
 pg. 0

Masters Project Final Report

(MCS)

2019

Project Title

Process of converting monolithic application to
microservices-based architecture

Student Name
Thiwankan C. Kapugama Arachchi

Registration No.
& Index No.

16440068 / 2016MCS006

Supervisor’s
Name

Prof. K. P. Hewagamage

For Office Use ONLY

S

E1

E2

For Office Use Only

 pg. 1

Process of Conversion Monolithic

Application to Microservices Based

Architecture

A dissertation submitted for the Degree of Master

of Computer Science

T. C. K. Arachchi

University of Colombo School of Computing

2019

 pg. 2

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: Thiwankan C. Kapugama Arachchi

Registration Number: 2016MCS006

Index Number: 16440068

Signature: Date:

This is to certify that this thesis is based on the work of

Mr./Ms. T. C. Kapugama Arachchi

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name: Prof. K. P. Hewagamage

Signature: Date:

 pg. 3

Table of Contents
Table of Contents .. 3

Table of Figures ... 4

Abstract ... 5

1. Introduction .. 6

1.1. Background .. 6

1.2. Problem ... 8

1.3. Objectives .. 10

1.4. Scope ... 11

1.5. Thesis Application .. 12

1.6. Thesis Outline .. 13

2. Literature Review .. 14

2.1. Reason for Use Microservices Architecture .. 14

2.2. Monolithic to Microservices Conversion Classification Approach .. 15

2.3. Using Microservices Legacy Software Modernization... 19

3. Methodology ... 22

3.1. Plan for migration to microservices .. 22

3.2. Conversion Plan 1: Develop from Scratch ... 23

3.3. Conversion Plan 2: Adopt Microservices for New Functionality ... 24

3.4. Conversion Plan 3: Replace Functionality with Microservices .. 25

4. Implementation .. 27

4.1. Application of General Conversion Process .. 27

5. Testing & Evaluation ... 31

5.1. Monolithic to Microservice Conversion Progress.. 31

5.2. Resources Utilization for Decomposition .. 31

5.3. Conversion Period ... 32

5.4. Comparison conversion plan ... 32

5.5. Conclusion ... 33

5.5.1. Result of application ... 33

5.5.2. Challengers and limitations ... 34

5.5.3. Future works ... 34

6. References .. 36

A. Appendix ... 37

i. Config Servers ... 37

ii. Discovery Server.. 37

iii. Gateway Service .. 38

 pg. 4

iv. Concerns in Legacy Systems.. 38

v. Continuous Integration with Version Control ... 39

vi. Load Balancer .. 39

vii. Usage of Circuit Breaker Pattern .. 40

viii. Containerize the Services .. 40

ix. Monolithic and Microservice Architecture ... 41

Table of Figures
Figure 1 - Microservice interest over time (source: Google Trends) .. 14

Figure 2 - Overview of 10 Decomposition Approaches (Source: monolithic classification [4]) 16

Figure 3 - Decision Guide for Decomposition Approaches (Source: monolithic classification [4]) 18

Figure 4 – Develop microservices from scratch to existing legacy system ... 23

Figure 5 - Add new feature/functional as microservice.. 24

Figure 6 - Replace legacy with microservices ... 25

Figure 7 - High Level Diagram of Legacy System ... 27

Figure 8 - Functional replace to microservices ... 28

Figure 9 - Fault Microservice ... 29

Figure 10 - High level diagram for Monolith Architecture .. 42

Figure 11 - High level diagram for Microservice Architecture .. 43

 pg. 5

Abstract

Software architecture is the basic structure for software application development.

Monolithic software architecture is used to develop software products in earlier decades.

Microservices is recently introduced software architecture that promises of high

maintainability and scalability. Most of the legacy applications are followed by the monolithic

architecture pattern. Software complexity becomes unmanageable with the growth of the

code base of the application. Monolithic architecture fails when the complexity of software

increases.

To overcome difficulties of the monolithic architecture, computer scientists try to

move for better software architecture such as microservices architecture. The transformation

of a real-world operational software application into a new architecture-based application is

a challenge. Transformation of monolithic based application into the microservices-based

application has been discovered in a theoretical manner. Identify theories and concepts

related to the transformation of software architecture will be one concern of the thesis. Then

based on analysis will evaluate the transformation approaches.

Based on the evaluated studies, three processes will be introduced to convert, the

monolithic real-world operation application into microservices. “Refactoring from scratch”,

“incremental refactoring” and “convert only new components into microservices” are the

three processors that will be described. Introduced conversion processors are in a conceptual

manner which can directly apply to real-world application. Since the conversion processes are

in a conceptual manner, it can optimize based on the situation and requirements.

The research outcome evaluated by applying the conversion processes to the real-

world application (Sri Lanka Telecom Work Force Management System). Evaluation of the

processes based on the number of microservices generate, time to complete conversion and

resources used for conversion. Outcome of the research is about three conversion process

which convert monolithic based application to microservice application.

 pg. 6

1. Introduction

1.1. Background

 Software and Information Technology has distributed over different domains. Many

software solutions can be found on market to fulfill customer expectations. Information

technology is a vast domain that changes continuously. Computer scientists release a variety

of expertise development tools, frameworks, programming languages, concepts with

improvements. Increasing customer expectation and demand is the reason for the continuous

evolution of information technology. The evolution of software development improves tools

and techniques by introducing new features and resolve defects in previous versions. New

software frameworks, design patterns, software architectures, and other techniques improve

the quality of the software and reduce the effort to maintain software products. Even for

software development tasks such as design software architecture for an application, there

can be different ways to attend and complete the task by using various tools, frameworks,

and techniques. However, the challenge is to select appropriate tools, based on task nature.

The appropriate tool for a selected task will optimize the development process which helps

to achieve customer requirements and expectations. In some cases, the selected tools may

seem to be appropriate for the selected situations without any contradiction, however, the

selected tools may fail to achieve long term expectations of stakeholders. Therefore, selecting

appropriate tools for development is a challenge. Wrong decision-making reason to software

crisis, which affects vendor’s organization operations such as increase the workload for

rework and fixing issues within a tight schedule which reason to produce poor quality

software product. Poor quality software will be unsatisfied customers and users. Therefore,

the software designing phase is important because it’s the place where the user selects the

tools and techniques for development. Short term consideration of the situation most of the

time the reason for failure.

 [1]Thinking pattern related to software development is another important

phenomenon. Changes for software engineering reason for different thinking pattern from

different parties. For easier the development process it has been introduced dev tool, can be

taken as example for changes to software engineering based on thinking pattern. Evolution

 pg. 7

of thinking pattern reason to improve software application but also invent innovative ideas.

