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    Abstract 

 

Since SDN is highly programmable and decoupled the controller plane from the data plane, SDN has 

played a major role to provide some promising solutions to the traditional network. Mainly the controller 

has taken the flow management of the network by considering the whole network status and achieved 

performance improvements, high -flexibility and efficient configuration. Therefore, SDN has emerged 

as a trending approach for the network application development. Even though the SDN was able to 

minimize burning problems in a traditional network, SDN still is in its experimental level to support 

scalability, single point of failure etc. This thesis discusses the early practices of SDN by highlighting 

its architectural concepts with the evolution of software defined network. Further it examines the 

technologies which supports SDN such as OpenFlow, network virtualization and mininet. According to 

the statistics gained from the research evaluation, it has proven that the multiple controllers were able to 

reduce the so-called controller overhead than the single controller. Furthermore, the implementation of 

network function virtualization depicts the notion of SDN and simple emulation using mininet shows 

the practical aspect of this thesis. 
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Chapter 1 
1. Introduction 
 

1.1 Motivation  
 

The newly defined split architecture computing model called Software Defined Networks quickly has 

become a topic of interest in the domain. In situations where parallel applications are presented in large 

scale distributed systems, the software defined network is an emerging network architecture where 

network control plane is decoupled from forwarding plane and directly programmable with the aid of 

network virtualization. It supports to show the benefits of creating network infrastructure which would 

be more agile and flexible. 

Another aspect of the distributed system is, full potential massively parallel systems requires 

programming models that deal with the concurrency of cooperation among very large-scale network. 

This has led to design and implementation of coordination models and their associated programming 

languages. However, they also differ in how they precisely define the notion of coordination, what 

exactly is being coordinated, how coordination is achieved. In such a situation, our motivation is to work 

out with the coordination and data driven computation using multiple controllers on a software defined 

network. 

 

Since the SDN controller is directly programmable, our motivation opens the research work to apply the 

coordination computation paradigm on SDN controller. The SDN controller has raised many problems 

and one of the most voiced concern is the controller bottleneck. This newly focusing approach is to check 

whether it support to minimize the existing burning performance bottleneck in the controller with the 

large number of incoming requests. To prevent this kind of bottleneck, it is more generally to improve 

the performance of the controller. Therefore, the research is to find the architecture for the controller to 

create the kind of dynamic topology to control the requests of the data plane nodes with the help of 

coordination computation paradigm. The controller can change the data traffic rules on the fly if it 

wanted to reduce the traffic overhead in and among the data plane nodes (switches or routers). 

 

This paper opens with the discussion of SDN by describing its background and network elements that 

are part of SDN architecture. In addition, it describes the utilized simulation tool which is called Mininet 

and OpenFlow protocol which is used by the network nodes to communicate within the network. Also, 

it describes the utilized existing controller architectures such as DIFANE, DEVFLOW, KANDOO etc. 
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In section 3, it is continuing the discussion on experimental set up to evaluate the network statistics using 

multiple controllers against the benchmarking single controller. Last section concludes the paper with 

the discussion and the possible future work. 

 

1.2 Objective 
 

Main objective of this research is to enhance the performance of the software defined network controller 

by offering comprehensive coordination and computation paradigm for SDN controller and control the 

requests of the data plane nodes. By enhancing the number of requests, our expectation to do an 

experiment to minimize the controller overhead and the latency of the controller through this approach. 

 

Since the software defined network is having the ability to network program, it enables to separate the 

network devices’ data plane from controlling plane. By having the periodical state of the network 

devices, the controller maintains the global view of the network. Having a logically centralized controller 

and multiple controllers has been involved in order to avoid network issues such as controller bottleneck 

and single point of failure. In this study we identify several inefficient points in Software defined network 

and propose SDN based controller architecture to avoid those inefficiencies through the concept of 

separating coordination and computation of the network. Since Mininet supports Open flow, this 

research work will demonstrate the existing behavior of the SDN and the new behavior of the SDN with 

coordination and computation paradigm with multiple controllers. This research will end up with 

comparison discussion with the effectiveness of using coordination and computation on SDN with 

multiple controllers. 

 

1.3 Scope 
 

This study improves the performance of the existing software defined network paradigm using multiple 

controllers. The controllers would handle the requests based on event categories and establish forwarding 

tables on network nodes. Specific controller will handle specific set of switches. This research is focus 

only on wired network. 

