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ABSTRACT

GPUs have become very interesting, especially with the General Purpose Graphics Processing
Units. With the ability to program the GPUs, their computation capabilities with the processing
power and their competitive low cost have enabled the development of numerous kinds of
interesting GPGPU application programs resulting in substantial accomplishments in terms of the

performance.

The LU and QR factorizations represent an underlying process of a large number of scientific
application programs with complex and computationally expensive modules. But in here, the
solution process has a high impact on the matrix size for the performance because of the costly

computations.

Proposed methodology for the GPU only LU and QR factorization algorithms were implemented
using block matrix factorization where the input matrix is considered as multiple matrices when
performing the factorization steps. GPU only factorization algorithms are implemented on a
NVIDIA MX130 GPU. For LU factorization, the suggested GPU only algorithm implementation
starts to perform well with the square matrix 6144 and upwards. With the suggested GPU only QR
factorization implementation, it was possible to execute matrix sizes up-to 1024x1024.

The evaluation of the implemented algorithms clearly depicted that the output matrices are accurate
when computed and compared with the input matrix. Finally, it is believed that the work
accomplished through this research work has facilitated for the betterment of the learning

community as well as the parallel computing and computer science research community.
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1 INTRODUCTION
1.1 Motivation

General Purpose Graphics Processing Unit (GPGPU) has a high processing capability and the large
number of cores inside the GPU has enabled parallel execution with high performance for computer
applications [1]. Most of the applications have not taken advantage of the GPU cores completely.
So it is interesting to see how the GPU is completely used in-order to achieve high performance in

an efficient way.

High-performance GPU only execution of Cholesky Factorization [2] has been successfully
implemented by Azzam Haidar and others. In their research paper, they have raised the importance
of the development of other highly required factorization routines, such as the QR and the LU
factorization as their future directions. Therefore, there is a need for the development of high-
performance LU and QR factorizations implemented fully on GPUs. Currently, there are
algorithms available for LU and QR factorization which run on multi-core CPU processors and
hybrid CPU-GPU processors [1] with also some GPU only implementations. But there is not much
literature available to accelerate the performance of these factorization algorithms. So the
motivation of this research project is to implement high-performance LU and QR factorization

algorithms which provide better results than the existing factorization algorithms.

1.2 Project

1.2.1 Problem Domain

The emerging accessibility of the advanced-technology along with the advanced-architecture
computers incorporates a vital result on all domains of scientific computation, together with
algorithmic program analysis and software development in numerical algebra. Linear algebra
particularly, the answer of the linear systems of equations lies at the center of furthermost

calculations in scientific computing [3].

Numerical linear algebra is known as the study of algorithms related to mathematical questions for

carrying out linear algebra computations which typically includes matrix-matrix operations on

computers in order to provide accurate and approximate answers. It's usually a basic a part of

computer science domains, like computational fluid dynamics and lots of different areas [3]. Those

type of software depends deeply on the analysis, development, and implementation of progressive
1



algorithms for addressing numerous numerical algebra complications in terms of a solution with
the available numerical techniques. Problem is commonly converted and reduced to a problem of
linear equation systems. Because of this reason, the solution is normally represented in the form of
matrices [4].

1.2.1.1 LU Factorization Method

LU factorization decomposes a matrix into a product of two matrices. The first matrix as a lower
triangular matrix and the other matrix as an upper triangular matrix. Sometimes the product of
lower and upper triangular matrices includes a permutation matrix likewise. In order to solve
systems of linear equations or to calculate the determinant of a matrix, LU factorization is used in
numerical analysis. However, LU method is much more advanced and complex when compared

with the Gaussian method but more efficient for solving an equation system [5].

ay; aypz a3 Iy 0 0 U1y Uz U3
a1 azp ax | = |l la 0 0wy up
as; Gz 433 [31 l32 33 0 0 uss

Figure 1.1 LU Factorization in the Form of A = LU

As Figure 1.1 indicates, LU factorization is able to resolve a system of equations with the steps

listed below.

Set up the equation as shown in Equation 1.
Ax=Db Equation 1

As the next Step, find LU factorization for matrix A and the result will produce the Equation 2.
(LU)x=Db Equation 2

Let the value of y be according to Equation 3 and solve Equation 4 for vy.
y = Ux Equation 3

Ly=Db Equation 4
Take the values for y and solve Equation 3 for x. This will give the solution to Equation 1.

2



1.2.1.2 QR Factorization Method

Any real square matrix A can be factorized into a product of an orthogonal matrix Q and an upper
triangular matrix R as shown in Equation 5. In numerical linear algebra, QR factorization is
regularly used to solve the linear least squares problems and also for a particular eigenvalue

algorithm QR factorization is taken as the foundation [6].
A = QR Equation 5

Q R

L] L] [

a, a. a, = e € €3 0O e;-a, e,+a;

] e e e

L ) L )

™ N
orthogonal upper diagonal
unit vector matrix

Figure 1.2 QR Factorization in the Form of A = QR

QR factorization is displayed in Figure 1.2. In the QR Factorization, R matrix can be computed

using Equation 6 and according to Figure 1.2,

e Alisasquare matrix
e Qs an orthogonal matrix
e R s an upper triangular matrix.
R = QTA Equation 6

1.2.2 The Problem

In order to reach high performance through parallelism, there are some available architectures and
techniques [7] and with these techniques and architectures, there are several types of drawbacks
which directly has an effect on the performance. Tuning challenges occur when a computer CPU
is having a slow processing power or when the kernel design is complex. Because of this reason,
the GPU has to wait a long time causing expensive CPU-to-GPU communications which directly
causing reduced performance [2]. In most of the hybrid factorization algorithms, panel factorization

is computed on the CPU. So the GPU has to wait for that calculation to finish to start its calculations

3



[2]. Another reason for not getting high performance in factorization is using complex algorithms
to perform the calculations. Complex algorithms have a large number of codes to be executed and
a high number of kernel calls will be causing reasons for performance decrease [2], [4]. Itis difficult

to reach high performance from an algorithm with the presence of these issues.

1.3 Exact Computing Problem

The exact computing problem can be presented as sub-questions as shown below:

a) Find currently existing GPU only LU & QR factorization algorithms and the gaps of those
implemented algorithms.

b) What are the ways of implementing LU and QR factorizations for high-performance
completely on GPUs (GPU only)? [2], [8], [9]

c) How to perform both panel factorization and trailing matrix update in the GPU, using different
or same GPU streams without affecting performance? [2], [10]

d) How to improve the algorithm/application that helps boosting the performance in following
paths?
i. Algorithmic optimization path [2]

ii. Kernel optimization path [11]

iii. Implementation design path [12]

1.3.1 Research Contribution

By conducting this research, the following contributions are offered to the field of computing and

computer science:

Improved and resource efficient LU and QR factorization algorithms to run only on GPUs

to accomplish high-performance.

Performance analysis of the implemented LU and QR factorizations which can be used for

comparison against future developments.

Developers to use the expected findings of this research for their own application

implementations.



1.3.2 Aims and Objectives

Aim of this research is to develop a high-performance GPU only Implementation for LU

factorization and QR factorization. And the objectives of this research are listed below.

Objectives

e LU and QR factorizations should be able to execute successfully in GPU only
implementations.

e EXisting expensive communication should be removed in CPU-to-GPU interactions.

e Tuning problems also should be removed.

e Should be able to reach high performance in LU and QR factorizations.

1.3.3 Scope of the Research

In this research, LU factorization and QR factorization is only going to be considered. First, we
shall attempt to implement LU factorization on a GPU only cluster and then move to implement
QR factorization. Both LU and QR factorization algorithms/applications are to be executed on a
GPU only cluster. This includes the panel factorization as well as trailing matrix update executed
on GPU cluster. Tuning challenge problems and CPU-to-GPU expensive communication problems
are going to be discussed in this research. All the work to be performed in a NVIDIA™ GeForce
MX130 GPU (mid-range performing GPGPU). Factorization algorithms will be implemented
using Compute Unified Device Architecture (CUDA) platform for the selected factorization
algorithms. GPU only Cholesky factorization algorithm is successfully implemented in a NVIDIA
GPU using CUDA platform [2], because of that reason CUDA programming platform will be used

to implement LU and QR factorization algorithms for GPU only execution in this research



2 LITERATURE REVIEW
2.1 Area of Study

GPUs containing immensely parallelly executable computing processors which are programmed
in C programming language and with the extensions of the C programming language. In order to
program these parallel processors, it is not compulsory to aware of the graphics algorithms or terms
related to the terminology. But with the knowledge and with the understanding of these algorithms,
it is much more easy to identify the pros and cons with the relevant computational patterns. With
the help of the past, it is possible and able to clarify the explanations about architectural design
selections of the GPUs in the present, which includes vastly multithreading, highly parallel
structure and bandwidth-centric memory interface design. Understandings about the historical
advancements will also likely to give the framework for the future direction and projection of GPUs

as computing devices [1].
2.1.1 Direct Memory Access

Direct memory access is used between a CPU and a GPU to perform the data copy operations. This
process needed a dedicated memory in DRAM and an indirect way of allocating the memory by an
application [1]. An especially dedicated hardware mechanism is now included in the modern
computer systems to transfer data between the input/output device and the DRAM of the system.
This mechanism is named as direct memory access. In this mechanism, the operating system
performs an operation established by:

e the starting address of the data in the Input/Output device buffer memory

e the starting address of the DRAM memory

e number of bytes to be copied

e the direction of the copy.

Following advantages can be gained using this direct memory address [1] mechanism:
e Execute input/output independent programs in the CPU, when the direct memory access
mechanism is copying the data.
e Copy the data between devices at a rapid speed than a normal processor by using an especial

hardware mechanism.



2.1.2 Data Parallelism

Data parallelism can be used in this research to perform calculations of the matrices which are not
related to the particular set of columns or rows. So those independent rows and columns can be
computed parallelly. Parallelization through multiple processors in the environment of parallel
computing is identified as data parallelism. The data has been distributed through multiple nodes
or threads, which is operated in parallel. Related data is processed in parallel by working on each
element and the elements are stored on regular data structures such as matrices and arrays. When
evaluating the performance of the programming model in terms of efficiency and effectiveness, the
locality of the data references plays a significant role and such data is relying on the size of the

cache and the memory allocation defined by the application program [13].

2.1.3 Task Parallelism

LU and QR factorization algorithm codes are planned to separate as independent tasks so that the
different processing cores can engage in different smaller tasks. Because multiple independent
tasks can be utilized widely in parallel programming. Normally task parallelism is achieved by
dividing tasks into smaller independent tasks of an application. When there are two independent
tasks exists, task parallelism also exists. When an application gets larger so does the number of
independent tasks, as a result of that, a large number of tasks can be executed parallelly. So
accomplishing the performance goals on parallel programming applications depends heavily on the
task parallelism and plays a key role with the efficiency [1].

2.2 Literature Review

2.2.1 Numerical Linear Algebra

The developments in linear algebra are designed according to the advanced-architecture of the
computers. Scientific applications and engineering applications are widely using numerical linear
algebra operations. There is a standard for the basic linear subprograms (BLAS) in order to perform
the numerical linear algebra operations. These standard libraries of linear algebra functions consist
mainly of three levels. When the level of the linear algebra function increases so does the number
of operations performed by the related function accumulate accordingly. D. B. Kirk and W. W.

Hwu have shown an example of a vector addition which is a level-1 function. Matrix and vector



operations are performed in the level-2 functions and these operations using vectors (x,y) and
scalars (a, B) along with the matrices. They have raised the importance of these BLAS functions
for solving linear systems and eigenvalue analysis since these functions are used as building blocks
of the numerical linear algebraic functions. Kirk and Hwu have identified that different BLAS
function implementations will perform in different ways in both parallel computers and sequential

computers [1].
2.2.2 Matrix Computation

The focus in [3] was to analyze the impact and the performance of the dense and sparse matrices.
Jack Dongarra and Victor Eijkhout have developed templates for sparse matrix computations. They
believed that modern computers with advanced-architecture have a high impact in the area of
scientific computation along with the numerical linear algebra software development research area.
This article has discussed the numerical linear algebra design in order to make full use of the
advanced-architecture computers with the proposed developments. Jack Dongarra and Victor

Eijkhout have focused on four basic concerns [3] shown as following:

e The inspiration for the work
o Define standards and implement the standards (to be used in linear algebra libraries)
e Algorithm design (design concept along with the parallel implementation)

e Future directions for the research.

They have started to improve the development of the sparse matrix computations templates and
they want to apply these templates for the dense matrix computations as the future work [3].

2.2.3 Multi-core LU & QR factorization (CPU-GPU)

In [4] Caner Ozcana and Baha Sena have presented an algorithm to deal with the dense linear
systems in the CUDA programming platform. Because of the high arithmetic throughput of GPUs,
Caner Ozcana and others were able to strengthen the performance with a suitable data
representation along with the reduced row computations on GPU. But the main concern was a
comparison of diverse systems which consists of numerous GPUs and CPUs for different linear
systems in terms of the runtimes. They have evaluated the performed algorithms and what they see
was better performance is obtained with GPU computing. The application that Caner Ozcana and
Baha Sena developed as the solution of linear equation systems, consists of a significant

performance improvement. They have tested it on core2duo computer which includes 16 CUDA
8



cores on the first time and they were able to gain a 431% performance rate on a linear equation
system from the GPU compared with the CPU. They implemented LU numerical linear algebra
routine that consists of appropriate data representation with a GPU accelerated implementation.
The implementation has focused on reducing the row computations on GPU and they have provided
significant performance improvement on sparse linear systems and suggested that the same

approach can be used it to explain dense linear system [4].

Radomir Stankovi¢ and others have presented [8] five different LU and QR factorization
implementations. They have analyzed the efficiency of CPUs and GPUs for the runtimes and the

developments were carried out using:

e Intel MKL
e Eigen C++ library
e MATLAB

These implementations were performed on a multi-core CPU by them. Rest of the implementations
have been handled on a GPU with the usage of NVIDIA cuSOLVER library in the CUDA platform
and with Parallel Computing Toolbox in the MATLAB platform. Results were generated using
inputs as single and double-precision matrices with the floating-point representation where the
elements are generated randomly. This research article [8] has shown that the both GPU
implemented LU factorizations were achieved the best performance when compared with rest of
the implementations and those matrices were able to fit into the global memory of the GPU. Intel
MKL implementations were identified as the fastest method for the LU factorization with larger
matrix sizes and for the QR factorization with all the matrix sizes that have executed in this

research.

Robert Andrew, Nicholas Dingle has analyzed that many of the performance issues of QR
factorization were associated with kernel invocations of high frequencies [11]. Using the CUDA
development platform, they implemented four GPU updating algorithms and identified that for
certain matrix sizes those implementations perform better than the GPU only QR decomposition.
A high number of kernel calls have a direct association for the performance drawback and they
suggested to increase and improve the number of rows in a strip with a reduced number of kernel
invocations and apply several depending rotations in a thread block inside the kernel with loops
and synchronizations. They also pointed out that with the use of NVIDIA Kepler architecture’s
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dynamic parallelism, kernel invocation overheads can be reduced on the GPU. Also, Robert
Andrew and others have discovered that in some circumstances updating is faster than the full
factorization and in some, where it is not. In this article, algorithms are consists of operations and
closed-form expressions are used as the foundation to determine the runtimes in the GPU

implementations.

Peng Du and others [9] research on integrating the CUDA computing directly into the ScaLAPACK
framework, and speed-up the LU and QR routines for a certain level by carefully managing the
GPU-CPU data transfers. But Peng Du and others were not able to remove the CPU-to-GPU
expensive communications. Their main focus was to convert most of the ScaLAPACK routines to
support GPU computing so when GPUs are presented, application codes that already utilize
ScaLAPACK framework are able to reach some sort of an automatic speedup. They suggested that
it is beneficial to keep data onto GPUs as much as possible. They showed that for LU factorization
where pivoting forces more frequent data transfer, minimizing the data amount helped largely to
reduce the performance impact. Peng Du and others have identified to take multiple GPUs per node
into consideration as their future work and to convert more algorithms. They have shown the
direction to conduct larger scale experiments to further confirm the design in the future.

