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Abstract

Identifying cancer driver genes remains great significance since it assists in increasing the
survival rate by defining cohesive treatments at early stages. Not only single algorithms but
also hybrid approaches to identify driver genes do exist, but systematic ways to combine and
optimize the existing algorithms on large datasets are few. By identifying the drawbacks of
existing cancer driver genes identification methods, this approach formulates an effective
hybrid method (Dots Witer) to identify potential cancer driver genes in cancer. The Dots
Witer pipeline summarizes somatic mutations, genes involved in tumorigenesis. The input
pancancer dataset consists of 2397 small somatic variants of Breast Invasive Carcinoma and
1017 small somatic variants of Lung Adenocarcinoma. Dots Witer pipeline can be applied to
genes that are targeted by single nucleotide variants (SNVs) and small insertions and/or
deletions (indels). The Dots Witer integrates the tools, DOTS Finder and WITER in order to
identify the driver genes efficiently and effectively. This pipeline identifies 656 cancer
progression genes out of 1438 genes in Breast carcinoma and 42 cancer progression genes out
of 102 in Lung Adenocarcinoma. Since existing tools shows compatibility issues due to
technological stack of each tool, the Dots Witer provide a consistent and common platform to
execute the given exome/genome sequence dataset. Moreover due to the limitation of the
processing power and the storage of the workstation, Dots Witer provides a distributed
solution to scatter the ensemble approach. Compare to the existing cancer driver gene
detection algorithms, this pipeline gives a higher fraction of predicted driver genes by

integrating Fisher’s method.
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CHAPTER 1

Introduction

1.1 Background

Cancer is an involuted genetic disease that is caused by certain changes to genes and it has
become a leading genetic disease across the world that result from both inherited and
acquired changes in DNA. There are about 100 types of cancer which can affect any part of
the human body. According to the statistics of 2016 by World Health Organization
(figurel.1),[37] the combination of Trachea, bronchus and lung cancers has become one of
top ten causes of deaths globally.

Top 10 global causes of deaths, 2016
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Figure 1.1: Top 10 global causes of deaths, 2016 by WHO

Most human cancers arise from an accumulation of genetic deviations in somatic cells[10].
Tumor genomes of different tissues may contain several somatic mutations. Only a few,
critical deviations are caused in tumorigenesis, while the rest are relatively not harmful and
make little or no contribution at all[33]. The difference between these two types of deviations
in a cancer genome is commonly referred to as ‘driver' versus 'passenger' mutations. A driver
mutation is referred to as the main cause of tumorigenesis. Genes that bear driver mutations
are called cancer driver genes and the remaining genes are identified as passengers.
Predicting cancer driver genes remains a major challenge because it assists in increasing the

survival rate by defining cohesive treatments at early stages. Predictive algorithms play a



major role as potential methods in filtering driver genes from passenger genes with the help
of genomic data generated from Next Generation Sequencing.

1.2 Motivation

Even though there are multiple advanced methods are available to predict driver genes, only
few of the methods are effective on large data sets. Moreover the efficiency and accuracy of
the individual methods are not promising. According to the evaluation of existing cancer
driver gene prediction algorithms by [30], amount of driver genes identified through one
algorithm is comparatively low. Moreover the researches [26] have proven that the accuracy
of predicting cancer driver genes is increased by using hybrid algorithm rather than using a
single algorithm (Table 1.1)

Table 1.1: Percentage of accuracy in cancer driver genes prediction algorithms when uses individually and combined

way
DrGap MutSigCV Intogen
DrGap 4% Unrevealed 56%
(individually)
MutSigCV Unrevealed 8% 72%
(individually)
Intogen 56% 72% 43%
(individually)

This study attempts to discover an approach that can predict a complete list of potential
cancer driver genes in large datasets. That will also serve as a blueprint for future biological

and clinical endeavors in cancer genes prediction.

1.3 Goals and objectives
By addressing the drawbacks of existing cancer driver genes prediction methods, this
research aims to formulate an effective method to predict probable driver genes in cancer. In

addition the key objectives of the research are as follows:

1. To identify Driver mutations and passenger mutations from the given clinical records
2. To identify computational techniques and algorithms, available for predicting cancer

driver genes from the driver mutations




3. To identify relevant molecular profiling platforms that should be used(Platforms will
be included exome sequencing, mMRNA sequencing, SNP arrays and reverse phase
protein arrays) in driver gene prediction.

1.4 Scope

This study focuses two(02) common cancer types, Breast Invasive Carcinoma and Lung
Adenocarcinoma. This uses multiple and complementary methods based on mutation rate
based algorithms and function prediction based algorithms for a more accurate prioritization
of cancer driver candidates.

1.5 Research contribution

Extensive study of currently available methods for cancer driver gene identification will be
done through this research. After identifying the drawbacks related to performance, accuracy
and reliability of existing cancer driver gene identification methods, an optimized hybrid
approach will be proposed. Ultimately this research focuses on identifying a complete list of

cancer driver genes.

1.6 Outline of the Thesis

Chapter 02 - Background/Literature Review

This chapter explains a comprehensive summary of previous research related to the current

research topic and review of the area being researched.

Chapter 03 - Research Methodology and Design
It includes the process used to collect information, data and other research techniques that

have been used to detect the driver genes of Cancer.

Chapter 04 - Evaluation and Results
It shows the ultimate outcome of the research (Cancer driver gene set) and the techniques that

used to evaluate the outcome with the result of the other existing algorithms.

Chapter 05 - Conclusion and Future Work
It shows the summary of the research work and the development works that supposed to be

implemented in future.



CHAPTER 2

Background/Literature Review
2.1 Background

2.1.1 DNA and Mutations

Deoxyribonucleic acid (DNA) contains the biological directions for life, stored inside living
beings. Coiled tightly around proteins called histones, the DNA is packaged within 23
chromosome pairs in cell nuclei. Our DNA comprises of lengthy strings of molecules called
nucleotides. These nucleotides are bonded together containing of a group of phosphate, a
group of sugar and one of four types of nitrogen bases: adenine (A), thymine (T), guanine (G)
and cytosine (C). The most stable form of DNA is structured using hydrogen bonds between
base pairs, binding adenine with thymine, and guanine with cytosine. This is how the DNA
“ladder” form is built up. Though this form is the most common, DNA also looks as single
stranded. The following figure (figure 2.1) [17] illustrated the DNA Structure

— = Adenine
=1 = Thymine
= = Cytosine

3 = Guanine

[__1=Phosphate

backbone

Figure 2.1: DNA Structure

A change in DNA, the genetic sequence, is called a mutation. There are 2 basic types of
genetic mutations: Somatic mutation and Germline mutations. Somatic mutation is a
modification in DNA that occurs after conception. Somatic mutations can take place in any of
the cells of the body apart from the germ cells (sperm and egg) and therefore the alterations

are not passed on to children.



A germline mutation happens in a sperm cell or egg cell. It moved within the time period of
conception from a parent to a child. While the multicellular diploid eukaryotic organism
grows right into an infant, the mutation from the initial sperm or egg cell is copied into each
cellular in the body. Since the mutation affects propagative cells, it may be passed from

generation to generation.

