

Stress Testing Tool

to check the performance of a

Moodle Instance

D.G.C.Galpaya

2019

Stress Testing Tool

to check the performance of a

Moodle Instance

A dissertation submitted for the Degree of Master

of Computer Science

D.G.C.Galpaya

University of Colombo School of Computing

2019

 I

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: Don Galpayage Chathura Galpaya

Registration Number: 2016/MCS/031

Index Number: 16440319

Signature: Date: 06/05/2019

This is to certify that this thesis is based on the work of Mr. Don Galpayage Chathura

Galpaya under my supervision. The thesis has been prepared according to the format

stipulated and is of acceptable standard.

Certified by:

Supervisor Name: Professor K.P. Hewagamage

Signature: Date: 06/05/2019

 II

Abstract

This thesis describes in detail the development and implementation of Stress Testing

Tool to check the performance of a Moodle instance. The main objective of this project is to

develop a tool to test the performance of a Moodle instance/LMS by simulating multiple

virtual users by considering four scenarios, and to record the vital information of the server such

as CPU usage, RAM, disk input/output, bandwidth, SQL usage, maximum load can handle

etc. to minimize the possible bottlenecks.

Most of the existing tools for load testing support the creation of simple test cases

consisting of a fixed sequence of operations. In this thesis it is presented a new approach to

perform load testing of Moodle instance by simulating realistic user behavior. In order to give

the generated load some variety or randomness it requires using dynamic URL concept to

modify and parameterize these test cases manually. This is usually both time-consuming and

difficult. In this thesis by simply doing simple changes to the URL it can be achieved. This

thesis discusses four types of stress tests. User can do the simulation by using specified no of

virtual users with (1).Single user login credential, (2).Multiple user logins credentials system

generated users,(3).Multiple user logins credentials provided by a CSV file, (4).simulation

with several load engines with multiple user login credentials.

This approach is further can be improved by using several category of users in the

simulation process and also testing from several geographical locations with multiple load

engines. This tool also can be used as a preventive maintenance tool which can predict the

system behavior to avoid and minimize downtime and keep the server and online applications

running.

 III

Acknowledgement

This thesis of the “Stress Testing Tool to check the performance of a Moodle”

prepared for the Master of Computer Science program of the University of Colombo School

of Computing. I was able present this successfully with the help of people surrounded me.

First and foremost I offer my sincerest gratitude to my supervisor Professor

K.P.Hewagamage the Director of University of Colombo School of Computing, who gave the

suggestion of developing a Stress Testing Tool for a Moodle Instance. Also Professor

K.P.Hewagamage gave me useful instructions, guidance and supervision though out the

project from project proposal to the final thesis submission.

I take this opportunity to give extent sincere thanks to Mr.Geeth Hettiaarchchi the

Moodle Administrator of University of Colombo School of Computing gave me an

introduction to the Learning Management System of the UCSC..

Finally, express my gratitude to my family members and colleagues in MCS program

at UCSC for helping to complete this project successfully. Completing this Thesis work

would become more difficult if I did not get the support from the people above mentioned.

Chathura Galpaya

 IV

Contents

Chapter-1 .. 1

Introduction .. 1

1.1. Project Domain ... 1

1.2. Problem .. 1

1.3. Main Objective ... 2

1.4. Motivation .. 2

1.5. The exact computer science problem ... 3

1.6. Research contribution ... 4

1.7. Scope .. 4

1.8. Deliverables .. 5

1.9. Structure of Thesis .. 6

Chapter-2 .. 7

Literature Review .. 7

2.1. Related Work/Background Study .. 7

2.1.1. The Form-Oriented Model ... 7

2.1.2. Load Testing of Legacy Systems .. 8

2.1. Server Monitoring & Statistics Software ... 9

2.1.1. The Webalizer .. 9

2.1.2. Nagios ... 9

2.1.3. Munin .. 10

2.1.4. nmon.. 10

2.1.5. Zenoss ... 10

2.1.6. Awstats .. 10

2.1.7. Netdata .. 11

2.2. Load Testing Tools ... 11

2.2.1. LoadStorm ... 11

2.2.2. Webserver Stress Tool-7 ... 12

2.2.3. Apache JMeter ... 14

2.3. Bibliography ... 14

Chapter-3 .. 16

Problem Analysis & Methodology .. 16

 V

3.1. Problem Analysis .. 16

3.2. How a Browser Interacts with a Web Based LMS ... 17

3.3. Request/Response Lifecycle .. 17

3.4. Proposing Model/Design ... 18

3.5. Methodology ... 19

3.5.1. Use Case Diagram ... 20

3.5.2. Class Diagram.. 20

3.5.3. C# - Multithreading.. 22

3.5.4. Thread Life Cycle .. 23

3.6. File System ... 23

3.6.1. Pros of the File System .. 23

3.6.2. Cons of the File System ... 24

3.6.3. Use Cases .. 24

Chapter-4 .. 25

Implementation ... 25

4.1. Development Language .. 25

4.2. Operating System.. 25

4.3. Major code and Module Structure ... 25

4.3.1. Background worker Implementation ... 25

4.3.2. VirtualUserHandler .. 27

4.3.3. Response Time Graph .. 27

4.3.4. Other Reusable Components ... 27

4.4. Development Environment ... 28

4.4.1. Hardware Requirement ... 28

4.4.2. Software Requirement .. 28

Chapter-5 .. 29

Evaluation ... 29

5.1. Expected functionality .. 29

5.2. HttpWebuser Class.. 29

5.3. Sample Moodle site ... 30

5.4. Program Execution.. 30

5.4.1. Simulation with Single user login credential .. 31

5.4.2. Multiple user logins credentials system generated users. 33

 VI

5.4.3. Multiple user logins credentials provided by a CSV file. 34

5.4.4. Several load engines with multiple user login credentials. 35

5.4.5. How each thread Executes ... 36

5.5. Server Performance Monitoring .. 38

Chapter-6 .. 39

Conclusion .. 39

6.1. Achievements ... 39

6.2. Future Work .. 39

Reference .. 40

APPENDIX-A Design Documentation .. 41

APPENDIX-B Code Listing .. 42

APPENDIX-C User Documentation .. 57

APPENDIX-D System Documentation ... 62

 VII

List of Figures and Tables

Figure:-2.1: Form-chart of example home banking web application

Figure:-2.2: LoadStorm load testing tool

Figure:-2.3: Webserver Stress testing tool

Figure:-2.4: Apache JMeter load testing tool

Figure:-3.1: Requirements change management

Figure:-3.2: User request and its lifecycle

Figure:-3.3: Use Case Diagram for Stress Testing Tool

Figure:-4.1: Shows the UI thread

Figure:-4.2: UI thread with BackgroundWorker

Figure:-4.3: User Vs Response Time Graph for each URL

Figure:-5.1: Sequence diagram of the main functionality

Figure:-5.2: Show the home page of the Sample Moodle site

Figure:-5.3: Test Types selection interface

Figure:-5.4: POST request using key/value pair

Figure:-5.5: POST request inserted to the URL List

Figure:-5.6: format of the CSV file need to be loaded

Figure:-5:7: After Loading the CSV file to the system

Figure:-5.8: Simulation with several load engines

Figure:-5.9: Application Interface after executing 500

Figure:-5.10: Output shown from the tree view

Figure:-5.11: NetData Monitoring tool dashboard

Table:-3.1: Web Server HTTP Return Codes

Table:-5.1. URL request with POST DATA

 VIII

List of Acronyms

URL - Uniform Resource Locator

URI – Uniform Resource Identifier

LMS - Learning Management System

MOODLE – Modular Object-Oriented Dynamic Learning Environment

UI – User Interface

CSM - Computational Structure Model

SNMP - Simple Network Monitoring Protocol

WMI - Windows Management Instrumentation

ICMP - Internet Control Message Protocol

CPU – Central Processing Unit

RAM – Random Access Memory

RAID - Redundant Array of Independent Disks

GPL - General Public License

 1

Chapter-1

Introduction

1.1. Project Domain

Learning Management System (LMS) or modular object-oriented dynamic learning

environment (MOODLE) applications are very popular among the educational institutes since

these applications facilitate the administration, documentation, tracking, reporting and online

delivery of educational courses or training programs. Besides the quality of teaching material

within the LMS, the user interface (UI) and the speed with which the LMS responds are the

two principal aspects in an LMS. If the LMS has a poorly constructed UI which requires

significant effort to navigate or if the LMS is slow to respond to user interaction, then there is

a risk the student’s concentration will be lost and their learning performance harmed.

1.2. Problem

 Performance of the Moodle or LMS sites significantly hinders during the

examinations, assignments and quizzes period since hundreds of students simultaneously

connect to the LMS in order to finish their course works before the deadline. The main reason

for this is during the development stage programmers and QA team focused solely on

catching bugs, many websites ignore functionality testing, usability testing and performance

testing which are three critical elements in defining the user experience with a website or web

application.

The main challenges of a Moodle administrator are to ensure that the webserver is as fast

and reliable as possible so that students can do their learning without getting distracted. This

is made possible by testing different scenarios, with specific numbers of users. The testing is

necessary to carry out to find out:

 How long it takes to perform a specific task, for one or multiple concurrent users?

 How many people can use LMS simultaneously to perform a series of tasks

without crashing the system?

 How much RAM, CPU, bandwidth, etc. is used during a test and check whether

the system hardware configuration is adequate.

Introduction Chapter-1

 2

 If an upgrade is needed to my hardware/hosting package and when it needs to

upgrade?

1.3. Main Objective

The main objective of this project is to develop a tool to test the performance of an

LMS server by incorporating realism or randomness to the load test in order to mimic the

real user behaviour. Thereby collecting the vital information such as Response time,

latency, Memory & CPU utilization, SQL usage and maximum load can handle etc. to

minimize the possible server outages. To get meaningful results it is necessary to have a

testing strategy that mimics real-world usage as much as possible. To achieve that, the

following scenarios need to be considered.

 Test a mixture of activities

o some that are database intensive e.g. chat

o some that are disk intensive e.g. download large files

o some that are CPU intensive e.g. quiz

 Add randomness to the test, if the tool allows doing so. For example, apply some

random ‘waiting’ time between clicks

 Test a mixture of accounts (teacher, admin, student) – not always able to do this

 If the test is on a live server, perform the tests when there is a low traffic period.

