
i

Masters Project Final Report

(MCS)

2019

Project Title

Coordination and computation paradigm on Software Defined Network

Student Name

R. D.Y. Thrilakshi

Registration

No.

& Index No.

14440816 & 2014MCS081

Supervisor’s

Name
Dr. D.N. Ranasinghe

For Office Use ONLY

S

E1

E2

For Office Use

Only

ii

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any other

university/institute.

To the best of my knowledge it does not contain any material published or written by another person,

except as acknowledged in the text.

Student Name: R.D.Y. Thrilakshi

Registration Number: 14440816

Index Number: 2014MCS081

Signature: Date: 2019/05/31

This is to certify that this thesis is based on the work of Mr./Ms. R.D.Y.Thrilakshi under my supervision.

The thesis has been prepared according to the format stipulated and is of acceptable standard.

Certified by:

Supervisor Name:

Signature: Date:

i

Coordination and computation

paradigm on a Software Defined

Network

A dissertation submitted for the Degree of Master of

Computer Science

R. D. Y. Thrilakshi

University of Colombo School of Computing

2019

i

Acknowledgements

First and foremost, I am deeply indebted to my advisor Dr. D.N. Ranasinghe, senior lecturer at University

of Colombo School of computing, for valuable advice, the guidance and support given me to continue

my research work. In addition, I am thankful to have this opportunity to study regarding distributed

systems with software defined networking, protocols and topologies. Finally, I am extremely grateful to

my loving parents, family who extended the emotional support and constantly encouraged me during all

times.

1

 Abstract

Since SDN is highly programmable and decoupled the controller plane from the data plane, SDN has

played a major role to provide some promising solutions to the traditional network. Mainly the controller

has taken the flow management of the network by considering the whole network status and achieved

performance improvements, high -flexibility and efficient configuration. Therefore, SDN has emerged

as a trending approach for the network application development. Even though the SDN was able to

minimize burning problems in a traditional network, SDN still is in its experimental level to support

scalability, single point of failure etc. This thesis discusses the early practices of SDN by highlighting

its architectural concepts with the evolution of software defined network. Further it examines the

technologies which supports SDN such as OpenFlow, network virtualization and mininet. According to

the statistics gained from the research evaluation, it has proven that the multiple controllers were able to

reduce the so-called controller overhead than the single controller. Furthermore, the implementation of

network function virtualization depicts the notion of SDN and simple emulation using mininet shows

the practical aspect of this thesis.

2

Table of Contents

List of Figures ... 3

List of Tables .. 4

List of Abbreviations .. 5

Chapter 1 ... 6

1. Introduction ... 6

1.1 Motivation ... 6

1.2 Objective ... 7

1.3 Scope ... 7

Chapter 2 ... 8

2. Background ... 8

2.1 Traditional Network vs Software defined Network .. 8

2.2 Controller Throughput .. 10

2.3 Controller Response Time .. 10

2.4 What is OpenFlow? .. 10

2.5 About Mininet ... 12

2.6 Network Virtualization ... 12

2.7 Literature Review: .. 13

2.7.1 POX Controller .. 13

2.7.2 Open Daylight Controller .. 13

2.7.3 BEACON Controller ... 14

2.7.4 Kandoo ... 15

2.7.5 Hyper flow ... 16

2.7.6 DIFANE ... 17

2.7.7 SDN Architecture with logically centralized multiple controllers - ONIX 18

2.7.8 Hierarchical control plane architectures – Orion ... 18

2.7.9 Optimal Flow ... 19

Chapter 3 ... 21

Experimental Setup ... 21

Experiment Result Evaluation .. 26

Chapter 4 ... 39

Conclusion .. 39

Future work ... 40

References ... 41

3

List of Figures

Figure 1: Traditional network running distributed protocol ... 8

Figure 2: Control plane and forwarding plane of an SDN .. 9

Figure 3: How the request goes from host x to host y .. 9

Figure 4: OpenFlow switch communicates with a controller over a secure connection using the

OpenFlow protocol ... 11

Figure 5: Open Daylight Framework .. 14

Figure 6: Kandoo’s design .. 15

Figure 7: Hi-level overview of Hyper Flow ... 17

Figure 8: DIFANE flow management architecture .. 18

Figure 9: Network view of the hybrid hierarchical architecture. .. 19

Figure 10: Single Controller Architecture .. 22

Figure 11: Multiple Controller Architecture using two controllers .. 23

Figure 12: Multiple Controller Architecture uisng three controllers .. 23

Figure 13: Open Daylight Controller .. 24

Figure 14: Total Time ... 28

Figure 15: Total Packets ... 28

Figure 16: Minimum Delay .. 29

Figure 17: Maximum Delay .. 29

Figure 18: Average Delay ... 30

Figure 19: Average Jitter .. 30

Figure 20: Delay Standard Deviation ... 31

Figure 21: Bytes received ... 31

Figure 22: Average Bit rate .. 32

Figure 23: Average Packet Rate ... 32

Figure 24: Packets Dropped .. 33

Figure 25: Average Loss-Burst Size ... 33

Figure 26: Average performance in Total Time ... 34

Figure 27: Average performance in total packets ... 35

Figure 28: Average performance in minimum delay .. 35

Figure 29: Average performance in maximum delay ... 35

Figure 30: Average performance in average delay ... 36

Figure 31: Average performance in average Jitter ... 36

Figure 32: Average performance in delay standard deviation .. 36

Figure 33: Average performance in bytes received .. 37

Figure 34: Average in average bit rate ... 37

Figure 35: Average in average packet rate ... 37

Figure 36: Average in packet dropped .. 38

Figure 37: Average in average loss-burst size .. 38

4

List of Tables

Table 1: Single controller experiment result .. 26

Table 2: Multiple controller experiment with two controllers .. 27

Table 3: Multiple controller experiment with three controllers .. 27

Table 4: Average performance matrix .. 34

5

List of Abbreviations

➢ SDN: Software Defined Network

➢ LAN: Local Area Network

➢ MAN: Metropolitan Area Network

➢ NFV: Network Function Virtualization

➢ VNF: Virtual Network Functions

➢ NAT: Network Address Translation

6

Chapter 1
1. Introduction

1.1 Motivation

The newly defined split architecture computing model called Software Defined Networks quickly has

become a topic of interest in the domain. In situations where parallel applications are presented in large

scale distributed systems, the software defined network is an emerging network architecture where

network control plane is decoupled from forwarding plane and directly programmable with the aid of

network virtualization. It supports to show the benefits of creating network infrastructure which would

be more agile and flexible.

