

LU and QR Factorization on GPUs for

High-performance

A dissertation submitted for the Degree of Master of

Science in Computer Science

M.A.C. AMODHA

University of Colombo School of Computing

2019

i

DECLARATION

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge, it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: M.A.C. Amodha

Registration Number: 2016/MCS/004

Index Number : 16440041

Signature: Date:

This is to certify that this thesis is based on the work of

Mr./Ms. M.A.C. Amodha

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name: Mr. K.P.M.K. Silva

Signature: Date:

ii

ABSTRACT

GPUs have become very interesting, especially with the General Purpose Graphics Processing

Units. With the ability to program the GPUs, their computation capabilities with the processing

power and their competitive low cost have enabled the development of numerous kinds of

interesting GPGPU application programs resulting in substantial accomplishments in terms of the

performance.

The LU and QR factorizations represent an underlying process of a large number of scientific

application programs with complex and computationally expensive modules. But in here, the

solution process has a high impact on the matrix size for the performance because of the costly

computations.

Proposed methodology for the GPU only LU and QR factorization algorithms were implemented

using block matrix factorization where the input matrix is considered as multiple matrices when

performing the factorization steps. GPU only factorization algorithms are implemented on a

NVIDIA MX130 GPU. For LU factorization, the suggested GPU only algorithm implementation

starts to perform well with the square matrix 6144 and upwards. With the suggested GPU only QR

factorization implementation, it was possible to execute matrix sizes up-to 1024x1024.

The evaluation of the implemented algorithms clearly depicted that the output matrices are accurate

when computed and compared with the input matrix. Finally, it is believed that the work

accomplished through this research work has facilitated for the betterment of the learning

community as well as the parallel computing and computer science research community.

iii

ACKNOWLEDGEMENT

First of all, I am so much grateful for my supervisor Mr. K.P.M.K. Silva who provided the guidance

to carry out this research work successfully from beginning to the end and for introducing me to

this revolutionary parallel computing technology for GPUs. Also, the dedicated lecturer panel of

University of Colombo School of Computing, who taught us through the degree program, would

be acknowledged for the knowledge and wisdom I have gathered while being a student there and

giving me the opportunity to apply the knowledge which I gained through the courses.

Also, I would like to acknowledge online NVIDIA Developer Community and Stack Overflow

Community for sharing their experiences and providing suggestive solutions for the technical

problems I came across. Then it is necessary to mention the name of NVIDIA Corporation for

creating the parallel computing platform, namely CUDA (Compute Unified Device Architecture)

as well as for creating the application programming interface model for CUDA, and also for sharing

their research work publicly to be used by the others.

Finally, I would like to convey my thankfulness to my family who helps me and bear with me to

make this one-year-long research project to successfully culminate.

iv

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Project ... 1

1.2.1 Problem Domain .. 1

1.2.1.1 LU Factorization Method ... 2

1.2.1.2 QR Factorization Method ... 3

1.2.2 The Problem .. 3

1.3 Exact Computing Problem .. 4

1.3.1 Research Contribution ... 4

1.3.2 Aims and Objectives .. 5

1.3.3 Scope of the Research.. 5

2 LITERATURE REVIEW .. 6

2.1 Area of Study .. 6

2.1.1 Direct Memory Access .. 6

2.1.2 Data Parallelism ... 7

2.1.3 Task Parallelism .. 7

2.2 Literature Review ... 7

2.2.1 Numerical Linear Algebra ... 7

2.2.2 Matrix Computation .. 8

2.2.3 Multi-core LU & QR factorization (CPU-GPU) ... 8

2.2.4 GPU-only Implementation .. 15

2.3 Summary of Literature Review ... 17

3 RESEARCH METHODOLOGY .. 18

3.1 Methodology ... 18

v

3.1.1 Experimental Research Methodology ... 18

3.1.1.1 Advantages of Experimental Research Methodology 18

3.1.1.2 Disadvantages of Experimental Research Methodology 19

3.1.2 Related Technologies to Solve the Research Question ... 19

3.1.2.1 Linear Algebra PACKage .. 19

3.1.2.2 Open Multi-Processing - OpenMP ... 19

3.1.3 Selected Technology to Solve the Research Problem ... 20

3.1.3.1 Processing Flow On CUDA ... 20

3.1.3.2 Advantages of CUDA .. 21

3.1.3.3 Limitations of CUDA ... 21

3.2 Research Design ... 22

3.2.1 GPU only LU Factorization Design. ... 23

3.2.2 GPU only QR Factorization Design. ... 24

4 IMPLEMENTATION ... 27

4.1 LU Factorization Implementation on GPU ... 27

4.1.1 Initiate Input Matrix .. 27

4.1.2 GPU-only Implementation using cuSOLVER library ... 27

4.1.3 Suggested Way to Implement the GPU-only LU factorization 28

4.2 QR Factorization Implementation on GPU .. 34

4.2.1 Determine the square matrix size .. 34

4.2.2 Suggested Way to Implement the GPU-only QR factorization 35

5 EVALUATION AND RESULTS ... 43

5.1 Evaluation Procedure .. 43

5.2 Result Analysis of GPU only LU Factorization Implementation 44

5.2.1 Accuracy .. 44

vi

5.2.2 Speed ... 46

5.2.3 Performance ... 47

5.3 Result Analysis of GPU only QR Factorization Implementation 48

5.3.1 Accuracy .. 48

5.3.2 Speed ... 50

5.3.3 Performance ... 51

6 CONCLUSION AND FUTURE WORK .. 53

6.1 Conclusion .. 53

6.2 Achievements .. 53

6.3 Problems Encountered and Limitations .. 54

6.4 Lessons Learnt and Contributions .. 54

6.5 Future Work .. 55

7 REFERENCES .. 56

APPENDIX A – RUNTIME RESULTS .. 59

APPENDIX B – RESULTS ACCURACY .. 65

vii

TABLE OF FIGURES

Figure 1.1 LU Factorization in the Form of A = LU ... 2

Figure 1.2 QR Factorization in the Form of A = QR .. 3

Figure 3.1 CUDA Processing Flow ... 21

Figure 3.2 Graphical Representation of the Research ... 22

Figure 3.3 Structure of the Block LU factorization ... 23

Figure 3.4 Implementing Block LU Factorization Algorithm Pseudo Code 24

Figure 3.5 Block householder QR Factorization Pseudo Code ... 25

Figure 3.6 Panel Factorization and Trailing Matrix Update Pseudo Code 26

Figure 4.1 Matrix initiation in normal way ... 27

Figure 4.2 Matrix Initiation in the implemented way .. 27

Figure 4.3 Separation of input matrix into 4 small matrices ... 28

Figure 4.4 Representation of blocked LU factorization .. 29

Figure 4.5 Panel/Block Factorization of A1 Matrix .. 30

Figure 4.6 Representation of A2 sub-matrix ... 30

Figure 4.7 Representation of A3 sub matrix ... 31

Figure 4.8 Runtimes for the GEMM and TRSM routines for different matrix sizes 32

Figure 4.9 Deriving L4.U4 matrix ... 33

Figure 4.10 Decomposing L4U4 matrix into two matrices ... 33

Figure 4.11 Determine the matrix size .. 34

Figure 4.12 first Panel to be panel factorized .. 35

Figure 4.13 Compute the first column of the block panel ... 36

Figure 4.14 Applying the reflector value in the other columns of the block panel 36

Figure 4.15 Panel factorization of panel 1 of column 1 .. 37

viii

Figure 4.16 Matrices after the panel factorization in the QR GPU only algorithm 38

Figure 4.17 Trailing matrix update on the panel 1 of column 1 .. 39

Figure 4.18 Pseudo-code for the implemented block QR factorization .. 39

Figure 4.19 Remove the elements below the diagonal in R matrix ... 40

Figure 4.20 Deriving Q from R matrix .. 40

Figure 4.21 Identifying the panel 1 From the R (copy of R matrix) ... 40

Figure 4.22 Calculate Q based on the 1st column of the panel 1 .. 41

Figure 4.23 Calculate Q based on the 2nd column of the panel 1 ... 41

Figure 4.24 Calculate Q based on the 3rd column of the panel 1.. 41

Figure 4.25 Calculate Q based on the 4th column of the panel 1 .. 41

Figure 5.1 Structure of the Input matrix for LU factorization ... 44

Figure 5.2 Initiated 4x4 input matrix ... 44

Figure 5.3 Output matrices for the 4x4 LU factorization .. 44

Figure 5.4 Third party application Matrix Multiplication ... 45

Figure 5.5 Compare the accuracy of 4x4 matrix ... 45

Figure 5.6 Runtimes of the GPU only LU Factorization ... 46

Figure 5.7 Initiated 4x4 input matrix ... 48

Figure 5.8 Output matrices for the 4x4 QR factorization .. 48

Figure 5.9 Third party application Matrix Multiplication ... 49

Figure 5.10 Compare the accuracy of 4x4 matrix ... 49

Figure 5.11 Runtimes of the GPU only QR Factorization .. 50

Figure B.1 Initiated 8x8 input matrix .. 65

Figure B.2 Output matrices for 8x8 LU factorization ... 65

Figure B.3 Third party application Matrix Multiplication .. 66

Figure B.4 Compare the accuracy of 8x8 matrix .. 67

ix

Figure B.5 Initiated 16x16 input matrix .. 68

Figure B.6 Output matrices for 16x16 LU factorization ... 69

Figure B.7 Third party application Matrix Multiplication .. 70

Figure B.8 Initiated 8x8 input matrix .. 71

Figure B.9 Output matrices for 8x8 QR factorization .. 71

Figure B.10 Third party application Matrix Multiplication .. 72

Figure B.11 Compare the accuracy of 8x8 matrix .. 73

Figure B.12 Initiated 16x16 input matrix .. 74

Figure B.13 Output matrices for 16x16 QR factorization ... 74

Figure B.14 Third party application Matrix Multiplication .. 75

x

LIST OF TABLES

Table 2.1 Summary of the literature review .. 17

Table 5.1 Runtimes in milliseconds of LU factorization Implementations 47

Table 5.2 Performance of the GPU only Implemented LU Factorization Algorithm 47

Table 5.3 Runtimes in milliseconds of QR factorization Implementations 51

Table 5.4 Performance of the GPU only Implemented QR Factorization Algorithm 52

Table A.1 GPU only LU matrix factorization implementation runtimes 59

Table A.2 NVIDIA cuSOLVER LU factorization implementation runtimes 59

Table A.3 OpenMP LU factorization implementation runtimes ... 60

Table A.4 LAPACK LU factorization implementation runtimes... 60

Table A.5 GPU only QR factorization implementation runtimes ... 61

Table A.6 GPU only QR factorization for 32x32 matrix .. 61

Table A.7 GPU only QR factorization for 64x64 matrix ... 62

Table A.8 GPU only QR factorization for 128x128 matrix ... 62

Table A.9 GPU only QR factorization for 256x256 matrix ... 62

Table A.10 GPU only QR factorization for 512x512 matrix ... 63

Table A.11 GPU only QR factorization for 1024x1024 matrix ... 63

Table A.12 NVIDIA cuSOLVER QR factorization implementation runtimes 64

Table A.13 OpenMP QR factorization implementation runtimes .. 64

Table A.14 LAPACK QR factorization implementation runtimes .. 64

1

1 INTRODUCTION

1.1 Motivation

General Purpose Graphics Processing Unit (GPGPU) has a high processing capability and the large

number of cores inside the GPU has enabled parallel execution with high performance for computer

applications [1]. Most of the applications have not taken advantage of the GPU cores completely.

