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ABSTRACT 

GPUs have become very interesting, especially with the General Purpose Graphics Processing 

Units. With the ability to program the GPUs, their computation capabilities with the processing 

power and their competitive low cost have enabled the development of numerous kinds of 

interesting GPGPU application programs resulting in substantial accomplishments in terms of the 

performance.  

 

The LU and QR factorizations represent an underlying process of a large number of scientific 

application programs with complex and computationally expensive modules. But in here, the 

solution process has a high impact on the matrix size for the performance because of the costly 

computations.   

 

Proposed methodology for the GPU only LU and QR factorization algorithms were implemented 

using block matrix factorization where the input matrix is considered as multiple matrices when 

performing the factorization steps. GPU only factorization algorithms are implemented on a   

NVIDIA MX130 GPU. For LU factorization, the suggested GPU only algorithm implementation 

starts to perform well with the square matrix 6144 and upwards. With the suggested GPU only QR 

factorization implementation, it was possible to execute matrix sizes up-to 1024x1024. 

 

The evaluation of the implemented algorithms clearly depicted that the output matrices are accurate 

when computed and compared with the input matrix. Finally, it is believed that the work 

accomplished through this research work has facilitated for the betterment of the learning 

community as well as the parallel computing and computer science research community. 
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1 INTRODUCTION 

1.1 Motivation 

General Purpose Graphics Processing Unit (GPGPU) has a high processing capability and the large 

number of cores inside the GPU has enabled parallel execution with high performance for computer 

applications [1]. Most of the applications have not taken advantage of the GPU cores completely. 

So it is interesting to see how the GPU is completely used in-order to achieve high performance in 

an efficient way.  

High-performance GPU only execution of Cholesky Factorization [2] has been successfully 

implemented by Azzam Haidar and others. In their research paper, they have raised the importance 

of the development of other highly required factorization routines, such as the QR and the LU 

factorization as their future directions. Therefore, there is a need for the development of high-

performance LU and QR factorizations implemented fully on GPUs. Currently, there are 

algorithms available for LU and QR factorization which run on multi-core CPU processors and 

hybrid CPU-GPU processors [1] with also some GPU only implementations. But there is not much 

literature available to accelerate the performance of these factorization algorithms. So the 

motivation of this research project is to implement high-performance LU and QR factorization 

algorithms which provide better results than the existing factorization algorithms. 

1.2 Project 

1.2.1 Problem Domain 

The emerging accessibility of the advanced-technology along with the advanced-architecture 

computers incorporates a vital result on all domains of scientific computation, together with 

algorithmic program analysis and software development in numerical algebra. Linear algebra 

particularly, the answer of the linear systems of equations lies at the center of furthermost 

calculations in scientific computing [3].  

Numerical linear algebra is known as the study of algorithms related to mathematical questions for 

carrying out linear algebra computations which typically includes matrix-matrix operations on 

computers in order to provide accurate and approximate answers. It's usually a basic a part of 

computer science domains, like computational fluid dynamics and lots of different areas [3]. Those 

type of software depends deeply on the analysis, development, and implementation of progressive 
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algorithms for addressing numerous numerical algebra complications in terms of a solution with 

the available numerical techniques. Problem is commonly converted and reduced to a problem of 

linear equation systems. Because of this reason, the solution is normally represented in the form of 

matrices [4]. 

1.2.1.1 LU Factorization Method 

LU factorization decomposes a matrix into a product of two matrices. The first matrix as a lower 

triangular matrix and the other matrix as an upper triangular matrix. Sometimes the product of 

lower and upper triangular matrices includes a permutation matrix likewise. In order to solve 

systems of linear equations or to calculate the determinant of a matrix, LU factorization is used in 

numerical analysis. However, LU method is much more advanced and complex when compared 

with the Gaussian method but more efficient for solving an equation system [5]. 

 

 

Figure 1.1 LU Factorization in the Form of A = LU 

 

As Figure 1.1 indicates, LU factorization is able to resolve a system of equations with the steps 

listed below.  

Set up the equation as shown in Equation 1.  

Ax = b Equation 1 

As the next Step, find LU factorization for matrix A and the result will produce the Equation 2.  

(LU)x = b Equation 2 

Let the value of y be according to Equation 3 and solve Equation 4 for y. 

y = Ux Equation 3 

Ly = b Equation 4 

Take the values for y and solve Equation 3 for x. This will give the solution to Equation 1. 
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1.2.1.2 QR Factorization Method 

Any real square matrix A can be factorized into a product of an orthogonal matrix Q and an upper 

triangular matrix R as shown in Equation 5. In numerical linear algebra, QR factorization is 

regularly used to solve the linear least squares problems and also for a particular eigenvalue 

algorithm QR factorization is taken as the foundation [6]. 

𝐴 =  𝑄𝑅 Equation 5 

 

 

Figure 1.2 QR Factorization in the Form of A = QR  

QR factorization is displayed in Figure 1.2. In the QR Factorization, R matrix can be computed 

using Equation 6 and according to Figure 1.2,  

 A is a square matrix  

 Q is an orthogonal matrix  

 R is an upper triangular matrix. 

𝑅 =  𝑄𝑇𝐴 Equation 6 

1.2.2 The Problem 

In order to reach high performance through parallelism, there are some available architectures and 

techniques [7] and with these techniques and architectures, there are several types of drawbacks 

which directly has an effect on the performance. Tuning challenges occur when a computer CPU 

is having a slow processing power or when the kernel design is complex. Because of this reason, 

the GPU has to wait a long time causing expensive CPU-to-GPU communications which directly 

causing reduced performance [2]. In most of the hybrid factorization algorithms, panel factorization 

is computed on the CPU. So the GPU has to wait for that calculation to finish to start its calculations 



 

4 

 

[2]. Another reason for not getting high performance in factorization is using complex algorithms 

to perform the calculations. Complex algorithms have a large number of codes to be executed and 

a high number of kernel calls will be causing reasons for performance decrease [2], [4]. It is difficult 

to reach high performance from an algorithm with the presence of these issues. 

 

1.3 Exact Computing Problem 

The exact computing problem can be presented as sub-questions as shown below: 

a) Find currently existing GPU only LU & QR factorization algorithms and the gaps of those 

implemented algorithms. 

 

b) What are the ways of implementing LU and QR factorizations for high-performance 

completely on GPUs (GPU only)? [2], [8], [9]  

 

c) How to perform both panel factorization and trailing matrix update in the GPU, using different 

or same GPU streams without affecting performance? [2], [10] 

 

d) How to improve the algorithm/application that helps boosting the performance in following 

paths? 

i. Algorithmic optimization path [2] 

ii. Kernel optimization path [11] 

iii. Implementation design path [12] 

1.3.1 Research Contribution 

By conducting this research, the following contributions are offered to the field of computing and 

computer science: 

Improved and resource efficient LU and QR factorization algorithms to run only on GPUs 

to accomplish high-performance.  

Performance analysis of the implemented LU and QR factorizations which can be used for 

comparison against future developments. 

Developers to use the expected findings of this research for their own application 

implementations. 
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1.3.2 Aims and Objectives 

Aim of this research is to develop a high-performance GPU only Implementation for LU 

factorization and QR factorization. And the objectives of this research are listed below. 

Objectives 

 LU and QR factorizations should be able to execute successfully in GPU only 

implementations. 

 Existing expensive communication should be removed in CPU-to-GPU interactions. 

 Tuning problems also should be removed. 

 Should be able to reach high performance in LU and QR factorizations. 

 

1.3.3 Scope of the Research 

In this research, LU factorization and QR factorization is only going to be considered. First, we 

shall attempt to implement LU factorization on a GPU only cluster and then move to implement 

QR factorization. Both LU and QR factorization algorithms/applications are to be executed on a 

GPU only cluster. This includes the panel factorization as well as trailing matrix update executed 

on GPU cluster. Tuning challenge problems and CPU-to-GPU expensive communication problems 

are going to be discussed in this research. All the work to be performed in a NVIDIATM GeForce 

MX130 GPU (mid-range performing GPGPU). Factorization algorithms will be implemented 

using Compute Unified Device Architecture (CUDA) platform for the selected factorization 

algorithms. GPU only Cholesky factorization algorithm is successfully implemented in a NVIDIA 

GPU using CUDA platform [2], because of that reason CUDA programming platform will be used 

to implement LU and QR factorization algorithms for GPU only execution in this research 
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2 LITERATURE REVIEW 

2.1 Area of Study 

GPUs containing immensely parallelly executable computing processors which are programmed 

in C programming language and with the extensions of the C programming language. In order to 

program these parallel processors, it is not compulsory to aware of the graphics algorithms or terms 

related to the terminology. But with the knowledge and with the understanding of these algorithms, 

it is much more easy to identify the pros and cons with the relevant computational patterns. With 

the help of the past, it is possible and able to clarify the explanations about architectural design 

selections of the GPUs in the present, which includes vastly multithreading, highly parallel 

structure and bandwidth-centric memory interface design. Understandings about the historical 

advancements will also likely to give the framework for the future direction and projection of GPUs 

as computing devices [1]. 

2.1.1 Direct Memory Access  

Direct memory access is used between a CPU and a GPU to perform the data copy operations. This 

process needed a dedicated memory in DRAM and an indirect way of allocating the memory by an 

application [1]. An especially dedicated hardware mechanism is now included in the modern 

computer systems to transfer data between the input/output device and the DRAM of the system. 