Another aspect of the distributed system is, full potential massively parallel systems requires

programming models that deal with the concurrency of cooperation among very large-scale network.

This has led to design and implementation of coordination models and their associated programming

languages. However, they also differ in how they precisely define the notion of coordination, what

exactly is being coordinated, how coordination is achieved. In such a situation, our motivation is to work

out with the coordination and data driven computation using multiple controllers on a software defined

network.

Since the SDN controller is directly programmable, our motivation opens the research work to apply the

coordination computation paradigm on SDN controller. The SDN controller has raised many problems

and one of the most voiced concern is the controller bottleneck. This newly focusing approach is to check

whether it support to minimize the existing burning performance bottleneck in the controller with the

large number of incoming requests. To prevent this kind of bottleneck, it is more generally to improve

the performance of the controller. Therefore, the research is to find the architecture for the controller to

create the kind of dynamic topology to control the requests of the data plane nodes with the help of

coordination computation paradigm. The controller can change the data traffic rules on the fly if it

wanted to reduce the traffic overhead in and among the data plane nodes (switches or routers).

This paper opens with the discussion of SDN by describing its background and network elements that

are part of SDN architecture. In addition, it describes the utilized simulation tool which is called Mininet

and OpenFlow protocol which is used by the network nodes to communicate within the network. Also,

it describes the utilized existing controller architectures such as DIFANE, DEVFLOW, KANDOO etc.

7

In section 3, it is continuing the discussion on experimental set up to evaluate the network statistics using

multiple controllers against the benchmarking single controller. Last section concludes the paper with

the discussion and the possible future work.

1.2 Objective

Main objective of this research is to enhance the performance of the software defined network controller

by offering comprehensive coordination and computation paradigm for SDN controller and control the

requests of the data plane nodes. By enhancing the number of requests, our expectation to do an

experiment to minimize the controller overhead and the latency of the controller through this approach.

Since the software defined network is having the ability to network program, it enables to separate the

network devices’ data plane from controlling plane. By having the periodical state of the network

devices, the controller maintains the global view of the network. Having a logically centralized controller

and multiple controllers has been involved in order to avoid network issues such as controller bottleneck

and single point of failure. In this study we identify several inefficient points in Software defined network

and propose SDN based controller architecture to avoid those inefficiencies through the concept of

separating coordination and computation of the network. Since Mininet supports Open flow, this

research work will demonstrate the existing behavior of the SDN and the new behavior of the SDN with

coordination and computation paradigm with multiple controllers. This research will end up with

comparison discussion with the effectiveness of using coordination and computation on SDN with

multiple controllers.

1.3 Scope

This study improves the performance of the existing software defined network paradigm using multiple

controllers. The controllers would handle the requests based on event categories and establish forwarding

tables on network nodes. Specific controller will handle specific set of switches. This research is focus

only on wired network.

This research will lead to a simulation work using mininet and comparison on benchmarking single

controller SDN against multiple controller SDN using Open Daylight.

8

Chapter 2

2. Background

2.1 Traditional Network vs Software defined Network

Computer systems linking each other to share the data is known as a computer network and basically the

network can be classified as local area network(LAN) which is in one geographical area, wide area

network(WAN) which is in different geographical area and Metropolitan Area Networks(MANs) which

is implemented for a city. In a traditional network, the protocols have been used to communicate among

network nodes by determining the routing flows for the end hosts and periodically the protocol shares

the network status of the switches over the network. In a situation like network failure, the protocol needs

to propagate new routing paths to prevail the situation. Since there is no abstraction level visibility of

the nodes, it is difficult to change the routing flows and difficult to debug the network fault such as

packet losses and network looping.

Simply the SDN decouples the control plane from its forwarding plane while maintaining the whole

network behaviour according to the decisions made by the logically centralized root controller. Rather

than a single node in a network making its own forwarding decisions, the controller of the SDN is

responsible for maintaining forwarding tables of the network nodes.

 Figure 1:Traditional network running distributed protocol

9

Even though in a normally network the individual network node does not know how the entirely network

looks like, in SDN, central controller can see the whole network and install forwarding decisions to each

subordinate switch based on their destination path. Since the central controller is giving capability of

controlling resources using convenient programming interface, as an example, if we want to move VM

to one host to another, controller can instruct to any firewall to migrate. This removes the need of system

administrator involvement of the network reconfiguration

.

Figure 2:Control plane and forwarding plane of an SDN

Figure 3:How the request goes from host x to host y

10

In the context of SDN, by taking the advantage of the network programmability of SDN, several efforts

have been taken to achieve active networking behaviour. One of such effort is called SwitchWare that

allows packet flowing by modifying the network dynamically and some attempts are there to program

the software routers. Separation of control and data plane is one of the uniqueness of SDN architecture

and it has achieved to take out the network intelligence from switches and put into controller since the

controller has the whole network visibility. This brings the improvements in performance, optimization

in network configuration and ability to define virtual network with less effort.

2.2 Controller Throughput

Throughput is the most important factor of the network and our concern is lead to an architecture where

we can have maximum throughput from the controller. In that case we need to identify the no. of

controllers is needed to handle the control load of the network. The controller named as NOX-MT shows

that the maximum throughput can be gained by obtaining multiple threaded controllers [13].

Though the throughput should not be affected by the no. of switches or threads, however it degraded the

performance of controller with the scheduling overhead within a controller. Since I/O handling increase

and the shared resources are increased, I/O and job batching will be less effective [13].

