration by them to ensure the applicability of their solution for all bands. They have

suggested implementing and evaluate presented handshake by them to compare the performance

with the existing mechanism. Furthermore, suggest a replacement of DevEUI of join-request with

timing information as further researches.

LoRaWAN specification v1.1 [4] is proposed by LoRa to address the limitations of their latest

deployed specification v1.0.2 [2]. In ov1.0.2 and previous specifications the Application Session

key is handled by the Network server and also the Application key which is the hardcoded root

key is also defined at Network Server. The main security keys have distributed among three parties,

in v1.1 mainly they have introduced a set of new keys. Two root keys NwkKey and AppKey for

Network layer and Application layer, three session keys are derived using these two root keys

FNwkSIntKey, SNwkSIntKey for message integrity purpose and NwkSEncKey for confidentiality

purposes of MAC command between End Node Devices and Network server. For previous uplink

and downlink frame counters, they have introduced separate uplink counters for separate sources

instead of one counter for all uplink messages in previous specifications. However, the Key

Distribution and is still not handled by the LoRaWAN protocol because of two RootKeys.

This preliminary study of LoRaWAN shows the security vulnerabilities and the approaches of

others to mitigate those vulnerabilities and attacks. As a summarization following options are

available to improve the security in LoRaWAN protocol.

27

● Alternative cryptographic algorithm to AES in CTR to provide more confidentiality with

considering the limitations of the End Node Devices.

● An alternative mechanism for security aspects of LoRaWAN instead of proposed new

complex specification v 1.1 of LoRaWAN which is still vulnerable to the attacks.

● Explore the applicability of the suggested device activation mechanisms, improve them or

new suggestions.

● Exploration of key distribution mechanism which supports to improve all the security

aspects of LoRaWAN system and improve the maintainability of key deploying.

For this research, we are going to explore the possibility of using a key distribution algorithm to

skip the joining mechanism with hardcoded root keys in OTAA. For these capabilities of End Node

devices with their processing, memory and power limitations have to be considered in detail when

selecting an already existing Key Distribution algorithm.

2.3 Key Management for LoRaWAN

2.3.1 LoraWAN 1.02 Joining Procedure

In section 2.1.2 of this chapter, we discussed the devices enrolment procedure of LoRaWAN

network. ABP uses pre-shared session keys for secure communications. OTAA do key

management by generating session keys based on the pre-shared root key which called as AppKey.

Network server generates session keys for both itself and for the Application server. Hence no end

to end communication between the sensor node and Application Server. Figure 11 shows the

message flow of OTAA joining mechanism of LoRaWAN specification 1.02. In section 2.3 we

discussed the vulnerabilities of Join request and proposed solutions by the researchers. But the

revelation of AppKey makesthat sensor to an unsecure state. Key revelation possibility is high

because it duplicates at both sensor node and Network server. If network server attacked whole

system become insecure. The main problem is it wants to access each node physically to update

the Appkey. This not practical when maintaining the system.

28

Figure 11: key exchange protocol in LoRaWAN 1.02

2.3.2 LoRaWAN 1.1 proposed Joining Procedure

Because of the vulnerabilities of existing key management of the joining procedure LoRaWAN

system. LoRaAllience is proposing new version of the joining procedure by changing the entire

system in their specification 1.1 [4]. They have proposed two root keys, NwkKey as root key for

network server and AppKey as the root key of the application server. These two root keys are

embedded to the Lora chip of the sensor node in the hardware level. These root keys are known

by the Join Server which is newly proposed server for the LoRaNetwork. When Network server

receives the join request it forwards the request to Join the server. Two session keys are generated

at the Join server and deliver the relevant session key to the Network server and Application server.

This key distribution is visualized in Figure 12 as a high-level diagram. In this key distribution,

all the root keys are store in Join server so this architecture may fall in a single point of failure to

be insecure the whole system. This new architecture of LoRa Alliance is still not released as a

production. LoRa chips with hardware level embedded keys and algorithms are still not available

in the system. Migration of existing LoRaWAN networks to this architecture is also needed big

effort and cost.

29

Figure 12: proposed key exchange protocol in LoRaWAN 1.1

2.3.3 Van Leent KDUM

Van Leent et al. [8] from the Cybersecurity academy of Netherlands also has studied the

vulnerabilities of existing Sensor node joining procedure and key distribution. To mitigate those

vulnerabilities, they raised the need for key distribution mechanism for the existing LoRaWAN

architecture. They studied about LoRa, LoRaWAN existing key management and security status

of the system. They have discussed different types of cryptographic algorithms including key

distribution algorithms. They analyse the power consumption of key distribution and

authentication algorithms by referring to the existing literature. They have selected the Elliptic

curve Diffie Hellman (ECDH163r) algorithm for key distribution and Elliptic curve Digital

Signature Algorithm (ECDSA163) as Digital Signature algorithm to verify the shared public keys.

But the existing literature that he refers to analyse the key distribution algorithms are not relevant

to the limitations that we met at LoRa end nodes. Most of the general cryptographic algorithms are

not compatible with the 8-bit word size microcontrollers and their processing and memory

constraints. They haven't discussed the strength of 163r curve to provide the equivalent for KD as

existing strength of the system. Therefore, there is a need for an analysis of key distribution

algorithms with the limitations of LoRaWAN End Devices to find a key distribution mechanism

which suits for the limitation of Lora End Nodes. They haven’t discussed the key rolling

30

mechanism for the static security keys. The system should analyse the different scenarios where

existing static key revelation is possible.

2.4 Summary

We started this chapter with the background study of the LoRaWAN system. We discussed LoRa

technology and why LoRa suitable for wide area networks as radio technology. Then we discuss

the LoRaWAN Network, its architecture how it works, different types of communications and so

on. Hence this research focuses on security, then we move to discuss the security in LoRaWAN.

We discuss sensor device enrollment to the network, how it provides main security aspects such

as confidentiality, integrity, authentication and replay protection. Many researchers have

conducted on the security issues of the LoRaWAN network, we have discussed the identified

security issues by the research community. Several researchers have raised the importance of

having a key distribution for the LoRaWAN and we discuss how key distribution handled in

existing implementation and new proposals. Finally, we conclude the literature review by

identifying the research gap of the proposed solutions for the key distribution of LoRaWAN

Network.

31

Chapter 3

Methodology and Design

This chapter outlines the proposed solution and the experimental designs for LoRaWAN key

exchange. We discuss the direction of our research based on the conclusion of the literature review.

Then we decide what kind of approach we should use for this research to resolve the research

questions. Variable identification for key distribution mechanism in the context of LoRaWAN

with its limitations is going to consider. Then the high-level experimental design for the ECDH

protocol evaluation will be discussed. And also, we introduce the high-level architecture of the key

distribution mechanism which is proposed by this research.

3.1 Research Approach

LoRaWAN is a system for sensor networks which has a long range of communication capability

with Lora chips on sensor devices. In chapter two we have discussed the security vulnerabilities

identified by many researchers. Most of those vulnerabilities are related to an existing joining

procedure which is called Over The Air Activation (OTAA) in LoRaWAN. Lora Alliance is

introducing a new security approach for OTAA joining procedure [4]. Van Leent et al. [8] has also

introduced a key management protocol for LoRaWAN which will mitigate the security

vulnerabilities of existing joining procedure. They have analysed the performances of existing key

exchange mechanisms and have selected Elliptic Curve Diffie Hellman (ECDH) [24] key

distribution mechanism as the most appropriate key distribution mechanism for LoRaWAN. Their

analysis has not discussed the capability of running ECDH on LoRaWAN sensor nodes which

have limited processing, memory and power. We designed this research to evaluate the practical

applicability of Elliptic Curve Diffie Hellman key exchange on LoraWAN nodes and to propose a

key exchange mechanism to exchange keys between three parties which improves the system

security.

32

There are three research approaches using in the research community, quantitative qualitative and

mixed approach. Discovering and selecting a suitable ECC implementation is a performance

evaluation of selected implementations of ECC algorithm by analyzing their resource requirement

on Lora end nodes. Hence this analysis deals with performance measures on Lora nodes and this

is playing with numbers, when considering the security, it is a qualitative fact but we can discuss

the security strength of different ECC curves using existing literature which describe the strength

using the key size used by the algorithm. Finally, we can categorize this part as a quantitative

approach.

As the second part of this research, we propose a mechanism of key exchange between three parties

of LoRaWAN system. Actually, this is based on the case study of the LoraWAN Sensor node

joining mechanism and we try to propose a key distribution mechanism which improves the

security level of the system. We discussed the security level of the mechanism which will be

proposed by this research by building logic conditions using existing literature, then this part of

the research can be considered as a qualitative approach of the research.