In [12] also describes an implementation of a parallel LU decomposition on GPU cluster for dense
matrices. E. D’Azevedo and others have developed a software to reach the high performance by
increasing the software complexity, integrating magmaBLAS implementation to the software and
to use a left-looking out-of-core algorithm when the available memory on the GPU device is lower
than the problem size. But they were not able to avoid the tuning challenges of slow CPUs along
with the low CPU-to-GPU bandwidth which has disturbed to reach a certain good level of high
performance. They have identified, optimizations that may need to be included such as finding
asynchronous operations to transfer the data on CPU and GPU devices, tuning separately matrix
block size in ScaLAPACK library and development of the look-ahead computations in the
algorithm to minimize the runtime of the LU factorization by considering the critical path as their

future work.
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Yulu Jia and others did [10] research on the LU factorization on the shared memory environment
and proposed a multi-GPU, multi-core hybrid LU decomposition algorithm which supports both
multiple GPUs and CPUs. This hybrid algorithm works with static scheduling and dynamic
scheduling. But the suggested LU decomposition algorithm has used some CPU cores to perform
the panel factorization and to update the trailing submatrix, remaining CPU cores along with all
the available GPUs cores has been used. Since panel factorization is done in the CPU, hybrid
algorithms overlap with the CPU work, and the expensive CPU-to-GPU communication is also a
drawback for the performance. In this article [10] Yulu Jia and others have shown that the main
concern is the speed and the time of the execution when solving the LU factorization for a large
matrix size and they have planned to avoid the unnecessary data copying between the CPU and the
GPU by using GPU non-resident memory technique as their future work.

Zhongchao Lin, Yan Chen and others have shown that faster speed can be reached with the GPU
based two-level out-of-core algorithms for the situations with large element method. An airborne
array problem is solved in this paper on a CPU/GPU hybrid cluster with the following computer
specifications:

e 128GB RAM
e 10GB GPU memory
e 1TB storages of HDD

With these computer specifications, they were able to achieve a speedup of 1.6 times against the
implemented parallel CPU version. The same technique can be used for on-board antenna systems
which consist of complex and larger platforms to increase the performance in finding the radiation
patterns as described in this paper [14]. With the involvement of CUDA and MPI frameworks,
suggested implementation were able to execute on CPU/GPU hybrid cluster. Physical memory and
GPU memory bottlenecks in the electrically large complex problems are addressed with the
designed two-level out-of-core algorithms. Asynchronous communication has used by Zhongchao
Lin and others to allow communication and computation overlap in the algorithms. They have
shown that when compared with the traditional out-of-core LU solver, the two-level out-of-core
LU solver performed better with 1.6x times for the large problems which having difficulty to fit in
the physical or GPU memory [14].
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In [15], Azzam Haidar, Mawussi Zounon, Ahmad Abdelfattah, Stanimire Tomov and Jack
Dongarra have presented an improved GPU kernel for very tiny matrix operations which had a
significant speedup, better than the vendor libraries. And also Azzam Haidar and others have
discussed that the design of the GPU kernels is the reason for the performance decrease to the small
matrices algorithms. They proposed the strategies and the analysis of the respective algorithms in
order to achieve the complete utilization and the performance from the GPU. Methodology and
theoretical analysis also have been developed by them for tiny matrices to gain better performances.
The suggested methodology described using LU and Cholesky decompositions as test cases to
show that the hardware performance near to the theoretical upper bound can be achieved. Highly
optimized GPU kernel design for the novel algorithms was investigated by them and this particular
GPU kernel is used for undersized baches of LU and Cholesky decompositions. The motivation
for this research is the demanding need in the areas such as astrophysics applications in the
scientific simulation domain. Following Methods are incorporated in the proposed design for [15],
[16]:

e Register blocking
e Ideal memory traffic
e Tunable concurrency.

Sencer Nuri Yeralan, Timothy A. Davis and others have done research on sparse matrix
decomposition which including a combination of both regular and irregular operations and
computations. They have stated that gain high-performance on the available cores in the GPGPU
was very challenging and they have addressed this challenge with a multifrontal QR decomposition
concept and the performance achieved is considerably high with compared to a highly enhanced
multi-core CPU. All the communicated data is stored on GPU and a lot of frontal matrices were
decomposed concurrently on highly parallel nature and the algorithm has extended to support more
parallelism. The communication-avoiding QR decomposition supports further parallelism with the
dense matrices and the sparse multifrontal method supports further parallelism with the sparse

matrices [17].

In [18], Cheng Chen and others have highlighted that the dense LU factorization is a serious
factorization algorithm that broadly used in the problems of dense linear algebra. According to

them, Hybrid LU factorization implementations designed in a way to make full use of the
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heterogeneous systems. But the available heterogeneous algorithms are usually based on CPU and
those algorithms mostly rely on CPU cores and perform a large number of data transmissions
through the PCI bus. Because of this reason, performance efficiency and resource efficiency of the
complete computer system will be decreased. But according to this paper, they have described an
implementation of coprocessor-resident LU factorization in order to increase the performance
efficiency along with the energy efficiency by freeing the CPU with the massive computation
operations and by removing the data transmission through PCI bus. In order to preserve efficiency,
they have carried out improvements to CPU operations, MPI operations and to coprocessor
operations and all the improvements were performed on a supercomputer and the output has shown
that their LU implementation can be reached high performance and it is possible to avoid the
barriers of the energy and the performance efficiency.

Felix Loh, Parameswaran Ramanathan and others have identified and shown that GPUs are
vulnerable to burdens like alpha particle strikes and power fluctuations when trying to minimize
the transistor feature size with the intention of improving the methodology along with the technical
aspect. So that they raised the importance of technique which is able to assure the accuracy of the
operations even in the middle of a fault. They have developed and analyzed three fault-tolerant
schemes for QR factorization, and also they have presented a technique which is able to avoid the
errors and faults with having different time spans only for NVIDIA GPUs namely as transient fault
injection technique. They showed that the technique in this research is comparatively low cost, has
a better ability to scale and holds a good success rate from this research [19].

With a minimized communication, a dense vector set can be orthonormalized by and single value
QR decomposition. Single value QR decomposition has shown a remarkable performance when
compared with the available orthogonalization algorithms. In the orthonormalization algorithms,
communication is the place where the most expensive computations occurred other than the
arithmetic computations. Ichitaro Yamazaki and others have studied the steadiness and efficiency
of different Single value QR decomposition developments on multi-core CPUs along with a GPU
in this research. Their focus was with the triangular solver for the dense vectors because it performs
the most of the decimal computations of the single value QR decomposition. As a component of
the study, they have examined a versatile modified version of single value QR decomposition. It
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has the choice to either expand the direction of the orthogonal error or to use the triangular solution

at runtime [20].

Wei Tan, Shiyu Chang and others have shown in the [21] that the matrix factorization has a high
potential in the areas of feature extraction, word embedding, collaborative filtering, and data
compression. Numerous improvement methodologies have suggested but the least square is
recognized because of the ability to parallelism, firm conjunction and merge of the unclassified
inputs and ability to handle easily. And also they have observed that the current matrix factorization
developments have done for a specific set of computers and it is insufficient. They explained the
reason for this was because for a large-scale computer network has a bottleneck in the data
communication where a single computer does not have to face any. Alternating least square on
GPU is an encouraging trend. They have proposed a unique approach to expanding and improving
the matrix factorization with including the approximate computing along with the memory
utilization. The previous activities were related to increasing data reuse of the GPU memory. In
modern methods, they tried to shrink avoidable operations without disturbing the convergence of
the implementations and algorithms. All their developments are openly accessible for future
researches [21].

In [16], Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov and Jack Dongarra have presented
novel implementation design along with the improvement methodology for matrix inversion and
for LU decomposition. They have pointed out that this kind of complications occurs in numerous
scientific programs which belongs to the domain of astrophysics and mathematics. They have
shown that different kind of mindset is required for the development of GPU kernel design for the
tiny matrices. They have also taken the benefit of the tiny matrices to eradicate the in-between row
swapping in the kernel inversions and in the decompositions. They were able to perform their work
on a Pascal P100 GPU and 6x times, 14x times performance enhancement was gained respectively

in the decomposition and matrix inversion against the cuBLAS implementation.

Gil Shabat, Yaniv Shmueli, Yariv Aizenbud and Amir Averbuch have shown that algorithms which
are randomized have a high effect and contributes critically for the low-rank approximations of
larger matrix sizes. In [22], randomized singular value decomposition is enhanced to a LU

factorization implementation with random algorithms. Numerous fault limits are being presented
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by them which are correlated to sub-Gaussian matrices by relying on the results derived from this
research. The limits of the error can be improved based on the known random algorithms and since
the singular value decomposition algorithm is completely parallel and it can be performed
effectively on GPU. They have presented the algebraic model and the comparison to other
factorization approaches to clarify the efficiency of the proposed model [22]. In [23], Ryan
G.McClarren has described and explained the LU factorization and the categories of matrices

available in mathematical, scientific calculations and their mutual arrangements.

Evan Coleman and Masha Sosonkina have presented an analysis about the implementation of how
to compute an incomplete LU decomposition. For this approach various techniques and
methodologies used in order to enhance a much better parallel algorithm. This investigation has
included numerous methodologies to validate and to understand the practicability of the suggested
implementation. When it comes to the errors and other available tests, it is shown that changes in
the point of algorithmic view can validate intersection of the incomplete decomposition along with
the proposed suggestions which then will be lead to increase the efficiency of the resulting

dynamics [24].

In [25], Johan Thunberg, Johan Markdahl and Jorge Gongalves have addressed a synchronization
in a distributed manner by rotating the columns in the matrices. The synchronization and the
respective rotations are based on the control design. Dynamic control laws have been designed by
them in order to address this type of synchronization complications. QR decomposition
methodology along with a combination of auxiliary variables are the foundation for this control
laws. The reasons and the advantages of using the QR decomposition methodology because of the
capacity to separate the dynamics for a particular number of columns in matrices using this
technique. They have shown that a closed loop system can be achieved the synchronization with
this suggested implementation for quasi-strong collaboration graph topologies inside the control

design.

2.2.4 GPU-only Implementation

Carlos Martins, Ricardo Chaves and others have developed a load balance solution that can

efficiently distribute the workload of linear algebra operations between the CPU and the GPU(s)
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of a heterogeneous system. This has targeted the acceleration of the LU factorization due to its
importance in the scientific and numeric fields but also in the LaPACK library. They have proposed
two different solutions in their research. The multi-device solution that aims at distributing the
workload efficiently on the CPU and the available GPUs. The GPU-only approach is focused on
performing the factorization solely on the GPU without the need for constant data transfers during
the execution. The limitation of this GPU only approach is the implementation of the less efficient
factorization step. Because they have said that the factorization algorithm is hard to plot into the
GPU architecture [26].

Michael Anderson, Grey Ballard and others have described the development of the
Communication-Avoiding QR decomposition that can be executed completely on a GPU [27].
They have shown that the decrease in memory traffic produced by Communication-Avoiding QR
factorization has allowed them to outperform the available parallel GPU implementations of QR
decomposition for a large category of tall-skinny matrices. They have outperformed the Intel’s
Math Kernel Library up to 12x by the performance speed and 30x faster than Intel’s Math Kernel
Library on a multicore CPU [27].

NVIDIA also proving a library which is named as the cuSOLVER library for the factorization
algorithms that to be performed entirely on the GPU. This vendor specific factorization library

functions are available for Cholesky factorization, LU factorization and for QR factorization [28].

Azzam Haidar and others presented [2] their performance investigation, algorithm design concepts,
and the improvements needed for the implementation of high-performance GPU-only algorithms
for the dense Cholesky factorization. Since the hybrid algorithms are challenging to perform
parallelize tasks on CPUs, Azzam Haidar and the team has developed a very efficient algorithm to
be executed completely on GPU for the Cholesky factorization. GPU-only kernels eradicate the
costly CPU-to-GPU data transmission and the tuning challenges related to slow CPU or low CPU-
to-GPU bandwidth. They have provided sufficient evidence to prove that memory bound
procedures can be planned, improved, and adjusted for GPU architecture in a way to be competitive

with CPUs and reach their theoretical limits [2] with the Cholesky factorization.
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They have raised the importance/need of the development in other highly needed routines, such as

the QR and the LU decompositions as their future directions. Therefore, there is a need of the

development of high-performance LU and QR factorization for GPU only implementation, where

the performance of the application/algorithm is addressed in terms of algorithmic optimization

path, kernel optimization path and implementation design path.

2.3 Summary of Literature Review

Studied resources and the literature review can be displayed in the following format as shown

below in Table 2.1.

Research Type Factorization Algorithm Execute on
Citation in the Refernce i Invent |Extension For CPU and
Comparison i L Cholsky Lu Qr [CPUonly GPU only
Something|  Exsiting GPU
[3] Mumerical linear algebra algorithms and software X sparse matrix computationg X
[4] Investigation of the performance of LU decomposition
method using CUDA X X X X X
[8] A performance analysis of computing the LU and the QR
matrix decompositions on the CPU and the GPU X X X X X
[11] Implementing QR factorization updating algorithms on
GPUs X X X
[9] Providing GPU Capability to LU and QR within the ScalLAPACK
Framework X X X X
[12] Parallel LU Factorization on GPU Cluster X X X
[14] An Efficient GPU-Based Out-of-Core LU Solver of Parallel
Higher-Order Method for Array Problems X X X X
[15] A Guide for Achieving High Performance with Very Small
Matrices on GPU X X X X X
[16] Factorization and Inversion of a Million Matrices using
GPUs: Challenges and Countermeasures X X X X X
[17] Algorithm 980: Sparse QR Factorization on the GPU X X X
[18] LU factorization on heterogeneous systems X X X X
[19] Transient Fault Resilient QR Factorization on GPUs X X X
[20] Stability and Performance of Various Singular Value QR
Implementations on Multicore CPU with a GPU X X X X X
[21] Matrix Factorization on GPUs with Memory Optimization
and Approximate Computing X X X X X
[22] Randomized LU decomposition X X X
[24] Self-stabilizing fine-grained parallel incomplete LU
factorization X X X X
[10] Multi-GPU Implementation of LU Factorization X X X
[25] Dynamic controllers for column synchronization of rotation
matrices: A QR-factorization approach X X X
[26] Parallelization of the LU Decomposition on Heterogeneous
Systems X X X X
[27] Communication-Avoiding QR Decomposition for GPUs X X X
[28] cuSOLVER X X X X X
[2] High-performance Cholesky Factorization for GPU-only
Execution X X X

Table 2.1 Summary of the literature review

17



3 RESEARCH METHODOLOGY
3.1 Methodology

Experimental research methodology has been chosen to conduct this research. Because when
implementing LU and QR factorizations on GPU, it will provide the understanding with the reasons
by indicating what type of outcome occurs when an identified variable is manipulated in a
controlled environment. Using this experiment, it is possible to answer "what-if" questions that
related to the research questions, without a specific expectation about what this LU and QR
factorization implementation reveals, or to confirm prior results [29]. The results can be used either
to support or to disprove the hypothesis developed based on the research questions if this

experiment is carefully implemented.

3.1.1 Experimental Research Methodology

The experimental research methodology is an organized and scientific approach to this research in
which is allowed to manipulate one or more identified potential variables, and then to be measured
any change in other variables. In simple terms, it is planned to conduct a true experiment along

with a control group and one effect is only tested at a time.

3.1.1.1 Advantages of Experimental Research Methodology

While adjusting the independent variables related to the research question, Unwanted irrelevant
variables are possible to be eliminated. In other research methodologies, control over irrelevant
variables are usually higher. Experimental research methodology involves influencing the
independent variable to observe the effect on the dependent variable. As a result of that cause and
the effect relationship among these variables are possible to be determined. This methodology has
strict conditions and control over the experiment. Because of this reason, the experiment can be
performed repeatedly or a number of times and check the results. Reproduction is really significant
because when comparable results are derived at different times, the confidence is very high with
the results [30].
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3.1.1.2 Disadvantages of Experimental Research Methodology

Simulated conditions that do not always represent the realistic, can be created with an experimental
research due to the fact that all other variables are firmly organized. Because the circumstances are
firmly organized and do not usually represent the reality, the output matrices of the input matrices
may not be valid measurements of their behaviors in a non-experimental situation [30]. Some other

disadvantages of the experimental research methodology are listed follows:

e Unnecessary variables are not continuously possible to remove
e Experiment situation or scenarios may not be related to the real world
e Human errors also play a significant role in the validity of the research.

3.1.2 Related Technologies to Solve the Research Question

Following technologies can be used to find a solution for the research problems and some
characteristics of these technologies are listed below.

3.1.2.1 Linear Algebra PACKage

LAPACK offers the solutions for concurrent linear equations systems which is developed using
Fortron 90 [31]. This library normally uses Basic Linear Algebra Subprograms (BLAS) to the
fullest for the computation of the solution. Level 3 BLAS computer operations are available and
designed in this LAPACK package. LAPACK uses multiple CPU processor cores when performing
calculations and it is a CPU only approach. Matrix multiplication, triangular systems with several
upper triangular solutions and block matrix operations are included in the LAPACK package due
to the reason of the coarse granularity, in order to achieve higher proficiency and productivity in
the level 3 BLAS operations. With the custom modified and upgraded implementations of the
programs which are provided by the manufacturers to the high-performance computers, are likely

to be rich in the terms of efficiency [31].