This mechanism is named as direct memory access. In this mechanism, the operating system 

performs an operation established by: 

 the starting address of the data in the Input/Output device buffer memory 

 the starting address of the DRAM memory 

 number of bytes to be copied 

 the direction of the copy.  

 

Following advantages can be gained using this direct memory address [1] mechanism: 

 Execute input/output independent programs in the CPU, when the direct memory access 

mechanism is copying the data. 

 Copy the data between devices at a rapid speed than a normal processor by using an especial 

hardware mechanism. 
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2.1.2 Data Parallelism 

Data parallelism can be used in this research to perform calculations of the matrices which are not 

related to the particular set of columns or rows. So those independent rows and columns can be 

computed parallelly. Parallelization through multiple processors in the environment of parallel 

computing is identified as data parallelism. The data has been distributed through multiple nodes 

or threads, which is operated in parallel. Related data is processed in parallel by working on each 

element and the elements are stored on regular data structures such as matrices and arrays. When 

evaluating the performance of the programming model in terms of efficiency and effectiveness, the 

locality of the data references plays a significant role and such data is relying on the size of the 

cache and the memory allocation defined by the application program [13]. 

2.1.3 Task Parallelism 

LU and QR factorization algorithm codes are planned to separate as independent tasks so that the 

different processing cores can engage in different smaller tasks. Because multiple independent 

tasks can be utilized widely in parallel programming. Normally task parallelism is achieved by 

dividing tasks into smaller independent tasks of an application. When there are two independent 

tasks exists, task parallelism also exists. When an application gets larger so does the number of 

independent tasks, as a result of that, a large number of tasks can be executed parallelly. So 

accomplishing the performance goals on parallel programming applications depends heavily on the 

task parallelism and plays a key role with the efficiency [1]. 

 

2.2 Literature Review 

2.2.1 Numerical Linear Algebra 

The developments in linear algebra are designed according to the advanced-architecture of the 

computers. Scientific applications and engineering applications are widely using numerical linear 

algebra operations. There is a standard for the basic linear subprograms (BLAS) in order to perform 

the numerical linear algebra operations. These standard libraries of linear algebra functions consist 

mainly of three levels. When the level of the linear algebra function increases so does the number 

of operations performed by the related function accumulate accordingly. D. B. Kirk and W. W. 

Hwu have shown an example of a vector addition which is a level-1 function. Matrix and vector 
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operations are performed in the level-2 functions and these operations using vectors (x,y) and 

scalars (α, β) along with the matrices. They have raised the importance of these BLAS functions 

for solving linear systems and eigenvalue analysis since these functions are used as building blocks 

of the numerical linear algebraic functions. Kirk and Hwu have identified that different BLAS 

function implementations will perform in different ways in both parallel computers and sequential 

computers [1]. 

2.2.2 Matrix Computation 

The focus in [3] was to analyze the impact and the performance of the dense and sparse matrices. 

Jack Dongarra and Victor Eijkhout have developed templates for sparse matrix computations. They 

believed that modern computers with advanced-architecture have a high impact in the area of 

scientific computation along with the numerical linear algebra software development research area. 

This article has discussed the numerical linear algebra design in order to make full use of the 

advanced-architecture computers with the proposed developments. Jack Dongarra and Victor 

Eijkhout have focused on four basic concerns [3] shown as following: 

 The inspiration for the work 

 Define standards and implement the standards (to be used  in linear algebra libraries) 

 Algorithm design  (design concept along with the parallel implementation) 

 Future directions for the research. 

They have started to improve the development of the sparse matrix computations templates and 

they want to apply these templates for the dense matrix computations as the future work [3]. 

2.2.3 Multi-core LU & QR factorization (CPU-GPU) 

In [4] Caner Ozcana and Baha Sena have presented an algorithm to deal with the dense linear 

systems in the CUDA programming platform. Because of the high arithmetic throughput of GPUs, 

Caner Ozcana and others were able to strengthen the performance with a suitable data 

representation along with the reduced row computations on GPU. But the main concern was a 

comparison of diverse systems which consists of numerous GPUs and CPUs for different linear 

systems in terms of the runtimes. They have evaluated the performed algorithms and what they see 

was better performance is obtained with GPU computing. The application that Caner Ozcana and 

Baha Sena developed as the solution of linear equation systems, consists of a significant 

performance improvement. They have tested it on core2duo computer which includes 16 CUDA 
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cores on the first time and they were able to gain a 431% performance rate on a linear equation 

system from the GPU compared with the CPU. They implemented LU numerical linear algebra 

routine that consists of appropriate data representation with a GPU accelerated implementation. 

The implementation has focused on reducing the row computations on GPU and they have provided 

significant performance improvement on sparse linear systems and suggested that the same 

approach can be used it to explain dense linear system [4]. 

 

Radomir Stanković and others have presented [8] five different LU and QR factorization 

implementations. They have analyzed the efficiency of CPUs and GPUs for the runtimes and the 

developments were carried out using: 

 Intel MKL 

 Eigen C++ library 

 MATLAB 

These implementations were performed on a multi-core CPU by them. Rest of the implementations 

have been handled on a GPU with the usage of NVIDIA cuSOLVER library in the CUDA platform 

and with Parallel Computing Toolbox in the MATLAB platform. Results were generated using 

inputs as single and double-precision matrices with the floating-point representation where the 

elements are generated randomly. This research article [8] has shown that the both GPU 

implemented LU factorizations were achieved the best performance when compared with rest of 

the implementations and those matrices were able to fit into the global memory of the GPU. Intel 

MKL implementations were identified as the fastest method for the LU factorization with larger 

matrix sizes and for the QR factorization with all the matrix sizes that have executed in this 

research. 

 

Robert Andrew, Nicholas Dingle has analyzed that many of the performance issues of QR 

factorization were associated with kernel invocations of high frequencies [11]. Using the CUDA 

development platform, they implemented four GPU updating algorithms and identified that for 

certain matrix sizes those implementations perform better than the GPU only QR decomposition. 

A high number of kernel calls have a direct association for the performance drawback and they 

suggested to increase and improve the number of rows in a strip with a reduced number of kernel 

invocations and apply several depending rotations in a thread block inside the kernel with loops 

and synchronizations. They also pointed out that with the use of NVIDIA Kepler architecture’s 
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dynamic parallelism, kernel invocation overheads can be reduced on the GPU. Also, Robert 

Andrew and others have discovered that in some circumstances updating is faster than the full 

factorization and in some, where it is not. In this article, algorithms are consists of operations and 

closed-form expressions are used as the foundation to determine the runtimes in the GPU 

implementations.  

 

Peng Du and others [9] research on integrating the CUDA computing directly into the ScaLAPACK 

framework, and speed-up the LU and QR routines for a certain level by carefully managing the 

GPU-CPU data transfers. But Peng Du and others were not able to remove the CPU-to-GPU 

expensive communications. Their main focus was to convert most of the ScaLAPACK routines to 

support GPU computing so when GPUs are presented, application codes that already utilize 

ScaLAPACK framework are able to reach some sort of an automatic speedup. They suggested that 

it is beneficial to keep data onto GPUs as much as possible. They showed that for LU factorization 

where pivoting forces more frequent data transfer, minimizing the data amount helped largely to 

reduce the performance impact. Peng Du and others have identified to take multiple GPUs per node 

into consideration as their future work and to convert more algorithms. They have shown the 

direction to conduct larger scale experiments to further confirm the design in the future. 

 

In [12] also describes an implementation of a parallel LU decomposition on GPU cluster for dense 

matrices. E. D’Azevedo and others have developed a software to reach the high performance by 

increasing the software complexity, integrating magmaBLAS implementation to the software and 

to use a left-looking out-of-core algorithm when the available memory on the GPU device is lower 

than the problem size. But they were not able to avoid the tuning challenges of slow CPUs along 

with the low CPU-to-GPU bandwidth which has disturbed to reach a certain good level of high 

performance. They have identified, optimizations that may need to be included such as finding 

asynchronous operations to transfer the data on CPU and GPU devices, tuning separately matrix 

block size in ScaLAPACK library and development of the look-ahead computations in the 

algorithm to minimize the runtime of the LU factorization by considering the critical path as their 

future work. 
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Yulu Jia and others did [10] research on the LU factorization on the shared memory environment 

and proposed a multi-GPU, multi-core hybrid LU decomposition algorithm which supports both 

multiple GPUs and CPUs. This hybrid algorithm works with static scheduling and dynamic 

scheduling. But the suggested LU decomposition algorithm has used some CPU cores to perform 

the panel factorization and to update the trailing submatrix, remaining CPU cores along with all 

the available GPUs cores has been used. Since panel factorization is done in the CPU, hybrid 

algorithms overlap with the CPU work, and the expensive CPU-to-GPU communication is also a 

drawback for the performance. In this article [10] Yulu Jia and others have shown that the main 

concern is the speed and the time of the execution when solving the LU factorization for a large 

matrix size and they have planned to avoid the unnecessary data copying between the CPU and the 

GPU by using GPU non-resident memory technique as their future work.  