So it is interesting to see how the GPU is completely used in-order to achieve high performance in

an efficient way.

High-performance GPU only execution of Cholesky Factorization [2] has been successfully

implemented by Azzam Haidar and others. In their research paper, they have raised the importance

of the development of other highly required factorization routines, such as the QR and the LU

factorization as their future directions. Therefore, there is a need for the development of high-

performance LU and QR factorizations implemented fully on GPUs. Currently, there are

algorithms available for LU and QR factorization which run on multi-core CPU processors and

hybrid CPU-GPU processors [1] with also some GPU only implementations. But there is not much

literature available to accelerate the performance of these factorization algorithms. So the

motivation of this research project is to implement high-performance LU and QR factorization

algorithms which provide better results than the existing factorization algorithms.

1.2 Project

1.2.1 Problem Domain

The emerging accessibility of the advanced-technology along with the advanced-architecture

computers incorporates a vital result on all domains of scientific computation, together with

algorithmic program analysis and software development in numerical algebra. Linear algebra

particularly, the answer of the linear systems of equations lies at the center of furthermost

calculations in scientific computing [3].

Numerical linear algebra is known as the study of algorithms related to mathematical questions for

carrying out linear algebra computations which typically includes matrix-matrix operations on

computers in order to provide accurate and approximate answers. It's usually a basic a part of

computer science domains, like computational fluid dynamics and lots of different areas [3]. Those

type of software depends deeply on the analysis, development, and implementation of progressive

2

algorithms for addressing numerous numerical algebra complications in terms of a solution with

the available numerical techniques. Problem is commonly converted and reduced to a problem of

linear equation systems. Because of this reason, the solution is normally represented in the form of

matrices [4].

1.2.1.1 LU Factorization Method

LU factorization decomposes a matrix into a product of two matrices. The first matrix as a lower

triangular matrix and the other matrix as an upper triangular matrix. Sometimes the product of

lower and upper triangular matrices includes a permutation matrix likewise. In order to solve

systems of linear equations or to calculate the determinant of a matrix, LU factorization is used in

numerical analysis. However, LU method is much more advanced and complex when compared

with the Gaussian method but more efficient for solving an equation system [5].

Figure 1.1 LU Factorization in the Form of A = LU

As Figure 1.1 indicates, LU factorization is able to resolve a system of equations with the steps

listed below.

Set up the equation as shown in Equation 1.

Ax = b Equation 1

As the next Step, find LU factorization for matrix A and the result will produce the Equation 2.

(LU)x = b Equation 2

Let the value of y be according to Equation 3 and solve Equation 4 for y.

y = Ux Equation 3

Ly = b Equation 4

Take the values for y and solve Equation 3 for x. This will give the solution to Equation 1.

3

1.2.1.2 QR Factorization Method

Any real square matrix A can be factorized into a product of an orthogonal matrix Q and an upper

triangular matrix R as shown in Equation 5. In numerical linear algebra, QR factorization is

regularly used to solve the linear least squares problems and also for a particular eigenvalue

algorithm QR factorization is taken as the foundation [6].

𝐴 = 𝑄𝑅 Equation 5

Figure 1.2 QR Factorization in the Form of A = QR

QR factorization is displayed in Figure 1.2. In the QR Factorization, R matrix can be computed

using Equation 6 and according to Figure 1.2,

 A is a square matrix

 Q is an orthogonal matrix

 R is an upper triangular matrix.

𝑅 = 𝑄𝑇𝐴 Equation 6

1.2.2 The Problem

In order to reach high performance through parallelism, there are some available architectures and

techniques [7] and with these techniques and architectures, there are several types of drawbacks

which directly has an effect on the performance. Tuning challenges occur when a computer CPU

is having a slow processing power or when the kernel design is complex. Because of this reason,

the GPU has to wait a long time causing expensive CPU-to-GPU communications which directly

causing reduced performance [2]. In most of the hybrid factorization algorithms, panel factorization

is computed on the CPU. So the GPU has to wait for that calculation to finish to start its calculations

4

[2]. Another reason for not getting high performance in factorization is using complex algorithms

to perform the calculations. Complex algorithms have a large number of codes to be executed and

a high number of kernel calls will be causing reasons for performance decrease [2], [4]. It is difficult

to reach high performance from an algorithm with the presence of these issues.

1.3 Exact Computing Problem

The exact computing problem can be presented as sub-questions as shown below:

a) Find currently existing GPU only LU & QR factorization algorithms and the gaps of those

implemented algorithms.

b) What are the ways of implementing LU and QR factorizations for high-performance

completely on GPUs (GPU only)? [2], [8], [9]

c) How to perform both panel factorization and trailing matrix update in the GPU, using different

or same GPU streams without affecting performance? [2], [10]

d) How to improve the algorithm/application that helps boosting the performance in following

paths?

i. Algorithmic optimization path [2]

ii. Kernel optimization path [11]

iii. Implementation design path [12]

1.3.1 Research Contribution

By conducting this research, the following contributions are offered to the field of computing and

computer science:

Improved and resource efficient LU and QR factorization algorithms to run only on GPUs

to accomplish high-performance.

Performance analysis of the implemented LU and QR factorizations which can be used for

comparison against future developments.

Developers to use the expected findings of this research for their own application

implementations.

5

1.3.2 Aims and Objectives

Aim of this research is to develop a high-performance GPU only Implementation for LU

factorization and QR factorization. And the objectives of this research are listed below.

Objectives

 LU and QR factorizations should be able to execute successfully in GPU only

implementations.

 Existing expensive communication should be removed in CPU-to-GPU interactions.

 Tuning problems also should be removed.

 Should be able to reach high performance in LU and QR factorizations.

1.3.3 Scope of the Research

In this research, LU factorization and QR factorization is only going to be considered. First, we

shall attempt to implement LU factorization on a GPU only cluster and then move to implement

QR factorization. Both LU and QR factorization algorithms/applications are to be executed on a

GPU only cluster. This includes the panel factorization as well as trailing matrix update executed

on GPU cluster. Tuning challenge problems and CPU-to-GPU expensive communication problems

are going to be discussed in this research. All the work to be performed in a NVIDIATM GeForce

MX130 GPU (mid-range performing GPGPU). Factorization algorithms will be implemented

using Compute Unified Device Architecture (CUDA) platform for the selected factorization

algorithms. GPU only Cholesky factorization algorithm is successfully implemented in a NVIDIA

GPU using CUDA platform [2], because of that reason CUDA programming platform will be used

to implement LU and QR factorization algorithms for GPU only execution in this research

6

2 LITERATURE REVIEW

2.1 Area of Study

GPUs containing immensely parallelly executable computing processors which are programmed

in C programming language and with the extensions of the C programming language. In order to

program these parallel processors, it is not compulsory to aware of the graphics algorithms or terms

related to the terminology. But with the knowledge and with the understanding of these algorithms,

it is much more easy to identify the pros and cons with the relevant computational patterns. With

the help of the past, it is possible and able to clarify the explanations about architectural design

selections of the GPUs in the present, which includes vastly multithreading, highly parallel

structure and bandwidth-centric memory interface design. Understandings about the historical

advancements will also likely to give the framework for the future direction and projection of GPUs

as computing devices [1].

2.1.1 Direct Memory Access

Direct memory access is used between a CPU and a GPU to perform the data copy operations. This

process needed a dedicated memory in DRAM and an indirect way of allocating the memory by an

application [1]. An especially dedicated hardware mechanism is now included in the modern

computer systems to transfer data between the input/output device and the DRAM of the system.

This mechanism is named as direct memory access. In this mechanism, the operating system

performs an operation established by:

 the starting address of the data in the Input/Output device buffer memory

 the starting address of the DRAM memory

 number of bytes to be copied

 the direction of the copy.

Following advantages can be gained using this direct memory address [1] mechanism:

 Execute input/output independent programs in the CPU, when the direct memory access

mechanism is copying the data.

 Copy the data between devices at a rapid speed than a normal processor by using an especial

hardware mechanism.

7

2.1.2 Data Parallelism

Data parallelism can be used in this research to perform calculations of the matrices which are not

related to the particular set of columns or rows. So those independent rows and columns can be

computed parallelly. Parallelization through multiple processors in the environment of parallel

computing is identified as data parallelism. The data has been distributed through multiple nodes

or threads, which is operated in parallel. Related data is processed in parallel by working on each

element and the elements are stored on regular data structures such as matrices and arrays. When

evaluating the performance of the programming model in terms of efficiency and effectiveness, the

locality of the data references plays a significant role and such data is relying on the size of the

cache and the memory allocation defined by the application program [13].

2.1.3 Task Parallelism

LU and QR factorization algorithm codes are planned to separate as independent tasks so that the

different processing cores can engage in different smaller tasks. Because multiple independent

tasks can be utilized widely in parallel programming. Normally task parallelism is achieved by

dividing tasks into smaller independent tasks of an application. When there are two independent

tasks exists, task parallelism also exists. When an application gets larger so does the number of

independent tasks, as a result of that, a large number of tasks can be executed parallelly. So

accomplishing the performance goals on parallel programming applications depends heavily on the

task parallelism and plays a key role with the efficiency [1].

2.2 Literature Review

2.2.1 Numerical Linear Algebra

The developments in linear algebra are designed according to the advanced-architecture of the

computers. Scientific applications and engineering applications are widely using numerical linear

algebra operations. There is a standard for the basic linear subprograms (BLAS) in order to perform

the numerical linear algebra operations. These standard libraries of linear algebra functions consist

mainly of three levels. When the level of the linear algebra function increases so does the number

of operations performed by the related function accumulate accordingly. D. B. Kirk and W. W.

Hwu have shown an example of a vector addition which is a level-1 function. Matrix and vector

8

operations are performed in the level-2 functions and these operations using vectors (x,y) and

scalars (α, β) along with the matrices. They have raised the importance of these BLAS functions

for solving linear systems and eigenvalue analysis since these functions are used as building blocks

of the numerical linear algebraic functions. Kirk and Hwu have identified that different BLAS

function implementations will perform in different ways in both parallel computers and sequential

computers [1].

2.2.2 Matrix Computation

The focus in [3] was to analyze the impact and the performance of the dense and sparse matrices.

Jack Dongarra and Victor Eijkhout have developed templates for sparse matrix computations. They

believed that modern computers with advanced-architecture have a high impact in the area of

scientific computation along with the numerical linear algebra software development research area.

This article has discussed the numerical linear algebra design in order to make full use of the

advanced-architecture computers with the proposed developments. Jack Dongarra and Victor

Eijkhout have focused on four basic concerns [3] shown as following:

 The inspiration for the work

 Define standards and implement the standards (to be used in linear algebra libraries)

 Algorithm design (design concept along with the parallel implementation)

 Future directions for the research.

They have started to improve the development of the sparse matrix computations templates and

they want to apply these templates for the dense matrix computations as the future work [3].