 

This research will lead to a simulation work using mininet and comparison on benchmarking single 

controller SDN against multiple controller SDN using Open Daylight. 
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Chapter 2 

 
2. Background 
 

2.1 Traditional Network vs Software defined Network 
 

Computer systems linking each other to share the data is known as a computer network and basically the 

network can be classified as local area network(LAN) which is in one geographical area, wide area 

network(WAN) which is in different geographical area and Metropolitan Area Networks(MANs) which 

is implemented for a city. In a traditional network, the protocols have been used to communicate among 

network nodes by determining the routing flows for the end hosts and periodically the protocol shares 

the network status of the switches over the network. In a situation like network failure, the protocol needs 

to propagate new routing paths to prevail the situation. Since there is no abstraction level visibility of 

the nodes, it is difficult to change the routing flows and difficult to debug the network fault such as 

packet losses and network looping. 

 

 

 

 

 

 

 

 

 

 

 

Simply the SDN decouples the control plane from its forwarding plane while maintaining the whole 

network behaviour according to the decisions made by the logically centralized root controller. Rather 

than a single node in a network making its own forwarding decisions, the controller of the SDN is 

responsible for maintaining forwarding tables of the network nodes. 

 

 

 

 

 

  

 
 

 Figure 1:Traditional network running distributed protocol 
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Even though in a normally network the individual network node does not know how the entirely network 

looks like, in SDN, central controller can see the whole network and install forwarding decisions to each 

subordinate switch based on their destination path. Since the central controller is giving capability of 

controlling resources using convenient programming interface, as an example, if we want to move VM 

to one host to another, controller can instruct to any firewall to migrate. This removes the need of system 

administrator involvement of the network reconfiguration 
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Figure 2:Control plane and forwarding plane of an SDN 

Figure 3:How the request goes from host x to host y 
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In the context of SDN, by taking the advantage of the network programmability of SDN, several efforts 

have been taken to achieve active networking behaviour. One of such effort is called SwitchWare that 

allows packet flowing by modifying the network dynamically and some attempts are there to program 

the software routers. Separation of control and data plane is one of the uniqueness of SDN architecture 

and it has achieved to take out the network intelligence from switches and put into controller since the 

controller has the whole network visibility. This brings the improvements in performance, optimization 

in network configuration and ability to define virtual network with less effort. 

 

2.2 Controller Throughput 
 

Throughput is the most important factor of the network and our concern is lead to an architecture where 

we can have maximum throughput from the controller. In that case we need to identify the no. of 

controllers is needed to handle the control load of the network. The controller named as NOX-MT shows 

that the maximum throughput can be gained by obtaining multiple threaded controllers [13]. 

 

Though the throughput should not be affected by the no. of switches or threads, however it degraded the 

performance of controller with the scheduling overhead within a controller. Since I/O handling increase 

and the shared resources are increased, I/O and job batching will be less effective [13]. 

 

2.3 Controller Response Time 
 

The controller response time is corresponding to the load levels. Controllers such Maestro [3] and 

Beacon are affected from this workload. But some network applications like NOX-MT has portioned the 

network’s MAC address into hash table to minimize the workload [13]. In SDN, controller response time 

also depends on flow completion time. Same as the no. of switches increase for the controller, it is 

increasing the response time as well. 

 

2.4 What is OpenFlow? 
 

OpenFlow is a protocol which is used to communicate among network nodes. In OpenFlow enabled 

network switch contains a flow table which is having flow entries to perform packet lookups and 

packet forwarding. The controller manages adding, updating and deleting flow table entries via 

OpenFlow channel both reactively and proactively. A flow entry defines a unique flow in a flow table 

by using its components such as “Match Fields”, “Priority”, “Counters”, “Instructions”, “Timeouts” 
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and “Cookie Flags”. If the transmitted packet matches any of the flow entry in the table, the 

instructions associated with the specific flow entry is executed according to the priority. Each flow 

table should configure the flow entry to handle the unmatched packets and such kind of situation is 

known as a table-miss. Normally if there is a table-miss, the packet will be transferred into the 

controller, drop the packet or redirect to the subsequent table. The controller maintains the 

responsibility of adding or removing the table-miss flow entry to the flow table since it is not a inbuilt 

entry of a flow table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For passing the network packets over the network, the OpenFlow [22] switches use the interface called 

OpenFlow port. The packet will be sent out via the output OpenFlow port and received via ingress 

OpenFlow port. Once the packet comes to the ingress OpenFlow port, it is processing through the 

OpenFlow pipeline before the packet transmitted to the output port. OpenFlow pipeline can decide 

how the packet should proceed into the network according to the output action. 