 

Zhongchao Lin, Yan Chen and others have shown that faster speed can be reached with the GPU 

based two-level out-of-core algorithms for the situations with large element method. An airborne 

array problem is solved in this paper on a CPU/GPU hybrid cluster with the following computer 

specifications: 

 128GB RAM 

 10GB GPU memory 

 1TB storages of HDD 

With these computer specifications, they were able to achieve a speedup of 1.6 times against the 

implemented parallel CPU version. The same technique can be used for on-board antenna systems 

which consist of complex and larger platforms to increase the performance in finding the radiation 

patterns as described in this paper [14]. With the involvement of CUDA and MPI frameworks, 

suggested implementation were able to execute on CPU/GPU hybrid cluster. Physical memory and 

GPU memory bottlenecks in the electrically large complex problems are addressed with the 

designed two-level out-of-core algorithms. Asynchronous communication has used by Zhongchao 

Lin and others to allow communication and computation overlap in the algorithms. They have 

shown that when compared with the traditional out-of-core LU solver, the two-level out-of-core 

LU solver performed better with 1.6x times for the large problems which having difficulty to fit in 

the physical or GPU memory [14]. 
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In [15], Azzam Haidar, Mawussi Zounon, Ahmad Abdelfattah, Stanimire Tomov and Jack 

Dongarra have presented an improved GPU kernel for very tiny matrix operations which had a 

significant speedup, better than the vendor libraries. And also Azzam Haidar and others have 

discussed that the design of the GPU kernels is the reason for the performance decrease to the small 

matrices algorithms. They proposed the strategies and the analysis of the respective algorithms in 

order to achieve the complete utilization and the performance from the GPU. Methodology and 

theoretical analysis also have been developed by them for tiny matrices to gain better performances. 

The suggested methodology described using LU and Cholesky decompositions as test cases to 

show that the hardware performance near to the theoretical upper bound can be achieved. Highly 

optimized GPU kernel design for the novel algorithms was investigated by them and this particular 

GPU kernel is used for undersized baches of  LU and Cholesky decompositions. The motivation 

for this research is the demanding need in the areas such as astrophysics applications in the 

scientific simulation domain. Following Methods are incorporated in the proposed design for [15], 

[16]: 

 Register blocking 

 Ideal memory traffic 

 Tunable concurrency. 

 

Sencer Nuri Yeralan, Timothy A. Davis and others have done research on sparse matrix 

decomposition which including a combination of both regular and irregular operations and 

computations. They have stated that gain high-performance on the available cores in the GPGPU 

was very challenging and they have addressed this challenge with a multifrontal QR decomposition 

concept and the performance achieved is considerably high with compared to a highly enhanced 

multi-core CPU. All the communicated data is stored on GPU and a lot of frontal matrices were 

decomposed concurrently on highly parallel nature and the algorithm has extended to support more 

parallelism. The communication-avoiding QR decomposition supports further parallelism with the 

dense matrices and the sparse multifrontal method supports further parallelism with the sparse 

matrices [17]. 

 

In [18], Cheng Chen and others have highlighted that the dense LU factorization is a serious 

factorization algorithm that broadly used in the problems of dense linear algebra. According to 

them, Hybrid LU factorization implementations designed in a way to make full use of the 
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heterogeneous systems. But the available heterogeneous algorithms are usually based on CPU and 

those algorithms mostly rely on CPU cores and perform a large number of data transmissions 

through the PCI bus. Because of this reason, performance efficiency and resource efficiency of the 

complete computer system will be decreased. But according to this paper, they have described an 

implementation of coprocessor-resident LU factorization in order to increase the performance 

efficiency along with the energy efficiency by freeing the CPU with the massive computation 

operations and by removing the data transmission through PCI bus. In order to preserve efficiency, 

they have carried out improvements to CPU operations, MPI operations and to coprocessor 

operations and all the improvements were performed on a supercomputer and the output has shown 

that their LU implementation can be reached high performance and it is possible to avoid the 

barriers of the energy and the performance efficiency. 

 

Felix Loh, Parameswaran Ramanathan and others have identified and shown that GPUs are 

vulnerable to burdens like alpha particle strikes and power fluctuations when trying to minimize 

the transistor feature size with the intention of improving the methodology along with the technical 

aspect. So that they raised the importance of technique which is able to assure the accuracy of the 

operations even in the middle of a fault. They have developed and analyzed three fault-tolerant 

schemes for QR factorization, and also they have presented a technique which is able to avoid the 

errors and faults with having different time spans only for NVIDIA GPUs namely as transient fault 

injection technique. They showed that the technique in this research is comparatively low cost, has 

a better ability to scale and holds a good success rate from this research [19]. 

 

With a minimized communication, a dense vector set can be orthonormalized by and single value 

QR decomposition. Single value QR decomposition has shown a remarkable performance when 

compared with the available orthogonalization algorithms. In the orthonormalization algorithms, 

communication is the place where the most expensive computations occurred other than the 

arithmetic computations. Ichitaro Yamazaki and others have studied the steadiness and efficiency 

of different Single value QR decomposition developments on multi-core CPUs along with a GPU 

in this research. Their focus was with the triangular solver for the dense vectors because it performs 

the most of the decimal computations of the single value QR decomposition. As a component of 

the study, they have examined a versatile modified version of single value QR decomposition. It 
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has the choice to either expand the direction of the orthogonal error or to use the triangular solution 

at runtime [20]. 

 

Wei Tan, Shiyu Chang and others have shown in the [21] that the matrix factorization has a high 

potential in the areas of feature extraction, word embedding, collaborative filtering, and data 

compression. Numerous improvement methodologies have suggested but the least square is 

recognized because of the ability to parallelism, firm conjunction and merge of the unclassified 

inputs and ability to handle easily. And also they have observed that the current matrix factorization 

developments have done for a specific set of computers and it is insufficient. They explained the 

reason for this was because for a large-scale computer network has a bottleneck in the data 

communication where a single computer does not have to face any. Alternating least square on 

GPU is an encouraging trend. They have proposed a unique approach to expanding and improving 

the matrix factorization with including the approximate computing along with the memory 

utilization. The previous activities were related to increasing data reuse of the GPU memory. In 

modern methods, they tried to shrink avoidable operations without disturbing the convergence of 

the implementations and algorithms. All their developments are openly accessible for future 

researches [21]. 

 

In [16], Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov and Jack Dongarra have presented 

novel implementation design along with the improvement methodology for matrix inversion and 

for LU decomposition. They have pointed out that this kind of complications occurs in numerous 

scientific programs which belongs to the domain of astrophysics and mathematics. They have 

shown that different kind of mindset is required for the development of GPU kernel design for the 

tiny matrices. They have also taken the benefit of the tiny matrices to eradicate the in-between row 

swapping in the kernel inversions and in the decompositions. They were able to perform their work 

on a Pascal P100 GPU and 6x times, 14x times performance enhancement was gained respectively 

in the decomposition and matrix inversion against the cuBLAS implementation. 

 

Gil Shabat, Yaniv Shmueli, Yariv Aizenbud and Amir Averbuch have shown that algorithms which 

are randomized have a high effect and contributes critically for the low-rank approximations of 

larger matrix sizes. In [22], randomized singular value decomposition is enhanced to a LU 

factorization implementation with random algorithms. Numerous fault limits are being presented 
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by them which are correlated to sub-Gaussian matrices by relying on the results derived from this 

research. The limits of the error can be improved based on the known random algorithms and since 

the singular value decomposition algorithm is completely parallel and it can be performed 

effectively on GPU. They have presented the algebraic model and the comparison to other 

factorization approaches to clarify the efficiency of the proposed model [22]. In [23], Ryan 

G.McClarren has described and explained the LU factorization and the categories of matrices 

available in mathematical, scientific calculations and their mutual arrangements. 

 

Evan Coleman and Masha Sosonkina have presented an analysis about the implementation of how 

to compute an incomplete LU decomposition. For this approach various techniques and 

methodologies used in order to enhance a much better parallel algorithm. This investigation has 

included numerous methodologies to validate and to understand the practicability of the suggested 

implementation. When it comes to the errors and other available tests, it is shown that changes in 

the point of algorithmic view can validate intersection of the incomplete decomposition along with 

the proposed suggestions which then will be lead to increase the efficiency of the resulting 

dynamics [24]. 

 

In [25], Johan Thunberg, Johan Markdahl and Jorge Gonçalves have addressed a synchronization 

in a distributed manner by rotating the columns in the matrices. The synchronization and the 

respective rotations are based on the control design. Dynamic control laws have been designed by 

them in order to address this type of synchronization complications. QR decomposition 

methodology along with a combination of auxiliary variables are the foundation for this control 

laws. The reasons and the advantages of using the QR decomposition methodology because of the 

capacity to separate the dynamics for a particular number of columns in matrices using this 

technique.  They have shown that a closed loop system can be achieved the synchronization with 

this suggested implementation for quasi-strong collaboration graph topologies inside the control 

design. 

 

2.2.4 GPU-only Implementation 

Carlos Martins, Ricardo Chaves and others have developed a load balance solution that can 

efficiently distribute the workload of linear algebra operations between the CPU and the GPU(s) 
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of a heterogeneous system. This has targeted the acceleration of the LU factorization due to its 

importance in the scientific and numeric fields but also in the LaPACK library. They have proposed 

two different solutions in their research. The multi-device solution that aims at distributing the 

workload efficiently on the CPU and the available GPUs. The GPU-only approach is focused on 

performing the factorization solely on the GPU without the need for constant data transfers during 

the execution. The limitation of this GPU only approach is the implementation of the less efficient 

factorization step. Because they have said that the factorization algorithm is hard to plot into the 

GPU architecture [26]. 