Most human cancers arise from an accumulation of genetic deviations in somatic cells [10].
Tumor genomes of different tissues may contain several somatic mutations. Only a few,
critical deviations are caused in tumorigenesis, while the rest are relatively not harmful and
make little or no contribution at all [34]. The difference between these two types of
deviations in a cancer genome is commonly referred to as 'driver' versus ‘passenger’
mutations. A driver mutation is referred as the main cause of tumorigenesis. Driver mutations
are carried via genes and they are known as cancer driver genes and the remaining genes are

identified as passengers.

2.1.2 Types of somatic mutation

Real patients’ data obtained from cancer genomic repositories are been used for analysis. The
next key step is to prioritize the list of somatic mutations. The cancer can be happened due to
several types of somatic mutations, which comprise single nucleotide variants (SNVs), small
insertions and deletions  (indels), copy number alterations (CNAs) and
chromosomal/structural rearrangements. SNVs are sequence variations that relates to a single
nucleotide. Synonymous SNVs (sSNVs) are not changed the protein series and non-
synonymous single nucleotide variants (nsSNVs) alter the protein series. Indels are the
additions or losses of short nucleotide series in a genetic material of a cell. CNAs denote the
additions or removals of DNA sectors. Several ways can be identified to categorize copy
number alterations, according to the sizes and types of variations. Chromosomal
rearrangements are the variations in the organization of a chromosome. It is occured due to
inversion (turn around of a chromosomal section), deletion, duplication, translocation (parts
of the cromosomes are combined each other) and transpositions (short DNA sections moves
to a different position). Recently many algorithms have been developed to discover not only

nsSNVs, but also other cancer caused mutated genes as well.



2.1.3 Types of genes linked to cancer

Genes that support to cancer progression can be divided into different categories: Tumor
suppressor genes and oncogenes.

Tumor suppressor genes (TSG) are defending genes. Naturally, they limit cell growth by
observing the cell division rate into novel cells, fixing mismatched DNA, controlling when a
cell dies. When a tumor suppressor gene alters, cells grow uncontrollably and they may

ultimately produce a tumor.

Oncogene (OG) is a genetic substantial that carries the ability to prompt cancer. When proto-
oncogenes have been changed, it gives the result of altered sequence of deoxyribonucleic acid
(DNA). The proto-oncogene helps propagation of normal cells. A range of proto-oncogenes
are involved in different key steps of cell growth. An alteration in the proto-oncogene’s
sequence or in the amount of protein it produces can affect with its normal role in cellular
regulation. Uncontrolled cell growth can be resulted in the formation of a cancerous tumor
ultimately.

2.2 Data Portals

Yang [38] describes web-based cancer genomics facts repositories, alongside with tools and
assets to manipulate and analyze these data. The large genomic database called Catalogue of
Somatic Mutations in Cancer (COSMIC) is described here. The database is up to date each 2
months and has consequently far built-in 15,047 complete most cancers genomes from
1,058,292 samples. Data is accessed by means of key words and registered users can
download it. The SNP500Cancer database is used to store the data corresponding to sequence
of single nucleotide polymorphisms (SNPs) in cancer and different diseases. The cBioPortal
for Cancer Genomics is a convenient portal for researchers to explore, visualize, and analyze
multidimensional cancer genomics data. cBioPortal methods authentic molecular profiling

data from most cancers tissues and cell lines into smaller datasets.



2.3 Tools and techniques for cancer driver gene prediction

Much research has been undertaken so far for the clinical management of cancer. However,
due to the large explosion of the quantity of cancer data, there is an increased requirement for
the intervention of computational techniques to make sense of the data.

Researchers [32] have introduced SomlnaClust, a method that accurately recognizes driver
genes and categorizes them into oncogenes or tumour suppressor genes. SomlnaClust was
proven to perceive candidate driver genes with excessive accuracy. This is proven with the
aid of the evaluation of the breast cancer dataset, from which the well-known but hardly ever
mutated most cancers genes CDKN1B, KRAS and MEN1 had been recognized. On the
opposite hand, the approach was used to disorganize frequently mutated genes like TTN and
MUC4 that have been defined as “artefacts” with the aid of others. The consequences
obtained with SomInaClust have been as compared with those obtained via the previously
posted driver gene prioritization techniques MutSigCV [19],0ncodriveFM [11] and
OncodriveClust [27] at the identical dataset.

Another study [39] proposed a new approach for figuring out most cancers driver genes,
which gives progressed accuracy. The new technique gives the functional impact of
mutations on proteins, versions in background mutation rate among tumors and the
redundancy of the genetic code. To locate driving genes, each gene is examined for whether
or not its mutation rate is drastically higher than the background (or passenger) mutation rate.
According [16] there are numerous techniques and algorithms for investigating breast cancer
driving force mutation genes. IntOGen [12] that could discover alterations at transcriptomics
degree.By using the cancer driver gene identification approach of MESA [15] predicts cancer

driver genes based totally on patterns of mutation hotspot.

Researchers [23] offered a new computational method for identifying genomic alterations
that arise at low frequencies. Driver—passenger discrimination method is examined based
totally on time of the mutation in sizeable simulation studies and applied it to cross-sectional
copy number alteration (CNA) information from ovarian cancers, CNA and single-nucleotide
variation (SNV) data from breast tumors and SNV information from colorectal cancer. The
mutation timing approach will assist identifying from cancer genome records the alterations
that manage tumor development. When figuring out the pan-genomic classification of
adrenocortical carcinoma, researches [43] qualified the tumor pattern facts on as a minimum

one molecular profiling platform. mRNA sequencing, miRNA sequencing and SNP arrays



are considered as platforms.Mutation calling was finished by way of five impartial callers,
and a voting mechanism has applied to generate the final mutation set. MutSigCV used to
determine extensively mutated genes. GISTIC2.Zero [20] was used to discover recurrent
deletion and amplification peaks. Consensus clustering turned into derives miRNA, mRNA
and methylation.

If the mutation changes the activity of proteins at some phases of tumor development and if
the mutation is functional, it is considered as a driver. A driver gene ought to incorporate as a
minimum one driver mutation[8]. Approaches for identifying driver genes can be classified
into three categories named mutation rate based approaches, function prediction based
approaches, and hybrid approaches. Mutational Significance in Cancer (MuSiC) [7],
Mutation Significance (MutSig, MutSigCV, MutSigFN) [19] ActiveDriver [22],
ContrastRank [30] are classified into mutation rate based approaches. OncodriveFM,
OncodriveCLUST, Oncodrive-CIS [29], Oncodrive-ROLE [24], InVeX [13] are identified as
function prediction based approaches and hybrid approaches are the combination of mutation
rate based approaches and function prediction based approaches.Researchers [27] have
proven that the hybrid techniques permit identifying a comprehensive and reliable list of
cancers driver genes. The five strategies including MuSiC-SMG [7], MutSigCV,
OncodriveFM, OncodriveCLUST and ActiveDriver were used to predict different cancer
driver genes. Lists of 291 cancer driver genes are accommodated and investigated 3,205
tumors from 12 different cancer types. Among those genes, some have no longer formerly

recognized as cancer drivers and sixteen have clear bias for a specific tumor type.