 

 

 

 

 

 

 

 

 

 

Figure 4:OpenFlow switch communicates with a controller over a secure connection using the 

OpenFlow protocol 
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2.5 About Mininet 
 

Implementing a network with large number of network nodes is quite difficult and costly. In order to 

avoid this problems, virtual mode strategy was proposed to prototype and emulate the network. One such 

open source network simulator is named as Mininet. Mininet was created using Python and it uses python 

APIs for customization of user requirements [7]. Mininet network simulator can be used to simulate 

SDN switches and hosts where it emulates the OpenFlow network and end hosts within a single machine. 

It supports both common topologies and custom topologies [14]. Mininet switches which are running on 

Linux can support OpenFlow, but still non-Linux compatible switches or OpenFlow switches are not 

supported by mininet [7]. 

Mininet has the capability to emulate different kinds of network elements such as; host, layer-2 switches, 

layer-3 routers, and links. It works on a single Linux kernel and it utilizes virtualization for the purpose 

of emulating a complete network utilizing only a single system. However, the created host, switched, 

routers, and links are real-world elements although they are created by means of software[14].One of the 

key feature of mininet is its software-based Open Flow switches in a virtualized containers, providing 

the exact same semantics of hardware-based OpenFlow switches[16]. 

 

Characteristics of Mininet:  

 

• Flexibility: can set up new topologies using programming languages. 

• Applicability: even a prototype implementation can be used in a real network with or without 

having any modification in source codes.  

• Interactivity: real time simulation 

• Scalability: can be scaled up to large networks with hundreds or thousands of nodes on a 

computer. 

• Realistic: prototype behave with high confidence, so that applications can use without any code 

modification. 

• Share-able: easy to share the prototype with other collaborators. 

 

2.6 Network Virtualization 
 

Network virtualization is the concept of represent entire network nodes that may connect to create 

communication services on one or more virtual machines instead of having separate hardware for each 

network function. 
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2.7 Literature Review: 
 

This review presents the discussion on existing OpenFlow enabled controllers such as POX, Beacon, 

Kandoo, Hyper flow, DIFANE, ONIX, ORION and Optimal Flow Controllers and it will focus on the 

methodologies they have used and important facts such as performance, scalability and reliability. 

 

2.7.1 POX Controller 
 

NOX was an open source development platform which has used C++ for the implementation where most 

of the SDN functionalities have been implemented using python. And, NOX has shown some drawbacks 

in backward incompatibility. In order to overcome this situation, the new framework called POX has 

come to the SDN platform. It is a variant for python development to write an OpenFlow controller which 

is easier than NOX. POX components have been developed using python and those functions are bundled 

with the mininet as well. 

 

With the experimental study for the controllers, POX controller could not achieve the scalability since it 

did not support for multi-threading. Python-based controllers such as POX is more suitable for fast 

prototyping than for enterprise deployment. When packet messages coming, the POX controller detects 

invalid values of ARP header fields [22]. In a network, the response time of a controller is very important 

fact. The average response time has the correlation with the no. of connected host. But according to the 

researches which have been done in the past has stated that there is a smallest latency in POX controller 

than the other controllers such as Beacon controller [22]. 

 

2.7.2 Open Daylight Controller 
 

Open Daylight is yet another OpenFlow support controller which offers ready-to-install network 

solutions. Because of the opensource nature of this controller, it minimizes the controller operation 

complexity. Due to that, it extends the lifetime of the infrastructure. When we consider the architecture 

of the Open Daylight, it has created a multilayered architecture. The controller layer is the most powerful 

layer since it controls the whole network traffic according to the flow tables. Open daylight [6] can run 

on any operating system like JAVA. 
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The implementation of the Open Daylight application has been done by considering two approaches as 

below. 

• The API-Driven SAL (AD-SAL)   

• The Model-Driven SAL (MD-SAL) 

AD-SAL approach is considered as stateless and it is limited only for flow capable devices and services. 

The flow programming in this approach is reactive and handled by considering the received events. Since 

MD-SAL approach uses REST APIs for all the modules, not like AD-SAL, MD-SAL supports any 

device or any services. And, the flow programming of this approach is proactive without receiving any 

events from the network.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Open Daylight Framework 

 

 

 

2.7.3 BEACON Controller 
 

Beacon is the java based multithreaded controller [24]. In large scale network, multiple instance of the 

controller manages the controller bottleneck and managing the distributed control plane or one of the 

common approaches is to use multithreading [13]. Some of the useful features of the Beacon controller 

are run time modularity, fast and multithreaded. Also, the SDN controller performance evaluation 

statistics reveals that the maximum throughput can be gained from Beacon controller [13]. 
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2.7.4 Kandoo  
 

Realizing the overhead of the frequent events, Kandoo has implemented the alternative routing 

mechanism to minimize the controller overhead without modifying the switches. It has divided the 

controller layer into two, where the bottom layer consisted with the controller which does not have any 

interconnection between controllers and no knowledge on the network wide status and the top layer 

consisted of the logically centralized controller. The bottom layer helps to avoid the controller bottleneck 

on the top layer. 