 Repeat the same test several times, at different times of the day. This is especially

important if the testing on a ‘live’ server.

 Also, simulate the same tests from several geographical locations with different load

engines.

1.4. Motivation

 There are a lot of free LMS or Moodle sites readily available on the internet but it is

difficult to identify the usability of these sites with the increasing number of users or students.

Without fully loading the Moodle with the data such as courses, students and lecturers it is

not possible to get an idea about the performance of those Moodle or the LMS which is freely

available on the internet. This issue paved the path to my MSc project proposal to develop a

Stress Testing tool in order to simulate the Moodle Instance with a specified number of users.

Introduction Chapter-1

 3

In this project, the Moodle Server Stress Test Testing Tool generates a simulated “brute

force” attacks that apply excessive load to the webserver and analyse the performance using

an analyser. In real world situation, this can be created by a massive spike of users caused by

a large advertising campaign or an email marketing campaign sent to prospective customers

that asks them to come to the website to register for a service or request additional

information. An inadvertent denial of service to the users that are ready to learn more about

your product could have a serious impact on your bottom line.

1.5. The exact computer science problem

The purpose of stress testing is to estimate the maximum load that target webserver can

support. Moodle Server Stress Testing Tool can help to learn the traffic thresholds of the

webserver and how it will respond after exceeding its threshold.

The speed with which an LMS responds can be measured through a metric called latency.

Latency is the length of time between a user action (e.g. clicking on a link) and the

corresponding response is received (being shown the page the link refers to). Lower latency

is generally considered to be better and has been demonstrated to lead to increased user

satisfaction in commercial web environments.

In practice, Moodle servers cannot be simulated by using a single user login. Each user

has its own workspace and assigned task. For example, if a quiz is assigned to a student by a

teacher that cannot be simulated by multiple users because when the student consumes the

particular link it is not visible or available for the even though the same user connects with a

different session. Also, the assigned quiz could only be done by that particular user with the

login credentials. A load test is valid only if virtual users’ behavior has characteristics similar

to those of actual users because failure to mimic real user behavior can generate totally

inconsistent results. Therefore it is not practical to virtualize the real world scenario using a

single login credential with multiple sessions.

However, in order to give the generated load some variety, it is usually necessary to

modify or parameterize these test cases manually. This is usually both time-consuming and

difficult. To cater to this issue a dynamic URL concept is used to eliminate the barrier of

testing using single user login.

Introduction Chapter-1

 4

1.6. Research contribution

 There are three principal methods for computer performance evaluation and analysis i.e.

direct measurement, simulation and analytic modeling. Direct measurement is the most

accurate of the methods, but requires the system to be implemented first in order to collect

specific performance information. Besides, the motivation of performance engineering is to

find the performance bottleneck at the design phrase, so one can avoid an efficient design at

the earliest time. Simulations are prototypes of the real system that provide a fairly accurate

performance measurement, but are often time consuming and difficult to construct. Analytic

modeling which exercises techniques such as queuing networks, Markov models, Perti-nets,

state charts and CSM, is the least expensive because hardware and software do not need to be

implemented. It also provides insight into the variable dependencies and interactions that are

difficult to determine using other methods.

 In the Internet there are several Webserver Stress/Performance Testing tools available

but most applications does is create simultaneous URL clicks and check the performance.

The Web Server Stress Testing Tool developed by this project is specifically design to test a

Moodle instance server (LMS). This tool expected to be used to stimulate a Quiz/upload and

download assignments with specified number of virtual users in order to mimic the real world

situation, because Moodle servers get slow specially during the period of online quizzes and

the deadline of Assignments. Not like the proprietary tools in the market this tool is

customizable depending on the requirement for example to stimulate an online exam or

uploading and downloading assignments.

1.7. Scope

 This Webserver Stress Testing Tool is design to simulate independent user requesting

webpages based on a set of URLs which includes pages, images, frames, videos etc. These

URLs can be fed to the system by manually typing it or by the URL recorder. URL recorder

is expecting to develop as a separate web browsers and it enables the user to record the

URLs. URL recording is done at each POST while the user surfing through the Moodle.

 After recording the activities of the individual user (recording the URLs) the user is

simulated with specified number of virtual users by using separate thread with its own session

information. These URLs can be parameterized for each user and the executing sequence of

URLs can be varied.

Introduction Chapter-1

 5

 This Webserver Stress Testing tool requires the webserver end support otherwise it is

difficult to automate the requests for a “brute force” attack since most of the existing

webservers are designed in such a way that cannot be overloaded the server by “brute force”

attack. Also this cannot be used as generic Webserver Stress Testing Tool because this

requires a little bit changes in the scripts depending on the web pages GET/POST

parameters.

 This Webserver Stress Testing tool is preliminary designed to be used in Microsoft

Windows based operating systems. This tools can be used to analyze the vital information of

the server such as CPU usage, RAM, disk input/output, bandwidth, SQL usage, maximum

load can handle etc. to minimize the possible bottlenecks. To get meaningful results it is

necessary to have a testing strategy that mimics real world usage as much as possible. To

achieve that following scenarios need to be considered.

 Test a mixture of activities

o some that are database intensive e.g. generating summary reports

o some that are disk intensive e.g. download large files

o some that are CPU intensive e.g. quiz

 Add randomness to the test, if the tool allows doing so. For example apply some

random ‘waiting’ time between clicks

 Test a mixture of accounts (teacher, admin, student) – not always able to do this

 If the test is on a ‘live’ server, perform the tests when there is low traffic period.

 Repeat the same test several times, at different times of the day. This is especially

important if the testing on a ‘live’ server.

1.8. Deliverables

As mentioned in the objectives, the main deliverable is the Webserver Stress Analysis

tool and the Dissertation. In addition, user manual or help facility is also an essential

communication documentation intended to give assistance to people using a particular

system. Apart from that the entire system delivers a LMS website which helps to simulate the

functionality of the Webserver Stress Analysis Tool.

Introduction Chapter-1

 6

1.9. Structure of Thesis

Chapter-2

Provide the literature review of the project with reference to published materials in research

papers, URLs, Magazine article.

Chapter-3

Provides the detail of the problem analysis, proposing model/design and methodology are

presented in this chapter. Overall system architecture and features of the systems explained in

details.

Chapter-4

Implementation details are explained in this chapter including implementation environment,

tools and techniques. System deployment architecture was briefly discussed.

Chapter-5

 Evaluations and results are provided in this chapter. As an innovative application, system

was evaluated with a set of predefined evaluation criteria.

Chapter-6

Conclusion and future work were discussed in this chapter. To improve this application, lot of

works need to be done.

 7

Chapter-2

Literature Review

With the increased popularity of Web servers and the Moodle Cloud, recently Web

server performance modeling and analysis has become an active area of research. To the best

of my knowledge there is few published research work that presents a comprehensive

analysis of performance for Web server systems. Below is a brief review of the previous

work on performance analysis of Moodle servers.

2.1. Related Work/Background Study

 Despite the exponential growth of the WWW, a very negligible amount of research has

been conducted in Moodle instance web server performance analysis with a view to improve

the time a Webserver takes to connect, receive, and analyze a request sent by the client and

then sending the answer back to client. Following is current research areas done by

webservers or Moodle Stress Testing.

2.1.1. The Form-Oriented Model

 Form-oriented analysis is a methodology for the specification of ultra-thin client based

systems. Form oriented models describe a web application as a typed, bipartite state machine

which consists of pages, actions and transitions between them. Pages can be understood as

sets of screens, which are single instances of a particular page as they are seen by the user in

the web browser. The screens of a page are conceptually similar, but their content may vary,

e.g. in the different instances of the welcome page of a system, which may look different

depending on the user. Each page contains an arbitrary number of forms, which in turn can

have an arbitrary number of fields. The fields of forms usually allow users to enter

information, and each form offers a way to submit the information that has been entered into

its fields to the system.

Literature Review Chapter-2

 8

Figure:-2. 1: Form-chart of example home banking web application.

 A submission invokes an action on the server side, which processes the submitted

information and returns to the client a new screen in response. Hyperlinks are forms with no

fields or only fields that are hidden to the user.

2.1.2. Load Testing of Legacy Systems

Often we face the task of load testing a legacy system, i.e. a system which is

already deployed and running, and for which the information necessary to create a realistic

user model is not available. In such a case we could either use a very simple user model, such

as a generic one that invokes actions randomly with a uniform distribution, or try to extract

the necessary information by means of reverse engineering. It is proposed a methodology and

a tool called Revangie which is able to reconstruct form-oriented analysis models for existing

web applications. Models can be constructed online, i.e. during system exploration, but also

offline e.g. from recorded user data. There also exist other tools for model recovery of web

sites that can be useful for the creation of load models.

Literature Review Chapter-2

 9

2.1. Server Monitoring & Statistics Software

 Server Monitoring Software is an essential tool for system administrators, as it allows

for automated reporting, scheduled checks and pre-emptive warnings about the health of your

many servers within your operating environment. Server monitoring software is able to check

everything about your system, such as: CPU usage, RAM utilization, Hard Disk Space,

System Temperatures, Server Alerts (Hardware status warnings), RAID Array health checks

Virtual Machine Alerts etc.

 It is also possible to monitor user logins, suspicious activity on your server, and the status

of your services and daemons. There are multiple layers of technology at work inside server

monitoring software suites, and some of the most common protocols that we will be

mentioning today are:

o SNMP (Simple Network Monitoring Protocol)

o WMI (Windows Management Instrumentation)

o ICMP (Ping)

o PerfMon (Microsoft Windows Performance Monitor)

Below are some popular software tools which are used for Moodle Server Monitoring.

2.1.1. The Webalizer

 The Webalizer is a fast, free web server log file analysis program. It produces highly

detailed, easily configurable usage reports in HTML format, for viewing with a standard web

browser.

2.1.2. Nagios

 Nagios is a host and service monitor designed to inform you of network problems

before your clients, end-users or managers do. It has been designed to run under the Linux

operating system, but works fine under most *NIX variants as well. The monitoring daemon

runs intermittent checks on hosts and services you specify using external "plugins" which

return status information to Nagios. When problems are encountered, the daemon can send

notifications out to administrative contacts in a variety of different ways (email, instant

message, SMS, etc.). Current status information, historical logs, and reports can all be

accessed via a web browser.