2.3 Controller Response Time

The controller response time is corresponding to the load levels. Controllers such Maestro [3] and

Beacon are affected from this workload. But some network applications like NOX-MT has portioned the

network’s MAC address into hash table to minimize the workload [13]. In SDN, controller response time

also depends on flow completion time. Same as the no. of switches increase for the controller, it is

increasing the response time as well.

2.4 What is OpenFlow?

OpenFlow is a protocol which is used to communicate among network nodes. In OpenFlow enabled

network switch contains a flow table which is having flow entries to perform packet lookups and

packet forwarding. The controller manages adding, updating and deleting flow table entries via

OpenFlow channel both reactively and proactively. A flow entry defines a unique flow in a flow table

by using its components such as “Match Fields”, “Priority”, “Counters”, “Instructions”, “Timeouts”

11

and “Cookie Flags”. If the transmitted packet matches any of the flow entry in the table, the

instructions associated with the specific flow entry is executed according to the priority. Each flow

table should configure the flow entry to handle the unmatched packets and such kind of situation is

known as a table-miss. Normally if there is a table-miss, the packet will be transferred into the

controller, drop the packet or redirect to the subsequent table. The controller maintains the

responsibility of adding or removing the table-miss flow entry to the flow table since it is not a inbuilt

entry of a flow table.

For passing the network packets over the network, the OpenFlow [22] switches use the interface called

OpenFlow port. The packet will be sent out via the output OpenFlow port and received via ingress

OpenFlow port. Once the packet comes to the ingress OpenFlow port, it is processing through the

OpenFlow pipeline before the packet transmitted to the output port. OpenFlow pipeline can decide

how the packet should proceed into the network according to the output action.

Figure 4:OpenFlow switch communicates with a controller over a secure connection using the

OpenFlow protocol

12

2.5 About Mininet

Implementing a network with large number of network nodes is quite difficult and costly. In order to

avoid this problems, virtual mode strategy was proposed to prototype and emulate the network. One such

open source network simulator is named as Mininet. Mininet was created using Python and it uses python

APIs for customization of user requirements [7]. Mininet network simulator can be used to simulate

SDN switches and hosts where it emulates the OpenFlow network and end hosts within a single machine.

It supports both common topologies and custom topologies [14]. Mininet switches which are running on

Linux can support OpenFlow, but still non-Linux compatible switches or OpenFlow switches are not

supported by mininet [7].

Mininet has the capability to emulate different kinds of network elements such as; host, layer-2 switches,

layer-3 routers, and links. It works on a single Linux kernel and it utilizes virtualization for the purpose

of emulating a complete network utilizing only a single system. However, the created host, switched,

routers, and links are real-world elements although they are created by means of software[14].One of the

key feature of mininet is its software-based Open Flow switches in a virtualized containers, providing

the exact same semantics of hardware-based OpenFlow switches[16].

Characteristics of Mininet:

• Flexibility: can set up new topologies using programming languages.

• Applicability: even a prototype implementation can be used in a real network with or without

having any modification in source codes.

• Interactivity: real time simulation

• Scalability: can be scaled up to large networks with hundreds or thousands of nodes on a

computer.

• Realistic: prototype behave with high confidence, so that applications can use without any code

modification.

• Share-able: easy to share the prototype with other collaborators.

2.6 Network Virtualization

Network virtualization is the concept of represent entire network nodes that may connect to create

communication services on one or more virtual machines instead of having separate hardware for each

network function.

13

2.7 Literature Review:

This review presents the discussion on existing OpenFlow enabled controllers such as POX, Beacon,

Kandoo, Hyper flow, DIFANE, ONIX, ORION and Optimal Flow Controllers and it will focus on the

methodologies they have used and important facts such as performance, scalability and reliability.

2.7.1 POX Controller

NOX was an open source development platform which has used C++ for the implementation where most

of the SDN functionalities have been implemented using python. And, NOX has shown some drawbacks

in backward incompatibility. In order to overcome this situation, the new framework called POX has

come to the SDN platform. It is a variant for python development to write an OpenFlow controller which

is easier than NOX. POX components have been developed using python and those functions are bundled

with the mininet as well.

With the experimental study for the controllers, POX controller could not achieve the scalability since it

did not support for multi-threading. Python-based controllers such as POX is more suitable for fast

prototyping than for enterprise deployment. When packet messages coming, the POX controller detects

invalid values of ARP header fields [22]. In a network, the response time of a controller is very important

fact. The average response time has the correlation with the no. of connected host. But according to the

researches which have been done in the past has stated that there is a smallest latency in POX controller

than the other controllers such as Beacon controller [22].

2.7.2 Open Daylight Controller

Open Daylight is yet another OpenFlow support controller which offers ready-to-install network

solutions. Because of the opensource nature of this controller, it minimizes the controller operation

complexity. Due to that, it extends the lifetime of the infrastructure. When we consider the architecture

of the Open Daylight, it has created a multilayered architecture. The controller layer is the most powerful

layer since it controls the whole network traffic according to the flow tables. Open daylight [6] can run

on any operating system like JAVA.

14

The implementation of the Open Daylight application has been done by considering two approaches as

below.

• The API-Driven SAL (AD-SAL)

• The Model-Driven SAL (MD-SAL)

AD-SAL approach is considered as stateless and it is limited only for flow capable devices and services.

The flow programming in this approach is reactive and handled by considering the received events. Since

MD-SAL approach uses REST APIs for all the modules, not like AD-SAL, MD-SAL supports any

device or any services. And, the flow programming of this approach is proactive without receiving any

events from the network.

Figure 5: Open Daylight Framework

2.7.3 BEACON Controller

Beacon is the java based multithreaded controller [24]. In large scale network, multiple instance of the

controller manages the controller bottleneck and managing the distributed control plane or one of the

common approaches is to use multithreading [13]. Some of the useful features of the Beacon controller

are run time modularity, fast and multithreaded. Also, the SDN controller performance evaluation

statistics reveals that the maximum throughput can be gained from Beacon controller [13].