 

In Kandoo implementation, it provides local controllers which process events locally and the logically 

centralized controller which process nonlocal events. Logically centralized root controller takes care of 

the local controllers. Local controllers are switches that gives switch proxies to the root controller which 

can be implemented using OpenFlow switches. Since Kandoo is not considering the network wide state, 

if such requirement is there for the network, we need to go for the implementation such as Hyper flow 

or Onix. Kandoo gives the flexibility to network operator to configure the control plane based on the 

characteristics. 

 

 

 

 

 

 

 

 

 

 

When we investigate the Kandoo implementation, it has mainly focused on two goals. First goal was, 

Kandoo should compatible with the OpenFlow and it should be able to distribute the applications without 

having any manual intervention and only Kandoo needs to know whether the control application is local 

or non-local. Therefore, the developers do not need to worry about how the applications are distributed 

over the network and they would see that applications are controlled by a logically centralized controller. 

 

In Kandoo there are two applications called AppDetect and AppReroute where appdetect queries for the 

switches to identify the elephant flows and appreroute is to install flow entries on switches when needed. 

 

Figure 6:Kandoo’s design 
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In this architecture, one controller can control many switches and one switch will be controlled by one 

controller. In Kandoo architecture, the flow control is not always bottom up and the controller can also 

place sends the network topology to the local controllers by considering the event types. Basically, the 

event handling is the most important part in the Kandoo [28] Architecture, and it sets up the data path 

proactively while the elephant flow detection sets up adaptively. The implementation of Kandoo has 

been done using C, C++ and python in modular based to support the plugins and at any time the back 

end can be replaced using any other supplies. The application itself has developed with the repository 

and when the system boots up, it downloads the application informations from the repository and get the 

runnable applications. Kandoo has proven that the single node controller can perform the 1M packets 

per second using 512 switches on a single threaded xeonE7-4807. 

 

2.7.5 Hyper flow 
 

The network with a single controller has several drawbacks such as it can handle limited requests with 

the limited bandwidth and the time it takes to set up the flow paths will be significantly larger. Therefore, 

to get rid from the scalability problem, hyper flow is yet another distributed controller architecture which 

has push the network status into all controllers. Each controller should think as it is the only controller 

to the network while synchronizing with each other. 

 

Hyper flow [29] can be identified as two major components such as C++ NOX controller application 

and the publisher/subscriber event propagation system. In this mechanism, switches are connected to the 

closest controllers and at any point of controller failure, switches will be connected   to another controller 

by changing its configurations. 

 

In hype flow, event loggers capture the events and publish to the publisher/subscriber and event players 

deserialized and replay captured events. And also, it uses command proxy to identify relevant switch for 

the request and send the response back to the place where it comes from. Publisher/Subscriber system 

maintains a network wide state using three channel types as data channel, control channel individual 

controllers implemented using wheekFS. 

 

Hyper flow is not like Kandoo and it uses network wide statistics to modify the switches to reroutes the 

packets and significantly it handles few thousand packets per second. Therefore, Hyper flow is more 

resilient for network partitioning. 
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2.7.6 DIFANE 

 
Difane provides the efficient, scalable network packet forwarding mechanism using the switches which 

has been installed set of rules to forward and drop the network packets. Here the challenge is, it is difficult 

to the change the rules every time. So that, the controller pre-compute the rules to determine which low-

level rules to apply on which authority switches.  DIFANE basically has two main ideas such that the 

controller should distribute rules among its authority switches by using partitioning algorithm and the 

packets are handled by the switches in the data plane. DIFANE [2] achieves flow-based management by 

installing the low-level rules in advance and it uses hi-level decisions to reduce the cache misses to 

improve the scalability. 

 

In this architecture, it considers caching rules in the switch as an unnecessary burden for the switch 

because there may be a packet delay or some complexity on the switch when cache misses take place. 

So that, DIFANE uses some wildcard mechanism to handle cache misses effectively by keeping those 

cache misses in the data plane.  

 

Figure 7:Hi-level overview of Hyper Flow 
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Figure 8: DIFANE flow management architecture 

 

 

2.7.7 SDN Architecture with logically centralized multiple controllers - ONIX 
 

In SDN, still there are issues where some critical requirements cannot be achieved. Using one controller, 

efficiency cannot be reached up to the expected level. Scalability is the most important factor that pushes 

network architectures into multiple controllers. The distributed control plan such as ONIX is running 

multiple ONIX instances and ONIX API [28] allows control applications to read and write the state of 

any network element. Also control logic records forwarding information from the switches. As a result 

of evaluation studies reveals that the ONIX provides scalability by partitioning the network logically by 

distributing the workload. 