Literature Review Chapter-2

 10

2.1.3. Munin

 Munin is a networked resource monitoring tool that can help analyze resource trends and

"what just happened to kill our performance?" problems. It is designed to be very plug and

play. A default installation provides a lot of graphs with almost no work. There are Munin

plugins available for Moodle:

 Munin plugin for Moodle - Munin plugin for generating various Moodle stats

developed and released under GPL terms by Lancaster University, UK. Works

with PostgreSQL database only at the moment.

 Monitorización de Moodle con Munin- Alternative Munin plugin for Moodle

found in the search, stats data is collected by Moodle plugin and recorded to

the text files on cron, these text files are then being read by the Munin plugin

itself. Docs is only in Spanish.

2.1.4. nmon

 The nmon tool is designed for AIX and Linux performance specialists to use for

monitoring and analyzing performance data.

2.1.5. Zenoss

 Zenoss (Zenoss Core) is a free and open-source application, server, and network

management platform based on the Zope application server. Released under the GNU

General Public License (GPL) version 2, Zenoss Core provides a web interface that allows

system administrators to monitor availability, inventory/configuration, performance, and

events.

2.1.6. Awstats

 AWStats is a free powerful and featureful tool that generates advanced web, streaming,

ftp or mail server statistics, graphically. This log analyzer works as a CGI or from command

line and shows you all possible information your log contains, in few graphical web pages. It

uses a partial information file to be able to process large log files, often and quickly. It can

analyze log files from all major server tools like Apache log files (NCSA

combined/XLF/ELF log format or common/CLF log format), WebStar, IIS (W3C log format)

and a lot of other web, proxy, wap, streaming servers, mail servers and some ftp servers.

Literature Review Chapter-2

 11

2.1.7. Netdata

 Netdata is a free, open source, simple and real-time performance and health monitoring

tool with a beautiful web front-end. You can monitor CPU, RAM usage, disk I/O, network

traffic, Postfix and much more using Netdata. Netdata gathers real-time performance data

from Linux, FreeBSD, MacOS and SNMP devices quickly and effectively.

2.2. Load Testing Tools

Below is a comprehensive list of the most widely used performance testing tools for

measuring web application performance and load stress capacity. These load testing tools will

ensure your application performance in peak traffic and under extreme stress conditions. The

list includes open source as well as licensed performance testing tools. But almost all the

licensed tools have a free trial version so that you can get a chance to work hands-on before

deciding which the best tool for your needs is.

2.2.1. LoadStorm

Figure:-2.2: LoadStorm load testing tool.

Loadstorm is a web based load testing service. Their business is to simulate multiple virtual users

simultaneously navigating a website, following a pre-recorded scenario. Loadstorm is free to use for

up to 25 simultaneous virtual users (forever, not just once), which is quite handy considering it is

quite close to a ‘regular’ classroom size. The 25 user-limit is usually enough to test sites on shared

hosting, and bring the server down. It is possible purchase extra virtual users to test larger sites.

Literature Review Chapter-2

 12

 Pros:

 Can be used on any device with a web browser and access to the Internet

 Easy to use for simple workflows

 Company behind the product provides excellent support

 Servers based around the World, mimics real-world usage for students accessing Moodle

from home

 Relatively gentle learning curve

Cons:

 Pay-for service if you want to test more than 25 concurrent users

 Some more complex workflows are difficult to set up (e.g. multiple quizzes)

 Web based service so there is some extra latency involved

2.2.2. Webserver Stress Tool-7

Webserver Stress Tool is a powerful HTTP-client/server test application designed to

pinpoint critical performance issues developed by Paessler.

By simulating the HTTP requests generated by hundreds or even thousands of

simultaneous users, you can test your web server performance under normal and

excessive loads to ensure that critical information and services are available at speeds

your end-users expect.

Detailed test logs and several easy to read graphs make analyzing results a snap.

Webserver Stress Tool for Windows (2003 R2, Vista, 7, 2008) can benchmark almost

any HTTP server (e.g. static pages, JSPs/ASPs, or CGIs) for performance, load, and

stress-tests.

Literature Review Chapter-2

 13

Figure:-2.3: Webserver Stress testing tool.

Pros:

 Built-in report generator: Reports can be generated as HTML files and MS WORD

documents

 Includes a URL recorder to select the URL(s) you want to test (rather than typing

them into a list)

 Works on any HTTP-URL or HTTPS-URL and can test any script (CGI, ASP, PHP

etc.)

 Can also be used to test requests of larger download files (e.g. ZIP)

 Works with any webserver (no part of the software has to be installed on the server.

 Freeware

Cons:

 Some more complex workflows are difficult to set up (e.g. multiple quizzes)

 Web based service so there is some extra latency involved

Literature Review Chapter-2

 14

2.2.3. Apache JMeter

Apache JMeter is a fully-fledged load and performance open-source software by the Apache

foundation. It is much more powerful than the other tools mentioned but also has a much

steeper learning curve. Luckily, an excellent JMeter script generator was created and shared

by the good people of the Open University UK. Without this tool, it would be rather difficult

to create scripts (scenarios) to test your Moodle installation. This tool will help to generate

users, and get those users to post to forums, participate in chat sessions and take quizzes.

Figure:-2. 4: Apache JMeter load testing tool.

 Pros:

 Java based, so can be used on all platforms

 Scripts are portable – test from within or outside your network

 Extremely powerful

 Freeware

Cons:

 Steep learning curve

2.3. Bibliography

[1] Dirk Draheim, John Grundy, John Hosking, Christof Lutteroth, Gerald Weber,

"Realistic Load Testing of Web Applications"

Literature Review Chapter-2

 15

[2] Institute of Computer Science, The University of Auckland

[3] Sorin POPA, Associate Professor, PhD,” Web Server Monitoring”, University of

Craiova

[4]

[5] Jonathan Barber, Rodolfo Matos, Susana Leitão,” Moodle Monitoring Best

Practices”, University of Porto (PORTUGAL)

[6] Analyzing server response time using Testing Power Web Stress tool, [Online].

Available:https://ieeexplore.ieee.org/document/5773700/

[7] Apache Jmeter, [Online]. Available:

http://jmeter.apache.org/download_jmeter.cgi

[8] Locust, [Online]. Available:

https://locust.io/

[9] Webserver Stress Tool, [Online]. Available:

https://www.paessler.com

[10] Apache Log Analyzer, [Online]. Available:

https://www.manageengine.com/products/eventlog/apache-web-server-log-

analyzer.html

[11] I teach with Moodle

http://www.iteachwithmoodle.com/2012/10/10/3-free-tools-to-test-if-your-moodle-

server-can-cope-with-large-amounts-of-students/

 16

Chapter-3

Problem Analysis & Methodology

3.1. Problem Analysis

In this thesis the main problem is to find the performance of a Moodle instance or LMS

with large number of users. In order to test that in real world we have to subscribed large

number of users and ask them to do a Quiz or to upload an assignment to make the Moodle

Server busy and check the performance of the Moodle Server against the each scenario.

However this method is not practical because each time if there is modification in the Moodle

the performance need to be checked. In order to address this issue Web Server Stress testing

tool is designed.

3.1. Requirements change management

There are three principal stages to a change management process:

1. Problem analysis and change specification: The process starts with an identified

requirements problem or, sometimes, with a specific change proposal. During this stage,

the problem or the change proposal is analysed to check that it is valid. This analysis is

fed back to the change requestor who may respond with a more specific requirements

change proposal, or decide to with draw the request.

2. Change analysis and costing: The effect of the proposed change is assessed using

traceability information and general knowledge of the system requirements. The cost

of making the change is estimated both in terms of modifications to the requirements

document and, if appropriate, to the system design and implementation. Once this

Problem Analysis & Methodology Chapter-3

 17

analysis is completed, a decision is made whether or not to proceed with the

requirements change.

3. Change implementation: The requirements document and, where necessary, the

system design and implementation, are modified. It needs to organize the requirements

document so that it can make changes to document without extensive rewriting or

reorganization. As with programs, changeability in documents is achieved by minimizing

external references and making the document sections as modular as possible. Thus,

individual sections can be changed and replaced without affecting other parts of the

document

3.2. How a Browser Interacts with a Web Based LMS

When the Moodle user requests a URL (e.g. “http://example.com/moodle”) the browser

looks up the host in the address (“example.com”) and the URL is resolved by the Domain

name Server (DNS) and sends the request to that host. The host runs a web server which is

listening for browser requests, when the web server receives the request it passes it to the

LMS software which examines the address and composes and sends the response. The

response is normally a HTML document that can contain addresses of other resources in the

LMS. When the browser receives the HTML document it reads it and makes any additional

requests for other resources (such as images) that are required to fully display the page

to the user. The time between the user hitting “Go” and the page being displayed is the

latency for the whole page, which is composed of the latency for each of the resources that

the page requires. Because the browser doesn’t know the resources required to display for a

requested address, the latency for a whole page is greater than the individual resources.

3.3. Request/Response Lifecycle

The lifecycle of a request and response is illustrated in Figure 1 and the major actions in the

figure are as follows:

1. The user request is sent across the network to the web server.

2. The web server receives the request and passes it to Moodle, Moodle then parses

the request and determines the actions it needs to take to fulfill the request - normally

this involves creating a HTML document from the result of many MySQL queries

Problem Analysis & Methodology Chapter-3

 18

3. MySQL parses the Moodle queries and searches its database (DB)

4. The MySQL DB files and static artifacts (e.g. images) are accessed via a file

system

5. The file system is stored on a block device such as a hard drive

We will now examine each of these stages with the tools that report metrics that

describe their state.

Workstation

Internet PHP

Moodle LMS

MySQL
Database

File
System

1
2

3

4

4 4
Block Device

Figure:-3.2: User request and its lifecycle.

Before the LMS can respond to requests, those requests must first be transmitted over

the network to the LMS and this introduces the first source of latency. It is difficult to

evaluate the network performance as it’s not normally possible to monitor the steps

between the client and the LMS.