Another study [3] has delivered a new database known as DriverDB. It employed eight
computational techniques to become aware of driver genes of most cancer types. Four
methods, which include MutsigCV, Simon [39], OncodriverFM and ActiveDriver, are based
on mutation frequencies. MEMo [5], Dendrix [33], MDPFinder [42] and NetBox [2] have
been used as subnetwork based algorithms. Three levels of biological mechanisms are used to
(Gene Oncology, Pathways and Protein/Genetic Interaction) to assist researchers to

understand the connection among driver genes.

Researches [41] have proposed a different technique to become aware of the cancer driver
genes. CDriver, a new approach that integrates signatures of somatic point mutations (SNVs
and short indels) at three stages. Population stage , cellular stage and molecular stage are
those three stages. Population stage is the proportion of affected individuals (recurrence),

cellular stage suggests the fraction of most cancers cells harboring a somatic mutation (CCF),



and molecular stage, is the functional effect of the variant allele. Existing solutions for
identifying driver genes rely on the recurrent mutation of genes throughout a huge number of
cancers victims [7] and techniques based totally on molecular selection signatures, together
with functional impact and mutation clustering. CCF is computed by means of the variant
allele frequency (VAF) multiplied by two. Ultimately apply the values received from those
three levels to the bayesian inference models and predict the driver genes for 12 types of

cancer.

Wei, P.J and the researchers [36] presented a gene length-based network method, named
DriverFinder, to identify driver genes by integrating somatic mutations, copy number
variations and gene-gene interaction network. Since exceptional mutated drivers are willing
to be left out via frequency-based strategies, they've proposed a novel approach to discover
driver genes by combining gene-gene interaction network. The gene-gene interplay network
is built via combining preceding gene-gene interplay network and Pearson correlated
coefficient network. With the aid of analyzing interindividual variant in tumor and normal
expression, the outline matrix is constructed.Secondly, in order to rank the mutated genes
which are based on the coverage, greedy algorithm is used. In each repetition of the greedy
algorithm, the mutated gene of the bipartite graph which pertains to the most outlying
expression genes is selected. Until all of the outlying expression genes are investigated via
the least mutated genes, repetition is clogged. Genes with the maximum outlying expression
are considered as candidate driver genes. Finally, the statistical significance test on null
distribution is implemented to these putative cancer driver genes. Moreover researches
estimated the performance of DriverFinder with frequency-based method [1] and MUFFINN

[4] and acquired a high performance compare to other existing methods.

According to Porta and Godzik, [21] most cancer driver genes can stumble on using the
distribution of somatic missense mutations among the protein's functional areas. E-Driver has
proposed to perceive driver genes according to the missense mutation. Initially all missense
mutations in a protein are examined by the E-Driver. It then detects its protein functional
areas.E-Driver iterates through each functional area, calculating the p values of the mutation
distribution. Once the p values of all of the areas of all mutated proteins in the cohort are
grabbed, the Benjamini-Hochberg false discovery rate set of rules is implemented to correct
multiple testing. Those areas with a g value < 0.05 are taken into consideration as positive. In
order to evaluate the validity of the technique,reanalyzed the pan-most cancers dataset of the
TCGA. The dataset has been formerly analyzed using four distinctive techniques to detect

cancer drivers from mutation records (MuSiC, OncodriveFM, OncoCLUST and



ActiveDriver) and the novel approach will be able to locate new potential cancer driver genes

as well.

Researchers [35] have proposed a different approach to identify potential novel cancer drivers
as those somatic mutations that overlap with known pathogenic mutations in Mendelian
diseases. The underlying rationale is if a gene is mutated at significantly greater rate than the
background mutation rate, it is more likely to be oncogenic. In this study, it first identified
overlapping mutations between pathogenic variants in HGMD [25] and cancer somatic
mutations from the COSMIC database. Those overlapping mutations with high recurrence in
cancers were subjected to mutual exclusivity analysis with known oncogenes in each tumor
type in order to identify novel oncogenic drivers.Researchers [6] proposed a new approach
LOTUS to prognosticate cancer driver genes. LOTUS is a machine learning-based approach
that estimates a scoring feature to rank candidate genes by means of decreasing probability
that they're oncogenes (OG) or tumor suppressor genes (TSG), given set of known OGs and
TSGs. The score of a candidate gene is a weighted sum of similarities among the candidate
gene and the recognized cancer genes, where the weights are optimized with the aid of a one
class support vector machine (OC-SVM) set of rules. Another significant function of LOTUS
is to predict driver genes precise to individual cancers sorts. Later, it makes use of a multitask
gaining knowledge of method to jointly examine scoring functions for all most all the cancers

sorts via sharing information about investigated driver genes in various cancers types.

Researchers [14] recognized a unique technique, MaxMIF to distinguish the driver genes
from the passenger genes by means of effective integration of somatic mutation records and
molecular interplay records the use of a maximal mutational impact function. Three stages
can be identified in MaxMIF. The first one is it computes a mutation rating for each
candidate driver gene based on somatic mutation data. Second, it calculates a mutational
impact function (MIF) value for each pairs of candidate genes, determining their mutational
influences in step with their bond with PPl networks .Two genes should have a strong
mutational impact if they each have an excessive mutation rate. Finally, it computes a
singular maximal mutational impact function value for every candidate gene by considering
about all its acquaintances inside the PPI networks to rank the candidate genes consistent
with their maximal mutational impact function values. Tested the MaxMIF on six mutation
datasets of Pan-Cancer and 19 datasets of individual cancer sorts from TCGA and earned a

higher output with compare to the alternative existing driver genes prediction techniques.
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According to the Schroeder M.P and his research team [24] cancer driver genes can be
classified according to their role. Researchers presented an automated approach,
OncodriveROLE. It is a machine learning-based pipeline that classifies cancer driver genes in
step with their role, the use of numerous properties related to the pattern of modifications
throughout tumors. Approaches for detecting loss of characteristic (LoF) and Act driver
genes appearing throughout tumor samples exist are foremost theories behind on this method.
The first approach includes in at once detecting genes that show off recognized alterations
patterns corresponding to the tumor suppressors and oncogenes from mutations and CNA
statistics. In the second method, first driver genes performing in tumor samples are detected
by means of combining the signals of positive selection. Then, in a third step, those drivers
are categorized into the two aforementioned lessons exploiting comparable alteration styles
as within the first technique.

Predicting driver genes in cancer genomic data is a major role of future biological and
clinical endeavors in cancer genes prediction. Several existing algorithms which embed
different kind of approaches (eg: Mutation rate based approaches, function prediction based
approaches etc) can be identified to predict the cancer driver genes by reviewing the literature
related to cancer driver genes prediction. Due to increasing the amount of cancer data and

types of cancer, there should be an optimized model to predict the driver genes in cancer.
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CHAPTER 3

Research Methodology and Design

In order to identify the cancer driver genes more accurately and efficiently from the given
dataset, ensemble approach can be used. Here it describes the overall methodology behind the
new approach (Dots Witer) and the unique feature of the Dots Witer algorithm. Figure 3.1 is

shown the methodology of the cancer driver gene prediction hybrid approach
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Figure 3.1: Cancer driver gene prediction methodology

Methodology is described under three (03) steps as 3.1 Data Collection (Somatically mutated
data), 3.2 Identification of Cancer driver genes under gene level with workout distributed

solution and 3.3 List of potential driver genes.