 

2.7.8 Hierarchical control plane architectures – Orion 
 

There are two kind of SDN controller architectures such as the flat control architecture and the other one 

is hierarchical control plane architecture. Hierarchical control plane architecture has been introduced in 

order to improve the scalability problem in large scale network since the flat control architecture fails to 

minimize the computational complexity of the controller when the network size is getting large.  

Orion is one of the systems which uses hybrid hierarchical control plane for large scale network. It 

reduces the controller plane computational complexity from super linear to linear by using abstracted 

hierarchical network views.  

 

 
Figure 8:DIFANE flow management architecture 
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Orion is focusing on intra domain routing management system. Basically, it is consisted with three layers 

such as ‘Network Device Layer’, ’Area controller Layer’ and ‘Domain Controller Layer’. The whole 

network is referred as domain and the domain is divided into sub domains which the sub domain closes 

to each other and each domain is controlled by an SDN controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 9:Network view of the hybrid hierarchical architecture. 

The network device layer consisted of large amount of open flow switches and the middle layer is 

responsible to gain the device and link information from the network device layer. It processes the 

routing of the requests and create abstract view of the area network and send it to top level layer which 

is known as domain controller layer which synchronizes among area controllers through distributed 

protocol. This area division of Orion has gained the opportunity to reduce the computational complexity 

of large-scale network system. 

 

2.7.9 Optimal Flow 
 

Optimal flow controller is another controller system which has been used in Industrial controller system 

which facilitates to provide innovative applications like robust voltage control, renewable energy 

programs and electric vehicles. Those ICS requires the normal functioning even in the failures or 

disturbances such as cyber-attacks. By considering the issues, Optimal Flow is a proposed system for 

ICS where it monitors the single SDN domain and reroute the requests according to the integer linear 

programming (ILP) optimization problem. 

17 
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While ILP provides shortest path routing decisions, Optimal Flow contains two interfaces to achieve 

hierarchical control plane. One interface is called northbound interface where it contains switched 

infrastructure which communicate through the open flow protocol and it exposes the edge ports into the 

upper tier. The southbound interface of the optimal flow is connected to the open flow controller, which 

monitored the SDN switches in the network. The optimal flow uses an algorithm to identify the affected 

flows due to disturbances and provision the flows according to the priority to disconnect the low priority 

flows. Also, it constructs the dependency network graph in order to update the network to avoid link 

congestion.      
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Chapter 3 
 

Experimental Setup 
 

This thesis conducts the practical implementation of an SDN using network function virtualization and 

it has used mininet emulator for prototyping of the SDN. The environment has been setup on MacOS 

10.14.3 host machine with two virtual box hosted Ubuntu VMs. One Ubuntu VM contains open daylight 

controller and other one is a mininet installed server. Later in the implementation, separate VMs have 

been spawned in need of a new controller with different IP address and same set of configurations. The 

virtual box configured two network adapters; one adapter enabled NAT and the other one used as a host 

only adapter. To achieve the goal of performance evaluation, different network topologies were 

implemented in both single controller network and the multiple controller network with the aid of 

mininet which uses python scripts for network simulation.  

 

Tools used:  

1) Mininet: Python based network emulator to create virtual network which is topology-aware and 

OpenFlow-aware. 

2) Miniedit: Miniedit is an experimental tool which comes for mininet with a simple GUI to demonstrate 

how the mininet can be extended. It has provided the flexibility to create and simulate the custom 

software defined network. Before running the miniedit, it is needed to start mininet VM and connect via 

SSH. 

 

Basic commands used:  

• $ sudo ~/mininet/examples/miniedit.py     - To run Miniedit 

• $ sudo ovs-ofctl dump-flows s1   -To check the flow table on switch1 
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Single Controller Architecture: Series 1 

Single controller will be the benchmark for the statistic evaluation. In this network, there would be a 

single controller od1 with three OpenFlow enabled switches as S1, S2, S3 with 6 hosts naming h1, h2, 

h3, h4, h5 and h6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple Controller Architecture (Two Controllers): Series 2  

In this network, there would be two controllers as odl1 and odl2 to manage three switches as S1, S2 and 

S3 with the 6 hosts naming h1, h2, h3, h4, h5 and h6. 