For example, previous software engineering solutions always follow the same development

process for different client requirements. Traditional server application development used to

implement all functionality under one module which may interact with the relational

database (monolithic thinking pattern). In the modern, development approach focus has been

changed to push business logic from the server-side to the client-side. [1]As an example;

nowadays different JavaScript frameworks publish with more capabilities compared to pure

JavaScript, such a framework is Angular. Software persistence methodology has been

improved to satisfy the important requirements such as unstructured data for enabling

dynamic behavior of data which easier to manage. [2]NoSQL database is an unstructured

database that differs from the relational database. [3]The new era always comes up with a

technology solution for differ challengers. Scalability, security, reliability, and availability are

some of the challenges among them.

 Software architectures used to implement a blueprint of software application.

Software architecture is about a conceptual plan which differs from one architecture to

another. Microservices architecture has been promoted using high maintainability and

scalability. As mentioned in different sources, it brings a bunch of advantages and benefits

compare to disadvantages or disabilities it owns. Microservices are more suitable for large

enterprise applications that need high scalability. The current software industry focuses on

higher maintainability, other than scalability. This thesis outcome will be applied to real-world

situations to evaluate and confirm that objectives are reached or not.

 pg. 8

1.2. Problem

The software development process is an important process in software firms and

organizations. Even in small-scale firms try to follow software development process since

good software development process, supports to release quality product for the end-users.

With technology evolution, the software development process is needed to improve

periodically. [4] The outdated software development process effects software industries in

several ways. For example, an outdated software development process structure makes it

difficult to adopt the evolution of technology. Since the productivity of the organization

always follows an extra amount of work. Learn from previous experience and knowledge, it

enhanced the way software developed, for example, to deploy a new version of software

need more resources to test and verify deployment. DevOps is a solution to overcome

resource costs. Therefore, upgrading the software development process is not an overhead

task. It will benefit to improve the productivity of the organization. If an organization follows

outdated technology within the organization, the employee's knowledge has been limited to

a specific domain area in software development. That will cause to hinder the ability of

employees.

In the software development life cycle, maintenance is the phase that takes a considerable

amount of time compared to other phases in the software development life cycle. Therefore,

as a best practice, when developing software, it should try to reduce the maintenance work.

At the beginning of software development, it seems the best choice is monolithic architecture

since it has a clear start-up and manageable. Growth of software application codebase, reason

for increase complexity. Extending functionality, adding new modules or components major

reason for codebase growth. If changes have been applied without having proper

management, it will cause to increase the complexity of the application. As a result, the

customer becomes unsatisfied, since the product not delivered on time. With the complexity

of software, it may need rework and testing, which takes more time to provide a solution

requested by the customer. It is important to keep track of the modifications in the software

application. When it applies different approaches to solve the complexity of a software

application, it may become reduce the quality of the software. “Spaghetti code” issue is more

common in monolithic architecture-based software which is unstructured and difficult to

 pg. 9

maintain. The worst-case scenario is if a task takes more time above the realistic time to

perform modification can affect the software development timeline. Anyhow, the developers

need to concern all replicated code scenarios which consume more time.

Most of the time, the legacy system consists of constrains for a specific technology stack.

For example, some of the bank application core still in the COBOL programming language.

Even new and innovative technology has been released, it may still hard to integrate with new

applications. Vendor and user suffer from technology lock-in (Software developed based on

specific programming language and tools). It is difficult for software vendors to move to a new

solution to overcome technology lock-in. The legacy system’s business domain can be more

complexed with different workflows. If users familiar with the legacy application, there are

organizational and technical challenges. From the customer’s perspective can concern if the

current legacy system replacement with a new product, needs more budget and doubt about

the new system will meet the performance as the legacy system function. From the vendor’s

perspective, still, it costs to maintain. Since the legacy system limited to a specific technology,

the vendor has to allocate a specific team for product maintenance.

As mentioned earlier, the evolution of software engineering is introduced techniques,

tools, and processes to easier software development. The improvement or advancement

provides new features for the application. For example, while developing the software can

take decisions regards the way to distribute application by using service discovery concepts

(DevOps). When it compares upgraded features and previous versions of tools, a large

number of different improvements introduced to automate software development. Recently

introduced software architecture or design concept that addresses more concerns may

important for the long run rather than repeated failures. It will be easier the development

and avoid re-invent solution which is already solved. [5] Most of the organizations follow the

process re-invent with or without awareness that will cause to higher the cost of

product/change and fail the management of software development. However, the major

problem identified is that software vendors keep update with software evolution and get

advantages from them.

 pg. 10

1.3. Objectives

The main objective of the research is to introduce software architecture transformation

processes, which convert the monolithic application into a microservices-based application.

As mentioned in the problem section, monolithic architecture consists of many drawbacks

compared to microservices architecture. On the other hand, microservices inherently support

for latest technology and it provides high maintainability. Within the main object, it covers

secondary objectives which are, support for further enhancement of architecture conversion

concepts such are, reduces rework and test for each modification, enables to use of the latest

technologies and tools and motivates to create changes and accept organizational and

technical challenges.

From a high-level view of point, the research covered up the most common general issues

which happen in the software industry. Most of the legacy systems have been considered as

monolithic based architecture. Another important objective is to motivate the software

organizations to transform from legacy systems to new microservices architecture. Provided

solution process, can be apply to organizational legacy software develop process.

To overcome drawbacks in monolithic architecture, it needs to go for a new solution. This

research provides a solution as a microservice-based software application that a new way of

development. The architecture transferring decision depends on the technical and

organizational decisions. Since the conversion of application consumes more time and

budget, it has become challenge. Not all legacy systems need to break down into services, but

it needs to identify when to go for microservices. Some legacy systems may operate as

expected, therefore no need to go for microservices. Conversion process application

knowledge will support to enhance to think beyond the solution provided by this research.

Once all the outcomes are provided, then consider the practical application of the above

concept. When applying these outcomes, it will be tried to analyze the challenge and adjust

according to the situation. Application knowledge will be provided general way from analysis

of application which may more convenience and applicable for any management related

software.

 pg. 11

In the evaluation, it will be implemented the solution derived from monolithic to

microservice conversion. The purpose of the implementation is to point out the start point to

the reader. Microservices can adopt and implement different ways that follow microservices

concepts. This section is better for software developers who interested in grasp technology

related to microservices. On this objective, it’s trying to discuss more detail about best

practices which will guide for newcomers.

1.4. Scope

Software architecture is a vast domain in the IT industry. When it comes to microservice

architecture and monolithic architecture patterns, the structure of the application completely

differs from one to another. Although domain of the thesis still contains a large domain,

because architecture concepts can study different ways based on thinking patterns. For

example, monolithic architecture is about a single code base as many knowledge sources

provide. Someone can develop application which breaks down to layers. In some situations,

an application can use a combination of architectural pattern. For example, the monolithic

architecture can combine with other architecture patterns such as layered architecture. This

thesis mainly concerns about the microservice pattern. However, there will be a brief

introduction about both monolithic and microservice architecture at appendices and it just

provides high level and very important information for quick reference only.