 

Michael Anderson, Grey Ballard and others have described the development of the 

Communication-Avoiding QR decomposition that can be executed completely on a GPU [27]. 

They have shown that the decrease in memory traffic produced by Communication-Avoiding QR 

factorization has allowed them to outperform the available parallel GPU implementations of QR 

decomposition for a large category of tall-skinny matrices. They have outperformed the Intel’s 

Math Kernel Library up to 12x by the performance speed and 30x faster than Intel’s Math Kernel 

Library on a multicore CPU [27]. 

 

NVIDIA also proving a library which is named as the cuSOLVER library for the factorization 

algorithms that to be performed entirely on the GPU. This vendor specific factorization library 

functions are available for Cholesky factorization, LU factorization and for QR factorization [28]. 

 

Azzam Haidar and others presented [2] their performance investigation, algorithm design concepts, 

and the improvements needed for the implementation of high-performance GPU-only algorithms 

for the dense Cholesky factorization. Since the hybrid algorithms are challenging to perform 

parallelize tasks on CPUs, Azzam Haidar and the team has developed a very efficient algorithm to 

be executed completely on GPU for the Cholesky factorization. GPU-only kernels eradicate the 

costly CPU-to-GPU data transmission and the tuning challenges related to slow CPU or low CPU-

to-GPU bandwidth. They have provided sufficient evidence to prove that memory bound 

procedures can be planned, improved, and adjusted for GPU architecture in a way to be competitive 

with CPUs and reach their theoretical limits [2] with the Cholesky factorization. 
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They have raised the importance/need of the development in other highly needed routines, such as 

the QR and the LU decompositions as their future directions. Therefore, there is a need of the 

development of high-performance LU and QR factorization for GPU only implementation, where 

the performance of the application/algorithm is addressed in terms of algorithmic optimization 

path, kernel optimization path and implementation design path. 

 

2.3 Summary of Literature Review 

Studied resources and the literature review can be displayed in the following format as shown 

below in Table 2.1. 

  

Table 2.1 Summary of the literature review 
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3 RESEARCH METHODOLOGY 

3.1 Methodology 

Experimental research methodology has been chosen to conduct this research. Because when 

implementing LU and QR factorizations on GPU, it will provide the understanding with the reasons 

by indicating what type of outcome occurs when an identified variable is manipulated in a 

controlled environment. Using this experiment, it is possible to answer "what-if" questions that 

related to the research questions, without a specific expectation about what this LU and QR 

factorization implementation reveals, or to confirm prior results [29]. The results can be used either 

to support or to disprove the hypothesis developed based on the research questions if this 

experiment is carefully implemented.  

3.1.1 Experimental Research Methodology 

The experimental research methodology is an organized and scientific approach to this research in 

which is allowed to manipulate one or more identified potential variables, and then to be measured 

any change in other variables. In simple terms, it is planned to conduct a true experiment along 

with a control group and one effect is only tested at a time. 

 

3.1.1.1 Advantages of Experimental Research Methodology 

While adjusting the independent variables related to the research question, Unwanted irrelevant 

variables are possible to be eliminated. In other research methodologies, control over irrelevant 

variables are usually higher. Experimental research methodology involves influencing the 

independent variable to observe the effect on the dependent variable. As a result of that cause and 

the effect relationship among these variables are possible to be determined. This methodology has 

strict conditions and control over the experiment. Because of this reason, the experiment can be 

performed repeatedly or a number of times and check the results. Reproduction is really significant 

because when comparable results are derived at different times, the confidence is very high with 

the results [30]. 
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3.1.1.2 Disadvantages of Experimental Research Methodology 

Simulated conditions that do not always represent the realistic, can be created with an experimental 

research due to the fact that all other variables are firmly organized. Because the circumstances are 

firmly organized and do not usually represent the reality, the output matrices of the input matrices 

may not be valid measurements of their behaviors in a non-experimental situation [30]. Some other 

disadvantages of the experimental research methodology are listed follows: 

 Unnecessary variables are not continuously possible to remove 

 Experiment situation or scenarios may not be related to the real world 

 Human errors also play a significant role in the validity of the research. 

3.1.2 Related Technologies to Solve the Research Question 

Following technologies can be used to find a solution for the research problems and some 

characteristics of these technologies are listed below. 

3.1.2.1 Linear Algebra PACKage 

LAPACK offers the solutions for concurrent linear equations systems which is developed using 

Fortron 90 [31]. This library normally uses Basic Linear Algebra Subprograms (BLAS) to the 

fullest for the computation of the solution. Level 3 BLAS computer operations are available and 

designed in this LAPACK package. LAPACK uses multiple CPU processor cores when performing 

calculations and it is a CPU only approach. Matrix multiplication, triangular systems with several 

upper triangular solutions and block matrix operations are included in the LAPACK package due 

to the reason of the coarse granularity, in order to achieve higher proficiency and productivity in 

the level 3 BLAS operations. With the custom modified and upgraded implementations of the 

programs which are provided by the manufacturers to the high-performance computers, are likely 

to be rich in the terms of efficiency [31]. 

3.1.2.2 Open Multi-Processing - OpenMP 

In OpenMP also it is possible to perform tasks in multiple processor cores and OpenMP will also 

be used to evaluate the research output with the OpenMP output results for the LU and QR 

factorization algorithms. OpenMP is an API (Application Programming Interface) developed in 

Fortran, C and C++ programming languages which support multiprocessing structures and shared 

memory architectures. Developers are able to program flexible, adaptable and modest parallel 
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application programs with the help of a scalable and portable model of the OpenMP which includes 

the defined library methods and functions, environment variables and compiler directives. OpenMP 

uses multiple CPU processor cores when performing calculations and it is a CPU only approach. 

OpenMP has the ability to produce interfaces and applications, extending from the standard desktop 

computer to the supercomputer for parallel execution [32]. 

OpenMP programs have also been tested on distributed shared memory systems by researchers. By 

using MPI (Message Passing Interface) an OpenMP, hybrid application model is able to perform 

on a computer for parallel execution. In such cases, MPI has the responsibility of parallelism 

between nodes and OpenMP is taken care of the parallelism within a multi-core node [33], in order 

to outspread OpenMP for non-shared memory applications and to convert OpenMP applications 

into MPI application interfaces [34].  

 

3.1.3 Selected Technology to Solve the Research Problem 

Compute Unified Device Architecture has been chosen as the technology to implement LU 

factorization and QR factorization on a GPU. CUDA is a parallel computing platform and 

application programming interface model created by NVIDIA. It has allowed using a CUDA 

enabled GPU for general purpose processing. The CUDA programming platform is a software 

layer that gives direct access to the virtual instruction set and parallel computational elements of 

GPU for the implementation and execution of compute kernels [35].  

OpenMP and LAPACK technologies are also to be used in this research to evaluate with the GPU 

only implementation of the QR factorization and GPU only LU factorization implementation. 

High-performance Cholesky factorization has been implemented successfully in GPU only 

execution [2] by using NVIDIA CUDA cuSOLVER and cuBLAS library. And also communication 

avoiding QR algorithm is also implemented using CUDA programming platform [27].  Because of 

these reasons, CUDA has been chosen as the implementation technology to conduct this research.   

3.1.3.1 Processing Flow On CUDA 

CUDA flow of processing can be described as following and the graphical representation can be 

shown in Figure 3.1 below.   

1. Copy data to GPU memory (from CPU memory to GPU memory) 

2. GPU kernel initiation (initiated by CPU) 
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3. GPU code execution (CUDA code execute parallelly in the kernel) 

4. Results copy to CPU memory (from GPU memory to CPU memory). 

 

 

Figure 3.1 CUDA Processing Flow 

3.1.3.2 Advantages of CUDA 

CUDA has numerous benefits and advantages when compared with the typical general-purpose 

computation on GPUs when it is come to the graphics API usage. The main advantage is code can 

be read from random memory addresses in the memory, this is known as scatter reads. A shared 

memory region of CUDA can be shared between threads. It can be applied as a user-managed cache 

which provides the potential to a higher bandwidth while using texture lookups in this shared 

memory concept. CUDA also allows data downloads at a rapid speed and faster read/write 

operations from and to the GPU. Full provision for integer and bitwise computations and tasks, 

together with integer texture lookups can also be listed as advantages of CUDA [35]. 

3.1.3.3 Limitations of CUDA 

Whether for the host computer or the GPU device, all CUDA source code is now processed 

according to C++ syntax rules. As with the more general case of compiling C code with a C++ 

compiler, therefore, it is possible that old C-style CUDA source code will either fail to compile or 

will not behave as originally intended [35]. 
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Interoperability with rendering languages such as OpenGL is one-way, with OpenGL having access 

to registered CUDA memory but CUDA not having access to OpenGL memory. Unlike OpenCL, 

CUDA enabled GPUs are only available from NVIDIA [35]. 

 

3.2 Research Design 

To avoid the performance drawbacks of the LU factorization and QR factorization, expensive CPU-

GPU communications should be removed and the solution is to implement LU and QR factorization 

on completely on GPU execution [2], [8], [9]. And also to find such way to perform both panel 

factorization and trailing matrix update in the GPU, using different or same GPU streams without 

getting affected to the performance drawback [2], [10]. These are the research questions going to 

be addressed by this research.  