3.1.2.2 Open Multi-Processing - OpenMP

In OpenMP also it is possible to perform tasks in multiple processor cores and OpenMP will also
be used to evaluate the research output with the OpenMP output results for the LU and QR
factorization algorithms. OpenMP is an API (Application Programming Interface) developed in
Fortran, C and C++ programming languages which support multiprocessing structures and shared

memory architectures. Developers are able to program flexible, adaptable and modest parallel
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application programs with the help of a scalable and portable model of the OpenMP which includes
the defined library methods and functions, environment variables and compiler directives. OpenMP
uses multiple CPU processor cores when performing calculations and it is a CPU only approach.
OpenMP has the ability to produce interfaces and applications, extending from the standard desktop

computer to the supercomputer for parallel execution [32].

OpenMP programs have also been tested on distributed shared memory systems by researchers. By
using MPI1 (Message Passing Interface) an OpenMP, hybrid application model is able to perform
on a computer for parallel execution. In such cases, MPI has the responsibility of parallelism
between nodes and OpenMP is taken care of the parallelism within a multi-core node [33], in order
to outspread OpenMP for non-shared memory applications and to convert OpenMP applications

into MPI application interfaces [34].

3.1.3 Selected Technology to Solve the Research Problem

Compute Unified Device Architecture has been chosen as the technology to implement LU
factorization and QR factorization on a GPU. CUDA is a parallel computing platform and
application programming interface model created by NVIDIA. It has allowed using a CUDA
enabled GPU for general purpose processing. The CUDA programming platform is a software
layer that gives direct access to the virtual instruction set and parallel computational elements of

GPU for the implementation and execution of compute kernels [35].

OpenMP and LAPACK technologies are also to be used in this research to evaluate with the GPU
only implementation of the QR factorization and GPU only LU factorization implementation.

High-performance Cholesky factorization has been implemented successfully in GPU only
execution [2] by using NVIDIA CUDA cuSOLVER and cuBLAS library. And also communication
avoiding QR algorithm is also implemented using CUDA programming platform [27]. Because of

these reasons, CUDA has been chosen as the implementation technology to conduct this research.

3.1.3.1 Processing Flow On CUDA

CUDA flow of processing can be described as following and the graphical representation can be
shown in Figure 3.1 below.

1. Copy data to GPU memory (from CPU memory to GPU memory)
2. GPU kernel initiation (initiated by CPU)
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3. GPU code execution (CUDA code execute parallelly in the kernel)
4. Results copy to CPU memory (from GPU memory to CPU memory).

Main
Memory 1

CPU

Copy processing data

Copy the result
Memory

for GPU

Instruct the processing)

Execute parallel
in each core

Figure 3.1 CUDA Processing Flow

3.1.3.2 Advantages of CUDA

CUDA has numerous benefits and advantages when compared with the typical general-purpose
computation on GPUs when it is come to the graphics APl usage. The main advantage is code can
be read from random memory addresses in the memory, this is known as scatter reads. A shared
memory region of CUDA can be shared between threads. It can be applied as a user-managed cache
which provides the potential to a higher bandwidth while using texture lookups in this shared
memory concept. CUDA also allows data downloads at a rapid speed and faster read/write
operations from and to the GPU. Full provision for integer and bitwise computations and tasks,

together with integer texture lookups can also be listed as advantages of CUDA [35].

3.1.3.3 Limitations of CUDA

Whether for the host computer or the GPU device, all CUDA source code is now processed
according to C++ syntax rules. As with the more general case of compiling C code with a C++
compiler, therefore, it is possible that old C-style CUDA source code will either fail to compile or

will not behave as originally intended [35].
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Interoperability with rendering languages such as OpenGL is one-way, with OpenGL having access
to registered CUDA memory but CUDA not having access to OpenGL memory. Unlike OpenCL,
CUDA enabled GPUs are only available from NVIDIA [35].

3.2 Research Design

To avoid the performance drawbacks of the LU factorization and QR factorization, expensive CPU-
GPU communications should be removed and the solution is to implement LU and QR factorization
on completely on GPU execution [2], [8], [9]. And also to find such way to perform both panel
factorization and trailing matrix update in the GPU, using different or same GPU streams without
getting affected to the performance drawback [2], [10]. These are the research questions going to

be addressed by this research.

Inputs for this research will be some random matrices generated by an equation. Then in the process
that input matrices will perform LU factorization and QR factorization using the GPU and will
perform necessary tasks. The output of these implemented algorithms will be matrices in the form
of LU factorization and QR factorization. But the output of this research will be a LU factorization
and QR factorization algorithms which can be executed on an entirely GPU environment along
with high-performance capabilities. When it comes to the features of this solution algorithms of
this research, the main feature is high-performance and the next main feature is not using the CPU
to perform the factorization processes. Research design can be converted to a graphical

representation of components as shown in Figure 3.2 below.

CUDA
Implemented

w

Package LU

LAPACK
Implemented

Research OpenMP {l
LU &QR Factorization Implemented E

w

<<include>> LU Factorization

for High Performance > Show Result
CUDA - |
Package QR —F Implemented
<<include>> QR Factorization LAPACK —
' mplemented
| OpenMP _

mplemented

Figure 3.2 Graphical Representation of the Research
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3.2.1 GPU only LU Factorization Design.

In this research, LU factorization is to be implemented in GPU only execution using block LU
factorization concept. There are several reasons to select the block LU factorization concept to

this research such as,

e Block LU factorization work with blocks of data having b? elements, performing O(b®)
operations. The O(b) ratio of work to storage which means that the processing elements
with an O(b) ratio of computing speed to both input and output bandwidth can be tolerated.
Because of this reason, we can expect faster results with the block LU factorization
algorithm [36], [37].

e Block LU factorization algorithms are usually powerful and efficient in matrix
multiplication. And LU factorization consists of considerable matrix multiplications in the
algorithm. Due to these facts, this is a benefit for the reason that almost every up-to-date
parallel machine is decent at matrix multiplication especially GPUs [36], [37].

e Block algorithms are able to deal with matrices by considering arrays of tiny matrices.
Because of these reasons, block LU factorization has identified as quite beneficial for this

research implementation [37].

The structure of the block LU factorization can be graphically described as shown in Figure 3.3

below.

A AL 0 U Y

A() All I‘l() Lll O U

Figure 3.3 Structure of the Block LU factorization

In the GPU only LU factorization algorithm implementation we have planned and designed the
algorithm using both cuSOLVER and cuBLAS routines together where they are necessary to be
implemented. The pseudo code of the algorithm is shown below in Figure 3.4.
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Implementing Block LU Factorization Algorithm Pseudo Code

FOR A <— 1 to noOfBlocks
DO i<— 1 to columnsinBlock
DO i< 1 to rowsinBlock
initiateMatrixValues();
END DO
END DO
END FOR

DO
Loo-Ugs <— DGETRF(Ay,)
DO i<— 1 to columnsinBlock
DO i<~ 1 to rowsinBlock
representTwoMatricesSeperately()
END DO
END DO

Ups <~-DTRSM(Loo,Ans)

Lio <-DTRSM(Ug4.A40)

L13.Us; <~ DGEMM(Lyg Ugy Asy)

Ly3.Uyy <— DGETRF(A,4)

DO i<- 1 to columnsinBlock
DO i<-- 1 to rowsInBlock

representTwoMatricesSeperately()

END DO

END DO

END DO

Figure 3.4 Implementing Block LU Factorization Algorithm Pseudo Code

3.2.2 GPU only QR Factorization Design.

In this research, QR factorization is to be implemented in GPU only execution using Block

Householder QR factorization concept. There are several reasons to select the block householder

QR factorization concept to this research such as,

Householder reflectors using QR algorithms are known to be numerically stable than the
QR algorithms using Cholesky QR and the Gram-Schmidt process. In the householder
approach, the householder vectors are broken up in such a way that communication is
minimized [38], [39].
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e The trailing matrix updates for several Householder vectors can be delayed and done all at
once using matrix-multiply for one block. This allows for higher arithmetic intensity on
machines with a memory hierarchy. Because of this reason, it leads to better performance.
For the very same reason, this is called blocked Householder QR factorization because it
allows the updates to the trailing matrix to be blocked in cache [38], [39].

In the GPU only QR factorization algorithm implementation we have planned and designed the
implementation not to use cuBLAS routine functions in order to save the amount of time to
initiate the cuBLAS handles in the CPU memory. The pseudo code of the algorithm is shown
below in Figure 3.5 and Figure 3.6 is described as the important two functions mentioned in

Figure 3.5 in the pseudo-code definition.

FOR A & 0 to rowindex
DO | ¢« 0 to columnsindex
initiateMatrixValues();
END DO
END FOR

FOR col < 0 to (columnSets -1)
FOR row €& 0 to (panelsForRows -
ProcessPanelFactorization()
IF (col + ColumnsPerBlock) < squareMatrixSize THEN
ProcessTrailingMatrixUpdate()
END FOR
END FOR

FOR col < 0 to (columnSets-1)
defineStartEndRows()
FOR i « 0 to squareMatrixSize
generateV()
END FOR
FOR i <« 0 to squareMatrixSize
createH-Matrix()

prevQ[i] = Q[i]
END FOR
Q[] ¢« GEMM (prevQ[] *H[])

END FOR

Figure 3.5 Block householder QR Factorization Pseudo Code
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FUNCTION ProcessPanelFactorization()
initializePanel();
FOR ¢ « 0 to columnsinThePanel
defineStartEndRows()
FOR i < vStart to vEnd
getThePanelFirstColumninnerProductSummation()
EMD FOR
FOR i <« vStart to vEnd
updatePanelColumnValues()
END FOR
FOR i « 0 to RowsPerBlock
computeZandStoreTow()
END FOR
FOR colMext < (col + 1) to ColumnsPerBlock
FOR pRow < vStart to vEnd
applyReflectorRemainingColumnsPanel()
END FOR
EMD FOR
END FOR
END FUNCTION

FUNCTION ProcessTrailingMatrixUpdate()
blockCol < pc + ColumnsPerBlock + RowsPerBlock
FORi < 0 to (RowsPerBlock * ColumnsPerBlock)
defineStartEndRows()
mRow < (i % RowsPerBlock)
MCol &« (i RowsPerBlock)
IF (pr +mRow) < m && (pc + mCol) < m THEN
IF (mRow > vStart && mRow < vEnd) THEN
y < matrix[{pr +mRow) * m (pc +mCol)]
ELSE IF (mRow == vEnd) THEN
y<1
¥[mRow + mCol *RowsPerBlock] <« vy
EMD FOR
FOR currentColumn < 0 to columnsToBeUpdated
FOR i « 0 to RowsPerBlock
IF i< RowsPerBlock THEN
FOR j « O to RowsPerBlock
FOR k < 0 to ColumnsPerBlock
yw' © ¥[i + k * RowsPerBlock] * W[j + k * RowsPerBlock]

END FOR
val & val + [ ywT * updatedRowValue)
END FOR
Matrix[pr + i+ (blockCol + currentColumn)] & val
EMD FOR
END FOR
END FUNCTION

Figure 3.6 Panel Factorization and Trailing Matrix Update Pseudo Code
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4 IMPLEMENTATION
4.1 LU Factorization Implementation on GPU

In order to perform the LU factorization, there should be an input matrix. Then the factorization

algorithm will get that particular matrix as an input and then perform the steps of the factorization.
4.1.1 Initiate Input Matrix

The typical way to do this is to initiate the matrix in the CPU and then allocate the memory in the
GPU and then copy the matrix into the GPU memory as shown in Figure 4.1. But in our

implementation, we have initiated the matrix in the GPU memory as shown in Figure 4.2.

Initiate Matrix ’| Allocate memory Copy the memory address
in the CPU in the GPU of the matrix to the GPU

Figure 4.1 Matrix initiation in normal way

Allocate memory Copy the memory address Initiate Matrix
in the GPU of the matrix to the GPU in the GPU

Figure 4.2 Matrix Initiation in the implemented way

4.1.2 GPU-only Implementation using cuSOLVER library

We have implemented LU factorization using the cuSOLVER library and then we have optimized
it to generate results faster with better runtimes. But the ability to perform improvements to this
implementation is really difficult because of the functionality inside the cuSOLVER functions are
hidden even in the development level. Because of this reason we have planned to implement the

LU factorization on a GPU-only execution in a different way.
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4.1.3 Suggested Way to Implement the GPU-only LU factorization

The concept of this blocked LU factorization is used in this implementation[40], [41]. The input
matrix which is to be factorized using the LU decomposition is divided into [m*m] sized 4 matrices

using Equation 7 as shown below.
m = [(input matrix size) / 2] Equation 7

This separation of the input matrix into 4 several matrices is described below using Figure 4.3.

X > elements of | Total no of
Matricsi elements in size of a w 0 | e Check for any
ix = ri m men
Input Matrix =n AT S the matrix |small block of e 'a Cment O. differences
. matrix block matrics
m =n/2 matrix
n n*n m m*m 4*(m*m) |[n*n]-[4*(m*m)]

A
8 i 32 1,024 16 256 1,024
! : 64 4,096 32 1,024 4,096

3 Al A2 H
: i 128 16,384 64 4,096 16,384
\:/ ) 256 65,536 128 16,384 65,536
A i 512 262,144 256 65,536 262,144
: 1,024 1,048,576 512 262,144 1,048,576

3 A3 A4

2,048 4,194,304 1,024 1,048,576 4,194,304
\:/ v 3,072 9,437,184 1,536 2,359,296 9,437,184
Qermmemnennenaannans L > 4,096 | 16,777,216 2,048| 4,194,304 | 16,777,216
5,120 26,214,400 2,560 6,553,600 26,214,400
6,144 37,748,736 3,072 9,437,184 37,748,736
7,168 51,380,224 3,584 12,845,056 51,380,224
8,192 67,108,864 4,096 16,777,216 67,108,864

Figure 4.3 Separation of input matrix into 4 small matrices
With this matrix, we have tried to perform blocked LU factorization by using these identified
[m*m] 4 matrices. This representation is below shown in Figure 4.4 since the GPU-only LU
factorization is based on equations in this representation.
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241 842 243 a4d|a4S 246 247 ad4E 134 135 0 0 0 w3l w32 w33
a48 a50 a51 aS5l|a53 a54 a5S5 aS6 136 137 138 0O (1] 0 w34 uids
a57 a58 aS5%® abd|abl atl atl a4 133 140 M1 142 o0 0 0 u3s

Figure 4.4 Representation of blocked LU factorization

In this way, LU factorization has 4 steps to be performed. L2 sub-matrix and U3 sub-matrix consist
of nothing but zero in every element of those matrices. L1, L3, L4, U1, U2, U4 are to be found

using different techniques/ways.

Compute and derive L1 and U1l

In order to derive L1 and U1 matrices, we have implemented GETRF routine to be executed in the
Nvidia MX130 GPU as a GPU-only code function using the cuSOLVER library for the block of
Al matrix. This step has included solving Al matrix to LU decomposition as the panel/block
factorization. In Figure 4.5, derivation of L1 and U1 and matrices are shown below. The result of
this step has become inputs for other steps, so in order to perform other steps, L1 and U1 matrices

computation has got the highest priority. Al can be shown in Equation 8 below.

Al = (L1.U1) + (L2.U3) Equation 8

Since L2 and U3 matrices are zero, A1 matrix can be re-represented as shown in Equation 9.

Al = (L1.U1) Equation 9
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Figure 4.5 Panel/Block Factorization of A1 Matrix

Compute and derive U2 and L3
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Once the L1 and U1 matrices have been computed, the next step is available to be implemented.

In here A2 can be represented as following matrix equation as shown in Equation 10.

A2 = (L1.U2) + (L2.U4)

Equation 10

Since the L2 is a zero matrix. L2 and U4 matrix multiplication is also a zero matrix. So the A2

matrix can be represented as the following equation. Graphical representation of A2 matrix can be

shown in Figure 4.6 below.
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Figure 4.6 Representation of A2 sub-matrix
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By following the above steps again for the sub-matrix A3, matrix equation and representation A3

matrix can be shown in Figure 4.7 and the A3 matrix can be derived from Equation 11 shown

below.

A3 = (L3.U1) + (L4.U3)
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U3 is a zero matrix, so A3 can be rewritten in the following way as shown in Equation 12.

A3 = (L3.U1) Equation 12

u L4
ul wl uwi 33 0 0 0

0 w5 uwud wu? + 134 138 0 0
0 0 uBd uwd 13 137 138 0O
0 0 0 ulo 139 140 141 182

233 @34 a35 ads
a4l adl 2431 244 -
249 a5%0 a51 ah2

a57 a58 a59 aed
233 234 a35 ads ul uwl wi uwd
a4l adl 2431 244 - 0 us ub u?

249 a5%0 a51 ah2

a57 a58 a59 aed

Figure 4.7 Representation of A3 sub matrix

By using above two equations U2 and L3 matrices can be obtained. To obtain U2 matrix the
dependent matrices are A2 and L1 matrices and to obtain L3 matrix the dependent matrices are A3
and U1 matrices. So the above two matrix equations/operations are independent of each other and

can be executed through parallelly.