For non-technical readers can refer to the appendices section for more details relate. It

will be easier to get a startup. Beginner who doesn’t have knowledge needs to clear view of

the difference between monolithic application and microservice. At some point, it will

become overhead to system breaks down into microservice. It needs to clear purpose or

reason for architecture transformation. It will help to analyze the solution without having

confusion and non-technical reader can understand the idea before going to the technical

discussion.

Different researches about the conversion of monolithic to microservices can be found.

Anyhow the phenomenon is that it provides all about concepts/patterns proved in a

theoretical way. Selected research papers have been presented in briefly. Since

implementation depends on the situation, thinking pattern and decision of the organization,

this research will provide conversion processes more general way that can address any

 pg. 12

situation. While the conversion process applies to a real-world situation, the difficulties can

be found on the application. Suggestions, solutions, and recommendations to those

difficulties will be addressed in this thesis. Application of the introduced processes can be for

a general situation like e-commerce related software. Anyway, it can further research for

different software such as real-time application.

The application of the three conversion processes, mentioned in this thesis is based on a

real situation. Application (Sri Lanka Telecom WFM system) related complete knowledge

capturing and documents will not be mentioned in detail on this thesis. For readability/space

and time constraints, it is going to discuss two microservices design and implementation only.

Within two microservices, it will be explained difficulties faced, and solutions have been

taken. The technology and tools for microservices are described in brief. However, the

information will motivate to experiment on processes and further enhance findings.

The outcome of the research will be identified as the best method for refactoring and

provide guidance to change the monolithic application into microservices. Some situations

will be failed to get a better solution since depends on the thinking pattern. Outcome won’t

be limited to a converting tool or framework and it completely depends on the situation.

1.5. Thesis Application

 Sri Lanka Telecom Work Force Management System (WFMS) is an internal application.

The main purpose of WFMS system is to communicate with SLT core system and retrieve

telephone faulty which added by SLT customers. “Telephone faults” are managed by WFMS

regional officers in assigning faulty to allocated workgroup consists of field officers. Once

faulty is cleared and completed, final information goes to sync with SLT core system. Several

flows are handled within WFMS and this system is spread everywhere in the country as mobile

applications and web interfaces that connect over 1000 workers in Sri Lanka Telecom.

Currently, the application is based on a single monolithic application that provides the service

since 2005. Field officers interested in WFMS product usage. Therefore, WFMS has become a

major internal system of SLT. From the vendor aspect, this project needs frequent changes

and modifications to fulfill client requirements and fix issues. This system manages SLT

connection faulty reported by customers. This information needs to sync with the other

internal systems in real-time and it maintains more than 10 inventories for the business

 pg. 13

process. This thesis is going to apply theoretical concepts to real-world microservice

applications.

1.6. Thesis Outline

 This thesis consists of five Chapters. The first part is an introduction to the thesis which

is mainly highlighted the problem domain and a place where to apply the outcome of the

thesis and objective of the research. The second chapter of the thesis is explained in the

literature review and it describes the reason for a uses microservice architecture, conversion

theory based on the categorization of the situation and generate microservices based on

entry points. The third chapter is described as solution processes and a way to apply it to a

situation. It is clearly described the problem domain and list of the problem which motivates

for the project. In the fourth chapter, it is described as proposing solution details. Under this

chapter, in further it discussed different ways to convert monolithic to microservice

architecture. Along with a method for documentation of services and best practices involved

within it.

 pg. 14

2. Literature Review

The following chapter is highlighted in the literature review that used to derive concepts.

The problem is explained at the beginning and researches need to find a solution path with

findings. Initially, it is described the reason to select microservices instead of other

architectures then defined about the researcher’s findings that are used to convert into

microservices.

2.1. Reason for Use Microservices Architecture

Since this thesis only focuses on the microservices architecture other than any other

software architecture patterns. When considering the interest in microservices, it shows

dramatically growth.

Figure 1 - Microservice interest over time (source: Google Trends)

[6]There will be many facts available when searching about the popularity of the

microservices. Recent technology aligns with microservices concepts. Microservices is a

concept to implements small services. Derived microservices should independent from each

other. Therefore, it has been allowed to use any technology for implements microservices

which is not needed to consider old or new technologies. Microservices architecture creates

a place to combine the latest technology that arises in this era. As an example; the cloud

computing concept is found recently but the usage of cloud computing has become popular

along with the microservices system. In recent decades, the customer is expected the high

availability and scalability of the application and these expectations can be easily fulfilled by

using the microservices. With new business concerns, it may be needed to slight update on

microservices or in the worst case, it may add new service to cover up new business concerns.

 pg. 15

Introduced conversion processes are solution to the limitation of Service-oriented

architecture (SOA) architecture: SOA is a method of designing software and most related to

microservice architecture. [8]From another perspective that microservices are another version

of SOA. Enterprise project invests in SOA related architecture; however, it contains monolithic

behavior. According to business concerns, it is separated into several services. Enterprise

Service Bus is used to define business flow and service registration. It’s create a bottleneck

between ESB and service invokers. It can be communicated with API gateways by using the

microservices architecture which is independent of another API.

Adoption of best practices: In recent decades, it is introduced several important concerns

related to software development. It should manage development concerns and deployment

of product against versions to easier the maintenance period. DevOps concepts are derived

with combining development and operation task which supports to easier the development

and deployment. DevOps is made continues integration process and continues deployment is

more important to enhance productivity. As a positive side of microservices, it can be used as

best practices for the test environment and production environment.

As mentioned earlier, this thesis is mainly focused on two software architectures,

monolithic architecture and microservices architecture. Microservices architecture is a more

suitable solution to reduce the difficulties in a monolithic architecture. Some solutions which

include the microservice architecture is used to reduce the complexity of the application and

improve maintainability (complex application divide into small manageable services) of the

application.

2.2. Monolithic to Microservices Conversion Classification Approach

[4] Classification approach is mentioned that, even though many resources are available

for finding the guidance to refactor the legacy application, it is difficult to find an appropriate

way to refactor. Because refactoring process is costly with overall process implementation

and manage team structure. Therefore, it is needed to identify and selects most suitable

refactoring strategy. In this thesis, it provides a way to search researches then analyze 10

research publications which provide information to refactor legacy application to

microservices. Most important and useful task is that refactoring approach classified based

 pg. 16

on decomposition techniques and then provide visually present guidance to identify which

decomposition method is suitable for situation.