2.2.3 Multi-core LU & QR factorization (CPU-GPU)

In [4] Caner Ozcana and Baha Sena have presented an algorithm to deal with the dense linear

systems in the CUDA programming platform. Because of the high arithmetic throughput of GPUs,

Caner Ozcana and others were able to strengthen the performance with a suitable data

representation along with the reduced row computations on GPU. But the main concern was a

comparison of diverse systems which consists of numerous GPUs and CPUs for different linear

systems in terms of the runtimes. They have evaluated the performed algorithms and what they see

was better performance is obtained with GPU computing. The application that Caner Ozcana and

Baha Sena developed as the solution of linear equation systems, consists of a significant

performance improvement. They have tested it on core2duo computer which includes 16 CUDA

9

cores on the first time and they were able to gain a 431% performance rate on a linear equation

system from the GPU compared with the CPU. They implemented LU numerical linear algebra

routine that consists of appropriate data representation with a GPU accelerated implementation.

The implementation has focused on reducing the row computations on GPU and they have provided

significant performance improvement on sparse linear systems and suggested that the same

approach can be used it to explain dense linear system [4].

Radomir Stanković and others have presented [8] five different LU and QR factorization

implementations. They have analyzed the efficiency of CPUs and GPUs for the runtimes and the

developments were carried out using:

 Intel MKL

 Eigen C++ library

 MATLAB

These implementations were performed on a multi-core CPU by them. Rest of the implementations

have been handled on a GPU with the usage of NVIDIA cuSOLVER library in the CUDA platform

and with Parallel Computing Toolbox in the MATLAB platform. Results were generated using

inputs as single and double-precision matrices with the floating-point representation where the

elements are generated randomly. This research article [8] has shown that the both GPU

implemented LU factorizations were achieved the best performance when compared with rest of

the implementations and those matrices were able to fit into the global memory of the GPU. Intel

MKL implementations were identified as the fastest method for the LU factorization with larger

matrix sizes and for the QR factorization with all the matrix sizes that have executed in this

research.

Robert Andrew, Nicholas Dingle has analyzed that many of the performance issues of QR

factorization were associated with kernel invocations of high frequencies [11]. Using the CUDA

development platform, they implemented four GPU updating algorithms and identified that for

certain matrix sizes those implementations perform better than the GPU only QR decomposition.

A high number of kernel calls have a direct association for the performance drawback and they

suggested to increase and improve the number of rows in a strip with a reduced number of kernel

invocations and apply several depending rotations in a thread block inside the kernel with loops

and synchronizations. They also pointed out that with the use of NVIDIA Kepler architecture’s

10

dynamic parallelism, kernel invocation overheads can be reduced on the GPU. Also, Robert

Andrew and others have discovered that in some circumstances updating is faster than the full

factorization and in some, where it is not. In this article, algorithms are consists of operations and

closed-form expressions are used as the foundation to determine the runtimes in the GPU

implementations.

Peng Du and others [9] research on integrating the CUDA computing directly into the ScaLAPACK

framework, and speed-up the LU and QR routines for a certain level by carefully managing the

GPU-CPU data transfers. But Peng Du and others were not able to remove the CPU-to-GPU

expensive communications. Their main focus was to convert most of the ScaLAPACK routines to

support GPU computing so when GPUs are presented, application codes that already utilize

ScaLAPACK framework are able to reach some sort of an automatic speedup. They suggested that

it is beneficial to keep data onto GPUs as much as possible. They showed that for LU factorization

where pivoting forces more frequent data transfer, minimizing the data amount helped largely to

reduce the performance impact. Peng Du and others have identified to take multiple GPUs per node

into consideration as their future work and to convert more algorithms. They have shown the

direction to conduct larger scale experiments to further confirm the design in the future.

In [12] also describes an implementation of a parallel LU decomposition on GPU cluster for dense

matrices. E. D’Azevedo and others have developed a software to reach the high performance by

increasing the software complexity, integrating magmaBLAS implementation to the software and

to use a left-looking out-of-core algorithm when the available memory on the GPU device is lower

than the problem size. But they were not able to avoid the tuning challenges of slow CPUs along

with the low CPU-to-GPU bandwidth which has disturbed to reach a certain good level of high

performance. They have identified, optimizations that may need to be included such as finding

asynchronous operations to transfer the data on CPU and GPU devices, tuning separately matrix

block size in ScaLAPACK library and development of the look-ahead computations in the

algorithm to minimize the runtime of the LU factorization by considering the critical path as their

future work.

11

Yulu Jia and others did [10] research on the LU factorization on the shared memory environment

and proposed a multi-GPU, multi-core hybrid LU decomposition algorithm which supports both

multiple GPUs and CPUs. This hybrid algorithm works with static scheduling and dynamic

scheduling. But the suggested LU decomposition algorithm has used some CPU cores to perform

the panel factorization and to update the trailing submatrix, remaining CPU cores along with all

the available GPUs cores has been used. Since panel factorization is done in the CPU, hybrid

algorithms overlap with the CPU work, and the expensive CPU-to-GPU communication is also a

drawback for the performance. In this article [10] Yulu Jia and others have shown that the main

concern is the speed and the time of the execution when solving the LU factorization for a large

matrix size and they have planned to avoid the unnecessary data copying between the CPU and the

GPU by using GPU non-resident memory technique as their future work.

Zhongchao Lin, Yan Chen and others have shown that faster speed can be reached with the GPU

based two-level out-of-core algorithms for the situations with large element method. An airborne

array problem is solved in this paper on a CPU/GPU hybrid cluster with the following computer

specifications:

 128GB RAM

 10GB GPU memory

 1TB storages of HDD

With these computer specifications, they were able to achieve a speedup of 1.6 times against the

implemented parallel CPU version. The same technique can be used for on-board antenna systems

which consist of complex and larger platforms to increase the performance in finding the radiation

patterns as described in this paper [14]. With the involvement of CUDA and MPI frameworks,

suggested implementation were able to execute on CPU/GPU hybrid cluster. Physical memory and

GPU memory bottlenecks in the electrically large complex problems are addressed with the

designed two-level out-of-core algorithms. Asynchronous communication has used by Zhongchao

Lin and others to allow communication and computation overlap in the algorithms. They have

shown that when compared with the traditional out-of-core LU solver, the two-level out-of-core

LU solver performed better with 1.6x times for the large problems which having difficulty to fit in

the physical or GPU memory [14].

12

In [15], Azzam Haidar, Mawussi Zounon, Ahmad Abdelfattah, Stanimire Tomov and Jack

Dongarra have presented an improved GPU kernel for very tiny matrix operations which had a

significant speedup, better than the vendor libraries. And also Azzam Haidar and others have

discussed that the design of the GPU kernels is the reason for the performance decrease to the small

matrices algorithms. They proposed the strategies and the analysis of the respective algorithms in

order to achieve the complete utilization and the performance from the GPU. Methodology and

theoretical analysis also have been developed by them for tiny matrices to gain better performances.

The suggested methodology described using LU and Cholesky decompositions as test cases to

show that the hardware performance near to the theoretical upper bound can be achieved. Highly

optimized GPU kernel design for the novel algorithms was investigated by them and this particular

GPU kernel is used for undersized baches of LU and Cholesky decompositions. The motivation

for this research is the demanding need in the areas such as astrophysics applications in the

scientific simulation domain. Following Methods are incorporated in the proposed design for [15],

[16]:

 Register blocking

 Ideal memory traffic

 Tunable concurrency.

Sencer Nuri Yeralan, Timothy A. Davis and others have done research on sparse matrix

decomposition which including a combination of both regular and irregular operations and

computations. They have stated that gain high-performance on the available cores in the GPGPU

was very challenging and they have addressed this challenge with a multifrontal QR decomposition

concept and the performance achieved is considerably high with compared to a highly enhanced

multi-core CPU. All the communicated data is stored on GPU and a lot of frontal matrices were

decomposed concurrently on highly parallel nature and the algorithm has extended to support more

parallelism. The communication-avoiding QR decomposition supports further parallelism with the

dense matrices and the sparse multifrontal method supports further parallelism with the sparse

matrices [17].

In [18], Cheng Chen and others have highlighted that the dense LU factorization is a serious

factorization algorithm that broadly used in the problems of dense linear algebra. According to

them, Hybrid LU factorization implementations designed in a way to make full use of the

13

heterogeneous systems. But the available heterogeneous algorithms are usually based on CPU and

those algorithms mostly rely on CPU cores and perform a large number of data transmissions

through the PCI bus. Because of this reason, performance efficiency and resource efficiency of the

complete computer system will be decreased. But according to this paper, they have described an

implementation of coprocessor-resident LU factorization in order to increase the performance

efficiency along with the energy efficiency by freeing the CPU with the massive computation

operations and by removing the data transmission through PCI bus. In order to preserve efficiency,

they have carried out improvements to CPU operations, MPI operations and to coprocessor

operations and all the improvements were performed on a supercomputer and the output has shown

that their LU implementation can be reached high performance and it is possible to avoid the

barriers of the energy and the performance efficiency.

Felix Loh, Parameswaran Ramanathan and others have identified and shown that GPUs are

vulnerable to burdens like alpha particle strikes and power fluctuations when trying to minimize

the transistor feature size with the intention of improving the methodology along with the technical

aspect. So that they raised the importance of technique which is able to assure the accuracy of the

operations even in the middle of a fault. They have developed and analyzed three fault-tolerant

schemes for QR factorization, and also they have presented a technique which is able to avoid the

errors and faults with having different time spans only for NVIDIA GPUs namely as transient fault

injection technique. They showed that the technique in this research is comparatively low cost, has

a better ability to scale and holds a good success rate from this research [19].

With a minimized communication, a dense vector set can be orthonormalized by and single value

QR decomposition. Single value QR decomposition has shown a remarkable performance when

compared with the available orthogonalization algorithms. In the orthonormalization algorithms,

communication is the place where the most expensive computations occurred other than the

arithmetic computations. Ichitaro Yamazaki and others have studied the steadiness and efficiency

of different Single value QR decomposition developments on multi-core CPUs along with a GPU

in this research. Their focus was with the triangular solver for the dense vectors because it performs

the most of the decimal computations of the single value QR decomposition. As a component of

the study, they have examined a versatile modified version of single value QR decomposition. It

14

has the choice to either expand the direction of the orthogonal error or to use the triangular solution

at runtime [20].

Wei Tan, Shiyu Chang and others have shown in the [21] that the matrix factorization has a high

potential in the areas of feature extraction, word embedding, collaborative filtering, and data

compression. Numerous improvement methodologies have suggested but the least square is

recognized because of the ability to parallelism, firm conjunction and merge of the unclassified

inputs and ability to handle easily. And also they have observed that the current matrix factorization

developments have done for a specific set of computers and it is insufficient. They explained the

reason for this was because for a large-scale computer network has a bottleneck in the data

communication where a single computer does not have to face any. Alternating least square on

GPU is an encouraging trend. They have proposed a unique approach to expanding and improving

the matrix factorization with including the approximate computing along with the memory

utilization. The previous activities were related to increasing data reuse of the GPU memory. In

modern methods, they tried to shrink avoidable operations without disturbing the convergence of

the implementations and algorithms. All their developments are openly accessible for future

researches [21].

