

Masters Project Final Report

(MCS)

2019

Project Title

Gender Classification with the First Name of the People as a
Feature using Character Based 1D Convolutional Neural Network

Student Name W.M.M.P.B Wickramasinghe

Registration No.
& Index No.

2014/mcs/085, 14440859

Supervisor’s
Name

Dr. D. A. S. Atukorale

For Office Use ONLY

S

E1

E2

For Office Use Only

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any other

university/institute.

To the best of my knowledge it does not contain any material published or written by another person,

except as acknowledged in the text.

Student Name: W.M.M.P.B Wickramasinghe

Registration Number: 2014/mcs/085

Index Number: 14440859

Signature: Date:

This is to certify that this thesis is based on the work of

Mr. W.M.M.P.B Wickramasinghe

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name: Dr. D. A. S. Atukorale

Signature: Date:

Abstract

The gender identification based on the name of a person is a traditional problem which many researchers are trying to address
using different models and techniques. Convolutional Neural Network (CNN) is a powerful deep learning technique which plays
a huge role in image classification and signal processing domains. The aim of this thesis is to introduce a character level one-
dimensional (1D) Convolutional Neural Network model for the classification of the gender based on the name. Existing studies of
the text classification using CNN are focused on sentence classification tasks with the help of two-dimensional (2D) Convolutional
layers. In this study, different experiments have been administered by adjusting the model, activation functions and the dataset,
in order to find an optimum model. The final model consists of 3 parallel Convolutional layers followed by max-pooling layers
and 2 fully connected layers with a dropout layer in the middle. The model has been trained and tested with openly available US
Census name, gender dataset. The occupied average validation accuracy is around 0.89.

ACKNOWLEDGEMENT

I am using this opportunity to express my gratitude to everyone who supported until the end of this dissertation. Their
aspiring guidance, invaluably constructive criticism, truthful and illuminating views on a number of issues was instrumental in
the successful completion of this research.

First of all, I would like to give my sincere thanks to my honorific supervisor, Dr. Ajantha Athukorale who offered me
advice, supervision, confidence, encouragement, guidance in right direction until the last stage of this study and in every
difficulty I encountered. My thanks also goes to Dr. A.R Weerasinghe for helping me on finding a datasets for the research
and his valuable feedback.

I would deeply indebted to my ever loving parents and my wife who are always there to give me courage to pursue my
goals and emotional support.

I would like to thank my company ShoutOUT Labs (pvt) ltd for providing me the necessary freedom and support to complete
this research.

All the members of University of Colombo School of Computing (UCSC), especially all the staff of the Post Graduate
Division who helped me in many ways are gratefully acknowledged.

Finally, I am grateful to all who are always capable of giving me enough faith in doing this research at times of failure.

i

CONTENTS

I Introduction 1
I-A Problem Definition . 1
I-B Scope . 1
I-C Contribution . 2
I-D Outcome . 2
I-E Thesis Organization . 2

II Background 3
II-A Deep Neural Network . 3

II-A1 Convolutional Neural Network . 3
II-B Architecture . 4

II-B1 Convolutional layer . 4
II-B2 Pooling layer . 6
II-B3 Fully connected layer . 7
II-B4 Dropout layer . 7

II-C Activation functions and cost functions . 8
II-C1 Sigmoid function . 8
II-C2 Hyperbolic Tangent functions (tanh) . 8
II-C3 Rectified Linear unit (ReLu) function . 9
II-C4 Softmax function . 9
II-C5 Binary Cross Entropy - Cost function . 9

II-D Validation . 9
II-D1 K-Fold cross validation . 9

II-E Common CNN architectures . 10

III Related Works 11
III-A Single Convolutional layer CNNs . 12
III-B Multi convolutional layer CNNs . 12

IV Dataset and Environment 15
IV-A Dataset . 15

IV-A1 US Census Name Gender Dataset . 15
IV-A2 Data Preparation . 15

IV-B Tools and Environment . 15
IV-B1 Deep Learning Studio . 15
IV-B2 CUDA . 15
IV-B3 Experiment Environment . 16

V Model 18
V-A Input . 18
V-B Embedding Layer . 18
V-C Convolutional Layers . 19
V-D Max Pooling Layers . 19
V-E Merge . 19
V-F Dense Layer (Fully Connected Layer) . 19
V-G Dropout Layer . 19
V-H Output . 19

VI Methodology 20
VI-A Different input lengths . 20

VI-A1 Objectives . 20
VI-A2 Conclusion . 21

VI-B Different filter sizes . 21
VI-B1 Objective . 21
VI-B2 Conclusion . 22

ii

VI-C Different embedded layer sizes . 23
VI-C1 Objective . 23
VI-C2 Conclusion . 24

VI-D Different activation functions in different layers . 24
VI-D1 Objective . 24
VI-D2 Activation function Relu in Convolutional layers . 25
VI-D3 Activation function Softmax in Convolutional layers . 25
VI-D4 Activation function Tanh in Convolutional layers . 25
VI-D5 Activation function Tanh in Convolutional layers, Dense 1 Softmax and Dense 2 Sigmoid . . 26
VI-D6 Activation function Tanh in Convolutional layers, Dense 1 Tanh and Dense 2 Sigmoid . . . 26
VI-D7 Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Sigmoid 26
VI-D8 Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Linear . . . 26
VI-D9 Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Relu 26
VI-D10 Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Softmax . . 26
VI-D11 Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Linear 26
VI-D12 Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Softmax 26
VI-D13 Activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu, Dense 3 Sigmoid 28
VI-D14 Activation function Tanh in Convolutional layers, Dense 1 Sigmoid, Dense 2 Sigmoid, Dense

3 Sigmoid . 28
VI-D15 Activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu, Dense 3 Relu 28
VI-D16 conclusion . 28

VI-E First n characters and last n characters . 28
VI-E1 Objective . 28
VI-E2 Conclusion . 28

VI-F 3 Fold cross validation . 28
VI-F1 Objective . 28
VI-F2 Conclusion . 30

VII Conclusions 32
VII-A Summary . 32
VII-B Future Work . 32

VIII Appendices 33
VIII-A Yaml configuration file for load in to Deep Leraning Studio . 33
VIII-B Data preprocess source code - Github . 35
VIII-C Preprocessed dataset for training - Github . 35

iii

LIST OF FIGURES

1 Shallow Artificial Neural Network architecture vs Deep Learning Network architecture[1] 3
2 Typical CNN architecture of image classification [2] . 3
3 2 Layer CNN. All the neurons in each layer are locally connected with the neurons of the previous layer 4
4 Sparse connectivity in Neural Network[3] . 5
5 Shared weight in Neural Network[4] . 5
6 Convolutional layer in Convolutional Neural Network[5] . 5
7 Example max pooling with 2x2 filters and stride=2 [2] . 6
8 Dropout process. Dropout has been applied to layer i-1 and layer i [5] . 7
9 Activation function graphs for Sigmoid, Tanh and ReLU [5] . 8
10 5-Fold cross validation process. Selection of training and test data sets in each iteration 9
11 Common Convolutional Neural Network arhitecture . 10
12 Performance comparison of 3 methods (Baseline, Integrated and Threshold) in the study [6] 11
13 Neural Network for Relation Classification (left) and Framework for Extracting Sentence Level Features (right)

[7]. In the right hand figure, WF stands for word features and PF stands for position features 12
14 CNN model in study [8] for web document searching . 12
15 CNN model in study [9] for question classification . 13
16 CNN model for sentence classification [10] . 13
17 ARC II model in study [11] for sentence matching . 14
18 Dynamic k–Max Pooling Convolutional Neural Network model in the study [12] for modeling sentences 14
19 Data preparation flowchart for the model . 15
20 Gender score distribution of US Census dataset [13] . 17
21 Suggested Convolutional Neural Network model with 3 convolutional layers . 18
22 Percentage of the dataset size of the selected maximum length of the name compared to the total dataset size in