When it comes to the implementation of these two matrix operations in the GPU as GPU-only

executable codes, two possible routines are available for this operation,

e GEMM - General Matrix-Matrix
e TRSM — Triangular Solving Matrix

First, we have tried to implement an operation using GEMM routine. To perform this operation
output matrix should be existing as a single matrix. But in here, Equation 13 and the output matrix
is U2. So in order to compute U2 first, we have to get the L1 and then perform the matrix
multiplication using GEMM routine. Since this routine looks heavy on the computation we have
measured the elapsed times for the GEMM and TRSM routines for some matrices and the results
are shown below in Figure 4.8 as a graphical representation. In this Figure 4.8 matrix size is
represented in X-axis and runtime is represented in milliseconds in Y-axis.

A2 =11.U2 Equation 13
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Runtimes for GEMM and TRSM routines

12000
10000
8000
6000
4000

2000
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o S R R AR~ S N N P P Al U Ry
U N N S GO e S R e A ™ S

S I LA S G S, S SR A
S ®© S A v &
e=—TRSM GEMM

Figure 4.8 Runtimes for the GEMM and TRSM routines for different matrix sizes

When the matrix size is getting large TRSM routing has the highest efficiency when the runtime is
compared. So for deriving U2 and L3 matrices the best option is to implement the TRSM routine
for these two matrix operations. These two matrix operations were implemented parallelly using
CuBLAS DTRSM function with two different CUDA streams since the two tasks are independent
of each other.

Compute and derive L4 and U4

This is the most time-consuming step in the whole process. In order to compute the A4 matrix
using L4 and U4 matrix, the equation can be shown below in Equation 14 and Equation 15

respectively.

A4 = (L3.U2) + (L4.U4) Equation 14
(L4.U4) = A4 — (L3.U2) Equation 15

To compute the L4 and U4, we have to perform the L3 and U2 matrix multiplication and then

subtract from A4 matrix. To perform the matrix multiplication GEMM routine has been used and
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implemented using cuBLAS DGEMM function for GPU-only execution. This representation is

graphically shown in Figure 4.9 below.

Ad L4 U4

a37 =38 a3% 840 133 0 o o0 27 u2E u29 u3d

845 846 84T add = + |134 135 0 0 0 w3l w3l w33

a53 a54 aS5 aSs 136 137 138 O 0 0 ul4 uls

abl a6l a6l ab4 139 140 141 142 0 0 0 ul

L4 4 A4 uz

13 0 o0 0 ull ul28 ul29 wid 237 a38 239 asl ull wil ul3d uls

124 135 0 0 0 ull w3l w33 = 245 adf 247 add ulS wif ul? wilB

136 137 138 0O 0 0 w4 uls a53 a54 a55 as6 uls w0 ull w2

139 140 141 42 o 0 0 ulk a6l ab2 a6l asd ul3 udd uls ule
ey

LaxUa Al uz2

lul u? 1ud lud a37 a3k ald adld wil wi? uld wid

us Iy Iu? 8 = 245 a4b a47 a4B uls wif wi? wiB

W9 1ulD lull lul2 a53 a54 as5 a5e ul9 w0 udl w22

Iuld luld 1ul5 Juls a6l 861 aE3 ass u23 uld uls i

Figure 4.9 Deriving L4.U4 matrix
But in here L4.U4 matrix is represented using one matrix. In order to represent as two matrices

again DGETRF routine has been used for the GPU-only implementation via the cuSOLVER

library. L4 and U4 matrices decomposition is represented in Figure 4.10 below.

LaxU4 L4 u4q
lul w2 w3 lud 33 0 0 0 ul? u2B ul¥ uld
s lué T Iug = [134 135 0 0 0 w3l ui2 ul3
g ull il 2 136 137 136 0 0 0 ul uls
113 lulé lul5 lul6 139 140 M1 M2 0 0 0 ulk

Figure 4.10 Decomposing L4U4 matrix into two matrices

In this, we have redesigned the LU factorization and has implemented the LU factorization

algorithm for a GPU-only execution.
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4.2 QR Factorization Implementation on GPU

The same approach has been taken for the GPU only implementation of the QR factorization. By
using this approach for the QR factorization will increase the calculating complexity of the

algorithm. Suggested approach/algorithm will perform the factorization using block panels.

4.2.1 Determine the square matrix size

Based on the user input for the matrix size, the square matrix is derived using an equation and

calculate block panel sizes accordingly. Determining square matrix size is shown in Figure 4.11

below.
Can - No of Panels
i Hiiered no of panels (p) | performable elementsin. Rows per; | Cojumns per No of Panels for Total Rows for Total
Input Matrix= 8 Matrix size P Pl | Periormable | o matrix Block Block
P R 3| oo M > matrix Size Columns
- S > n (n-x)/(x-y) x+ plx-y) n*n X y [n-x)/lx=y)] + (n-x)%{x-y) | (n/y)+n%y
A 8 3 B 64 5 4 4 2
| 16 1 16 256 16 4 1 4
R 1 EY) 1,024 ) 4 1 8
i 64 1 64 4,096 64 4 1 16
3
| 128 4 128 16,384 32 8 5 16
256 8 256 65,536 EY) 4 9 64
‘ 512 8 5121 262,144 64 8 a 64
v 1,024 1 1020 | 1,048,576 512 4 6 256
1 D 2,048 1 20441 4,194,304 1,024 4 6 512
L‘ 3,072 2 3,064 | 9,437,184 1,024 4 11 768
4,096 1 4092 | 16,777,216 2,048 4 6 1,024
This column set | This column set 5,104
include 4 panels | include 4 panels 5,120 4 : 26,214,400 1024 4 21 1,280
6,144 2 6,136 | 37,748,736 2,048 4 1 1,536

With each panel of dimension 5x4

Figure 4.11 Determine the matrix size

In Figure 4.11 the variable x and y are the numbers of rows and number of columns of the block
panel. Based on the user input matrix size n, number of panels and the square matrix that can be
performed without an error is computed using Equation 16 as below shown, where p is represented

by the no of panels.

SquareMatrixSize = x + p(x —y) Equation 16
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4.2.2 Suggested Way to Implement the GPU-only QR factorization

The concept of the blocked Householder QR factorization is used in this implementation [27], [42].
After determining the square matrix, block panel size and the number of row-column panel
distribution, the panel factorization for a block panel can be performed. The first panel can be

represented in Figure 4.12 as shown below.

example BxB

@l a1 a3 a4 a3 &6 &7 &l There are 6 panels to process here
a3 210 211 all #l3 ald als 8l Each column has 3 panels to process
al7 ald al% ald a2l all all ald

(225 26 a27 a28|a29 230 231 232

233 a34 a3s 335533? 238 239 add

84l 842 843 H-léa-‘-s B46 347 p4E

ad% a5s0 a5l 3525355 854 ass ase

a57 a58 ass a-ﬂﬂlgaﬁi abl at3 ab4

Figure 4.12 first Panel to be panel factorized
In the first panel of the first column set, take the first column and get the sum of the inner product
of those elements, according to Figure 4.12 inner product equals to [(a25)? + (a33)? + (a41)? +

(a49)? + (a57)?]. Then the square root of that sum value will be calculated using Equation 17.

VinnerProductSum = /(a25)? + (a33)2 + (a41)2 + (a49)? + (a57)2 Equation 17

The sign will be based on the leading element of the block panel, if the leading element is less than
zero the sign will be negative otherwise the sign will be positive (negative = -1, positive = +1).

As the next step, u value is computed as shown in Equation 18, where u will be used to update the
elements in the selected columns. Tau value of this column is also calculated here using Equation

19 for the later use.

u = leadingElement + (sign * VinnerProductSum ) Feuation 18
- . Equation 19
Tau = sign * (\/m q

Then the first element value and the respective column values can be calculated using Equation 20
and Equation 21 respectively.

firstElementValue = —sign * VinnerProductSum Equation 20
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otherElementValue = otherElementValue/u Equation 21

This part can be graphically represented in the below shown Figure 4.13 and it iterates through the

number of elements in the block panel column.

Panel 1 of-column 1 Calculate the 1% column
a25 a6 a27 axs

a33 a34 a35 a36

a1 aa2 243 a4 -

a49 as0 as1 as2

a57 as8 as9 a6l

Figure 4.13 Compute the first column of the block panel

Get the first column updated element values and generate the Z values using W, YT and V in the

form of Equation 22 shown below.
Z=WxYTxV Equation 22

After that, applying the reflector values to the other column elements are based on the previous
column calculated values. This step can be shown in the below Figure 4.14 as a graphical

representation.

Panel 1 of column 1 Calculate the 1% column Update the 2" column Update the 4™ column
a5 a6 a27 a2 27 a2

233 a34 a35 a3k a3s 135

a1 242 43 ama ‘ - 243 -w ‘

349 as0 as1 as2 a51 052‘

as7 ass as9 a60 359 260

(ii) (iif) (iv)
Figure 4.14 Applying the reflector value in the other columns of the block panel

This process should be applied recursively to the rest of the columns of the block panel by
considering the sub-panels in the block panel. The implemented loop can be depicted in a graphical

way, as shown in Figure 4.15 below.
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Panel 1 of column 1

Update the 4™ column

» (iv)

Calculate the 1st column Update the 2nd column  Update the 3rd column

.(m)

Calculate the 1st column Update the 2nd column
o)

U] 0

i
SubPanel of Panel Calculate the 1st column

o

Figure 4.15 Panel factorization of panel 1 of column 1

m

In Figure 4.15 the bold color matrix elements are the leading elements of that sub panel, which was

used to calculate the square root of the inner product summation of the sub panel’s first column in

this GPU only QR factorization implementation.
After the panel factorization of the block panel 1 is in the shape of Figure 4.16 in the implemented

QR algorithm.
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Figure 4.16 Matrices after the panel factorization in the QR GPU only algorithm

Now the algorithm is completed the panel factorization computation of the block panel 1 and the
trailing matrix update of the respective matrices of the same rows which are not affected to the
computation so far is targeted in this implementation. Trailing matrix update is processed using
one column at a time. The algorithm has used Equation 23 to update the current column values of
the elements, where ‘I’ is an Identity matrix of the same square matrix size. This iterative process

also shown in the below Figure 4.17 to illustrate how the looping occurred in the GPU only

implemented block QR algorithm.

bl4

A=I+YWNA
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Figure 4.17 Trailing matrix update on the panel 1 of column 1

This is a very expensive calculation to be performed, even with the above-depicted process of
computing both panel factorization and trailing matrix update on the panel 1 of column 1 in the
block panel. There are considerable panels to be performed in the next steps. So this process is
recursively computed each column set wise and row panels in a column set wise in order to compute
both panel factorization and trailing matrix in the necessary places of the matrix. Pseudo-code to
the implemented algorithm can be shown in Figure 4.18 below to describe the implemented

algorithm in an abstract way.

FOR each column in the columnSets
FOR each rowPanel in the panelsForRows
ProcessPanelFactorizationParallely(SelectedPanel)
ProcessTrailingMatrixUpdateParallely{SelectedPanel)
END FOR
EMD FOR

Figure 4.18 Pseudo-code for the implemented block QR factorization
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At this stage, algorithm is completed computing the R matrix, but the R matrix is not in the upper
triangular form. The elements below the diagonal are removed and derived the upper triangular

matrix R. This is shown graphically in Figure 4.19 below.

A After Block Factorization
81 22 85 =4 a5 a6 a7 a8
il‘] 210 a1l 212 al13 al4 al5 alk
%mmmmmmmm
insmmmmmmm ‘
gmmmmmmmm‘
{41 842 343 244 345 246 347 348,
%mm-sam-ssmussﬁé
iﬁmﬁmmmmm

Figure 4.19 Remove the elements below the diagonal in R matrix

Now the last part of the implementation is to derive the Q matrix from the matrix R. Pseudo code

of the implemented code block in this GPU only QR factorization is below shown in Figure 4.20.

FOR each column in the columnSets
FOR each rowPanel in the panelsForRows
ProcessDeriveQfromR(SelectedPanel)
EMND FOR
EMD FOR

Figure 4.20 Deriving Q from R matrix
In this code segment, the algorithm is recurring through the panels and then compute the Q at the
end of this loop. The derivation of Q is implemented as recursive steps but for the understanding
purposes one recursion is shown in Figure 4.21, Figure 4.22, Figure 4.23, Figure 4.24 and Figure

4.25 of the panel 1 first recursion in the process.

Panel 1 of column 1

Panel 1

=

Figure 4.21 ldentifying the panel 1 From the R (copy of R matrix)
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Figure 4.22 Calculate Q based on the 1st column of the panel 1
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Figure 4.23 Calculate Q based on the 2nd column of the panel 1
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Figure 4.24 Calculate Q based on the 3rd column of the panel 1

l ‘ v Previous O H

Q
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Figure 4.25 Calculate Q based on the 4th column of the panel 1
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In this implementation code segment, initially Q matrix is an identity matrix and with V values of
the columns in the iterations H matrix is computed. Then the Q matrix is copied to the previous Q
matrix and then performed the previousQ x H matrix multiplication. To perform the matrix
multiplication no library is used with GEMM routine. Because to save the time to create the handle
and streams in the cuBLAS library function calls. After iterating through all the row panels in every

column set, the Q matrix is computed. And this way is implemented in this GPU only QR approach.
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5 EVALUATION AND RESULTS
5.1 Evaluation Procedure

In this research, there are two different algorithms to be evaluated. First one is LU factorization
and the next one is QR factorization. So the two factorization algorithms are evaluated separately.

Following scenarios/points will be evaluated in this research evaluation.

In LU and QR factorizations, currently available expensive CPU-to-GPU communications and
tuning challenges are going to be evaluated in the CUDA platform in terms of the performance
(execution runtimes) to perform the algorithms. LU and QR factorizations are going to be evaluated
on a NVIDIA MX130 GPU and the implementation to be executed on the GPU only environment.

As a safety precaution to the hardware device (The computer), runtimes are to be taken in a much

cooler environment to avoid the excessive heating of the hardware device.

To compare the results against our implementation, implement the best possible LU and QR
factorizations on multicores as well. In such ways like using cuSOLVER, LAPACK and OpenMP
too. The plan is to input the input matrices to the cuSOLVER, LAPACK and OpenMP implemented
LU and QR factorization algorithms and get the results with spent time. And then execute the same
input data to the GPU only implemented LU factorization and QR factorization algorithms and get
the results along with the spent time. Now the evaluation can be performed to the two different
algorithms in separate ways, in another words, a result analysis of GPU only implementation
execution against both multicore implementation execution and the NVIDIA cuSOLVER GPU

only implementation execution.

In this way, it possible and logical to perform the evaluation under these conditions and criteria to
perform a valid evaluation. The same dataset is being used to both GPU only and multicore
implementations due to the fact that the input can be kept as a constant, so the result should be
different when the process is being different.

43



5.2 Result Analysis of GPU only LU Factorization Implementation

5.2.1 Accuracy

In order to validate the implemented GPU only LU factorization algorithm, L resulting matrix and
U resulting matrix is separately multiplied using a third party application and compared with the
input matrix. The input matrix is divided into 4 matrices and the output also a combination of 8

matrices. Structure of the input matrices are shown in Figure 5.1 below.

= = All =d Al Matrix
A2=d A2 Matrix

A3 =d_A3 Matrix

A A A4=d_A4 Matrix

Figure 5.1 Structure of the Input matrix for LU factorization

4x4 Matrix
The input matrix and the output matrices for the 4x4 LU matrix factorization is shown below

respectively in Figure 5.2 and Figure 5.3.

d L1 Matrix
1.000 0.000
2.000 1.000
d Ul Matrix
5.000
-4.000
d L3 Matrix
3.000 2.000
4.000 3.000

d A1 Matrix
1.000 5.000
2.000 6.000
d A2 Matrix
9.000 13.000
10.000 14.000

d A3 Matrix
7.000
8.000
d A4 Matrix
11.000 15.000
12.000 16.000

d U2 Matrix

9.000 13.000

-8.000 -12.000

d L4 Matrix
0.000
1.000

d U4 Matrix

Figure 5.2 Initiated 4x4 input matrix

Figure 5.3 Output matrices for the 4x4 LU factorization
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Obtained the output matrices are multiplied separately and those results are shown in Figure 5.4

below.