15

2.7.4 Kandoo

Realizing the overhead of the frequent events, Kandoo has implemented the alternative routing

mechanism to minimize the controller overhead without modifying the switches. It has divided the

controller layer into two, where the bottom layer consisted with the controller which does not have any

interconnection between controllers and no knowledge on the network wide status and the top layer

consisted of the logically centralized controller. The bottom layer helps to avoid the controller bottleneck

on the top layer.

In Kandoo implementation, it provides local controllers which process events locally and the logically

centralized controller which process nonlocal events. Logically centralized root controller takes care of

the local controllers. Local controllers are switches that gives switch proxies to the root controller which

can be implemented using OpenFlow switches. Since Kandoo is not considering the network wide state,

if such requirement is there for the network, we need to go for the implementation such as Hyper flow

or Onix. Kandoo gives the flexibility to network operator to configure the control plane based on the

characteristics.

When we investigate the Kandoo implementation, it has mainly focused on two goals. First goal was,

Kandoo should compatible with the OpenFlow and it should be able to distribute the applications without

having any manual intervention and only Kandoo needs to know whether the control application is local

or non-local. Therefore, the developers do not need to worry about how the applications are distributed

over the network and they would see that applications are controlled by a logically centralized controller.

In Kandoo there are two applications called AppDetect and AppReroute where appdetect queries for the

switches to identify the elephant flows and appreroute is to install flow entries on switches when needed.

Figure 6:Kandoo’s design

16

In this architecture, one controller can control many switches and one switch will be controlled by one

controller. In Kandoo architecture, the flow control is not always bottom up and the controller can also

place sends the network topology to the local controllers by considering the event types. Basically, the

event handling is the most important part in the Kandoo [28] Architecture, and it sets up the data path

proactively while the elephant flow detection sets up adaptively. The implementation of Kandoo has

been done using C, C++ and python in modular based to support the plugins and at any time the back

end can be replaced using any other supplies. The application itself has developed with the repository

and when the system boots up, it downloads the application informations from the repository and get the

runnable applications. Kandoo has proven that the single node controller can perform the 1M packets

per second using 512 switches on a single threaded xeonE7-4807.

2.7.5 Hyper flow

The network with a single controller has several drawbacks such as it can handle limited requests with

the limited bandwidth and the time it takes to set up the flow paths will be significantly larger. Therefore,

to get rid from the scalability problem, hyper flow is yet another distributed controller architecture which

has push the network status into all controllers. Each controller should think as it is the only controller

to the network while synchronizing with each other.

Hyper flow [29] can be identified as two major components such as C++ NOX controller application

and the publisher/subscriber event propagation system. In this mechanism, switches are connected to the

closest controllers and at any point of controller failure, switches will be connected to another controller

by changing its configurations.

In hype flow, event loggers capture the events and publish to the publisher/subscriber and event players

deserialized and replay captured events. And also, it uses command proxy to identify relevant switch for

the request and send the response back to the place where it comes from. Publisher/Subscriber system

maintains a network wide state using three channel types as data channel, control channel individual

controllers implemented using wheekFS.

Hyper flow is not like Kandoo and it uses network wide statistics to modify the switches to reroutes the

packets and significantly it handles few thousand packets per second. Therefore, Hyper flow is more

resilient for network partitioning.

17

2.7.6 DIFANE

Difane provides the efficient, scalable network packet forwarding mechanism using the switches which

has been installed set of rules to forward and drop the network packets. Here the challenge is, it is difficult

to the change the rules every time. So that, the controller pre-compute the rules to determine which low-

level rules to apply on which authority switches. DIFANE basically has two main ideas such that the

controller should distribute rules among its authority switches by using partitioning algorithm and the

packets are handled by the switches in the data plane. DIFANE [2] achieves flow-based management by

installing the low-level rules in advance and it uses hi-level decisions to reduce the cache misses to

improve the scalability.

In this architecture, it considers caching rules in the switch as an unnecessary burden for the switch

because there may be a packet delay or some complexity on the switch when cache misses take place.

So that, DIFANE uses some wildcard mechanism to handle cache misses effectively by keeping those

cache misses in the data plane.

Figure 7:Hi-level overview of Hyper Flow

18

Figure 8: DIFANE flow management architecture

2.7.7 SDN Architecture with logically centralized multiple controllers - ONIX

In SDN, still there are issues where some critical requirements cannot be achieved. Using one controller,

efficiency cannot be reached up to the expected level. Scalability is the most important factor that pushes

network architectures into multiple controllers. The distributed control plan such as ONIX is running

multiple ONIX instances and ONIX API [28] allows control applications to read and write the state of

any network element. Also control logic records forwarding information from the switches. As a result

of evaluation studies reveals that the ONIX provides scalability by partitioning the network logically by

distributing the workload.

2.7.8 Hierarchical control plane architectures – Orion

There are two kind of SDN controller architectures such as the flat control architecture and the other one

is hierarchical control plane architecture. Hierarchical control plane architecture has been introduced in

order to improve the scalability problem in large scale network since the flat control architecture fails to

minimize the computational complexity of the controller when the network size is getting large.

Orion is one of the systems which uses hybrid hierarchical control plane for large scale network. It

reduces the controller plane computational complexity from super linear to linear by using abstracted

hierarchical network views.

Figure 8:DIFANE flow management architecture

19

Orion is focusing on intra domain routing management system. Basically, it is consisted with three layers

such as ‘Network Device Layer’, ’Area controller Layer’ and ‘Domain Controller Layer’. The whole

network is referred as domain and the domain is divided into sub domains which the sub domain closes

to each other and each domain is controlled by an SDN controller.

 Figure 9:Network view of the hybrid hierarchical architecture.

The network device layer consisted of large amount of open flow switches and the middle layer is

responsible to gain the device and link information from the network device layer. It processes the

routing of the requests and create abstract view of the area network and send it to top level layer which

is known as domain controller layer which synchronizes among area controllers through distributed

protocol. This area division of Orion has gained the opportunity to reduce the computational complexity

of large-scale network system.