In [16], Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov and Jack Dongarra have presented

novel implementation design along with the improvement methodology for matrix inversion and

for LU decomposition. They have pointed out that this kind of complications occurs in numerous

scientific programs which belongs to the domain of astrophysics and mathematics. They have

shown that different kind of mindset is required for the development of GPU kernel design for the

tiny matrices. They have also taken the benefit of the tiny matrices to eradicate the in-between row

swapping in the kernel inversions and in the decompositions. They were able to perform their work

on a Pascal P100 GPU and 6x times, 14x times performance enhancement was gained respectively

in the decomposition and matrix inversion against the cuBLAS implementation.

Gil Shabat, Yaniv Shmueli, Yariv Aizenbud and Amir Averbuch have shown that algorithms which

are randomized have a high effect and contributes critically for the low-rank approximations of

larger matrix sizes. In [22], randomized singular value decomposition is enhanced to a LU

factorization implementation with random algorithms. Numerous fault limits are being presented

15

by them which are correlated to sub-Gaussian matrices by relying on the results derived from this

research. The limits of the error can be improved based on the known random algorithms and since

the singular value decomposition algorithm is completely parallel and it can be performed

effectively on GPU. They have presented the algebraic model and the comparison to other

factorization approaches to clarify the efficiency of the proposed model [22]. In [23], Ryan

G.McClarren has described and explained the LU factorization and the categories of matrices

available in mathematical, scientific calculations and their mutual arrangements.

Evan Coleman and Masha Sosonkina have presented an analysis about the implementation of how

to compute an incomplete LU decomposition. For this approach various techniques and

methodologies used in order to enhance a much better parallel algorithm. This investigation has

included numerous methodologies to validate and to understand the practicability of the suggested

implementation. When it comes to the errors and other available tests, it is shown that changes in

the point of algorithmic view can validate intersection of the incomplete decomposition along with

the proposed suggestions which then will be lead to increase the efficiency of the resulting

dynamics [24].

In [25], Johan Thunberg, Johan Markdahl and Jorge Gonçalves have addressed a synchronization

in a distributed manner by rotating the columns in the matrices. The synchronization and the

respective rotations are based on the control design. Dynamic control laws have been designed by

them in order to address this type of synchronization complications. QR decomposition

methodology along with a combination of auxiliary variables are the foundation for this control

laws. The reasons and the advantages of using the QR decomposition methodology because of the

capacity to separate the dynamics for a particular number of columns in matrices using this

technique. They have shown that a closed loop system can be achieved the synchronization with

this suggested implementation for quasi-strong collaboration graph topologies inside the control

design.

2.2.4 GPU-only Implementation

Carlos Martins, Ricardo Chaves and others have developed a load balance solution that can

efficiently distribute the workload of linear algebra operations between the CPU and the GPU(s)

16

of a heterogeneous system. This has targeted the acceleration of the LU factorization due to its

importance in the scientific and numeric fields but also in the LaPACK library. They have proposed

two different solutions in their research. The multi-device solution that aims at distributing the

workload efficiently on the CPU and the available GPUs. The GPU-only approach is focused on

performing the factorization solely on the GPU without the need for constant data transfers during

the execution. The limitation of this GPU only approach is the implementation of the less efficient

factorization step. Because they have said that the factorization algorithm is hard to plot into the

GPU architecture [26].

Michael Anderson, Grey Ballard and others have described the development of the

Communication-Avoiding QR decomposition that can be executed completely on a GPU [27].

They have shown that the decrease in memory traffic produced by Communication-Avoiding QR

factorization has allowed them to outperform the available parallel GPU implementations of QR

decomposition for a large category of tall-skinny matrices. They have outperformed the Intel’s

Math Kernel Library up to 12x by the performance speed and 30x faster than Intel’s Math Kernel

Library on a multicore CPU [27].

NVIDIA also proving a library which is named as the cuSOLVER library for the factorization

algorithms that to be performed entirely on the GPU. This vendor specific factorization library

functions are available for Cholesky factorization, LU factorization and for QR factorization [28].

Azzam Haidar and others presented [2] their performance investigation, algorithm design concepts,

and the improvements needed for the implementation of high-performance GPU-only algorithms

for the dense Cholesky factorization. Since the hybrid algorithms are challenging to perform

parallelize tasks on CPUs, Azzam Haidar and the team has developed a very efficient algorithm to

be executed completely on GPU for the Cholesky factorization. GPU-only kernels eradicate the

costly CPU-to-GPU data transmission and the tuning challenges related to slow CPU or low CPU-

to-GPU bandwidth. They have provided sufficient evidence to prove that memory bound

procedures can be planned, improved, and adjusted for GPU architecture in a way to be competitive

with CPUs and reach their theoretical limits [2] with the Cholesky factorization.

17

They have raised the importance/need of the development in other highly needed routines, such as

the QR and the LU decompositions as their future directions. Therefore, there is a need of the

development of high-performance LU and QR factorization for GPU only implementation, where

the performance of the application/algorithm is addressed in terms of algorithmic optimization

path, kernel optimization path and implementation design path.

2.3 Summary of Literature Review

Studied resources and the literature review can be displayed in the following format as shown

below in Table 2.1.

Table 2.1 Summary of the literature review

18

3 RESEARCH METHODOLOGY

3.1 Methodology

Experimental research methodology has been chosen to conduct this research. Because when

implementing LU and QR factorizations on GPU, it will provide the understanding with the reasons

by indicating what type of outcome occurs when an identified variable is manipulated in a

controlled environment. Using this experiment, it is possible to answer "what-if" questions that

related to the research questions, without a specific expectation about what this LU and QR

factorization implementation reveals, or to confirm prior results [29]. The results can be used either

to support or to disprove the hypothesis developed based on the research questions if this

experiment is carefully implemented.

3.1.1 Experimental Research Methodology

The experimental research methodology is an organized and scientific approach to this research in

which is allowed to manipulate one or more identified potential variables, and then to be measured

any change in other variables. In simple terms, it is planned to conduct a true experiment along

with a control group and one effect is only tested at a time.

3.1.1.1 Advantages of Experimental Research Methodology

While adjusting the independent variables related to the research question, Unwanted irrelevant

variables are possible to be eliminated. In other research methodologies, control over irrelevant

variables are usually higher. Experimental research methodology involves influencing the

independent variable to observe the effect on the dependent variable. As a result of that cause and

the effect relationship among these variables are possible to be determined. This methodology has

strict conditions and control over the experiment. Because of this reason, the experiment can be

performed repeatedly or a number of times and check the results. Reproduction is really significant

because when comparable results are derived at different times, the confidence is very high with

the results [30].

19

3.1.1.2 Disadvantages of Experimental Research Methodology

Simulated conditions that do not always represent the realistic, can be created with an experimental

research due to the fact that all other variables are firmly organized. Because the circumstances are

firmly organized and do not usually represent the reality, the output matrices of the input matrices

may not be valid measurements of their behaviors in a non-experimental situation [30]. Some other

disadvantages of the experimental research methodology are listed follows:

 Unnecessary variables are not continuously possible to remove

 Experiment situation or scenarios may not be related to the real world

 Human errors also play a significant role in the validity of the research.

3.1.2 Related Technologies to Solve the Research Question

Following technologies can be used to find a solution for the research problems and some

characteristics of these technologies are listed below.

3.1.2.1 Linear Algebra PACKage

LAPACK offers the solutions for concurrent linear equations systems which is developed using

Fortron 90 [31]. This library normally uses Basic Linear Algebra Subprograms (BLAS) to the

fullest for the computation of the solution. Level 3 BLAS computer operations are available and

designed in this LAPACK package. LAPACK uses multiple CPU processor cores when performing

calculations and it is a CPU only approach. Matrix multiplication, triangular systems with several

upper triangular solutions and block matrix operations are included in the LAPACK package due

to the reason of the coarse granularity, in order to achieve higher proficiency and productivity in

the level 3 BLAS operations. With the custom modified and upgraded implementations of the

programs which are provided by the manufacturers to the high-performance computers, are likely

to be rich in the terms of efficiency [31].

3.1.2.2 Open Multi-Processing - OpenMP

In OpenMP also it is possible to perform tasks in multiple processor cores and OpenMP will also

be used to evaluate the research output with the OpenMP output results for the LU and QR

factorization algorithms. OpenMP is an API (Application Programming Interface) developed in

Fortran, C and C++ programming languages which support multiprocessing structures and shared

memory architectures. Developers are able to program flexible, adaptable and modest parallel

20

application programs with the help of a scalable and portable model of the OpenMP which includes

the defined library methods and functions, environment variables and compiler directives. OpenMP

uses multiple CPU processor cores when performing calculations and it is a CPU only approach.

OpenMP has the ability to produce interfaces and applications, extending from the standard desktop

computer to the supercomputer for parallel execution [32].

OpenMP programs have also been tested on distributed shared memory systems by researchers. By

using MPI (Message Passing Interface) an OpenMP, hybrid application model is able to perform

on a computer for parallel execution. In such cases, MPI has the responsibility of parallelism

between nodes and OpenMP is taken care of the parallelism within a multi-core node [33], in order

to outspread OpenMP for non-shared memory applications and to convert OpenMP applications

into MPI application interfaces [34].

3.1.3 Selected Technology to Solve the Research Problem

Compute Unified Device Architecture has been chosen as the technology to implement LU

factorization and QR factorization on a GPU. CUDA is a parallel computing platform and

application programming interface model created by NVIDIA. It has allowed using a CUDA

enabled GPU for general purpose processing. The CUDA programming platform is a software

layer that gives direct access to the virtual instruction set and parallel computational elements of

GPU for the implementation and execution of compute kernels [35].

OpenMP and LAPACK technologies are also to be used in this research to evaluate with the GPU

only implementation of the QR factorization and GPU only LU factorization implementation.

High-performance Cholesky factorization has been implemented successfully in GPU only

execution [2] by using NVIDIA CUDA cuSOLVER and cuBLAS library. And also communication

avoiding QR algorithm is also implemented using CUDA programming platform [27]. Because of

these reasons, CUDA has been chosen as the implementation technology to conduct this research.

3.1.3.1 Processing Flow On CUDA

CUDA flow of processing can be described as following and the graphical representation can be

shown in Figure 3.1 below.

1. Copy data to GPU memory (from CPU memory to GPU memory)

2. GPU kernel initiation (initiated by CPU)

21

3. GPU code execution (CUDA code execute parallelly in the kernel)

4. Results copy to CPU memory (from GPU memory to CPU memory).

Figure 3.1 CUDA Processing Flow

3.1.3.2 Advantages of CUDA

CUDA has numerous benefits and advantages when compared with the typical general-purpose

computation on GPUs when it is come to the graphics API usage. The main advantage is code can

be read from random memory addresses in the memory, this is known as scatter reads. A shared

memory region of CUDA can be shared between threads. It can be applied as a user-managed cache

which provides the potential to a higher bandwidth while using texture lookups in this shared

memory concept. CUDA also allows data downloads at a rapid speed and faster read/write

operations from and to the GPU. Full provision for integer and bitwise computations and tasks,

together with integer texture lookups can also be listed as advantages of CUDA [35].

3.1.3.3 Limitations of CUDA

Whether for the host computer or the GPU device, all CUDA source code is now processed

according to C++ syntax rules. As with the more general case of compiling C code with a C++

compiler, therefore, it is possible that old C-style CUDA source code will either fail to compile or

will not behave as originally intended [35].

