
JSON Based Web Services
Virtualization Platform

K.D.I.U.K. Gunawardana
2019

JSON Based Web Services
Virtualization Platform

A dissertation submitted for the Degree of Master of
Computer Science

K.D.I.U.K Gunawardana
University of Colombo School of Computing

2019

	 i	

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or
any other university/institute.

 To the best of my knowledge it does not contain any material published or written by another
person, except as acknowledged in the text.

Student Name: K. D. I. U. K. Gunawardana

Registration Number: 2016/MCS/035

Index Number: 16440351

--- -----------------------------------

Signature: Date:

This is to certify that this thesis is based on the work of

Mr. K. D. I. U. K. Gunawardana

under my supervision. The thesis has been prepared according to the format stipulated and is
of acceptable standard.

Certified by:

Supervisor Name: Prof K. P. Hewagamage

--- -----------------------------------

Signature: Date:

	

	 ii	

Abstract

Delivering working software on time is a major challenge in the software industry. This

challenge becomes more challengeable when the initial requirements want to be changed while

the development is in progress. During the last few decades, different software development

methodologies have been emerged by different groups to minimize those problems and

improve the quality of the development process, hence, to improve the quality of the final

product. Currently, the dimension of this problem has become more complex since the

emergence of distributed software systems. Nowadays, most of the enterprise level applications

are heterogeneous, consists of different service, application modules and communication

patterns. And Web services are considered as the most efficient communication method among

applications. In such an environment, there should be a well-organized engineering process to

produce quality output. The parallel development process is considered as one of the best

practice to improve efficiency by sharing the responsibilities of different components to

different engineering teams through documentation and meetings. Though, communication of

requirements changes is harder and takes more time. Sometime it may cause another team to

hold their works until another team completes their tasks. This is one of the major drawbacks

of the parallel development process. This dissertation proposes a solution to overcome this

problem and improve the efficiency of the parallel development process through virtualizing

web services using JSON. The proposed solution contains two major parts. First part handles

virtualization of different services and the second part handles arbitrary data generation while

processing the HTTP requests. The proposed solution uses JSON as the key format of

persisting service definitions since it's ease of maintainability and accessibility over XML and

traditional database schemas. Data generation part can process requests and produce complying

formatted random data asynchronously for each request. Simple user interfaces allow users to

work with the system without deeper knowledge about computer science. So technical and

non-technical people like business analysts can interact with the system and communicate

requirement changes rapidly to other stakeholders.

	 iii	

Acknowledgements

This research would not have been successful without the help, guidance and dedication of

several persons who actually contributed their valuable time on my effort.

First and foremost, I would like to express my project supervisor Prof. K. P. Hewagamage who

has supported me through the project. His guidance and push through the whole year lead me

to complete this project successfully. Without his kind contribution, I could not have achieved

my objectives.

Also, I would like to thank the MCS coordinators, project coordinators, and academic staff and

the library staff who help me in numerous ways to complete this project successfully.

I wish to give my special thanks to my mother, my father and my loving wife who gave me the

courage to overcome every difficulty during this period and finish this project successfully.

I would like to give special thanks to all my friends who gave me courage and help to finish
this project successfully.

	 iv	

Table of Contents

Declaration	..	i	
Abstract	..	ii	
Acknowledgements	...	iii	
Table	of	Contents	..	iv	
List	of	Figures	..	vi	
List	of	Tables	...	vii	
List	of	Abbreviations	..	viii	

Chapter	1	Introduction	..	1	
1.1	Motivation	..	1	
1.2	Problem	..	2	
1.3	Aim	...	3	
1.4	Objectives	...	3	
1.5	Scope	..	4	
1.6	Contribution	...	4	
1.7	Structure	of	the	thesis	...	4	

Chapter	2	Literature	Review	..	5	
2.1	Introduction	..	5	
2.2	Factors	for	Success	and	Failure	of	Projects	..	5	
2.3	Software	Engineering	Practices	...	6	
2.4	Parallel	Development	..	7	
2.5	JSON	vs	XML	Processing	..	8	
2.6	Tools	Available	in	the	Market	...	10	

2.6.1	Traffic	Parrot	...	10	
2.6.2	ServiceV	Pro	..	10	
2.6.3	Wiremock	..	10	
2.6.4	Mountebank	..	10	
2.6.5	Hoverfly	cloud	...	10	
2.6.6	MicroFocus	Data	Simulation	Software	..	10	
2.6.7	Parasoft	Virtualize	...	11	
2.6.8	CA	service	Virtualization	..	11	
2.6.9	Mocklab	...	11	
2.6.10	Rational	Test	Virtualization	Server	..	11	
2.6.11	Tricentis	Tosca	...	11	

2.7	Chapter	Summary	...	11	

Chapter	3	Analysis	and	Design	...	12	
3.1	Introduction	..	12	
3.2	Overview	..	12	
3.3	Service	Declaring	Module	..	13	

3.3.1	Manager	Interfaces	...	13	
3.3.2	JSON	Processor	..	14	
3.3.3	Data	Persistence	Layer	..	14	

	 v	

3.4	Data	Generation	Module	..	14	
3.4.1	Request-Response	Handler	...	15	
3.4.2	Manager	Layer	...	15	
3.4.3	Persistence	Layer	...	15	
3.4.4	JSON	Processor	..	16	
3.4.5	Utility	Layer	...	16	

3.5	User	Management	..	16	
3.6	Chapter	Summary	...	17	

Chapter	4	Implementation	..	18	
4.1	Introduction	..	18	
4.2	Implementation	Environment	and	Technologies	...	18	
4.3	Service	Declaring	Module	Implementation	..	19	

4.3.1	Front-End	Layer	...	19	
4.3.2	JSON	Processor	Layer	..	21	
4.3.3	Persistence	Layer	...	21	

4.4	Web	service	for	UI/Core	Interaction	..	22	
4.5	Data	Generation	Module	Implementation	..	23	
4.6	Post	Processing	of	Services	...	24	
4.7	Additional	Features	...	24	
4.8	Chapter	Summary	...	24	

Chapter	5	Evaluation	and	Testing	..	25	
5.1	Introduction	..	25	
5.2	Setting	up	the	evaluation	environment	...	25	
5.3	Preparing	sample	services	...	26	
5.4	Request	generation	...	27	
5.5	Evaluation	of	results	through	parameter	changes	...	28	