12



Step 3.1 — Data Collection (Somatically mutated data)

Real patients’ data obtained from cancer genomic repositories are been used for this analysis.
A key phase is to prioritize the series of somatic mutations out of the obtained cancer
genomic data. The cancer is determined by diverse types of somatic mutations, which contain
single nucleotide variants (SNVs), small insertions and deletions (indels), copy number
alterations (CNAs), fusion genes, chromosomal/structural rearrangements.

Real patients’ data obtained from Cancer Genome Atlas are been used via cBioPortal
software for this analysis. The tool, Dots Witer accepts the input dataset as Mutation
Annotation Format (MAF) file for a set of cancer patients that can be categorized by different
conditions. Input pancancer dataset consists of 2397 small somatic variants related to Breast
Invasive Carcinoma and 1017 data sample consists of Lung Adenocarcinoma.

Step 3.2 - Identification of Cancer driver genes under gene level with workout
distributed solution

To be a driver, a mutation should be functional and change the activity of proteins at some
stages of tumor growth. A driver gene needs to include as a minimum one driver mutation. In
order to identify driver gene, there are three approaches under gene level analysis (driver
gene identification) including mutation rate based approaches, function prediction based
approaches, and ensemble approaches. Mutation rate based approach deals with the
Background Mutation Rate(BMR).Function prediction based approach has a comparable idea
but avoids the difficulties of estimating BMR and predicts the functional impact of a
particular mutation within the coding pattern of a protein. Ensemble approaches use both
mutation rate based approach and function prediction based approach to detect driver gene

and it helps to increase accuracy significantly.

Dots Witer is a newly introduced pipeline that used to identify cancer drivers among tumor
types and to visualize the results of the analysis. Mainly it builds upon the concept of small
somatic variants (SSV) such as single nucleotide variants (SNVs) and small insertions and/or
deletions (indels). The Dots Witer pipeline integrates a result set of tumor genomes which is
analyzed with various mutation-calling workflows. It currently includes DOTS-Finder [9],a
tool that integrates the approach of assessing the type of mutations (for example,
missense/truncating/silent) with a protein function prediction based approach (functional
step) and a mutation rate based approach (frequentist step) to identify tumor suppressor genes
(TSGs) and oncogenes (OGs) genes separately and the tool WITER [18] that works with

13



synonymous and non-synonymous mutations with a frequentist step. Dots Witer pipeline also
considers the somatic variants and integrate functional step and a frequentist method in order

to identify the cancer driver genes.

Since the DOTS-Finder and WITER tools arise compatibility issues due to technological
stack of each tool, the Dots Witer provide a consistent and common platform to execute the
given exome/genome sequence dataset. Dots Witer pipeline gives more accurate result set by

integrating the different result set of each tool.

Since the limitation of the processing power and the storage of the particular workstation, this
is used a distributed solution to scatter the ensemble approach. The Dots Witer pipeline flow
is illustrated in Figure 3.2.

0SX/ToOL1 0SY/TOOL 2 0SZ/TOOL3 0SK/TOOLN
Eeeeee
r | r | B | B |
-l Enabler Service '—l Enabler Service —}l Enabler Service |— —}I Enabler Service }—
| I ' I ' I ' I
—_———— — == —_—— - __f__
| I l |
| ; A |
I A l .ll
| - - | ]
,,,,,,,,,,,,,,,,,,,,,,,,,, -
REST/HTTP REST / HTTP I
I
L 4 I
| ¥ | 4
Processor File Manager Tool Dictionary

(connection.xml)
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INPUT.marf
{ pewindino

Figure 3.2: Dots Witer Pipeline flow

This application of this pipeline mainly focusses on integrating MultiTech Driver Gene
finding tools in to Dots Witer algorithm. Application consists of two main parts.
1. Service Application

2. Utilizer application
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3.2.1 Service application

This application is created for managing Driver gene prediction tools by allowing those tools
via HTTP/REST. This part of application consist of cherrypy web server, metadata xml and a

process engine (Figure 3.3) which is written in Python 2.7.

17 app_handler.py

app_log.py

-
T

ProcessEngine

1Y meta_handler.py

13 server_meta_handler.py

1Y webservice.py CherryPy APP Server
vy appxmi

Metadata XML

+y serverxmil

Figure 3.3: Service Application of Dots Witer pipeline

Once it installed in the computer which consist relevant Driver gene, it allows user to access

relevant tool via HTTP calls.

Metadata xml can be used to control integration (app.xml) (see the appendix A.) Each
instance of the service application contains its own copy of metadata xml, which has tagged
with a unique key. Each key and operational port and URL will be saved in a common XML
file (see the appendix B.) call server.xml. Later, utilizer is referring to server xml for

identifying possible tools.

As the typical input/output files contain huge amount of cancer data special algorithm has
been implemented to handle data transferring through HTTP. This algorithm allows users to
pass file as chucks with the size of their desire. As implemented algorithm, checks for special
tag which has been prefixed in each incoming text (prefix: data). On availability, process
engine pushes relevant data in to a file which will later use as input file. On unavailability,
process engine executes the tool with newly created input data and send back the output via
HTTP (Hypertext transfer protocol). This mechanism reduces the complexity of Service

application by avoiding the usage of FTP (File transfer protocol).

3.2.2 Utilizer application

Utilizer integrate all service applications together in to Dot Witer. This mainly refers

server.xml to identify possible tools for driver gene prediction. An algorithm has been
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implemented to transfer input data in to each tool and collecting their outputs in to one place.
Afterwards, it runs Fisher’s theory to have a combined P value as output. Utilizer use both

python 2.7 and R as its main programing languages.

This setup allow user to use any Driver gene prediction tool without considering technical

complexities.

Step 3.3 — List of potential driver genes

The tool, DOTS Finder accepts the input dataset as Mutation Annotation Format (MAF) (see
the appendix C) file for a set of patients that can be categorized by various criteria. After
analyzing the details of the MAF file, p-value for each genes are calculated and p-value < 0.1
are identified as candidate driver OGs or TSGs. WITER also accepts the input dataset as
Mutation Annotation Format (MAF) (see the appendix D) with slight difference compare to
the input file content of DOTS Finder. It also listed out the existing genes with relevant p-
value and the genes which have p- value < 0.1 considered as statistically significant and
identified those as driver genes. Dots Witer pipeline execute the input data set through
DOTS-Finder and WITER algorithms parallelly and identify likely drivers across the tumor
samples. The pipeline combines the P values computed with the aid of either technique for
each gene into a single P value using Fisher’s method. It produces one integrated P value for

each gene. The following algorithm of Dots Witer is illustrated in figure 3.4.