US Census dataset [13] . 20
23 Accuracy and loss results for different input lengths of the model in Figure 21 21
24 Training time compared to the input name vector length of the model in Figure 21 22
25 Accuracy difference between different filter sizes in convolutional layer of the model in Figure 21 23
26 Loss difference between different filter sizes in convolutional layer of the model in Figure 21 24
27 Accuracy difference between different embedded layer sizes of the model in Figure 21 25
28 Loss difference between different embedded layer sizes of the model in Figure 21 25
29 Training time difference between different embedded layer sizes of the model in Figure 21 26
30 Comparison of activation functions Tanh, Relu, Softmax for Convolutional layers of the model in Figure 21 . . 27
31 Performance of activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Linear of the model

in Figure 21 . 27
32 Performance of activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Softmax of the model

in Figure 21 . 28
33 CNN model with 3 Dense layers . 29
34 Performance of activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu and Dense 3 Relu

of the model in Figure 33 . 30
35 Performance of 3 Fold cross validation of the model in Figure 21 . 31

iv

LIST OF TABLES

I Resulted accuracy of Naive Bayes, Maximum Entropy and Decision Tree Classifiers in the study of [14] 11
II English alphabetic characters with its position index which were used in this study 16
III Number of records and the percentage of the number of records compared to the total records, for the given

maximum length of names in US Census dataset [13] . 20
IV Training time, validation accuracy and loss for different input lengths of the model in Figure 21 21
V Training loss and accuracy, validation loss and accuracy with loss difference and accuracy difference for different

filter sizes in Convolutional layers of the model in Figure 21 . 22
VI Selected results from the Table V for different filter sizes . 23
VII Training and validation performance along with the training time between different Embedded layer sizes of the

model in Figure 21 . 23
VIII Training and Validation performance between different algorithms in different layers with 2 Dense layer model

in Figure 21 . 24
IX Training and validation performance between different algorithms in different layers with 3 Dense layer model in

Figure 33 . 26
X Validation accuracy and loss performance for first n characters and last n characters based features of the model

in Figure 21 . 30
XI Training and validation performance with 3 Fold cross validation of the final model in Figure 21 30

v

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network
NN Neural Network
US United States of America
CV Computer Vision
NLP Natural Language Processing
DNN Deep Neural Network
ANN Artificial Neural Network
RNN Recurrent Neural Network
NER Named Entity Recognition
POS Part-Of-Speech
Tanh Hyperbolic Tangent
ReLu Rectified Linear unit
LSTMLong Short Term Memory
SVM Support Vector Machine
API Application Programming Interface
GPU Graphics Processing Unit
RAM Random Access Memory

vi

I. INTRODUCTION

”Gender classification based on the name of the people” is a classical topic among the researchers. The range of gender
classification research goes from designing the best features to choosing the best possible machine learning classifiers. There
are 3 main types of focusing areas in these studies;

1) First name only or first name with other names based studies
2) Predicting the gender of the author by analyzing the writing style of his/her articles or posts based studies
3) Facial image based studies
The focus of this study is to create a name based gender classification model with 1D Convolutional Neural Network.
The first name of a person is a powerful indicator of his/her gender [6]. As a human, by looking at the first name of a

person, we can guess the gender with little context knowledge. The first name and the last name combination can be an even
good feature depending on the context whereas, in some contexts it may not. For example, in English names and Sri Lankan
names, the last name is usually the family name which has no relationship with the gender of the person. However, as [15]
mentioned in his study, in Indonesian names, it is not common using the family name as the last name and the last name
has some sort of relationship with gender. Indonesian names also have some unisex names like ”Dwi”, ”Tri”, ”Rizki” and its
variations. But there are absolutely certain gender-specific names such as, ”Putra” for males and ”Putri” for females. Therefore,
in Indonesian domain, using the full name can be a good feature.

Eg: English Names
Anna Smith - Female
John Smith - Male
Eg: Sri Lankan Names
Gayan Perera - Male
Gayani Perera - Female
Eg: Indonesian Names
Hasan Suparmanputra - Male
Sarah Puthri - Female
On the other hand, many researchers have found out that the Convolutional Neural Networks (CNN) are useful in extracting

information from raw signals, ranging from computer vision applications to speech recognition. In modern deep learning
applications, CNN plays a big role. CNN is being widely applied for the purpose of gender classification based on facial
images. However, It’s really hard to find resources regarding CNN which is used for text classification related tasks. [10]
studied about text classification based on CNN which show interesting results. The motivation behind this dissertation is study
[10]. The model used for the research is a character based 1 dimensional CNN model.

In this research, the first name was taken into consideration and the one-dimensional CNN model was developed by
considering character level features. Different parameter tuning, models and features were studied. CNN usually requires
a large scale dataset for the training. It was hard to find openly available public datasets belongs to other countries such as
Indonesia or Sri Lanka. Therefore, the US Census Name Gender [13] public dataset was used which has around 95,000 unique
names with gender information.

The proposed model in this research created on top of the Deep Learning Studio (V 2.5.0) which is provided by Deep
Cognition [16] (Section IV).

A. Problem Definition

This research defined one dimensional, character based CNN model for classifying gender labels based on the first name
of the person. The first name was used as an input for the Convolutional Neural Network (CNN) and predicted the gender
class, male or female. The output class had only two members; male or female. The corpus extracted from the US Census
database [13] and only the unique records with non unicode characters(English alphabet characters) were taken. Size of the
corpus was 95654 and it was split into three as 80% for the training, 10% for the validation and 10% for the test. A shuffle
function had been used to build the data sets. The characters of the name were taken as the feature vector. The training and
validation accuracy with the respective losses had been recorded.

B. Scope

Create a gender classifier model based on the first name of the people with one-dimensional Convolutional Neural Network.
Different models and parameter sets were discussed and the best model and parameter set was chosen as the final model.

1

C. Contribution

Various deep learning models have been explored in the sentence classification domain which used Convolutional Neural
Network. In the study [10] suggested a 2D Convolutional Neural Network model for sentence classification. Based on study
[10], this dissertation presents a one-dimensional character based parallel Convolutional Neural Network model to classify
gender based on the first name of the people. Even though, the model has been used for name, gender classification task
originally, this model can be used for other word classification tasks where character based features are important.

D. Outcome

The final model was a parallel one-dimensional CNN with 3 Convolutional filters. The average validation accuracy of the
model for US Census dataset [13] was around 0.89 and loss was around 0.28.

E. Thesis Organization

Section II focuses on background knowledge and structures of the CNN models and Section III focuses on previously done
researches in the same domain. Section IV presents the dataset used for the research and the training environment. Section V
introduces the model and the parameters used for the research and Section VI showcases the different experiments done in
this research. Section VII concludes the results. Other useful resources and the source codes can be found in Section VIII.

2

II. BACKGROUND

A. Deep Neural Network

Powerful feature learning skills have been shown in Deep Learning and remarkable performance in Computer Vision (CV)
[17], speech recognition [18], and Natural Language Processing (NLP) [19] is achieved. Deep Neural Network (DNN) contains
multiple hidden layers whereas shallow Artifical Neural Network (ANN) contains a single layer (Figure 1). Therefore, DNN can
learn more advanced features. Some variations of DNN are Convolutional Neural Network (CNN), Recursive Neural Network
and Recurrent Neural Network (RNN). Deep Neural Network consists of 2 main processes; Forward pass and Backpropagation.
In the backpropagation process, the parameters of the network are updated based on the learning rate and cost function via
stochastic gradient descent.

Fig. 1. Shallow Artificial Neural Network architecture vs Deep Learning Network architecture[1]

1) Convolutional Neural Network: Convolutional Neural Networks (CNNs) are a sort of feeding forward Neural Network in
which each and every node can be utilized to apply filters through overlapping regions and this is generally utilizing for image
classification space. The processing happens in an alternative fashion among convolution and sub-sampling layers pursued by
one or more fully connected layers. This architecture has different advantages contrasted with the standard Neural Networks.

The Neural Networks (NNs) have been successfully applied to the features that have been extracted from other systems,
which means that the performance of NNs depends on matching relevant features that can be obtained.

In the context of image classification, if NN is directly applied to the raw pixels, depending on the image dimension, more
parameters may be required since the hidden layer is fully connected, which introduced high complexity for the model. To
tackle this problem CNNs can be applied. The CNNs depend on sharing the weights, which reduces the numbers of parameters.

When classifying an image, the relationship of the nearby pixels is important. When classifying an image of a person, there
are several relationships that helps to detect it as a person. For example, the mouth is below the nose and eyes are above and
by the sides of the nose. These correlations can be identified by the Convolutional layers since it applies a local filter to the
input image. When convolutions are applied to a certain area of the image, it will extract the local features of that area. By
combining these convolved features together, it is possible to generate a less dimensional image with the same construction
as the original image. These kinds of constructions are not supported by the fully connected layers.

Figure 2 represent a typical CNN architecture in the context of image classification.

Fig. 2. Typical CNN architecture of image classification [2]

3

It is possible to apply the same concept from the image classification to the sentence classification with a simple 2D
Convolutional Network. But for the individual text classification (character based classification), a 1D Convolutional Network
which is discussed under chapter V is required.

Convolutional Neural Networks learn local features and assume that these features are not restricted by their absolute
positions. In the field of Natural Language Processing (NLP), CNNs are applied in Named Entity Recognition (NER) [19],
Part–Of–Speech Tagging (POS), etc.