Input matrix A:

1.000 ©0.000 0.0 0.000
2.000 1.000 0.000 0.000
3.000 2.000 1.000 0.000
4.000 3.000 0.000 1.000

Input matrix B:

.000 5.000
.000 -4.000
.000 0.000
.000 0.000

.000 13.000
.000 -12.000
. 000 0.000
. 000 0.000

(oo ol g
1
(oo NN+

Matrix product A*B

1.000 5.000 9.000 13.000
2.000 6.000 10.000 14.000
3.000 7.000 11.000 15.000
4.000 8.000 12.000 16.000

Figure 5.4 Third party application Matrix Multiplication

Compare the accuracy of the computation is derived using Equation 24 and depicted below in

Figure 5.5.
Accuracy = ThirdPartyMatrixMultiplication(A) — Input Matrix(B) Equation 24

Input matrix A:

1.000 5.000 9.000 132.000
2.000 6.000 10.000 14.000
2.000 T7.000 11.000 15.000
4.000 8.000 12.000 16.000

Input matrix B:

1.000 S5.000 $.000 13.000
2.000 6§.000 10.000 14.000
2.000 7.000 11.000 15.000
4._.000 8.000 12.000 16.000

Matrix difference A + B

0.000 0.000 0.000 O0.000
0.000 0.000 0.000 O0.000
0.000 ©.000 0.000 0.000
0.000 0.000 0.000 O0.000

Figure 5.5 Compare the accuracy of 4x4 matrix
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5.2.2 Speed

The runtime of the implemented LU factorization algorithm is shown below in Figure 5.6.

Runtime(ms)

34000
32000
30000
28000
26000
24000
22000
20000
18000
16000
14000
12000
10000

8000

6000

4000

2000

e RUntime(ms)

Figure 5.6 Runtimes of the GPU only LU Factorization
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5.2.3 Performance

For different square matrix sizes, execution runtime of the suggested GPU only LU factorization
along with the LAPACK, OpenMP and cuSOLVER implemented execution runtimes are listed
below in Table 5.1. The algorithms are performed using an intel™ core i5-8250U CPU and

NVIDIA MX130 GPU.

32 x
64 x
128 x
256 x
512 x
1020 x
2044 x
3064 x
4092 x
5104 x
6136 x
7168 x
8192 x

32
64
128
256
512
1020
2044
3064
4092
5104
6136
7168
8192

0.25

0.67

3.91
12.15
42.82
225.58
1,599.40
5,552.87
13,388.54
26,219.65
45,493.97
72,237.90
107,381.24

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

0.85

2.08

6.51

30.63
139.47
1,382.57
23,893.78
84,654.17
246,066.61
420,504.58
793,057.21
1,207,118.18
1,914,888.66

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

157.15
158.40
159.61
165.45
177.16
242.01
551.58
1,255.73
2,531.16
4,626.95
7,600.19
11,558.07
17,391.10

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

281.12
281.98
282.52
288.12
310.64
371.69
671.93
1,361.52
2,666.23
4,652.08
7,521.72
11,440.38
16,723.41

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

Using the runtimes in Table 5.1 derived performance of the GPU only implemented LU
factorization against other implementations are list below in Table 5.2 below.

32
64
128
256
512
1024
2048
3072
4096
5120
6144
7168
8192

Table 5.1 Runtimes in milliseconds of LU factorization Implementations

32 x
64 x
128 x
256 x
512 x
1024 x
2048 x
3072 x
4096 x
5120 x
6144 x
7168 x
8192 x

-280.87
-281.31
-278.61
-275.97
-267.82
-146.11
927.47
4,191.35
10,722.31
21,567.57
37,972.25
60,797.52
90,657.83

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

2

415,852.50
785,535.49

11

1,898,165.25

-280.27
-279.90
-276.01
-257.49
-171.17
1,010.88
23,221.85
83,292.65
43,400.38

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

95,677.80

-123.97
-123.58
-122.91
-122.67
-133.48
-129.68
-120.35
-105.79
-135.07
-25.13
78.47
117.69
667.69

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

Table 5.2 Performance of the GPU only Implemented LU Factorization Algorithm
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When the matrix size gets larger the suggested GPU only LU factorization algorithm starting to
perform better in terms of the runtime. The algorithm started to perform better in the matrix size of
1024x1024 against the OpenMP implementation and in the matrix size 6144x 6144 and in above
sizes, suggested LU factorization algorithm outperform LAPACK LU implementation, OpenMP
LU implementation and NVIDIA cuSOLVER implementation as shown in Table 5.2.

5.3 Result Analysis of GPU only QR Factorization Implementation
5.3.1 Accuracy

In order to validate the implemented GPU only QR factorization algorithm, Q resulting matrix and
R resulting matrix is separately multiplied using a third party application and compared with the

input matrix.

4x4 Matrix
The input matrix and the output matrices for the 4x4 QR matrix factorization is shown below

respectively in Figure 5.7 and Figure 5.8.

A Matrix 4
0.000000
1.000000

4 :
.000000 8.000000 12.000000
.000000 9.000000 13.000000

2.000000
3.000000

.000000 10.000000 14.000000
.000000 11.000000 15.000000

Figure 5.7 Initiated 4x4 input matrix

R Matrix 4 x 4 :

-3.741657 -10.155927 -16.570196 -22.984465
0.000000 -4.780914 -9.561830 -14.342741
0.000000 0.000000 -0.000002 -0.000001
0.000000 0.000000 0.000000 0.000000

0.545979 ms

Time to compute the 4x4 Q matrix =
QMatrix 4 x 4 :

0.000000
-0.267261
-0.534522
-0.801784

-0.836660
-0.478091
-0.119523

0.239046

0.543821
-0.676453
-0.278557

0.411189

0.065259
-0.492353
0.788927
-0.361834

Figure 5.8 Output matrices for the 4x4 QR factorization
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Obtained output matrices are multiplied separately and those results are shown in Figure 5.9 below.

Input matrix A:

0.000 -0.837 0.544 0.065
-0.267 -0.478 -0.676 -0.492
-0.535 -0.120 -0.279 0.789
-0.802 ©0.239 0.411 -0.362

Input matrix B:

-3.742 -10.156 -16.570 -22.984
0.000 -4.781 -9.562 -14.343
©0.000 0.000 ©.000 0.000
©.000 0.000 0.000 0.000

Matrix product A*B

0.0 4.000 38.000 12.000
1.660 5.000 9.000 13.000
2.060 6.000 10.000 14.000
3.660 7.000 11.000 15.000

Figure 5.9 Third party application Matrix Multiplication

Compare the accuracy of the computation is derived using Equation 24 and depicted below in
Figure 5.10.

Input matrix A:

0.000 4.000 8.000 12.000
1.000 5.000 9.000 13.000
2.000 6.000 10.000 14.000
3.000 7.000 11.000 15.000

Input matrix B:

0.000 4.000 8.000 12.000
1.000 5.000 9.000 13.000
2.000 6.000 10.000 14.000
3.000 7.000 11.000 15.000

Matrix difference A + B

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
o.000 0.000 0.000 0.000

Figure 5.10 Compare the accuracy of 4x4 matrix
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5.3.2 Speed

The runtime of the implemented QR factorization algorithm is shown below in Figure 5.11.

Runtime(ms)

760,000.00
720,000.00
680,000.00
640,000.00
600,000.00
560,000.00
520,000.00
480,000.00
440,000.00
400,000.00
360,000.00
320,000.00
280,000.00
240,000.00
200,000.00
160,000.00
120,000.00

80,000.00

40,000.00

e Runtime(ms)

Figure 5.11 Runtimes of the GPU only QR Factorization
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5.3.3 Performance

The same approach has been used for the suggested GPU only QR factorization algorithm
implementation runtime along with the LAPACK, OpenMP and cuSOLVER implemented QR
factorization execution runtimes are listed below in Table 5.3. The algorithms are performed using
an intel™ core i5-8250U CPU and NVIDIA MX130 GPU.

32 x 32 0.43 ms 1.79 ms 292.37 ms 295 ms
64 x 64 1.74 ms 4.28 ms 292.74 ms 17.65 ms
128 x 128 7.48 ms 13.38 ms 300.39 ms 200.23 ms
256 x 256 32.03 ms 48.15 ms 331.07 ms 2,218.63 ms
512 x 512 168.06 ms 276.04 ms 403.56 ms 38,918.41 ms
1020 x 1020 1,345.56 ms 1,992.98 ms 883.40 ms 687,278.58 ms
2044 x 2044| 13,466.73 ms 16,576.75 ms 4,252.15 ms | N/A ms
3064 x 3064| 48,969.83 ms 53,317.38 ms 13,205.76 ms | N/A ms
4092 x 4092| 120,258.09 ms | 116,194.27 ms 29,902.91 ms | N/A ms
5104 x 5104| 238,777.74 ms | 216,315.42 ms 58,918.76 ms | N/A ms
6136 x 6136| 413,846.63 ms | 361,181.52 ms 100,100.82 ms | N/A ms
7168 x 7168| 663,353.07 ms | 561,909.18 ms 158,961.61 ms | N/A ms

Table 5.3 Runtimes in milliseconds of QR factorization Implementations

Using the runtimes in Table 5.3 derived performance of the GPU only implemented QR
factorization against other implementations are list below in Table 5.4 below. After analyzing these
runtimes against the suggested GPU only QR factorization implementation, there are no matrix
sizes available which outperform the runtimes with LAPACK, OpenMP and cuSOLVER
implemented QR factorization runtimes. But for every matrix size up to 128x128 matrix, the
suggested GPU only QR factorization algorithm performs better than the cuSOLVER library

related QR factorization implementation runtimes.

With the suggested GPU only QR factorization implementation, it was only possible to execute
matrix sizes up to 1024x1024. Beyond this matrix size, QR factorization will take a massive time
to execute the algorithm and mostly failed to produce the two output matrices. And the problem
identified here was a matrix multiplication with another computationally expensive code when

deriving the Q matrix in the QR factorization.
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32 x 32 -2.51 ms -1.16 ms 289.42 ms
64 x 64 -15.91 ms -13.37 ms 275.09 ms
128 x 128 -192.75 ms -186.84 ms 100.16 ms
256 x 256 -2,186.61 ms -2,170.48 ms -1,887.56 ms
512 x 512 -38,750.35 ms -38,642.37 ms -38,514.85 ms
1020 x 1020 -685,933.02 ms| -685,285.60 ms -686,395.18 ms
2044 x 2044 N/A ms N/A ms N/A ms
3064 x 3064 N/A ms N/A ms N/A ms
4092 x 4092 N/A ms N/A ms N/A ms
5104 x 5104 N/A ms N/A ms N/A ms
6136 x 6136 N/A ms N/A ms N/A ms
7168 x 7168 N/A ms N/A ms N/A ms

Table 5.4 Performance of the GPU only Implemented QR Factorization Algorithm
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6 CONCLUSION AND FUTURE WORK
6.1 Conclusion

The work described in this thesis considered developing GPU only implementations of LU and QR
factorization algorithms for high performance. This research project aimed to introduce new GPU
only implementations with the CUDA programming language in an interactive way with using the

kernel function calls which support the parallel code execution.

The research focused on new implementations for executing the GPU only LU factorization and
QR factorization using the matrix as small blocks and by using these matrix blocks to perform the
factorizations. This is known as block matrix factorization. Parallel computing is a popular research
area which combines both the fields of computer science and parallel computing. Implemented
GPU only LU and QR factorization algorithms are focused on factorization matrices of the square
matrices. Based on the input matrix the algorithm will define the block size and perform the steps
accordingly. The input matrix is first copied into the GPU memory and the GPU only algorithms

are processing the factorization steps using the GPU memory until the factorization is completed.

The research was conducted in a Linux environment with a NVIDIA MX130 GPU. The reason to
choose this GPU for the research is NVIDIA MX130 is a CUDA enabled, well-constructed and
relatively inexpensive graphics card. The main discussion carried was about two different ways of
implementing LU and QR factorizations for high-performance completely using GPU only
executions [2], [8], [9], with the advantage gained through the CUDA programming platform. The
problem attempted in this project is novel because there is a need for the development of high-

performance LU and QR factorizations using GPU only implementations.

6.2 Achievements

Overall, LU factorization and QR factorization algorithms are completely executed on the GPU
using the proposed block matrix factorization concept implementation. Due to this reason,
expensive CPU-GPU communication has been eliminated in both LU and QR factorization
implementations. As a result of this GPU only implementation, both panel factorization and trailing
matrix update is processed in the GPU, using different GPU streams. For LU factorization, our

implementation starts to perform well with the square matrix 6144 and upwards. Also, this research
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work was able to capture a few areas/sections of computationally expensive calculations.
Suggested implementation was focused to reduce the complexity without affecting the accuracy of
the code.

Opportunity to contribute to a state of the art technology which would be the next generation of

computer science and parallel computing area was another satisfactory achievement.

6.3 Problems Encountered and Limitations

Only the square matrices were considered in this research. Since the block matrix factorization
concept has been used for this research the input matrix should be able to be represented as a 2"

value especially for the LU factorization implementation in order to execute the factorization.

With the suggested GPU only QR factorization implementation, it was only possible to execute
matrix sizes up to 1024x1024. Beyond this matrix size, QR factorization will take a massive time
to execute the algorithm and mostly failed to produce the two output matrices. And the problem
identified here was a matrix multiplication with another computationally expensive code when
deriving the Q matrix in the QR factorization. This is the main drawback of this computation

towards performance.

With the execution of these two implementations, computer devices are emitting a considerable
amount of heat. So the algorithms are recommended to be executed in much cooler environmental

conditions to minimize the risk of damaging the computer devices.

6.4 Lessons Learnt and Contributions

The research work gave a vast amount of research and development experience in the parallel
computing and computer science domains. Exposure to the online communities in those disciplines
provided opportunities to acquire expertise knowledge to accomplish the initial objectives and the

main aim.

With regard to the technological aspect, it was a spectacular experience to gather new knowledge

in leading-edge technology to provide something useful for society.
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Performance analysis of suggested GPU only LU and QR factorization implementation runtimes
against the NVIDIA cuSOLVER, OpenMP and LAPACK LU and QR factorization runtimes could
be used by the research community. It is hoped that the work mentioned in this thesis contributes

to both the fields of parallel computing and computer science.

6.5 Future Work

This research leaves a lot of room for further extensions and improvement in both LU and QR
factorization algorithms using on GPU only executions. For example, implemented factorization
algorithms are only able to process square matrices with even numbers for GPU only execution.

Other types of matrices are to be implemented as future work.

Further research work could be carried out on deriving the Q matrix in the QR factorization in a
much faster and an optimized way because the current implementation of deriving the Q matrix in
this research is computationally very expensive and algorithm is unable to process after 1024x1024
matrix size. As an improvement, it can further develop to minimize the runtime and maximize the
performance to derive the Q matrix which will make the GPU only QR factorization algorithm
more efficient as the end result.
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APPENDIX A — RUNTIME RESULTS
LU FACTORIZATION RUNTIMES

GPU only LU matrix factorization implementation runtimes are shown below in Table A.1.

2x 32 280.40 0.0253120 0.01 0.40 0.02 0.01 0.01 0.18 0.06 281.12 ms

64 x 64 280.70 0.0295680 0.01 0.63 0.08 0.02 0.01 0.40 0.10 281.98 ms

128 x 128 280.07 0.0043840 0.01 1.03 0.28 0.05 0.01 0.86 021 28252 ms

256 x 256 282.47 0.0047040 0.01 1.75 1.16 0.21 0.01 1.86 065 288.12 ms
512y 512 29252 0.0046400 0.01 470 497 1.79 0.01 4.29 235 310.64 ms

| 1024 x 1024 297.15 0.0048000 0.02 12.39 27.58 12.82 0.01 14.72 7.00 371.69 ms
| 2048 x 2048 326.10 0.0094080 0.02 51.52 140.05 82.62 0.01 4540 2620 671.93 ms
| 3072x 3072 380.59 0.0021440 0.03 13066 393.06 276.64 0.01 12470 5583  1,361.52ms
| 4096 x 4096 43161 0.0061760 0.03 264.55 975.52 646.21 0.01 263.04 8525 2,666.23 ms
| §120x 5120 512.94 0.0064320 0.03 488.13 177322 125972 0.01 48879 12923  4,652.08 ms
| 6144 x 6144 612.91 0.0051520 0.03 819.82 290625  2,173.02 0.01 82445 18522 7,521.72ms
| 7168 x 7168 72328 0.0048960 0.03 1.274.88 445892 345795 0.01 1,276.55 248.76 11,440.38 ms
| 8192x 8192 86187 0.0037760 0.04 187761 6603.84  5173.85 0.01 188417 32202 1672341 ms
| 9216 x 9216 999.82 0.0043200 0.04 2689.76 8969.38  7,334.23 0.01 268549 41231 23,091.04 ms
| 10240 x 10240 1,167.59 0.0059200 0.04 3,682.59 12,114.58  10,060.73 0.01 3676.58 50563 31,207.76 ms

Table A.1 GPU only LU matrix factorization implementation runtimes

NVIDIA cuSOLVER LU factorization implementation runtimes are shown in Table A.2, OpenMP
LU factorization implementation runtimes are shown in Table A.3 and LAPACK LU factorization

implementation runtimes are shown in Table A.4 below.