2.7.9 Optimal Flow

Optimal flow controller is another controller system which has been used in Industrial controller system

which facilitates to provide innovative applications like robust voltage control, renewable energy

programs and electric vehicles. Those ICS requires the normal functioning even in the failures or

disturbances such as cyber-attacks. By considering the issues, Optimal Flow is a proposed system for

ICS where it monitors the single SDN domain and reroute the requests according to the integer linear

programming (ILP) optimization problem.

17

20

While ILP provides shortest path routing decisions, Optimal Flow contains two interfaces to achieve

hierarchical control plane. One interface is called northbound interface where it contains switched

infrastructure which communicate through the open flow protocol and it exposes the edge ports into the

upper tier. The southbound interface of the optimal flow is connected to the open flow controller, which

monitored the SDN switches in the network. The optimal flow uses an algorithm to identify the affected

flows due to disturbances and provision the flows according to the priority to disconnect the low priority

flows. Also, it constructs the dependency network graph in order to update the network to avoid link

congestion.

21

Chapter 3

Experimental Setup

This thesis conducts the practical implementation of an SDN using network function virtualization and

it has used mininet emulator for prototyping of the SDN. The environment has been setup on MacOS

10.14.3 host machine with two virtual box hosted Ubuntu VMs. One Ubuntu VM contains open daylight

controller and other one is a mininet installed server. Later in the implementation, separate VMs have

been spawned in need of a new controller with different IP address and same set of configurations. The

virtual box configured two network adapters; one adapter enabled NAT and the other one used as a host

only adapter. To achieve the goal of performance evaluation, different network topologies were

implemented in both single controller network and the multiple controller network with the aid of

mininet which uses python scripts for network simulation.

Tools used:

1) Mininet: Python based network emulator to create virtual network which is topology-aware and

OpenFlow-aware.

2) Miniedit: Miniedit is an experimental tool which comes for mininet with a simple GUI to demonstrate

how the mininet can be extended. It has provided the flexibility to create and simulate the custom

software defined network. Before running the miniedit, it is needed to start mininet VM and connect via

SSH.

Basic commands used:

• $ sudo ~/mininet/examples/miniedit.py - To run Miniedit

• $ sudo ovs-ofctl dump-flows s1 -To check the flow table on switch1

22

Single Controller Architecture: Series 1

Single controller will be the benchmark for the statistic evaluation. In this network, there would be a

single controller od1 with three OpenFlow enabled switches as S1, S2, S3 with 6 hosts naming h1, h2,

h3, h4, h5 and h6.

Multiple Controller Architecture (Two Controllers): Series 2

In this network, there would be two controllers as odl1 and odl2 to manage three switches as S1, S2 and

S3 with the 6 hosts naming h1, h2, h3, h4, h5 and h6.

Figure 10: Single Controller Architecture

23

Multiple Controller Architecture (Three Controllers): Series 3

In this network, there would be three controllers as odl1, odl2 and odl3 to manage three switches as S1,

S2 and S3 with the 6 hosts naming h1, h2, h3, h4, h5 and h6.

Figure 11: Multiple Controller Architecture using two controllers

Figure 12: Multiple Controller Architecture uisng three controllers

24

IP Address Setup

 odl1 - 192.168.0.2

 odl2 - 192.168.0.3

 odl3 - 192.168.0.4

Open Daylight controller used for the experiment since it supports multiple controller architecture and

contains easy to use web interface where we can see the topology related information. We send UDP

packets from h1 to h6. Logs will be generated both sender and receiver side. All the logs are being

generated by each end will be saved in h1. Thus, h1 listening for logs where h6 is listening for the UDP

packets. We keep the bites capacity as unique (512) and we change the packet rate.

S1 – 192.168.0.20

S2 – 192.168.0.21

S3 – 192.168.0.22

h1 - 192.168.0.11

h2 - 192.168.0.12

h3 - 192.168.0.13

h4 - 192.168.0.14

h5 - 192.168.0.15

h6 - 192.168.0.16

Figure 13: Open Daylight Controller

25

3) D-ITG Tool: D-ITG is a distributed internet traffic generator platform which supports both IPv4 and

IPv6. Since D-ITG is compatible with the operating system Linux, this research used D-ITG to generate

traffic on switches. Set of commands are there to send and receive network packets.

• $. /ITGLog - To start the log server

• $. /ITGRecv – To start the receiver

• $. /ITGSend <traffic_configuration_file> -l s<sender_log_file> -L 192.168.0.11 UDP -X

192.168.0.11 UDP -x <receiver_log_file> - To start the sender

• Ctrl+C - To close the receiver and the log server

• $. /ITGDec <receiver_log_file> – To decode the receiver log file.

Below is the script which was created to generate traffic simultaneously.

-a 192.168.0.16 -rp 1001 -C 20000 -c 512 -T UDP

-a 192.168.0.16 -rp 1002 -C 40000 -c 512 -T UDP

-a 192.168.0.16 -rp 1003 -C 60000 -c 512 -T UDP

-a 192.168.0.16 -rp 1004 -C 80000 -c 512 -T UDP

-a 192.168.0.16 -rp 1005 -C 100000 -c 512 -T UDP

rp – receiver port, -C – no. of packets per second, -c – no. of bits

Steps of the experiment. (All the the D-ITG commands will be listed below)

1)Start the mininet virtual machine with IP address 192.168.0.1

2)Start the Open Daylight controller VMs with IP address 192.168.0.2, 192.168.0.3,

192.168.0.4

3) Start miniedit using sudo ~/mininet/examples/miniedit.py

4)Load mininet model

5) Run below commands for each mininet model (Series1/Series2/Series3)

1. start the log server at h1

 ./ITGLog

2. start the UDP listener at h6

./ITGRecv

3. send packets from h1 to h6

./ITGSend traffic1 -l senderlog -L 192.168.0.11 UDP -X 192.168.0.11 UDP

-x recv_log1

4. after sent out all the packets, we stop listeners at h6 and h1

5. Log file read for analysis

./ITGDec recv_log1

26

Experiment Result Evaluation

When it comes to the topic of network traffic, there are some QoS parameters to evaluate the

performance of the network. Below are some parameters,

o Latency - the time it takes to transfer the packet from source to destination

o Jitter - the variation of latency

o Loss - the packet which failed to reach its destination

(Packet loss ratio = no. of packet loss/no. of packets sent)

o Throughput - ability to carry data at a unit of time

Among above QoS parameters, Latency and Jitter can be used to evaluate controllers since other ratios

are related to the bandwidth.