3.4. Proposing Model/Design

Webserver Stress Testing Tool is designed to simulate specified number of Moodle

users using multi-threading technology and to get the response from the server. Webserver

Stress Testing Tool monitors for a proper HTTP return code. By HTTP specifications RFC

2616, any web server returns several HTTP codes.

Analysis of the HTTP codes is the fastest way to determine the current status of the

monitored web server. The monitoring process is largely dictated by the Webserver Stress Testing

Tool, but there are certain elements that are likely to be found in most non-trivial monitoring systems.

Problem Analysis & Methodology Chapter-3

 19

Table-3.1: Web Server HTTP Return Codes

 Depending on the response of the webserver programmers/QA people can decide whether the

Moodle or LMS can withstand the specified number of users in the webserver stress testing tool.

3.5. Methodology

 Webserver Stress Tool simulates the Moodle from few users to several hundred users

accessing a website via HTTP/HTTPS simultaneously. To perform the load test it is planned to create

a LMS using www.moodlecloud.com website and then populate real world sample data such as

Mangers/Teachers/Students and courses etc. Then this LMS site can be used as the simulated

environment with a set of virtual users by increasing the number of users gradually until the site

become unresponsive.

Using this Webserver Stress Testing tool first it is decided to record the single user activities

with Moodle for example user creation process, online quiz activity, online exams, some course work

upload/download etc. Then the activities done by the single user is simulated by the Webserver Stress

Testing Tool to mimics the high volume traffic condition for the Moodle.

 In other wards this also can be done with the help of the development team of the Moodle to

generate scripts to send the request to webserver from this tool. When generating scripts it is required

to consider the much time consuming activities to achieve the real world worst-case behavior. Also

this cannot be used for testing commercial websites because this requires knowledge about the

Status code Meaning

200 OK

201 Created

202 Accepted

204 No Content

301 Moved Permanently

302 Moved Temporarily

304 Not Modified

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

Problem Analysis & Methodology Chapter-3

 20

internal parameters of the Moodle to generate scripts depending on the web pages GET/POST

parameters.

3.5.1. Use Case Diagram

Use case diagram is one of five diagrams in the UML for modeling the dynamic aspect of the

systems. This make system and classes approachable and understandable by presenting outside view

of how those elements may be used in context. Below use case diagram explains the main

functionality of the Stress Testing Tool.

Stress Tester

<<extend>>

Change Web Settings

Load URLs Load URL from file

Select Test Type

<<include>>

<<extend>>

<<include>>

Change Virtual
User Setting

<<include>>

Execute/
Run Simulation

<<include>>

single user
login credentials

Dynamic user
login credentials

Dynamic user
login credentials

fro file

<<extend>>

<<extend>>

<<extend>>

View Reports/Charts

<<include>>

Figure:-3.3: Use Case Diagram for Stress Testing Tool

3.5.2. Class Diagram

In software engineering, a class diagram in the Unified Modeling Language (UML) is a

type of static structure diagram that describes the structure of a system by showing the

system's classes, their attributes, operations (or methods), and the relationships among

objects. The class diagram is the main building block of object-oriented modeling. (Class

diagram can be seen on APPENDIX-A)

 HttpWebUser Class

Problem Analysis & Methodology Chapter-3

 21

The class diagram represents all the classes used for the system. There are three main

classes used for this project. HttpWebUser class is the main class. Other two classes Webresponse

and Websetting classes support the functionality of the HttpWebUser.

Main class.The HttpWebUserclass provides support for the properties and methods defined in

HttpWebRequest class and for additional properties and methods that enable the user to interact

directly with the Moodle server using HTTP. Use the WebRequest.Create method to initialize new

HttpWebRequest objects. If the scheme for the Uniform Resource Identifier (URI) is http:// or https://,

Create returns an HttpWebRequest object. (See APPENDIX-B)

 Webresponse Class

The HttpWebUser.ClickDynamicURL method makes a synchronous request to the resource

specified in the RequestUri property and returns an Webresponse that contains the response object.

The response data can be received by using the stream returned by GetResponseStream. If the

response object or the response stream is closed, remaining data will be forfeited. The remaining data

will be drained and the socket will be re-used for subsequent requests when closing the response

object or stream if the following conditions hold: it's a keep-alive or pipelined request, only a small

amount of data needs to be received, or the remaining data is received in a small time interval. If none

of the mentioned conditions hold or the drain time is exceeded, the socket will be closed. For keep-

alive or pipelined connections, we strongly recommend that the application reads the streams until

EOF. This ensures that the socket will be re-used for subsequent requests resulting in better

performance and less resource used.

When you want to send data to the resource, the GetRequestStream method returns a Stream object to

use to send data. The BeginGetRequestStream and EndGetRequestStream methods provide

asynchronous access to the send data stream.

The HttpWebRequest class throws a WebException when errors occur while accessing a

resource. The WebException.Status property contains a WebExceptionStatus value that indicates the

source of the error. When WebException.Status is WebExceptionStatus.ProtocolError, the Response

property contains the HttpWebResponse received from the resource.

HttpWebRequest exposes common HTTP header values sent to the Internet resource as properties, set

by methods, or set by the system; the following table contains a complete list. You can set other

headers in the Headers property as name/value pairs. Note that servers and caches may change or add

headers during the request. (See APPENDIX-B)

Problem Analysis & Methodology Chapter-3

 22

 Websettings Class

Webresponse Class maintains the Websetting of the HttpWebResponse Class. Setting

can be retrieved using Getsetting() method and changed settings can be saved using save

setting() method. (See APPENDIX-B)

3.5.3. C# - Multithreading

A thread is defined as the execution path of a program. Each thread defines a unique

flow of control. If the application involves complicated and time consuming operations, then

it is often helpful to set different execution paths or threads, with each thread performing a

particular job. Threads are lightweight processes. One common example of use of thread is

implementation of concurrent programming by modern operating systems. Use of threads

saves wastage of CPU cycle and increase efficiency of an application.

A program which uses a single thread runs as a single process which is the running

instance of the application. However, this way the application can perform one job at a time.

To make it execute more than one task at a time, it could be divided into smaller threads. In

C#, the System.Threading.Thread class is used for working with threads. It allows creating

and accessing individual threads in a multithreaded application. The first thread to be

executed in a process is called the main thread. When a C# program starts execution, the

main thread is automatically created. The threads created using the Thread class are called the

child threads of the main thread. You can access a thread using the CurrentThread property of

the Thread class.

It is often use background threads when a time-consuming process needed to be

executed in the background without affecting the responsiveness of the user interface. This is

where a BackgroundWorker component comes into play. In C# a Background- Worker

component executes code in a separate dedicated secondary thread while the main thread is

still available to the user interface. (See Appendix C)

Problem Analysis & Methodology Chapter-3

 23

3.5.4. Thread Life Cycle

The life cycle of a thread starts when an object of the System.Threading.Thread class is

created and ends when the thread is terminated or completes execution. Following are the

various states in the life cycle of a thread:

 The Unstarted State − It is the situation when the instance of the thread is created

but the Start method is not called.

 The Ready State − It is the situation when the thread is ready to run and waiting CPU

cycle.

 The Not Runnable State − A thread is not executable, when

o Sleep method has been called

o Wait method has been called

o Blocked by I/O operations

 The Dead State − It is the situation when the thread completes execution or is

aborted.

3.6. File System

To save the responses I used saving files in the file system rather than saving it in a database.

Here are the pros and cons involved in saving files in the file system.

3.6.1. Pros of the File System

 Performance can be better than when you do it in a database. To justify this, if

you store large files in DB, then it may slow down the performance because a simple

query to retrieve the list of files or filename will also load the file data if you used

Select * in your query. In a files system, accessing a file is quite simple and light

weight.

 Saving the files and downloading them in the file system is much simpler than it is

in a database since a simple "Save As" function will help you out. Downloading can

be done by addressing a URL with the location of the saved file.

 Migrating the data is an easy process. You can just copy and paste the folder to

your desired destination while ensuring that write permissions are provided to your

destination.

Problem Analysis & Methodology Chapter-3

 24

 It's cost effective in most cases to expand your web server rather than pay for certain

databases.

 It's easy to migrate it to cloud storage i.e. Amazon S3, CDNs, etc. in the future.

3.6.2. Cons of the File System

 Loosely packed. There are no ACID (Atomicity, Consistency, Isolation, and

Durability) operations in relational mapping, which means there is no guarantee.

Consider a scenario in which your files are deleted from the location manually or by

some hacking dudes. You might not know whether the file exists or not. Painful,

right?

 Low security. Since your files can be saved in a folder where you should have

provided write permissions, it is prone to safety issues and invites trouble, like

hacking. It's best to avoid saving in the file system if you cannot afford to

compromise in terms of security.

3.6.3. Use Cases

 If your application is responsible for handling large files (i.e. over 5MB) and the
lots of file uploads.

 If your application will have a large number of users.

 25

Chapter-4

Implementation

This chapter discusses the implementation of the system. Here it is clearly describes

the development language, Operating system requirement, Major code and Module and

Development Environment.

4.1. Development Language

Microsoft C#.net language of Visual Studio 2012 and .NET 4.5 was selected as the

programming language due to several reasons. They are

 The main feature of this project is Multi-Threading Technology.

 Easy to use graphical user interfaces.

 Fully Object Oriented Language

 Easy exception Handling

 Easy file handling Technique

4.2. Operating System

The system was developed to run on Microsoft Windows 7/8/10 and server versions

such as Microsoft Windows Server 2008/2012/2016 which is capable of installing Microsoft

.Net framework 4.5 or above.

4.3. Major code and Module Structure

4.3.1. Background worker Implementation

A basic Windows application runs on a single thread usually referred to as UI thread.

This UI thread is responsible for creating/painting all the controls and upon which the code

execution takes place. So when you are running a long-running task such as sending set of

URLs request to a webserver and waiting for a replying, downloading data from a website

and deleing large number of the UI thread locks up and the UI application turns white

(remember the UI thread was responsible to paint all the controls) rendering the application to

Not Responding state.

Implementation Chapter-4

 26

Figure:-4.1. Shows the UI thread

Using a Backgroundworker the burden of the heavy processing can be shifted to

different thread. Leave the UI thread free for painting the UI. C#.NET has made the

BackgroundWorker object available in order to simplify threading. This object is designed to

simply run a function on a different thread and then call an event on your UI thread when it's

complete.