5.5.1	Evaluation	through	service	virtualization	..	28	
5.5.2	Evaluation	through	data	generation	...	29	

5.6	Chapter	Summary	...	32	

Chapter	6	Conclusions	and	Future	Work	..	33	
6.1	Introduction	..	33	
6.2	Conclusions	...	33	
6.3	Future	work	..	33	
6.4	Chapter	Summary	...	34	
Appendices	...	37	
Appendix	A	–	JSON	Format	...	37	
Appendix	B	–	Class	Diagrams	(Virtualization	Core	System)	..	39	
Appendix	C	–	Web	Service	Class	Diagram	..	40	
Appendix	D	–	ER	Diagram	...	41	
Appendix	E	–	Postman	Test	Tool	...	42	

	 vi	

List of Figures

Figure	2-1	Marshaling	Performance	Comparison	..	8	

Figure	2-2	Unmarshalling	Performance	Comparison	...	9	

Figure	3-1	Architecture	of	the	solution	..	13	

Figure	3-2	Data	generation	module	...	15	

Figure	4-1	service	declaring	page	...	20	

Figure	4-2	schema	diagram	..	21	

Figure	4-3	user	modules	and	backend	...	22	

Figure	4-4	Architecture	of	Data	Generation	...	23	

Figure	5-1	Basic	window	of	the	SoapUI	..	25	

Figure	5-2	Creating	a	new	REST	project	...	26	

Figure	5-3	Adding	REST	requests	..	26	

Figure	5-4	request	editor	...	27	

	 vii	

List of Tables

Table	2-1Project	Success	Factors	...	6	

Table	2-2	Project	Challenge	Factors	...	6	

Table	5-1	format	of	the	POST	request	..	27	

Table	5-2	format	of	the	GET	request	..	28	

Table	5-3	format	of	the	PUT	request	...	28	

Table	5-4	format	of	the	DELETE	request	..	28	

	

	

	 viii	

List of Abbreviations

HTML - Hyper Text Markup Language

HTTP - HyperText Transfer Protocol

IDE - Integrated Development Environment

JSON - JavaScript Object Notation

RDBMS - Relational Database Management System

SVN - Subversions

TS – TypeScript

UI - User Interface

UX - User Experience

XML - Extensible Markup Language

	 1	

Chapter 1

Introduction
	

Since the invention of the computer, the complexity of computer-based application has been

changed drastically. Now the variations of software are changed from a simple console based

application to huge and complex enterprise application which runs on different platform varies

from a single stand computer to multiple supercomputer or virtual environments. These

systems contain million number of lines of the codebase. Additionally, they have consumed a

huge amount of man-hours workload to build up a fully functional software system. Even

though, most of those systems contain at least a few bugs. So the process of software

development field has also expanded through many disciplines to handle the building of

complex systems. It is still being developed lots of processes to improve software development

processes to achieve a goal of bug-free software within reasonable man-hour consumption.

Modularizing a large system into a number of small subsystems based on the core functionality

of each system is considered as a best practice in the field since the ability to manage the

complexity of the project easily. Service-oriented architecture(SOA), microservices and

layered architecture are some of those approaches to modularize large systems into small

subsystems. Modularizing approach also helps to develop and test each component

independently.

Communication among components can be achieved a few techniques such as remote method

invocations and web services etc. Web services are the most commonly used mechanism.

1.1 Motivation

One of the main goals of software development processes is delivering a defect or bugs free

product on time and within the budget. This task is very hard for any software development

team, even for very skilled and experienced teams. Today, there are many development

processes and practices to be developed to achieve this consistent goal.

A process of bug-free software development is a combination of developing and testing

practices. Having good testing skills is so important as well as having a skilled development

	 2	

team who can perform best software development practices. Talented testing teams can help to

deliver quality software through proper tastings.

Good software architectures can combine those aspects through their architecting skills. SOA

and Microservices are two of the most popular architectural patterns these days since the ability

to divide large software systems into smaller parts which are more manageable. Agile and

scrum are also very popular methodologies since the ability of handling requirement changes

more efficiently and reliably than ever before. Therefore, a combination of SOA,

Microservices, Agile and Scrum can be seen most of the time in the industry.

1.2 Problem

Today’s software solutions are very complex and consist of a variety of applications and

service modules which are mainly interacted with each other through web services. Since the

serial development takes too much development time, the Parallel development process is

considered as the most efficient ways to implement these type of solutions. Parallel

development processes allow different development teams to collaborate so each development

team can work on separate modules of the entire project. These teams may or may not be

working on the same technology. Some teams may be working on the backend, some teams

may be working on middleware and some teams may be on the user experience side.

Middleware which is mostly web services will combine all together to build up the entire

system.

In the test phase, standalone tests are done at first level to identify unit level issues in systems

then integration testing is performed to check whether how it works with other systems. After

that, the entire system will be tested to deliver a quality system. Testing and fixing phases will

be done iteratively until it finds a bug free product.

But the problem is this parallel implementation of the subsystems is directly depended on the

implementation of the web service. Even in a place where documentations are properly

maintained, it is hard to implement and deliver changes quickly. Traditional development

processes are keen to documentation but new development processes such as Agile never

intend to keep such a bunch of documents, it always tried to keep as less as possible.

Change requirements are also a compulsory thing in any software product. A change request

is a proposal to alter a product or system, often brought up by the client or another team

member. During a project, this can happen when a client wants to change or alter the agreed

	 3	

upon deliverables. Change requests can also be initiated internally as well and can include

things like changing or upgrading software. In general, there are two types of change requests:

those that are inside the scope and those that are outside the scope of the project. Change

requests that are inside the scope involve small corrections to an existing requirement. On the

other hand, change requests that are outside the scope take a considerable amount of time to

implement and have a more sizeable impact on the budget. A change request is often inevitable

and should be expected at some point in any project. When the entire team is up-to-date on the

change request it can be dealt with in an appropriate and timely manner. It is the change

requests that are not approved or not communicated to the other team members that ultimately

cause a problem. Once a change request has been made, the entire team should be informed

and they can come to an agreement about how to satisfy the request without using unnecessary

resources.

The main purpose of this project is to address this issue and define a way to implement web

services virtually. So developers can continue development works with virtual services until

the real services are released.

1.3 Aim

Providing a seamless integration of web services with depending systems is the main aim of

this project. Seamless integration is supposed to achieve through a virtualization mechanism

and an arbitrary data generation process. Virtualizing mechanism allows other systems to feel

that the requested resource is available. Then, Data generation part can provide proper data for

virtual services.

1.4 Objectives

Objective 01 – Implementing a simple data format to store and to retrieve service definition

data for fast execution.

Objective 02 – Implementing a mechanism to process HTTP request data and to identify the

service part of the request to reduce the latency.

Objective 03 – Implementing a mechanism to generate variety of arbitrary data efficiently.

	 4	

1.5 Scope

The proposed solution will provide a solution to virtualize HTTP Rest web services. So the

users will be provided with a user interface to describe their services simply as the main

function. Additionally, they may be received facilities to manage services, users, and teams of

the project. In the service definition part, it will provide some basic support of the basic

mathematical functions such as plus, minus, less than/greater than etc. to describe some

constraints of the data. So users will be offered privileges to access multiple projects

simultaneously. From the backend side, the system may generate arbitrary data for services

based on user-defined data types and will return them in JSON format. Request/response log

which is exposed via the interface will allow users to debug applications.

1.6 Contribution

This project contains a few challenges that should be studied further. One of the major things

is keeping the service description data inside the system converting them into an intermediate

state. Since there are few subsystems that use these data, it should be kept in a simple and

common format for all systems. Another thing that it needs to be studied further is how to

simulate behaviors of a multipart request. Finally, the arbitrary data generation part should be

studied further to provide meaningful data to requests.