3.2 Methodology

Improving the system security is the objective of this research. We propose a key exchange

mechanism for LoRaWAN Network considering its sensor node limitations to improve its security

level. As Van Leent et al. [8] have presented the ECDH as the appropriate algorithm by analyzing

the existing literature. Here we have considered the capability of running ECDH on LoRaWAN

sensor nodes and applicability of ECDH to the LoRaWAN system. We broke down this work to

several steps when achieving our goal.

1. Variable identification for key distribution on sensor nodes

2. Identifying relations between variables

3. Setup simple LoRaWAN system

4. Selecting existing implementation of ECDH

5. Experimenting to select the key sizes of ECDH

6. Designing key exchange mechanism between three parties

7. Implementing proof of concept of key exchange for LoRaWAN Node

33

After identifying variables and relations between them, we set up a simple LoRaWAN system with

one End Node Device, one channel LoRa Gateway and one Application. We used this setup to

identify component registration process and Node Activation process. In component registration,

we identified Lora Gateway registration, End Node Device registration, and Application

registration.

To integrate the ECDH base key exchange for LoRaWAN we want to implement the algorithm at

two environments at special purpose embedded OS with fewer resources at Sensor Node side and

general-purpose computers which not be a bottleneck for ECDH key exchange algorithms. There

are various kinds of Elliptic Curves which have different resource consumptions, different security

strengths. LoRaWAN End Node Device which is called as The Things Node [14] is powered with

a microcontroller which has 8-bit word length. Most battery-powered sensor nodes use 8-bit word

size microcontrollers. They also have relatively less processing power, less Random-Access

Memory and also less flash memory. However, they consume less power consumption, hence they

use for battery-powered sensor nodes. When selecting an ECDH implementation for LoRaWAN

key exchange, we compared the performance analysis of different ECDH implementation using

existing literature to select an ECDH implementation for LoRaWAN. Furthermore, we did

experiments to measure the resource consumption of curve operations for the implementations

which are still not in the existing literature. Flash memory consumption and memory for global

variables are measured using the Arduino platform [44]. We measured Random Access Memory

consumption by calculating the free space of memory using heap pointer and stack pointer. Instead

of using electronic devices to measure power consumption, we measured the time consumption

operations in the key exchange process. In cryptographic algorithms like Elliptic Curve operations

they don’t have any point of using sleep operations. For Elliptic Curve operations they also don’t

use GPIO1 operations instead of ALU2 operations. Then we can say the power consumption of

operation is proportional to the time consumption of that operations under conditions mentioned

above. We also considered security strengths like resistant to side channel attacks when selecting

the Elliptic Curve implementation with the use of existing literature.

After selecting an Elliptic Curve implementation for 8-bit microcontrollers, we wanted to select a

key size of the selected Elliptic Curve to provide sufficient security for the system. Using a longer

key size consumes relatively higher resources. We set up experiments with the necessary variable

1 GPIO:- General purpose input output which allow user to interact with computer using voltage inputs and
outputs.
2 ALU:- Arithmetic and Logic Unit.

34

and function definitions to exchange two secrets. Then we measured flash memory allocation,

memory for global data, stack data and time consumption for each operation in the same way we

described previously in this section.

Next step was to design the message flow to exchange two secret session keys between End Node

Device, Application Server and between End Node Device, Network Server. We designed this key

exchange to minimize the communications between End Node Device and other two servers

because we need to minimize the power consumption of Key Exchange process to minimize the

overhead on End Node Device and let it run for its maximum time. In the next chapter, we discuss

the above steps in detail with experiments and results.

3.2 Design Concerns

We have proposed a key distribution mechanism for LoRaWAN and there are four parties involved

in the communication of this system as we discussed in section one of chapter two under the

overview of LoRaWAN. Sensor nodes, Lora Gateway, Network server, Application Server are the

four parties and out of this four Lora Gateway switch the communication medium between Lora

Radio and Internet. It blindly forwards all the received packets to the network server or to sensor

nodes not being aware of the content. Sensor nodes send their data to the application server through

the network server. Network server has the functionality of managing sensor nodes and

Application server. Sensors want to communicate with both the Network server and Application

server. But the application data should not reveal to the Network server.

As Van Leent et al. [8] discovered in their research, generally ECDH is better as an algorithm in

performance for secure key exchange and management. But the ability to run ECDH on a sensor

node and also exchange keys with two parties may cause an unexpected effect to the sensor node.

Because the sensor node consists of a microcontroller which categorized as a specific purpose

computing unit with limited resources. Sensor nodes have limitations on processing power, flash

memory which store program data, SRAM and battery power. Hence using high resource

consuming cryptographic algorithm like ECDH on sensor nodes is not straight forward as running

them on general purpose computers. Limitations of sensor nodes are the main concern of this

research when introducing the key exchange mechanism for LoRaWAN.

Basically, the ECDH algorithm describes the key exchange between two parties. But in LoRaWAN

it participate three parties in communication. Therefore, we concerned the key exchange between

three parties to ensure the end to end communication between sensor nodes and application server.

35

Authentication of end parties is also a need when exchanging the security keys. Hence

authentication of sensor nodes was also a concern of this research.

3.3 Variable Identification

When performing the key distribution between a sensor node and another device, we wanted to

consider the security level and the limitations of the sensor node. For dealing with this, we

identified system variable which involves key distribution on LoRaWAN sensor nodes.

● ECDH implementation for 8-bit microcontrollers

● Share secret

● Symmetric key

● Security level

● Power consumption

● Memory consumption

These variables can categorize to two parts, independent variables and dependent variables. Figure

13 describes the variable categorization and their high-level relations.

Purpose of using a key distribution mechanism is to share a secret key between two parties. Then

using this shared secret, both parties can generate a symmetric key for security purposes like data

encryption. Symmetric key can be generated or derived from shared secret using a different kind

of Algorithms. When providing security, ethic is hiding the secret keys instead of hiding

algorithms. Hence the system security totally depends on the shared secret, we considered both

share secret and symmetric key as independent variables. Other three variables which are security

level, power consumption, and memory consumption depends on the shared secret size which is

shared using the ECDH protocol. To have different shared secrets we wanted to use different

curves ECDH algorithm. Different curves provide different security levels and resource

consumption is also different.

36

Figure 13: Identification of dependent and independent variables of key distribution and their
relationships.

After selecting the shared secret size, we wanted to design key exchange between three parties.
Sensor node should communicate with both Network server and Application server bidirectionally.
When designing the key exchange between three parties we considered three dependent variables
memory consumption, power consumption and security level.

3.4 High-Level System Architecture for Key Distribution

With the result of the experiments, we designed a Key Distribution mechanism which uses ECDH

as the base cryptographic algorithm. Here with this Architecture, we propose the algorithms,

different types of keys, main variables for each party take part in LoRa Key Distribution. And we

present a message flow for efficiently distribute the secrets between sensor node, network server,

and the application server. Here we present the high-level architecture for LoRa WAN key

distribution as visualize in Figure 14 and at the end of this research, we present the architecture in

detail. In high-level architecture, a sensor node takes part in two key distributions one for the

37

Application server and another one for the Network server. Sensor node should contain its private

key, the public keys of all including itself and a shared secret for each other party. Lora gateway

is also a party take part in Lora communication but it doesn’t take part in key distribution protocol.

Its functionality is to forward packets blindly between two networks Lora radio and internet.

Figure 14: Suggested Key distribution for LoRaWAN

3.5 Summary

In this chapter, we discussed our approach for research on using ECDH as the cryptographic

algorithm for Key Distribution in LoRaWAN. We stated with the facts found in the literature

review and built our approach. Then we discussed how we identified the system variables, their

categorization, and relations. We briefly explained the methodology and the steps of reaching the

goal. Finally, we proposed the high-level key distribution architecture for LoRaWAN Network

using the ECDH as the cryptographic algorithm to ensure all the security aspects of the system.

38

Chapter 4

Experiments and Proposed Solutions

4.1 Relationships between variables

We identified the variables of the LoRaWAN system when providing the data security of

LoRaWAN communication. To secure the sensor data, AES encryption is used in the existing

architecture and a common key which is called as a symmetric key should be shared between the

parties who are going to encrypt or decrypt the data. Using Elliptic Curve Diffie Hellman key

exchange we can share a common secret between two parties. Then we can generate the session

key at both parties using the shared secret. To generate the session key, we can use an algorithm

such as hashing or simply we can take the first N bits of the shared secret if the shared secret is

larger than the expected symmetric key. However symmetric key generation using the shared

secret cannot improve the system security. We cannot use any other secret in this key generation

because then sharing this other secret would be another problem. With this argument, we can

decide that the security level of the symmetric key is relatively proportional to the security level

of the secret which shared by the key distribution mechanism. We summarise these arguments

which can be considered as the facts in data security in the following two equations.