After executing the experiment setup, below are the statistics which were gained during packet

transmission.

Single Controller (Series 1):

Table 1: Single controller experiment result

As we discussed in the above experiment set up, we sent five simultaneous UDP traffic flows from h1

to h6 where each flow has different packet size. Table 1 shows the experiment result using single

controller. By looking at the result, we couldn’t see any correlation between packet rate against

parameter values. Thus, we can say, that single controller architecture has no influence on individual

flow, but overall SDN performance has been affected by larger amount of traffic. In next experiments

will be carried out using multiple controllers against same switch configuration.

packet size (One Controller) 20000 40000 60000 80000 100000

Total Time(Sec) 10.008404 10.006689 10.00717 10.007095 10.009816

Total Packets 23421 21249 30571 29433 31038

Minimum Delay(Sec) 0.000048 0.000054 0.000038 0.000032 0.000039

Maximum Delay(Sec) 0.021566 0.023077 0.022351 0.02301 0.022219

Average Delay(Sec) 0.01341 0.013235 0.013476 0.013301 0.013502

Average Jitter(Sec) 0.000254 0.000249 0.000252 0.000231 0.000251

Delay Standard Deviation(Sec) 0.004637 0.004813 0.00416 0.004219 0.004161

Bytes Received 11991552 10879488 15652352 15069696 15891456

Avg Bit Rate(Kbit/s) 9585.18621 8697.77246 12512.90984 12047.20931 12700.6978

Avg Packet Rate(pkt/s) 2340.133352 2123.479604 3054.90963 2941.213209 3100.756298

Packets Dropped(%) 42027 (64.21 %) 45805 (68.31 %) 37295 (54.95 %) 38669 (56.78 %) 37146 (54.48 %)

Avg Loss-Burst Size(pkt) 45.190323 53.076477 28.2324 33.450692 28.773044

27

Multiple Controller (Series 2):

Table 2: Multiple controller experiment with two controllers

In this experiment, we placed two controllers in between three switches which connected using linear

topology. By observing the results, we can see drastic improvement in overall SDN performance under

high traffic.

Multiple Controller (Series 3):

Table 3: Multiple controller experiment with three controllers

Here we placed each switch with individual controller to observe the statistics. The results depict that,

it has not improved as experiment series 2. But still there is a considerable amount of improvement in

the SDN performance.

packet size (Two Controllers) 20000 40000 60000 80000 100000

Total Time(Sec) 10.010604 10.005742 10.006718 10.007027 10.011117

Total Packets 61110 55084 62954 63178 55811

Minimum Delay(Sec) 0.000032 0.000048 0.000032 0.000032 0.000046

Maximum Delay(Sec) 0.023242 0.022882 0.022307 0.022307 0.02163

Average Delay(Sec) 0.009875 0.009634 0.009854 0.009856 0.009578

Average Jitter(Sec) 0.000232 0.000227 0.000224 0.000223 0.000223

Delay Standard Deviation(Sec) 0.00586 0.005956 0.00586 0.005852 0.005923

Bytes Received 31288320 28203008 32232448 32347136 28575232

Avg Bit Rate(Kbit/s) 25004.14161 22549.4585 25768.64702 25859.5373 22834.80015

Avg Packet Rate(pkt/s) 6104.52676 5505.238892 6291.17359 6313.363599 5574.902381

Packets Dropped(%) 4160 (6.37 %) 11760 (17.59 %) 4788 (7.07 %) 4678 (6.89 %) 12075 (17.79 %)

Avg Loss-Burst Size(pkt) 3.88422 13.626883 4.483146 4.417375 12.777778

packet size (Three Controllers) 20000 40000 60000 80000 100000

Total Time(Sec) 10.012921 10.005668 10.005086 10.007331 10.011471

Total Packets 43683 41423 42423 33686 46118

Minimum Delay(Sec) 0.000038 0.000051 0.000048 0.000057 0.000037

Maximum Delay(Sec) 0.033209 0.033555 0.033253 0.03387 0.032863

Average Delay(Sec) 0.013549 0.013477 0.013537 0.012769 0.013647

Average Jitter(Sec) 0.000276 0.000276 0.000275 0.000269 0.000267

Delay Standard Deviation(Sec) 0.006219 0.00653 0.006465 0.006687 0.006194

Bytes Received 22365696 21208576 21720576 17247232 23612416

Avg Bit Rate(Kbit/s) 17869.46766 16957.24943 17367.62763 13787.67785 18868.28899

Avg Packet Rate(pkt/s) 4362.663003 4139.953474 4240.143463 3366.132288 4606.515866

Packets Dropped(%) 14996 (25.56 %) 18831 (31.25 %) 18210 (30.03 %) 27176 (44.65 %) 14944 (24.47 %)

Avg Loss-Burst Size(pkt) 11.002201 14.463134 14.193297 27.450505 10.5686

28

Below charts have been used to illustrate each parameter against packet rate on three controller

architectures (Series 1, Series 2 and Series 3).

According to the above chart, it shows total time taken for the whole experiment. Since the difference

is in milliseconds, we cannot see any significant difference among series.

Figure 15 shows the total packets received to the destination h6. As we can see, two controller

architecture has the best performance, three controller has intermediate performance and single

controller has least performance.