22

Interoperability with rendering languages such as OpenGL is one-way, with OpenGL having access

to registered CUDA memory but CUDA not having access to OpenGL memory. Unlike OpenCL,

CUDA enabled GPUs are only available from NVIDIA [35].

3.2 Research Design

To avoid the performance drawbacks of the LU factorization and QR factorization, expensive CPU-

GPU communications should be removed and the solution is to implement LU and QR factorization

on completely on GPU execution [2], [8], [9]. And also to find such way to perform both panel

factorization and trailing matrix update in the GPU, using different or same GPU streams without

getting affected to the performance drawback [2], [10]. These are the research questions going to

be addressed by this research.

Inputs for this research will be some random matrices generated by an equation. Then in the process

that input matrices will perform LU factorization and QR factorization using the GPU and will

perform necessary tasks. The output of these implemented algorithms will be matrices in the form

of LU factorization and QR factorization. But the output of this research will be a LU factorization

and QR factorization algorithms which can be executed on an entirely GPU environment along

with high-performance capabilities. When it comes to the features of this solution algorithms of

this research, the main feature is high-performance and the next main feature is not using the CPU

to perform the factorization processes. Research design can be converted to a graphical

representation of components as shown in Figure 3.2 below.

Figure 3.2 Graphical Representation of the Research

23

3.2.1 GPU only LU Factorization Design.

In this research, LU factorization is to be implemented in GPU only execution using block LU

factorization concept. There are several reasons to select the block LU factorization concept to

this research such as,

 Block LU factorization work with blocks of data having b2 elements, performing O(b3)

operations. The O(b) ratio of work to storage which means that the processing elements

with an O(b) ratio of computing speed to both input and output bandwidth can be tolerated.

Because of this reason, we can expect faster results with the block LU factorization

algorithm [36], [37].

 Block LU factorization algorithms are usually powerful and efficient in matrix

multiplication. And LU factorization consists of considerable matrix multiplications in the

algorithm. Due to these facts, this is a benefit for the reason that almost every up-to-date

parallel machine is decent at matrix multiplication especially GPUs [36], [37].

 Block algorithms are able to deal with matrices by considering arrays of tiny matrices.

Because of these reasons, block LU factorization has identified as quite beneficial for this

research implementation [37].

The structure of the block LU factorization can be graphically described as shown in Figure 3.3

below.

Figure 3.3 Structure of the Block LU factorization

In the GPU only LU factorization algorithm implementation we have planned and designed the

algorithm using both cuSOLVER and cuBLAS routines together where they are necessary to be

implemented. The pseudo code of the algorithm is shown below in Figure 3.4.

24

Figure 3.4 Implementing Block LU Factorization Algorithm Pseudo Code

3.2.2 GPU only QR Factorization Design.

In this research, QR factorization is to be implemented in GPU only execution using Block

Householder QR factorization concept. There are several reasons to select the block householder

QR factorization concept to this research such as,

 Householder reflectors using QR algorithms are known to be numerically stable than the

QR algorithms using Cholesky QR and the Gram-Schmidt process. In the householder

approach, the householder vectors are broken up in such a way that communication is

minimized [38], [39].

25

 The trailing matrix updates for several Householder vectors can be delayed and done all at

once using matrix-multiply for one block. This allows for higher arithmetic intensity on

machines with a memory hierarchy. Because of this reason, it leads to better performance.

For the very same reason, this is called blocked Householder QR factorization because it

allows the updates to the trailing matrix to be blocked in cache [38], [39].

In the GPU only QR factorization algorithm implementation we have planned and designed the

implementation not to use cuBLAS routine functions in order to save the amount of time to

initiate the cuBLAS handles in the CPU memory. The pseudo code of the algorithm is shown

below in Figure 3.5 and Figure 3.6 is described as the important two functions mentioned in

Figure 3.5 in the pseudo-code definition.

Figure 3.5 Block householder QR Factorization Pseudo Code

26

Figure 3.6 Panel Factorization and Trailing Matrix Update Pseudo Code

27

4 IMPLEMENTATION

4.1 LU Factorization Implementation on GPU

In order to perform the LU factorization, there should be an input matrix. Then the factorization

algorithm will get that particular matrix as an input and then perform the steps of the factorization.

4.1.1 Initiate Input Matrix

The typical way to do this is to initiate the matrix in the CPU and then allocate the memory in the

GPU and then copy the matrix into the GPU memory as shown in Figure 4.1. But in our

implementation, we have initiated the matrix in the GPU memory as shown in Figure 4.2.

Figure 4.1 Matrix initiation in normal way

Figure 4.2 Matrix Initiation in the implemented way

4.1.2 GPU-only Implementation using cuSOLVER library

We have implemented LU factorization using the cuSOLVER library and then we have optimized

it to generate results faster with better runtimes. But the ability to perform improvements to this

implementation is really difficult because of the functionality inside the cuSOLVER functions are

hidden even in the development level. Because of this reason we have planned to implement the

LU factorization on a GPU-only execution in a different way.

28

4.1.3 Suggested Way to Implement the GPU-only LU factorization

The concept of this blocked LU factorization is used in this implementation[40], [41]. The input

matrix which is to be factorized using the LU decomposition is divided into [m*m] sized 4 matrices

using Equation 7 as shown below.

m = [(input matrix size) / 2] Equation 7

This separation of the input matrix into 4 several matrices is described below using Figure 4.3.

Figure 4.3 Separation of input matrix into 4 small matrices

With this matrix, we have tried to perform blocked LU factorization by using these identified

[m*m] 4 matrices. This representation is below shown in Figure 4.4 since the GPU-only LU

factorization is based on equations in this representation.

29

Figure 4.4 Representation of blocked LU factorization

 In this way, LU factorization has 4 steps to be performed. L2 sub-matrix and U3 sub-matrix consist

of nothing but zero in every element of those matrices. L1, L3, L4, U1, U2, U4 are to be found

using different techniques/ways.

Compute and derive L1 and U1

In order to derive L1 and U1 matrices, we have implemented GETRF routine to be executed in the

Nvidia MX130 GPU as a GPU-only code function using the cuSOLVER library for the block of

A1 matrix. This step has included solving A1 matrix to LU decomposition as the panel/block

factorization. In Figure 4.5, derivation of L1 and U1 and matrices are shown below. The result of

this step has become inputs for other steps, so in order to perform other steps, L1 and U1 matrices

computation has got the highest priority. A1 can be shown in Equation 8 below.

𝐴1 = (𝐿1. 𝑈1) + (𝐿2. 𝑈3) Equation 8

Since L2 and U3 matrices are zero, A1 matrix can be re-represented as shown in Equation 9.

𝐴1 = (𝐿1. 𝑈1) Equation 9

30

Figure 4.5 Panel/Block Factorization of A1 Matrix

Compute and derive U2 and L3

Once the L1 and U1 matrices have been computed, the next step is available to be implemented.

In here A2 can be represented as following matrix equation as shown in Equation 10.

𝐴2 = (𝐿1. 𝑈2) + (𝐿2. 𝑈4) Equation 10

Since the L2 is a zero matrix. L2 and U4 matrix multiplication is also a zero matrix. So the A2

matrix can be represented as the following equation. Graphical representation of A2 matrix can be

shown in Figure 4.6 below.

Figure 4.6 Representation of A2 sub-matrix

By following the above steps again for the sub-matrix A3, matrix equation and representation A3

matrix can be shown in Figure 4.7 and the A3 matrix can be derived from Equation 11 shown

below.

𝐴3 = (𝐿3. 𝑈1) + (𝐿4. 𝑈3) Equation 11

31

U3 is a zero matrix, so A3 can be rewritten in the following way as shown in Equation 12.

𝐴3 = (𝐿3. 𝑈1) Equation 12

Figure 4.7 Representation of A3 sub matrix

By using above two equations U2 and L3 matrices can be obtained. To obtain U2 matrix the

dependent matrices are A2 and L1 matrices and to obtain L3 matrix the dependent matrices are A3

and U1 matrices. So the above two matrix equations/operations are independent of each other and

can be executed through parallelly.

When it comes to the implementation of these two matrix operations in the GPU as GPU-only

executable codes, two possible routines are available for this operation,

 GEMM – General Matrix-Matrix

 TRSM – Triangular Solving Matrix

First, we have tried to implement an operation using GEMM routine. To perform this operation

output matrix should be existing as a single matrix. But in here, Equation 13 and the output matrix

is U2. So in order to compute U2 first, we have to get the L1-1 and then perform the matrix

multiplication using GEMM routine. Since this routine looks heavy on the computation we have

measured the elapsed times for the GEMM and TRSM routines for some matrices and the results

are shown below in Figure 4.8 as a graphical representation. In this Figure 4.8 matrix size is

represented in X-axis and runtime is represented in milliseconds in Y-axis.

A2 = L1.U2 Equation 13

32

Figure 4.8 Runtimes for the GEMM and TRSM routines for different matrix sizes

When the matrix size is getting large TRSM routing has the highest efficiency when the runtime is

compared. So for deriving U2 and L3 matrices the best option is to implement the TRSM routine

for these two matrix operations. These two matrix operations were implemented parallelly using

cuBLAS DTRSM function with two different CUDA streams since the two tasks are independent

of each other.

Compute and derive L4 and U4

 This is the most time-consuming step in the whole process. In order to compute the A4 matrix

using L4 and U4 matrix, the equation can be shown below in Equation 14 and Equation 15

respectively.

𝐴4 = (𝐿3. 𝑈2) + (𝐿4. 𝑈4) Equation 14

(𝐿4. 𝑈4) = 𝐴4 − (𝐿3. 𝑈2) Equation 15

To compute the L4 and U4, we have to perform the L3 and U2 matrix multiplication and then

subtract from A4 matrix. To perform the matrix multiplication GEMM routine has been used and

0

2000

4000

6000

8000

10000

12000

Runtimes for GEMM and TRSM routines

TRSM GEMM

33

implemented using cuBLAS DGEMM function for GPU-only execution. This representation is

graphically shown in Figure 4.9 below.

Figure 4.9 Deriving L4.U4 matrix

But in here L4.U4 matrix is represented using one matrix. In order to represent as two matrices

again DGETRF routine has been used for the GPU-only implementation via the cuSOLVER

library. L4 and U4 matrices decomposition is represented in Figure 4.10 below.

Figure 4.10 Decomposing L4U4 matrix into two matrices

In this, we have redesigned the LU factorization and has implemented the LU factorization

algorithm for a GPU-only execution.

34

4.2 QR Factorization Implementation on GPU

The same approach has been taken for the GPU only implementation of the QR factorization. By

using this approach for the QR factorization will increase the calculating complexity of the

algorithm. Suggested approach/algorithm will perform the factorization using block panels.

4.2.1 Determine the square matrix size

Based on the user input for the matrix size, the square matrix is derived using an equation and

calculate block panel sizes accordingly. Determining square matrix size is shown in Figure 4.11

below.

Figure 4.11 Determine the matrix size

In Figure 4.11 the variable x and y are the numbers of rows and number of columns of the block

panel. Based on the user input matrix size n, number of panels and the square matrix that can be

performed without an error is computed using Equation 16 as below shown, where p is represented

by the no of panels.