Fig. 3. 2 Layer CNN. All the neurons in each layer are locally connected with the neurons of the previous layer

Figure 3 represents a Convolutional Neural Network with 2 layers. Neurons in CNN are locally connected with neurons in the

previous layer. Weights of the same filter are shared across the same layer. For any green node t, ht = f(W

 xt

xt+1

xt+2

+b) =

f(wtxt + wt+1xt+1 + wt+2xt+2 + b) W is shared by the same filter in same layer.

B. Architecture

The Convolutional layer, Fully Connected layer and Pooling layer are the main 3 types of components which required to
build a Convolutional Neural Network. By arranging these layers in different setups and using multiple layers, different results
can be taken.

1) Convolutional layer: This is the backbone of the Convolutional Neural Network. A set of learnable filters (or kernels)
make the layer’s parameters. These learnable filters consist of a small receptive field, which traverses through the entire input
volume. There are 2 things that happen during the forward pass in each filter when it convolving across the width and height
of the input volume.
• Calculate the dot product between the entries
• Generate the 2-dimensional activation map

As a consequence of this, the network learns filters which is activated by detecting a particular type of feature at some spatial
position in the input.

The full output volume of the Convolutional layer is generated by stacking the activation maps for all the filters across the
input volume. Thus every entry in the output volume can be presented as an output of a neuron which checkout a small region
in the input and shares its parameters with other neurons in the same activation map.

In Figure 4, each blue neuron in layer m, connected with adjacent neurons which are the subset of red neuron in layer m-1.
The convolution of filter and input is denoted by the connection between 2 connected neurons. Each filter has the same depth
as input but smaller size along width and height.

Each filter studies a feature map. In Figure 5, weights with the similar color are shared. The gradient of a shared weight is
calculated by summing up the gradients of the parameters being shared, in the back propagation process.

In Figure 6, input has size of di × wi × hi = 3× 5× 5. Input is padded with 0s of width wp = 1 and height hp = 1. The
depth of output (or the number of feature maps to be learned) is 2. The size of filter is d0 × df × wf × hf = 2× 3× 3× 3.

4

Fig. 4. Sparse connectivity in Neural Network[3]

Fig. 5. Shared weight in Neural Network[4]

Fig. 6. Convolutional layer in Convolutional Neural Network[5]

5

The stride when filter is moving through the width ws and height hs is both equals to 1. The feature map hk, which is learned
by the filter k, is resolved by the weights Wk and bias bk as follows:

hk = f(Wk × x+ bk)

, where f is an activation function which is introduced in Subsection II-C. The volume of output should be:

d0 × (
wi−wf + 2wp

ws
+ 1)× (

hi−hf + 2hp

hs
+ 1)

The number of parameters to be learned should be:

(wf .hf .df + 1).od

i.e., For the output size of 2× 3× 3, (3× 3× 3 + 1)× 2 = 56 is the number of parameters to be learned.
Each and every neuron in a general Neural Network is fully connected with all the neurons in the previous layer. The number

of parameters of fully connected layer become (wi.hi.di +1).w0.h0.d0 = (7× 7× 3+1)× 3× 3× 2 = 2664, if the input and
output is equal. In a general Neural Network, the number of parameters is positively correlated with the size of the input and
output, whereas in the Convolutional Neural Network that is positively correlated with the size of the filter. When compared to
the size of the input and output, the size of the filter is small. Each and every layer is fully connected with the adjacent layers
in a general Neural Network making the number of parameters in it very large. This sometimes cause the learning process
over-fitting.

Fig. 7. Example max pooling with 2x2 filters and stride=2 [2]

2) Pooling layer: Convolutional Neural Networks may consist of local or global pooling layers. A single neuron in the next
layer is generated by combining the output of each neuron cluster in the layer. For example (Figure 7),
• Max pooling - maximum value from each cluster at the layer is used to generate the next layer
• Average pooling - average value from each cluster at the layer is used to generate the next layer
Pooling is a method of non-linear down-sampling. Several non-linear functions are used for the implementation of pooling.

The max pooling is the most common pooling method. It divides the input image into a set of rectangles which do not overlap
each other. The maximum value of each set of the rectangle will be the output.

The rough location of the feature relative to the other features is critical than the exact location of the feature. This is the
reason behind the utilization of pooling in Convolutional Neural Networks. This layer decreases,
• Spatial size of the representation
• Number of parameters
• Amount of memory and computation in the network

This results in over-fitting control. In Convolutional Neural Network architecture, it is usual to add a pooling layer between
Convolutional layers. The pooling process gives another form of translation invariance.

6

The pooling layer with filters of size 2×2 is the most common form (Figure 7) which is applied with the stride of 2 down
samples throughout the input width and height. This results in discarding 75% of the activation. In this example, the dimension
of the depth is not changed and all max operations run covering 4 numbers.

The pooling units can utilize other functions in expansion to max pooling, such as `2-norm pooling or normal pooling.
Normal pooling was frequently utilized historically. But max pooling is being used widely since it performs well in practise.

The height, depth and width of input are hi, di and wi respectively. The pooling size is dp×wp×hp. Usually dp = di. The
stride of pooling has the size of ws × hs. Zero–padding for Pooling layers are not common in use.

The output should have size:

di × (
wi−wp

ws
+ 1)× (

hi−hp

hs
+ 1)

In most cases, input is pooled non–overlapping, i.e., ws = wp and hs = hp. So the output has size of:

di ×
wi

wp
× hi

hp

, which reduces the size of output by 1
wp.hp

.

3) Fully connected layer: Convolutional Neural Network always consists of several fully connected layers following each
Convolutional layer. The neurons of the fully connected layers are completely joined with the neurons in the previous layer.
The structure of the fully connected layer is as same as a layer in a regular Neural Network.

Fig. 8. Dropout process. Dropout has been applied to layer i-1 and layer i [5]

4) Dropout layer: Dropout (Figure 8) is a regularization technique which is used to avoid model over-fitting. In the training
process, when applying a dropout, it will temporarily ignore (dropped out) few randomly selected neurons according to the
specified probability P in the layer. The contribution of these selected neurons will not be available to the downstream neurons
during the forward pass and weight update will not be applied to the neurons in the backpropagation. ”Temporarily” means,
the selected unit is only dropout when training that particular sample.

A Fully connected layer possesses the vast majority of the parameters, and consequently, neurons create codependency among
one another during the training which controls the individual intensity of every neuron prompting over-fitting of training data.

7

In general, Dropout layer is applied only for the fully connected layers and is not applied for the Convolutional layers,
Pooling layers or the last Fully Connected layer.

C. Activation functions and cost functions

Activation functions are required to introduce non-linearity to the network. Without a non-linearity in the network, even a
multi-layer Neural Network will perform as a single layer network. Activation functions convert an input signal into an output
signal (Figure 9).

Fig. 9. Activation function graphs for Sigmoid, Tanh and ReLU [5]

Following functions have been evaluated in this study.

1) Sigmoid function: The value of the Sigmoid function varies between 0 and 1 which is ideal for predicting probability,
since probability differs between 0 and 1.

f(z) = 1/(1 + exp(z))

f ′(z) = f(z)(1− f(z))

f : < → [0, 1]

2) Hyperbolic Tangent functions (tanh): Tanh also a sigmoidal shape function in which value changes between -1 and 1.
This is useful for the binomial class (2 class) problems.

f(z) = tanh(z) = (ez − e−z)/(ez + e−z)

f ′(z) = 1− f(z)2

f : < → [−1, 1]

8

3) Rectified Linear unit (ReLu) function: ReLu is broadly using in the Convolutional Neural Network and Deep Learning
domain. This is a half rectified function. The range of the Relu can differ between 0 and infinity. The values are which less
than zero becomes zero.

f(z) = max(0, z)

f ′(z) =

{
0 z < 0
1 z ≥ 0

}

4) Softmax function: Useful for the multi-class problems. Softmax will calculate the probabilities of all possible target
classes. Function range is between 0 and 1.

f(z)j =
ezj∑K

k=1
ezk

j=1,2,3,....,K

5) Binary Cross Entropy - Cost function:
The Binary Cross Entropy loss function (cost function) is more popular for the multi-label tasks. In this study, Binary Cross
Entropy has been used as the loss function.

z(t, o) = −(tlog(o) + (1−t)log(1−o))

D. Validation

1) K-Fold cross validation: Mainly the dataset split into 2 parts as training and validation. Training dataset is used for the
training of the network and validation set is used for checking the performance of the trained model. If these 2 datasets mixed
with each other, then the results can be extremely biased. Therefore, these 2 datasets should be kept separately. However,
there’s a drawback in this case as validation data will never be used for the training of the network. Data is expensive. Hence
not utilizing even one dataset which can be used for optimization of the network is a waste. The solution for this is using
K-fold cross-validation. In this approach, the dataset will be split into several parts and all the data partitions will be used for
training and validation of the network. The average value will be the final result. K-Fold cross-validation is very useful when
having a limited dataset to train the model.