Figure 2 - Overview of 10 Decomposition Approaches (Source: monolithic classification [4])

 pg. 17

As mentioned in above table (Figure 2) it has been used ten research papers related to acquire

to derive conversion processes. Classifications of migration approaches are static code

analysis which scan application source code, meta-data aided approach which use

architectural description (4 in 1 diagram, historical data) to decomposition, workload data-

based approach which analysis application module wise data usage and do the migration and

finally dynamic microservices decomposition which based on behavior of runtime of

application uses for decomposition of microservices. For an example no 1 approach is

analyzed monolithic application using EJBs and data type using Java annotation then convert

each EJB into microservice. No 1 approach classified under static code analysis. Likewise, it

provides a situation that needs to match with the current situation in hand, then it provides

a solution approach to convert into microservices.

 pg. 18

Figure 3 - Decision Guide for Decomposition Approaches (Source: monolithic classification [4])

Finding exact approach for decomposition is always not possible. Failures can happen

on selected approach. Therefore, it is recommended to select multiple approaches as an

 pg. 19

alternative and it depends on the result situation. The above diagram describes an approach

to select and validate. If the selected approach is failed, it can be tried out another approach

as mentioned in flow diagram. For example, statically analyze the monolithic architecture

then try to come up with the model. Model can be dynamic or fixed and based on the model,

it tries to evaluate several factors such as non-functional requirements (security concerns),

version control status, tire of architecture, bean type likewise.

When consider about above research paper, few limitations can be highlighted.

Decomposition guidance of the above approach is needed for the software engineer’s

knowledge to capture and follow guidance. One drawback is identified, which discussed

research papers are difficult for refer by person who non-technical. Another phenomenon is

that cannot be ensure about obtaining accurate microservice after decomposition.

Categorization of researches as discussed, may not always success due to differentiation of

content. As conclusion, most of the time, the output relevant approach is a static code

analysis scenario.

2.3. Using Microservices Legacy Software Modernization

Microservices maintainability is motivation for legacy modernization research paper

motivation to introduce conversion pattern. Based on previous experience authors tries to

express decomposition pattern by guidance through application. The primary driver for

modernizing the monolithic application is the fact that it has become increasingly difficult to

deliver new features on time. Since a large, high-priority project requires fundamental

changes to large parts of the application, this lack of evolvability is considered a strategic risk.

According to the developers, there are two main reasons for this low evolvability—namely, a

deterioration of the application’s internal structure and the high number of entry points for

monolithic application. This has made the impact of changes difficult to assess, leading to a

high amount of testing and rework. Secondary modernization drivers are the vendor and

technology lock-in as well as the fact that many developers are close to retirement and

language specific developers are difficult to obtain.

Guidance for the decomposition of legacy application into microservices provided as

several steps. The first step of the modernization process is concerned with defining an

external service facade that captures the functionality required by the monolithic systems in

 pg. 20

the form of well-defined service operations. The implementation of these operations is

performed in later steps. The major challenge of this step is to define domain-oriented

services that provide the functionality needed by the clients, but without conserving

questionable design decisions from the legacy application. Authors approached this challenge

from two sides. First, They created a target domain model and used it to define service

operations from scratch that expected to be provided by the application. Afterward,

employed static analysis to identify the “entry points” of the application. Entry point can be

program, method or database related table. By using analyzed entry point try to invoke

functionality and formulate services. Similar and redundant operation merged for reduce

complexity. Important of this process that identify way to replace existing entry point with

new services.

Second step about implementation of identified services by use of entry points.

Implementation adopt existing system, any how without integrate since it become more risk

to do this task at same step. Challenge of this step to identify service integration that fulfill

functionality identified in step one. Due to optimization and refinement, some services need

to develop from scratch. Each implemented service need to test properly by using different

testing techniques (Unit test). In some case it cannot be test legacy environment due

limitation that insufficient for proper testing (difficult for create mocking object). Therefor it

needs to use test environment suitable for proper test. Cloud based environment is

recommended by author (Docker).

Once the service operations are implemented, as third step monolithic application can

start migrating to the new facade by replacing their existing accesses with service invocations.

This step poses organizational as well as technical challenges and usually consumes a large

part of the overall project time and budget, since large parts of the monolithic application

must be changed and tested. In order to support the development teams during the

migration, author mentioned that a transition documentation. This documentation contained

a textual description of how to replace each of the entry points identified in step one with

one or more service operations. For each of the new operations, detailed descriptions and

code snippets were provided to facilitate the transition as much as possible. This

documentation was considered very helpful by the developers.

 pg. 21

In step four establish external service façade using service implemented. Inspect

appropriate program and functionality need to perform this step which is identified through

step one to three. Due to risk and resource demanding this step separate from last discussed

steps. Step five is last step convert all services to microservices. Once all desired service

façades are established, the process of introducing microservices can begin, as the adapted

service implementations can now be transparently replaced. It is, however, important to note

that several modernization goals have already been reached. Although the implementation is

still based on the old technology which use for monolithic application, it is now only accessed

using well-defined, platform-independent interfaces, and the application has been internally

restructured into the desired components.

To conclude the literature review section, it has been discussed better conversion

architecture suitable for replaces with a monolithic architecture. By the research, it identified

that microservice architecture provides solutions for drawbacks found within monolithic

architecture. Therefor decided to select microservice architecture for output architecture.

Once result in architecture determine, research about conversion that ends in microservices.

As describe in second section it mentions that there is classification of research paper used to

convert into microservice. However, it better starting point for designing general process that

need to applicable for most of the scenario. In second research provide complete system

decomposition in with proper plan. Any how it mentions that complete its process take

considerable time and need more effort to analyze whole monolithic application. Then it

discusses reason for latest organization adopt microservices for development. From the

mentioned literature review it help to find and design conversion process that applicable for

any general situation in e-commerce application.

 pg. 22

3. Methodology

In this section, discuss main outcome of the thesis which that monolithic to

microservices conversion, it will be considered different ways to perform monolithic to

microservices decomposition. At first, it will highlight the design approach. Thereafter in

detail discussion of each approach considered finally implementation information will discuss.

3.1. Plan for migration to microservices

[7]Before going for the migration there must be reasonable pitfalls in the existing system.

Note that without considering facts to migration to monolithic is overhead of work. At some

stage, the monolithic system will be provided the following symptoms that it cannot perform

well in further and you must go for microservice architecture. It will be discussed some of the

difficulties in the monolithic application such as complexity. Complexity of application is

related to the size of the application. At the beginning of the application can see as monolithic

architecture can manage and appropriate selection. However, system changes reason to

customer demands and other facts such as technology evolution. By applying changes to

system reason to grow. On the other hand, it effects to development best practice which

documentation and manage changes to application. Unmanaged changes affect

development, re-invent the wheel and less re-usability reason for spaghetti code. Finally, it

difficult to apply changes, the number of bugs increases with few changes, takes time to

deliver changes and in the worst customer unsatisfaction happens.

When the difficult situations arrived from the monolithic system, apply patches and rework

becomes difficult and won’t achieve what to expect. Apart from the above concern, it may be

a reason that new non-functional request which affects to the whole module of the system

such as enforce security concerns, to enable system high availability and scalability and so on.

First need to carefully decision making for the urgent task to convert into microservice.