10

10.002

10.004

10.006

10.008

10.01

10.012

10.014

20000 40000 60000 80000 100000

Total Time(Sec)

Series1 Series2 Series3

0

10000

20000

30000

40000

50000

60000

70000

20000 40000 60000 80000 100000

Total Packets

Series1 Series2 Series3

Figure 14: Total Time

Figure 15: Total Packets

29

As we can see, there is no such big difference in minimum delay except in 60,000 and 80,000 packet

rates.

According to the figure 17 results, we can see that even though we have placed each controller on each

switch, maximum delay has not minimized.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

20000 40000 60000 80000 100000

Maximum Delay(Sec)

Series1 Series2 Series3

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

20000 40000 60000 80000 100000

Minimum Delay(Sec)

Series1 Series2 Series3

Figure 16: Minimum Delay

Figure 17: Maximum Delay

30

According to the figure 18, the set up with two controllers has given the least average delay throughout

the experiment.

It’s better to gain low average Jitter in any network since low average Jitter implies low latency.

According to the figure 19, we can see that series two set up has the best performance.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

20000 40000 60000 80000 100000

Average Delay(Sec)

Series1 Series2 Series3

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

20000 40000 60000 80000 100000

Average Jitter(Sec)

Series1 Series2 Series3

Figure 18: Average Delay

Figure 19: Average Jitter

31

This chart represents the variance of the delay. Series one set up has minimum variance of delay in the

packet transmission.

According to the figure 21, we can see that the best performance in bytes received has happened in

series two set up.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

20000 40000 60000 80000 100000

Bytes Received

Series1 Series2 Series3

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

20000 40000 60000 80000 100000

Delay Standard Deviation(Sec)

Series1 Series2 Series3

Figure 20: Delay Standard Deviation

Figure 21: Bytes received

32

According to the figure 22, series two has performed best in bit rate and series 3 has performed

intermediate and series 1 has lowest performance.

According to the figure 23, series two has performed best in average packet rate, series 3 has

performed intermediate and series 1 has lowest performance.

0

5000

10000

15000

20000

25000

30000

20000 40000 60000 80000 100000

Avg Bit Rate(Kbit/s)

Series1 Series2 Series3

0

1000

2000

3000

4000

5000

6000

7000

20000 40000 60000 80000 100000

Avg Packet Rate(pkt/s)

Series1 Series2 Series3

Figure 22: Average Bit rate

Figure 23: Average Packet Rate

33

According to the figure 24, series two has given significant performance in packet drop, series 3 has

performed intermediate and series 1 has lowest performance.

According to the figure 25, series two has performed best in lost burst size and series 3 has performed

intermediate and series 1 has the lowest performance.

0

10

20

30

40

50

60

70

80

20000 40000 60000 80000 100000

Packets Dropped(%)

Series1 Series2 Series3

0

10

20

30

40

50

60

20000 40000 60000 80000 100000

Avg Loss-Burst Size(pkt)

Series1 Series2 Series3

Figure 24: Packets Dropped

Figure 25: Average Loss-Burst Size

34

Below are average statistics which extracted according to the total results of different controller

architectures.

Table 4: Average performance matrix

Controller count 1 2 3

Number of flows 5 5 5

Total Time(Sec) 10.010869 10.011952 10.014212

Total Packets 135712 298137 207333

Minimum Delay(Sec) 0.000032 0.000032 0.000037

Maximum Delay(Sec) 0.023077 0.023242 0.03387

Average Delay(Sec) 0.013395 0.009766 0.013427

Average Jitter(Sec) 0.000254 0.000238 0.000285

Delay Standard Deviation(Sec) 0.004366 0.005889 0.006412

Bytes Received 69484544 152646144 106154496

Avg Bit Rate(Kbit/s) 55527.2826 121971.1353 84803.07467

Avg Packet Rate(pkt/s) 13556.46548 29778.1092 20703.87565

Packets Dropped(%) 200942 (59.69 %) 37461 (11.16 %) 94157 (31.23 %)

Avg Loss-Burst Size(pkt) 36.134149 7.48322 14.823205

Figure 26: Average performance in Total Time

10.009

10.01

10.011

10.012

10.013

10.014

10.015

Series1 Series2 Series3

Total Time(Sec)

35

0

50000

100000

150000

200000

250000

300000

350000

Series1 Series2 Series3

Total Packets

0.000029

0.00003

0.000031

0.000032

0.000033

0.000034

0.000035

0.000036

0.000037

0.000038

Series1 Series2 Series3

Minimum Delay(Sec)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Series1 Series2 Series3

Maximum Delay(Sec)

Figure 27: Average performance in total packets

Figure 28: Average performance in minimum delay

Figure 29: Average performance in maximum delay

36

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Series1 Series2 Series3

Delay Standard Deviation(Sec)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Series1 Series2 Series3

Average Delay(Sec)

0.00021

0.00022

0.00023

0.00024

0.00025

0.00026

0.00027

0.00028

0.00029

Series1 Series2 Series3

Average Jitter(Sec)

Figure 30: Average performance in average delay

Figure 31: Average performance in average Jitter

Figure 32: Average performance in delay standard deviation

37

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

Series1 Series2 Series3

Bytes Received

0

20000

40000

60000

80000

100000

120000

140000

Series1 Series2 Series3

Avg Bit Rate(Kbit/s)

0

5000

10000

15000

20000

25000

30000

35000

Series1 Series2 Series3

Avg Packet Rate(pkt/s)

Figure 33: Average performance in bytes received

Figure 34: Average in average bit rate

Figure 35: Average in average packet rate

38

0

5

10

15

20

25

30

35

40

Series1 Series2 Series3

Avg Loss-Burst Size(pkt)

0

10

20

30

40

50

60

70

Series1 Series2 Series3

Packets Dropped(%)

Figure 36: Average in packet dropped

Figure 37: Average in average loss-burst size

39

Chapter 4

Conclusion

The SDN domain is becoming sophisticated day by day. It is very important to have a reliable network

in any organization to have their business as usual. In this study, we discussed about how horizontally

connected switches behaving with single controller and multiple controller under hefty traffic. The result

shows the multiple controller architecture has improved performance in most important arias. According

to the statistics, we saw that the packet loss rate has relationship with the latency because when the

latency increases, the packet loss rate also get increased.