The Figure 10 shows the representation of a 5-Fold cross validation.

Fig. 10. 5-Fold cross validation process. Selection of training and test data sets in each iteration

In K-Fold cross-validation, the K represents the number of folds and it is an unfixed number. K can be changed according
to the characteristics of the specific dataset. The most common value of K is 10. In this technique, the full data corpus is
divided into K partitions (folds) in ”stratified” manner with labeling each partition. The dataset in each partition and the label
which is assigned to fold is kept as same throughout the training. There will be K iterations in the training process. In each
iteration, the data in one fold which is not chosen as a test fold previously will be taken as the test dataset and data in all the

9

other folds (construction set) will be taken as the training dataset. After the K training iterations, the average of all the results
will be taken as the final result.

E. Common CNN architectures

Figure 11 shows the most common Convolutional Neural Network architecture pattern.

Fig. 11. Common Convolutional Neural Network arhitecture

According to Figure 11, there will be one or more Convolutional layers following with or without a Pooling layer after the
Input. Then one or several fully connected layers with or without Dropout layer and finally the Output layer.

10

III. RELATED WORKS

In a study by [14], 3 classifiers were compared (Naive Bayes, Maximum entropy and Decision tree) for gender classification
based on the name and resulted accuracy was about 75%- 80% (Table I). They had used a dataset of 8000 records. As of their
results, maximum entropy performed well compared to the other two algorithms.

TABLE I
RESULTED ACCURACY OF NAIVE BAYES, MAXIMUM ENTROPY AND DECISION TREE CLASSIFIERS IN THE STUDY OF [14]

Training Set Naive Bayes Classifier Maximum Entropy Classifier Decision Tree Classifier
501 - 750 0.7555 0.7956 0.7856
501 - 1000 0.7595 0.7675 0.7595
501 - 1300 0.7695 0.7675 0.7675
501 - 1500 0.7515 0.7515 0.7515
501 - 1800 0.7735 0.7795 0.7775
501 - 2000 0.7896 0.7996 0.7996

[15] studied a model based on character-level Long- Short Term Memory (char-LSTM). The dataset he had used was
an Indonesian name with gender and the dataset size was around 7000 records. In this study, he mentioned a few specific
characteristics in Indonesian names that differ from English names. In Indonesian names, it is not common to use family names
as the surname. Therefore he compared two approaches, using only the first name and full names. Further, Indonesian names
also have unisex name variations as well as full confident name variations. Instead of 2-5 character n-gram features which
are used commonly in relevant studies, they had used first and the last letter of first and last names as basic features. As the
replacement for 2-5 n-grams, they had selected 1000 top features with the highest values of chi-squared statistics test. With
the full name approach, they achieved the accuracy of 92% and for the first name approach, the resulted accuracy was about
90%.

Naive Bayes and Random Forest classifiers were compared in a study by [20] using a dataset of Indonesian names with
gender and achieved 70%, 83% of accuracy respectively. In this research, he had studied the letter occurrence frequency in
the names and found out that letters ’a’, ’u’, ’e’, ’t’, ’l’, ’i’ occurred more often in female names than in males and letter
’b’,’c’,’o’ appeared more frequently in male. Also, the last letter was distinctive between males and females. Therefore, the
number of occurrence of characters ’a’, ’u’, ’e’, ’t’, ’l’, ‘b’, ’d’, ‘o’ and the index of the alphabet of the last letter selected as
the features. Other additional features are the second last letter and the first 2 letters. The dataset has 50,000 Indonesian name
records.

[6] built a gender-name association score from first names in their study and they proposed three classifiers named as
Baseline, Integrated and Threshold which were based on Support Vector Machine (SVM). In the Baseline approach they
ignored name information and in Integrated approach, the gender-association score of the name was added to the user’s feature
vector as a separate element. In the Threshold approach, the gender-association score of the user’s name was used to decide
whether the usage of SVM-based classifier was needed. As of the results in Figure 12, the maximum average accuracy was
given by the Threshold method.

Fig. 12. Performance comparison of 3 methods (Baseline, Integrated and Threshold) in the study [6]

Many authors had investigated gender classification by using text sentiment in blogs, articles, and forum platforms [21],
[22], [23], [24], [25], [26], [27], [28], [29]. Those authors explored a variety of methods, including word frequencies, writing
styles, Part-Of-Speech (POS), n-gram, POS tags, unigrams, word frequencies, word classes, POS patterns, POS contents and
POS style metrics to analyze text.

Convolutional Neural Network is quite popular in image classification domain. However, some studies had been carried out
where CNN applied in POS tagging [30], chunking, Named Entity Recognition (NER), semantic role labeling [19], searching
queries and Web documents [8], sentence classification [31][10], semantic modelling [12], relation classification [32], and other
NLP tasks.

11

A. Single Convolutional layer CNNs

Fig. 13. Neural Network for Relation Classification (left) and Framework for Extracting Sentence Level Features (right) [7]. In the right hand figure, WF
stands for word features and PF stands for position features

Neural Network for question classification had been studied by [7]. The Relational classifier took a sentence as an input and
discovered multiple levels of feature extractions where higher levels represent more abstract aspects of the inputs. Lexical level
features were extracted by using word embedding and the sentence level features were learned by a max-pooled Convolutional
Neural Network. Figure 13 shows the overall architecture. Each token represented as Position Features (PF) and Word Features
(WF) in the Window Processing Component. Then, the vector went through a Convolutional component and the sentence level
features were obtained through a non-linear transformation. The final step was sending sentence level features and lexical level
features into the Neural Network. The output was the prediction of the connection between 2 given nouns in the sentence.

Fig. 14. CNN model in study [8] for web document searching

[8] and [9] presented similar Convolutional Neural Networks. Both of them transformed the word into a vector using
letter–trigram. Then the word vectors were fed into a 3 layer Convolutional Neural Network (Convolutional layer → Max
Pooling layer → Fully Connected layer as the output layer). Figure 14 shows the model for queries and web documents
searching [8]. [9] tested the model on a question set from a commercial search engine. [9] used a question dataset and trained
a model for relation extraction and another model for entity extraction, as shown in Figure 15. The authors defined this problem
as a multi-class classification, i.e., given a query returning one relation each time while returning 150 top-scoring candidates.

[10] trained a network with one convolutional layer followed by a max–over time pooling, a fully connected layer with
dropout and softmax output layer for sentence classification, as shown in Figure 16. This “one convolutional layer” consisted
of 3 parallel convolutional layers with different filter sizes. The model was trained with two channels and only the parameters
of one channel were updated in the training progress. The word2vec was input feature.

B. Multi convolutional layer CNNs

A sentence matching model with Convolutional Neural Network had been studied by [11]. This model contained 1 dimen-
sional Convolutional layer → 1 dimensional Max Pooling layer → multiple 2 dimensional Convolutional layers → Pooling

12

Fig. 15. CNN model in study [9] for question classification

Fig. 16. CNN model for sentence classification [10]

layer → multiple Fully Connected layers as shown in Figure 17. The embedding of words in the sentences was the input and
the matching degree was the output of the network. The approach was tested on sentence completion [33], matching a response
to Weibo, and MSRP dataset [34].

[12] designed a Dynamic k–Max Pooling Convolutional Neural Network (DCNN) for sentence modeling. The authors used
multiple one–dimensional Convolution layer → feature maps folding operation → k–max pooling layer → a fully connected
layer as output, which is shown in Figure 18. The k highest values from the inputs were chosen using K-max pooling and their
original orders were kept as same. Twitter sentiment prediction task (negative and positive labeled tweets) and SST–1, SST–2,
6–type question categorization in the TREC dataset was used to evaluate this model. Dynamic k–Max Pooling Convolutional
Neural Network’s (DCNN) performance was good at TREC and SST-1 whereas not well at SST-2 dataset when compared with
model of [10]. Convolutional Neural Network with a single convolutional layer showed good performance on various tasks.
The design of [10] made the difference from others since it had parallel convolutional layers.

13

Fig. 17. ARC II model in study [11] for sentence matching

Fig. 18. Dynamic k–Max Pooling Convolutional Neural Network model in the study [12] for modeling sentences

14

IV. DATASET AND ENVIRONMENT

A. Dataset

The focus of this research was to classify a given name into male or female. Therefore, name and gender labeled dataset
was required. The openly available US Census name gender [13] had been used.

1) US Census Name Gender Dataset: This dataset was provided by the United States Census Bureau. These data were
extracted from the Social Security card application for births in the United States from 1879 to the end of February 2016. The
total size of the unprocessed dataset was around 26 million records.