Documentation of the system is an asset to the software system. Anyhow, clarity of

information within the document can make better decisions. Therefore, documentation

should not outdated or invalid for analysis. At some point documentation of software easier

the conversion task. The following section will list down different approaches of monolithic

to microservices migration.

 pg. 23

3.2. Conversion Plan 1: Develop from Scratch

By its name, it can understand this approach. Begin from basic and grow up microservices

without considering the monolithic system. This approach tries to re-structuring legacy

system that builds a system plan from start and does refactoring that a new system needs to

build with functionality that provides from the legacy system. When refactoring into a

microservices-based system it’s important to follow microservices principles that small

business concerns address by one service. As a result, it may outcome different entry points

that can be open which not available in the legacy systems to improve reusability.

Figure 4 – Develop microservices from scratch to existing legacy system

When considering advantages of this process which migrating to microservices, it can

identify existing defects or performance issues and new changes which may be extend

existing functionality or add new module can be implemented along with migration.

Anyhow this conversion comes with a cost, which means many drawbacks can be found. It

may legacy system large and very complex. In that scenario analyze legacy system trivial task.

Lack of system analysis can lead to build-up a system that won’t meet customer expectations

or build a functionality that not related expectation or it may mislead the existing

functionality. With the spec of the legacy system, it not easier to find a place to start the

migration, because there can be several dependencies all over the system. Some of the

drawbacks consists of this flow. Since the entire module converted into microservice based

on monolithic application deviation can happen compared to original business workflow.

Some changes can affect positively (which defects can be identified and provide the solution

for them) but even though negative effects (introduce new defects into workflow or missing

 pg. 24

operations in workflow) also need to expect. Until the end of the refactoring cannot see the

output of the process. The only evidence that will be tracked project progress can estimate

based on the design plan. Resource allocation for the implementation of project vary depends

on priority and time allocated for the entire project. Some of the implementations may need

many time tests in different scenarios and need to do rework based on requirements.

3.3. Conversion Plan 2: Adopt Microservices for New Functionality

There can be a situation the legacy system performs well as expected. However, based on

customer requirement try to extend the system with new feature functionality become

difficult. In this kind of situation, it is better to use this approach. Specialty in this approach is

that It won’t affect to root monolithic system. Therefore, new features/changes will develop

and deploy as microservice. The basic idea of separation is that isolate new functionality to

easier the development and introduce logic separation. As outcome of this process it can be

found two system one based on legacy and other based on microservices architecture. With

growth of system microservices based system populate than legacy system.

Figure 5 - Add new feature/functional as microservice

In this case, the most recent feature will be integrated with microservices architecture.

From that, it would avoid the growth of the monolithic system code base and easier to

 pg. 25

manage. New microservice apply along with legacy can scale independently and deliver

separately to the old module. By adopting this approach, the development team makes the

new systems easier to modify future where it is not the case of monolithic replace with

another.

3.4. Conversion Plan 3: Replace Functionality with Microservices

This approach very similar to the above-mentioned conversion plan 2. However, specialty

in this situation that it needs to replace the monolithic core application with microservices. In

this scenario, it is easier to think about the monolithic system as a large service and need to

decomposition this large service that becomes a set of microservice. It tries to identify

business domain-specific functionality which is can manage with few effort and team. Then

identified functionality will be moved to microservice without changing process flow. Finally,

in the legacy monolithic system modify with glue code which unplugs functionality

implementation in the legacy system and changes entry point to use microservice instead.

The section will provide more information.

Figure 6 - Replace legacy with microservices

As mention in conversion plan 2 main challenge is to analyze the existing legacy system.

Need to identify dependencies between component and process of business logic. Once

microservice functionality separated it can implement without effect to monolithic core.

Another challenge is to integrate microservice with monolithic core. It needs to identify usage

of microservice interface, then need to remove the old way it handles it functionality. Glue

code need for combine microservice API with microservice usage interface. By replacing

 pg. 26

monolithic functionality into microservice, in long run it will replace entire monolithic system

to microservices.

When consider advantage of this scenario, in long run monolithic system can convert into

microservices and consume advantages of microservices. Since this step done through

analysis of functionality defects of process can identified and can integrate component

missing with existing system.

When discuss disadvantage it is need clear view of existing monolithic system. System

should analyze documents, database structure, data flow structure, client feedback. As

mention it earlier it must add glue code to integrate with core system and dependency still

exist with core system. Challenge of this approach is decomposition of services and

integration need to be done.

It recommended to always follow microservices concepts. As mentions earlier in several

time microservices should be maintain with less effort. When functionality replacement it is

important to take decision on replacing functionalities put into single microservice or put into

different new microservice. This decision should take based on business model aspect rather

than existing system structure.

In this chapter it described the concepts of three monolithic architecture based legacy

system convert into microservices based system. Three process introduce three different

scenario which real system status. Single growth legacy system with more complexity with

less changes, legacy system functional as expected but there are several numbers of change

request to system are scenarios. Conversion can be perform using single conversion process

or combination of three conversion process.

 pg. 27

4. Implementation

4.1. Application of General Conversion Process

First, look at the high level architecture of the monolithic system which is going to convert

into the microservices architecture-based system. The purpose of the system is to create

communication between field officers who work to resolve defects in the phone connections.

Defects information received and updated from/to middle core system not going to highlight

here. Following section, we consider interfaces that field staff retrieve, monitor, resolve

defects and manage their daily workflow. Follow diagram is represent components.

Figure 7 - High Level Diagram of Legacy System

When it considers the reason for move into microservice architecture, different reason exists.

As mentioned earlier WFM system become an important system. Therefore SLT needs to

evolve this system with several other systems and expand the functionality with other

 pg. 28

systems. Frequent changes regularly pop up due to the extent of the system. As mentioned

in the earlier WFM system is a monolithic system since 2005 (turn into a web application in

2013) which complete for more than 10 years. Within this period different components added

to the system and several modifications added by many programmers. WFM system suffers

from spaghetti code and no proper documentation. From a developer's point of view, it

contains messy code and the best way to apply the solution is to re-invent functionality is the

best way. Customer expectation is to add new features and modules in as soon as possible to

functional to improve their service to customers. Anyhow, with system status it difficult to

deliver modification on considerable time.

With the above facts discussed, it decided to go for microservices architecture. Anyhow the

challenge was to do the refactoring without effect to current legacy workflow, need to come

up solution system within the given time range. In above discussed 3 different approaches.

When considering functional replacement with microservices, the condition needs to

undergo this is the best approach for refactoring/conversion to microservices.

Figure 8 - Functional replace to microservices

If each function breaks down into separate microservices it will create a complex mess of

microservices. Therefore it needs to consider beforehand create a new microservice for

functionality. The recommended way is to follow microservices concepts. Which microservice

should cover up a single business domain. By considering the business domain it will reduce

 pg. 29

the number of microservices created for function by grouping similar domain functions into

single microservice.

In the real-world application, it converted functionality called “Assign/Auto Assign” which

included in the legacy system. First, it analyzes the interface which communicates with the

user, data pass-through communication, internal process, and dependent other functionality.