In order to avoid possible dependence between the two P values included in the combination,

the Dots Witer considers as significant those with a false discovery rate (FDR) below 0.1
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CHAPTER 4

Evaluation and Results

Cancer is a critical disease which caused by somatic mutations on genetic materials of an
affected cell in the human body. Identifying the driver genes for the cancer types is a major
task of cancer genomics in patient care. Predictive algorithms became the potential method to
filter the driver genes from passenger genes with the help of genomic information from Next
Generation Sequencing.

4.1 Cancer driver gene prediction tools used in evaluation

Following most common and widely used tools for cancer driver gene prediction are

evaluated against known sample set.

MutsigCV
OncodriveClust
OncodriveRole
OncodriveCIS
OncodriveFml
20/20 Rule
Dots Finder
WITER

© N o o B~ w D PE

4.2 Tools evaluation procedure

Following tools are been evaluated against following criteria
Compatibility of the tool with multiple operating systems
. Tool dependencies

1
2
3. License availability
4

Integration compatibility of algorithm

Depending on the results, most convenient two algorithms named Dots Finder and WITER

are selected for the proposed hybrid approach. Results are as follows (Table 5.1)
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Table 4.1: Evaluation of the existing cancer driver gene prediction algorithms

Tool Compatible OS Primary Required Tools Input file
Language and platforms formt

MutsigCV Linux/Unix Matlab Matlab and Matlab | .maf, .txt

runtime

OncodriveCLUST | Linux/Unix/Windows | Python Python 2.5 or above | .txt, .mcv

Oncodrive-ROLE | Linux/Unix/Windows | Python Python 2.5 or above | .txt, .mcv

Oncodrive-CIS Linux/Unix/Windows | Python Python 2.5 or above | .txt, .mcv

OncodriveFML Linux/Unix Python Python 2.5 or above | .txt, .mcv

20/20 Rule Linux/Unix Python Python 2.5 or above | .maf, .txt

Dots Finder Linux/Unix Python Python 2.5 or above | .maf

WITER MS Windows / Mac | Java Java version 1.8.0 .maf

OS X/ Linux

During the evaluation MutsigCV has been identified as an incompatible tool for integration,
due to the requirement of commercial license of MATLAB platform and limited number of
compatible operating systems. The tools which are coming under Oncodrive family
(Functional prediction based approach) require different types of input files and it’s
problematic to convert the original input files to those required file contents. Though 20/20
rule is an accurate tool for identify cancer driver genes, it spends more time even to execute a
small dataset. Since both Dots Finder and Witer algorithms use same input formats(.maf),
easiness of input file type conversion from real data format, average time execution,
compatibility with Operating Systems and capability of smooth installation, those two

algorithms are chosen for hybrid approach called Dots Witer.

Dots Witer pipeline is used Python 2.7 as the compiler. Since required pycurl package cannot

be installed as mentioned in setup.py script, it was installed manually using pip installer.

4.3 Results related to Dots Witer Pipeline

Dots Witer pipeline used to identify cancer drivers among tumor types and to visualize the
results of the analysis of most currently available large data sets of tumor somatic mutations.
The pipeline integrates a result set of tumor genomes which is analyzed with various
mutation-calling workflows. It currently includes DOTS-Finder,a tool that integrates a
protein function approach (functional step) and a frequentist method (frequentist step) to

identify tumor suppressor genes (TSGs) and oncogenes (OGs) genes separately and the tool
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Witer that works with synonymous and non-synonymous mutations with a frequentist method
and ratiometric approach. For the evaluation purpose, the DOT Finder and WITER
algorithms are executed individually.

4.3.1 Breast Invasive Carcinoma

DOTS Finder executes 2397 small somatic variant data set related to Breast Invasive
Carcinoma and it generated tumor suppressor genes (TSGs) file and oncogenes (OGs) genes
file separately with the corresponding p-values. Two of the main types of genes that play a
role in cancer are OGs and TSGs. OGs must be activated to cause cancer and when tumor
suppressor genes don't work properly, cells can grow out of control, which can lead to cancer.
After executing the Breast Invasive Carcinoma sample data set, DOTS Finder identifies TP53
and TNS3 as oncogenes and other 65 unique tumor suppressor genes such as ADAR, AP3B2,
BRCAZ2 etc. The content of output files are as follows (Table 5.2 and Table 5.3)

Table 4.2: TSGs list by DOTS Finder - Breast Invasive Carcinoma

Gene OncoGene Entropy Score TSG_Score  MissenseType TruncatingType p_Fl_Total p_FI_Onco Global P Value
TP53 4.090949666 2.083936323 23 12 1.91E-07 2.15E-05 1]
TNS3 1.694666761 4.521465883 4 10 0.5 1 0.014859144
RE1 0 1.908064623 1 3 0.0625 1 0.121511238
ADAR 0 1.3957540009 i 1 1 1 0.9999392587
AP3B2 0 1.146128036 0 1 1 1 0.999992587
ARHGAP2L 0 1.185636577 0 1 1 1 0.999992587
ASB2 0 1.028028724 0 1 1 1 0.999992587
B3GALTL 0 1.185636577 0 1 1 1 0.999992587
BRCA2 0 1.738388321 1 2 0.25 1 0.999992587
Cleorfs4 0 1.230448921 i 1 1 1 0.9999392587
CEACAML 0 1.006803708 0 1 1 1 0.999992587
CHMPAC 0 1.858837851 0 2 0.5 1 0.999992587
CHRM3 0 1.16879202 0 1 1 1 0.999992587
COL22A1 0 1.204119983 0 1 1 1 0.999992587
CPVL 0 1.007178585 ] 1 1 1 0.999992587
DCLRELB 0 1.139873086 i 1 1 1 0.9999392587
DDX31 0 1.021189299 0 1 1 1 0.999992587
EIF4G2 0 1.007178585 0 1 1 1 0.999992587
EMLL 0 1.021189299 0 1 1 1 0.999992587
FPGT 0 1.006803708 0 1 1 1 0.999992587

Table 4.3: OGs list by DOTS Finder - Breast Invasive Carcinoma
Gene OncoGene Entropy Score TSG Score  MissenseType TruncatingType p_Fl Total p FI Onco Global P Value

TP53 4.090949666 2.083936323 23 12 1.91E-07  2.15E-05 1]
TNS3 1.694666761 4.521465883 4 10 0.5 1 0.031355657
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WITER also executes 2397 small somatic variant data set related to Breast Invasive
Carcinoma individually and generates a list of cancer associated genes with p-value. Here It
identifies 655 cancer progression genes such as TP53, TNS3, ADAR, BRCA2, ERBB2 etc.
The following table (Table 5.4) shows the WITER output.