1.7 Structure of the thesis

The second chapter is the literature review which will discuss the ongoing works, projects, and

researches on the topic. Chapter 3 will discuss about the design of the proposed solution. In the

chapter 4, it will discuss about the actual implementation of the solution in detail.

	

	 5	

Chapter 2

Literature Review

2.1 Introduction

The problem discussed in the previous chapter is not a newly found issue in the software

development field. It was there from the beginning and managers could handle it by their own

experience. But the necessity to solve this problem is still significant than ever since the

complexity of solutions is getting complex and multiple technologies are involved to solve a

problem. This chapter will discuss an analytical overview of the significant literature published

on this topic.

2.2 Factors for Success and Failure of Projects

According to the CHAOS report [1] which is published by The Standish Group

(https://www.standishgroup.com/) in 1995, the US spends more than $250 billion each year on

IT application development of approximately 175,000 projects. The average cost of

development for a large company is estimated at $2,322,000 while this becomes $1,331,000

and $434,000 respectively for medium and small range companies [1]. It also says that 31.1%

of projects are canceled before they start and 52.7% project is running over the estimated

budget and that value is estimated as 189% of the original budget [1].

In 1995, The Standish Group surveyed IT executive managers of different companies to

identify why projects succeed while some are failed. The resulting report shows a number of

factors that effect on projects as shown in the table 1 below. User involvement, executive

management support, a clear statement of requirements and proper planning are considered as

top priorities [2].

Project Success Factors % of
Responses

User Involvement 15.9%
Executive Management Support 13.9%
Clear Statement of Requirements 13.0%
Proper Planning 9.6%
Realistic Expectations 8.2%
Smaller Project Milestones 7.7%
Competent Staff 7.2%
Ownership 5.3%

	 6	

Clear Vision and Objectives 2.9%
Hard-Working, Focused Staff 2.4%
Other 13.9%

Table 2-1Project Success Factors

	

On the other hand, that report could identify a number of factors which can be considered as

the challenging factors of a project. Top priority factors are Lack of User Input, Incomplete

Requirements and Specifications, Changing Requirements and Specifications. These three

factors nearly contribute to 37% [2] success of the project.

Project Challenged Factors % of
Responses

Lack of User Input 12.8%
Incomplete Requirements and
Specifications

12.3%

Changing Requirements and
Specifications

11.8%

Lack of Executive Support 7.5%
Technology Incompetence 7.0%
Lack of Resources 6.4%
Unrealistic Expectations 5.9%
Unclear Objectives 5.3%
Unrealistic Time Frames 4.3%
New Technology 3.7%
Other 23.0%

Table 2-2 Project Challenge Factors

	

2.3 Software Engineering Practices

Well-disciplined software engineering practices can improve the quality of products and reduce

the number of defects. Skills and knowledge of engineers are very important to complete a

project successfully. Therefore, having highly skilled engineers is better than mid-range

engineers [3].

The varying engineering team cannot guarantee the quality of the product. Manages must

identify the required number of engineers as well as the required skill set before starting the

project. Involvement time of different skills into the project may be different based on the phase

of the project. In some cases, managers try to put more engineers into the project at the last

time to finish works quickly. Adding more engineers to a late project doesn’t accelerate its

completion, instead of that, it takes more time since new engineers want to study the system

[3].

	 7	

Communication mechanisms of modern application components are heterogeneous. Different

protocols and message formats are involved. So there is a wide variety of channels for users to

collaborate with enterprise applications. Each channel is configured to incorporate with other

systems to provide sufficient services efficiently. Therefore, Integration of enterprise

applications has become a risky and important task. Integration testing is also very important

to control the data integrity, just like "Even with an army of women, it still takes nine months

to make a baby" [4]. Another paper has identified the enterprise integration as “the right

information at the right place at the right time for decision-making” [5] through the integration

of horizontal and vertical approaches. Horizontal approach is described as the integration of

business-to-business. Then, the vertical approach is business-to-manufacturing integration.

2.4 Parallel Development

Parallel development process can be implemented within a standalone application development

environment as well as complex enterprise level applications. In standalone projects, Parallel

development can occur at the level of a single file or other configuration items (micro level) or

at the level of an overall project configuration (macro level) [6].

A parallel development is required when there is a need of separate development path [6], so

that there is no longer a single "latest and greatest" version, but instead two or more concurrent

"latest" configurations. The necessity of parallel development of a standalone application

includes below requirements [6].

1. Release preparation

2. Post-release maintenance (segregated from new development)

3. Tailored or customer-specific software

4. Segregation of work by different development teams or individuals

5. Segregation of work on different features

6. Deployment of different software variants into different environments

	 8	

2.5 JSON vs XML Processing

Software components can communicate with each other using JSON or XML. In SOA, this is

used very regularly. Each of these formats has its own pros and cons when parsing and

processing.

1. Performances of processing JSON and XML can be compared using the below

parameters [7].

2. Marshalling time: This is the time taken, in nanoseconds, by the JVM to convert an

object into a stream of data

3. Unmarshalling time: This is the time taken, in nanoseconds, by the JVM to construct

an object from a given stream of data.

4. Stream size: The size of a marshalled object in Bytes.

5. Memory footprint: The total memory in Bytes used during runtime from the JVM heap.

Marshaling and Unmarshalling performances of both formats can be considered as a key

measurement for a selection. Jackson [9] API for JSON and JAXB API (JSR 222)[8] for XML

can be used to implement marshaling and unmarshalling logic.

Marshaling performance of XML and JSON can be illustrated as below [6].

Figure 2-1 Marshaling Performance Comparison

	 9	

Unmarshalling [7] performances of XML and JSON.

As per the above benchmark data, the below conclusions can be derived [7].

1. When performance is a design consideration then JSON is better than XML.

2. When memory footprint of an application is needed to keep as small as possible then

JSON is better than XML.

3. When data sharing through the internet is needed to be optimized then JSON is better

than XML.

4. XML is preferred when there needs to be strict adherence to a standard protocol for

communication.

5. When there is a possibility of changing the format of data sharing, then JSON is better

than XML since change are taken less time.

Figure 2-2 Unmarshalling Performance Comparison

	 10	

2.6 Tools Available in the Market

2.6.1 Traffic Parrot

Both testers and developers can use this tool to do service virtualization, mocking, and

simulation [10]. It supports different protocols such as HTTP(S), JMS, IBM MQ and File

transfer protocols. It also supports containerization technologies such as Docker, Kubernetes,

and OpenShift. This tool is ideal for testing micro services.

2.6.2 ServiceV Pro

Developers and testers can create, configure, and deploy virtual APIs with ease- increasing

system availability and reducing QA costs and bottlenecks [11]. Users can easily create virtual

APIs via recording live traffic, building out a RESTful service in our UI, or simply importing

a Swagger or WSDL spec, then share the service with other team members.