Since it was only limited to single function analyze, design and implementation doesn’t take

time.

Develop from scratch is another way of conversion into the microservices system. Before

break into design and implementation, it should familiar with the existing legacy system.

Therefore knowledge of the entire system required for the design. With the knowledge of the

existing system, it should plan microservices in a way that enables loose coupling and higher

cohesion.

Figure 9 - Fault Microservice

Anyhow this approach not suitable for the above constraint. Because it takes considerable

time to analyze, document and design entire microservices at once.

Recommending way to deal with the problematic situation is to functional wise conversion

and then do the conversion to the entire application. Functional wise conversion help to gain

knowledge about the existing legacy system. By acquiring knowledge about the existing

system can evaluate the created microservices and its functionality. For example,

 pg. 30

“Assign/Auto Assign” functional wise microservice developed but with further function

conversion to microservice it notices that it should create “Fault Management” microservice

and responsible for task related to fault. All function should refer to “Fault Management”

microservice.

 pg. 31

5. Testing & Evaluation

As mention in objectives, it is the main objective to find about the pattern/processes of

converting monolithic architecture to microservices architecture. Now it’s time for each

methodology of conversion can perform in common monolithic e-commerce application to

decomposition of microservices.

The following point will describe which are the properties that use to evaluate the result

of the thesis. Based on the following properties will evaluate each conversion plan compare

with each other.

5.1. Monolithic to Microservice Conversion Progress

As mention in the methodology section, it can think of different ways of conversion

method. Although it won’t be useful it cannot decompose system to microservices. This

property is the ultimate point that this research is can success (legacy system completely

abounded by using microservice) or failure (not able to decomposition into microservices).

The provided scenario should apply to common monolithic applications. Even service

generated throughout this conversion plan should evaluate that fulfill microservice

architecture concepts. Otherwise, it cannot get the use of advantage to contain microservice

itself. Some of the important aspects of microservices need to follow which need to handle

business domain-specific tiny processes (easy for manage), use DevOps to do all deployment

and other configuration (error less deployment, delivery on time) and follow agile

development strategies to come up solution as customer expectation.

5.2. Resources Utilization for Decomposition

Here “resource” meantime, cost and human resource allocated for the conversion

process. Organizations will interest in this point since they can use their further development

in less effort and cost. Even microservices are small team need to analyze huge complex

monolithic system to perform. The complexity of the software system can affect the following

property and therefor it will consider the same scenario for all procedures to conversion to

get a considerable result. Consider the worst-case scenario that there is no proper

documents, to refactor such a system get overhead time for analyze system. In this scenario

 pg. 32

software engineers along with business, analytics need to document current system

functionality, behavior, and defects in current flow. Afterward, it needs time to design into a

new microservice and start the implementation. This thesis, considers the worst-case

scenario since WFM system haven’t maintained proper documentation. It depends on the

scenario going to apply.

5.3. Conversion Period

It is an important factor, that time used for conversion. Here it discusses conversion plan

take for complete decomposition to microservices. Based on this factor it can decide the

popularity of adopting a conversion plan. The conversion period depends on the above factor

which resource utilization. Depends on works in hand time for complete products vary. As

mention in the above section worst-case scenario, it takes considerable time but the progress

cannot be measured (Analyze existing system and document). Conversion period relation to

delivery time which is an important factor to customer and user of the system.

5.4. Comparison conversion plan

Following table evaluate conversion plan based on the above discussed factors. Note that

every conversion plan estimates their value based on the same monolithic legacy system.

Property Conversion Plan 1:
Develop From Scratch

Conversion Plan 2:
Adopt Microservices for
New Functionality

Conversion Plan 2:
Replace
Functionality with
Microservices

Conversio
n Progress

Completely convert
into microservice in
long run.

Partially convert into
microservices.

Completely convert
into microservice in
long run.

Resources
Utilization

Higher. (700 Man days
for SLT entire module
decomposition)

Based on feature/new
requirement (below 50-man
days as average)

10 to 20-man days.

Conversio
n Period

Higher. (More than 1
year for SLT module
decomposition)

Based on feature/new
requirement (3 Weeks)

10 Days in average.

For capture above information it used SLT real world scenario and evidence for value will be

discuss more in appendices.

 pg. 33

5.5. Conclusion

5.5.1. Summary of application

It has taken two attempts to refactor SLT WFMS legacy system to microservice based

system. Although application successfully refactored at second attempt. At first attempt, tried

to implement microservices system from scratch. Therefor it needed to analyze entire legacy

system. Based on analyzation tried to design services that satisfy microservices concepts.

Depends on facts which was legacy system complexity and dependencies it took considerable

amount of time to complete. As mention in testing and evolution chapter it takes around 2 to

3 years (from project plan) to complete the task. Frequent changes and functionality expand

requirement difficult for continue refactoring process. In second attempt, tried to refactor

selected functionality and address new changes append to new microservice system. From

the experience of attempt one it cleared that refactor should follow agile development.

Replace functionality with microservices process was more suitable for refactor. Based on

customer frequent usage, identified most important functionality available on legacy system.

Refactoring flow designed based on customer usage functionality, dependencies with other

module (“fault module”, “inventory module”) and duration to complete and deploy

functionality. Functionality wise refactor took place and it combined with front end of system.

While legacy system refactors, had to attended new system requirements which expand

system functionality. New development doesn’t append to legacy system instead it took

separate microservices development. From scratch decomposition hold due to time

constrain.

SLT WFMS system refactor outcome is separate microservice system which handle most

of the functionality from backend. In addition to the microservice system, derived system

documentation helped to understand purpose of the service, inputs, data entities and

dataflow through system.

 pg. 34

5.5.2. Challengers and limitations

Microservice also has drawbacks its own. Complexity of microservices increases respect

to the service count hold by system. Number of microservices, derived from three process

different. From scratch decomposition process (refactoring process 1) derived manageable

number of services. From the design plan it derived ten services that handle basic

functionality of SLT WFMS. But in incremental refactor process (refactoring process 3) and

new microservices for new requirements process (refactoring process 2) derived several

numbers of additional services. Main challenge is to monitor and trace the operation of

services. If the number of microservices increases, it difficult to analyze system failure since

it need to trace variety of logs and consoles. Another challenge of microservices is

communication protocols within microservices. Recommended protocols for microservices is

REST. REST protocols difficult to enforce security requirements (even adding security

mechanism to REST, reason to slow down communication between services). Microservice

main concern is high reliability. It needs to manage fault tolerance mechanism. Failure to

response for request need to design before development stage. Discover and response time

from microservices is important fact. Therefor it needs to adjust protocol or waiting time at

client side for systems functionality. If the microservice repeatedly need to change or rework

it may need to split into more services. Since microservice handle small business concern it

had not changed afterwards. These challengers depend on situation and thinking pattern.