Inputs for this research will be some random matrices generated by an equation. Then in the process 

that input matrices will perform LU factorization and QR factorization using the GPU and will 

perform necessary tasks. The output of these implemented algorithms will be matrices in the form 

of LU factorization and QR factorization. But the output of this research will be a LU factorization 

and QR factorization algorithms which can be executed on an entirely GPU environment along 

with high-performance capabilities. When it comes to the features of this solution algorithms of 

this research, the main feature is high-performance and the next main feature is not using the CPU 

to perform the factorization processes. Research design can be converted to a graphical 

representation of components as shown in Figure 3.2 below. 

 

Figure 3.2 Graphical Representation of the Research 
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3.2.1 GPU only LU Factorization Design. 

In this research, LU factorization is to be implemented in GPU only execution using block LU 

factorization concept. There are several reasons to select the block LU factorization concept to 

this research such as, 

 Block LU factorization work with blocks of data having b2 elements, performing O(b3) 

operations. The O(b) ratio of work to storage which means that the processing elements 

with an O(b) ratio of computing speed to both input and output bandwidth can be tolerated. 

Because of this reason, we can expect faster results with the block LU factorization 

algorithm [36], [37]. 

 Block LU factorization algorithms are usually powerful and efficient in matrix 

multiplication. And LU factorization consists of considerable matrix multiplications in the 

algorithm. Due to these facts, this is a benefit for the reason that almost every up-to-date 

parallel machine is decent at matrix multiplication especially GPUs [36], [37]. 

 Block algorithms are able to deal with matrices by considering arrays of tiny matrices. 

Because of these reasons, block LU factorization has identified as quite beneficial for this 

research implementation [37]. 

The structure of the block LU factorization can be graphically described as shown in Figure 3.3 

below. 

 

Figure 3.3 Structure of the Block LU factorization 

 

In the GPU only LU factorization algorithm implementation we have planned and designed the 

algorithm using both cuSOLVER and cuBLAS routines together where they are necessary to be 

implemented. The pseudo code of the algorithm is shown below in Figure 3.4. 



 

24 

 

 

Figure 3.4 Implementing Block LU Factorization Algorithm Pseudo Code 

 

3.2.2 GPU only QR Factorization Design. 

In this research, QR factorization is to be implemented in GPU only execution using Block 

Householder QR factorization concept. There are several reasons to select the block householder 

QR factorization concept to this research such as, 

 Householder reflectors using QR algorithms are known to be numerically stable than the 

QR algorithms using Cholesky QR and the Gram-Schmidt process. In the householder 

approach, the householder vectors are broken up in such a way that communication is 

minimized [38], [39].  



 

25 

 

 The trailing matrix updates for several Householder vectors can be delayed and done all at 

once using matrix-multiply for one block. This allows for higher arithmetic intensity on 

machines with a memory hierarchy. Because of this reason, it leads to better performance. 

For the very same reason, this is called blocked Householder QR factorization because it 

allows the updates to the trailing matrix to be blocked in cache [38], [39]. 

In the GPU only QR factorization algorithm implementation we have planned and designed the 

implementation not to use cuBLAS routine functions in order to save the amount of time to 

initiate the cuBLAS handles in the CPU memory. The pseudo code of the algorithm is shown 

below in Figure 3.5 and Figure 3.6 is described as the important two functions mentioned in 

Figure 3.5 in the pseudo-code definition. 

 

Figure 3.5 Block householder QR Factorization Pseudo Code 
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Figure 3.6 Panel Factorization and Trailing Matrix Update Pseudo Code 
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4 IMPLEMENTATION 

4.1 LU Factorization Implementation on GPU 

In order to perform the LU factorization, there should be an input matrix. Then the factorization 

algorithm will get that particular matrix as an input and then perform the steps of the factorization. 

4.1.1 Initiate Input Matrix  

The typical way to do this is to initiate the matrix in the CPU and then allocate the memory in the 

GPU and then copy the matrix into the GPU memory as shown in Figure 4.1. But in our 

implementation, we have initiated the matrix in the GPU memory as shown in Figure 4.2. 

 

Figure 4.1 Matrix initiation in normal way 

 

 

Figure 4.2 Matrix Initiation in the implemented way 

 

4.1.2 GPU-only Implementation using cuSOLVER library 

We have implemented LU factorization using the cuSOLVER library and then we have optimized 

it to generate results faster with better runtimes. But the ability to perform improvements to this 

implementation is really difficult because of the functionality inside the cuSOLVER functions are 

hidden even in the development level. Because of this reason we have planned to implement the 

LU factorization on a GPU-only execution in a different way. 
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4.1.3 Suggested Way to Implement the GPU-only LU factorization  

The concept of this blocked LU factorization is used in this implementation[40], [41]. The input 

matrix which is to be factorized using the LU decomposition is divided into [m*m] sized 4 matrices 

using Equation 7 as shown below.  

m =  [(input matrix size) / 2] Equation 7 

This separation of the input matrix into 4 several matrices is described below using Figure 4.3.   

 

Figure 4.3 Separation of input matrix into 4 small matrices 

With this matrix, we have tried to perform blocked LU factorization by using these identified 

[m*m] 4 matrices. This representation is below shown in Figure 4.4 since the GPU-only LU 

factorization is based on equations in this representation.  



 

29 

 

 

Figure 4.4 Representation of blocked LU factorization 

 In this way, LU factorization has 4 steps to be performed. L2 sub-matrix and U3 sub-matrix consist 

of nothing but zero in every element of those matrices. L1, L3, L4, U1, U2, U4 are to be found 

using different techniques/ways.  

Compute and derive L1 and U1 

In order to derive L1 and U1 matrices, we have implemented GETRF routine to be executed in the 

Nvidia MX130 GPU as a GPU-only code function using the cuSOLVER library for the block of 

A1 matrix. This step has included solving A1 matrix to LU decomposition as the panel/block 

factorization. In Figure 4.5, derivation of L1 and U1 and matrices are shown below. The result of 

this step has become inputs for other steps, so in order to perform other steps, L1 and U1 matrices 

computation has got the highest priority. A1 can be shown in Equation 8 below. 

𝐴1 = (𝐿1. 𝑈1) + (𝐿2. 𝑈3) Equation 8 

Since L2 and U3 matrices are zero, A1 matrix can be re-represented as shown in Equation 9. 

𝐴1 = (𝐿1. 𝑈1) Equation 9 
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Figure 4.5 Panel/Block Factorization of A1 Matrix 

Compute and derive U2 and L3 

Once the L1 and U1 matrices have been computed, the next step is available to be implemented. 

In here A2 can be represented as following matrix equation as shown in Equation 10. 

𝐴2 = (𝐿1. 𝑈2) + (𝐿2. 𝑈4) Equation 10 

Since the L2 is a zero matrix. L2 and U4 matrix multiplication is also a zero matrix. So the A2 

matrix can be represented as the following equation. Graphical representation of A2 matrix can be 

shown in Figure 4.6 below. 

 

Figure 4.6 Representation of A2 sub-matrix 

By following the above steps again for the sub-matrix A3, matrix equation and representation A3 

matrix can be shown in Figure 4.7 and the A3 matrix can be derived from Equation 11 shown 

below.  

𝐴3 = (𝐿3. 𝑈1) + (𝐿4. 𝑈3) Equation 11 
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U3 is a zero matrix, so A3 can be rewritten in the following way as shown in Equation 12. 

𝐴3 = (𝐿3. 𝑈1) Equation 12 

 

Figure 4.7 Representation of A3 sub matrix 

 

By using above two equations U2 and L3 matrices can be obtained. To obtain U2 matrix the 

dependent matrices are A2 and L1 matrices and to obtain L3 matrix the dependent matrices are A3 

and U1 matrices. So the above two matrix equations/operations are independent of each other and 

can be executed through parallelly. 

When it comes to the implementation of these two matrix operations in the GPU as GPU-only 

executable codes, two possible routines are available for this operation, 

 GEMM – General Matrix-Matrix 

 TRSM – Triangular Solving Matrix 

First, we have tried to implement an operation using GEMM routine. To perform this operation 

output matrix should be existing as a single matrix. But in here, Equation 13 and the output matrix 

is U2. So in order to compute U2 first, we have to get the L1-1 and then perform the matrix 

multiplication using GEMM routine. Since this routine looks heavy on the computation we have 

measured the elapsed times for the GEMM and TRSM routines for some matrices and the results 

are shown below in Figure 4.8 as a graphical representation. In this Figure 4.8 matrix size is 

represented in X-axis and runtime is represented in milliseconds in Y-axis. 

A2 = L1.U2 Equation 13 
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Figure 4.8 Runtimes for the GEMM and TRSM routines for different matrix sizes 

When the matrix size is getting large TRSM routing has the highest efficiency when the runtime is 

compared. So for deriving U2 and L3 matrices the best option is to implement the TRSM routine 

for these two matrix operations. These two matrix operations were implemented parallelly using 

cuBLAS DTRSM function with two different CUDA streams since the two tasks are independent 

of each other. 

 

Compute and derive L4 and U4 

 This is the most time-consuming step in the whole process. In order to compute the A4 matrix 

using L4 and U4 matrix, the equation can be shown below in Equation 14 and Equation 15 

respectively. 