2.6.3 Wiremock

HTTP based API simulation tool [12]. It allows checking of an edge case and failure modes

that the real API may not able to produce. Additionally, it has robust and power API URL

request matching, Record and Playback and Hosted Mock API service features.

2.6.4 Mountebank

NodeJS based cross-platform, multi-protocol testing tool [13]. It supports SMTP, HTTP, TCP,

and HTTPS protocols. it also provides service virtualization service free of cost without any

platform constraints. This tool is considered as updated, mature, and stable tool.

2.6.5 Hoverfly cloud

Hoverfly cloud is an integrated service virtualization solution [14] which is designed for

integration, automation, and performance. It's deployable on Google, AWS, Google & Azure

cloud platforms. Additionally, it provides facilities for reporting and on demand performance

measurements.

2.6.6 MicroFocus Data Simulation Software

MicroFocus Data simulation software to virtualize micro service's behavior [15]. The tool helps

to create a simulation of application behavior Allows modifying data, network, and

performance models. Service Virtualization features integrated with Performance Center,

ALM, LoadRunner, and Unified Functional Testing.

	 11	

2.6.7 Parasoft Virtualize

Parasoft Virtualize helps to create a realistic simulation of test dependencies [16]. It allows

easy configuration of complex test conditions as well as separating testing process from time-

boxed access to external system. Also, this tool can be used to find hidden performance issues

in the application under the test.

2.6.8 CA service Virtualization

CA Service Virtualization tool which supports more parallel developments simulates

unavailable systems across the software development lifecycle [17]. It simplifies the

management of development and testing processes. And helps to streamline development by

virtualizing dependent systems including mainframes, and external service providers.

2.6.9 Mocklab

Mocklab is service virtualization tool which allows easy copy, paste or record stubbed HTTP

responses [18]. It can virtualize test edge case and failure modes which the real API never able

to produce.

2.6.10 Rational Test Virtualization Server

IBM Rational Test Virtualization offers fast and quick testing of services, software, and

applications [19]. It helps to reduce dependencies by simulating part or an entire application.

Additionally, it supports for sharing and reusing virtualized environments, integrating with

other tools and supporting middleware etc.

2.6.11 Tricentis Tosca

Tricentis Tosca is a tool to test highly interconnected systems with many components evolving

in parallel [20]. Also it can use to simulate Interactions necessary for Testing.

2.7 Chapter Summary

Chapter 2 has discussed the studies regarding service virtualization and some popular service

virtualization tools currently available in the market. Additionally, it discussed software

engineering practices and JSON/XML data sharing formats. Then, the basic features of the

currently popular service virtualization tools.

	 12	

Chapter 3

Analysis and Design

3.1 Introduction

This chapter elaborates the theoretical background of the procedures that is followed in order

to satisfy the objective of this project. Further, important aspects used for implementation

purposes are discussed.

3.2 Overview

The proposed solution to improve the efficiency of parallel development processes is based on

the virtualizing web services. Main requirement of virtualizing service is to decline the

dependencies of other modules with web services. Virtualization allows developers to continue

development the development process as there are required web services. Later, these virtual

services will be replaced from actual services in the integration steps.

The solution contains facilities to declare services and to generate data. Service declaring part

provides required methods and interfaces to define web services, data types and their data

generation logic. Then, data generation part does the generating of arbitrary data based on user

defined restrictions in the service declaring part.

Figure 3.1 shows the high level architecture of the solution. Then, it shows two major parts in

dashed lines and its sub components separately. Additionally, the arrows indicate the

communication path and directions.

Rest of this chapter will be discussing about the service declaring and data generating parts in

detail.

	 13	

Figure 3-1 Architecture of the solution

3.3 Service Declaring Module

Service manager is responsible for facilitating users to add service information which should

be virtualized and save those data as an intermediate format in the persistence layer as data or

JSON files. The service layer contains three main parts,

1. Manager Interfaces

2. JSON Processor

3. Data Persistence Layer

3.3.1 Manager Interfaces

This part contains user interfaces which are provided to users for declaring web services.

Interfaces will be provided for below tasks.

1. Crate a new web service

2. Manage existing web service

3. Publish and unpublish web services

4. Manage user authorizations for web services

	 14	

3.3.2 JSON Processor

JSON processor can convert service definition into a JSON and read data from a JSON. JSON

conversion part is important to the service declaring module and JSON reading part is

important to data generation part. So data generation process of the JSON processor will be

discussed under the topic 3.3.

Data conversion part maintain a default JSON format for all services. When new service going

to be declared then it is formatted based on the default JSON format. Unique JSON format for

all services will make the processing part easy in the data generation module.

3.3.3 Data Persistence Layer

Persistence layer store the data of the system. This data may be user related or service related.

User related data will be stored in a relational database. Service related data is kept as JSON

so this can be store in the relational database or in the normal file system of the server.

3.4 Data Generation Module

Generating precise arbitrary data for user request based on its constraints is the main task of

this module. There are two sub modules for this module one is to do the actual data generation

and other one is to handle user requests.

Figure 3.2 shows the basic structure of the data generation module. Whole module has designed

as a set of layer since it helps to improve the maintainability of the entire module. There are

some parts which shares the component with the service declaration part such as JSON

Processor. Other parts are unique to the data generation module.

Basic layers of this module can be listed as below.

1. Request/Response handler

2. Manager layer

3. JSON Processor

4. Persistence layer (Database)

5. Utility layer

	 15	

Figure 3-2 Data generation module

3.4.1 Request-Response Handler

In the real environment, the system may receive large number of request from different users.

So there should be a mechanism to handle request and responses properly. Otherwise, the

system may fail. It may produce wrong data. And also, it will take more time to response for a

request.

Request-response handler maintains a queue to hold requests. Then it will process each request

one by one in FIFO manner. The system contains few threads to increase the performance of

the processing part.

3.4.2 Manager Layer

Manager layer behaves as a mediator for request and data. It takes requests from the request-

response handler and analyze it, then calls to proper methods in the JSON processor to bind

the data with the response. Finally, it passes response data to the request-response handler.

3.4.3 Persistence Layer

See topic 3.2.3

	 16	

3.4.4 JSON Processor

See topic 3.2.2

3.4.5 Utility Layer

Utility layer contains number of utility classes which are required to generate data such as

sample string generators, data formatters, random number generators etc.

3.5 User Management

User management part handles basic operations on users and services. Main task of this module

can be listed as below.

1. Adding user to the system

2. Editing users of the system

3. Deleting user of the system

This module also handles how to manage users within groups and services. Group is a set of

users such as a project team. Individual users or groups can be assigned to a single service or

bunch of services. Only the authorized users or groups can access the service through a given

URL.

Basic operations related to this part can be listed as below.

1. Creating groups

2. Edit/Delete groups

3. Assigning users to a group

4. Assigning users or groups to a service

	 17	

3.6 Chapter Summary

In this chapter, it is discussed about the design part of the proposed solution for web service

virtualization. Basic structure of the solution is saving service information as JSON and

generating data based on those JSON.