Following summarization of challengers and limitation of research.

• Higher number of microservices reason to increase system complexity.

• Need to arrange proper communication protocol between microservices.

• Enforce security mechanism to solution.

• Monitor and trace microservices behavior.

5.5.3. Future works

For the future work it not discussed apply non-functional requirement adhere along with

decomposition. For example, non-functional requirements such as security and trace

important when it come for real time functions such as bank transaction scenarios. Proper

documentation easier the maintains of any system. Since microservice handle small business

 pg. 35

concern it can suggest proper documentation template. Document template reason improve

readability, enhancement, appoint development milestone, trace the development progress

and most importantly understand system in less time. Several tools available for easier to

manage and develop microservices. For example, service discovery which manage service

registry and help to other service to identify available service, central configuration service

which hold entire configuration within separate service (it easier to modify configuration

information without effect to operation of microservices) and clustering service to deploy

microservices in server (clustering service enable automated deployment, version control and

fault recovery). Application of DevOps is separate area of microservice which automate

deployment, fault tolerance and load balancing. Following are some suggested area and

technology for enhance research area.

Domain for Enhancement Suggested Technologies

Nonfunctional requirements Secure communication protocols. (SSL, encryption,
Digital Sign)

System documentation Usage of documentation template.

Monitor and tracing Central configuration, Monitoring service (Docker,
apache application manager)

Fault tolerance and
automation

Service clusters, load balancing (Kubernetes, Kong)

In further microservice domain can further expand with latest technology which currently

not available at write of this research.

 pg. 36

6. References

[1] M. Samek, "Patterns of Thinking in Software Development," BARR Group, 04 May 2016.

[Online]. Available: https://barrgroup.com/Embedded-Systems/How-To/Patterns-of-Thinking-

in-Software-Development.

[2] B. PUTANO, "Most Popular and Influential Programming Languages of 2018," 18 December

2017. [Online]. Available: https://stackify.com/popular-programming-languages-2018/.

[3] B. G. D. K. T. J. R. T. Wade L.Schulz, "Evaluation of relational and NoSQL database architectures

to manage genomic annotations," United States, 2016.

[4] P. Wayner, "The top 5 software architecture patterns: How to make the right choice," [Online].

[5] J. B. A. Z. S. W. Jonas Fritzsch, "From Monolith to Microservices: A Classification of Refactoring

Approaches," Cornell University, 2018.

[6] C. Cancialosi, "Outdated Tech Is Costing You More Than You Think," 16 August 2017. [Online].

Available: https://www.forbes.com/sites/chriscancialosi/2017/08/16/outdated-tech-is-costing-

you-more-than-you-think/#cf1a1c910994.

[7] R. Sakhuja, "5 Reasons why Microservices have become so popular in the last 2 years," 12

March 2016. [Online]. Available: https://www.linkedin.com/pulse/5-reasons-why-

microservices-have-become-so-popular-last-sakhuja.

[8] I. Miri, "Microservices vs SOA," DZone, 01 Jun 2016. [Online]. Available:

https://dzone.com/articles/microservices-vs-soa-2.

[9] W. H. Holger Knoche, "Using Microservices for Legacy Software Modernization," Research

Gate, 2018.

[10] J. Lee, "All About Microservices," 24 October 2017. [Online]. Available:

https://dzone.com/articles/all-about-microservices.

[11] S. u. Haq, "Introduction to Monolithic Architecture and MicroServices Architecture," 2 May

2018. [Online]. Available: https://medium.com/koderlabs/introduction-to-monolithic-

architecture-and-microservices-architecture-b211a5955c63.

 pg. 37

A. Appendix

Microservices can develop using various tools currently available follow discuss some

tools that can be used to develop microservices. Follow section is limited to Java programming

language and there is vast number of tools that related to other languages.

i. Config Servers

To keep the Properties file centralized and shared by all Microservices, we will create a

config server which is itself a Microservice and manages all microservices properties files

and those files are versioned controlled; any change in the properties will automatically

publish to all microservices without restarting the services. One thing to remember is that

every microservice communicates with the config server to get properties values, so the

config server must be a highly available component; if it fails, then all microservices fail

because it can't resolute the properties values! So, we should take care of the scenario - the

config server should not be an SPF (single point of failure), so we will spin up more than one

container for the config server.

ii. Discovery Server

The main goal of Microservices is decentralizing the different components based on the

business features, so that each component - aka microservice - can be scaled as per need, so

for a microservice, there are multiple instances and we can add and remove instances as per

the need, so the way monoliths do load balancing is not going to work in a microservice

paradigm. As it spawns containers on the fly, containers have dynamic IP addresses, so to

track all instances of a service, a manager service will be needed, so when the containers are

spawned, it registers itself to the manager and the manager keeps the track of the instances;

if a service is removed, the manager removes it from the manager's service registry. If other

services need to communicate with each other, it contacts a discovery service to get the

instance of another service. Again, this is a highly available component; if the discovery

service is down, microservices can't communicate with each other, so the discovery service

must have multiple instances.

 pg. 38

iii. Gateway Service

A microservice is a collection of independent services which collectively produces a

business functionality. Every microservice publishes an API, generally a REST API, so as a

client, it is cumbersome to manage so many endpoint URLs to communicate with. Also, think

about another perspective: if some application wants to build an authentication framework

or security checking, they must implement across all services, so that would be repeating itself

against DRY. If we have a Gateway service, which is internet facing, the client will call only one

endpoint and it delegates the call to an actual microservice, and all the authentication or

security checking will be done in the gateway service.

iv. Concerns in Legacy Systems

To grasp the technology that pop out with time need better understanding of domain

area. For example, Microservices are architectural design pattern it can be used for places

where need high scalability, maintenance and service-based implementation. Anyhow, to

adopt with the new technology need to familiar with concepts, tools and strategies. As

mention earlier microservices is new to domain. To adopt with microservices need to

understand basic concept of microservice such as focus on CI/CD concepts. Someone can

point that acquiring and familiar with those new technologies responsible for senior engineers

or innovation team in the company. However, everyone responsibility to keep up to date

familiar with newly technology and concepts. Limited to pattern of development process

reason for many pitfalls. Organization should motivate team to improve knowledge with in

organization.

Most of the legacy systems are take monolithic based architecture. These systems may

develop using outdated tools or newest tools. Most of the time team allocate for product(s)

to maintain and improve. Some of the team may responsible for maintaining legacy system.

This thesis not mentioning that legacy systems are pitfalls for the organization. Although with

time being it need to modify, change or even refactor based on situation. In practical situation

development team try to add patch or append existing functionality with new required

functionality/modification to system. Its reason for code base growth and difficult for

maintains. Legacy systems are main barrier for company to move forward with new changes.

 pg. 39

Some of the concerns are Difficult for maintain and test with growth of code base, Difficult

for document reason for complex document or no document related to system, Considerable

resources allocation such as team, budget or time, constrain into technology stack, difficult

or no way to adopt new technology stack such as frameworks.