US Census database had the following data format.
First Name , Gender , Frequency
Eg: Madura, Male, 8549

Fig. 19. Data preparation flowchart for the model

2) Data Preparation: Each and every record in the corpus ran through a preprocessing (Figure 19) which cleaned up
unnecessary white spaces, special characters and converted into lower case letters. Two class names (Male, Female) were
converted into class index 1 and 0 respectively.

Then, all the records in the corpus were converted into the input vector of fixed length with zero padding (if necessary).
Each character of the input vector was replaced by the position index of the character in the English alphabet and separated
each character by a semicolon (;). The class index was attached to the vector and separated by a comma (,).

Eg: with fixed length 9, the male name ”John” was converted into an index vector as follows.
10;15;8;14;0;0;0;0;0;0,1
English alphabet position vector is shown in Table II.
When converting the US Census database into input vectors for training the model, the gender score model had been used in

[6]. By using the gender score, it was possible to classify the duplicate names in both classes based on the maximum frequency
class. The names which had similar frequency had been ignored. [6] gender score model works as below.

The gender association of name x is given by the formula,

(M(x)− F (x))/(M(x) + F (x))

M(x) : Number of time a name given to the male F (x) : Number of time a name given to the female
The score ranges from -1 (the name was only given to females) to 1 (the name was only given to males). One useful property

of this definition of gender-name association score was that it was clear the way to assign a score to a name for which there
were no observations at all. If the score was 0, there was a likelihood that the name belonged to a male or female.

The gender score distribution of the dataset shown in Figure 20.

B. Tools and Environment

1) Deep Learning Studio: The model was created using the Deep Learning Studio (V 2.5.0) which was provided by Deep
Cognition [16]. This was a freely available tool to install and able to run on own machine. It was just a User Interface
wrapper for the well known deep learning tool Keras [35]. Keras was a high-level Neural Network Application Programming
Interface (API), written in Python and capable of running with TensorFlow, CNTK, or Theano. Deep Learning Studio was a
self-contained package which could be automatically installed all its dependencies in a Virtual Machine environment.

2) CUDA: In order to run experiments on Graphic Processing Unit (GPU), CUDA driver and CUDA Toolkit were needed
for Nvidia’s GPU–programming toolchain. CUDA Toolkit was downloaded from developer.nvidia.com, which contained an
nvcc program – a compiler for GPU code.

15

TABLE II
ENGLISH ALPHABETIC CHARACTERS WITH ITS POSITION INDEX WHICH WERE USED IN THIS STUDY

Character Position Index
a 1
b 2
c 3
d 4
e 5
f 6
g 7
h 8
i 9
j 10
k 11
l 12
m 13
n 14
o 15
p 16
q 17
r 18
s 19
t 20
u 21
v 22
w 23
x 24
y 25
z 26

3) Experiment Environment: The specification of the computer which was used to ran the tests as follows.
• Operating System : Windows 10 64 bit
• RAM: 8GB DDR4
• Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.8 GHz 1.99 GHz
• GPU: NVIDIA GeForce MX 150 2GB

16

Fig. 20. Gender score distribution of US Census dataset [13]

17

V. MODEL

Fig. 21. Suggested Convolutional Neural Network model with 3 convolutional layers

The parameter values mentioned below in each component of the model were for the initial model. The final parameter
tuning had been evaluated based on the different experiments in this study.

A. Input

The processed US Census Name Gender dataset [13] had been used with preprocesing as explained in the Section IV.

B. Embedding Layer

An embedding was a mapping of a discrete categorical variable to a vector of continuous numbers. In the context of
Neural Networks, embeddings were low-dimensional and learned continuous vector representations of discrete variables. Neural
Network embeddings were useful because they could reduce the dimensionality of categorical variables and meaningfully
represented categories in the transformed space. In conclusion, the embedding layer turned positive integers (indexes) into
dense vectors of fixed size.

Embedded layer parameters were as follows.

18

• Input Length (the length of input sequences)- equal to size of dense vector in input.
• Input Dimensions (the size of the vocabulary in the text data) - 27 (1 to 26 for alphabet index and 0 padding index)
• Output Dimensions (the size of the vector space in which words will be embedded) - 32 (embedded layer size)
• Weight Initialization Function - uniform

C. Convolutional Layers

3 convolutional layers were defined with the following parameters.
• Filter sizes - 1,2,3 initially
• Activation Function - Tanh
• Number of Filters - 32 (equal to the embedded layer output dimension)
• Sub Sample Length - 1
• Weight Initialization Function - Glorot uniform
• Border Mode - valid
• Bias - true

D. Max Pooling Layers

Global max pooling layer was applied to each convolutional layer.

E. Merge

Merge function was applied to get the sum of the 3 global max pooling layers.

F. Dense Layer (Fully Connected Layer)

Fully connected layer 1 was configured with output dimensions which equal to the output dimension of the embedded layer
and activation function Sigmoid.

Fully connected layer 2 was configured with output dimension 1 and activation function Sigmoid to generate the final output.

G. Dropout Layer

Dropout layer with dropout rate 0.2 was applied.

H. Output

Output 1 (Male) or 0 (Female).

19

VI. METHODOLOGY

In this thesis, different experiments were carried out to find the optimum model. The objectives of each experiment and the
conclusion can be found under the each experiment.

A. Different input lengths

1) Objectives: To check the performance of the initial model compared to the length of the input name vector and to find
the minimum length of the input which has the minimum training time without losing the performance of the rest of the
experiments in order to reduce the training time of the experiments. And to check whether the model performance depends on
the input name length.

TABLE III
NUMBER OF RECORDS AND THE PERCENTAGE OF THE NUMBER OF RECORDS COMPARED TO THE TOTAL RECORDS, FOR THE GIVEN MAXIMUM LENGTH

OF NAMES IN US CENSUS DATASET [13]

Maximum length of names Total records Percentage of total records (%)
15 95654 100
14 95620 100
13 95556 100
12 95420 100
11 95196 100
10 94583 99
9 92842 97
8 87511 91
7 73685 77
6 48744 51
5 22118 23
4 6137 6

Fig. 22. Percentage of the dataset size of the selected maximum length of the name compared to the total dataset size in US Census dataset [13]

The length of the maximum name in the US Census dataset was 15. The model was trained for different input lengths and
accuracy, loss, training time were recorded in each training. The distribution of the records was compared to the length of the
name illustrated in Table III and Figure 22. Output size of the embedded layer was set to 32 to reduce the training time and
the number of the epoch was set to 15.

According to the results (Figure 23), performance started decreasing after the input length was 9. According to table III,
dataset size started decreasing gradually after input length was 9. Therefore, the performance did not depend on the input
length but it depended on the dataset size.

20

TABLE IV
TRAINING TIME, VALIDATION ACCURACY AND LOSS FOR DIFFERENT INPUT LENGTHS OF THE MODEL IN FIGURE 21

Input length Training time (Hours:Minutes:Seconds) Loss Accuracy
15 0:11:38 0.3130 0.8750
14 0:11:00 0.2767 0.8850
13 0:11:12 0.2790 0.8850
12 0:10:20 0.2819 0.8830
11 0:10:15 0.2790 0.8847
10 0:10:00 0.2835 0.8825
9 0:09:58 0.2820 0.8827
8 0:09:56 0.2843 0.8814
7 0:07:46 0.3048 0.8688
6 0:05:19 0.3423 0.8528
5 0:02:27 0.3952 0.8284
4 0:00:44 0.4441 0.8101

Fig. 23. Accuracy and loss results for different input lengths of the model in Figure 21

As of the Table IV and Figure 24, the training time difference between input length 15 and 9 was around 2 minutes. Therefore,
input length 9 was selected for the rest of the experiments, since there was no much performance difference between input
length 9 and 15, but it saved training time.

2) Conclusion: The performance of the model does not depend on the input name length. But the dataset size affects the
performance. The large dataset provides the maximum performance gain. The training time varies based on the input name
vector length. Input name vector length 9 provides good performance and less training time when compared to the higher input
name vector lengths.

B. Different filter sizes

1) Objective: To find the filter size or sizes which provide the maximum performance.