Table 4.4: WITER output - Breast Invasive Carcinoma

(eneSymbol |ResponseVar |ResponseVarScore ExplanatoryVar| AvgCodinglen EeXpr reptine hic constraint score | Residual P
33 1 ul 3 1418 1454284936 213 U 1378324009 2IART50067 | 1.236E-166
PIK3CA M 0 b 3307 12.90393121 613 1 542012467 1896634074 | 1.61834E-80
GATA3 106 106 1 L3 1211686978 675 - 2343083091 13.51528856 | 5.54338E-42
MAP3K1 104 1 3 463 1220304323 42 kH) 152670372 9.843353435 | 3.661426-23
(DH1 63 63 3 L1 137365714 Pl 3 0809569415 8.675275177 | L92027E-22
CAFB i U 1 0.625 13.88191234 15 h) 2473450631 1021966277 | 1.09384E-12
AKTL % B 1 13 1347351291 U7 I 4027570836 6.797973133 | 5.30306E-12
PTEN phi B 0 1781 1246719768 300 u 3.714396503 0.602826774 | 2.01693E-11
MAP2K4 Bl £l 0 1293 10.73278145 58 52 349192847 6.309752339 | 7.78146E-11
TNS3 P 3 3 2134 1388701787 147 4 436477391 5.315484405 | 3.3187E-08
RUNXL i pii 4 1639 1201318547 4 4 243409017 5303919692 | 5.66711E-08
PI3RL pil 5 1 2406 10.73935517 613 i 2416685711 5137505132 | 1.38909E-07
TR3 P 3 1 211 10.38493643 43 -3 2997800057 46397388 | 1.80223E-06
ADAR 19 1 1 292 1276548841 40 4 1383363117 4416787702 | 5.00393E-06
FOXAL 17 17 1 148 1111560136 47 -8 0.017679788 4.339843476 | 5.67161E-06
CASPg 14 u 1 1763 13.25642013 386 Ll 0817747403 4. 234580437 | 114488E-05
ERBB2 19 1 1 1M 1406626305 20 k) 3376613895 4.077858006 | 2.27263E-05
ZFP3pLL 1 12 0 Li75 137101267 260 3 0.614322974 3961154031 | 3.72942E-05
BRCAZ pil 1 1 4115 1330969574 i £l 7.892268258 3866418954 | 5.52226E-03

Dots-Witer pipeline identifies 65 cancer progression genes from DOTS Finder and WITER
algorithms such as ADAR, BRCA2, TP53, PIK3CA etc. The combined p-value for those
cancer progression genes are calculated using Fisher’s approach. 0.05 is considered as level
of significance (p<0.05) when identifying cancer driver genes. Because R. A. Fisher’s
argument that one in twenty chance represents an unusual sampling occurrence. The

corresponding output file is shown in table 5.5
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Table 4.5: Output of Dots Witer pipeline — Breast Invasive Carcinoma

0TS Finder pualue(X)  WRITER pyalue(Y)  In[X) Infy) Sum=n[X)+Iny|  Statistic=-2(sum) ~ Dots Writer pvalue (Combined Pvalug)
L3 0 L236E-166 SRAU6N IR Th 0457 L2GE-166
PIk3CA LS14E-R0 1837254057 1837254057 1674308115 LE1834E-R0
GATAL 554D SUIE00T -BA9%E0ET 189.950174 S.4538E-4)
MAP3EL JHLE-2 SLEALGSSE  -3L6ALA0Sa0 10338010 104008
(DHL L3022 500040417 500040417 100.0038083 L52027E-22
(Br L0812 QL0066 275413096 3508265933 109384512
AKTL 3.3050E-12 LTI T L9 3.30506E-12
PTEN 20165511 - 62684755 -4, 6684735 45.2536%1 201655-11
MAP2E 17814611 AN At W il 46,350304% T.78146E-11
(TCF SIITER 6T 1674 1349890483 ST
RUNKL S86TL1E-08 -16.68500154 -16.68500154 1337200308 S.66711E-08
PIkIRL 138509607 LSTREET) 1578044657 37689314 138509607
Rl 0120511238 3.00393E-06 -L 1077483 122042888 QLRI 2052407485 G.0R41E0T
TBX3 L30223E-08 1320647858 1320647858 2645094917 13072508
FOKAL 3.67161E-06 1108003683 1208003683 24,16007367 5.67161¢-06
CASPR 1J4438E-05 LI LT 275524440 114438E-05
ERBR2 LINRES -10.69198563 -10,69198563 1138997935 LIN63E05
ADAR 3TI04E05 101966728 101956728 203934559 3TI840E05

The outcome is presented as the format A | B CGC*, where A is the number of genes
predicted to be drivers by the pipeline and B is the number of genes in the list A included in
the Cancer Gene Census [40]

Number of genes predicted as drivers by DOTS-Finder: 67 | 28 CGC*
Number of genes predicted as drivers by WITER: 655 | 86 CGC*
Number of genes predicted as drivers by Dots-Witer : 65| 32 CGC*

Fraction of predicted drivers in CGC -
Breast invasive carcinoma(BRCA)
0.6

0.4
M Fraction of predicted
0.2 drivers in CGC
0 I |

DOTS-Finder WITER Dots-Witer

Figure 4.1: Fraction of predicted driver genes in CGC- Breast Invasive Carcinoma
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4.3.2 Lung Adenocarcinoma

In order to identify cancer driver genes, DOTS Finder executes 1017 small somatic variant
data set related to Lung Adenocarcinoma and it generated tumor suppressor genes (TSGs) file
and oncogenes (OGs) genes file separately with the corresponding p-values. After executing
the Lung Adenocarcinoma sample data set, DOTS Finder identifies EGFR, KRAS and TP53
as oncogenes and other 05 unique tumor suppressor genes such as STK11, NF1 RB1,LTK
and FYN. The content of output files are as follows (Table 5.6 and Table 5.7)

Table 4.6: TSGs list by DOTS Finder -Lung Adenocarcinoma

Gene OncoGene_Entropy Score TSG_Score MissenseType TruncatingType p_Fl_Total p_Fl_Onco Global P_Value

STK11 -0.517115327 3.4090512%4 9 26 2.53e-06 0.04002836 0
TP33 2.384648059 1.202938451 43 24 8.11E-07 4.96E-00 0
NF1 2.015813574 1.43964897 i 10 0.018816442 0.578125 1.24E-09
RB1 0 5.198368649 0 7 0.0078125 1 3.91E-05
LTK 0.798729307 1.313641131 3 3 0.13625 0.875 0.00027616
FYN 0 1174421741 0 2 0.25 1 0.379186503

Table 4.7: OGs list by DOTS Finder -Lung Adenocarcinoma

Gene OncoGene Entropy Score TSG Score  MissenseType TruncatingType p_Fl _Total p Fl Onco Global P_Value
EGFR 4.150015528 0 34 0 0.993409085 0.422777148 0
KRAS 22.21766777 1] 61 0 0.000530302 2.21E-08 0
TP33 2.884648059 1.202938451 43 24 8.11E-07 4,96E-06 0

WITER also executes 1017 small somatic variant data set related to Lung Adenocarcinoma
individually and generates a list of cancer associated genes with p-value. Here it identifies 80
cancer progression genes such as EGFR, KRAS STK11, NF1, RB1, EPHB1, DDR1 etc,
including oncogene and Tumor suppressor genes together. Table 5.8 illustrates the result set
of WITER.