Figure:-4.2. UI thread with BackgroundWorker

Below is the sample code which is used to execute the virtual web users in this application.

Implementation Chapter-4

 27

4.3.2. VirtualUserHandler

 Response received by the HttpWebUser objects are processed and displayed in the

datagrid view and Treeview using this method. (See HttpWebUser Class APPENDIX-B)

4.3.3. Response Time Graph

All the response data loaded in to the grid using VirtualUserHandler is used to draw the

graph. Below is the source code of the response time graph.

User Vs Response Time

R
es

po
ns

e
Ti

m
e

(S
ec

)

URL#

Figure:-4.3: User Vs Response Time Graph for each URL

4.3.4. Other Reusable Components

All the source code of classes and other modules implementations cannot be included

here as it increases the page limit therefore please refer Appendix B.

Implementation Chapter-4

 28

4.4. Development Environment

4.4.1. Hardware Requirement

The minimum hardware requirement of this application is depend on the no of virtual users

need to be simulated by this tool. It is recommended to have minimum of following

Hardware requirement.

Intel Core i3 or above

8GB Memory or above

500 GB Hard disk (optional)

4.4.2. Software Requirement

Microsoft .net frame work 3.5

 29

Chapter-5

Evaluation

5.1. Expected functionality

The main functionality of this project is to simulation of the Moodle user in order check the

Maximum stress or the load which can handle by the server with the existing infrastructure. Following

is the sequence diagram in order to show the core functionality of the project. This application

simulates n number of threads starting from one and executes given number of web requests. Each

thread represents a single user in the real world scenario.

Moodle
Server

Thread-1
HttpWebRequest

Object Thread-1 Thread-n

Thread-n
HttpWebRequest

Object

GET/POST Request

new

Local Hard
Disk

GET/POST Request

page

send(page)

GET/POST Request

new

page

send(page)

Simulate specified
number of users

GET/POST Request

Figure:-5.1: sequence diagram of the main functionality

Then each response from the users is obtained and display in a data grid view. Also the response

time is calculated for each thread.

5.2. HttpWebuser Class

HttpWebUser class is the main class which is designed to represent each thread or virtual

user in this project. When executing each thread HttpWebUser class instantiated and name is given to

Evaluation Chapter-5

 30

the each user in order to keep a track of the each user. Using of Httpuser class increased the overall

efficiency of the application. By creating virtual users in using BackgroundWorker class helped to

eliminate the UI freezing issue. (See APPENDIX-B)

5.3. Sample Moodle site

Developed a sample website to test the Moodle Stress Testing Tool as it is not ethical and

illegal to use a commercial websites since the load testing is similar to brute force attack. It consists of

features such as user login, user creation and sample quizzes creation, sample quiz execution etc.

This test Moodle site developed using php and mysql as the database server.

Figure:-5.2 show the home page of the Sample Moodle site.

5.4. Program Execution

This thesis discusses four types of stress tests. User can do the simulation by using

specified no of virtual users with

(1). Single user login credential.

(2). Multiple user logins credentials system generated users.

(3). Multiple user logins credentials provided by a CSV file.

(4). several load engines with multiple user login credentials.

First three tests can be done using a single load engine by simply changing test types

in the Stress testing Tool. It categorized depending on the virtual user authentication method.

Evaluation Chapter-5

 31

The fourth one Simulation with several load engines with multiple user login credentials need

several load engines i.e. separate PC with stress testing tool installed.

5.4.1. Simulation with Single user login credential

URL Click by Single User login credentials means the virtual users are created using

single login credentials. The main disadvantage of this method is by using this method some

tasks such as completing a quiz or some other tasks which are allowed to do once cannot be

simulated. That is because when the particular task activated is no longer available to execute

another time. So simulation is not possible using single login credentials. Test type is selected

as follows.

Figure:-5.3: Test Types selection interface

URLs can be added using Add URL button is used to add URLs one by one. If the URL uses

POST method Post Data can be sent with the request as Key/value pair. User interface support to

enter the post parameters required for URL post request. If the POST Vars added to the Listview and

Add URL button is clicked it inserted to the URL DataGridview (List of URLs) needs to be executed.

Load button can be used to add list of URLs from a CSV file.

Evaluation Chapter-5

 32

Figure:-5.4: POST request using key/value pair

Figure:-5.5: POST request inserted to the URL List

CSV file can be created directly using Microsoft Excel or as comma separated text using a Text

Editor. Also it can be created by adding URLs either GET or POST method to the system one by one

as mentioned above and saving it to reuse for future testing purpose.

Figure:-5.6: format of the CSV file need to be loaded

Evaluation Chapter-5

 33

Once loaded to the system it shows as follows. When the GO button executes each URL is processed

by each single thread or the user. This feature helps to maintain Test cases for future usage Moodle

Testing.

Figure: -5:7: After Loading the CSV file to the system

5.4.2. Multiple user logins credentials system generated users.

URL click by Multiple Users can be done in two ways.

o By using System generated user logins

o By using user credentials provided by .CSV file.

By using System generated user logins is the fastest ways of doing a Stress Test. This is done

by dynamically creating users in the Moodle and simulation done by using those separate

user login credentials.

Evaluation Chapter-5

 34

Here user creation is automated by changing the URL data dynamically. Post data is

sent lid=user#i# … #i# means i change with the given number of users 1..n and creates n

users accounts or logins.

Eg: lid=user#i#&pass=user123&cpass=user123&name=username#i#

&address=useraddress&city=user_city&phone=0772516004&email=user@gmail.

com&Submit=Signup

In this method main purpose is to create separate user logins therefore only the user name is

changed in each user. Then the set of URLS need to be simulated to test particular module is

done by using dynamically changing URLs. Eg: user login process is simulated by

following URLs

loginid=user#i#&pass=user123&submit=Login. (#i# represents the

1,2,3…….n)

loginid=user1&pass=user123&submit=Login

loginid=user2&pass=user123&submit=Login

loginid=user(n-1)&pass=user123&submit=Login

loginid=usern&pass=user123&submit=Login

5.4.3. Multiple user logins credentials provided by a CSV file.

By using CSV file provided by the user is somewhat time consuming as it requires

time to create the CSV file. Post parameters need to be inserted to the URL as follows.

I I I I

I I I I

Evaluation Chapter-5

 35

Table:-5.1. URL request with POST DATA

#?# is replaced by the post data provided by the CSV file. No of Users automatically obtained

by no of users in the CSV file e.g. no of users in the CSV file is 5 then the No of Users to be

simulated is 5. In this case the data in the CSV file need to be in the following format since

the post data contains only two parameters.

saman,1234
ashish,shah
Dhaval123,a
chathura,123
raj,raj

5.4.4. Several load engines with multiple user login credentials.

This can be done by either using scenario-2 or scenario-3 with different test cases by using

several load engines. This is somewhat similar to the real user behavior.

Evaluation Chapter-5

 36

Server

Load Engine-1

Load Engine-2

Load Engine-3

LMS/Moodle Instance

Figure:-5.8: Simulation with several load engines

5.4.5. How each thread Executes

When “GO” button pressed each thread starts executing. The number of threads can be

specified depending on the hardware configuration PC where the Moodle Server Stress Testing Tool

is installed. If the both webserver and the Moodle Server Stress Testing Tool both are installed in the

same machine it is difficult to get a useful result from the load test. After the execution is done

application calculates the following details such as Time Taken, Total Number of Request, Request

per second, Request in last second , status of the response, number of failures and response time.

Results also can be viewed in tree view which shows the Response Header and the Response data

stream. If the response is type=”Text” it will be displayed in the Text box. Tree View node green

implies the response is successfully completed and node red implies the failure.

Evaluation Chapter-5

 37

Figure:-5.9: Application Interface after executing 500

Figure:-5.10: Output shown from the tree view

Evaluation Chapter-5

 38

5.5. Server Performance Monitoring

Netdata is used to monitor server side real-time system metrics monitoring. Monitors and

renders various system metrics in real time, such as CPU, memory, disk I/O, network traffic,

system processes, Apache/Nginx status, MySQL status, Postfix message queue, and others. It

is highly optimized to use minimal CPU, memory, and disk I/O. Provide stunning real-time

metrics graphics in an intuitive web interface. Netdata can be installed simply on centos 7

using following list of commands ref: (https://www.vultr.com/docs /installing-netdata-on-

centos-7)

Figure:-5.11: NetData Monitoring tool dashboard

 39

Chapter-6

Conclusion

The main objective of this Project was to develop a tool to check the performance of a

Moodle in order to performance issue from the development stage to the implementation of

the final product. Actually most of the cases during the development stage performance are

not being tested only the unit testing is done by the developer and QA team. By using this

tool it become easier to perform stress testing in order to deduct the cost of maintenance due

to performance issue, also it allows both the detection and resolution of problems and the

proactive prevention of problems caused by increased usage of the LMS.

6.1. Achievements

 Maintain URLs for future use such as save list of URL/Load URLs from a

file/Delete URLs from the specific test case.

 3-Types of Test Available depending on either single login credential or

multiple user login credentials.

 The test results can be saved for future use.

 Simple and user friendliness.

6.2. Future Work

This system is developed using Object Oriented Programming Techniques

therefore it is easy to enhance this application easily. This application can be further

improved by using by executing a range of users from lesser number to a large

number of users and application provides the optimal no of users which the server

can handle.

 40

Reference

[1] Sorin POPA, Associate Professor, PhD,” Web Server Monitoring”, University of

Craiova

[2] Jonathan Barber, Rodolfo Matos, Susana Leitão,” Moodle Monitoring Best

Practices”, University of Porto (PORTUGAL)

[3] Analyzing server response time using Testing Power Web Stress tool, [Online].