𝑆𝑞𝑢𝑎𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑆𝑖𝑧𝑒 = 𝑥 + 𝑝(𝑥 − 𝑦) Equation 16

35

4.2.2 Suggested Way to Implement the GPU-only QR factorization

The concept of the blocked Householder QR factorization is used in this implementation [27], [42].

After determining the square matrix, block panel size and the number of row-column panel

distribution, the panel factorization for a block panel can be performed. The first panel can be

represented in Figure 4.12 as shown below.

Figure 4.12 first Panel to be panel factorized

In the first panel of the first column set, take the first column and get the sum of the inner product

of those elements, according to Figure 4.12 inner product equals to [(a25)2 + (a33)2 + (a41)2 +

 (a49)2 + (a57)2]. Then the square root of that sum value will be calculated using Equation 17.

√𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑆𝑢𝑚 = √(a25)2 + (a33)2 + (a41)2 + (a49)2 + (a57)2 Equation 17

The sign will be based on the leading element of the block panel, if the leading element is less than

zero the sign will be negative otherwise the sign will be positive (negative = -1, positive = +1).

As the next step, u value is computed as shown in Equation 18, where u will be used to update the

elements in the selected columns. Tau value of this column is also calculated here using Equation

19 for the later use.

𝑢 = 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑙𝑒𝑚𝑒𝑛𝑡 + (𝑠𝑖𝑔𝑛 ∗ √𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑆𝑢𝑚) Equation 18

Tau = sign ∗ (
u

√𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑆𝑢𝑚
) Equation 19

Then the first element value and the respective column values can be calculated using Equation 20

and Equation 21 respectively.

firstElementValue = −sign ∗ √𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑆𝑢𝑚 Equation 20

36

𝑜𝑡ℎ𝑒𝑟𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑜𝑡ℎ𝑒𝑟𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒/𝑢 Equation 21

This part can be graphically represented in the below shown Figure 4.13 and it iterates through the

number of elements in the block panel column.

Figure 4.13 Compute the first column of the block panel

Get the first column updated element values and generate the Z values using W, YT and V in the

form of Equation 22 shown below.

𝑍 = 𝑊 ∗ 𝑌𝑇 ∗ 𝑉 Equation 22

After that, applying the reflector values to the other column elements are based on the previous

column calculated values. This step can be shown in the below Figure 4.14 as a graphical

representation.

Figure 4.14 Applying the reflector value in the other columns of the block panel

This process should be applied recursively to the rest of the columns of the block panel by

considering the sub-panels in the block panel. The implemented loop can be depicted in a graphical

way, as shown in Figure 4.15 below.

37

Figure 4.15 Panel factorization of panel 1 of column 1

In Figure 4.15 the bold color matrix elements are the leading elements of that sub panel, which was

used to calculate the square root of the inner product summation of the sub panel’s first column in

this GPU only QR factorization implementation.

After the panel factorization of the block panel 1 is in the shape of Figure 4.16 in the implemented

QR algorithm.

38

Figure 4.16 Matrices after the panel factorization in the QR GPU only algorithm

Now the algorithm is completed the panel factorization computation of the block panel 1 and the

trailing matrix update of the respective matrices of the same rows which are not affected to the

computation so far is targeted in this implementation. Trailing matrix update is processed using

one column at a time. The algorithm has used Equation 23 to update the current column values of

the elements, where ‘I’ is an Identity matrix of the same square matrix size. This iterative process

also shown in the below Figure 4.17 to illustrate how the looping occurred in the GPU only

implemented block QR algorithm.

𝐴 = (𝐼 + 𝑌𝑊𝑇)𝐴 Equation 23

39

Figure 4.17 Trailing matrix update on the panel 1 of column 1

This is a very expensive calculation to be performed, even with the above-depicted process of

computing both panel factorization and trailing matrix update on the panel 1 of column 1 in the

block panel. There are considerable panels to be performed in the next steps. So this process is

recursively computed each column set wise and row panels in a column set wise in order to compute

both panel factorization and trailing matrix in the necessary places of the matrix. Pseudo-code to

the implemented algorithm can be shown in Figure 4.18 below to describe the implemented

algorithm in an abstract way.

Figure 4.18 Pseudo-code for the implemented block QR factorization

40

At this stage, algorithm is completed computing the R matrix, but the R matrix is not in the upper

triangular form. The elements below the diagonal are removed and derived the upper triangular

matrix R. This is shown graphically in Figure 4.19 below.

Figure 4.19 Remove the elements below the diagonal in R matrix

Now the last part of the implementation is to derive the Q matrix from the matrix R. Pseudo code

of the implemented code block in this GPU only QR factorization is below shown in Figure 4.20.

Figure 4.20 Deriving Q from R matrix

In this code segment, the algorithm is recurring through the panels and then compute the Q at the

end of this loop. The derivation of Q is implemented as recursive steps but for the understanding

purposes one recursion is shown in Figure 4.21, Figure 4.22, Figure 4.23, Figure 4.24 and Figure

4.25 of the panel 1 first recursion in the process.

Figure 4.21 Identifying the panel 1 From the R (copy of R matrix)

41

Figure 4.22 Calculate Q based on the 1st column of the panel 1

Figure 4.23 Calculate Q based on the 2nd column of the panel 1

Figure 4.24 Calculate Q based on the 3rd column of the panel 1

Figure 4.25 Calculate Q based on the 4th column of the panel 1

42

In this implementation code segment, initially Q matrix is an identity matrix and with V values of

the columns in the iterations H matrix is computed. Then the Q matrix is copied to the previous Q

matrix and then performed the previousQ x H matrix multiplication. To perform the matrix

multiplication no library is used with GEMM routine. Because to save the time to create the handle

and streams in the cuBLAS library function calls. After iterating through all the row panels in every

column set, the Q matrix is computed. And this way is implemented in this GPU only QR approach.

43

5 EVALUATION AND RESULTS

5.1 Evaluation Procedure

In this research, there are two different algorithms to be evaluated. First one is LU factorization

and the next one is QR factorization. So the two factorization algorithms are evaluated separately.

Following scenarios/points will be evaluated in this research evaluation.

In LU and QR factorizations, currently available expensive CPU-to-GPU communications and

tuning challenges are going to be evaluated in the CUDA platform in terms of the performance

(execution runtimes) to perform the algorithms. LU and QR factorizations are going to be evaluated

on a NVIDIA MX130 GPU and the implementation to be executed on the GPU only environment.

As a safety precaution to the hardware device (The computer), runtimes are to be taken in a much

cooler environment to avoid the excessive heating of the hardware device.

To compare the results against our implementation, implement the best possible LU and QR

factorizations on multicores as well. In such ways like using cuSOLVER, LAPACK and OpenMP

too. The plan is to input the input matrices to the cuSOLVER, LAPACK and OpenMP implemented

LU and QR factorization algorithms and get the results with spent time. And then execute the same

input data to the GPU only implemented LU factorization and QR factorization algorithms and get

the results along with the spent time. Now the evaluation can be performed to the two different

algorithms in separate ways, in another words, a result analysis of GPU only implementation

execution against both multicore implementation execution and the NVIDIA cuSOLVER GPU

only implementation execution.

In this way, it possible and logical to perform the evaluation under these conditions and criteria to

perform a valid evaluation. The same dataset is being used to both GPU only and multicore

implementations due to the fact that the input can be kept as a constant, so the result should be

different when the process is being different.

44

5.2 Result Analysis of GPU only LU Factorization Implementation

5.2.1 Accuracy

In order to validate the implemented GPU only LU factorization algorithm, L resulting matrix and

U resulting matrix is separately multiplied using a third party application and compared with the

input matrix. The input matrix is divided into 4 matrices and the output also a combination of 8

matrices. Structure of the input matrices are shown in Figure 5.1 below.

Figure 5.1 Structure of the Input matrix for LU factorization

4x4 Matrix

The input matrix and the output matrices for the 4x4 LU matrix factorization is shown below

respectively in Figure 5.2 and Figure 5.3.

Figure 5.2 Initiated 4x4 input matrix

Figure 5.3 Output matrices for the 4x4 LU factorization

45

Obtained the output matrices are multiplied separately and those results are shown in Figure 5.4

below.

Figure 5.4 Third party application Matrix Multiplication

Compare the accuracy of the computation is derived using Equation 24 and depicted below in

Figure 5.5.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇ℎ𝑖𝑟𝑑𝑃𝑎𝑟𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐴) − 𝐼𝑛𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥(𝐵) Equation 24

Figure 5.5 Compare the accuracy of 4x4 matrix

46

5.2.2 Speed

The runtime of the implemented LU factorization algorithm is shown below in Figure 5.6.

Figure 5.6 Runtimes of the GPU only LU Factorization

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

32000

34000

Runtime(ms)

Runtime(ms)

47

5.2.3 Performance

For different square matrix sizes, execution runtime of the suggested GPU only LU factorization

along with the LAPACK, OpenMP and cuSOLVER implemented execution runtimes are listed

below in Table 5.1. The algorithms are performed using an intelTM core i5-8250U CPU and

NVIDIA MX130 GPU.

32 x 32 0.25 ms 0.85 ms 157.15 ms 281.12 ms

64 x 64 0.67 ms 2.08 ms 158.40 ms 281.98 ms

128 x 128 3.91 ms 6.51 ms 159.61 ms 282.52 ms

256 x 256 12.15 ms 30.63 ms 165.45 ms 288.12 ms

512 x 512 42.82 ms 139.47 ms 177.16 ms 310.64 ms

1020 x 1020 225.58 ms 1,382.57 ms 242.01 ms 371.69 ms

2044 x 2044 1,599.40 ms 23,893.78 ms 551.58 ms 671.93 ms

3064 x 3064 5,552.87 ms 84,654.17 ms 1,255.73 ms 1,361.52 ms

4092 x 4092 13,388.54 ms 246,066.61 ms 2,531.16 ms 2,666.23 ms

5104 x 5104 26,219.65 ms 420,504.58 ms 4,626.95 ms 4,652.08 ms

6136 x 6136 45,493.97 ms 793,057.21 ms 7,600.19 ms 7,521.72 ms

7168 x 7168 72,237.90 ms 1,207,118.18 ms 11,558.07 ms 11,440.38 ms

8192 x 8192 107,381.24 ms 1,914,888.66 ms 17,391.10 ms 16,723.41 ms

Runtimes in milliseconds of LU factorization Implementations

Matrix Size LAPACK CPU LU OpenMP CPU LU cuSOLVER GPU LU GPU Only Implemented LU

Table 5.1 Runtimes in milliseconds of LU factorization Implementations

Using the runtimes in Table 5.1 derived performance of the GPU only implemented LU

factorization against other implementations are list below in Table 5.2 below.