● 𝐷𝑎𝑡𝑎	𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝑜𝑓	𝑎	𝐿𝑜𝑅𝑎𝑊𝐴𝑁	𝑚𝑒𝑠𝑠𝑎𝑔𝑒		𝛼		𝐾𝑒𝑦	𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝑘𝑒𝑦		
	

● 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝑘𝑒𝑦		𝛼		𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	𝑜𝑓	𝑡ℎ𝑒	𝑠ℎ𝑎𝑟𝑒𝑑	𝑠𝑒𝑐𝑟𝑒𝑡			

Our main focus is to test the ability of ECDH with the sensor node limitations, all variables that

we identified should be tested with the sensor device. We want to maximize the security level

LoRaWAN system. Limitations at the sensor node is the bottleneck of the system in power,

memory and processing. Hence, the sensor node may be a barrier when maximizing the security

level of key distribution. When considering the Elliptic Curve Cryptography there are several

standard Elliptic curves. Performance and security features are different from curve to curve. When

considering a specific curve, we can use it to share different sizes of secrets. The public key and

private key pair directly related to the shared secret. Running an Elliptic curve cryptography

algorithm consumes relatively a more power of sensor node and a considerable amount of memory.

39

Both power and memory consumption relatively proportional to the key sizes using in the

algorithm. And also, both power and memory consumptions depend on the selected curve

implementation. Following two equations represent the proportional relationship of key sizes and

curve implementation to power and memory consumption.

● 𝑃𝑜𝑤𝑒𝑟	𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑘𝑒𝑦	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛		𝛼			𝑘𝑒𝑦𝑠𝑖𝑧𝑒	&	𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	

● 𝑀𝑒𝑚𝑜𝑟𝑦	𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑘𝑒𝑦	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛		𝛼		𝑘𝑒𝑦𝑠𝑖𝑧𝑒	&	𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	

In this research, we select suitable implementation of ECC for 8-bit microcontrollers using existing

both existing literature and our experiments. Then the selection of the key size for the selected

implementation will discuss with our experiments. The intention of selecting both implementation

and key size is having a trade-off between security and resource consumption.

4.2 Setup LoRaWAN system

LoRaWAN existing system has four main components as we mentioned in previous chapters. They

are Sensor Nodes, LoRa Gateway, Network Server, Application Server. The network server is

provided by them and we need to set up other three components and register them in their server

which is the network server. First, we need to Register our Application in the Network Server. We

should select a message handling service URL and should add a unique identifier for the

Application which called Application EUI. Handler service is the service which does the message

exchange service for the network server. LoRa has setup different handler services for different

regions. This EUI should be Hardcoded in each End node as well as in the Application Server. It

ensures the communication between the Application and the relevant End Nodes. Network server

forward received packets by filtering them using their Application EUI. Figure 15 shows the

details of the already registered Application in the Network Server. See Appendix 1 for the Joining

details of Devices at the Network Server.

40

Figure 15: Overview of a registered Application

After registered the Application We can add the devices for the Application. We want to set

Application EUI, Device EUI and App Key. Application EUI is common for an Application and

Application EUI and App Key should be unique for each End Node Device. When registering a

Node, the joining mechanism (OTAA or ABP) also should be selected. For ABP devices Network

session key and Application session key should add instead of App Key. For OTAA devices,

Network session key and Application session key are generated when a device is joined to the

network. For both joining methods device MAC addresses are received when they connected to

the Network server. Settings window of a Device which in Figure 16 shows the variables we set

at the registration of the Device.

41

Figure 16: Settings window of a registered Device

In this research, we investigate the capability of running ECDH base key exchange on Sensor

Node. Application Server is a computer which may be a server version or a general-purpose

computer which has enough resources for cryptographic algorithms of Key Exchange mechanism.

Hence, we do not need to focus on the Application Server side and we are not going to Implement

and setup an Application server.

A LoRa gateway needs to switch the messages between two networks LoRa network and the

internet. The Things Gateway [25] introduce by LoRa Alliance support for multi-channel and

multi-frequency bands and cost also high for these gateways. We do not use End Node Devices of

different frequency bands. Hence, we setup a single channel gateway for our experiments. We use

ESP8266 [26] wifi embedded microcontroller chip as the processor and RFM95 [27] LoRa radio

chip which supports 868 MHz frequency range for our LoRaWAN gateway. We use ESP Single

Channel Gateway library for Arduino as the firmware of our gateway. We set the Things Network

Network server IP to forward the received LoRa packets to the Network server. We set the SSID

42

and password of a wifi network to connect the gateway to the internet. This single channel gateway

also has a tiny web server to set the configurations and we use that to set the configurations like

LoRaWAN spread factor. All the settings we use at our gateway shows at the Figure 17.

Figure 17: Single channel gateway configuration interface

For the sensor devices, LoRa Alliance introduces a sensor node which is called as “The Things

Node” [14] and a breakout board called “The Things Uno” [13] for designing the sensor nodes.

LoRa Alliance design application-specific custom sensor nodes for user requested designs with

the required sensors for user applications. Both devices consist of the same microcontroller

Atmega32u4 [15] and same radio module RN2483 [16]. For our experiments, we use LoRa32u4II

[18] breakout board which consist of the same microcontroller but consist of a different LoRa radio

chip which is SX1276 [17]. LoRa32u4II have 28672 Bytes flash memory for code and data space,

2.500KB of Static RAM, 1KB of EEPROM, 8MHz clock speed at 3.3V and 8-bit word size.

SX1276 radio chip that uses in LoRa32u4II is low in cost in the market and support for low

communication ranges with compared to RN2483 chip. Both of these radio chips use LoRa

modulation as the data modulation technique and this research consider the capability of running

the Key Exchange mechanism using ECDH. Hence using a different radio chip of a different

manufacturer doesn’t affect for our experiments. Table 1 summarizes the differences of

LoRaWAN sensor node and the Node we use in this research.

43

device Microcontroller LoRa Radio chip

The Things Node ATMega32u4 RN2483

The Things Uno ATMega32u4 RN2483

LoRa32u4 II ATMega32u4 SX1276

Table 1: Compare End Node which we use with the Node provide by LoRaWAN

Then we want to configure the End node devices with the parameters which we set at the Network

server. We use the Arduino-MCCI library [28] version 2.3.2 for the firmware of the sensor node

device which is an extended version of the IBM Arduino-LMIC library [19]. This library supports

LoRaWAN 1.02 specifications which are the current product ready version of LoRawan. We Setup

LoRa Node with Spread Factor 9, LoRa channel ‘1’ as the LoRa radio configurations. LoRaWAN

facilitates different communication features, but we do our experiments with minimum features

which must be there to continue communication between LoRaWAN components. MCCI library

allows users to configure the project by modifying ‘project_config/lmic_project_config.h’ at the

root directory of the library and we refer the configuration instruction in library `README.md`.

The microcontroller used in Sensor Node executes the processor instructions sequentially. When

no interrupts occur, extra features of LoRaWAN do not cause for Joining procedures power

consumption and stack memory allocation. But these features cause for overall power consumption

of the Sensor Node. However, these extra features of LoRaWAN cause for global data space and

flash memory space. We disable the extra features of MCCI implementation and measure the flash

memory and global data usage for OTAA of the Things Node.

We do the experiment to measure resource consumption of Session key exchanging process of

existing implementation which is LoRaWAN specification 1.02. We use Arduino IDE to measure

the flash memory allocation and memory allocation for global data as we discussed in the

Methodology section in chapter 3. First, we disable the joining by defining “DISABLE_JOIN” in

lmic_project_config.h header file under the “project_config” directory of MCCI library and

measure memory allocations. Then we do the same experiment with enabling the joining. We use

“Memory Free” library [37] to measure the main memory allocation at run time. We measure free

space of RAM at initiate joining, send join request, join success and send data and we calculate

RAM allocation at each time. We discuss the obtained results in the evaluation chapter by

suggesting the key exchange mechanism.

44

4.3 Selecting ECC implementation for LoRaWAN

Van Leent Analysed performance of cryptographic algorithms such as RSA [36], Diffie Hellman

[38], Elliptic Curve Diffie Hellman (ECDH) [24] using existing literature as we mentioned in the

literature review. They suggest having a new key distribution mechanism instead of OTAA in

LoRaWAN using ECDH algorithm. They also suggest using ECDSA [39] algorithm to avoid the

vulnerabilities of exposing to the man in the middle attacks. Now it has different types of elliptic

curves and different implementations. Some of them are very high in resource consumption.