𝐴4 = (𝐿3. 𝑈2) + (𝐿4. 𝑈4) Equation 14 

(𝐿4. 𝑈4) = 𝐴4 −  (𝐿3. 𝑈2) Equation 15 

 

To compute the L4 and U4, we have to perform the L3 and U2 matrix multiplication and then 

subtract from A4 matrix.  To perform the matrix multiplication GEMM routine has been used and 
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implemented using cuBLAS DGEMM function for GPU-only execution. This representation is 

graphically shown in Figure 4.9 below. 

 

Figure 4.9 Deriving L4.U4 matrix 

But in here L4.U4 matrix is represented using one matrix. In order to represent as two matrices 

again DGETRF routine has been used for the GPU-only implementation via the cuSOLVER 

library. L4 and U4 matrices decomposition is represented in Figure 4.10 below. 

 

 

 

Figure 4.10 Decomposing L4U4 matrix into two matrices 

 

In this, we have redesigned the LU factorization and has implemented the LU factorization 

algorithm for a GPU-only execution. 
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4.2 QR Factorization Implementation on GPU 

The same approach has been taken for the GPU only implementation of the QR factorization. By 

using this approach for the QR factorization will increase the calculating complexity of the 

algorithm. Suggested approach/algorithm will perform the factorization using block panels. 

 

4.2.1 Determine the square matrix size  

Based on the user input for the matrix size, the square matrix is derived using an equation and 

calculate block panel sizes accordingly. Determining square matrix size is shown in Figure 4.11 

below. 

 

Figure 4.11 Determine the matrix size 

In Figure 4.11 the variable x and y are the numbers of rows and number of columns of the block 

panel. Based on the user input matrix size n, number of panels and the square matrix that can be 

performed without an error is computed using Equation 16 as below shown, where p is represented 

by the no of panels. 

𝑆𝑞𝑢𝑎𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑆𝑖𝑧𝑒 = 𝑥 + 𝑝(𝑥 − 𝑦) Equation 16 
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4.2.2 Suggested Way to Implement the GPU-only QR factorization 

The concept of the blocked Householder QR factorization is used in this implementation [27], [42]. 

After determining the square matrix, block panel size and the number of row-column panel 

distribution, the panel factorization for a block panel can be performed. The first panel can be 

represented in Figure 4.12 as shown below. 

 

Figure 4.12 first Panel to be panel factorized 

In the first panel of the first column set, take the first column and get the sum of the inner product 

of those elements, according to Figure 4.12 inner product equals to  [(a25)2 +  (a33)2 +  (a41)2 +

 (a49)2 +  (a57)2]. Then the square root of that sum value will be calculated using Equation 17. 

√𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑆𝑢𝑚 = √(a25)2 + (a33)2 + (a41)2 + (a49)2 + (a57)2 Equation 17 

The sign will be based on the leading element of the block panel, if the leading element is less than 

zero the sign will be negative otherwise the sign will be positive (negative = -1, positive = +1). 

As the next step, u value is computed as shown in Equation 18, where u will be used to update the 

elements in the selected columns. Tau value of this column is also calculated here using Equation 

19 for the later use. 

𝑢 = 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑙𝑒𝑚𝑒𝑛𝑡 + (𝑠𝑖𝑔𝑛 ∗ √𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑆𝑢𝑚  ) Equation 18 

Tau = sign ∗ (
u

√𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑆𝑢𝑚 
)  Equation 19 

 

Then the first element value and the respective column values can be calculated using Equation 20 

and Equation 21 respectively. 

firstElementValue =  −sign ∗ √𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑆𝑢𝑚  Equation 20 
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𝑜𝑡ℎ𝑒𝑟𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 =  𝑜𝑡ℎ𝑒𝑟𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒/𝑢  Equation 21 

 

This part can be graphically represented in the below shown Figure 4.13 and it iterates through the 

number of elements in the block panel column. 

 

Figure 4.13 Compute the first column of the block panel 

Get the first column updated element values and generate the Z values using W, YT and V in the 

form of Equation 22 shown below. 

𝑍 = 𝑊 ∗ 𝑌𝑇 ∗ 𝑉 Equation 22 

After that, applying the reflector values to the other column elements are based on the previous 

column calculated values. This step can be shown in the below Figure 4.14 as a graphical 

representation. 

 

Figure 4.14 Applying the reflector value in the other columns of the block panel 

This process should be applied recursively to the rest of the columns of the block panel by 

considering the sub-panels in the block panel. The implemented loop can be depicted in a graphical 

way, as shown in Figure 4.15 below. 



 

37 

 

 

Figure 4.15 Panel factorization of panel 1 of column 1 

In Figure 4.15 the bold color matrix elements are the leading elements of that sub panel, which was 

used to calculate the square root of the inner product summation of the sub panel’s first column in 

this GPU only QR factorization implementation. 

After the panel factorization of the block panel 1 is in the shape of Figure 4.16 in the implemented 

QR algorithm. 
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Figure 4.16 Matrices after the panel factorization in the QR GPU only algorithm 

Now the algorithm is completed the panel factorization computation of the block panel 1 and the 

trailing matrix update of the respective matrices of the same rows which are not affected to the 

computation so far is targeted in this implementation. Trailing matrix update is processed using 

one column at a time. The algorithm has used Equation 23 to update the current column values of 

the elements, where ‘I’ is an Identity matrix of the same square matrix size. This iterative process 

also shown in the below Figure 4.17 to illustrate how the looping occurred in the GPU only 

implemented block QR algorithm. 

𝐴 = (𝐼 + 𝑌𝑊𝑇)𝐴 Equation 23 
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Figure 4.17 Trailing matrix update on the panel 1 of column 1 

This is a very expensive calculation to be performed, even with the above-depicted process of 

computing both panel factorization and trailing matrix update on the panel 1 of column 1 in the 

block panel. There are considerable panels to be performed in the next steps. So this process is 

recursively computed each column set wise and row panels in a column set wise in order to compute 

both panel factorization and trailing matrix in the necessary places of the matrix.  Pseudo-code to 

the implemented algorithm can be shown in Figure 4.18 below to describe the implemented 

algorithm in an abstract way. 

 

Figure 4.18 Pseudo-code for the implemented block QR factorization 
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At this stage, algorithm is completed computing the R matrix, but the R matrix is not in the upper 

triangular form. The elements below the diagonal are removed and derived the upper triangular 

matrix R. This is shown graphically in Figure 4.19 below. 

 

Figure 4.19 Remove the elements below the diagonal in R matrix 

Now the last part of the implementation is to derive the Q matrix from the matrix R. Pseudo code 

of the implemented code block in this GPU only QR factorization is below shown in Figure 4.20. 

 

Figure 4.20 Deriving Q from R matrix 

In this code segment, the algorithm is recurring through the panels and then compute the Q at the 

end of this loop. The derivation of Q is implemented as recursive steps but for the understanding 

purposes one recursion is shown in Figure 4.21, Figure 4.22, Figure 4.23, Figure 4.24 and Figure 

4.25 of the panel 1 first recursion in the process. 

 

Figure 4.21 Identifying the panel 1 From the R (copy of R matrix) 
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Figure 4.22 Calculate Q based on the 1st column of the panel 1 

 

 

Figure 4.23 Calculate Q based on the 2nd column of the panel 1 

 

 

Figure 4.24 Calculate Q based on the 3rd column of the panel 1 

 

 

Figure 4.25 Calculate Q based on the 4th column of the panel 1 
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In this implementation code segment, initially Q matrix is an identity matrix and with V values of 

the columns in the iterations H matrix is computed. Then the Q matrix is copied to the previous Q 

matrix and then performed the previousQ x H matrix multiplication. To perform the matrix 

multiplication no library is used with GEMM routine. Because to save the time to create the handle 

and streams in the cuBLAS library function calls. After iterating through all the row panels in every 

column set, the Q matrix is computed. And this way is implemented in this GPU only QR approach.  
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5 EVALUATION AND RESULTS 

5.1 Evaluation Procedure 

In this research, there are two different algorithms to be evaluated. First one is LU factorization 

and the next one is QR factorization. So the two factorization algorithms are evaluated separately. 

Following scenarios/points will be evaluated in this research evaluation. 

 

In LU and QR factorizations, currently available expensive CPU-to-GPU communications and 

tuning challenges are going to be evaluated in the CUDA platform in terms of the performance 

(execution runtimes) to perform the algorithms. LU and QR factorizations are going to be evaluated 

on a NVIDIA MX130 GPU and the implementation to be executed on the GPU only environment. 

As a safety precaution to the hardware device (The computer), runtimes are to be taken in a much 

cooler environment to avoid the excessive heating of the hardware device. 

 

To compare the results against our implementation, implement the best possible LU and QR 

factorizations on multicores as well. In such ways like using cuSOLVER, LAPACK and OpenMP 

too. The plan is to input the input matrices to the cuSOLVER, LAPACK and OpenMP implemented 

LU and QR factorization algorithms and get the results with spent time. And then execute the same 

input data to the GPU only implemented LU factorization and QR factorization algorithms and get 

the results along with the spent time. Now the evaluation can be performed to the two different 

algorithms in separate ways, in another words, a result analysis of GPU only implementation 

execution against both multicore implementation execution and the NVIDIA cuSOLVER GPU 

only implementation execution. 