32x 32 156.61 0.0243520 0.01 043 0.08 157.15 ms
64 x 64 157.45 0.0032320 0.01 0.78 0.15 158.40 ms
128 x 128 157.53 0.0038080 0.01 1.57 0.49 159.61 ms
256 x 256 159.15 0.0037120 0.01 4.54 1.74 165.45 ms
512 x 512 159.51 0.0048320 0.01 1237 5.26 177.16 ms
1024 x 1024 170.97 0.0045440 0.01 54.83 16.20 242.01 ms
2048 x 2048 216.48 0.0040320 0.01 265.00 70.08 551.58 ms
3072 x 3072 29145 0.0042240 0.01 820.87 143.39 125573 ms
4096 x 4096 392.27 0.0043520 0.01 1,862.90 25596  2,531.16 ms
5120 x 5120 528.15 0.0059840 0.02 3,720.74 378.04  4,626.95 ms
6144 x 6144 695.07 0.0051840 0.03 6,360.85 54423  7600.19 ms
7168 x 7168 886.16 0.0062080 0.04 9,942.04 72992 11,558.07 ms
8192 x 8192 1,243.92 0.0082560 0.05 14,627.50 1519.63 17,391.10 ms

Table A.2 NVIDIA cuSOLVER LU factorization implementation runtimes
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32x 32

64 x B4
128 x 128
256 x 256
512 x 512
1024 x 1024
2048 x 2048
3072 x 3072
4096 x 4096
5120 x 5120
6144 x 6144
7168 x 7168
8192 x 8192

0.09
0.34
1.34
5.32
a.87
31.42
112.75
194.13
507.26
672.91
724.98
979.00
1,148.53

Table A.3 OpenMP LU factorization implementation runtimes

1,
1F

0.75

1.74

517

2531
130.60
1,351.15
23,781.03
84,460.04
245 559.35
419 831.67
792,332.24
206,139.18
913,740.13

0.85 ms

2.08 ms

6.51 ms

3063 ms
139.47 ms
1,382 57 ms
23,893.7T8 ms
84 654 17T ms
246 066 61 ms
420,504 58 ms
793,057 21 ms

1,207,118.18 ms
1,914 888 66 ms

32 x 32

64 x 64
128 x 128
256 x 256
512 x 512
1024 x 1024
2048 x 2048
3072 x 3072
4096 x 4096
5120 x 5120
6144 x 6144
7168 x T168
8192 x 8192

0.05
0.21
1.26
6.02
8.60
25.05
83.85
188.51
297 .44
466.45
653.47
905.60
1,173.34

Table A.4 LAPACK LU factorization implementation runtimes

60

0.20

0.46

265

6.12
3422
200.54
1,515.55
5,364 36
13,091.10
2575320
44,840.50
71,332.30
106,207 .90

0.25 ms

0.67 ms

39 ms
12.15 ms

42 82 ms
22558 ms
1,599 40 ms
5,552 87 ms
13,388.54 ms
26 219 65 ms
45,493 97 ms
T2 237 90 ms
107,381.24 ms



QR FACTORIZATION RUNTIMES

GPU only QR matrix factorization implementation runtimes are shown below in Table A.5. Unlike

GPU only LU factorization implementation, several panel block sizes have used in this GPU only

QR factorization implementation to derive the QR factorization runtime of a one particular matrix
size. Records for the Table A.5 is derived using Table A.6 to Table A.11 and the fastest runtime of

the matrix size will be represented as the records in the Table A.5 and as the final runtime of the

QR factorization implementation runtimes.

0.021935 0.022888 0.004053 2.898932 295 ms 32:8
| 64 x 64 0.041962 0.209093 0.008821 17.392874 17.65 ms 64x4
128 x 128 0.022888 0.020027 0.003099 200.181961 200.23 ms 128x32
256 x 256 0.036001 0.156164 0.014067 2218.424082 2,218.63 ms 256x16
512x 512 0.051022 0.563860 0.006914 38917.788982  38,918.41 ms 512x4
1024 x 1024 0.136852 1.153946 0.007153  687277.280092  687,278.58 ms 1024x4
2048 x 2048 N/A ms
3072 x 3072 N/A ms
4096 x 4096 N/A ms
5120 x 5120 N/A ms
6144 x 6144 N/A ms
7168 x 7168 N/A ms

Table A.5 GPU only QR factorization implementation runtimes

In the Table A.6 to Table A.11, the green colored record is the fastest matrix factorization for that

particular matrix size and the gray color record is discarded due to the improper matrix size is

shown in the result with respect to the selected block panel size.

0.02194 000310 1596594 16.15 ms

0.15998
0.05317 28x28

16x8 0.02503 0.00 6.4 6.56 ms

0.04292
324 0.04602 0. 0.01001 4.62699 4.80 ms
| 38 002194 002289 0.00405 280893 295 ms
32x16 0.02694 0.01597 0.00382 3.17788 3.22ms

Table A.6 GPU only QR factorization for 32x32 matrix
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128x8

16x4
16x8

0.02313

0.038147
0.071049

0.02694
0.02384

0.02384
0.02289

0.025988
0.025988
0.025088

0.02503
0.06485
0.03099
0.03099

0.06509

0.030994

0.056028
0.025988

177.93703
68.88604
95.06202

98.22893

0.072002 0.006914 35.015106
0.089169 0.015974 20.60008

178.60 ms
69.15 ms
95.25 ms

35.13 ms
20.78 ms

Table A.7 GPU only QR factorization for 64x64 matrix

2.33316 2,530.56884
0.61989 1,264.92786

0.22388 470.63899
0.15807 831.46095

0.145197  0.004053  208.918095
0072956 0.004053  210.35099
0.037909  0.003815  203.536987

128x128

2,532.93 ms
1,265.58 ms

470.89 ms
831.65 ms

209.09 ms
210.45 ms
03.6 ms

Table A.8 GPU only QR factorization for 128x128 matrix

93.09006 0.00906 69,751.92
16.16812 0.03099 24,107.09
3.51787 0.00882 35,352.23

2.15507 0.01001 10,903.41

2.67100 0.02885 19,461.76

0.334978 0.00906 7,296.48

1.005173 0.008108 2,226.37
0.149012 0.006199 2,221.76

£69,845.05 ms
24,123.35 ms
35,355.79 ms
10,905.60 ms

19,464.52 ms

7.296.85 ms

Table A.9 GPU only QR factorization for 256x256 matrix
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60x60
56x56

124x124

116x116

124x124
120x120
112x112

248x248

244x244
232x232

252x252
248x248
240x240
224x224



512x512

0.05508 436,704.62
0.05102 639,286.55

0.052214 1.876116 0.007868 202,622.39 20262433 ms

128x32 0.051975 0.289917 0.008821 12150022 12150057 ms

512%8 0.052214 0.283003 0.006914 38931.33593 3893168 ms

Table A.10 GPU only QR factorization for 512x512 matrix

0.135183 1.694918 1,010,080.96  1,010,082.80 ms

0.137091 0.874996 101937122  1019372.24 ms

Table A.11 GPU only QR factorization for 1024x1024 matrix
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NVIDIA cuSOLVER QR factorization implementation runtimes are shown in Table A.12,
OpenMP QR factorization implementation runtimes are shown in Table A.13 and LAPACK QR

factorization implementation runtimes are shown in Table A.14 below.

32x 32 292.01 0.0249600 0.01 0.29 0.04 292.37 ms
64 x 64 291.26 0.0051840 0.01 1.38 0.08 292.74 ms
128 x 128 294.94 0.0052800 0.18 5.00 0.26 300.39 ms
256 x 256 296.91 0.0046720 0.18 27.04 6.94 331.07 ms
512 x 512 298.31 0.0056960 0.18 97.95 7.1 403.56 ms
1024 x 1024 303.83 0.0061120 0.20 568.91 10.45 883.40 ms
2048 x 2048 332.04 0.0077200 0.24 3,865.96 53.90 425215 ms
3072 x 3072 406.73 0.0047360 0.24 12,695.76 103.03  13,205.76 ms
4096 x 4096 471.79 0.0051520 0.24 29,259.33 171.54  29,902.91 ms
5120 x 5120 553.65 0.0073200 0.25 58,105.42 25943 58,918.76 ms
6144 x 6144 659.70 0.0076720 0.25 99,073.90 366.96 100,100.82 ms
7168 x 7168 796.14 0.0079600 0.26 157,671.11 494.09 158,961.61 ms
8192 x 8192 947.53 0.0079400 0.26 232,099.32 647.93 233,695.05 ms

Table A.12 NVIDIA cuSOLVER QR factorization implementation runtimes

32x 32 0.63 1.16 1.79 ms
64 x 64 0.66 3.62 4.28 ms
128 x 128 0.70 12.68 13.38 ms
256 x 256 0.73 47.43 48.15 ms
512 x 512 0.66 275.38 276.04 ms
1024 x 1024 0.72 1,992.26 1,992.98 ms
2048 x 2048 0.61 16,576.14 16,576.75 ms
3072 x 3072 0.61 53.316.76 53,317.38 ms
4096 x 4096 0.92 116.193.35 116,194.27 ms
5120 x 5120 0.69 216.314.74 216,315.42 ms
6144 x 6144 0.84 361,180.68 361,181.52 ms
7168 x 7168 0.74 561,908.44 561,909.18 ms

Table A.13 OpenMP QR factorization implementation runtimes

32x 32 0.09 0.35 0.43 ms
64 x 64 0.25 1.49 1.74 ms
128 x 128 0.89 6.59 7.48 ms
256 x 256 5.55 26.48 32.03 ms
512 x 512 9.02 159.03 168.06 ms
1024 x 1024 27.19 1,318.37 1,345.56 ms
2048 x 2048 84.82 13.381.91 13,466.73 ms
3072 x 3072 173.83 48,796.00 48,969.83 ms
4096 x 4096 296.89 119,961.20 120,258.09 ms
5120 x 5120 465.74 238,312.00 238, 777.74 ms
6144 x 6144 658.63 413,188.00 413,846.63 ms
7168 x 7168 900.07 662,453.00 663,353.07 ms

Table A.14 LAPACK QR factorization implementation runtimes
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APPENDIX B - RESULTS ACCURACY
GPU ONLY LU FACTORIZATION IMPLEMENTATION
8x8 Matrix

The input matrix and the output matrices for the 8x8 LU matrix factorization is shown below
respectively in Figure B.1 and Figure B.2.

d A1 Matrix

1.000
2.000
3.000
4.000

9.000

10.000
11.000
12.000

d_A2 Matrix

33.000 41.000
34.000 42.000
35.000 43.000
36.000 44.000

d A3 Matrix

d L1 Matrix
0.000
1.000
2.000
3.000

d U1 Matrix
9.000

-8.000

0.000
0.000
d L3 Matrix
4.000
5.000
6.000
7.000

5.000
6.000
7.000
8.000

13.000
14.000
15.000
16.000

d_A4 Matrix

37.000
38.000
39.000
40.000

45.000
46.000
47.000
48.000

Figure B.1 Initiated 8x8 input matrix

Figure B.2 Output matrices for 8x8 LU factorization

d_U2 Matrix

33.000 41.000
-40.000

-32.000
0.000 0.000
0.000 0.000
d L4 Matrix
1.000 0.000
0.000 1.000
0.000 0.000
0.000 0.000
d U4 Matrix
0.000
0.000
0.000
0.000
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49.000

-48.000
.000
0.

0

000

.000
.000
.000
.000

.000
.000
.000
.000

57.000

-56.000
0.
0.

000
000

.000
.000
.000
.000

.000
.000
.000
.000




Obtained the output matrices are multiplied separately and those results are shown in Figure B.3

below.

Input matrix A:

1.080 9.000 P.0E0 D.EE0 ©.800 0.000 B.000 O.E0O
2.000 1.000 0.008 D.EE0 0.800 0.060 B.088 0.000
3.000 2.000 1.000 0.GC0 0.800 0.000 0.0 0.000
4.0800 3.000 0.006 1.000 0.860 @.080 8.008 B.008
5.000 4.000 9.000 D.6E0 1.000 0.000 B.008 0.000
6.080 5.000 D.00P O.000 ©.000 ©.000 O.000 O.0O0Q
7.080 6.000 D.EO8 0.G00 B.8900 0.09Q B.000 1.808

B.000 7.000 D.000 O.000 ©.000 1,000 0.000 O.GO00

Input matrix B:

l.00@ 9.098@ 17.000 25.000 33.000 41.000 49.880 57.000
g.000 -8.060 -16.000 -24.Q000 -32.000 -40.000 -48.080 -56.000
g.008 ©.900 B.000 ©.000 @.000 ©0.000 ©O.000 @.000

2.000 g.086 @.000 e.008 g.8ea 0.008 g.080 0.0ea
@.0080 ©.800 @.000 ©.600 ©.960 0.000 ©.000 g.e00
g.008 O.0e0 U.0ee ©.000 0.800 0.0 ©.000 g.e00
0.008 g.88ea 0.0e0 8.0ea a.eea B.068 g.08ee8 B.8e8
g.000 0.080 0.0 ©.080 B.800 0.008 ©.000 B.000

Matrix product A*B

.000 9.000 17.000 25.000 33.000 41.000 49.000 57.000
.000 10.000 18.000 26.000 34.000 42.000 50.000 58.000
.000 11.000 19.000 27.000 35.000 43.000 51.000 59.000
.000 12.000 20.000 28.000 36.000 44.000 52.000 60.000
.000 13.000 21.000 29.000 37.000 45.000 53.000 61.000
.000 14.000 22.000 30.000 38.000 46.000 54.000 62.000
.000 15.000 23.000 31.000 39.000 47.000 55.000 63.000
.000 16.000 24.000 32.000 40.000 48.000 56.000 64.000

O~ sEWNBE

Figure B.3 Third party application Matrix Multiplication
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Compare the accuracy of the computation is derived using Equation 24 and depicted below in
Figure B.4.

Input matrix A:

1.000 9.000 17.000 25.000 33.000 41.000 49.000 57.000
2.000 10.000 18.000 26.000 34.000 42.000 50.000 58.000
5.000 11.000 19.000 27.000 35.000 43.000 51.000 59.000
4.000 12.000 20.000 28.000 36.000 44.000 52.000 &0.000
5.000 13.000 21.000 29.000 37.000 45.000 53.000 &1.000
§.000 14.000 22.000 30.000 38.000 46.000 54.000 &2.000
7.000 15.000 23.000 31.000 39.000 47.000 55.000 &3.000
B.000 16.000 24.000 32.000 40.000 48.000 56.000 &4.000

Input matrix B:

1.000 9.000 17.000 25.000 33.000 41.000 49.000 57.000
2.000 10.000 18.000 26.000 34.000 42.000 50.000 5B8.000
5.000 11.000 19.000 27.000 35.000 43.000 51.000 59.000
4,000 12.000 20.000 28.000 36.000 44.000 52.000 &0.000
5.000 13.000 21.000 29.000 37.000 45.000 53.000 &1.000
§.000 14.000 22.000 30.000 38.000 46.000 54.000 &2.000
7.000 15.000 23.000 31.000 39.000 47.000 55.000 &3.000
£.000 16.000 24.000 32.000 40.000 48.000 56.000 &4.000

Matrix difference A + B

0.000 O0.000 O0.000 O.000 0.000 O.000 0.000 0.000

0.000 O.000 O.000 O.000 0.000 O.000 0.000 0.000

0.000 ©.000 O.000 0.000 0.000 O.000 0.000 0.000

0.000 ©.000 0.000 0.000 0.000 O.000 0.000 0.000

0.000 ©.000 0.000 0.000 0.000 O.000 0.000 0.000

0.000 ©.000 O.000 0.000 0.000 O.000 0.000 0.000

0.000 ©0.000 0.000 0.000 0.000 O.000 0.000 0.000

0.000 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure B.4 Compare the accuracy of 8x8 matrix
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16x16 Matrix

The input matrix and the output matrices for the 16x16 LU matrix factorization is shown below
respectively in Figure B.5 and Figure B.6.

d_Al1 Matrix
.000 17.
.000 18.
.000 19.
.000 20.
.000 21,
.000 22.
.000 23
.000 24,
_A2 Matrix
129.000 145.
130.000 146.
131.000 147.
132.000 148.
133.000 149.
134.000 150.
135.000 151.
136.000 152.
d_A3 Matrix
9.000 25.
10.000 26.
11.000 27.
12.000 28.
13.000 29.
14.000 30.
15.000 31.
16.000 32.
d_A4 Matrix
137.000 153.
138.000 154.
139.000 15S5.
140.000 156.
141.000 157.
142.000 158.
143.000 159.
144.000 160.