When integrating ECDH key exchange to LoRaWAN, first we need to check the resource

availability of the system for ECDH. We consider RAM space consumption, time consumption

and flash memory consumption to check the resource availability. It is sufficient to check the

resource availability at the End Node devices which is the resource bottleneck of the system. When

selecting the ECC implementation for LoRaWAN we first check the flash memory availability to

integrate different implementations of ECC. LoRaWAN stack implementation, application

implementations, key exchange implementation and hardcoded variables all should be stored at

the flash memory. we check the available code space after allocating space to LoRaWAN stack

and there should be enough space for application code after implementing the key exchange.

 After selecting the implementations, we check the availability of RAM to run the system with

LoRa stack, key exchange and application. This type of microcontrollers executes the processes

sequentially and we disable the LoRaWAN interrupts for our experiment setup. Hence key

exchange \does not run parallelly with other processes and stack allocates only for one process at

a time. However global data for all programs allocate some SRAM memory space. The remain

RAM space is available for the running process. We check whether the remaining RAM is enough

or not for the key exchange processes and select matching implementations out of previously

selected implementations.

Finally, we consider the time consumption for key exchange for different key sizes of the selected

implementations to select the better implementation of ECC for LoRaWAN. The execution time

of ECDH cause for the battery life of the Sensor Node because cryptographic computations

consume more processing power. However, Key Exchange is used to share a symmetric key and

this operation does not happen frequently because of that taking a few seconds to exchange keys

is also bearable.

Zhe Liu et al. from a Microsoft research group propose FourQ [20] as a more efficient and secure

implementation of Elliptic Curve. They have used IAR Embedded Workbench [40] which is a

45

proprietary development platform for their testings and evaluations with 8-bit, 16-bit and 32-bit

microcontroller architectures. We consider the experiment results which target 8-bit

microcontrollers because in this research we target 8-bit microcontrollers. As the 8-bit

microcontroller, they target ATxmega256A3 [45] which consist of more memory and processing

resources, 32 MHz clock speed, 256 KB flash, 4 KB EEPROM, 16 KB SRAM. However, this

microcontroller is power consumable than ATmega32u4 which we use in LoRaWAN nodes. Zhe

Liu et al. have analysed and evaluated performance and memory consumptions of their

implementation “FourQ” with Curve25519 [23] and µKummer [41] ECC implementations. We

use their analysis and our experiments to select the ECC implementation for LoRaWAN.

Figure 18: ECDH and ECDSA algorithms on the Sensor node

We set up an experiment to test the ability to run ECDH on LoRaWAN Node. Design of the

experiment shows in Figure 18. We test micro-ecc [22] which is an implementation of standard

SECP curves [29], nano-ecc [42] which is a fork of initial micro-ecc and also curve25519. Our

experimental setup consists of a LoRa32u4 II module connected to a pc via a serial connection.

Here we set up with the minimal requirement to test the running capability ECDH key exchange,

ECDS, and ECDS verification on the same node. Hence, source code burned to the microcontroller

with variables for two key pairs, signature, verification string and a message string.

We consider the memory consumption to select the ECC implementation for LoRaWAN. We use

the results of Zhe Liu et al.’s FourQ evaluation and results of our experimental setup discussed

46

above. All the results show that remain flash memory space after setting up LoRaWAN is not

enough for any implementation. Hence, we need a new implementation of the LoRaWAN stack

which consumes less memory. However, we select micro-ECC library implemented by Kmacky

which implements the SECP curves for different key sizes as the suitable ECC implementation for

LoRaWAN Nodes to try with LoRa stack because it consumes less code space compared to other

implementations. We discuss the results which we use to evaluate and selection of micro-ecc

implementation at the evaluation chapter.

4.4 Selecting ECDH key sizes

An Elliptic Curve implementation can support one or more key sizes. As an example, curve 25519

only supports 256-bit private key size and Kmacky’s micro implementation supports 4 key sizes.

Configuring an implementation of an ECC implementation with different key sizes are also

considered as different curves. Different key sizes provide different security levels and the security

level is proportional to the key size. OpenSSL also uses Elliptic Curve Diffie Hellman in sharing

the session key for transport layer security (SSL/TLS). OpenSSL wiki [21] discuss the security

levels of asymmetric key cryptographic and Elliptic curve cryptography comparing with

symmetric key security levels. The standard of measuring Security level of asymmetric key and

ECC cryptography is comparison with the symmetric key security levels. As an example, security

level of 3072 asymmetric key sizes and security level of 256 Elliptic Curve key size are equal to

the security level of 128-bit symmetric key security level. A symmetric key security level is

measured with the time takes to brute force the key. The standard comparison between

Asymmetric, ECC and Symmetric keys is shown in table 2.

47

Symmetric Key Length Standard asymmetric Key
Length

Elliptic Curve Key
Length

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

Table 2: key strength comparison of symmetric, asymmetric and Elliptic Curve

LoRaWAN provides 128-bit confidential level for its sensor data. Hence, key distribution should

provide equal or higher security level in key exchange mechanism and otherwise, the symmetric

key will be breached easily through key exchange mechanism than brute forcing it. We have

selected micro-ecc as a suitable implementation for the LoRaWAN End Nodes. Micro-ecc consists

of two types of elliptic curves for 256-bit key sizes, Koblitz curve and random curve. In SEC2

standard these two curves names as secp256k1, secp256r1 respectively. Micro-ecc also supports

other key sizes 160, 192, 224 bits as random curves. At the Evaluation chapter, we discuss the

selection of key size for LoRaWAN key exchange.

4.5 Key Distribution Mechanism

4.5.1 Key Exchange

In LoRaWAN architecture we register Our Applications and End Node devices at the Network

server. Then the Network server maintains the communication between End Nodes and

Application server. Receive packets from End Nodes through Gateways, Handle End Node joining

and re-joining. In existing OTAA joining mechanism End node sends a generated random number

48

to the Network server. Then Network server generate another random number and send it back to

the End node. Then both parties generate two session keys and Network server also sends the

generated session key of the Application Server to the Application Server. At the literature review,

we discuss the vulnerabilities of this existing OTAA and proposed solutions to it. Using a key

exchange mechanism is one proposed solution to increase the security of Joining mechanism.

 In our research, we have selected a suitable implementation of ECC and a key size for the selected

implementation. Then we need to introduce a key exchange mechanism using Elliptic Curve

Cryptography. We want to introduce the message flow between LoRa End Node and both

Application Server and Network Server. Our aim is to reduce the resource consumption at the End

Node device. Sensor node has very limited memory space and also limited battery power. Hence,

we should reduce code lines, static variables, run-time variables to make this memory efficient.

Also, executions of cryptographic functions and the number of communications for key exchange

should be reduced. Initially, when a node joins the network, the node should be registered at the

Network server under the relevant Application. They use 64-bit Extended Unique Identifiers (EUI)

to identify the End Node Devices and Applications. After End Node Devices Deployed, it wants

to initiate the communication from the End Node Device side. To have secure communication

between three parties, we want to exchange two secrets from the sensor node. As mentioned in the

scope we assume that we have already secured communication channel between the Network

server and Application server. According to LoRaWAN architecture sensor node communicate

between Application Server through the Network server. Hence, we try to exchange two secrets

using a single communication cycle. First, Sensor Node generates an ECC key pair and shares the

public key to both Network server and Application server. Both Application server and Network

server generates keys pairs and send their public keys as a single message to Sensor Node through

the Network Server. Then Sensor Node can generate two secrets for two servers. LoRaWAN stack

needs a 128-bit session key. We can use a hash algorithm or simply first 128 bit of shares secret

as the session key. Figure 19 shows the message flow of the proposed key exchange mechanism

for the LoRaWAN network.

49

Figure 19: Initial key exchange between Sensor node and servers.

4.5.2 Node Validation

When exchanging secrets to generate session keys we should authenticate all the parties take part

in the key exchange. Otherwise bogus parties can act as real parties. In general, Diffie Hellman

Key Exchange is vulnerable to man in the middle attack. Hence, ECDH also vulnerable to man in

the middle attack. Authentication mechanisms can use to prevent the man in the middle attack also.

With Elliptic Cryptography, Elliptic Curve Digital Signature Algorithm can be used to authenticate

a party. In LoRaWAN System we want to Authenticate all three parties, End Node Devices,

Application Server and also Network Server. Typically, public keys of End parties are

authenticated with public key certificates which are issued by Trusted Certification Authorities.

But for LoRaWAN System it is not practical to use public key certificates hence the nodes are self-

survived.