 

In this way, it possible and logical to perform the evaluation under these conditions and criteria to 

perform a valid evaluation. The same dataset is being used to both GPU only and multicore 

implementations due to the fact that the input can be kept as a constant, so the result should be 

different when the process is being different. 
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5.2 Result Analysis of GPU only LU Factorization Implementation 

5.2.1 Accuracy 

In order to validate the implemented GPU only LU factorization algorithm, L resulting matrix and 

U resulting matrix is separately multiplied using a third party application and compared with the 

input matrix. The input matrix is divided into 4 matrices and the output also a combination of 8 

matrices. Structure of the input matrices are shown in Figure 5.1 below. 

 

Figure 5.1 Structure of the Input matrix for LU factorization 

 

4x4 Matrix 

The input matrix and the output matrices for the 4x4 LU matrix factorization is shown below 

respectively in Figure 5.2 and  Figure 5.3.  

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Initiated 4x4 input matrix 

 

Figure 5.3 Output matrices for the 4x4 LU factorization 
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Obtained the output matrices are multiplied separately and those results are shown in Figure 5.4 

below. 

 

Figure 5.4 Third party application Matrix Multiplication 

Compare the accuracy of the computation is derived using Equation 24 and depicted below in 

Figure 5.5. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇ℎ𝑖𝑟𝑑𝑃𝑎𝑟𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐴) − 𝐼𝑛𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥(𝐵) Equation 24 

 

Figure 5.5 Compare the accuracy of 4x4 matrix 
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5.2.2 Speed 

The runtime of the implemented LU factorization algorithm is shown below in Figure 5.6. 

 

Figure 5.6 Runtimes of the GPU only LU Factorization 
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5.2.3 Performance 

For different square matrix sizes, execution runtime of the suggested GPU only LU factorization 

along with the LAPACK, OpenMP and cuSOLVER implemented execution runtimes are listed 

below in Table 5.1. The algorithms are performed using an intelTM core i5-8250U CPU and 

NVIDIA MX130 GPU. 

32 x 32 0.25 ms 0.85 ms 157.15 ms 281.12 ms

64 x 64 0.67 ms 2.08 ms 158.40 ms 281.98 ms

128 x 128 3.91 ms 6.51 ms 159.61 ms 282.52 ms

256 x 256 12.15 ms 30.63 ms 165.45 ms 288.12 ms

512 x 512 42.82 ms 139.47 ms 177.16 ms 310.64 ms

1020 x 1020 225.58 ms 1,382.57 ms 242.01 ms 371.69 ms

2044 x 2044 1,599.40 ms 23,893.78 ms 551.58 ms 671.93 ms

3064 x 3064 5,552.87 ms 84,654.17 ms 1,255.73 ms 1,361.52 ms

4092 x 4092 13,388.54 ms 246,066.61 ms 2,531.16 ms 2,666.23 ms

5104 x 5104 26,219.65 ms 420,504.58 ms 4,626.95 ms 4,652.08 ms

6136 x 6136 45,493.97 ms 793,057.21 ms 7,600.19 ms 7,521.72 ms

7168 x 7168 72,237.90 ms 1,207,118.18 ms 11,558.07 ms 11,440.38 ms

8192 x 8192 107,381.24 ms 1,914,888.66 ms 17,391.10 ms 16,723.41 ms

Runtimes in milliseconds of LU factorization Implementations

Matrix Size LAPACK CPU LU OpenMP CPU LU cuSOLVER GPU LU GPU Only Implemented LU

 

Table 5.1 Runtimes in milliseconds of LU factorization Implementations 

Using the runtimes in Table 5.1 derived performance of the GPU only implemented LU 

factorization against other implementations are list below in Table 5.2 below. 

32 x 32 -280.87 ms -280.27 ms -123.97 ms

64 x 64 -281.31 ms -279.90 ms -123.58 ms

128 x 128 -278.61 ms -276.01 ms -122.91 ms

256 x 256 -275.97 ms -257.49 ms -122.67 ms

512 x 512 -267.82 ms -171.17 ms -133.48 ms

1024 x 1024 -146.11 ms 1,010.88 ms -129.68 ms

2048 x 2048 927.47 ms 23,221.85 ms -120.35 ms

3072 x 3072 4,191.35 ms 83,292.65 ms -105.79 ms

4096 x 4096 10,722.31 ms 243,400.38 ms -135.07 ms

5120 x 5120 21,567.57 ms 415,852.50 ms -25.13 ms

6144 x 6144 37,972.25 ms 785,535.49 ms 78.47 ms

7168 x 7168 60,797.52 ms 1,195,677.80 ms 117.69 ms

8192 x 8192 90,657.83 ms 1,898,165.25 ms 667.69 ms

Performance Against GPU Only Implemented LU

Matrix Size LAPACK CPU LU OpenMP CPU LU cuSOLVER GPU LU

 

Table 5.2 Performance of the GPU only Implemented LU Factorization Algorithm 
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When the matrix size gets larger the suggested GPU only LU factorization algorithm starting to 

perform better in terms of the runtime. The algorithm started to perform better in the matrix size of 

1024x1024 against the OpenMP implementation and in the matrix size 6144x 6144 and in above 

sizes, suggested LU factorization algorithm outperform LAPACK LU implementation, OpenMP 

LU implementation and NVIDIA cuSOLVER implementation as shown in Table 5.2. 

 

5.3 Result Analysis of GPU only QR Factorization Implementation 

5.3.1 Accuracy 

In order to validate the implemented GPU only QR factorization algorithm, Q resulting matrix and 

R resulting matrix is separately multiplied using a third party application and compared with the 

input matrix.  

4x4 Matrix 

The input matrix and the output matrices for the 4x4 QR matrix factorization is shown below 

respectively in Figure 5.7 and Figure 5.8.  

 

Figure 5.7 Initiated 4x4 input matrix 

 

Figure 5.8 Output matrices for the 4x4 QR factorization 
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Obtained output matrices are multiplied separately and those results are shown in Figure 5.9 below. 

 

Figure 5.9 Third party application Matrix Multiplication 

Compare the accuracy of the computation is derived using Equation 24 and depicted below in 

Figure 5.10. 

 

Figure 5.10 Compare the accuracy of 4x4 matrix 
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5.3.2 Speed 

The runtime of the implemented QR factorization algorithm is shown below in Figure 5.11. 

 

Figure 5.11 Runtimes of the GPU only QR Factorization 
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5.3.3 Performance 

The same approach has been used for the suggested GPU only QR factorization algorithm 

implementation runtime along with the LAPACK, OpenMP and cuSOLVER implemented QR 

factorization execution runtimes are listed below in Table 5.3. The algorithms are performed using 

an intelTM core i5-8250U CPU and NVIDIA MX130 GPU. 

 

32 x 32 0.43             ms 1.79             ms 292.37           ms 2.95                               ms

64 x 64 1.74             ms 4.28             ms 292.74           ms 17.65                             ms

128 x 128 7.48             ms 13.38           ms 300.39           ms 200.23                           ms

256 x 256 32.03           ms 48.15           ms 331.07           ms 2,218.63                        ms

512 x 512 168.06         ms 276.04         ms 403.56           ms 38,918.41                     ms

1020 x 1020 1,345.56      ms 1,992.98      ms 883.40           ms 687,278.58                   ms

2044 x 2044 13,466.73   ms 16,576.75   ms 4,252.15       ms N/A ms

3064 x 3064 48,969.83   ms 53,317.38   ms 13,205.76     ms N/A ms

4092 x 4092 120,258.09 ms 116,194.27 ms 29,902.91     ms N/A ms

5104 x 5104 238,777.74 ms 216,315.42 ms 58,918.76     ms N/A ms

6136 x 6136 413,846.63 ms 361,181.52 ms 100,100.82   ms N/A ms

7168 x 7168 663,353.07 ms 561,909.18 ms 158,961.61   ms N/A ms

Runtimes in milliseconds of QR factorization Implementations

Matrix Size LAPACK CPU QR OpenMP CPU QR cuSOLVER GPU QR GPU Only Implemented QR

 

Table 5.3 Runtimes in milliseconds of QR factorization Implementations 

 

Using the runtimes in Table 5.3 derived performance of the GPU only implemented QR 

factorization against other implementations are list below in Table 5.4 below. After analyzing these 

runtimes against the suggested GPU only QR factorization implementation, there are no matrix 

sizes available which outperform the runtimes with LAPACK, OpenMP and cuSOLVER 

implemented QR factorization runtimes. But for every matrix size up to 128x128 matrix, the 

suggested GPU only QR factorization algorithm performs better than the cuSOLVER library 

related QR factorization implementation runtimes. 

 

With the suggested GPU only QR factorization implementation, it was only possible to execute 

matrix sizes up to 1024x1024. Beyond this matrix size, QR factorization will take a massive time 

to execute the algorithm and mostly failed to produce the two output matrices. And the problem 

identified here was a matrix multiplication with another computationally expensive code when 

deriving the Q matrix in the QR factorization.  
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32 x 32 -2.51 ms -1.16 ms 289.42 ms

64 x 64 -15.91 ms -13.37 ms 275.09 ms

128 x 128 -192.75 ms -186.84 ms 100.16 ms

256 x 256 -2,186.61 ms -2,170.48 ms -1,887.56 ms

512 x 512 -38,750.35 ms -38,642.37 ms -38,514.85 ms

1020 x 1020 -685,933.02 ms -685,285.60 ms -686,395.18 ms

2044 x 2044 N/A ms N/A ms N/A ms

3064 x 3064 N/A ms N/A ms N/A ms

4092 x 4092 N/A ms N/A ms N/A ms

5104 x 5104 N/A ms N/A ms N/A ms

6136 x 6136 N/A ms N/A ms N/A ms

7168 x 7168 N/A ms N/A ms N/A ms

Performance Against GPU Only Implemented QR

Matrix Size LAPACK CPU QR OpenMP CPU QR cuSOLVER GPU QR

 

Table 5.4 Performance of the GPU only Implemented QR Factorization Algorithm 
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6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

The work described in this thesis considered developing GPU only implementations of LU and QR 

factorization algorithms for high performance. This research project aimed to introduce new GPU 

only implementations with the CUDA programming language in an interactive way with using the 

kernel function calls which support the parallel code execution.  