 

 

 

 

 

 

 

 

Figure 10: Single Controller Architecture 
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Multiple Controller Architecture (Three Controllers): Series 3 

In this network, there would be three controllers as odl1, odl2 and odl3 to manage three switches as S1, 

S2 and S3 with the 6 hosts naming h1, h2, h3, h4, h5 and h6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Multiple Controller Architecture using two controllers 

Figure 12: Multiple Controller Architecture uisng three controllers 
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IP Address Setup 

 

 odl1 - 192.168.0.2 

 odl2 - 192.168.0.3 

 odl3 - 192.168.0.4 

 

 

 

Open Daylight controller used for the experiment since it supports multiple controller architecture and 

contains easy to use web interface where we can see the topology related information. We send UDP 

packets from h1 to h6. Logs will be generated both sender and receiver side.  All the logs are being 

generated by each end will be saved in h1. Thus, h1 listening for logs where h6 is listening for the UDP 

packets. We keep the bites capacity as unique (512) and we change the packet rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1 – 192.168.0.20 

S2 – 192.168.0.21 

S3 – 192.168.0.22 

 

h1 - 192.168.0.11 

h2 - 192.168.0.12 

h3 - 192.168.0.13 

h4 - 192.168.0.14 

h5 - 192.168.0.15 

h6 - 192.168.0.16 

 

Figure 13: Open Daylight Controller 
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3) D-ITG Tool: D-ITG is a distributed internet traffic generator platform which supports both IPv4 and 

IPv6. Since D-ITG is compatible with the operating system Linux, this research used D-ITG to generate 

traffic on switches. Set of commands are there to send and receive network packets. 

• $. /ITGLog   - To start the log server 

• $. /ITGRecv – To start the receiver 

• $. /ITGSend <traffic_configuration_file> -l s<sender_log_file> -L 192.168.0.11 UDP -X 

192.168.0.11 UDP -x <receiver_log_file> - To start the sender 

• Ctrl+C   - To close the receiver and the log server 

• $. /ITGDec <receiver_log_file> – To decode the receiver log file. 

 

Below is the script which was created to generate traffic simultaneously.  

-a 192.168.0.16 -rp 1001 -C 20000 -c 512 -T UDP 

-a 192.168.0.16 -rp 1002 -C 40000 -c 512 -T UDP 

-a 192.168.0.16 -rp 1003 -C 60000 -c 512 -T UDP 

-a 192.168.0.16 -rp 1004 -C 80000 -c 512 -T UDP 

-a 192.168.0.16 -rp 1005 -C 100000 -c 512 -T UDP 

 

rp – receiver port, -C – no. of packets per second, -c – no. of bits 

Steps of the experiment. (All the the D-ITG commands will be listed below) 

1)Start the mininet virtual machine with IP address 192.168.0.1 

2)Start the Open Daylight controller VMs with IP address 192.168.0.2, 192.168.0.3, 

192.168.0.4 

3) Start miniedit using sudo ~/mininet/examples/miniedit.py 

4)Load mininet model 

5) Run below commands for each mininet model (Series1/Series2/Series3) 

1. start the log server at h1 

   ./ITGLog 

2. start the UDP listener at h6 

./ITGRecv 

3. send packets from h1 to h6 

./ITGSend traffic1 -l senderlog -L 192.168.0.11 UDP -X 192.168.0.11 UDP 

-x recv_log1 

4. after sent out all the packets, we stop listeners at h6 and h1 

5. Log file read for analysis 

./ITGDec recv_log1 
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Experiment Result Evaluation 
 

When it comes to the topic of network traffic, there are some QoS parameters to evaluate the 

performance of the network. Below are some parameters, 

o Latency - the time it takes to transfer the packet from source to destination 

o Jitter   - the variation of latency 

o Loss   - the packet which failed to reach its destination 

(Packet loss ratio = no. of packet loss/no. of packets sent) 

o Throughput  - ability to carry data at a unit of time 

Among above QoS parameters, Latency and Jitter can be used to evaluate controllers since other ratios 

are related to the bandwidth. 

 

After executing the experiment setup, below are the statistics which were gained during packet 

transmission. 

 

Single Controller (Series 1):  

 

Table 1: Single controller experiment result 

 

As we discussed in the above experiment set up, we sent five simultaneous UDP traffic flows from h1 

to h6 where each flow has different packet size. Table 1 shows the experiment result using single 

controller. By looking at the result, we couldn’t see any correlation between packet rate against 

parameter values. Thus, we can say, that single controller architecture has no influence on individual 

flow, but overall SDN performance has been affected by larger amount of traffic. In next experiments 

will be carried out using multiple controllers against same switch configuration. 