When a new Node Deployed, it initiates communication by doing the key exchange. At this time

sensor node want to authenticate its identity to other parties. Hence, Application server is already

P1 - ECC private key of End Node
g1 - ECC public key of End Node

P2 - ECC private key of Network server
g2 - ECC public key of Network server

P3 - ECC private key of Application
Server

S1 - shared secret between Node and Network server
S2 - shared secret between Node and Application server

SK1 - session key between Node and Network server
SK 2 - session key between Node and Application server

50

authenticated to the system, it is enough to authenticate the identity of End node to one of two

servers. Network Server is a third-party common Server for many applications and there should

be an end to end communication between Sensor Nodes and Applications Server. Hence, we decide

to authenticate all the Sensor Nodes to its application server. If authentication of a node fails, then

Application Server can request to the Network server to ignore that End Node Device. We

introduce a unique root secret for each End Node Device then this should be known by the relevant

application. The revelation of a secret of a node does not affect other nodes or servers but revelation

root secrets at Application Server effect for all End Nodes. As a solution for this, at the Application

server side, a Hardware Secure Module (HSM) [33] can be used to secure all the root secrets of

end nodes. To authenticate the identity of the two Servers, we introduce a root elliptic curve key

pair for the Application Server. The public key of the Application Server key pair wants to share

with all the Sensor Nodes relevant to that Application. The revelation of the public key at a sensor

node is not a problem because it is the public key but revelation of the private key of Application

needs to update all sensor node and Application to re-setup the security. Figure 20 describes the

steps of key exchange with authentication. First Sensor Node generates a key pair and sends public

key and Device EUI to the servers. Here we send Device EUI to identify the Node at the Network

server then it can redirect the message to relevant Application Server. Then key pairs generated at

two servers and also secrets generate using Sensor Nodes public key. At the Application server

concatenation of public keys of both servers are signed and send to the Sensor Node. Then Sensor

Node can authenticate received public keys of both servers and generate two secrets and session

keys to securely communicate with two servers independently. Finally, to authenticate the Sensor

Node it encrypts its root secret using generated session key of Application Server and sends it to

Application Server through the Network server. Application Server Authenticate the Sensor Node

by comparing the root secret and inform Network Server with the authentication status.

51

Figure 20: Initial key exchange with party authentications

4.5.3 Key Rolling

Key rolling can be done in two ways with this system. One is using the existing session key to

encrypt a new session key and share it with other parties. This should be done before someone

breach the existing session key. After a suspect situation of attack, we cannot trust the existing key

anymore because of that rejoin is required. Sensor nodes are automated and they don’t have

resources to run any intelligence programs with them to detect suspicious situations. Hence,

Network server should initiate a key exchange process. If Network servers ask Sensor node to

initiate join, it creates some communication overhead on Sensor node and more communication

steps need more power. And if the sensor node initiates the rejoin it should wait until the server

P1 - ECC private key of End Node
g1 - ECC public key of End Node

P2 - ECC private key of Network server
g2 - ECC public key of Network server

P3 - ECC private key of Application Server
g3 - ECC public key of Application Server

root_secret_S - Root secret of sensor node
pA - Root private ECC key of Application Server
gA - Root public ECC key of Application Server

S1 - Shared secret between Node and Network server
S2 - Shared secret between Node and Application
server

SK1 - Session key between Node and Network server
SK 2 - Session key between Node and Application

52

responses to complete the session key generation. In our solution, instead of asking the Sensor

Node to initiate Network Server can initiate the rejoin as describe the steps in Figure 21.

Figure 21: Re-join of sensor node initiate by Network Server.

Network server initiates the re-join of a Sensor Node by generating an ECC key pair for him and

forward public key to the Application Server to create an authenticated message. The application

server also generates a key pair and send the two public keys and the signature of them with

Applications root private key. Then the Sensor Node receives join request with other parties’

public keys. The sensor node can check the authentication of public keys and generate the session

keys for both parties. Then Sensor Node can encrypt its root secret by new session key and send it

with the public key to severs. The application can verify the Sensor Node by decrypting and

checking the secret and both servers can generate the session keys.

4.6 Proof of concept implementation for Sensor Node

After identifying the appropriate implementation, key sizes and designed message flow we need

an experimental design to test the capability of running the ECDH key exchange mechanism at the

Sensor Node. When selecting implementation and at the evaluation of it we show that with existing

LoRaWAN stack and implementation for two key exchange it remains very limited flash space(6%

of total flash memory) for Application Code. Hence, we use general LoRa communication stack

53

for our experiment instead of heavy LoRaWAN stack. We design the experiment setup with two

sensor nodes and a general-purpose computer as shown in Figure 22. Both Sensor Nodes have the

same code with variables and parameters which needs for key exchange between three parties. We

measure the flash memory, memory allocation for global data, stack memory allocation at run time

and time consumption for cryptographic operations in key exchange mechanism at Sensor Node.

We define variables for key exchange between three parties according to the proposed design. We

execute cryptographic functions according to that design. But we don’t implement Application

server or Network Server sides. Instead of two servers, we use another LoRa node simulate the

messages for three party key exchange. For a symmetric key generation, we use a simple

mechanism which is selecting the first 128 bits out of 256-bit shared secret instead of using the

hash function. This is not a security problem because 256 ECDH also provides 128-bit security

level. We discuss the obtained results in the evaluation chapter.

Figure 22: ECDH and ECDSA algorithms on Sensor node

54

4.7 summary

We identified the relations between identified variables for the key exchange mechanism for

LoRaWAN. Before suggesting a solution, we set up the LoRaWAN system and investigate the

resource availability of the Sensor Node. Then we discuss the selection of ECC implementation

for LoRaWAN using existing literature and our experiments. Then we discuss the experiments to

select a suitable key size for the key exchange. After that, we propose the basic key exchange

mechanism for LoRaWAN. At the next part, we discuss the End party authentication of the key

distribution and suggest the detailed design with a minimum number of message parsing for the

key exchange. Finally, we discuss the re-joining of a Sensor Node to the system and proposed the

steps to re-join with the minimum number of steps at the Sensor Node side for reducing the power

consumption.

55

Chapter 5

Results and Evaluation

5.1 ECC Algorithm Evaluation

5.1.1 ECC implementation evaluation

Before selecting the ECC implementation for LoRaWAN we set up the LoRaWAN network and

investigate the resource availability at the Sensor Node with minimum features of LoRaWAN

stack as discussed in the previous chapter.

Features Memory usage (Bytes)

Debug Level Interrupts Ping Beacon OTAA Flash Memory Global Data

0 ᙭ ᙭ ᙭ ᙭ 16370 1196

0 ᙭ ᙭ ᙭ √ 18532 1286

Table 3: Memory consumption with and without OTAA.

According to the results measured in Table 3, OTAA needs 2162 (18532-16370 = 2162) bytes out

of flash memory size 28672 Bytes, which is approximately 7.54% flash memory. It uses 90 bytes

which is 3.6 % of main memory size 2.5 KB. This statistic says that OTAA joining mechanism

consumes relatively fewer resources at End Node. We also measure the main memory consumption

of OTAA joining mechanism and observed main memory consumption at different stages as in

Table 4. We observed maximum SRAM allocation at the data sending stage after Node joined to

the Network. We also measure the time consumption for the OTAA joining procedure. It takes

5500 milliseconds on average with transmission times.

56

Status SRAM3 Allocation (Bytes)

Init join 1333

Send join request 1363

Joined 1345

Send Data 1381

Table 4: RAM allocation at LoRaWAN OTAA

In the previous chapter under ECC implementation selection, we discuss four implementations

of Elliptic Curve for 8-bit AVR microcontrollers. Liu, Zhe, et al. have analysed and evaluated

the resource consumptions of the other two implementations µKummer and Curve 25529 with

their implementation FourQ. We want to evaluate ECC implementation with both key

exchange and digital signature functionalities for our work. However, at Liu, Zhe, et al.

evaluation digital signature algorithm is not there for Curve 25519. Hence, we take the

evaluation results of µKummer and FourQ from Liu, Zhe, et al. work and we did experiments

as describe in the previous chapter for Curve 25519 and SECP curves of Micro-ecc

implementation. All the curves evaluate here provide 128-bit security strength.