The packet loss rate is a major concern when it comes to the network reliability. Lesser the packet loss

rate, higher the network reliability. We observed that the packet drop in a single controller architecture

was 59%, where it has reduced the packet drop ratio into 11% in two controller architecture. The three

controller architecture has an intermediate performance compared to other two. It has proven that, the

number of controllers in a SDN is not the only fact which increase the performance. The most important

thing is how they have been integrated. Having one controller for each switch has less performance than

having one controller in between switches. This happens due to the high traffic in a switch at the time

the single controller also busy. Here in our experimented two controller architecture, one switch has been

updated by two controllers, which shows the best performances by sharing flow table management

among two controllers.

By observing the network simulation and the evaluation results, we can find evidences which support to

our hypothesis mentioned in this thesis. Therefore, we can conclude that the controller overhead can be

mitigated using multiple controllers.

40

Future work

Though the multiple controllers were able to minimize the controller bottleneck, it is not the only concern

of software defined work. But to a certain extent, we can predict that, multiple controllers can perform

better than the logically centralized single controller. Also, if we can scale up the multiple controller

architecture vertically, it would be more efficient and more scalable. We can deeply study how to scale

up the multiple controller architecture vertically. And, despite of this research, which controller

mechanism is suitable in which situation is still an open research topic because each controller has built

on its own architectural perspectives. As a future work, we can run the test beds to determine the number

of switches which can be handled at a same time using a single controller with respect to different

network load. As well as we can research further on event management in software defined network

using multiple controllers which assumed to be good in performance.

41

References

[1] E. Borcoci, “Control Plane Scalability in Software Defined Networking Control Plane Scalability in

Software Defined Networking Acknowledgement,” 2014.

[2] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based networking with DIFANE,”

ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, p. 351, 2012.

[3] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A System for Scalable OpenFlow Control.”

[4] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller Based Software-Defined Networking:

A Survey,” IEEE Access, vol. 6, no. March, pp. 15980–15996, 2018.

[5] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, “D-ITG distributed internet

traffic generator,” Proc. - First Int. Conf. Quant. Eval. Syst. QEST 2004, no. June 2014, pp. 316–317,

2004.

[6] S. Badotra and J. Singh, “OpenDaylight as a controller for Software Defined Networking,” Int. J.

Adv. Res. Comput. Sci., vol. 8, no. 5, p. 7, 2017.

[7] C. Decusatis, A. Carranza, and J. Delgado-caceres, “Modeling Software Defined Networks using

Mininet,” no. 133, pp. 1–6, 2016.

[8] S. Defined, A. Fluent, and P. Networks, “Virtual Infrastructure for SDN in Enterprise Networks.”

[9] D. Erickson, “The Beacon OpenFlow Controller.”

[10] B. Freisleben and T. Kielmann, “Coordination Patterns for Parallel Computing.”

[11] V. Implemented and W. Protocol, “OpenFlow Switch Specification List of Figures,” pp. 1– 56,

2011.

[12] P. Ivashchenko, A. Shalimov, and R. Smeliansky, “High performance in-kernel SDN /OpenFlow

controller Introduction / Motivation,” pp. 3–5.

[13] J. S. Ivey, M. K. Riley, and G. F. Riley, “A Software-Defined Spanning Tree Application for ns-3,”

pp. 3–4.

[14] F. Keti, “Emulation of Software Defined Networks Using Mininet in Different Simulation

Environments,” pp. 205–210, 2015.

[15] W. Kim and S. Chung, “Proxy SDN Controller for Wireless Networks,” vol. 2016, 2016.

[16] D. Kreutz, F. M. V Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, S. Member, and S.

Uhlig, “Software-Defined Networking: A Comprehensive Survey,” pp. 1–61.

42

[17] J. Mccauley, A. Panda, M. Casado, T. Koponen, S. Shenker, and U. C. Berkeley, “Extending SDN to

Large-Scale Networks,” pp. 1–2.

[18] N. Mckeown, T. Anderson, L. Peterson, J. Rexford, S. Shenker, and S. Louis, “OpenFlow: Enabling

Innovation in Campus Networks,” 2008.

[19] C. Page, Separating Computation and Coordination in the Design of Parallel and Distributed

Programs. 1998.

[20] G. A. Papadopoulos, “COORDINATION MODELS AND LANGUAGES Department of Software

Engineering,” pp. 1–50.

[21] G. Salvaneschi, J. Drechsler, and M. Mezini, “Towards Distributed Reactive Programming.”

[22] A. Shalimov, D. Zimarina, and V. Pashkov, “Advanced Study of SDN / OpenFlow controllers.”

[23] J. Sommers and P. Barford, “Fast, Accurate Simulation for SDN Prototyping,” 2013.

[24] A. Tootoonchian, M. Casado, and R. Sherwood, “On Controller Performance in Software- Defined

Networks.”

[25] V. Universiteit, “Coordination models and languages for parallel programming,” pp. 1–14.

[26] W. Xia, Y. Wen, S. Member, C. H. Foh, S. Member, D. Niyato, and H. Xie, “A Survey on

Software-Defined Networking,” vol. 17, no. 1, pp. 27–51, 2015.

[27] E. Borcoci, “Network Function Virtualization and Software Defined Networking Cooperation

Network Function Virtualization and,” 2015.

[28] S. H. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and scalable offloading of

control applications,” HotSDN, pp. 19–24, 2012.

[29] A. Tootoonchian, “Hyperflow.Pdf,” Proc. 12th ACM Work. Hot Top. Netw., vol. 3, pp. 1–6, 2010.

[30] NAGA PRAVEEN KUMAR KATTA, “Building Efficient and Reliable Software-Defined

Networks,” vol. 1, no. 1, pp. 17–29, 2016.