Most organization fear to invest on innovating organization process, consider software

development process and for new production. Most of the company even though it invests

failed to continue by judging short term outcome. Most of the organization fear for change

because of failure reason for software crisis. Experienced employees moving out of the

organization is another fallback of organization. This thesis not much concern about this

phenomenon.

v. Continuous Integration with Version Control

There is a working monolithic software system, and the team responsible for maintaining

the system has decided to migrate this system to microservices. The first step toward

continuous delivery is to set up continuous integration. Continuous integration automates

the build and test processes and ensures the availability of production-ready artifacts.

Normally, a continuous integration pipeline contains a code repository, an artifact repository,

and a continuous integration server. First, each service should be placed in a separate

repository, which enables a clearer history and separates the build life cycle of each service.

Then, a continuous integration job should be created for each service. Each time a service's

code repository changes, the job should be triggered. The job's responsibility includes

fetching the new code from the repository, running the tests against the new code, building

the corresponding artifacts, and pushing these artifacts to the artifact repository. Failure to

execute each of these steps should terminate the job from proceeding and informs the

corresponding development team of the occurred errors. This team should not do anything

else until addressing the reported errors. One simple rule in continuous integration is that

new changes should not break the system's stability and should pass all the predefined tests.

vi. Load Balancer

A software system has been decomposed to a set of small services to use a microservices

architectural style, and a service registry has been set up. In the production environment,

 pg. 40

numerous instances of each service exist. Each service can be a client of the rest of the

services in the system. Each service, as a client, should have an internal load balancer, which

fetches the list of available instances of a desired service from the service registry, eg, through

a service registry client. Then, this internal load balancer can balance the load between the

available instances using local metrics, e.g., the response time of the instances. An internal

load balancer removes the burden of setting up an external load balancer and brings in the

possibility of having different load balancing mechanisms in different clients of a service.

vii. Usage of Circuit Breaker Pattern

A software system has been decomposed to a set of small services to use a microservices

architectural style. Some of the end user requests need interservice communications in the

internal system. The service consumer can use a circuit breaker when calling the service

provider. When a service provider is available, this component would not do anything (the

close circuit state). It monitors the recent responses from the service provider and will act

appropriately when the number of failure responses passes a predefined threshold (the open

circuit state). The corresponding action could be either returning a meaningful response code

or returning the latest cached data from the service provider (if it is acceptable for that

specific response). After a specific timeout, in order to check the service provider's availability,

the component will try to access the service provider again (the half-open circuit state), and

when there is a successful attempt, the state will be changed to a close circuit state.

Otherwise, the state will be modified to an open circuit state.

viii. Containerize the Services

A software system has been decomposed to a set of small services to use a microservices

architectural style, and a continuous integration pipeline is in place and is working. Each

service needs a specific environment to run correctly, which is either set up manually or

through a configuration management tool. The differences between the development and

production environments can cause some problems, e.g., the same code may produce

different behaviors in these two environments. Therefore, the deployment of services in the

production environment becomes a cumbersome task. As each service may need a different

environment for its deployment, a solution could be the deployment of each service in a

 pg. 41

virtual machine in isolation with their own desired environment using configuration

management tools. The downside is that due to virtualization, a lot of resources are wasted

for service isolation, and configuration. management is another layer of complexity in the

deployment. Compared with the virtualization, containerization is more lightweight, and it

can remove the need for configuration management tools since there are a lot of ready

images in the central repositories containing different applications, and any further

configuration can be done in the new images building stage. For this solution, add another

step to the continuous integration pipeline to build container images and store the images in

a private image repository. These images can then be run in both production and

development environments that produce the same behavior. Each service should have its

own container image creation configuration; the script for running any other required

services' containers should reside inside its code repository. It is a good practice to add

environment variables as a high priority source for populating the software configuration. In

this way, the configuration keys that can have different values in different environments, eg,

database URL or any credentials, and they can be injected easily in the container creation

phase. Having a list of required environment variables for running a service in its code

repository is a good practice as it makes stakeholders aware of these changing variables.

ix. Monolithic and Microservice Architecture

a. Monolithic Architecture

[9]Monolith architecture is an old but even currently active software architecture that contain

large applications with big monolithic codebase. Main key point of monolithic architecture is

single code base. Since project handle by single code base it uses to deploy whole system

once. Continues delivery cannot achieve with monolithic architecture, when whole system

needs to update. Later time for avoid complexity from monolithic architecture it tries to use

layers. From its high-level structure distributed into vertical 3 or more layers. Monolith way

of development of software is common way of application development. At begin it is easier,

single code base is simple to design, develop and deployment. Most applications can be

simple in the beginning, but as the application grows, so does its complexity. A typical way to

handle complexity in an application that has a monolithic architecture is to split the

application into different layers.

 pg. 42

 Continues evolvement in technology and related domain reason for innovation take

place. Monolith architecture take follow architecture using single code base.

Figure 10 - High level diagram for Monolith Architecture

 pg. 43

b. Microservices Architecture

[10]Microservices is an architecture which mainly focus on loosely couple services

architecture style. These services expect to fulfill business capabilities of organization.

[11]These services are small (smaller code base) and focus on given manageable

responsibilities. Organization process build using tiny several services which interact each

other using API of each services.

Figure 11 - High level diagram for Microservice Architecture

 Microservices are provide higher modularity by its architectural structure. Since each

service independent easy for develop, maintain and deploy. Service API is responsible for

expose microservice which enable clear boundaries between services. Single Responsible

Principle enable by its nature by modularity and small tiny functionalities.

By the way, to complete business task it may take more than one service call. Service

call may reason for communication delay. Communication delay is one of drawback come

along with microservices. Therefor identify microservices before conversion is tedious task.

Microservice can achieve many advantages reason to many valuable properties such as

modularity, Single Responsible property, small etc.

 pg. 44

When developing microservices, the goal is to have services that are loosely coupled

and highly cohesive. Loose coupling means that services should not know anything about the

internals of other services. This is achieved with microservices as they have clear boundaries

by nature and only communicate through interfaces that each microservice publishes.

Cohesion can be described as the tightness of related features in different modules. When

microservices are separated correctly they adhere to SRP and they have a single business

context on which they operate. If these qualities are applied to microservices, it means that

the microservices are also highly cohesive. In order to achieve loose coupling with

microservice architecture, it might make sense to duplicate some of the code. Typically,

developers have been taught to follow the DRY (do not repeat yourself) principle. DRY states

that the same code should not be repeated in the codebase but instead the code should be

reused. This is good advice inside one microservices but when multiple microservices share

same code problems can occur. If one service requires a change to the shared code it means

that all the services which use the same shared library must be also updated and deployed.

This means that the services are now tightly coupled. The situation can be solved by rather

duplicating the code. It gives the freedom for each of the services to be independent.