N -

ao~~NOTunmbLsWw

Figure B.5 Initiated 16x16 input matrix
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d_L1 Matrix
0.000 0.000 0.000 0.0006 6.006 06.000 0.000
1.000 0.000 0,000 0,000 06,000 0,000 0.000
2.060 1.600 0.000 0.0006 O0.006 6.000 .06
j.0e0 ©.600 1,000 0,006 0.000 0.000 800
4.000 0.600 0.600 1.006 6.000 6.000 L0690
5.000 ©.000 0.000 0.008 1.000 0.060 009
6.060 0.000 0.600 0.000 0,000 1.000 L0600
7.0860 0.000 ©0.000 0.006 0.000 0.080 860
d_U1 Matrix
17.000 33.000 49.000 65.000 81.060 97.000 113,000
<16,000 32,000 -48,000 -04,.000 -80.000 906,000 -112.000
0.080 .600 0.000 0.006 6.P66 ©.060 060
9.000 .000 0,000 0,000 0,000 0,000 L0090
0.0060 .000 0.000 0.006 0.006 O.000 .009
©.000 .000 0.000 0,000 0.006 ©.000 009
0.080 .00 0.000 0.006 0.006 O.000 .06
.000 DO.000 0,008 6.000 0.000 860

.00 ©0.000 0.000 0,000 ©.0080 060
0.600 0.600 .000  0.000 .06e 069
0.000 0.000 .008  0.008 080 860
0.600 0.600 L0000 6,006 008 060
0.600 0.000 .000  0.008 .080 860
D.000 D.600 000 0,000 000 L0060
b.000 0.000 .008  06.006 .0ae 869
0.000 D.000 L0000 0,000 000 000

.00
.800
000

161,000 177.000 193.000 209.000 225,000 241,000
-144.060 -160.600 -176.000 -192.0690 - .600 -224.008 -240.0600
0.000 ©.000 0,000 000  ©.,000 ©.000
0.000 0.600 0.000 0.000 .boé  ©6.0680 0.060
©.0089 .600 D.000 0,000 066 ©0.000 ©.009
0.060 .G00 0.0600 0.006 006  6.060 0.060
0.0800 .000 0.00O 000 .00 ©6.000 0©.000
0.060 .600 0.600 .00 006 6.000 0.060
| L4 Matrix
L0600 L600 .600
.08 .00p
L0809 .000
060 .60D
L0060 L000
.060 .G00
000 L000
60D

)
]
]
]

.o00 L0060 6.000 0.000
.08 066 ©.000 ©.000
.00 D00 0.000 O.000
.008 008  ©6.000 ©.080
00 000 0,000 0,000
000 .06 ©6.000 0.000
000 000 1,000 ©.000
.00a 006  06.060 1.000

oo~ 000O0O

60D .000 6.p06 06.0060 0.060
000 000 0,006 0,000 ©.000
.600 . 0.006 6.006 6.000 0.000
600 . 0,000 0,006 0,000 0.000
.600 3 0.006 6.006 6.000 O.060
000 . 0.000 0,000 0.000 ©0.000
LG00 X 0,000 0,000 6,000 ©.000
.800 . 0,000 0,006 0.000 ©.000

oo

Figure B.6 Output matrices for 16x16 LU factorization

69



Obtained the output matrices are multiplied separately and those results are shown in Figure B.7

below.
1.000 ©.000 ©.000 ©.000 ©.000 ©.000 ©0.000 ©.000 ©6.000 ©0.000 ©.000 ©6.000 0.000 ©.000 6.000 0.000
2.000 1.000 0.000 0.0600 0.000 0.000 0.000 0.000 O0.000 0.0060 0.000 0.000 0.000 0.000 0.000 0.000
3.000 2.000 1.000 ©0.060 ©0.000 0.000 0.000 0.0 ©0.000 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000
4.000 3.000 ©.000 1.000 ©0.000 ©.000 ©0.000 0,000 ©0.000 ©0.000 0.0 ©0.060 ©6.000 0.000 0.000 0.000
5.000 4.000 ©0.0600 0.000 1.000 ©.000 0.000 ©.000 0.000 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000
6.000 5.000 ©0.000 ©0.000 ©0.000 1.000 0.000 0.0 ©0.000 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000
7.000 6.000 ©0.6000 ©0.600 0.000 0.000 1.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.000 0.000
8.000 7.000 ©0.000 ©0.000 ©0.000 0.000 ©0.000 0.0 ©0.0600 ©0.000 ©0.000 0.000 0.000 0.000 0.000 0.000
0.000 B8.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.006 0.000 0.006 0.006 0.000
10.000 9.060 0.0600 ©0.000 0.060 0.000 0.000 0.000 0.000 1.000 ©0.060 0.000 0.000 ©0.000 0.000 0.000
11.000 10.000 ©0.600 ©0.000 ©0.000 ©0.000 ©0.000 ©0.000 ©0.000 ©0.000 1.000 0.000 0.000 0.000 0.000 0.000
12.060 11.6000 6.000 ©0.0600 0.000 6.000 ©6.000 0.000 0.000 ©0.000 ©0.000 1.000 ©0.000 0.000 0.000 ©.000
13.000 12.000 0.000 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©0.000 0.000 1.000 0.000 0.000 0.000
14.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
15.000 14.000 ©0.000 ©0.000 ©0.000 0.0 ©0.000 0.000 0.000 0.000 0.000 0.060 0.000 ©0.000 1.000 0.000
16.000 15.000 0.000 0.000 0.6000 0.000 0.000 0.000 ©0.000 0.000 60.000 0.000 0.0600 0.000 0.000 1.000

1.000 17.000 33.000 49.000 65.000 81.000 97.000 113.000 129.000 145.000 161.000 177.000 193.000 209.060 225.000 241,000
©0.000 -16.000 -32.000 -48.000 -64.000 -80.000 -96.000 -112.000 -128.000 -144.000 -160.000 -176.000 -192.000 -208.000 -224.000 -240.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.000 0,000 0.000 ©.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.0600 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.600 0.000 0,000 0.000 0.0600 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.000 000 ©0.600 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 0.000 000 0.000 0.000 0,000 0.000 ©.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©0.000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.0600 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.000 0.000 0.000 ©0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000

CR-N-R-R-N-R-N-N-N-N-NoN-X-)

Matrix product A*B

.000 17.000 33.000 49.000 65.000 81.000 97.000 113.000 129.000 145.060 161.000 177.000 193.000 209.000 225.000 241.000
.000 18.000 34.000 50.000 66.000 82.000 98.000 114.000 130.000 146.060 162.000 178.000 194.000 210.000 226.000 242.000
.000 19.000 35.000 51.000 67.000 83.000 99.000 115.000 131.000 147.066 163.000 179.000 195.000 211.000 227.000 243.000
.000 20.000 36.000 52.000 68.000 84.000 100.000 116.000 132.000 148.000 164.000 180.000 196.000 212.000 228.000 244.000
.000 21.000 37.000 53.000 69.000 85.000 101.600 117.000 133.000 149.000 165.000 181.000 197.000 213.000 229.000 245.000
.000 22.000 38.000 54.000 70.000 86.000 102.000 118.000 134.000 150.000 166.000 182.000 198.000 214.000 230.000 246.000
.000 23.000 39.000 55.000 71.000 87.000 103.000 119.000 135.000 151.000 167.000 183.000 199.000 215.000 231.000 247.000
.000 24.000 40.000 56.000 72.000 88.000 104.000 120.000 136.000 152.000 168.000 184.000 200.000 216.000 232.000 248.000
.000 25.000 41.000 57.000 73.000 89.000 105.000 121.000 137.000 153.000 169.000 185.000 201.000 217.000 233.000 249.000
10.000 26.000 42.000 58.000 74.000 90.000 106.000 122.600 138.000 154.000 170.000 186.000 202.000 218.000 234.000 250.000
11.000 27.000 43.000 59.000 75.000 91.000 107.000 123.000 139.000 155.000 171.000 187.000 203.000 219.000 235.000 251.000
12.000 28.000 44.000 60.000 76.000 92.000 168.000 124.000 140.000 156.000 172.000 188.000 204.000 220.000 236.000 252.000
13.000 29.000 45.000 61.060 77.000 93.000 109.000 125.000 141.000 157.000 173.000 189.000 205.000 221.000 237.000 253.000
14.000 30.000 46.000 62.000 78.000 94.000 110.000 126.000 142.000 158.000 174.000 190.000 206.000 222.000 238.000 254.000
15.000 31.000 47.000 63.000 79.000 95.000 111.000 127.000 143.000 159.000 175.000 191.000 207.000 223.000 239.000 255.000
16.000 32.000 48.000 64.000 80.000 96.000 112.000 128.000 144.000 160.000 176.000 192.000 208.000 224.000 240.000 256.000

WoONOOU & WN -

Figure B.7 Third party application Matrix Multiplication
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GPU ONLY QR FACTORIZATION IMPLEMENTATION
8x8 Matrix

The input matrix and the output matrices for the 8x8 QR matrix factorization is shown below
respectively in Figure B.8 and Figure B.9.

A Matrix 8 x 8 :

.000000 8.000000 16.000000 24.000000 32.000000 40.000000 48.000000 56.000000
.000000 9.000000 .000000 .000000 .000000 .000000 .000000 .000000
.000000 10.000000 .000000 .000000 .000000 .000000 .000000 .000000
.000000 11.000000 19.000000 27.000000 35.000000 43.000000 51.000000 59.000000

.000000 12.000000 20.000000 28.000000 36.000000 44.000000 52.000000 60.000000
.000000 13.000000 21.000000 29.000000 37.000000 45.000000 53.000000 61.000000
.000000 14.000000 22.000000 30.000000 38.000000 46.000000 54.000000 62.000000
.000000 15.000000 23.000000 31.000000 39.000000 47.000000 55.000000 63.000000

N A W= Oo

Figure B.8 Initiated 8x8 input matrix

R Matrix 8 x 8 :

-11.832160 -30.763613 -49.695068 -68.626526 -87.557976 -106.489433 -125.420883 -144.352341
.000000 -12.393543 -24.787088 -37.180634 -49.574188 -61.967728 -74.361259 -86.754814
.000000 .000000 .000002 .000003 0.000001 0.000003 0.000004 0.000006
.000000 .000000 .000000 .000004 .000002 .000000 .000002 .000006
.000000 .000000 .000000 .000000 .000008 .000004 .000005 .000007
.000000 .000000 .000000 .000000 .000000 .000005 .000005 .000003
.000000 .000000 .000000 .000000 .000000 .000000 .000006 .000001
.000000 .000000 .000000 .000000 .000000 .000000 .000000 .000001

Time to compute the 8x8 Q matrix = 0.514030 ms
QMatrix 8 x
0.000000 -
-0.084515 -
-0.169031
-0.253546 -
-0.338062 -
-0.422577
-0.507093
-0.591608

.645497
.516398 -
.387298 -
.258199 -
.129099
.000000
.129100 -
.258199 -

.404557
.117971
.630182
.253834 -
.454781
.341077 -
.004323 -
.194105

.012503
.234604 -
.331342
WAL YA L
.667695 -
.505184
.136166 -
.162704 -

.127657
.557072 -
.538404 -
.217178
«121725 -
.506184 -
.021671 -
. 254600

.434305 -
.493145
.149278
.459627 -
.181704 -
.147546
.333178 -
.410919

.138676 -
.305540 -
.047803
.283143
.001872
.372379
. 708097 -
.406065 -

.441999
.101779
.007991
.614042
.410571
.182280
.307819
.347304

(oMo oo Moo« ol
e llc oo Mo oo ol
OOGGOO‘GO
Lo Lo o B« B B o R« B« ]
[cllcllocoNoloollc]
o llc oo Moo ool
(oMo oo Mo oo R«

Figure B.9 Output matrices for 8x8 QR factorization
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Obtained the output matrices are multiplied separately and those results are shown in Figure B.10

below.
Input matrix A:

0.000 -0.645 0.405 0.013 ©0.128 0.434 -0.139 -0.442
-0.085 -0.516 -0.118 -0.235 -0.557 -0.493 0.306 -0.102
-0.169 -0.387 -0.630 0.331 0.538 -0.149 0.048 -0.008
-0.254 -0.258 -0.254 -0.298 -0.217 0.460 -0.283 0.614
-0.338 -0.129 0.455 0.668 -0.122 -0.182 -0.002 0.411
-0.423 0.000 0.341 -0.505 0.506 -0.148 0.372 60.182
-0.507 ©0.129 -0.004 -0.136 -0.022 -0.333 -0.768 -0.308
-0.592 0.258 -0.194 0.163 -0.255 0.411 0.406 -0.347

Input matrix B:

-11.832 -30.764 -49.695 -68.627 -87.558 -106.489 -125.421 -144.352
0.000 -12.394 -24.787 -37.181 -49.574 -61.968 -74.361 -86.755
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.600 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Matrix product A*B

.000 8.000 16.000 24.000 32.000 40.000 48.000 56.000
.000 9.000 17.000 25.000 33.000 41.000 49.000 57.000
.000 10.000 18.000 26.000 34.000 42.000 50.000 58.000
.000 11.000 19.000 27.000 35.000 43.000 51.000 59.000
.000 12.000 20.000 28.000 36.000 44.000 52.000 60.000
.000 13.000 21.000 29.000 37.000 45.000 53.000 61.000
.000 14.000 22.000 30.000 38.000 46.000 54.000 62.000
.000 15.000 23.000 31.000 39.000 47.000 55.000 63.000

NoOoOUubhWNKREO

Figure B.10 Third party application Matrix Multiplication
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Compare the accuracy of the computation is derived using Equation 24 and depicted below in
Figure B.11.

Input matrix A:

0.000 8.000 16.000 24.000 32.000 40.000 48.000 58.000
1.000 9.000 17.000 25.000 33.000 41.000 49.000 57.000
2.000 10.000 18.000 26.000 34.000 42.000 50.000 58.000
5.000 11.000 19.000 27.000 35.000 43.000 51.000 59.000
4_.000 12.000 20.000 28.000 36.000 44.000 52.000 &0.000
5.000 13.000 21.000 29.000 37.000 45.000 53.000 &1.000
£.000 14.000 22.000 30.000 38.000 46.000 54.000 &2.000
7.000 15.000 23.000 31.000 32,000 47.000 55.000 &3.000

Input matrix B:

0.000 £8.000 16.000 24.000 32.000 40.000 48.000 58.000
1.000 9.000 17.000 25.000 33.000 41.000 49.000 57.000
2.000 10.000 18.000 26.000 34.000 42.000 50.000 58.000
3.000 11.000 19.000 27.000 35.000 43.000 51.000 59.000
4.000 12.000 20.000 28.000 36.000 44.000 52.000 &0.000
5.000 13.000 21.000 29,000 37.000 45.000 53.000 &1.000
£.000 14.000 22.000 30.000 38.000 46.000 54.000 &2.000
7.000 15.000 23.000 31.000 39.000 47.000 55.000 &3.000

Matrix difference A + B

0.000 ©.000 0.000 0.000 0.000 ©.000 0.000 0.000

0.000 ©.000 0.000 0.000 0.000 ©.000 0.000 0.000

0.000 ©.000 0.000 0.000 0.000 ©.000 0.000 0.000

0.000 ©0.000 0.000 0.000 0.000 ©0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 ©0.000 0.000 0.000

0.000 ©.000 0.000 0.000 0.000 ©0.000 0.000 0.000

0.000 ©.000 0.000 0.000 0.000 ©0.000 0.000 0.000

0.000 ©.000 0.000 0.000 0.000 ©.000 0.000 0.000

Figure B.11 Compare the accuracy of 8x8 matrix
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16x16 Matrix

The input matrix and the output matrices for the 16x16 QR matrix factorization is shown below

respectively in Figure B.12 and Figure B.13.