Relational data access consumes more resources and time to access databases by falling the

performance of the system down. If the system is going to access the database more frequently

then this effect is high. So the solution proposed to use JSON as the service definition which

allows to access only once to get service data and the process that JSON to generate sample

data for requests.

There will be two type of interfaces for users to define and consume services. Flat UIs will be

provided to manager services and users. Access point will be provided to consume services.

	

	 18	

Chapter 4

Implementation
	

4.1 Introduction

This chapter will discuss about the implementation of the solution that discussed in the Chapter

3 by providing a clear idea about how each module performs its functions and why those

particular modules are there in the system.

This chapter contains may topics to explain the solution implementation. Topic 4.2 will discuss

about the technology stack that the proposed solution is going to use. Then in the topic 4.3 will

explain about the implementation of the service declaring module in detail. Finally, the topic

4.4 will explain about the implementation of the data generation module. Additionally, each

topic will include subtopics for further explanation of some complex implementations.

4.2 Implementation Environment and Technologies

The proposed solution is intended to run on a web server. Latest WildFly application server

will be used for the hosting purpose. Front end will be developed using AngularJS. Then Java

will be used for core system development. MySQL will be used as the persistence layer.

WildFly is an application server developed by Red Hat and it is more robust and open source

application server. It provides variety of JEE services which can be used to implement the

solution. Additionally, there are number of third party application which support the WildFly

server.

AngularJS is the latest front end development framework developed by Google. It provides

facilities to implement systems as a collection of components with a single HTML page.

Component based approach is very manageable and easy development than traditional multiple

page applications.

Java is the most trusted application development language with huge number of third party

libraries and frameworks for variety of purposes. It supports object oriented development

techniques so developers can implement the systems as a collection of objects.

	 19	

MySQL is one of the leading opens source data persistency tools that supports RDBMS. This

tool is provided by Oracle corporation which is also an industry leader in the software field.

Also, it is come up with bunch of other supporting tools such as MySQL Workbench which

can be used to development of database as well as the maintenance of the database. Then it

contains many Java connectors so developers can easily develop software to work with this

server.

Development environment will be different for Java and AngularJS. JetBrain’s IntelliJ IDEA

is a one of the most popular IDE for Java development. This tool provides number of facilities

to enable developers task easy such as auto suggestion, smart completion of codes, code review

facilities and SVN integrations etc.

For Angular related developments, Mircosoft’s Visual Studio Code will be used for TypeScript

related implementations since it includes support for debugging, embeddedGit control, syntax

highlighting, intelligent code completion, snippets, and code refactoring etc.

MySQL workbench is an open source and free software for designing databases for MySQL

servers. This provides more graphical views to design databases such as interactive schema

diagrams. So developers can see entire database at once with their relations and other constrain

parameters.

4.3 Service Declaring Module Implementation

There are three major development layers under the service declaring module. Let’s discuss

about each layer separately. In the interim report those, these items will not be discussed more

thoroughly since the development phase is still underway and any change is possible.

1. Front-end layer

2. JSON Processor layer

3. Persistence layer

4.3.1 Front-End Layer

Front-end layer is the HTML layer which is used by end users for describing or managing

purposes of services. Then it contains CSS3 for styling purposes. Additionally, this layer

contains TypeScript for scripting purposes. Main interfaces the solution includes are,

	 20	

1. Web service management UI

2. User management UI

4.3.1.1 Web Service Management UI

This UI part will provide screen to add, edit, publish, unpublish web services and view logs.

Figure 4.1shows the basic layout of the screen.

Figure 4-1 service declaring page

The New button on top of the screen is to add a new service. When user clicks on that button

it will forwarded to a new page. Then, there are two main sections in the screen, one it to show

published services and other one is to show unpublished services. Users can view logs and

unpublish a published service but cannot edit anything of a published service until it is

unpublished. URL below each service shows the access point path. Logs button allows user to

see the history of the service modification. So it can be used to track changes over time and

identify any defects of modifying it.

	 21	

4.3.1.2 User Management UI

User management screen is a very simple screen. This allows administrator users to add new

users to the system, assign to a project or dismissing from a project or group.

4.3.2 JSON Processor Layer

The primary responsibility of this layer is reading, creating and modifying JSON data. Since

the service definitions are stored as JSON data, this layer can create initial JSON data string.

Then, this layer can modify existing JSON string when users want to update the service

definition. Finally, reading the part of the JSON data can be done using this layer. This pars

can be general information or service related data such as input parameters, output format, data

model format and item count information, etc.

4.3.3 Persistence Layer

The persistency layer will include a relational database which is implemented using MySQL.

Figure 4.2 shows the schema diagram for the solution. Since the solution is mainly designed

for data processing requirements rather than data savings, the schema diagram is very simple.

There are three tables to store service information, user information and group information.

Figure 4-2 schema diagram

	 22	

User Schema – Contains user information such as profile and login information.

Service Schema – Service related information such as service name description and JSON file

or file path.

Group Schema – this table includes user groups information. User groups can be performed

project wise or company wise.

One user can have multiple service as well as one service can have multiple users so the relation

between them is many-to-many.

Also, one service can have many groups as well as one group can have multiple services.

Therefore, the relation between service table and group tables is many-to-many.

User and group table relation table is also many-to-many since one user can have multiple

groups and a one group can have multiple users.

4.4 Web service for UI/Core Interaction

The entire solution is designed using client-server architecture. Client part represents user

interfaces and client-side logic which is used by end users to define their web services. Then,

server-side is the core functionality of the solution which will be described later.

Communication between the client and the server is accomplished through a web service. This

web service layer allows maintaining a loosely coupled connection between the client and the

server.

Figure 4-3 user modules and backend

	 23	

4.5 Data Generation Module Implementation

Main responsibility of this part is generating mock data for requests. There are number of fake

data type available but for this product it contains only few of them. Currently supporting data

types are Addresses, Book names, Company names, Date and times, Email addresses, Phone

numbers, Color names and ID numbers. All those numbers will be generated from a dictionary.

There are three major part of this module.

Figure 4-4 Architecture of Data Generation

Request/Response Handler - Requests come from the consumer. Consumer sends those

requests when they want to access some data. Request methods can be GET or POST. Request

may have parameter in it’s body or URL. POST methods will send parameters through the

body of the request message as a JSON string. GET method will send parameters as parts of

the URL. However, when it comes to this module, everything will be processed in the same

manner. Request contains significant data to the data generator. It may contain basic building

blocks to build the response such as request method, data type and amount of data.

Service Definition Data – This part includes the data file of the service definition. Format of

this data is JSON. When consumer request a data from the system, first it load the correct

service definition file from the database. Then it processes it and identify the correct method.

Then entire format of the service method is sends to the request/response handle part.

Data Generator – This is where actual fake data is generated. When the request/response

handle knows what data is required, it sends request to the data generator with required type.

	 24	

Then it generates the data and send as a String. If it needs list of data, then multiple request

should be sent to the data generation part.