The research focused on new implementations for executing the GPU only LU factorization and 

QR factorization using the matrix as small blocks and by using these matrix blocks to perform the 

factorizations. This is known as block matrix factorization. Parallel computing is a popular research 

area which combines both the fields of computer science and parallel computing. Implemented 

GPU only LU and QR factorization algorithms are focused on factorization matrices of the square 

matrices. Based on the input matrix the algorithm will define the block size and perform the steps 

accordingly. The input matrix is first copied into the GPU memory and the GPU only algorithms 

are processing the factorization steps using the GPU memory until the factorization is completed. 

 The research was conducted in a Linux environment with a NVIDIA MX130 GPU. The reason to 

choose this GPU for the research is NVIDIA MX130 is a CUDA enabled, well-constructed and 

relatively inexpensive graphics card. The main discussion carried was about two different ways of 

implementing LU and QR factorizations for high-performance completely using GPU only 

executions [2], [8], [9], with the advantage gained through the CUDA programming platform. The 

problem attempted in this project is novel because there is a need for the development of high-

performance LU and QR factorizations using GPU only implementations. 

 

6.2 Achievements 

Overall, LU factorization and QR factorization algorithms are completely executed on the GPU 

using the proposed block matrix factorization concept implementation. Due to this reason, 

expensive CPU-GPU communication has been eliminated in both LU and QR factorization 

implementations. As a result of this GPU only implementation, both panel factorization and trailing 

matrix update is processed in the GPU, using different GPU streams. For LU factorization, our 

implementation starts to perform well with the square matrix 6144 and upwards. Also, this research 
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work was able to capture a few areas/sections of computationally expensive calculations. 

Suggested implementation was focused to reduce the complexity without affecting the accuracy of 

the code. 

Opportunity to contribute to a state of the art technology which would be the next generation of 

computer science and parallel computing area was another satisfactory achievement. 

 

6.3 Problems Encountered and Limitations 

Only the square matrices were considered in this research. Since the block matrix factorization 

concept has been used for this research the input matrix should be able to be represented as a 2n 

value especially for the LU factorization implementation in order to execute the factorization. 

With the suggested GPU only QR factorization implementation, it was only possible to execute 

matrix sizes up to 1024x1024. Beyond this matrix size, QR factorization will take a massive time 

to execute the algorithm and mostly failed to produce the two output matrices. And the problem 

identified here was a matrix multiplication with another computationally expensive code when 

deriving the Q matrix in the QR factorization. This is the main drawback of this computation 

towards performance.  

With the execution of these two implementations, computer devices are emitting a considerable 

amount of heat. So the algorithms are recommended to be executed in much cooler environmental 

conditions to minimize the risk of damaging the computer devices. 

 

6.4 Lessons Learnt and Contributions 

The research work gave a vast amount of research and development experience in the parallel 

computing and computer science domains. Exposure to the online communities in those disciplines 

provided opportunities to acquire expertise knowledge to accomplish the initial objectives and the 

main aim.   

With regard to the technological aspect, it was a spectacular experience to gather new knowledge 

in leading-edge technology to provide something useful for society.  



 

55 

 

Performance analysis of suggested GPU only LU and QR factorization implementation runtimes 

against the NVIDIA cuSOLVER, OpenMP and LAPACK LU and QR factorization runtimes could 

be used by the research community. It is hoped that the work mentioned in this thesis contributes 

to both the fields of parallel computing and computer science. 

6.5 Future Work 

This research leaves a lot of room for further extensions and improvement in both LU and QR 

factorization algorithms using on GPU only executions. For example, implemented factorization 

algorithms are only able to process square matrices with even numbers for GPU only execution. 

Other types of matrices are to be implemented as future work.  

Further research work could be carried out on deriving the Q matrix in the QR factorization in a 

much faster and an optimized way because the current implementation of deriving the Q matrix in 

this research is computationally very expensive and algorithm is unable to process after 1024x1024 

matrix size. As an improvement, it can further develop to minimize the runtime and maximize the 

performance to derive the Q matrix which will make the GPU only QR factorization algorithm 

more efficient as the end result.
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APPENDIX A  – RUNTIME RESULTS 

LU FACTORIZATION RUNTIMES 

GPU only LU matrix factorization implementation runtimes are shown below in Table A.1. 

 

Table A.1 GPU only LU matrix factorization implementation runtimes 

 

NVIDIA cuSOLVER LU factorization implementation runtimes are shown in Table A.2, OpenMP 

LU factorization implementation runtimes are shown in Table A.3 and LAPACK LU factorization 

implementation runtimes are shown in Table A.4 below. 

 

Table A.2 NVIDIA cuSOLVER LU factorization implementation runtimes 
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Table A.3 OpenMP LU factorization implementation runtimes 

 

 

Table A.4  LAPACK LU factorization implementation runtimes 
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QR FACTORIZATION RUNTIMES 

GPU only QR matrix factorization implementation runtimes are shown below in Table A.5. Unlike 

GPU only LU factorization implementation, several panel block sizes have used in this GPU only 

QR factorization implementation to derive the QR factorization runtime of a one particular matrix 

size. Records for the Table A.5 is derived using Table A.6 to Table A.11 and the fastest runtime of 

the matrix size will be represented as the records in the Table A.5 and as the final runtime of the 

QR factorization implementation runtimes. 

 

Table A.5 GPU only QR factorization implementation runtimes 

 

In the Table A.6 to Table A.11, the green colored record is the fastest matrix factorization for that 

particular matrix size and the gray color record is discarded due to the improper matrix size is 

shown in the result with respect to the selected block panel size. 

 

Table A.6 GPU only QR factorization for 32x32 matrix 
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Table A.7 GPU only QR factorization for 64x64  matrix 

 

Table A.8 GPU only QR factorization for 128x128  matrix 

 

Table A.9 GPU only QR factorization for 256x256  matrix 
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Table A.10 GPU only QR factorization for 512x512  matrix 

 

 

Table A.11 GPU only QR factorization for 1024x1024  matrix 
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NVIDIA cuSOLVER QR factorization implementation runtimes are shown in Table A.12, 

OpenMP QR factorization implementation runtimes are shown in Table A.13 and LAPACK QR 

factorization implementation runtimes are shown in Table A.14 below. 

 

Table A.12 NVIDIA cuSOLVER QR  factorization implementation runtimes 

 

 

Table A.13 OpenMP QR  factorization implementation runtimes 

 

 

Table A.14 LAPACK QR  factorization implementation runtimes  
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APPENDIX B  – RESULTS ACCURACY 

GPU ONLY LU FACTORIZATION IMPLEMENTATION 

8x8 Matrix 

The input matrix and the output matrices for the 8x8 LU matrix factorization is shown below 

respectively in Figure B.1 and Figure B.2.  

 

Figure B.1 Initiated 8x8 input matrix 

 

Figure B.2 Output matrices for 8x8 LU factorization 
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Obtained the output matrices are multiplied separately and those results are shown in Figure B.3 

below. 

 

 

Figure B.3 Third party application Matrix Multiplication 
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Compare the accuracy of the computation is derived using Equation 24 and depicted below in 

Figure B.4. 

 

Figure B.4 Compare the accuracy of 8x8 matrix 
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16x16 Matrix 

The input matrix and the output matrices for the 16x16 LU matrix factorization is shown below 

respectively in Figure B.5 and Figure B.6.  

 

Figure B.5 Initiated 16x16 input matrix 
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Figure B.6 Output matrices for 16x16 LU factorization 
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Obtained the output matrices are multiplied separately and those results are shown in Figure B.7 

below. 

 

 

Figure B.7 Third party application Matrix Multiplication 
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GPU ONLY QR FACTORIZATION IMPLEMENTATION 

8x8 Matrix 

The input matrix and the output matrices for the 8x8 QR matrix factorization is shown below 

respectively in Figure B.8 and Figure B.9.  

 

Figure B.8 Initiated 8x8 input matrix 

 

 

Figure B.9 Output matrices for 8x8 QR  factorization 
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Obtained the output matrices are multiplied separately and those results are shown in Figure B.10 

below. 

 

 

Figure B.10 Third party application Matrix Multiplication 
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Compare the accuracy of the computation is derived using Equation 24 and depicted below in 

Figure B.11. 

 

Figure B.11 Compare the accuracy of 8x8 matrix 
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16x16 Matrix 

The input matrix and the output matrices for the 16x16 QR matrix factorization is shown below 

respectively in Figure B.12 and Figure B.13.  

 

Figure B.12 Initiated 16x16 input matrix 

 

Figure B.13 Output matrices for 16x16 QR factorization 
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Obtained the output matrices are multiplied separately and those results are shown in Figure B.14 

below. 

 

 

Figure B.14 Third party application Matrix Multiplication 

 

 

 