The model ran for different filter sizes with the following hyper parameters.
• Epoch: 15
• Batch Size: 100
• Loss Function: Binary Cross Entropy
• Optimizer name: Adam
• Data set split to 80%, 10%, 10% as Training, Validation and Testing respectively
According to the table V and figures 25 , 26, for the single filters, filter size 7 gave the maximum training accuracy (0.8821)

and validation accuracy (0.8728) with minimum training loss (0.2831) and validation loss (0.3059). When considering dual

21

Fig. 24. Training time compared to the input name vector length of the model in Figure 21

TABLE V
TRAINING LOSS AND ACCURACY, VALIDATION LOSS AND ACCURACY WITH LOSS DIFFERENCE AND ACCURACY DIFFERENCE FOR DIFFERENT FILTER

SIZES IN CONVOLUTIONAL LAYERS OF THE MODEL IN FIGURE 21

Filter
Sizes

Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

Loss Difference
(validation-training)

Accuracy Difference
(training-validation)

1 0.6100 0.6732 0.6000 0.6906 -0.0100 -0.0174
2 0.3550 0.8443 0.3563 0.8440 0.0013 0.0003
3 0.3159 0.8661 0.3137 0.8649 -0.0022 0.0012
4 0.2514 0.8746 0.3143 0.8676 0.0183 0.0070
5 0.2923 0.8772 0.3067 0.8718 0.0144 0.0144
6 0.2895 0.8786 0.3121 0.8684 0.0226 0.0226
7 0.2831 0.8821 0.3059 0.8728 0.0228 0.0228
1,2 0.3423 0.8520 0.3385 0.8487 -0.0038 -0.0033
2,3 0.3032 0.8723 0.3130 0.8663 0.0098 0.0060
3,4 0.2683 0.8884 0.2779 0.8835 0.0096 0.0049
4,5 0.2535 0.8958 0.2850 0.8835 0.0315 0.0123
5,6 0.2515 0.8959 0.2785 0.8816 0.0270 0.0143
6,7 0.2428 0.8989 0.2976 0.8760 0.0548 0.0229
1,2,3 0.2817 0.8826 0.3026 0.8677 0.0209 0.0149
2,3,4 0.2348 0.9024 0.2843 0.8811 0.0495 0.0213
3,4,5 0.2178 0.9110 0.2638 0.8971 0.0460 0.0139
4,5,6 0.2042 0.9163 0.2766 0.8911 0.0724 0.0252
1,2,3,4 0.2605 0.8923 0.2880 0.8803 0.0275 0.0120
2,3,4,5 0.2361 0.9024 0.2695 0.8899 0.0334 0.0125
3,4,5,6 0.2219 0.9083 0.2686 0.8898 0.0467 0.0185

filters, filter size 6,7 outperformed others by both training accuracy (0.8989) and training loss (0.2428). But filter size 3,4 and
4,5 gave the maximum validation accuracy (0.8835) and filter size 3,4 gave the minimum loss (0.2779). From tri filters, even
though filter size 4,5,6 gave the maximum training accuracy (0.9163) and minimum training loss (0.2042) when considering
both training and validation accuracy, loss, filter size 3,4,5 performed well with less over-fitted results (accuracy: 0.8971, loss:
0.2638). Among the four filters, filter size 3,4,5,6 performed well.

Selected filter sizes based on above results were listed in table VI. According to the selected filters table VI, filter size 3,4,5
outperformed others in both validation accuracy, loss and difference between the training and validation accuracy and loss.
Filter size 3,4,5 less over-fitted compared to the other filter sizes. Therefore, filter size 3,4,5 was selected as the filter size for
the rest of the experiments.

2) Conclusion: Filter size 3,4,5 provides less over-fitted maximum performance compared to other filters. Increasing the
number of filter sizes does not increase the performance as expected.

22

TABLE VI
SELECTED RESULTS FROM THE TABLE V FOR DIFFERENT FILTER SIZES

Filter
Sizes

Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

Accuracy Difference
(training-validation)

Loss Difference
(validation-training)

3,4 0.2683 0.8884 0.2779 0.8835 0.0096 0.0049
4,5 0.2535 0.8958 0.2850 0.8835 0.0315 0.0123
3,4,5 0.2178 0.9110 0.2638 0.8971 0.0460 0.0139
4,5,6 0.2042 0.9163 0.2766 0.8911 0.0724 0.0252
3,4,5,6 0.2219 0.9083 0.2686 0.8898 0.0467 0.0185

Fig. 25. Accuracy difference between different filter sizes in convolutional layer of the model in Figure 21

C. Different embedded layer sizes

1) Objective: To check the effect of the embedded layer size for the model performance.

TABLE VII
TRAINING AND VALIDATION PERFORMANCE ALONG WITH THE TRAINING TIME BETWEEN DIFFERENT EMBEDDED LAYER SIZES OF THE MODEL IN

FIGURE 21

Embedded Layer Size Training Accuracy Training Loss Validation Accuracy Validation Loss Training Time (seconds)
24 0.9000 0.2402 0.8862 0.2776 439
32 0.9110 0.2178 0.8971 0.2638 410
64 0.9306 0.1661 0.8915 0.2868 446
128 0.9505 0.1196 0.8943 0.2863 556
256 0.9600 0.0967 0.8996 0.2917 1001
512 0.9560 0.1080 0.9000 0.2937 2474

According to the table VII, embedded size 256, gave the maximum training accuracy and minimum loss of 0.9600 and
0.0967 respectively which was quite good performance compared to the other results. However, embedded size 512 gave the
maximum validation accuracy of 0.9000 and embedded size 32 gave the minimum validation loss of 0.2638.

According to the figures 27, 28, embedded size 32 gave the less over-fitted results over others. Also, when considering the
training time (Fig. 29), embedded size 32 showed less training time. If embedded size increases the training time also increases
exponentially. Therefore, even though a large embedded size increased the performance by a small amount, compared to the
training time it was not much effective. As a conclusion, embedded size 32 was better than others.

23

Fig. 26. Loss difference between different filter sizes in convolutional layer of the model in Figure 21

2) Conclusion: Embedded size 32 shows the maximum performance with less over-fitted results and comparably low training
time for the model.

D. Different activation functions in different layers

1) Objective: To find the activation function setup which gives the maximum results.

Results of different activation functions in different layers with using 2 Dense (Fully Connected) layers shown in the table
VIII and with 3 Dense layers shown in table IX.

TABLE VIII
TRAINING AND VALIDATION PERFORMANCE BETWEEN DIFFERENT ALGORITHMS IN DIFFERENT LAYERS WITH 2 DENSE LAYER MODEL IN FIGURE 21

Convolutional Layers Dense1 Dense2 Training Accuracy Training Loss Validation Accuracy Validation Loss
Relu Sigmoid Sigmoid 0.9078 0.2256 0.8878 0.2747
Softmax Sigmoid Sigmoid 0.9016 0.2390 0.8916 0.2684
Tanh Sigmoid Sigmoid 0.9110 0.2178 0.8971 0.2638
Tanh Softmax Sigmoid 0.9064 0.2374 0.8875 0.2803
Tanh Tanh Sigmoid 0.9156 0.2105 0.8876 0.2756
Tanh Relu Sigmoid 0.9130 0.2101 0.8888 0.2704
Tanh Sigmoid Linear 0.8332 0.4058 0.8598 0.3500
Tanh Sigmoid Relu 0.8463 0.3851 0.8599 0.3613
Tanh Sigmoid Softmax 0.5000 7.9712 0.3634 10.1489
Tanh Relu Linear 0.7725 0.4711 0.8171 0.4310
Tanh Relu Softmax 0.3634 10.1481 0.3710 10.0273
Tanh Relu Relu 0.7984 0.4775 0.8345 0.4111

24

Fig. 27. Accuracy difference between different embedded layer sizes of the model in Figure 21

Fig. 28. Loss difference between different embedded layer sizes of the model in Figure 21

2) Activation function Relu in Convolutional layers: The activation function was changed as Relu in each Convolutional
layer and the accuracy and loss were recorded.

3) Activation function Softmax in Convolutional layers: The activation function was changed as Softmax in each Convolu-
tional layer and the accuracy and loss were recorded.

4) Activation function Tanh in Convolutional layers: The Tanh activation function was used for the models in previous
experiments.

When comparing 3 different activation functions (Tanh, Relu, Softmax) for Convolutional layers, the Tanh activation function
outperformed others by performance (Figure 30). Therefore, the activation function Tanh was selected as the Convolutional
layer activation function for the rest of the experiments.

25

Fig. 29. Training time difference between different embedded layer sizes of the model in Figure 21

TABLE IX
TRAINING AND VALIDATION PERFORMANCE BETWEEN DIFFERENT ALGORITHMS IN DIFFERENT LAYERS WITH 3 DENSE LAYER MODEL IN FIGURE 33

Convolutional Layers Dense1 Dense2 Dense3 Training Accuracy Training Loss Validation Accuracy Validation Loss
Tanh Relu Relu Sigmoid 0.9118 0.2150 0.8905 0.2686
Tanh Relu Relu Relu 0.8510 0.3779 0.8505 0.3512
Tanh Sigmoid Sigmoid Sigmoid 0.9114 0.2185 0.8841 0.2844

5) Activation function Tanh in Convolutional layers, Dense 1 Softmax and Dense 2 Sigmoid: Dense 1 activation function
was changed to Softmax with Tanh in Convolutional layers and Sigmoid in Dense2 as activation functions.