Consumer-Request/Response Handler Communication – Communication between the

consumer and the request/response handler will be controlled by servlet requests and responses.

Request body will contain JSON data when it is necessary. Response body will also be in JSON

format.

4.6 Post Processing of Services

After completing the service definition does not mean that the service is being virtualized. It

needs to be published. This publish feature enable the easy management of the services. It can

activate and deactivate services. Only published services will be able to access publically.

When a service is being published, simple URL will be generated for each services to identify

the services uniquely in the web. This URL is the access point URL of a service. Developers

used this URL to access the service. Service access can be restricted by unpublishing.

4.7 Additional Features

There are few extra features even it is not directly connected with service virtualization part.

Logs of service modifying history is the most important one. This allows team to see how the

service was modified over the time. So tracking any issue is easy. Additionally, it can be used

to see how request was come to it and how did it respond with data. Testes can use this

information to debug the applications.

4.8 Chapter Summary

This chapter has discussed about the actual implementation strategies of the proposed solution

and technology selection for each module. Since the development process is still in progress,

most of the high tech items are not discussed. In the final thesis, this chapter will contain

comprehensive details of the technical approaches for the solution.

	 25	

Chapter 5

Evaluation and Testing
	

5.1 Introduction

The proposed solution can be evaluated using any industry standard tools which can generate

HTTP requests such as SoapUI [21], Postman [22] and Apache JMeter [23]. These tools allow

building custom HTTP requests with different user parameters. User parameters can mainly be

HTTP method, payload, and the content type. Content type should support JSON since the

solution can process only JSON.

SoapUI and Postman are rest and SOAP testing tools. But Apache JMeter is a performance

measuring tool. So this can be used to measure time-based and load based testing. For this

project, SoapUI will be adequate since its ability to send fully customized HTTP requests.

5.2 Setting up the evaluation environment

SoapUI can be downloaded from its source [1] directly and install it. Basic UI can be seen

below after opening the tool.

Figure 5-1 Basic window of the SoapUI

	 26	

5.3 Preparing sample services

Sample service can be created by making an empty SOAP project. Then can add requests to

that SOAP project.

Figure 5-2 Creating a new REST project

	

Then, add multiple request with different parameter as described in the topic 5.4

	

Figure 5-3 Adding REST requests

	 27	

The request editor window will provide an option to change method, add payload, add header

fields and add parameters. Also, it provides a formatted view along with the raw view of both

request and response.

	

Figure 5-4 request editor

5.4 Request generation

Formation of components of main HTTP methods that the system is going to support can be

shown as below with mockup data. Request URL represents the endpoint of the service call,

Parameters represents the URL parameters and Payload represents the message body. Message

body’s type should only be “application/json”.

POST

Request URL http://localhost:8080/wsv/serv1/getUserInfo

Parameters none

Payload {“user_id”:”As3345d”}

Table 5-1 format of the POST request

GET

Request URL http://localhost:8080/wsv/serv1/getUserInfo

Parameters ?id=23445&ssid=33ee4

	 28	

Payload none

Table 5-2 format of the GET request

PUT

Request URL http://localhost:8080/wsv/serv1/getUserInfo

Parameters ?id=23445&ssid=33ee4

Payload none

Table 5-3 format of the PUT request

DELETE

Request URL http://localhost:8080/wsv/serv1/getUserInfo

Parameters ?id=23445&ssid=33ee4

Payload none

Table 5-4 format of the DELETE request

5.5 Evaluation of results through parameter changes

Evaluation of the solution can be done by creating multiple services and inspecting the

possibility of accessing them (virtualization of services) and generating data for each service

with different parameters.

5.5.1 Evaluation through service virtualization

Create multiple services through the web interface and add hello world method. Then see

whether those are accessible through the SoapUI tool.

Formation of the URL of services can be illustrated as below. Serv1, serv2 etc. are the name

of the service which is initially given.

1. http://localhost:8080/wsv/serv1/helloworld

2. http://localhost:8080/wsv/serv2/helloworld

3. http://localhost:8080/wsv/serv3/helloworld

4. http://localhost:8080/wsv/serv4/helloworld

	 29	

5.5.2 Evaluation through data generation

HTTP body, HTTP parameter and Response types will be modified to evaluate the data

generation part.

5.5.2.1 Evaluation of a simple request

A simple query will contain a simple GET request. Initial parameters will be used to generate

random data. Below service will get useful information with name, address, and the company

name. Different data will be generated for each request.

Service URL – http://localhost:8080/wsv/serv1/getUserInfo

Request Body – empty

Request Parameters – empty

Responses –

Test Case 01

{"users": [{"name": "Caleb Robel IV","company": "Hahn, Hahn and Hahn","address": "Suite

940 215 Carter Isle, Elfriedaberg, CO 40371"}]}

Test Case 02

{"users": [{"name": "Isaiah Hills","company": "Koepp, Koepp and Koepp","address": "368

Pearl Key, Krischester, NE 53945-8525"}]}

Test Case 03

{"users": [{"name": "Lamont Langworth","company": "White-White","address": "168

Mueller Falls, South Winfieldmouth, MI 95595"}]}

5.5.2.2 Changing HTTP method

Defined methods are intended only to generate data for the defined HTTP method.

5.5.2.3 Changing response type

Response type means attribute type such as first name, last name, age etc.

Test Case 01-

Before change the response type

	 30	

{"users":[{"name":"Kira O'Keefe","company":"Christiansen, Christiansen and

Christiansen","address":"Apt. 654 15951 Brendan Crescent, Hectorshire, NE 35309"}]}

After changing company type to date type

{"users":[{"name":"Devonte Block","date":"Sun Jul 21 16:47:08 IST 1957","address":"Apt.

076 03469 Marquardt Common, Lake Reymundofurt, HI 81326-7964"}]}

5.5.2.4 Changing response count

Number of items returns in the response can be change upto any amount. Four test cased are

demonstrated here.

Test Case 01 – item count 1

{"users":[{"name":"Devonte Block","date":"Sun Jul 21 16:47:08 IST 1957","address":"Apt.

076 03469 Marquardt Common, Lake Reymundofurt, HI 81326-7964"}]}

Test Case 02 – item count 2

{"users":[{"name":"Raymundo Schimmel","date":"Sat Dec 13 01:26:40 IST

1980","address":"Suite 351 072 Romaguera Isle, West Jaleelborough, ME 53230-

6979"},{"name":"Dr. Casper Weimann","date":"Mon May 25 19:52:01 IST

1964","address":"2594 Hagenes Camp, West Florencio, ND 01149"}]}

Test Case 03 – item count 3

{"users":[{"name":"Kenny Hudson","date":"Thu May 27 16:49:05 IST 1993","address":"Apt.

074 980 Lenora Square, Harveyland, NE 18674"},{"name":"Dominique

Emmerich","date":"Wed Aug 27 14:24:12 IST 1975","address":"Suite 645 880 Ladarius Hills,

Gretchenport, CA 44362-2578"},{"name":"Milan Ledner","date":"Fri Sep 21 15:48:38 IST

1979","address":"Apt. 398 625 Linda Forge, Smithview, ID 62352-3975"}]}

Test Case 04 – item count 4

{"users":[{"name":"Kenny Hudson","date":"Thu May 27 16:49:05 IST 1993","address":"Apt.