32 x 32 -280.87 ms -280.27 ms -123.97 ms

64 x 64 -281.31 ms -279.90 ms -123.58 ms

128 x 128 -278.61 ms -276.01 ms -122.91 ms

256 x 256 -275.97 ms -257.49 ms -122.67 ms

512 x 512 -267.82 ms -171.17 ms -133.48 ms

1024 x 1024 -146.11 ms 1,010.88 ms -129.68 ms

2048 x 2048 927.47 ms 23,221.85 ms -120.35 ms

3072 x 3072 4,191.35 ms 83,292.65 ms -105.79 ms

4096 x 4096 10,722.31 ms 243,400.38 ms -135.07 ms

5120 x 5120 21,567.57 ms 415,852.50 ms -25.13 ms

6144 x 6144 37,972.25 ms 785,535.49 ms 78.47 ms

7168 x 7168 60,797.52 ms 1,195,677.80 ms 117.69 ms

8192 x 8192 90,657.83 ms 1,898,165.25 ms 667.69 ms

Performance Against GPU Only Implemented LU

Matrix Size LAPACK CPU LU OpenMP CPU LU cuSOLVER GPU LU

Table 5.2 Performance of the GPU only Implemented LU Factorization Algorithm

48

When the matrix size gets larger the suggested GPU only LU factorization algorithm starting to

perform better in terms of the runtime. The algorithm started to perform better in the matrix size of

1024x1024 against the OpenMP implementation and in the matrix size 6144x 6144 and in above

sizes, suggested LU factorization algorithm outperform LAPACK LU implementation, OpenMP

LU implementation and NVIDIA cuSOLVER implementation as shown in Table 5.2.

5.3 Result Analysis of GPU only QR Factorization Implementation

5.3.1 Accuracy

In order to validate the implemented GPU only QR factorization algorithm, Q resulting matrix and

R resulting matrix is separately multiplied using a third party application and compared with the

input matrix.

4x4 Matrix

The input matrix and the output matrices for the 4x4 QR matrix factorization is shown below

respectively in Figure 5.7 and Figure 5.8.

Figure 5.7 Initiated 4x4 input matrix

Figure 5.8 Output matrices for the 4x4 QR factorization

49

Obtained output matrices are multiplied separately and those results are shown in Figure 5.9 below.

Figure 5.9 Third party application Matrix Multiplication

Compare the accuracy of the computation is derived using Equation 24 and depicted below in

Figure 5.10.

Figure 5.10 Compare the accuracy of 4x4 matrix

50

5.3.2 Speed

The runtime of the implemented QR factorization algorithm is shown below in Figure 5.11.

Figure 5.11 Runtimes of the GPU only QR Factorization

 -

 40,000.00

 80,000.00

 120,000.00

 160,000.00

 200,000.00

 240,000.00

 280,000.00

 320,000.00

 360,000.00

 400,000.00

 440,000.00

 480,000.00

 520,000.00

 560,000.00

 600,000.00

 640,000.00

 680,000.00

 720,000.00

 760,000.00

Runtime(ms)

Runtime(ms)

51

5.3.3 Performance

The same approach has been used for the suggested GPU only QR factorization algorithm

implementation runtime along with the LAPACK, OpenMP and cuSOLVER implemented QR

factorization execution runtimes are listed below in Table 5.3. The algorithms are performed using

an intelTM core i5-8250U CPU and NVIDIA MX130 GPU.

32 x 32 0.43 ms 1.79 ms 292.37 ms 2.95 ms

64 x 64 1.74 ms 4.28 ms 292.74 ms 17.65 ms

128 x 128 7.48 ms 13.38 ms 300.39 ms 200.23 ms

256 x 256 32.03 ms 48.15 ms 331.07 ms 2,218.63 ms

512 x 512 168.06 ms 276.04 ms 403.56 ms 38,918.41 ms

1020 x 1020 1,345.56 ms 1,992.98 ms 883.40 ms 687,278.58 ms

2044 x 2044 13,466.73 ms 16,576.75 ms 4,252.15 ms N/A ms

3064 x 3064 48,969.83 ms 53,317.38 ms 13,205.76 ms N/A ms

4092 x 4092 120,258.09 ms 116,194.27 ms 29,902.91 ms N/A ms

5104 x 5104 238,777.74 ms 216,315.42 ms 58,918.76 ms N/A ms

6136 x 6136 413,846.63 ms 361,181.52 ms 100,100.82 ms N/A ms

7168 x 7168 663,353.07 ms 561,909.18 ms 158,961.61 ms N/A ms

Runtimes in milliseconds of QR factorization Implementations

Matrix Size LAPACK CPU QR OpenMP CPU QR cuSOLVER GPU QR GPU Only Implemented QR

Table 5.3 Runtimes in milliseconds of QR factorization Implementations

Using the runtimes in Table 5.3 derived performance of the GPU only implemented QR

factorization against other implementations are list below in Table 5.4 below. After analyzing these

runtimes against the suggested GPU only QR factorization implementation, there are no matrix

sizes available which outperform the runtimes with LAPACK, OpenMP and cuSOLVER

implemented QR factorization runtimes. But for every matrix size up to 128x128 matrix, the

suggested GPU only QR factorization algorithm performs better than the cuSOLVER library

related QR factorization implementation runtimes.

With the suggested GPU only QR factorization implementation, it was only possible to execute

matrix sizes up to 1024x1024. Beyond this matrix size, QR factorization will take a massive time

to execute the algorithm and mostly failed to produce the two output matrices. And the problem

identified here was a matrix multiplication with another computationally expensive code when

deriving the Q matrix in the QR factorization.

52

32 x 32 -2.51 ms -1.16 ms 289.42 ms

64 x 64 -15.91 ms -13.37 ms 275.09 ms

128 x 128 -192.75 ms -186.84 ms 100.16 ms

256 x 256 -2,186.61 ms -2,170.48 ms -1,887.56 ms

512 x 512 -38,750.35 ms -38,642.37 ms -38,514.85 ms

1020 x 1020 -685,933.02 ms -685,285.60 ms -686,395.18 ms

2044 x 2044 N/A ms N/A ms N/A ms

3064 x 3064 N/A ms N/A ms N/A ms

4092 x 4092 N/A ms N/A ms N/A ms

5104 x 5104 N/A ms N/A ms N/A ms

6136 x 6136 N/A ms N/A ms N/A ms

7168 x 7168 N/A ms N/A ms N/A ms

Performance Against GPU Only Implemented QR

Matrix Size LAPACK CPU QR OpenMP CPU QR cuSOLVER GPU QR

Table 5.4 Performance of the GPU only Implemented QR Factorization Algorithm

53

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

The work described in this thesis considered developing GPU only implementations of LU and QR

factorization algorithms for high performance. This research project aimed to introduce new GPU

only implementations with the CUDA programming language in an interactive way with using the

kernel function calls which support the parallel code execution.

The research focused on new implementations for executing the GPU only LU factorization and

QR factorization using the matrix as small blocks and by using these matrix blocks to perform the

factorizations. This is known as block matrix factorization. Parallel computing is a popular research

area which combines both the fields of computer science and parallel computing. Implemented

GPU only LU and QR factorization algorithms are focused on factorization matrices of the square

matrices. Based on the input matrix the algorithm will define the block size and perform the steps

accordingly. The input matrix is first copied into the GPU memory and the GPU only algorithms

are processing the factorization steps using the GPU memory until the factorization is completed.

 The research was conducted in a Linux environment with a NVIDIA MX130 GPU. The reason to

choose this GPU for the research is NVIDIA MX130 is a CUDA enabled, well-constructed and

relatively inexpensive graphics card. The main discussion carried was about two different ways of

implementing LU and QR factorizations for high-performance completely using GPU only

executions [2], [8], [9], with the advantage gained through the CUDA programming platform. The

problem attempted in this project is novel because there is a need for the development of high-

performance LU and QR factorizations using GPU only implementations.

6.2 Achievements

Overall, LU factorization and QR factorization algorithms are completely executed on the GPU

using the proposed block matrix factorization concept implementation. Due to this reason,

expensive CPU-GPU communication has been eliminated in both LU and QR factorization

implementations. As a result of this GPU only implementation, both panel factorization and trailing

matrix update is processed in the GPU, using different GPU streams. For LU factorization, our

implementation starts to perform well with the square matrix 6144 and upwards. Also, this research

54

work was able to capture a few areas/sections of computationally expensive calculations.

Suggested implementation was focused to reduce the complexity without affecting the accuracy of

the code.

Opportunity to contribute to a state of the art technology which would be the next generation of

computer science and parallel computing area was another satisfactory achievement.

6.3 Problems Encountered and Limitations

Only the square matrices were considered in this research. Since the block matrix factorization

concept has been used for this research the input matrix should be able to be represented as a 2n

value especially for the LU factorization implementation in order to execute the factorization.

With the suggested GPU only QR factorization implementation, it was only possible to execute

matrix sizes up to 1024x1024. Beyond this matrix size, QR factorization will take a massive time

to execute the algorithm and mostly failed to produce the two output matrices. And the problem

identified here was a matrix multiplication with another computationally expensive code when

deriving the Q matrix in the QR factorization. This is the main drawback of this computation

towards performance.

With the execution of these two implementations, computer devices are emitting a considerable

amount of heat. So the algorithms are recommended to be executed in much cooler environmental

conditions to minimize the risk of damaging the computer devices.

6.4 Lessons Learnt and Contributions

The research work gave a vast amount of research and development experience in the parallel

computing and computer science domains. Exposure to the online communities in those disciplines

provided opportunities to acquire expertise knowledge to accomplish the initial objectives and the

main aim.

With regard to the technological aspect, it was a spectacular experience to gather new knowledge

in leading-edge technology to provide something useful for society.

55

Performance analysis of suggested GPU only LU and QR factorization implementation runtimes

against the NVIDIA cuSOLVER, OpenMP and LAPACK LU and QR factorization runtimes could

be used by the research community. It is hoped that the work mentioned in this thesis contributes

to both the fields of parallel computing and computer science.

6.5 Future Work

This research leaves a lot of room for further extensions and improvement in both LU and QR

factorization algorithms using on GPU only executions. For example, implemented factorization

algorithms are only able to process square matrices with even numbers for GPU only execution.

Other types of matrices are to be implemented as future work.

Further research work could be carried out on deriving the Q matrix in the QR factorization in a

much faster and an optimized way because the current implementation of deriving the Q matrix in

this research is computationally very expensive and algorithm is unable to process after 1024x1024

matrix size. As an improvement, it can further develop to minimize the runtime and maximize the

performance to derive the Q matrix which will make the GPU only QR factorization algorithm

more efficient as the end result.

56

7 REFERENCES

[1] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors, 2nd edition. Elsevier

Inc., 2013.

[2] A. Haidar, A. Abdelfatah, S. Tomov, and J. Dongarra, “High-performance Cholesky

Factorization for GPU-only Execution,” in Proceedings of the General Purpose GPUs, New

York, NY, USA, 2017, pp. 42–52.

[3] J. J. Dongarra and V. Eijkhout, “Numerical linear algebra algorithms and software,” J. Comput.

Appl. Math., vol. 123, no. 1, pp. 489–514, Nov. 2000.

[4] C. Ozcan and B. Sen, “Investigation of the performance of LU decomposition method using

CUDA,” Procedia Technol., vol. 1, pp. 50–54, Jan. 2012.

[5] “LU decomposition,” Wikipedia. 27-Jul-2018.

[6] “QR decomposition,” Wikipedia. 03-Jun-2018.

[7] W. W. Hwu, GPU Computing Gems, Emerald Edition. Elsevier Inc., 2011.

[8] D. B. Gajić, R. S. Stanković, and M. Radmanović, “A performance analysis of computing the

LU and the QR matrix decompositions on the CPU and the GPU,” Int. J. Reason.-Based Intell.

Syst., vol. 9, no. 2, pp. 114–121, Jan. 2017.