Available:https://ieeexplore.ieee.org/document/5773700/

[4] Apache Jmeter, [Online]. Available:

http://jmeter.apache.org/download_jmeter.cgi

[5] Locust, [Online]. Available:

https://locust.io/

[6] Webserver Stress Tool, [Online]. Available:

https://www.paessler.com

[7] Apache Log Analyzer, [Online]. Available:

https://www.manageengine.com/products/eventlog/apache-web-server-log-

analyzer.html

[8] I teach with Moodle

http://www.iteachwithmoodle.com/2012/10/10/3-free-tools-to-test-if-your-moodle-

server-can-cope-with-large-amounts-of-students/

[9] File System vs. Database

https://dzone.com/articles/which-is-better-saving-files-in-database-or-in-fil

[10] Background Worker Class

https://docs.microsoft.com/en-

us/dotnet/api/system.componentmodel.backgroundworker?view=netframework-

4.7.2

41

APPENDIX-A: Design Documentation

HttpWebUser

-username
-usernumber
-TestType
-cookies

- HttpWebUser()
- HttpWebUser(name,usernumber)
- UpdateURLs(Url)
- UpdateURL_fromFile(url,strline)
- ClickDynamicURL(Url, PostStr,
SettingsInst, urlno,reqMethod)

Webresponse

-TimeSpan ResponseTime;
- Average;
- contentLengthstr;
- ThreadName;
- UrlNo;
- StatusCode;
- ResponseUri;
- Description;
- Headers;
- IsExOccured;

-Webresponse()
- Save_Resp_Stream (response,
Threadname)

WebSettings

- VersionHttp10
- CbxRange
- UserAgent
- TxtReferer
- TxtAccept
- TxtRangeFrom
- TxtRangeTo
- TxtOtherHeaders

-GetWebSettings()
-SaveWebSettings()

Class Diagram of Stress Testing Tool

1 1..*11

42

APPENDIX-B: Code Listing

HttpWebUser Class

using System;
usingSystem.Text;
usingSystem.Windows.Forms;
using System.Net;
usingSystem.Web;
using System.IO;

namespace MOODLE_STRESS_TOOL
{

classHttpWebUser
 {
privatestring _Uname = "";
privateint _Usernumber=0;
staticintNo_of_users;

privateTestTypes _Testtype;
privateCookieContainer cookies = newCookieContainer();

publicHttpWebUser()
 {
 _Uname = "";
 _Usernumber = 0;
 }

publicHttpWebUser(stringUname, intUsernumber)
 {
 _Uname = Uname;
 _Usernumber = Usernumber;
 }

publicTestTypesTesttype
 {
set
 {
 _Testtype = value;
 }

get
 {

return _Testtype;
 }
 }
publicstringUname
 {
set
 {

 _Uname = value;
 }

get

Code Listing APPENDIX-B

43

 {

return _Uname;
 }
 }

publicintUsernumber
 {
set
 {
 _Usernumber = value;
 }

get
 {

return _Usernumber;
 }
 }

privatestringUpdateURL_fromFile(stringUrl, stringstrLine)
 {
if (strLine == null) returnnull;

intindx, startpos, arrPos;
string[] str1 = strLine.Split(',');
string newStr1 = "", newStr2 = "", newStr = "";
indx = Url.IndexOf("#?#", 0);
arrPos = 0;
newStr = Url;
if (indx> 0)
 {
startpos = 0;
while (indx> 0)
 {
 newStr1 = newStr.Substring(0, indx);
 newStr2 = newStr.Substring(indx + 3);
startpos = indx + 3;
newStr = newStr1 + str1[arrPos].ToString().Trim() + newStr2;
indx = newStr.IndexOf("#?#", startpos);
arrPos++;
 }
returnnewStr;
 }
else
 {
returnUrl;
 }
 }

publicstringUpdateURLs(StringUrl)
 {
intindx, startpos;
string newStr1 = "", newStr2 = "", newStr = "";
indx = Url.IndexOf("#i#", 0);

newStr = Url;
if (indx> 0)
 {
startpos = 0;
while (indx> 0)
 {

Code Listing APPENDIX-B

44

 newStr1 = newStr.Substring(0, indx);
 newStr2 = newStr.Substring(indx + 3);
startpos = indx + 3;
newStr = newStr1 + Usernumber.ToString().Trim() + newStr2;
indx = newStr.IndexOf("#i#", startpos);

 }
returnnewStr;
 }
else
 {
returnUrl;
 }
 }

publicstaticlongSave_Resp_Stream(HttpWebResponse response, stringtmpThreadName)
 {
StreamrcvStream = response.GetResponseStream();
byte[] respBytes = newbyte[256];
intbyteCount;

stringrespContent, TmpFilename;
TmpFilename = Path.GetTempPath() + tmpThreadName + ".tmp";

FileStream fs = newFileStream(TmpFilename, FileMode.Create, FileAccess.Write);
do
 {
byteCount = rcvStream.Read(respBytes, 0, 256);
fs.Write(respBytes, 0, byteCount);
fs.Flush();
 } while (byteCount> 0);

fs.Close();

response.Close();
rcvStream.Close();

FileInfo info = newFileInfo(TmpFilename);

if (response.ContentType.StartsWith("text/"))
 {
StreamReader reader = File.OpenText(TmpFilename);
respContent = reader.ReadToEnd();
reader.Close();
respContent = respContent.Replace("\r\n", "\n");
respContent = respContent.Replace("\n", "\r\n");

 }
else
 {
respContent = "Non-text response received. Right-click and choose 'Save' to save the
response content.";
 }

returninfo.Length;
 }

publicWebresponseClickDynamicURL(stringUrl, stringPostStr, WebsettingsSettingsInst,
inturlno, stringreqMethod = "GET", stringpostDataStr=null)

Code Listing APPENDIX-B

45

 {
WebresponseurlResponse = newWebresponse();

HttpWebResponse Response=null;

longcontentLength = 0;
doubleavg = -1;
DateTimerequestStart=DateTime.Now;

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(Url);

request.KeepAlive = true;
request.Method = reqMethod;
request.AllowAutoRedirect = true;
request.CookieContainer = cookies;

try
 {
if (reqMethod == "POST")
 {
request.ContentType = "application/x-www-form-urlencoded";

if (Testtype==TestTypes.DYNAMIC)
PostStr=UpdateURLs(PostStr);
elseif (Testtype==TestTypes.MULTIPLE)
PostStr=UpdateURL_fromFile(PostStr,postDataStr);

byte[] postDataBytes = postDataBytes = Encoding.UTF8.GetBytes(PostStr);
request.ContentLength = postDataBytes.Length;

StreampostDataStream = request.GetRequestStream();
postDataStream.Write(postDataBytes, 0, postDataBytes.Length);
postDataStream.Close();
 }

if (SettingsInst.VersionHttp10)
request.ProtocolVersion = HttpVersion.Version10;

// request.AllowAutoRedirect = CbxAutoRedirect.Checked;
request.UserAgent = SettingsInst.UserAgent;
// request.CookieContainer = CookieCont;

if (SettingsInst.TxtReferer.Length> 0)
request.Referer = SettingsInst.TxtReferer;

if (SettingsInst.TxtAccept.Length> 0)
request.Accept = SettingsInst.TxtAccept;

if ((SettingsInst.CbxRange) && (SettingsInst.TxtRangeFrom + SettingsInst.TxtRangeTo>
0))
 {
if (SettingsInst.TxtRangeFrom == 0)
request.AddRange(SettingsInst.TxtRangeTo * -1);
elseif (SettingsInst.TxtRangeTo == 0)
request.AddRange(SettingsInst.TxtRangeFrom);
else
request.AddRange(SettingsInst.TxtRangeFrom, SettingsInst.TxtRangeTo);
 }

Code Listing APPENDIX-B

46

// custom additional headers
if (SettingsInst.TxtOtherHeaders.Length> 0)
 {
string[] lines = SettingsInst.TxtOtherHeaders.Split('\n');
foreach (string line in lines)
 {
intpos = line.IndexOf(':');
if (pos != -1)
 {
string header = line.Substring(0, pos).Trim();
stringheaderValue = line.Substring(pos + 1).Trim();
try
 {
request.Headers.Add(header, headerValue);
 }
catch (ArgumentException)
 {
MessageBox.Show("ERROR: The header '" + header + "' has to be set explicitly using one
of the properties. ");
 }
 }
 }
 }

Response = (HttpWebResponse)request.GetResponse();
TimeSpandur = DateTime.Now - requestStart;
urlResponse.IsExOccured = false;
urlResponse.ThreadName = this.Uname + "-" + urlno.ToString();
contentLength = Save_Resp_Stream(Response, urlResponse.ThreadName);

urlResponse.contentLengthstr = contentLength.ToString("#,###,###") + " bytes";

if (dur.TotalSeconds> 0)
avg = Math.Round(((double)contentLength / (double)1024) / (double)dur.TotalSeconds,
2);

urlResponse.Average = avg;
urlResponse.ResponseTime = dur;

urlResponse.StatusCode = Response.StatusCode;
urlResponse.ResponseUri = Response.ResponseUri.ToString();
urlResponse.Description = Response.StatusDescription.ToString();
urlResponse.Headers = Response.Headers.ToString();

 }
catch (HttpException e1)
 {

TimeSpandur = DateTime.Now - requestStart;
urlResponse.IsExOccured = true;
urlResponse.ThreadName = this.Uname + "-" + urlno.ToString();
urlResponse.Description = e1.Message.ToString();
urlResponse.contentLengthstr = contentLength.ToString("#,###,###") + " bytes";
urlResponse.StatusCode = HttpStatusCode.ServiceUnavailable;
urlResponse.ResponseUri = Response.ResponseUri.ToString();
urlResponse.Description = e1.Message.ToString();

urlResponse.Average = avg;
urlResponse.ResponseTime = dur;

 }

Code Listing APPENDIX-B

47

catch (WebException e2)
 {
TimeSpandur = DateTime.Now - requestStart;
urlResponse.IsExOccured = true;
urlResponse.ThreadName = this.Uname + "-" + urlno.ToString();
urlResponse.Description = e2.Message.ToString();
urlResponse.contentLengthstr = contentLength.ToString("#,###,###") + " bytes";
urlResponse.StatusCode = HttpStatusCode.ServiceUnavailable;
urlResponse.ResponseUri = Url;
urlResponse.Description = e2.Message.ToString()+"["+e2.Message.ToString()+"]";
urlResponse.Average = avg;
urlResponse.ResponseTime = dur;
 }
returnurlResponse;
 }
 }
 }