A Matrix 16 X 16 ¢
0.000000 16,000000 32.000000 48.000000 64.000000 80.000000 96.000000 112000000 128.000000 144.000000 160.000000 176.000000 192.000000 208.000000 224.000000 240.0060000
1,000000 17,000000 33.000000 49000000 65,000000 81,000000 97,600000 113,000000 129000000 145,600000 161,000600 177.006000 193,000000 209000000 225.000000 241,000000
2.000000 18.000000 34.000000 50.000000 66.000000 82.000000 98.000000 114,000000 130.000000 146,000000 162.000000 178.000000 194.000000 210.000000 226.000000 242.0600000
3.000000 19.000000 35.000000 51.000000 67.000000 83.000000 99.000000 115,000000 131.000000 147.000000 163.000000 179.000000 195.000000 211.000000 227.000000 243.000000
4.000000 20,000000 36.000000 52.000000 68.000000 84,000000 100,000000 116.000000 132.000000 148.000000 164.000000 180,000000 196.000000 212.000000 228.000000 244.000000
5,000000 21,000000 37,000000 53,000000 69.,000000 85,000000 101,000000 117000000 133,000000 149,000000 165.000060 181,000000 197000000 213,000000 2290600600 245,666000
6.000000 22.000000 38.000000 54.000000 70,000000 86,000000 162,000000 118.000000 134.000000 150.000000 166.000000 182.000000 198.000000 214.000000 230.000000 246.000000
7.000000 23.000000 39.000000 55.000000 71.000000 87.000000 103.000000 119.000000 135.000000 151.000000 167.000000 183.000600 199.000000 215.000000 231.000000 247.000000
8.000000 24,000000 40.000000 56.000000 72,000000 88,000000 104,000000 120.000000 136.000000 152.000000 168.000000 184.000000 200.000000 216.000000 232.000000 248.000000
9,000000 25,000000 41,000000 57,000000 73000000 89060000 165,600000 121,000000 137,000000 153.600000 169.000600 185,000000 201,000000 217,000000 233,600060 249,600000
10,000000 26.0600000 42.000000 58.000000 74,000000 90.0600000 106.000000 122,000000 138.000000 154.000000 170000000 186.000000 202,000000 218.000000 234.000000 250.000000
11,000000 27.000000 43.000000 59.000000 75.000000 91.000000 107.000000 123.000000 139.000000 155.000000 171.000000 187.000000 203.000000 219.000000 235.000000 251.000000
12,000000 28.,000000 44000000 66.000000 76.000000 92,000000 108.000000 124.000000 140,000000 156.000000 172.000000 188.000000 204.000000 220.000000 236,000000 252.000000
13,000000 29.000000 45,000000 61,006000 77,000000 93,000000 169,0606000 125,000000 141,000000 157,000000 173,000000 189,000000 205.000000 221,000000 237.000000 253.600006
14,000000 30,000000 46.000000 62000000 78.000000 94.0600000 110,000000 126,000000 142,000000 158.000000 174.000000 190.000000 206.000000 222,000000 238.000000 254.000000
15,000000 31,0600000 47.000000 63.000000 79.000000 95.0600000 111,000000 127,000000 143.000000 159.000000 175.000000 191.000000 207.000000 223,000000 239.006000 255.000000

Figure B.12 Initiated 16x16 input matrix

Matrix 16 x 16 ¢
+35.213634 +89.737968 -144,262314 -198.786621 +253.310959 +307.835297 -362,359619 -416.884003 -471.408325 -525.932678 ~580.456970 -634.981323 -689.505676 +744.030029 -798.554260 -853.078613

0.000000
0,000000
0.000000

-33,512634 -67.025269 -100,537903 -134.050522 -167,563171 -201.075790

+234,588440 -268.101044 -301,613739 -335.126343 -368.638977

462,151642 -435.664185 -469.176758 -502.689453

0,000000
0,000000

0.000000 0.600000

0.,0000600
0,006600
0.000000
0,000000
0,000000
0,000000
0.000000
0.000000
0,6000600
0,600000
0.000600

0,600000
0,000000
0.000000
0,0600000
0,600000
0,000000
0.000000
0.0600000
0,008000
0,600000
0.600000

-6,000019
0.000000
0.000000
0.,000000
9,000000
0,000000
0.600000
0.000000
9,000000
0.000000
0.000000
0.000000
9,000600
0.000000

-0,000028
0.000022
0.000000
0.000000
0,006600
0.000000
0.000000
0.000000
0,060000
0.000000
0.000000
0,000000
0,060000
0.000600

-0,000036
0.000021

-0.000021 -
0.000016

+0,000018 +0.000015 -
0.600000 0.600632
0,000000 0600000 -
0,000000 6,000000
0.000000 ©.000000
0.000000 0.960600
0,000000 0.660000
0,000000 6.000000
0.000000 ©.960000
0.609000 0.000600
0,600000 ©,000006
0.000000 6.000000

0,000041
0.600021
0.000020
0,060002
0,000001
0.600000
0.600000
0,660000
9,660000
0.600000
0.060000
0,066000
9,600600
0.000000

-6,000043
0.600020

-0,000054
0.000014

+0.000022
+0.060007
-0.000004
0.000001 -
0.000000 -
0,668000
0.000000
0.600000
0.000000
0.000000
0.,000000
0.600000

+0.000022
0.600034
0.000008
0.000021
0.600042
0,600060
0,600000
0.000000
0.600000
0,600060
0,600000
0.000000

-9,006663 -
0.600017
+0.000020 -
0,000041
0,000004
-0.000005 -
-0.000012 -
-0.006030 -
9,0006000
0.600000
0.600000
0.000000
6,0006000
0.000000

0,000068 -0,600077 -
0.000003 0.000015
0.600611 -0.060039 -
0.600061 0.900057
0,600004 ©,000018
0.000062 -0.000020 -
0.606613 -0.000048 -
0.600023 -0.000617 -
0,000029 -0,006005 -
0.000060 0.006040 -
0.600660 0.066000 -
0.606060 6.006600
0,000000 6,000000
0.600000 6.006600

0.600102
0.000022
0.000030
0.600048
0.606062
0,000035
0.000043
0.600612
9.006009
0.000012
0.000067
0.666000
0,600000
0.000600

-0,000098 -
0.000002
+0.000043 -
0.660058
-0,000011
-0,000023 -
+0.000032 -
0.660009
6,000009
0.000040
+0.060025
6.600026 -
6,600000
0.860000

9,600168
0.000015
0.660056
0.660083
9,060625
9.000022
0.600053
9.660011
9.,660008
0.000036
0.660012
0.660016
9,660015
0.000000

-0,000161
0.000004
-0.000039
0.660055
-0,000014
-0.006021
-0.066072
-0.006604
0.000607
0.006001
+0.006033
0.600603
-0,000624
0.600069

Tine to compute the 16x16 Q matrix = 6.832081 ns

(Matrix 16 x 16
0.000000 -0.477432

+0,028398 -0.431229
+0,056796 -0,385026

-0,085194
-0,113592

-0,336623

-0.210225
0.330364
-0.429176
0.,004444

-0,292620 0.572703

+0,141990 +0.246416 0.151499

-0,170389

-0,200213 -0.315973

-0,198787 -0,154010 0.026616

-0,227185
+0,255583
-0,283961
-0.312379

-0,107807 -0.168364
+0.061604 0.097679

-0,015401
0,030602

-0.150231
-0.184214

«0,340777 0.077005 0,339379

+0,369175
+0,397573
-0,425971

0,123208 -0.023719

0,169411
0,215614

-0,019679
-0,020904

0.120598
+0.424369
0.350161
-0,099839
0.062883
0.234364
0.007142
-0,297831
0.016540
0.017770
+0,302458
-0,136255
0,543423
0.241647
-0.217443
-0.116331

-0.218363 0.414828
0.291072 6.185819
-0.116520 -0.235929
0,192459 -0,586731 -
-0.440886 0.145661 -
+0.041683 +0,170877
0.,290717 0.400392 -
0,056218 -0,195042

-0.073574

-0.059071

0.623693
0.015720
0.069805
0,007186
0.016521
0.014824
0,045568
0,000423
0.003388

0.013425 -
0.021116
-0.026916
0.068915 -
-0.005001

0.219116
0.317573
0.364472
0440560
0.096450

0.009537 0.125831

-0.002087 -
-0,153024 -
0.004709 -

0.003043
0.191297
0.091566

0.039618 -0.249408
0.012191 0.906782
-0,215390 0,173646

0.000184 0.011232

0.304211

0,144654

0,229038 -0.021715

0.219276
-0, 536384

0.138187
-0,091196 -

0,004109
0,004565
0.010586
0.008071
0.608468
0,604913

0.622987
0,011365 -
-0,015819 -
+0.000078

0.167462
0.077406
0,239823
0.378774
0.433459

0.0225%9
0,617839

0.604885
0,036582

0.128166
+0,275485
-0.262028 -

0.134221

0.281301 -

0.625490 -
-0.114113

0,071867

0.354848
+0,294021

0.607390 -
-0,034884
-0.,316466 -

0.521465

0.122123 -
-0,349875

0.091165 0.167674
0.212249 -0.112222
0.155014 -0,163932 -
0,087038 0.041852 -

0.145499
0.225376

0.095014 -
+0.494978

0.116874 0.106747 -
0,031662 0,006543

0.186382
0.221442

-0.027295
0.429951 -

0.758790 0.397244
0,092366 -0.,224162 -
0.126453 0.066571

0.243781

0,193398

0.131402 -0.479511 -
0,260174 -6,002354

6.121598
0.147360
0.352889
9.153876
0.388482
0.550571
0.033438
0,046128
0.25%47
0.129682
0.186668
0.133557
0.030777
0.069595
0.,419595
0.199863

-0.030891 -
0.149593
0.114349
6,273368 -
0.015345
+0.175751
0,648588 -
9,052979 -
-0.416610 -
+0.633724
0.656680
-0.000146
6.162142
0.333755
-0,215568 -
6,325292 -

Figure B.13 Output matrices for 16x16 QR factorization
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8.138289
0.648400
9,665630
9,617660

0.344585
-0.196131
-0.188658

0,640769

9.011077 -0.109127

0.622246
9.030896
9.021733
0.015550

0.319362
-0.029169
0.111132
-0.695801

0.028394 0.288726

0.626059
9,396541
0.008841

-0.059724
0.117319
-0.202868

0.05264 6.188761

0.202178
9,162366

0.120126
-0,049179




Obtained the output matrices are multiplied separately and those results are shown in Figure B.14

below.

Input matrix A:

9.600 -0.477 -6.210 0.121 -0.218 6.415 0.624 0.9013 -8.270 9.128 0.891 6.167 0.122 -0.931 -0.138 0.345
-0.828 -0.431 ©.330 -0.424 0.291 ©0.1B6 ©0.826 0.821 ©.318 -0.275 0.212 -0.112 9.147 0.156 0.04B -0.196
-9.857 -0.385 -6.429 0.350 -0.111 -6.236 ©.810 -0.827 €.364 -0.262 -0.155 -6.164 -9,353 0.115 ©6.086 -0.189
-9.685 -0.339 0.064 -9.100 ©0.192 -6.587 -9.607 0.069 -0.441 ©.134 0.087 ©6.042 -9.154 0.273 -0.017 0.e41
-9.1314 -0.293 @.573 0.663 -0.431 @©.146 -0.8617 -0.905 0©6.096 0.281 -0.145 06.095 -9.388 0.915 06.011 -0.189
-9.142 -0.246 6.151 0.234 -0.042 -6.171 -0.015 0.916 0.126 ©.625 -0.225 -6.495 0,551 -0.176 ©.022 0.319
-9.170 -0.208 -6.316 ©.607 0.201 6.460 -0.646 -0.003 -6.083 -0.114 0.117 6.167 -9.633 0.849 -6.031 -0.629
-0.199 -0.154 ©.027 -0.298 0.056 -6.195 ©0.600 -0.153 -0.191 ©.672 0.831 0G.067 0.046 0.053 -6.028 0.111
-9.227 -0.108 -6.168 ©.617 -0.074 -6.059 ©0.603 0.905 -8.092 0.355 0.186 -6.027 0.259 -0.417 -0.016 -0.696
-9.256 -0.062 0.098 0.618 0.046 -6.240 0.600 0.911 ©.167 -9.204 0.221 ©6.430 -8.129 -0.634 ©6.028 0.289
-9.284 -0.015 -0.150 -0.302 0©0.912 ©.067 ©0.604 0.023 0.077 0.007 -0.759 ©0.397 9.186 0.857 0.026 -0.660
-9.312 0.931 -6.184 -0.136 -0.215 6.174 0.605 0.911 -6.2490 -0.635 0.092 -6.224 -0,134 0.006 €.391 0.117
-9.341 0.077 ©.330 0.543 0.304 6.145 0.611 -0.016 -6.370 -0.316 -0.126 ©.067 0.631 0.102 ©0.069 -0.203
-9.369 0.123 -0.024 ©0.242 0.229 -0.022 0.088 0.000 ©.433 ©9.521 0.244 ©.193 0.670 0.3334 0.053 0.189
-9.398 0.169 -6.020 -0.217 ©.219 6.138 9.608 0.823 €.0685 ©.122 -0.131 -6.480 -0.420 -0.216 -6.202 0.120
-9.426 0.216 -6.021 -9.116 -0.536 -6.091 -0.605 0.018 6.037 -0.350 0.260 -6.082 0.200 0.325 -0.162 -0.649

-35.214 -B89.738 -144.262 -198.787 -253.311 -307.835 -362.360 -416.884 -471.468 -525.933 -580.457 -634.981 -689.566 -744.030 -798.554 -B53.079
6.080 -33.513 -67.025 -106.538 -134.051 -167.563 -201.076 -234.588 -268.161 -301.614 -335.126 -368.630 -402.152 -435.664 -469.177 -502.680
0.080 6.060 0.080 0.060 0.000 0.080 6.060 6.060 6.060 6.060 6.060 6.060 6.060 6.060 6.060 6.000
6.089 6,080 0.080 0.080 0.000 0.089 6.080 6.068 6.060 6.0e8 6.000 6.068 6.068 6.068 £.060 6.068
6.080 ©6.080 ©.069 6.060 6.060  6.080 6.080  ©.080 6.069 6.060 6.088 6.009 6.068 6.068 0,080 £.008
0.080 0.080 0.080 0.000 0.000 0.000 6.060 6.060 6.060 6.000 6.000 6.060 6.0e0 6.060 0.060 6.060
6.660 6.080 6.080 6.080 0.080 0.089 6.080 8.060 6.080 6.060 6.080 6.068 6.060 6.068 6.068 6.068
6.080 6.080 ©.060 6.080 6.080  0.080 6.080  6.089 8.088 6.080 6.0088 £.068 6.088 6,068 £.008 ©.008
6.060 0.060 6.080 ©.069 0.080 6.069 6.060 6.089 0.060 0.0e0 6.0e0 6.000 0.008 0.060 0.008 6.000
.00 6,080 6.080 0,089 0.060 0.009 8.088 6.089 6.088 6.068 6.068 6.060 6.068 0.060 £.060 6.068
6.080 ©6.080 ©.060 6.080 6.080  6.089 6.089 6.089 6.088 6.080 6,060 6.060 6.069 6.008 £.060 ©.008
@.080 0.060 0.000 0.060 0.060 0.080 0.060 0.060 6.060 6.060 0.000 6.060 0.000 0.000 0.060 0.000
6.0 6.060 0.080 0.080 0.000 ©.088 6.060  6.060 8.069 6.060 6.060 6.068 6.068 6.068 £.068 6.060
6.080 6.080 6.060 6.080 6.060  6.089 6.080  6.080 6.060 6.069 6.068 6,068 6.068 0.068 6.060 0.008
0.080 0.000 6.060 0.060 @.060 0.060 @.060 0.060 6.060 0.060 0.0060 0.060 6.000 0.000 0.000 0.000
6.060 6.080 0.080 0.080 0.000 0.089 6.089 6.068 6.060 6.088 6.068 6.068 6.068 6.008 6.0680 6.068

0.000 16,000 32.000 48.000 64.000 ©0.000 96.000 112.000 128.060 144.000 160.600 176.000 192.000¢ 268,000 224.000 240.000

1.008 17.690 33.080 49.008 65,000 81.080 97,800 113,600 129.000 145,000 161,600 177.069 193.000 269,600 225.000 241,800

2,008 18,600 34,089 50.908 66.600 82.080 08.000 114,600 136,069 146.006 162.600 178.080 104.806 218.600 226.000 242.600

3.000 19.0600 35.000 51.000 67.000 83.000 99.000 115.000 131.000 147.000 163.600 179.0060 195.000 211,000 227.000 243.000

4.008 20,600 36.080 52.006 6B.600 £4.000 100.008 116.680 132,060 148.008 164,600 186.060 196.000 212,680 228.000 244,000

5.008 21.600 37.000 53.008 60.600 85.000 101.606 117,600 133.060 149.006 165.600 180.990 106,000 212,909 228.990 244.009

6.008 22.000 38.000 54.000 70.000 86.000 102.000 118.000 134,060 150.000 166.000 182.060 198.000 214.000 230.000 246.000

7.008 23.690 39,000 S55.008 71,600 87.060 103,806 119,600 135,000 151,008 167.600 183,060 199.000 215,000 231.080 247.800

8,000 24,600 46.060 56.008 72,600 £8.000 104.000 120,600 136.060 152.000 168,600 184.000 200.000 216,660 232.060 248,000

9.000 25.000 41.000 57.006 73.000 89.000 105.000 121.000 137,000 153.006 169.0600 185.000 201.006 217.000 233.000 249,000

10.008 26.600 42.060 58,008 74,600 96.060 106.808 122,600 138,000 154.008 170,600 186,060 202.808 218,600 234.060 250,000

11,008 27,600 43.080 59.008 75.600 91.060 107.008 123.600 139.000 155.006 171,680 187.060 263.600 210,680 235,080 251.000

12.000 28.000 44.000 60.000 76.000 92.000 108.000 124.000 140.000 156.000 172,000 188.000 204.000 220.000 236.000 252.000

13.008 29.600 45.000 61.006 77.600 53.000 109.006 125.600 141,060 157,000 173,600 189.060 205,000 221,600 237,008 253,000

14,008 30.600 46,060 062.000 78.600 904,080 110.008 126.600 142,000 158.000 174.600 106,060 206.000 222,000 238.000 254.000

15.000 31.000 47.000 63.000 79.000 95.000 111.000 127.000 143.000 159.000 175.600 191.060 207.000 223.000 239.0060 255.000

Figure B.14 Third party application Matrix Multiplication
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