[9] J. Dongarra, S. Tomov, and P. Du, “Providing GPU Capability to LU and QR within the

ScaLAPACK Framework,” 2012.

[10] Y. Jia, P. Luszczek, and J. Dongarra, “Multi-GPU Implementation of LU Factorization,”

Procedia Comput. Sci., vol. 9, pp. 106–115, Jan. 2012.

[11] R. Andrew and N. Dingle, “Implementing QR factorization updating algorithms on GPUs,”

Parallel Comput., vol. 40, no. 7, pp. 161–172, Jul. 2014.

[12] E. D’Azevedo and J. C. Hill, “Parallel LU Factorization on GPU Cluster,” Procedia

Comput. Sci., vol. 9, pp. 67–75, Jan. 2012.

[13] “Data parallelism,” Wikipedia. 17-Oct-2018.

[14] Z. Lin, Y. Chen, Y. Zhang, X. Zhao, and H. Zhang, “An Efficient GPU-Based Out-of-Core

LU Solver of Parallel Higher-Order Method of Moments for Solving Airborne Array

Problems,” International Journal of Antennas and Propagation, 2017. [Online]. Available:

https://www.hindawi.com/journals/ijap/2017/4309381/. [Accessed: 10-Nov-2018].

[15] A. Haidar, A. Abdelfattah, M. Zounon, S. Tomov, J. Dongarra, and J. Dongarra, “A Guide

for Achieving High Performance with Very Small Matrices on GPU: A Case Study of Batched

LU and Cholesky Factorizations,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 5, pp. 973–

984, 2018.

[16] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Factorization and Inversion of a

Million Matrices using GPUs: Challenges and Countermeasures,” Procedia Comput. Sci., vol.

108, pp. 606–615, Jan. 2017.

[17] S. N. Yeralan, T. A. Davis, W. M. Sid-Lakhdar, and S. Ranka, “Algorithm 980: Sparse QR

Factorization on the GPU,” ACM Trans Math Softw, vol. 44, no. 2, pp. 17:1–17:29, Aug. 2017.

57

[18] C. Chen, J. Fang, T. Tang, and C. Yang, “LU factorization on heterogeneous systems: an

energy-efficient approach towards high performance,” Computing, vol. 99, no. 8, pp. 791–811,

Aug. 2017.

[19] F. Loh, P. Ramanathan, and K. K. Saluja, “Transient Fault Resilient QR Factorization on

GPUs,” in Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale,

New York, NY, USA, 2015, pp. 63–70.

[20] I. Yamazaki, S. Tomov, and J. Dongarra, “Stability and Performance of Various Singular

Value QR Implementations on Multicore CPU with a GPU,” ACM Trans Math Softw, vol. 43,

no. 2, pp. 10:1–10:18, Sep. 2016.

[21] W. Tan, S. Chang, L. Fong, C. Li, Z. Wang, and L. Cao, “Matrix Factorization on GPUs

with Memory Optimization and Approximate Computing,” in Proceedings of the 47th

International Conference on Parallel Processing, New York, NY, USA, 2018, pp. 26:1–26:10.

[22] G. Shabat, Y. Shmueli, Y. Aizenbud, and A. Averbuch, “Randomized LU decomposition,”

Appl. Comput. Harmon. Anal., vol. 44, no. 2, pp. 246–272, Mar. 2018.

[23] R. G. McClarren, “Chapter 8 - LU Factorization and Banded Matrices,” in Computational

Nuclear Engineering and Radiological Science Using Python, R. G. McClarren, Ed. Academic

Press, 2018, pp. 131–144.

[24] E. Coleman and M. Sosonkina, “Self-stabilizing fine-grained parallel incomplete LU

factorization,” Sustain. Comput. Inform. Syst., vol. 19, pp. 291–304, Sep. 2018.

[25] J. Thunberg, J. Markdahl, and J. Gonçalves, “Dynamic controllers for column

synchronization of rotation matrices: A QR-factorization approach,” Automatica, vol. 93, pp.

20–25, Jul. 2018.

[26] C. Martins, P. Tomas, and R. Chaves, “Parallelization of the LU Decomposition on

Heterogeneous Systems,” p. 10.

[27] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer, “Communication-Avoiding QR

Decomposition for GPUs,” in 2011 IEEE International Parallel & Distributed Processing

Symposium, Anchorage, AK, USA, 2011, pp. 48–58.

[28] “cuSOLVER,” NVIDIA Developer, 12-Jan-2015. [Online]. Available:

https://developer.nvidia.com/cusolver. [Accessed: 21-Feb-2019].

[29] “Experiment,” Wikipedia. 18-Nov-2018.

[30] “Benefits and Limitations of Experimental Research - Center for Innovation in Research

and Teaching.” [Online]. Available:

https://cirt.gcu.edu/research/developmentresources/research_ready/experimental/benefits_lim

its. [Accessed: 20-Nov-2018].

[31] “LAPACK — Linear Algebra PACKage.” [Online]. Available:

http://www.netlib.org/lapack/. [Accessed: 31-Dec-2018].

[32] “OpenMP,” Wikipedia. 15-Nov-2018.

[33] J. J. Costa, T. Cortes, X. Martorell, E. Ayguade, and J. Labarta, “Running OpenMP

applications efficiently on an everything-shared SDSM,” J. Parallel Distrib. Comput., vol. 66,

no. 5, pp. 647–658, May 2006.

58

[34] MAD\jphoefli, “Cluster OpenMP* for Intel® Compilers,” 19:52:26 UTC. [Online].

Available: https://software.intel.com/en-us/articles/cluster-openmp-for-intel-compilers.

[Accessed: 20-Nov-2018].

[35] “CUDA,” Wikipedia. 16-Nov-2018.

[36] R. Schreiber, “Block Algorithms for Parallel Machines,” in Numerical Algorithms for

Modern Parallel Computer Architectures, 1988, pp. 197–207.

[37] R. Iakymchuk, E. S. Quintana-Ort, and E. Laure, “Towards Reproducible Blocked LU

Factorization,” ResearchGate, May-2017. [Online]. Available:

https://www.researchgate.net/publication/318123432_Towards_Reproducible_Blocked_LU_

Factorization. [Accessed: 07-Apr-2019].

[38] J. R. Bischof, “A Block QR Factorization Algorithm Using Restricted Pivoting,” in

Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, New York, NY, USA,

1989, pp. 248–256.

[39] “Householder QR Factorization With Randomization for Column Pivoting (HQRRP),”

SIAM Journal on Scientific Computing 39(2):C96-C115, Jan-2017. [Online]. Available:

https://www.researchgate.net/publication/316056641_Householder_QR_Factorization_With_

Randomization_for_Column_Pivoting_HQRRP. [Accessed: 07-Apr-2019].

[40] Introduction to Parallel Programming in OpenMP, Parallel LU Factorization. .

[41] Introduction to Parallel Programming in OpenMP, Understanding LU Factorization. .

[42] Toby Driscoll, MATH426: Householder QR. .

59

APPENDIX A – RUNTIME RESULTS

LU FACTORIZATION RUNTIMES

GPU only LU matrix factorization implementation runtimes are shown below in Table A.1.

Table A.1 GPU only LU matrix factorization implementation runtimes

NVIDIA cuSOLVER LU factorization implementation runtimes are shown in Table A.2, OpenMP

LU factorization implementation runtimes are shown in Table A.3 and LAPACK LU factorization

implementation runtimes are shown in Table A.4 below.

Table A.2 NVIDIA cuSOLVER LU factorization implementation runtimes

60

Table A.3 OpenMP LU factorization implementation runtimes

Table A.4 LAPACK LU factorization implementation runtimes

61

QR FACTORIZATION RUNTIMES

GPU only QR matrix factorization implementation runtimes are shown below in Table A.5. Unlike

GPU only LU factorization implementation, several panel block sizes have used in this GPU only

QR factorization implementation to derive the QR factorization runtime of a one particular matrix

size. Records for the Table A.5 is derived using Table A.6 to Table A.11 and the fastest runtime of

the matrix size will be represented as the records in the Table A.5 and as the final runtime of the

QR factorization implementation runtimes.

Table A.5 GPU only QR factorization implementation runtimes

In the Table A.6 to Table A.11, the green colored record is the fastest matrix factorization for that

particular matrix size and the gray color record is discarded due to the improper matrix size is

shown in the result with respect to the selected block panel size.

Table A.6 GPU only QR factorization for 32x32 matrix

62

Table A.7 GPU only QR factorization for 64x64 matrix

Table A.8 GPU only QR factorization for 128x128 matrix

Table A.9 GPU only QR factorization for 256x256 matrix

63

Table A.10 GPU only QR factorization for 512x512 matrix

Table A.11 GPU only QR factorization for 1024x1024 matrix

64

NVIDIA cuSOLVER QR factorization implementation runtimes are shown in Table A.12,

OpenMP QR factorization implementation runtimes are shown in Table A.13 and LAPACK QR

factorization implementation runtimes are shown in Table A.14 below.

Table A.12 NVIDIA cuSOLVER QR factorization implementation runtimes

Table A.13 OpenMP QR factorization implementation runtimes

Table A.14 LAPACK QR factorization implementation runtimes

65

APPENDIX B – RESULTS ACCURACY

GPU ONLY LU FACTORIZATION IMPLEMENTATION

8x8 Matrix

The input matrix and the output matrices for the 8x8 LU matrix factorization is shown below

respectively in Figure B.1 and Figure B.2.

Figure B.1 Initiated 8x8 input matrix

Figure B.2 Output matrices for 8x8 LU factorization

66

Obtained the output matrices are multiplied separately and those results are shown in Figure B.3

below.

Figure B.3 Third party application Matrix Multiplication

67

Compare the accuracy of the computation is derived using Equation 24 and depicted below in

Figure B.4.

Figure B.4 Compare the accuracy of 8x8 matrix

68

16x16 Matrix

The input matrix and the output matrices for the 16x16 LU matrix factorization is shown below

respectively in Figure B.5 and Figure B.6.

Figure B.5 Initiated 16x16 input matrix

69

Figure B.6 Output matrices for 16x16 LU factorization

70

Obtained the output matrices are multiplied separately and those results are shown in Figure B.7

below.

Figure B.7 Third party application Matrix Multiplication

71

GPU ONLY QR FACTORIZATION IMPLEMENTATION

8x8 Matrix

The input matrix and the output matrices for the 8x8 QR matrix factorization is shown below

respectively in Figure B.8 and Figure B.9.

Figure B.8 Initiated 8x8 input matrix

Figure B.9 Output matrices for 8x8 QR factorization

72

Obtained the output matrices are multiplied separately and those results are shown in Figure B.10

below.

Figure B.10 Third party application Matrix Multiplication

73

Compare the accuracy of the computation is derived using Equation 24 and depicted below in

Figure B.11.

Figure B.11 Compare the accuracy of 8x8 matrix

74

16x16 Matrix

The input matrix and the output matrices for the 16x16 QR matrix factorization is shown below

respectively in Figure B.12 and Figure B.13.

Figure B.12 Initiated 16x16 input matrix

Figure B.13 Output matrices for 16x16 QR factorization

75

Obtained the output matrices are multiplied separately and those results are shown in Figure B.14

below.

Figure B.14 Third party application Matrix Multiplication