074 980 Lenora Square, Harveyland, NE 18674"},{"name":"Dominique

Emmerich","date":"Wed Aug 27 14:24:12 IST 1975","address":"Suite 645 880 Ladarius Hills,

Gretchenport, CA 44362-2578"},{"name":"Milan Ledner","date":"Fri Sep 21 15:48:38 IST

1979","address":"Apt. 398 625 Linda Forge, Smithview, ID 62352-3975"}, "},{"name":"Justin

	 31	

Timber","date":"Fri Sep 20 05:48:38 IST 1989","address":"Apt. 398 625 Main Street, George

Town, ID 62352-3975"}]}

5.5.2.5 Changing the length of attributes

Attributes are attributes of a response model. In the below evaluation, it concerns variable name

length generations. When strings are split into substring, spaces are also considered as a part

of the generated name. Therefore, at the end of the name will contain space character.

Test Case 01 – name length is 10 and full length of other fields

{"users":[{"name":"Devonte Bl","date":"Sun Jul 21 16:47:08 IST 1957","address":"Apt. 076

03469 Marquardt Common, Lake Reymundofurt, HI 81326-7964"}]}

Test Case 02 – name length is 8 and full length of other fields

{"users":[{"name":"Devonte ","date":"Sun Jul 21 16:47:08 IST 1957","address":"Apt. 076

03469 Marquardt Common, Lake Reymundofurt, HI 81326-7964"}]}

Test Case 03 – name length is 6 and Address length is 10

{"users":[{"name":"Devont","date":"Sun Jul 21 16:47:08 IST 1957","address":"Apt.076

03"}]}

Test Case 04 – name length is 3 and Address length is 3

{"users":[{"name":"Dev","date":"Sun Jul 21 16:47:08 IST 1957","address":"Apt "}]}

5.5.2.6 Requesting null value for a specific attribute

Under this part, null values have been requested for a requested attribute

Test Case 01 – Requesting null for name attribute

{"users":[{"name":"", "date":"Sun Jul 21 16:47:08 IST 1957","address":"Apt. 076 03469

Marquardt Common, Lake Reymundofurt, HI 81326-7964"}]}

Test Case 02 – Requesting null for the address attribute

{"users":[{"name":"Devonte Black","date":"Sun Jul 21 16:47:08 IST 1957","address":""}]}

	 32	

5.5.2.7 Requesting random null value for a non-specific attribute

Which attribute should be null will be specified under this test case. Any attribute value can

contain null values.

Test Case 01 – Requesting null for any attribute

{"users":[{"name":"", "date":"Sun Jul 21 16:47:08 IST 1957","address":"Apt. 076 03469

Marquardt Common, Lake Reymundofurt, HI 81326-7964"}]}

Test Case 02 – Requesting null for any attribute

{"users":[{"name":"Devonte Black","date":"","address":""}]}

Test Case 02 – Requesting null for any attribute

{"users":[{"name":"","date":"","address":""}]}

5.5.2.8 Requesting hard coded value for a specific attribute

Hard coded value will be thrown always. In this case, attribute value is already known.

Test Case 01 Hard coded user name

{"users":[{"name":"Michel George", "date":"Sun Jul 21 16:47:08 IST 1957","address":"Park

Avenue, Houston"}]}

{"users":[{"name":"Michel George", "date":"Sun Jul 03 6:40:23 IST 2007","address":"Marine

Drive, California"}]}

5.5.2.9 Requesting hard coded value for a non-specific attribute

This test case is not testable since it cannot be implemented. Hard coded values and attributes

are always known.

5.6 Chapter Summary

This chapter has discussed the evaluation and testing strategies for the proposed solution.

SoapUI will be used to evaluate the system results since it facilitates to send custom HTTP

requests.

Services can be tested via creating multiple services as well as changing parameters of a

service. HTTP method, response size and parameters are the main variables considered to

evaluate the solution.

	 33	

Chapter 6

Conclusions and Future Work

6.1 Introduction

In this dissertation, a new way of virtualizing web services to improve the development and

testing process has been presented. In this chapter, it will discuss the final conclusions of the

presented approach and future direction that some interested party can take to continue to

improve web service virtualizing approaches.

6.2 Conclusions

There are many virtualization tools with many features but most of them have less simplicity

and hard-coded data returning mechanisms. This type of tools can provide some level of

virtualization facility for developers to continue their works and but for testers, this is not

advantageous anymore. The proposed solution cares about both parties. It provides a facility

to define the output. Defining services cover a large part of the virtualization requirements

since it includes how to format the data and how to generate responses as per user requests. So

testers also can generate data for testing purposes as well as developers. Predefined data types

such as user names, email addresses etc. will provide additional flexibility.

All tools that were studied in the literature review was designed to use by technical persons in

the very low level of software development processes. Most of the time, this is going with

development or prototype phase. But the given solution is not restricted for the developers or

testers even the majority of users can come from these layers. Top level peoples like managers

and business analysts can use this during the requirement gathering phase without having

deeper knowledge about web service technologies.

6.3 Future work

Importance and usage of web service virtualizing techniques will be increased in the future.

Different conditions, requirements, and changes may need to take place in the future to improve

the process of service virtualization.

	 34	

Standalone tools are not more sufficient in the software development context since almost all

processes consist of portable and sharable documents, diagrams and sketches which follow

industry standards. Hence they are compatible with work with multiple tools. So a new tool

should also contain the same capacity while working with other tools. If the proposed solution

can provide some way of sharing data in the system with other tools such as project

management tools, software architecting tools etc., then the usage of this solution becomes

vital to the industry.

Showing a preview while working with some tool always lead to reduce the number of errors

that can happen even from experienced users. Photo editing tools and HTML editing tools are

some of them. So the users can continue works and look into the preview when they face some

confusions. This technique can be used in this tool also to reduce errors and make the users'

duty easy. So it should show the final JSON response for a service method with some arbitrary

data.

Once a service is defined, it can be modified multiple times from different users throughout

the development life cycle. Finally, this can cause a mess since it is hard to identify who did

what and when. So keep a track of changes with who did what information can reduce the

mess. Additionally, this can be used to maintain a version code for each modification of the

service. This version number is important to rollback functionalities.

Most of the time, the client-side script of web services are boilerplates in any programming

language except a few lines of codes such as service endpoint etc. Since the solution contains

a service definition, it can be used to generate client-side codes up to some level. Or this can

be integrated with another service to perform this task by making another intermediate data

level between services. So users can download client sides codes in required language and do

only necessary changes before merging into their original projects.

6.4 Chapter Summary

This chapter discussed the importance of the web service virtualization approach under the

conclusion part and some future works which is not intended to do under this approach.