packet size (One Controller) 20000 40000 60000 80000 100000

Total Time(Sec) 10.008404 10.006689 10.00717 10.007095 10.009816

Total Packets 23421 21249 30571 29433 31038

Minimum Delay(Sec) 0.000048 0.000054 0.000038 0.000032 0.000039

Maximum Delay(Sec) 0.021566 0.023077 0.022351 0.02301 0.022219

Average Delay(Sec) 0.01341 0.013235 0.013476 0.013301 0.013502

Average Jitter(Sec) 0.000254 0.000249 0.000252 0.000231 0.000251

Delay Standard Deviation(Sec) 0.004637 0.004813 0.00416 0.004219 0.004161

Bytes Received 11991552 10879488 15652352 15069696 15891456

Avg Bit Rate(Kbit/s) 9585.18621 8697.77246 12512.90984 12047.20931 12700.6978

Avg Packet Rate(pkt/s) 2340.133352 2123.479604 3054.90963 2941.213209 3100.756298

Packets Dropped(%) 42027 (64.21 %) 45805 (68.31 %) 37295 (54.95 %)  38669 (56.78 %) 37146 (54.48 %)

Avg Loss-Burst Size(pkt) 45.190323 53.076477 28.2324 33.450692 28.773044
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Multiple Controller (Series 2): 

 

Table 2: Multiple controller experiment with two controllers 

In this experiment, we placed two controllers in between three switches which connected using linear 

topology. By observing the results, we can see drastic improvement in overall SDN performance under 

high traffic. 

  

Multiple Controller (Series 3): 

 

Table 3: Multiple controller experiment with three controllers 

Here we placed each switch with individual controller to observe the statistics. The results depict that, 

it has not improved as experiment series 2. But still there is a considerable amount of improvement in 

the SDN performance.  

 

 

 

 

packet size (Two Controllers) 20000 40000 60000 80000 100000

Total Time(Sec) 10.010604 10.005742 10.006718 10.007027 10.011117

Total Packets 61110 55084 62954 63178 55811

Minimum Delay(Sec) 0.000032 0.000048 0.000032 0.000032 0.000046

Maximum Delay(Sec) 0.023242 0.022882 0.022307 0.022307 0.02163

Average Delay(Sec) 0.009875 0.009634 0.009854 0.009856 0.009578

Average Jitter(Sec) 0.000232 0.000227 0.000224 0.000223 0.000223

Delay Standard Deviation(Sec) 0.00586 0.005956 0.00586 0.005852 0.005923

Bytes Received 31288320 28203008 32232448 32347136 28575232

Avg Bit Rate(Kbit/s) 25004.14161 22549.4585 25768.64702 25859.5373 22834.80015

Avg Packet Rate(pkt/s) 6104.52676 5505.238892 6291.17359 6313.363599 5574.902381

Packets Dropped(%) 4160 (6.37 %) 11760 (17.59 %)  4788 (7.07 %) 4678 (6.89 %) 12075 (17.79 %)

Avg Loss-Burst Size(pkt) 3.88422 13.626883 4.483146 4.417375 12.777778

packet size (Three Controllers) 20000 40000 60000 80000 100000

Total Time(Sec) 10.012921 10.005668 10.005086 10.007331 10.011471

Total Packets 43683 41423 42423 33686 46118

Minimum Delay(Sec) 0.000038 0.000051 0.000048 0.000057 0.000037

Maximum Delay(Sec) 0.033209 0.033555 0.033253 0.03387 0.032863

Average Delay(Sec) 0.013549 0.013477 0.013537 0.012769 0.013647

Average Jitter(Sec) 0.000276 0.000276 0.000275 0.000269 0.000267

Delay Standard Deviation(Sec) 0.006219 0.00653 0.006465 0.006687 0.006194

Bytes Received 22365696 21208576 21720576 17247232 23612416

Avg Bit Rate(Kbit/s) 17869.46766 16957.24943 17367.62763 13787.67785 18868.28899

Avg Packet Rate(pkt/s) 4362.663003 4139.953474 4240.143463 3366.132288 4606.515866

Packets Dropped(%)  14996 (25.56 %) 18831 (31.25 %) 18210 (30.03 %) 27176 (44.65 %) 14944 (24.47 %)

Avg Loss-Burst Size(pkt) 11.002201 14.463134 14.193297 27.450505 10.5686
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Below charts have been used to illustrate each parameter against packet rate on three controller 

architectures (Series 1, Series 2 and Series 3). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

According to the above chart, it shows total time taken for the whole experiment. Since the difference 

is in milliseconds, we cannot see any significant difference among series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 shows the total packets received to the destination h6. As we can see, two controller 

architecture has the best performance, three controller has intermediate performance and single 

controller has least performance. 
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Figure 14: Total Time 

Figure 15: Total Packets 
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As we can see, there is no such big difference in minimum delay except in 60,000 and 80,000 packet 

rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the figure 17 results, we can see that even though we have placed each controller on each 

switch, maximum delay has not minimized. 
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Figure 17: Maximum Delay 



30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the figure 18, the set up with two controllers has given the least average delay throughout 

the experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It’s better to gain low average Jitter in any network since low average Jitter implies low latency. 