Implementation Function Parameters Memory

Code + data stack

µKummer ECDH - > 9,490 812

ECDSA - > 16,516 992

FourQ /
SchnorrQ

ECDH w4 = 4, v5 = 4 30,820 + 980 2601

w = 5, v = 5 35,484 + 980 2601

ECDSA wp6 = 6 38,334 + 858 4957

wp = 8 56,678 + 858 4957

3 Static Random-Access Memory which uses flip-flops to store bits.
4 W: window size of ECC scalar multiplication
5 V: number of internal tables of ECC scalar multiplication
6 wp:

57

Curve 25519 ECDH - 11,408 + 468 512

ECDSA - 24,890 + 494 570

Micro-Ecc
Secp256r1

ECDH ol7 = 2 11502+559 646

ECDSA ol = 2 14108+528 710

Micro-Ecc
Secp256k1

ECDH ol = 2 11578+559 646

ECDSA ol = 2 14184+527 710

Table 5: Memory consumptions for different ECC implementations for 8-bit AVR

According to Table 4, 12302 bytes of free flash memory space and 1364 of free RAM space is

available with minimum features (without OTAA joining feature) of LoRaWAN stack. FourQ

cannot run in any way in LoRaWAN Sensor node because required flash and RAM is very high

than total space of the Sensor Node. To run the ECDSA algorithm with required variables it needs

more than the available free space at the Sensor Node.

Figure 23: Flash Memory and Main Memory allocation of ECC implementation

Stack graphs in Figure 23 show the total of flash memory allocations and main memory

allocations for ECDH and EDSA for each implementation. Curve 25519 consumes lesser main

memory but needs higher flash memory than free. And it is more than 80% of total flash

memory for Curve25519 ECDSA. The µKummer and micro-ecc consume relatively less space

7 ol - compiler optimization level for avr gcc

58

and Micro-ecc is the lesser. However, only ECDSA of µKummer consumes than 50% of Sensor

node flash space and for micro-ecc it is less than 50%. An open source implementation of

µKummer 8-bit AVR is also not available. Hence, we select Micro-ecc as the suitable

implementation. Furthermore, to test the capability of using Micro-ecc. For that, we test with

both ECDH and ECDSA with in the same code and obtained results in Table 7. It consumes

less than flash memory usage for µKummer ECDSA and this verifies that Micro-ecc is more

suitable than µKummer in memory wise.

Implementation function parameters code+data ram

Micro-Ecc
Secp256r1

ECDH, ECDSA ol = 2 14702 + 655 841

Micro-Ecc
Secp256k1

ECDH, ECDSA ol = 2 14778 + 655 841

Table 6: Memory consumption for both ECDH and ECDSA for Micro-ecc

5.1.2 Micro-ecc key sizes evaluation

As we discussed in previous chapter, after selecting the Micro-ecc implementation we do
experiments to select a suitable key size. The experiment results are evaluated here in memory
wise, efficiency wise and security level wise.

5.1.2.1 Memory allocation

According to the experimental setup of key size evaluation that we discussed in the previous

chapter, we obtained results and here we graph memory them as visualized in Figure 24. It shows

the memory allocation out of total space for both flash and RAM spaces. See Appendix 2 for the

obtained results. Memory wise, we cannot observe a significant difference for different curves

which represents different key sizes.

59

Figure 24: Flash memory and RAM consumption for different curves of Micro-ecc.

5.1.2.2 Time consumption

We measure the time consumption for different cryptographic functions of ECC with the same

experimental setup for key size selection. Time consumptions are obtained for secret generation,

key generation, signature generation and signature verification. Original results can see in

Appendix 3 and here Table 7 shows the Average values for time consumption of each function.

Curve Key gen (ms) Secret gen (ms) signature gen (ms) signature verify (ms) total
160r1 2162 1996 2607 2299 9064
192r1 3322 3321 3769 3851 14263

224r1 5030 5031 5608 5877 21546
256r1 8236 8238 9021 9512 35007
256k1 6870 6871 7555 7577 28873

Table 7: Time consumption for both ECDH and ECDSA for Micro-ecc.

We visualized these results as a stack graph in Figure 25. According to the graph, short key sizes

are more efficient than the higher key sizes. Higher key sizes provide higher security level than

lower keys. Micro-ecc implementation provides two curves for 256 key size. 256r1 which known

as random curve and 256k1 which known as Koblitz curve. In performance wise, Koblitz curve is

better in all cryptographic functions.

60

Figure 25: Performances for different curves of Micro-ecc.

5.1.2.3 Safety Level

We evaluate the key sizes in memory consumption wise and efficiency wise. Now we want to

evaluate security wise. D. J. Bernstein and T. Lange have examined the safety of different

elliptic curves [30]. They have discussed the safeness of Elliptic Curves against 11 security

requirements. Curves in micro-ecc doesn’t satisfy all 11 security requirements. Both

secp256k1, secp256r1 doesn’t satisfy 4 security requirements out of 11 and secp224r1 doesn’t

satisfy 5 security requirements. However, they provide a sufficient security level. The most

popular cryptocurrency platforms Bitcoin [31] and Ethereum [32] also still uses secp256k1

curve because of its efficiency and safety. Hence here we propose to use secp256k1 standard

curve for LoRaWAN End node. The security can be increased by doing the key exchange

periodically. If so then we can also move to secp224r1 which is more resource efficient with

the security level equals to 112-bit symmetric key.

61

5.2 Key Distribution Mechanism Evaluation

According to our experiment design for proof of concept key distribution in previous chapter we

do the key exchange between Two LoRa nodes as the proof of concept and we includes all

parameters and call number of executions of each cryptographic functions which needs to

exchange keys between three parties as our Key exchange solution design in previous chapter.

LoRaWAN Stack with basic functions of micro-ecc cryptography implementation consumes 94%

of flash memory. Normal LoRa communication stack with required variables and functions for

three party key exchange consumes 72% of Flash Memory and it consumes 1050 bytes of memory

for global data and 1229 bytes of total RAM space allocation of the sensor node. Total RAM

allocation is 48% at the Sensor Node. According to key exchange design it needs one key pair

generation, two secret generation, one ECDSA verification and one AES encryption. According

to Micro-ecc evaluation results we can calculate the time consumption for ECDH cryptographic

functions.

𝑐𝑟𝑦𝑝𝑡𝑜𝑇𝑖𝑚𝑒	 = 	𝑘𝑒𝑦𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	 + 	2 ∗ 𝑠𝑒𝑐𝑟𝑒𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 	𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒	𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	 + 	𝐴𝐸𝑆𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜

6870	 +	(6871 ∗ 2) 	+ 	7577	 = 	28189	𝑚𝑠

According to this calculation it takes 28.2 seconds which means almost half a minute for ECDH

cryptographic calculations. This time is without two communication steps of proposed key

exchange message flow from sensor node and network delays. OTAA consumes 5.5 second for

whole joining procedure. Our key exchange consumes more than 6 times time compared to OTAA.

But security wise this key exchange is more secure than OTAA.

We also want to discuss the security strength of our selected secret According to Wikipedia fastest

supercomputer’s performance is 143.5 PFLOPS8 in 2018 [34] and according M. Arora’s

calculation [35] 7.5*1016 years needs a supercomputer to bruteforce the 128-bit secret. According

to him, even 7 billion people in the world have super computers, this calculation takes millions of

years. However, key can be revealed without brute forcing the symmetric keys. Breaking

secp256k1 as D. J. Bernsteinn et al. shows or even a random try for guessing the symmetric key

can be a success. But these possibilities are very rare. Hence, we can consider key rolling to

increase the system security.

8 The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS)
and P in FLOPS means penta(1015)

62

ECDH key exchange with ECDSA is more secure than OTAA re-joining. Hence, it doesn’t need

frequent key rolling or re key exchange.

According to ATmega32u4 datasheet [15] Active microcontroller consumes 4.7mA with 8MHz

clock speed, 3.6v and at 25C0. This voltage and speed are same as the specification of LoRaWAN

Sensor Node. According to Figure 21 it needs two communications for a node to do the key

exchange for re-joining. Max message length is length of “pubKey1|pubKey2|signature” which is

64+64+64=192 Bytes. Table 1 of E. Aras et. al [6] shows 122 Bytes per second data rate for SF10

spread factor which also supports high distance communication. Then time for message

transmission is 192/122 = 1.57 seconds. If we assume a maximum of 2 seconds per message, then

it takes less than 4 second communication time for two communication messages of new re-

joining. In this section we calculate crypto-time which is 28.2 seconds. Now the total calculated

re-joining time is 28.2 + 4 = 32.2 seconds. With the network delays, we can take a maximum of

60 seconds which is almost double of calculated time for a re-join.

If user decide to do a key distribution for each day and with maximally one minute

communication time with network delays, node consumes 4.7mA*(1*60/3600) h which is

0.07834mAh of battery capacity per day. Per a year it is 0.079mAh * 3600 which is 28.6 mAh and

if we use a 3.7v, 4800mAh Li-Ion single battery to power the node, it consumes 28.6/4800 mAh

which is 0.6% of total capacity from the battery. This is bearable and less capacity consumption

percentage with 4800mAh Li-Ion single battery which is available in local market.