Webresponse Class

using System;
using System.Net;

namespace MOODLE_STRESS_TOOL
{
publicclassWebresponse
 {
publicTimeSpanResponseTime;
publicdouble Average;
publicstringcontentLengthstr = "";
publicstringThreadName="";
publicintUrlNo;
publicHttpStatusCodeStatusCode;
publicstringResponseUri = "";
publicstring Description = "";
publicstring Headers = "";
publicBooleanIsExOccured=false;

publicWebresponse()
 {
ResponseTime=TimeSpan.Parse("00:00:00");
 Average=0;
contentLengthstr = "";
ThreadName = "";
UrlNo=0;
StatusCode = HttpStatusCode.NotFound;
ResponseUri = "";
 Description = "";
 Headers = "";
IsExOccured = false;
 }
 }
}

Websetting Class

using System;

namespace MOODLE_STRESS_TOOL

Code Listing APPENDIX-B

48

{
classWebsettings
 {
publicBoolean VersionHttp10 = false;
publicBooleanCbxRange = false;
publicstringUserAgent="";
publicstringTxtReferer="";
publicstringTxtAccept="";
publicintTxtRangeFrom = 0;
publicintTxtRangeTo = 0;
publicstringTxtOtherHeaders = "";

 }
}

To Maintain Test Case following source codes are used

// To add URLs Manually to URL Data Grid View

privatevoidbtnAddURL_Click(object sender, EventArgs e)
 {
URLRowCount++;

if (LvwPostVars.Items.Count> 0)
 {

StringBuilderpostData = newStringBuilder();
foreach (ListViewItem item inLvwPostVars.Items)
 {

postData.AppendFormat("{0}={1}&",
HttpUtility.UrlEncode(item.SubItems[0].Text),
HttpUtility.UrlEncode(item.SubItems[1].Text));

 }
postData.Remove(postData.Length - 1, 1);

LvwPostVars.Clear();
GridViewURL.Rows.Add(URLRowCount, TextURL.Text, postData.ToString(), "POST");

 }
else
GridViewURL.Rows.Add(URLRowCount, TextURL.Text, "", "GET");

TextURL.Text = "";
 }

// To add post data as Key/Value Pair
privatevoidBtnAddPostVar_Click(object sender, EventArgs e)
 {

KeyValueFormdlg = newKeyValueForm();
if (dlg.ShowDialog() == DialogResult.OK)
 {
LvwPostVars.Items.Add(newListViewItem(newstring[2] { dlg.TxtKey.Text,
dlg.TxtValue.Text }));
LvwPostVars.Focus();
 }
 }

Code Listing APPENDIX-B

49

// Load Test Saved Test Case to GridviewURL
privatevoidBtnLoadPostVars_Click(object sender, EventArgs e)
 {
OpenFileDialogdlg = newOpenFileDialog();
dlg.Filter = "CSV Files (*.csv)|*.csv";
if (dlg.ShowDialog() == DialogResult.OK)
 {
StreamReader reader = File.OpenText(dlg.FileName);
string line;

GridViewURL.Rows.Clear();
while ((line = reader.ReadLine()) != null)
 {

string[] arr1 = line.Split(',');
if (arr1[0].ToString() != "URLNo")
GridViewURL.Rows.Add(arr1[0], arr1[1], arr1[2], arr1[3]);

 }
reader.Close();

 }
 }

// Load form event load the controls to its required positions

privatevoidMainfrm_Load(object sender, EventArgs e)
 {

dataGridView1.Columns[0].Width = 100;
dataGridView1.Columns[1].Width = 250;
dataGridView1.Columns[2].Width = 100;
dataGridView1.Columns[3].Width = 200;
dataGridView1.Columns[4].Width = 100;
dataGridView1.Columns[5].Width = 100;
dataGridView1.Columns[6].Width = 100;
dataGridView1.Columns[7].Visible = false;

btnTestTypes_Click(sender, e);

this.txtContent.Width = this.tabControl1.Width - this.treeView1.Width - 100;

this.panelURL.Height = this.Height- statusStrip1.Height;
this.panelURL.Left = this.panelMenu.Width;
this.panelURL.Top = 0;
this.panelURL.Width = this.Width - this.panelMenu.Width;

this.panelTestResult.Height = this.Height - statusStrip1.Height - 80;
this.panelTestResult.Left = this.panelMenu.Width;
this.panelTestResult.Top = 0;
this.panelTestResult.Width = this.Width - this.panelMenu.Width - 175;
 tabControl1.Width = this.panelTestResult.Width;
this.dataGridView1.Width = this.tabControl1.Width - 25;
this.dataGridView1.Height = this.tabControl1.Height - 25;

this.panelTestTypes.Height = this.Height- statusStrip1.Height-100;
this.panelTestTypes.Left = this.panelMenu.Width;
this.panelTestTypes.Top = 0;
this.panelTestTypes.Width = this.Width - this.panelMenu.Width;

Code Listing APPENDIX-B

50

 this.txtContent.Width = this.tabControl1.Width - this.treeView1.Width - 50;
this.txtHeader.Width = this.tabControl1.Width - this.treeView1.Width - 50;

this.PanelChart.Height = this.Height- statusStrip1.Height - 100;
this.PanelChart.Left = this.panelMenu.Width;
this.PanelChart.Top = 0;
this.PanelChart.Width = this.Width - this.panelMenu.Width;
this.chart1.Width = this.PanelChart.Width - 50;
this.chart1.Height = this.PanelChart.Height - 50;

 }

Execute Dynamic URL test

privatevoidbtn_Run_Dynamic_Click(object sender, EventArgs e)
 {
Testtype = TestTypes.DYNAMIC;

 toolStripProgressBar2.Visible = true;
 toolStripStatusLabel2.Visible = true;

// delete temporary files

if (!this.backgroundDeleteTmp.IsBusy)
 {
this.backgroundDeleteTmp.RunWorkerAsync();

 }

Thread.Sleep(10000);

numWorkItems = Int32.Parse(this.TextThreads.Text);

 toolStripProgressBar1.Visible = true;
 toolStripStatusLabel1.Visible = true;

Calcrequests = Int32.Parse(this.TextThreads.Text) * (GridViewURL.RowCount - 1);
this.labelCalclValueRequests.Text = Calcrequests.ToString();

dataGridView1.Rows.Clear();
 dataGridView1.RowCount = Calcrequests + 1;
ClearformControls();

btnTestResult_Click(sender, e);
timer.Start();
Application.DoEvents();
ButtonRun.Enabled = false;
ButtonStop.Enabled = true;
buttonReset.Enabled = true;
 _shouldStop = false;

treeView1.Nodes.Clear();
TreeNodetNode = newTreeNode("Virtual Users");
tNode.ImageIndex = 0;
treeView1.Nodes.Add(tNode);
treeView1.ExpandAll();

if (!this.backgroundRun.IsBusy)
 {
backgroundRun.RunWorkerAsync();
 }

Code Listing APPENDIX-B

51

 }

// execute URL click (With Single user credentials)

privatevoidButtonRun_Click(object sender, EventArgs e)
 {
Testtype = TestTypes.SINGLE;

 toolStripProgressBar2.Visible = true;
 toolStripStatusLabel2.Visible = true;

if (!this.backgroundDeleteTmp.IsBusy)
 {
this.backgroundDeleteTmp.RunWorkerAsync();

 }

Thread.Sleep(10000);

numWorkItems = Int32.Parse(this.TextThreads.Text);

 toolStripProgressBar1.Visible = true;
 toolStripStatusLabel1.Visible = true;

Calcrequests = Int32.Parse(this.TextThreads.Text) * (GridViewURL.RowCount - 1);
this.labelCalclValueRequests.Text = Calcrequests.ToString();

dataGridView1.Rows.Clear();
 dataGridView1.RowCount = Calcrequests + 1;
ClearformControls();

btnTestResult_Click(sender, e);
timer.Start();
Application.DoEvents();
ButtonRun.Enabled = false;
ButtonStop.Enabled = true;
buttonReset.Enabled = true;
 _shouldStop = false;

treeView1.Nodes.Clear();
TreeNodetNode = newTreeNode("Virtual Users");
tNode.ImageIndex = 0;
treeView1.Nodes.Add(tNode);

if (!this.backgroundRun.IsBusy)
 {
backgroundRun.RunWorkerAsync();
 }

 }

privatevoidbackgroundRun_DoWork(object sender, DoWorkEventArgs e)
 {

WebsettingsWSetting = newWebsettings();

if (SettingsFormInst.CbxUseHttp10.Checked)
 WSetting.VersionHttp10 = true;

WSetting.UserAgent = SettingsFormInst.TxtUserAgent.Text;

Code Listing APPENDIX-B

52

// request.AllowAutoRedirect = CbxAutoRedirect.Checked;
WSetting.UserAgent = SettingsFormInst.TxtUserAgent.Text;
// request.CookieContainer = CookieCont;

if (SettingsFormInst.TxtReferer.Text.Length> 0)
WSetting.TxtReferer = SettingsFormInst.TxtReferer.Text;

if (SettingsFormInst.TxtAccept.Text.Length> 0)
WSetting.TxtAccept = SettingsFormInst.TxtAccept.Text;

if ((SettingsFormInst.CbxRange.Checked) && (SettingsFormInst.TxtRangeFrom.Text.Length
+ SettingsFormInst.TxtRangeTo.Text.Length> 0))
 {
if (SettingsFormInst.TxtRangeFrom.Text.Length == 0)
WSetting.TxtRangeTo = (Int32.Parse(SettingsFormInst.TxtRangeTo.Text) * -1);
elseif (SettingsFormInst.TxtRangeTo.Text.Length == 0)
WSetting.TxtRangeFrom = (Int32.Parse(SettingsFormInst.TxtRangeFrom.Text));

 }

List<string>UrlListT = GetUrlList(this.GridViewURL);

txtClickDelayval = Int32.Parse(txtClickDelay.Text);
Application.DoEvents();

for (inti =1; i<= Int32.Parse(TextThreads.Text); i++)
 {
HttpWebUser user = newHttpWebUser();
user.Uname= "USER_" + i.ToString();
user.Usernumber = i;

if (Testtype == TestTypes.DYNAMIC)
user.Testtype = TestTypes.DYNAMIC;
else
user.Testtype = TestTypes.SINGLE;