	 35	

References

[1] Clancy, T. The Standish Group Report, Retrieved Feb 20, 2019 from

https://www.projectsmart.co.uk/white-papers/chaos-report.pdf, Chaos report, 1995.

[2] I. Attarzadeh and S. Hock Ow, "Project Management Practices: The Criteria for Success or

Failure", Department of Software Engineering, Faculty of Computer Science & Information

Technology, University of Malaya, 2008.

[3] F. Brooks, The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,

1995, pp. 13-29.

[4] Norshidah mohamed, Batiah Mahadi, Suraya Miskon, Hanif Haghshenas, Hafizuddin

Muhd Adnan, “Information System Integration: A Review of Literature and a Case Analysis”,

1International Business School, 2Faculty of Computing Universiti Teknologi Malaysia, 2014.

[5] G. Morel, H. Panetto, F. Mayer and J. Auzelle, "System of Enterprise-Systems Integration

Issues: an Engineering Perspective", Centre de Recherche en Automatique de Nancy (CRAN

- UMR 7039), Nancy-University, CNRS, France, 2009.

[6] T. Bret, Parallel Development Strategies for Software Configuration Management, 12th ed.

Rue des Marronniers 25, CH-1800 Vevey, Switzerland: Martinig & Associates, 2004, pp. 2-

11.

[7] S. Zunke and V. D’Souza, "JSON vs XML: A Comparative Performance Analysis of Data

Exchange Formats", Vishwakarma Institute of Information Technology, University of Pune,

India, 2014.

[8] Danut-Octavian SIMION, “Java facilities in processing XML files - JAXB and generating

PDF reports”, Informatica Economica, Volume 12, Issue 3 2008.

[9] Jackson Documentation, http://wiki.fasterxml.com/JacksonDocumentation

[10] "Traffic Parrot - stubbing, mocking, and service virtualization", Trafficparrot.com, 2019.

[Online]. Available: https://trafficparrot.com/. [Accessed: 21- Aug- 2018].

[11 "API Mocking and Service Virtualization Tool | ServiceV Pro", Smartbear.com. [Online].

Available: https://smartbear.com/product/ready-api/servicev/overview. [Accessed: 10- Dec-

2018].

	 36	

[12] "WireMock", WireMock. [Online]. Available: http://wiremock.org/. [Accessed: 22- Dec-

2018].

[13] B. Byars, "mountebank - over the wire test doubles", Mbtest.org. [Online]. Available:

http://www.mbtest.org/.

[14] "Hoverfly by SpectoLabs", Hoverfly by SpectoLabs. [Online]. Available:

https://hoverfly.io/.

[15] "Service Virtualization: Application & Data Simulation Software | Micro Focus", Micro

Focus. [Online]. Available: https://software.microfocus.com/en-us/products/service-

virtualization/overview. [Accessed: Dec- 2018].

[16] "Parasof Virtualize - Service Virtualization | Parasoft", Parasoft.com. [Online]. Available:

https://www.parasoft.com/products/virtualize. [Accessed: Dec- 2018].

[17] "CA Service Virtualization - CA Technologies", Ca.com. [Online]. Available:

https://www.ca.com/us/products/ca-service-virtualization.html. [Accessed: Dec- 2018].

[18] "Fast, easy hosted mock API service | MockLab", Get.mocklab.io. [Online]. Available:

http://get.mocklab.io/. [Accessed: Dec- 2018].

[19] "Rational Test Virtualization Server - Overview - India", Ibm.com. [Online]. Available:

https://www.ibm.com/in-en/marketplace/rational-test-virtualization-server. [Accessed: Dec-

2018].

[20] "Orchestrated Service Virtualization - Tricentis", Tricentis. [Online]. Available:

https://www.tricentis.com/orchestrated-service-virtualization/. [Accessed: Dec- 2018].

[21] "The World's Most Popular API Testing Tool | SoapUI", Soapui.org. [Online]. Available:

https://www.soapui.org/. [Accessed: Dec- 2018].

[22] "Postman | API Development Environment", Postman. [Online]. Available:

https://www.getpostman.com/. [Accessed: Dec- 2018].

[23] "Apache JMeter - Apache JMeter™", Jmeter.apache.org. [Online]. Available:

https://jmeter.apache.org/. [Accessed: 2018].

	

	 37	

Appendices

Appendix A – JSON Format

{	
		"serviceName":	"sample_service_users",	
		"serviceDescription":	"sample	service	for	user	management	module",	
		"serviceMethods":	[
				{	
						"methodName":	"getUserInfo",	
						"type":	"post",	
						"parameters":	[
								{	
										"parameterName":	"userId",	
										"parameterValue":	"123",	
										"parameterType":	"String"	
								}	
],	
						"response":	{	
								"minSize":	1,	
								"maxSize":	3,	
								"name":	"users",	
								"format":	[
										{	
												"name":	"userName",	
												"type":	"string",	
												"complexDataFormat":	null,	
												"simpleDataFormat":	{	
														"type":	"name",	
														"specific":	"no",	
														"defaultValue":	"Indika	Gunawardana"	
												}	
										},	
										{	
												"name":	"country",	
												"type":	"string",	
												"complexDataFormat":	null,	
												"simpleDataFormat":	{	
														"type":	"country",	
														"specific":	"no",	
														"defaultValue":	""	
												}	
										},	
										{	
												"name":	"school",	
												"type":	"string",	
												"complexDataFormat":	{	
														"minSize":	1,	
														"maxSize":	3,	
														"name":	"school",	
														"format":	[

	 38	

																{	
																		"name":	"schoolName",	
																		"type":	"string",	
																		"complexDataFormat":	null,	
																		"simpleDataFormat":	{	
																				"type":	"name",	
																				"specific":	"yes",	
																				"defaultValue":	"Pattalagedara	Vidyalaya"	
																		}	
																},	
																{	
																		"name":	"schoolLocation",	
																		"type":	"string",	
																		"complexDataFormat":	{	
																				"minSize":	1,	
																				"maxSize":	1,	
																				"name":	"cityName",	
																				"format":	[
																						{	
																								"name":	"province",	
																								"type":	"string",	
																								"complexDataFormat":	null,	
																								"simpleDataFormat":	{	
																										"type":	"name",	
																										"specific":	"yes",	
																										"defaultValue":	"Western	Provice"	
																								}	
																						},	
																						{	
																								"name":	"city",	
																								"type":	"string",	
																								"complexDataFormat":	null,	
																								"simpleDataFormat":	{	
																										"type":	"name",	
																										"specific":	"yes",	
																										"defaultValue":	"Veyangoda_000001"	
																								}	
																						}	
]	
																		},	
																		"simpleDataFormat":	null	
																}	
]	
												},	
												"simpleDataFormat":	null	
										}	
]	
						}	
				}	
]	
}	 	

	 39	

Appendix B – Class Diagrams (Virtualization Core System)

	
	

	 40	

Appendix C – Web Service Class Diagram

	

	 41	

Appendix D – ER Diagram

	

	 42	

Appendix E – Postman Test Tool