5.3 Summary

We discuss experiment designs and proposed solution at the previous chapter and this chapter

evaluate the results obtained at each experiment. First, we discuss LoRaWAN resource

consumption results. Then we evaluate ECC implementation results and key size selection

results. Finally, we discuss the strengthens and weaknesses of the proposed solution. Under the

evaluation of proposed key exchange, we discuss the ability to run it on the sensor node with

its memory constraints. Then we discuss the security strengths and requirement of rejoining.

At the end, we discuss power consumption and overhead for the Sensor nodes battery life.

63

Chapter 6

Conclusion and Future Works

We studied the Current status of IOT and the emergence of Low Power Wide Area Networks.

Then we focus the LoRaWAN which is the most widely spread LPWAN in the world. Hence

Security is the main concern of each system we studied the LoRaWAN Security. Our literature

review highlights the security vulnerabilities End Node Device joining mechanism of the

LoRaWAN. We Discussed the existing joining mechanism and proposed solutions to increase the

security of Sensor Device Joining. Few researchers have raised the need of a key exchange

mechanism and we found one ECDH base proposal solution using existing literature. We identified

the gap of not focusing the Sensor Node Device limitations when integrating ECDH for

LoRaWAN.

Our work identifies the capability of running ECDH based key exchange at LoRaWAN End Node

Devices. We do our research limiting to specifications of exact End Node of LoRaWAN system.

We found an ECC implementation which can perform with the Node limitations. Evaluating

resource requirements of four implementations of ECC we select Micro-ecc implementation for

LoRaWAN Key exchange. We also evaluate different curves support by Micro-ecc against

memory consumption, efficiency and security strengths and select secp256k1 standard Koblitz

curve which uses 256 keys size and provide 128-bit level security strength. We proposed a key

distribution mechanism with minimum message parsing to save the Sensor Node battery power.

This solution exchange two secrets to communicate between Network Server and Application

server from the Sensor Node. We use a root secret at End Node side and root ECC key pair at

Application server side to provide the authentication for the key exchange. See all the source codes

we use for testing and the source code for proof of concept at the GitHub [43].

Our work only implements a proof of work to prove the capability of running micro-ecc based key

exchange for LoRaWAN Sensor Node. For future works, it needs to implement the full system

64

with the ECDH key exchange. Flash memory limitation is the main constraint we found for ECDH

implementation at sensor Node. We see more efficient and secure ECC implementations which

cannot perform on LoRaWAN Node because of memory limitations. For future work, we suggest

doing research to select the most suitable microcontroller for Low Power Wide Area Networks. In

this case, it needs to consider more flash memory and ram availability and less power consumption.

Cost of the microcontroller also should consider. In our research, we use only the existing

implementations of ECC and LoRaWAN stack. Some of ECC implementation is not available for

8-bit AVR microcontrollers. Implement a more resource efficient, power efficient and secure ECC

implementation for 8-bit AVRs is also a need the sensor network area.

65

References:
[1] A. Augustin, J. Yi, T. Clausen, and W. Townsley, “A Study of LoRa: Long Range & Low Power
Networks for the Internet of Things,” Sensors, vol. 16, no. 9, p. 1466, Sep. 2016.

[2] "LoRaWAN® Specification v1.0.2 | LoRa Alliance™", Lora-alliance.org, 2019. [Online]. Available:
https://lora-alliance.org/resource-hub/lorawantm-specification-v102. [Accessed: 19- Sep- 2019].

[3] "LoRaWAN® Back-End Interfaces v1.0 | LoRa Alliance™", Lora-alliance.org, 2019. [Online].
Available: https://lora-alliance.org/resource-hub/lorawantm-back-end-interfaces-v10. [Accessed: 19- Sep-
2019].

[4] "LoRaWAN® Specification v1.1 | LoRa Alliance™", Lora-alliance.org, 2019. [Online]. Available:
https://lora-alliance.org/resource-hub/lorawantm-specification-v11. [Accessed: 19- Sep- 2019].

[5] X. Yang, E. Karampatzakis, C. Doerr, and F. Kuipers, “Security Vulnerabilities in LoRaWAN,” 2018
IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI),
2018.

[6] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes, “Exploring the Security Vulnerabilities of
LoRa,” 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), 2017.

[7] K. Feichtinger, Y. Nakano, K. Fukushima, and S. Kiyomoto, “Enhancing the Security of Over-The-Air-
Activation of LoRaWAN Using a Hybrid Cryptosystem,”International Journal of Computer Science and
Network Security, vol. 18, no. 2, pp. 1–9, Feb. 2018.

[8] M. V. Leent, “An improved key distribution and updating mechanism for low power wide area networks
(LPWAN),”, Openaccess, 2017.

[9] "The Things Network", Thethingsnetwork.org, 2019. [Online]. Available:
https://www.thethingsnetwork.org/. [Accessed: 21- Sep- 2019].

[10] Mekki, K., Bajic, E., Chaxel, F. and Meyer, F. (2019). A comparative study of LPWAN technologies
for large-scale IoT deployment. ICT Express, 5(1), pp.1-7.

[11] Sung, Woo-Jin, Hyeong-Geun Ahn, Jong-Beom Kim, and Seong-Gon Choi. "Protecting end-device
from replay attack on LoRaWAN." In Advanced Communication Technology (ICACT), 2018 20th
International Conference on, pp. 167-171. IEEE, 2018.

[12] Tomasin, Stefano, Simone Zulian, and Lorenzo Vangelista. "Security analysis of lorawan join
procedure for internet of things networks." In Wireless Communications and Networking Conference
Workshops (WCNCW), 2017 IEEE, pp. 1-6. IEEE, 2017.

[13] "The Things Uno", The Things Network, 2019. [Online]. Available:
https://www.thethingsnetwork.org/docs/devices/uno. [Accessed: 21- Sep- 2019].

[14] "The Things Node", The Things Network, 2019. [Online]. Available:
https://www.thethingsnetwork.org/docs/devices/node. [Accessed: 21- Sep- 2019].

[15] Atmel, “Low-Power Long Range LoRa® Technology Transceiver Module,” Atmel-7766J-USB-
ATmega16U4/32U4-Datasheet, 2015. [Online]. Available:
http://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-
32u4_datasheet.pdf. [Accessed: 19- Sep- 2019].

[16] Microchip, “8-bit Microcontroller with 16/32K bytes of ISP Flash and USB
Controller,” DS50002346C Datasheet, April. 2016. [Online]. Available:

66

http://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-
32u4_datasheet.pdf. [Accessed: 19- Sep- 2019].

[17] Semtech, “SX1276/77/78 - 137-1050 MHz Ultra Low Power Long Range
Transceiver,” Datasheet, Jul. 2012. [Online]. Available:
https://upverter.com/datasheet/b31dec1362ed0746786e1d3a0bf1fe1ff5f6eb0c.pdf. [Accessed: 19- Sep-
2019].

[18] BSFrance, “LoRa32u4II- Low power Atmega® 32u4 LoRa 868Mhz 915Mhz compact board with
3.7V LiPo cell management,” Datasheet, 2017. [Online]. Available:
https://docs.bsfrance.fr/documentation/11355_LORA32U4II/Datasheet_LoRa32u4II_1.1.pdf.
[Accessed: 19- Sep- 2019].

[19] "matthijskooijman/arduino-lmic", GitHub, 2019. [Online]. Available:
https://github.com/matthijskooijman/arduino-lmic. [Accessed: 19- Sep- 2019].

[20] Z. Liu, P. Longa, G. Pereira, O. Reparaz and H. Seo, "FourQ on embedded devices with strong
countermeasures against side-channel attacks", IEEE Transactions on Dependable and Secure
Computing, pp. 1-1, 2018. Available: 10.1109/tdsc.2018.2799844.

[21] "Elliptic Curve Cryptography - OpenSSLWiki", Wiki.openssl.org, 2019. [Online]. Available:
https://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography. [Accessed: 19- Sep- 2019].

 [22] "micro-ecc", Arduinolibraries.info, 2019. [Online]. Available:
https://www.arduinolibraries.info/libraries/micro-ecc. [Accessed: 19- Sep- 2019].

[23] "Arduino Cryptography Library: Curve25519 Class Reference", Rweather.github.io, 2019.
[Online]. Available: https://rweather.github.io/arduinolibs/classCurve25519.html. [Accessed: 19- Sep-
2019].

[24] "Elliptic-curve Diffie–Hellman", En.wikipedia.org, 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–Hellman. [Accessed: 19- Sep- 2019].

[25] "The Things Gateway", The Things Network, 2019. [Online]. Available:
https://www.thethingsnetwork.org/docs/gateways/gateway/. [Accessed: 19- Sep- 2019].

[26] ESP8266EX Datasheet, V 6.2. Espressif, 2019. [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf.
[Accessed: 19- Sep- 2019].