ThreadworkerThread = newThread(() =>VirtualUserHandler(user,UrlListT, WSetting));
workerThread.Start();

Application.DoEvents();
this.backgroundRun.ReportProgress(i);

if (backgroundRun.CancellationPending)
 {
e.Cancel = true;
backgroundRun.ReportProgress(0);
return;
 }
 }
 }

// execute URL click (With Multiple user credentials from CSV)

privatevoidbtnGOMultiple_Click(object sender, EventArgs e)
 {
Testtype = TestTypes.MULTIPLE;

 toolStripProgressBar2.Visible = true;
 toolStripStatusLabel2.Visible = true;

Code Listing APPENDIX-B

53

if (!this.backgroundDeleteTmp.IsBusy)
 {
this.backgroundDeleteTmp.RunWorkerAsync();

 }

Thread.Sleep(10000);

numWorkItems = Int32.Parse(this.TextThreads.Text);

 toolStripProgressBar1.Visible = true;
 toolStripStatusLabel1.Visible = true;

dataGridView1.Rows.Clear();

Calcrequests = Int32.Parse(this.TextThreads.Text) * (GridViewURL.RowCount - 1);
this.labelCalclValueRequests.Text = Calcrequests.ToString();

 dataGridView1.RowCount = Calcrequests + 1;

ClearformControls();

btnTestResult_Click(sender, e);
timer.Start();
Application.DoEvents();
ButtonRun.Enabled = false;
ButtonStop.Enabled = true;
buttonReset.Enabled = true;
 _shouldStop = false;

treeView1.Nodes.Clear();
TreeNodetNode = newTreeNode("Virtual Users");
tNode.ImageIndex = 0;
treeView1.Nodes.Add(tNode);

if (!this.backGRunMultiple.IsBusy)
 {
backGRunMultiple.RunWorkerAsync();
 }
 }

Virtual Web User Creation

privatevoid backgroundRun_DoWork(object sender, DoWorkEventArgs e)
 {

Websettings WSetting = newWebsettings();

List<string> UrlListT = GetUrlList(this.GridViewURL);

 txtClickDelayval = Int32.Parse(txtClickDelay.Text);
Application.DoEvents();

for (int i =1; i <= Int32.Parse(TextThreads.Text); i++)
 {
HttpWebUser user = newHttpWebUser();
 user.Uname= "USER_" + i.ToString();
 user.Usernumber = i;

Code Listing APPENDIX-B

54

if (Testtype == TestTypes.DYNAMIC)
 user.Testtype = TestTypes.DYNAMIC;
else
 user.Testtype = TestTypes.SINGLE;

Thread workerThread = newThread(() => VirtualUserHandler(user,UrlListT,

WSetting));
 workerThread.Start();

Application.DoEvents();
this.backgroundRun.ReportProgress(i);

if (backgroundRun.CancellationPending)
 {
 e.Cancel = true;
 backgroundRun.ReportProgress(0);
return;
 }

 }
 }

privatevoid backgroundRun_ProgressChanged(object sender, ProgressChangedEventArgs

e)
 {
int thread = int.Parse(this.TextThreads.Text);

int val = ((e.ProgressPercentage * 100) / thread);

 toolStripProgressBar1.Value = val;
 toolStripStatusLabel1.Text = val.ToString() + "%";
 }

privatevoid backgroundRun_RunWorkerCompleted(object sender,

RunWorkerCompletedEventArgs e)
 {
 toolStripProgressBar1.Visible = false;
if (e.Cancelled)
 {

this.toolStripStatusLabel1.Text = "Processing cancelled";
 }
elseif (e.Error != null)
 {
this.toolStripStatusLabel1.Text = e.Error.ToString();
 }
else
 {

this.toolStripStatusLabel1.Text = "Completed";
 }
 }

Code Listing APPENDIX-B

55

Virtual User Handler

privatevoid VirtualUserHandler(HttpWebUser User, List<string> UrlList, Websettings
WSetting, string postDataStr=null)
 {
int Urlno = 1;
TreeNode tNode2;
foreach (string url in UrlList)
 {
string[] arr = url.Split(',');
Webresponse Wresponse = newWebresponse();

 Wresponse = User.ClickDynamicURL(arr[1], arr[2], WSetting, Urlno,

arr[3],postDataStr);

Interlocked.Increment(ref requests);
Interlocked.Increment(ref requestsLastSec);

if (Wresponse.StatusCode == HttpStatusCode.OK) Interlocked.Increment(ref

count200);
elseif (Wresponse.StatusCode == HttpStatusCode.Unauthorized)
Interlocked.Increment(ref count401);

elseif (Wresponse.StatusCode == HttpStatusCode.NotFound) Interlocked.Increment(ref
count404);

elseif (Wresponse.StatusCode == HttpStatusCode.NotModified)
Interlocked.Increment(ref count304);

if (treeView1.InvokeRequired)
 {
 treeView1.Invoke(newAction(() =>
 {

 tNode2 = newTreeNode(Wresponse.ThreadName);

if (Wresponse.IsExOccured == false&& Wresponse.StatusCode == HttpStatusCode.OK)
 {
 tNode2.ImageIndex = 1;

 }
else
 {
 tNode2.ImageIndex = 2;
Interlocked.Increment(ref countFailures);
 }
 treeView1.Nodes[0].Nodes.Add(tNode2);

 }));
 }

if (dataGridView1.InvokeRequired)
 {
 dataGridView1.Invoke(newAction(() =>
 {

 dataGridView1.Rows[RowCount].Cells[0].Value =

Wresponse.ThreadName;

Code Listing APPENDIX-B

56

dataGridView1.Rows[RowCount].Cells[1].Value =
Wresponse.ResponseUri.ToString();

 dataGridView1.Rows[RowCount].Cells[2].Value =
((int)Wresponse.StatusCode) + "";

 dataGridView1.Rows[RowCount].Cells[3].Value =
Wresponse.Description.ToString();

dataGridView1.Rows[RowCount].Cells[4].Value =
Wresponse.contentLengthstr;

 dataGridView1.Rows[RowCount].Cells[5].Value =
Wresponse.ResponseTime.TotalSeconds;

dataGridView1.Rows[RowCount].Cells[6].Value =
Wresponse.Average;

dataGridView1.Rows[RowCount].Cells[7].Value =
Wresponse.Headers.ToString();

Interlocked.Increment(ref RowCount);
Interlocked.Increment(ref Urlno);

 }));
 }

 }

Interlocked.Decrement(ref numWorkItems);
 }
 }

Response Time Graph

All the response data loaded in to the grid using VirtualUserHandler is used to Draw the

graph. Below is the souce code of the response time graph.

private void Chart_Click(object sender, EventArgs e)
 {
 chart1.Series.Clear();
 this.PanelChart.Visible = true;
 this.panelTestResult.Visible = false;
 this.panelTestTypes.Visible = false;
 this.panelURL.Visible = false;
 int URLRowCount = this.GridViewURL.RowCount - 1;
 int arrySize = Int32.Parse(this.TextThreads.Text);
 double[,] z = new double[URLRowCount, arrySize];
 double[] y = new double[arrySize];
 string[] x = new string[arrySize];

 int RowCount = (Int32.Parse(this.TextThreads.Text) * URLRowCount);

 string user = "";
 for (int k=0; k<RowCount;k++)
 {
 user = dataGridView1.Rows[k].Cells[0].Value.ToString();
 string[] words = user.Split('-');

Code Listing APPENDIX-B

57

 int a = Int32.Parse(words[0].ToString().Substring(5));
 int b = Int32.Parse(words[1].ToString());
 string s = dataGridView1.Rows[k].Cells[5].Value.ToString();
 z[b-1,a-1] =
double.Parse(dataGridView1.Rows[k].Cells[5].Value.ToString());

 }
 for (int NoURL = 0; NoURL < URLRowCount; NoURL++)
 {
 for (int i = 0; i < Int32.Parse(this.TextThreads.Text); i++)
 {
 x[i] = "user_" + i.ToString();
 y[i] = z[NoURL, i];

 }

 chart1.Series.Add(new Series(NoURL.ToString()));
 chart1.Series[NoURL].IsValueShownAsLabel =false;
 chart1.Series[NoURL].BorderWidth = 2;
 chart1.Series[NoURL].ChartType = SeriesChartType.Line;
 chart1.Series[NoURL].Points.DataBindXY(x, y);
 }

58

APPENDIX-C: User Documentation

 Test Type Selection

Option-1: URL Clicks (By Single User)

Here LMS is simulated by single user login credentials. By this method LMS can be

simulated for simple task such as user login, assignment downloads etc. can be done.

Cannot be used for online exam, quiz and assignment uploads etc. once the task is

consumed by the user it is no longer available for the particular user.

Option-2: URL Clicks (By Multiple Users)
Here LMS is simulated by multiple user login credentials. By this method LMS can

be simulated for online exam, quiz and assignment uploads etc. This can be done in

two ways (1). By system generated user credentials (2). By user login credentials

provided by using a CSV file.

User Documentation APPENDIX-C

59

 URLS Interface

URLs can be added either manually or using CSV file. When POST URLs added

manually post variables need to be sent with POST request. Add++ button helps to

add PostData as Key/Value Pairs with the URL.

After Loading URLs to URL List No of Users need to be specified otherwise it take

Number of users as 5. Click delay is the no milliseconds clasps between each URL

click.

 Test Results Interface

Test Results interface display status of the Load Test. It provides details of the

each user thread running. Test results can be viewed in a data grid view or a tree view.

Following figure shows the test results as data grid view.

User Documentation APPENDIX-C

60

Following figure shows the test results as tree view

User Documentation APPENDIX-C

61

 Graph Interface
Graph interface display the displays Users Vs Response Time graph. Each line

displays the response time of the each URLs.

62

APPENDIX-D: System Documentation

 Installation of Moodle Stress Testing Tool

1) Double click on Moodle stress Testing Setup and go next.

2) Click on Install.

System Documentation APPENDIX-D

63

3) Installation process will get stated.

4) Installation is completed successfully and now Moodle Stress Testing Tool
can be used.

 Installation of NetData

Please refer below link
https://docs.netdata.cloud/packaging/installer/