6) Activation function Tanh in Convolutional layers, Dense 1 Tanh and Dense 2 Sigmoid: Dense 1 activation function was
changed to Tanh with Tanh in Convolutional layers and Sigmoid in Dense2 as activation functions.

7) Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Sigmoid: Dense 1 activation function was
changed to Relu with Tanh in Convolutional layers and Sigmoid in Dense2 as activation functions.

8) Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Linear: Ususally, the Linear activation
function is used in the final fully connected layer. Therefore, Dense2 activation function was set as Linear where Tanh was
set as Convolutional layer activation function and Sigmoid in Dense 1.

The recorded training accuracy was around 0.83 and validation accuracy was around 0.85 which was less than the model
with activation function Sigmoid in Dense2.

9) Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Relu: Dense 2 activation function was
changed to Relu with Tanh in Convolutional layers and Sigmoid in Dense 1 as activation functions.

10) Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Softmax: Dense 2 activation function
was changed to Softmax with Tanh in Convolutional layers and Sigmoid in Dense 1 as activation functions.

11) Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Linear: Dense 2 activation function was
changed to Linear with Tanh in Convolutional layers and Relu in Dense 1 as activation functions. Training and validation
accuracy were around 0.81 and training was not smooth as in Figure 31.

12) Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Softmax: Dense 2 activation function was
changed to Softmax with Tanh in Convolutional layers and Relu in Dense 1 as activation functions. Training accuracy did not
increase beyond 0.4 and training loss was around 10 (Figure 32).

When comparing different algorithms in Dense layers (Table VIII), ”Activation function Tanh in Convolutional layers,
Dense 1 Relu and Dense 2 Sigmoid” model gave the maximum training accuracy and minimum training loss. However, when
considering both training and validation performance, the model ”Activation function Tanh in Convolutional layers, Dense 1
Sigmoid and Dense 2 Sigmoid” showed the best results which were less over-fitted when compared to the model ”Activation
function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Sigmoid” .

26

Fig. 30. Comparison of activation functions Tanh, Relu, Softmax for Convolutional layers of the model in Figure 21

Fig. 31. Performance of activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Linear of the model in Figure 21

27

Fig. 32. Performance of activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Softmax of the model in Figure 21

A model with 3 Dense layers (Figure 33) was used in the next few experiments in order to compare the performance with
2 Dense layer model. The Dense layer output size is shown as below.
• Dense 1 : 32
• Dense 2 : 16
• Dense 3 : 1
13) Activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu, Dense 3 Sigmoid: Dense 3 activation

function was set to Sigmoid with Tanh in Convolutional layers, Relu in Dense 1 and Dense 2 as activation functions.
14) Activation function Tanh in Convolutional layers, Dense 1 Sigmoid, Dense 2 Sigmoid, Dense 3 Sigmoid: Activation

function was set to Sigmoid in all Dense layers with Tanh in Convolutional layers. This setup performed well but results were
bit lower compared to the setup ”Activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu, Dense 3
Sigmoid”.

15) Activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu, Dense 3 Relu: Activation function was
set to Relu in all Dense layers with Tanh in Convolutional layers. Training was not smooth as shown in figure 34.
Adding more dense layers did not increase the performance but it increased the complexity of the model according to the
results in the table IX.

The model with 2 dense layer and activation function as Sigmoid outperformed the other models.
16) conclusion: In this experiment, 2 models were considered with 2 Dense layers (initial model) and 3 Dense layers.

According to the results, adding more Dense layers does not increase the model performance, but it adds additional complexity
to the model. The best performing model contains 2 Dense layers with Tanh as activation function in Convolutional layers and
Sigmoid as activation function in Dense layers.

E. First n characters and last n characters

1) Objective: To check whether it is possible to reduce the input size without degrading the performance.
As of the table X, the model gave maximum performance (accuracy around 0.85) for first 2 and last 2 character input. But

it showed less performance than using the whole name as an input to the model.
2) Conclusion: Reducing the input size of the input by using first n, last n characters does not increase the performance.

F. 3 Fold cross validation

1) Objective: To cross validate the results.

28

Fig. 33. CNN model with 3 Dense layers

The final model (Figure 21) with the following parameters tuning was checked with the 3 Fold cross-validation.
Activation Functions
• Convolutional layers : Tanh
• Dense layers : Sigmoid
Other Parameters
• Convolutional layer filter sizes : 3,4,5
• Embedded layer size : 32
• Dense 1 output size : 32

29

Fig. 34. Performance of activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu and Dense 3 Relu of the model in Figure 33

TABLE X
VALIDATION ACCURACY AND LOSS PERFORMANCE FOR FIRST N CHARACTERS AND LAST N CHARACTERS BASED FEATURES OF THE MODEL IN FIGURE

21

First n characters (n=) Last n characters (n=) Accuracy Loss
1 2 0.83 0.37
2 2 0.85 0.36
2 1 0.81 0.42

• Dense 2 output size : 1
• Dropout : 0.2
• Number of epoch : 15
• Batch size : 32
• Loss function : Binary cross entropy
• Optimizer : Adam

TABLE XI
TRAINING AND VALIDATION PERFORMANCE WITH 3 FOLD CROSS VALIDATION OF THE FINAL MODEL IN FIGURE 21

Training Accuracy Training Loss Validation Accuracy Validation Loss
Iteration 1 0.9087 0.2220 0.8902 0.2755
Iteration 2 0.9069 0.2260 0.8867 0.2805
Iteration 3 0.9097 0.2179 0.8814 0.2858
Average 0.9084 0.2223 0.8861 0.2806

Figure 35 showed the results of the 3 Fold cross-validation. Training data size was 61894 and validation data size was 30947
in each iteration. Final results were almost similar in all the iterations. The average training accuracy, training loss, validation
accuracy, validation loss were 0.9084, 0.2223, 0.8861, 0.2806 respectively (Table XI).

2) Conclusion: Average results are similar in all the iterations.

30

Fig. 35. Performance of 3 Fold cross validation of the model in Figure 21

31

VII. CONCLUSIONS

A. Summary

This thesis defines a gender classification of people, based on the first name, with character level 1D parallel Convolutional
Neural Network (CNN). The final model contains 3 parallel Convolutional layers, 2 Fully Connected layers and 1 Dropout
layer (Figure 21). The model tests different scenarios like changing the input length, changing the model, changing activation
functions and changing the input. According to the experiments, Tanh as activation function for Convolutional layers and
Sigmoid activation function for Fully Connected layers outperform the other models. The model does not depend on the input
length, but it depends on the dataset size. Usually, CNN models need a large dataset. The final model gives an accuracy of
around 0.89 which outperform the traditional methods. Following are the parameters tuning and activation functions used in
the final model.

Activation Functions
• Convolutional layers : Tanh
• Dense layers : Sigmoid
Other Parameters
• Convolutional layer filter sizes : 3,4,5
• Embedded layer size : 32
• Dense 1 output size : 32
• Dense 2 output size : 1
• Dropout : 0.2
• Number of epoch : 15
• Batch size : 32
• Loss function : Binary cross entropy
• Optimizer : Adam

B. Future Work

In this research, only the US census name gender dataset ([13]) was used for training and validation. The model should test
other datasets.

On the other hand, it is needed to check the model performance by providing the heuristic knowledge along with the name
as an input.

32

VIII. APPENDICES

A. Yaml configuration file for load in to Deep Leraning Studio

data:
dataset: {name: uscensus-9, samples: 92842, type: private}
datasetLoadOption: batch
kfold: 1
mapping:

gender:
options: {Normalization: false, Scaling: 1}
port: OutputPort0
shape: ''
type: Numeric

name:
options: {Normalization: false, Scaling: 1}
port: InputPort0
shape: ''
type: Array

numPorts: 1
samples: {split: 4, test: 9284, training: 74273, validation: 9284}
shuffle: true

model:
connections:
- {source: GlobalMaxPooling1D_4, target: merge_2}
- {source: GlobalMaxPooling1D_1, target: merge_2}
- {source: GlobalMaxPooling1D_9, target: merge_2}
- {source: Embedding_1, target: Convolution1D_1}
- {source: Embedding_1, target: Convolution1D_6}
- {source: Embedding_1, target: Convolution1D_11}
- {source: Convolution1D_6, target: GlobalMaxPooling1D_4}
- {source: Convolution1D_11, target: GlobalMaxPooling1D_9}
- {source: Convolution1D_1, target: GlobalMaxPooling1D_1}
- {source: Dropout_3, target: Dense_15}
- {source: Input_1, target: Embedding_1}
- {source: merge_2, target: Dense_13}
- {source: Dense_15, target: Output_1}
- {source: Dense_13, target: Dropout_3}
layers:
- args: {}

class: Input
name: Input_1
x: 322
y: 20

- args: {}
class: Output
name: Output_1
x: 242
y: 964

- args: {input_dim: '28', input_length: '9', output_dim: '32'}
class: Embedding
name: Embedding_1
x: 322
y: 130