[27] RFM95/96/97/98(W) - Low Power Long Range Transceiver Module V1.0. HOPE
MICROELECTRONICS CO.,LTD, Shenzhen, Chain. 2006. [Online].
Available:https://cdn.sparkfun.com/assets/learn_tutorials/8/0/4/RFM95_96_97_98W.pdf. [Accessed:
19- Sep- 2019].

[28] IBM, Matthis Kooijman, Terry Moore, ChaeHee Won, Frank Rose, “MCCI LoRaWAN LMIC
library,” mcci-catena/arduino-lmic. IBM. [Online]. Available: https://github.com/mcci-catena/arduino-
lmic. [Accessed: 19- Sep- 2019].

[29] Certicom Research, “SEC 2: Recommended Elliptic Curve Domain Parameters.” Certicom Corp., 09-
Sep-2000 [Online]. Available : https://www.secg.org/SEC2-Ver-1.0.pdf. [Accessed: 19- Sep- 2019].

67

[30] D. J. Bernstein and T. Lange, "Safe Curves: choosing safe curves for elliptic-curve
cryptography", Safecurves.cr.yp.to, 2019. [Online]. Available: http://safecurves.cr.yp.to/. [Accessed:
21- Sep- 2019].

[31] Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system." (2008).

[32] Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger." Ethereum project
yellow paper 151 (2014): 1-32.

[33] “Hardware Security Modules (HSMs) - SafeNet Encryption & Key Security,” Gemalto. [Online].
Available: https://safenet.gemalto.com/data-encryption/hardware-security-modules-hsms/. [Accessed: 05-
Jun-2019].

[34] “Supercomputer,” Wikipedia, 09-May-2019. [Online]. Available:
https://en.wikipedia.org/wiki/Supercomputer. [Accessed: 05-Jun-2019].

[35] M. Arora and Freescale Semiconductor, “How secure is AES against brute force attacks?,” EETimes,
07-May-2012. [Online]. Available: https://www.eetimes.com/document.asp?doc_id=1279619. [Accessed:
05-Jun-2019].

[36] “RSA (cryptosystem),” Wikipedia, 23-May-2019. [Online]. Available:
https://en.wikipedia.org/wiki/RSA_(cryptosystem). [Accessed: 06-Jun-2019].

[37] Maniacbug, “maniacbug/MemoryFree,” GitHub, 24-Apr-2011. [Online]. Available:
https://github.com/maniacbug/MemoryFree. [Accessed: 07-Jun-2019].

[38] “Diffie–Hellman key exchange,” Wikipedia, 30-May-2019. [Online]. Available:
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange. [Accessed: 07-Jun-2019].

[39] “Elliptic Curve Digital Signature Algorithm,” Wikipedia, 13-May-2019. [Online]. Available:
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm. [Accessed: 07-Jun-2019].

[40] IAR Embedded Workbench. [Online]. Available: https://www.iar.com/iar-embedded-workbench/.
[Accessed: 07-Jun-2019].

[41] J. Renes, P. Schwabe, B. Smith and L. Batina, "µKummer: Efficient hyperelliptic signatures and
key exchange on microcontrollers", in International Conference on Cryptographic Hardware and
Embedded Systems, Springer, Berlin, Heidelberg, 2016, pp. PP 301- 320.

[42] iSECPartners, “iSECPartners/nano-ecc,” GitHub, 12-Jul-2013. [Online]. Available:
https://github.com/iSECPartners/nano-ecc. [Accessed: 07- Jun- 2019].

[43] N. Jayasuriya, “NamalJayasuriya/ECDH-for-LoRaWAN,” GitHub, 07-Jun-2019. [Online]. Available:
https://github.com/NamalJayasuriya/ECDH-for-LoRaWAN. [Accessed: 07- Sep -2019].

[44] “Arduino - Home,” Arduino - Introduction. [Online]. Available: https://www.arduino.cc/. [Accessed:
02-Dec-2018].

[45] ATmel, “8/16-bit XMEGA A3 Microcontroller.” Atmel Corporation, 2009. [Online] Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8068-8-and16-bit-AVR-XMEGA-A3-
Microcontrollers_Datasheet.pdf. [Accessed: 07- Sep -2019].

68

Appendix

Appendix 1

A1.1 Registered LoRaWAN gateway status at Network Server

A1.2 Received Join Request at Network Server

A1.3 Generated Join Accept message at Network Server

69

Appendix 2

A2.1 Memory allocation results for Micro-ecc different Key Sizes.

Curve
Flash Memory
Allocated

Flash MEmory
Free

Allocated Space
of Ram

Free Space of
Ram

160r1 14302 14370 723 1837

192r1 13828 14844 761 1799

224r1 14064 14608 801 1759

256r1 14702 13970 841 1719

256k1 14778 13894 841 1719

Appendix 3

A3.1 Time consumption results of cryptographic functions for micro-ecc 160r1

160r1

keygen secret gen sign verify

2364 1989 2357 2240

2268 1997 2906 2302

2087 1992 2450 2382

2001 1995 2531 2284

1996 1997 2446 2291

2177 1996 2628 2329

1994 1993 2808 2300

1996 1991 2441 2249

70

1996 1986 2454 2341

2363 1995 2459 2181

2890 1999 2529 2380

2001 1992 3275 2273

2089 1998 2716 2339

2107 1999 2374 2236

2005 1993 2552 2308

2191 2001 2577 2314

2109 2005 2378 2337

2005 2001 2377 2339

2429 2003 3093 2318

2175 1997 2785 2233

Averages :

2162.15 1995.95 2606.8 2298.8

A3.2 Time consumption results of cryptographic functions for micro-ecc 192r1

192r1

keygen secret gen sign verify

3333 3313 3758 3861

3318 3314 3752 3926

3314 3314 3748 3889

3312 3312 3748 3826

3313 3307 3752 3943

3311 3308 3751 3765

3315 3318 3750 3832

3309 3316 3752 3825

3316 3307 3750 3701

3314 3322 3756 3797

3318 3330 3785 3774

3330 3328 3786 4018

3333 3336 3778 3914

3334 3333 3780 3914

3328 3328 3791 3873

3324 3326 3789 3809

71

3330 3328 3787 3848

3330 3330 3788 3859

3334 3332 3785 3877

3326 3328 3791 3787

Averages :

3322.1 3321.5 3768.85 3851.9

A3.3 Time consumption results of cryptographic functions for micro-ecc 224r1

224r1

keygen secret gen sign verify

4986 5026 5595 5939

5020 5040 5599 5892

5026 5022 5593 5904

5036 5040 5630 5872

5046 5042 5597 5907

5030 5034 5607 5851

5034 5022 5601 5773

5026 5030 5612 5873

5024 5024 5603 5853

5030 5032 5601 5843

5030 5034 5620 5972

5046 5027 5604 5908

5038 5039 5634 5853

5046 5024 5593 6009

5028 5029 5600 5884

5029 5026 5634 5909

5032 5034 5615 5772

5032 5030 5606 5771

5028 5034 5599 5869

5030 5034 5626 5890

Averages :

5029.85 5031.15 5608.45 5877.2

72

A3.4 Time consumption results of cryptographic functions for micro-ecc 156r1

256r1

keygen secret gen sign verify

8233 8231 9097 9484

8108 8215 8976 9573

8210 8210 8968 9552

8209 8221 9062 9329

8278 8286 9112 9701

8262 8283 8994 9528

8231 8243 9019 9693

8233 8221 8981 9400

8223 8266 9072 9718

8268 8267 9073 9748

8258 8211 8956 9478

8202 8206 8970 9288

8251 8262 9074 9653

8265 8211 8955 9647

8255 8223 9022 9322

8210 8211 8974 9523

8276 8283 9113 9323

8282 8223 8980 9603

8260 8263 9036 9505

8214 8215 8976 9278

Averages :

8236.4 8237.55 9020.5 9517.3

A3.5 Time consumption results of cryptographic functions for micro-ecc 256k1

256k1

keygen secret gen sign verify

6848 6873 7547 7670

6873 6869 7555 7670

6873 6871 7555 7420

6865 6867 7559 7694

73

6873 6867 7560 7628

6878 6873 7551 7506

6877 6877 7563 7572

6875 6867 7557 7348

6865 6871 7549 7633

6873 6875 7551 7528

6869 6867 7555 7874

6875 6863 7557 7385

6869 6871 7559 7799

6873 6869 7557 7483

6867 6867 7557 7672

6871 6877 7555 7471

6866 6878 7549 7559

6867 6875 7551 7661

6869 6867 7562 7420

6871 6872 7551 7542

Averages :

6869.85 6870.8 7555 7576.75