According to the figure 19, we can see that series two set up has the best performance. 
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Figure 19: Average Jitter 
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This chart represents the variance of the delay. Series one set up has minimum variance of delay in the 

packet transmission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the figure 21, we can see that the best performance in bytes received has happened in 

series two set up. 
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Figure 21: Bytes received 
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According to the figure 22, series two has performed best in bit rate and series 3 has performed 

intermediate and series 1 has lowest performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the figure 23, series two has performed best in average packet rate, series 3 has 

performed intermediate and series 1 has lowest performance. 
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Figure 23: Average Packet Rate 
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According to the figure 24, series two has given significant performance in packet drop, series 3 has 

performed intermediate and series 1 has lowest performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the figure 25, series two has performed best in lost burst size and series 3 has performed 

intermediate and series 1 has the lowest performance. 
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Figure 25: Average Loss-Burst Size 
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Below are average statistics which extracted according to the total results of different controller 

architectures. 

 

 
Table 4: Average performance matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Controller count 1 2 3

Number of flows  5 5 5

Total Time(Sec) 10.010869 10.011952 10.014212

Total Packets 135712 298137 207333

Minimum Delay(Sec) 0.000032 0.000032 0.000037

Maximum Delay(Sec) 0.023077 0.023242 0.03387

Average Delay(Sec) 0.013395 0.009766 0.013427

Average Jitter(Sec) 0.000254 0.000238 0.000285

Delay Standard Deviation(Sec) 0.004366 0.005889 0.006412

Bytes Received   69484544 152646144 106154496

Avg Bit Rate(Kbit/s) 55527.2826 121971.1353 84803.07467

Avg Packet Rate(pkt/s) 13556.46548 29778.1092 20703.87565

Packets Dropped(%) 200942 (59.69 %) 37461 (11.16 %)  94157 (31.23 %)

Avg Loss-Burst Size(pkt) 36.134149 7.48322 14.823205

 
Figure 26: Average performance in Total Time 
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Figure 28: Average performance in minimum delay 

Figure 29: Average performance in maximum delay 
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Figure 31: Average performance in average Jitter 

Figure 32: Average performance in delay standard deviation 
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Figure 34: Average in average bit rate 

Figure 35: Average in average packet rate 
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Figure 37: Average in average loss-burst size 



39 

 

Chapter 4 

 
Conclusion 
 

The SDN domain is becoming sophisticated day by day. It is very important to have a reliable network 

in any organization to have their business as usual. In this study, we discussed about how horizontally 

connected switches behaving with single controller and multiple controller under  hefty traffic. The result 

shows the multiple controller architecture has improved performance in most important arias. According 

to the statistics, we saw that the packet loss rate has relationship with the latency because when the 

latency increases, the packet loss rate also get increased.  

 

The packet loss rate is a major concern when it comes to the network reliability. Lesser the packet loss 

rate, higher the network reliability. We observed that the packet drop in a single controller architecture 

was 59%, where it has reduced the packet drop ratio into 11% in two controller architecture. The three 

controller architecture has an intermediate performance  compared to other two. It has proven that, the 

number of controllers in a SDN is not the only fact which increase the performance. The most important 

thing is how they have been integrated. Having one controller for each switch has less performance than 

having one controller in between switches. This happens due to the high traffic in a switch at the time 

the single controller also busy. Here in our experimented two controller architecture, one switch has been 

updated by two controllers, which shows the best performances by sharing flow table management 

among two controllers.  

 

By observing the network simulation and the evaluation results, we can find evidences which support to 

our hypothesis mentioned in this thesis. Therefore, we can conclude that the controller overhead can be 

mitigated using multiple controllers. 
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Future work 
 

Though the multiple controllers were able to minimize the controller bottleneck, it is not the only concern 

of software defined work. But to a certain extent, we can predict that, multiple controllers can perform 

better than the logically centralized single controller. Also, if we can scale up the multiple controller 

architecture vertically, it would be more efficient and more scalable. We can deeply study how to scale 

up the multiple controller architecture vertically. And, despite of this research, which controller 

mechanism is suitable in which situation is still an open research topic because each controller has built 

on its own architectural perspectives. As a future work, we can run the test beds to determine the number 

of switches which can be handled at a same time using a single controller with respect to different 

network load. As well as we can research further on event management in software defined network 

using multiple controllers which assumed to be good in performance. 
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