- args: {activation: tanh, filter_length: '3', nb_filter: '32'}
class: Convolution1D
name: Convolution1D_1

33

x: 30
y: 279

- args: {}
class: GlobalMaxPooling1D
name: GlobalMaxPooling1D_1
x: 29
y: 411

- args: {activation: sigmoid, output_dim: '32'}
class: Dense
name: Dense_13
x: 241
y: 646

- args: {p: '0.2'}
class: Dropout
name: Dropout_3
x: 240
y: 747

- args: {activation: sigmoid, output_dim: '1'}
class: Dense
name: Dense_15
x: 241
y: 857

- args: {activation: tanh, filter_length: '5', nb_filter: '32'}
class: Convolution1D
name: Convolution1D_6
x: 327
y: 280

- args: {}
class: GlobalMaxPooling1D
name: GlobalMaxPooling1D_4
x: 329
y: 412

- args: {}
class: merge
name: merge_2
x: 238
y: 546

- args: {activation: tanh, filter_length: '4', nb_filter: '32'}
class: Convolution1D
name: Convolution1D_11
x: 607
y: 279

- args: {}
class: GlobalMaxPooling1D
name: GlobalMaxPooling1D_9
x: 608
y: 411

params:
advance_params: true
batch_size: 32
is_custom_loss: false
loss_func: binary_crossentropy
num_epoch: 15
optimizer: {name: Adam}

project: CNN Gender Classification

34

Hosted version of the model script can be found in the following url.
https://github.com/maduraPradeep/uscensus-name-gender-for-cnn/blob/master/model/CNNGenderClassification.yaml

B. Data preprocess source code - Github

Data preprocess source code is hosted on Github which can be found in the following url.
https://github.com/maduraPradeep/uscensus-name-gender-for-cnn
In order to build the source, it is required to install nodejs in the computer. Then steps below should be followed.
1) Clone the repository
2) Run npm install
3) Run node uscensusDataProcessor.js to generate the train.csv file

C. Preprocessed dataset for training - Github

The preprocessed dataset which used for the training is hosted on Github which can found in the following url.
https://github.com/maduraPradeep/uscensus-name-gender-for-cnn/blob/master/train.zip

35

REFERENCES

[1] F. Vázquez. Deep learning made easy with deep cognition. [Online]. Available: https://becominghuman.ai/
deep-learning-made-easy-with-deep-cognition-403fbe445351

[2] Wikipedia website. [Online]. Available: https://www.wikipedia.org
[3] Researchgate website. [Online]. Available: https://www.researchgate.net
[4] Slideshare website. [Online]. Available: https://www.slideshare.net
[5] Y. Chen, “Convolutional neural network for sentence classification.”
[6] W. Liu and D. Ruths, “What’s in a name? using first names as features for gender inference in twitter.”
[7] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation classification via convolutional deep neural network.”
[8] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “Learning semantic representations using convolutional neural networks

for web search.”
[9] X. H. Wen tau Yih and C. Meek, “Semantic parsing for singlerelation question answering.”

[10] Y. Kim, “Convolutional neural networks for sentence classification.”
[11] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network architectures for matching natural language sentences.”
[12] E. G. Nal Kalchbrenner and P. Blunsom, “A convolutional neural network for modelling sentences.”
[13] The us census website. [Online]. Available: https://www.census.gov
[14] S. Modak and A. C. Mondal, “A comparative study of classifiers’ performance for gender classification.”
[15] A. A. Septiandri, “Predicting the gender of indonesian names.”
[16] Deep cognition website. [Online]. Available: https://deepcognition.ai
[17] U. M. Dan Ciresan and J. Schmidhuber, “Multi-column deep neural networks for image classification. in computer vision

and pattern recognition (cvpr),” p. 3642–3649.
[18] L. D. George Dahl, Dong Yu and A. Acero, “Context-dependent pre-trained deep neural networks for large-vocabulary

speech recognition.”
[19] R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep neural networks with multitask

learning.”
[20] A. Ridho, “Gender classification of indonesian names using multinomial naive bayes and random forest classifiers.”
[21] S. Singh, “A pilot study on gender differences in conversational speech on lexical richness measures.”
[22] J. F. S. Argamon, M. Koppel and A. Shimoni, “Gender, genre, and writing style in formal written texts.”
[23] S. B. S. Herring, L. Scheidt and E. Wright, “Gender and genre variation in weblogs,” p. 439– 459.
[24] C. A. T. Kucukyilmaz, B.B. Cambazoglu and F. Can, “Chat mining for gender prediction,” p. 274–283.
[25] W. D. C. Peersman and L. Vaerenbergh, “Predicting age and gender in online social networks,” pp. 37–44.
[26] K. G. R. Sarawgi and Y. Choi, “Gender attribution: Tracing stylometric evidence beyond topic and genre,” pp. 78–86.
[27] S. A. M. Koppel and A. Shimoni, “Automatically categorizing written texts by author gender,” p. 401–412.
[28] A. Mukherjee and B. Liu, “Improving gender classification of blog authors,” p. 207–217.
[29] J. O. S. Nowson and A. Gill, “Gender, genres, and individual differences,” p. 1666–1671.
[30] C. D. Santos and B. Zadrozny, “Learning character-level representations for part-of-speech tagging.”
[31] C. N. dos Santos and M. Gatti, “Deep convolutional neural networks for sentiment analysis of short texts.”
[32] A. Karpathy, “Convolutional neural networks for visual recognition.”
[33] D. D. Lewis, Y. Yang, T. G. Rose, and F. L. Rcv, “A new benchmark collection for text categorization research.”
[34] V. Rus, P. M. M. M. C. Lintean, D. S. McNamara, and A. C. Graesser, “Paraphrase identification with lexico-syntactic

graph subsumption.”
[35] Keras website. [Online]. Available: https://keras.io

36

https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351
https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351
https://www.wikipedia.org
https://www.researchgate.net
https://www.slideshare.net
https://www.census.gov
https://deepcognition.ai
https://keras.io

	Introduction
	Problem Definition
	Scope
	Contribution
	Outcome
	Thesis Organization

	Background
	Deep Neural Network
	Convolutional Neural Network

	Architecture
	Convolutional layer
	Pooling layer
	Fully connected layer
	Dropout layer

	Activation functions and cost functions
	Sigmoid function
	Hyperbolic Tangent functions (tanh)
	Rectified Linear unit (ReLu) function
	Softmax function
	Binary Cross Entropy - Cost function

	Validation
	K-Fold cross validation

	Common CNN architectures

	Related Works
	Single Convolutional layer CNNs
	Multi convolutional layer CNNs

	Dataset and Environment
	Dataset
	US Census Name Gender Dataset
	Data Preparation

	Tools and Environment
	Deep Learning Studio
	CUDA
	Experiment Environment

	Model
	Input
	Embedding Layer
	Convolutional Layers
	Max Pooling Layers
	Merge
	Dense Layer (Fully Connected Layer)
	Dropout Layer
	Output

	Methodology
	Different input lengths
	Objectives
	Conclusion

	Different filter sizes
	Objective
	Conclusion

	Different embedded layer sizes
	Objective
	Conclusion

	Different activation functions in different layers
	Objective
	Activation function Relu in Convolutional layers
	Activation function Softmax in Convolutional layers
	Activation function Tanh in Convolutional layers
	Activation function Tanh in Convolutional layers, Dense 1 Softmax and Dense 2 Sigmoid
	Activation function Tanh in Convolutional layers, Dense 1 Tanh and Dense 2 Sigmoid
	Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Sigmoid
	Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Linear
	Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Relu
	Activation function Tanh in Convolutional layers, Dense 1 Sigmoid and Dense 2 Softmax
	Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Linear
	Activation function Tanh in Convolutional layers, Dense 1 Relu and Dense 2 Softmax
	Activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu, Dense 3 Sigmoid
	Activation function Tanh in Convolutional layers, Dense 1 Sigmoid, Dense 2 Sigmoid, Dense 3 Sigmoid
	Activation function Tanh in Convolutional layers, Dense 1 Relu, Dense 2 Relu, Dense 3 Relu
	conclusion

	First n characters and last n characters
	Objective
	Conclusion

	3 Fold cross validation
	Objective
	Conclusion

	Conclusions
	Summary
	Future Work

	Appendices
	Yaml configuration file for load in to Deep Leraning Studio
	Data preprocess source code - Github
	Preprocessed dataset for training - Github