Table 4.8: WITER output- Lung Adenocarcinoma

MostImporta |MostImporta
ReferenceAlternati ntFeatureGe | ntGenefeatn
Chromosome | StartPositionHgld veAllele rsID ne re RefGeneFeatures GENCODEFeatures SIFT score P
3 89468500 /A EPHA3 missense  [¢.2034C=A:p.D678E: 17Exonspn11:missense;EPHAZENSG 0.035000001 0
20 54945233 G/A AURKA missense  [:c.1193C=T:p.5398L:(10Exons)se;AURKA:ENSGO0000087586( 0.135000005 0
3 119582320 ¢ GSK3B missense  [:c.1081GxA:p.V3611:(12ExonspSKIB:ENSGO0000082701.15 § 0.136999995 0
X 105159737 T NRK missense  [.2365C>T:p.P7895:(29Ex0ns){T00000243300:c.2365CT:p.P] 0.214000002 0
2 37516509 G/A PRKD3 missense  |3:¢.707C>T:p.P236L:(18Exons[J0000115825.9_Z:ENSTO00002 (0.254000008 0
10 26457765 AT MYO3A missense  [¢.3236A5T:p.Q1079L:(35ExonENSGO0000095777.15_A:ENS] 0.254000008 0
1 17136525 G/A PIK3C2A missense  |0:c.809C>T:p.A270V:(32ExongIK3C2A:ENSGO0000011405.1] (0.280999988 0
12 52306967 T ACVRLL missense  txon2:missense;ACVRLL:INM 000550683:c.188C>Tip.AB3V:| 0.395999998 0
4 96046157 /G BMPR1B missense  pxonb:missense;BMPR1B:NMonG:missense;BMPRIB:ENSG 0.430993954 0
1 32745298 or LCK missense  [¢.991C>T:p.P3315:(13Ex0ns):p:c.991C>T:p.P3315:(13Exons)| 0.666000009 0
12 18443508 T/C PIK3C2G missense  J0:c.B81T>Cip.|294T:(32Ex0nsP9:c.881T=Cep. |1 294T:{32Exons| (.745999992 0
3 138117376 G/A MRAS missense  |exondmissense;MRAS:NM_fon3:missense;MRAS:ENSGO0| 0.595000005 0
4 35139779 o] PDGFRA missense  828:¢.1515C>G:p.DS05E: 24E[507166:c.1018-1313CG:( 24| 1 0
2 21097011 i) Pl4KA missense  |62:0.3405G=A:p.M11351:( S4E4KA:ENSGO0000241973.10 3 . 0
12 53876420 T MAP3K12 missense  [L2:missense;MAP3K12:NM_0A:p.G723R:(14Exons):exonllf 0057 0.001
17 19285705 G/A MAPK7 missense  fon3:missense;MAPKT:NM_1{T00000395604:c.2089G>A:p.G 0.039993999 0.001
3 39452296 T RPSA missense  [>T.p.R102C:{ 7Exens):exond:P4BC=T:( 1Exons):upstream;RA 0067000002 0.001
X 3533911 T/A PRKX missense  {:c.896A>T:p.H299L:(9Exons)3;PRKX:ENSGO0000183943.5._2)  0.092 0.001
n 20843446 G/A KLHL22 missense  |A;KLHL22:NM_032775:c.53C>|ENST00000494929:(3Exons): 0.167999998 0.001
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Dots-Witer pipeline identifies 43 cancer progression genes from DOTS Finder and WITER
algorithms such as LTK, EGFR , MYO3B, CDK15 etc. The combined p-value for those
cancer progression genes are calculated using Fisher’s approach. 0.05 is considered as level
of significance (p<0.05) when identifying cancer driver genes. The result set of Lung
Adenocarcinoma is shown in table 5.9.

Table 4.9: Output of Dots Witer pipeline - Lung Adenocarcinoma

ene  DOTS Finder p value(X) WRITER pvalue(Y]  In(X) In(y) Sum=In(X) +In(y) Statistic=-2(sum) Dots Writer p value (Combined P value)
NF1 1.24067E-09 0.006 -20.50761212 -5.115995801 -25.62360793 5124721585 7.44404E-12
RB1 3.91024E-05 -10.14932621 -10.14932621 20.29865241 3.91024E-05
LTK 0.00027616 -§.194330199 -8.194330199 16.3830604, 0.00027616
STK11 0 0.006 -5.115995801 -5.115993801 10.2319916) 0.006
MAP3K12 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
MAPK7 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
RPSA 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756)
PRKX 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
KLHL22 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
ERBB4 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
SEMA3F 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
EGFR 0.001] -6.907755231 -6.907755231 13.81551046 0.007907736
MYO38 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
EPHAL 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
JUNB 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
MAP3K3 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
KRAS 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
CDK15 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
LMTK2 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
FOX03 0.001] -6.907755231 -6.907755231 13.81551046 0.007907736
KMT2A 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756
RBLL 0.001] -6.907755231 -6.907755231 13.81551046 0.007907756

Number of genes predicted as drivers by DOTS-Finder: 8 | 5 CGC*
Number of genes predicted as drivers by WITER: 80 | 24 CGC*
Number of genes predicted as drivers by Dots-Witer : 43 | 29 CGC*

Fraction of predicted drivers in CGC -
Lung Adenocarcinoma (LUAD)

0.8
0.6
0.4 B Fraction of predicted
drivers in CGC
0.2
0 T

DOTS-Finder WITER Dots-Witer

Figure 4.2: Fraction of predicted driver genes in CGC -Lung Adenocarcinoma
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CHAPTER 5

Conclusion and Future Work

Dots Witer is a pipeline used to identify cancer drivers among tumor types and to
visualize the results of the analysis of most currently available large data sets of tumor
somatic mutations. Mainly it builds upon the concept of small somatic variants (SSV)
such as single nucleotide variants (SNVs) and small insertions and/or deletions (indels).
The Dots Witer pipeline integrates a result set of tumor genomes which is analyzed with
various mutation-calling workflows. Dots Witer pipeline integrate functional prediction
based step and mutation rate based method in order to identify the cancer driver genes. It
is a more reliable pipeline and gives higher fraction of predicted driver genes. Dots Witer
pipeline works as a distribution solution and it works as a common platform for other

individual driver detection algorithms.

As the diversity of input files has been identified as a bottleneck, new mechanism to
manage such complexities needs to be introduced to the Dots Witer algorithm. Since the
common main idea of each of these tools is assisting relevant responsible bodies by
foreseen potential driver genes, having a common standard for input output files will be
an advantage. Dots Witer has a potential to promote that requirement. Therefore, such a

standard will be introduced as a future improvement to the algorithm.

Intervention of powerful developer community can make this application grow faster with
new ideas and refinements to the algorithm. To encourage such a community, this tool
will be documented and published as a free and open source tool in GIT Hub Most of the
tools which were evaluated for integration did not have such suitability and lack of
documentation of those tools together with long response time creates some additional
overhead for tool users. In order to address this, tool builders’ community will be

maintained attached to the Dots Witer.
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Appendices

1. Appendix A - app.xml in service application of Dots Witer pipeline

version="1.8" encoding="UTF-8"

key="writer_hjhjtkj

\writer\application\

run.sh
java -Xmx6g -jar witer.jar --maf-file |input file| --out |output file|
--excel --db-gene refgene,gencode --gene-feature-in @,1,2,3,4,5,6,7 --iter-gene

name="input_file">examples/hgl9 BreastAdenocarcinoma.maf
output_file">output/hgl9 BAC

writer

2. Appendix B - server.xml in service application of Dots Witer pipeline

version="1.8" encoding="UTF-8"

key="writer_ hjhjtkjdnr
Writer
Writer APP
This is for test
127.8.8.1
3000

key="DOTS_oaskjhkjhsdahkjsa"
Dots Finder
Dots Finder
This is for test
127.9.0.1
3pe1
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3. Appendix C - input file format of DOTS Finder approach

41» Breast_Invasive_Carcinoma.mart

'-Iugo_Symbol Entrez_Gene_Id NCBI_Build Chromosome Start Position End_Position Variant_Classification Reference_Allele
Tumor_Seq_Allelel  Tumor Allele2  dbSNP_R Tumor_Sample_Barcode protein_change

ABCC9 @ GRCh37 12 22878995 22078995 Missense | i c Cc T 5A018  p.R96Q

(8B @ GRCh37 1 57397545 57397545 Mis ati c C A 5A018  p.R520L

(D38eE @ GRCh37 17 72688853 726088853  Mutation A A G SAQ18  p.L186P
CDCA2BPA @ GRCh37 1 227182571 227182571 issense_Mutation € C T 5A018  p.G15805
CPXM2 @ GRCh37 1@ 12552808@ 125528080 Missense_Mutation A A C SAB18  p.S421A

DST @ GRCh37 6 56481248 56481248 Intron A A C SA@18  p.I2339M

DUSP3 @ GRCh37 17 41852113 41852113 M utation € C T 5A018  p.D1@7N
GRIKZ @ G ] 572 182337572 WM utation G G A SA018  p.D528N
HEATRSB @ G 37268436 37268436 Splice Site C C A 5AB18  p.?

HISTIHIT GRCh37 6 26108162 2610816 ense_Mutation C T 5A018  p.V54M
HNRNPH1 @  GRC 5 179047973 179847973 N utation T X 5A018  p.D1@6G

HRNR @ G 152191472 152191472 M _Mutation G G 5A018  p.5878L
KIAABS56 GRCh37 16 27789901 27789901 ense_Mutation G SA@18  p.R16@3H
KLHL13 @  GRCh3 117033283 117033283 M utation G G SA018  p.A519V
KRT34 @ G 39535257 39535257 y utation € C SA018  p.E392Q
PPPIR4Z B8 G 8 67929884 67929885 ame_5 | - 5A018

MYO3A @ G 18 26385582 26385582 4  Mutati 5A018

NBEAL1 @  GRCh3 204013799 204813799 M ati G 5A018 )

NCL @ GRCh37 2 232326413 232326413 M Mutation C C 5A018  p.D15IN

NCL @ GRCh37 2 232326437 232326437 Miss  Mutation C C 5A018  p.E143K

NOS1 @ GRCh37 12 117691478 117691478 N Mutation G G 5A018  p.D871E
NPR2 8 GRC 9 358856 35885626 ati 1 G 5A018  p.R6GIQ
PCOH1® @ GRCh37 4 134673673 134873673  Mutati = C SA@18  p.5793C

1 hg19 BreastAdenocarcinoma_new.marf

Fene Tumor_Sample UUID Tumor_Type Chromosome Start Position End_Position  Variant_(lassification Reference_Allele
Tumor_Allelel Tumor Allele2 Protein_Change

A1BG TCGA-AB-ABBP Breast Adenocarcinoma chrl9 58864307 58364307 Missense_Mutation C ~ p.E109D
A1BG  TCGA-AB-A@BP  Breast Adenocarcinoma chrl9 58864307 58864307 is e_Mutation C . p.E109D
A1BG  TCGA-E9-AINH  Breast Adenocarcinoma chrl9 58864366 58864366 is Mutati ) » p.R9eC

A1BG  TCGA-E9-A22B  Breast Adenocarcinoma chrl9 58862784 58862784  Missense Mutation C - p.A295T
ALCF BR-MEX-815 Breast Adenocarcinoma chrl® 52566490 52566490 Splice Site C T C

ACF  TCGA-BH-ABHP  Breast Adenocarcinoma chrl® 52595854 52595854  Missense Mutation G 1 p.A203V
AICF  TCGA-BH-A18P  Breast Adenocarcinoma chrl® 52595937 52595937 Silent G A G

A2M TCGA-AZ-ABEY Breast Adenocarcinoma chrl2 9246690 9246099 Silent C T C p.E737E

AM TCGA A8 A@8G  Breast Adenocarcinoma chrl2 9251298 9251298 Nonsense Mutation A G
AZM -AaIC reast Adenocarcinoma chrl2 9228358 9220358 Silent - T - p.K167fs*

AM b- reast Adenocarcinoma chrl2 9256962 9256962 Missense Mutation G T G p.P386Q
A2M TCGA-BH-A18H e Adenocarcinoma chrl2 9230409 9230409 Missense Mutation T C T p.Y¥1855C

A2M TCGA-BH-ALFN Adenocarcinoma chrl? 9254262 9254262 Nonsense Mutation G T G p.Y425*

A2M TCGA-C8-A138 Adenocarcinoma chrl2 9242995 9242995 Silent G A G p.N85IN

A2M TCGA-DB-A1IK Adenocarcinoma chrl2 9221429 9221429 Nonsense Mutation G A G p.Q1425*

A2M TCGA-E9-ALIND Adenccarcinoma chrl2 9242989 9242989 Silent C T C  p.R853R

A2M PD5936a Breast Adenmarcmoma chrl? 9243202 9248202 Missense Mutation T C T p.Y649C

A2M PD5934a Breast Adenocarcinoma chrl2 9243024 9243824 Nonsense_Mutation C A C  p.ES42*

M1 TCGA-A1-A@50  Breast Adenocarcinoma chrl2 8994108 8994108 Missense Mutation @ C G p.W4BBC
2ML1  TCGA-AB-A@8P Breast Adenocarcinoma chrl2 8995779 8995779 Missense_Mutation 1 p.R433H
M1 TCGA-AN-AGFT Breast Adenocarcinoma chrl? 9008231 9080231 Silent G A G .

M1 TCGA-AR-A251  Breast Adenocarcinoma chrl2 8988187 8988187 Missense_Mutation 1 p.E190K
M1 TCGA-B6-ABWZ Breast Adenocarcinoma chrl2 9020914 9028914 Missense_Mutation > p.P1341L
2ML] iA-BH- Breast Adenocarcinoma chrl? 8998791 8998791 Silent C T C y

2ML] A-BH- Breast Adenocarcinoma chrl2 9001389 9001389 Missense Mutation . p.5S636C
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