
  

 

 

 

 

 

Masters Project Final Report 

(MCS) 

2019 

 

Project Title 

 
 
Predicting Security Vulnerable Developers on Behavioral 
Characteristics 

Student  Name 

 
R. M. S. V. Rathnayaka 

Registration 
No.  
& Index No. 

 
2014/MCS/065 

Supervisor’s 
Name 

 
Dr. J. S. Goonathilake 

 

 

For Office Use ONLY 
 

 

 

                                                        

 

 

S  

E1  

E2  

For Office Use Only 



 

 

2 

  

                                

 

 

 

 

Predicting Security Vulnerable 

Developers on Behavioural 

Characteristics  

 

A dissertation submitted for the Degree of Master of 

Computer Science 

 

R. M. S. V. Rathnayaka 

University of Colombo School of Computing 

2019 

 

                                                         

 

 

 

 



 

 

3 

  

Declaration 

 

The thesis is my original work and has not been submitted previously for a degree at this or any 

other university/institute. 

To the best of my knowledge it does not contain any material published or written by another 

person, except as acknowledged in the text. 

 

Student Name:  R. M. S. V. Rathnayaka 

Registration Number:  2014/MCS/065 

Index Number: 14440654      

 

 

_____________________ 

Signature:        Date: 

 

 

 

 

 

This is to certify that this thesis is based on the work of  

Mr. R. M. S. V. Rathnayaka 

under my supervision. The thesis has been prepared according to the format stipulated and is of 

acceptable standard. 

 

Certified by:  

Supervisor Name: Dr. J. S. Goonathilake        

 

 

_____________________ 

Signature:         Date: 

 

 

 

 

 

 



 

 

4 

  

Acknowledgement 

 

Working on a research study would be a hard time for a student with a work-life balance. It will 

get harder if there’s not enough support from the peoples around.  But, I was lucky enough to 

have a bunch of supporters around me.  

 

Among them; first I would like to convey my heartfelt gratitude to my supervisor Dr. Jeevani 

Goonathilake for her guidance, motivation provided me on my research studies and all the 

support given during the difficult times. Without her all support and feedback; I couldn’t 

imagine completing my research works successfully.   

 

I’d like to remind my dearest parents who always wished me every success in life with their 

unconditional love. I’m always happy to be their pride, with each and every success that I made 

in my life. Thus, I let this achievement also to become a reason to make them proud.    

 

At last but not least, I’d like to convey my sincere gratitude to all my friends who have supported 

me to realize my dream milestone in academia. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 

  

Table of Contents 
 

 
List of Abbreviations ............................................................................................................. 7 

List of Figures ........................................................................................................................ 8 

List of Tables ......................................................................................................................... 9 

List of Experiments ................................................................................................................ 9 

Chapter 01: Introduction ...................................................................................................... 10 

1.1 Problem Identification ................................................................................................ 10 

1.2 Motivation .................................................................................................................. 12 

1.3 Goals and Objectives .................................................................................................. 14 

1.4 Scope ......................................................................................................................... 15 

1.5 Limitations and Constraints ........................................................................................ 15 

Chapter 02: Related Work and Fundamentals ....................................................................... 17 

2.1 Related Works ............................................................................................................ 17 

2.2 Related Work Summary ............................................................................................. 26 

2.3 Security Vulnerabilities .............................................................................................. 27 

2.4 Developer-Centric Security Vulnerabilities ................................................................ 28 

2.5 Commit Log ............................................................................................................... 29 

2.6 Feature Metrics .......................................................................................................... 30 

2.7 Feature Subset Selection (FSS) ................................................................................... 30 

2.8 Class Balancing .......................................................................................................... 32 

2.9 Prediction Models ...................................................................................................... 33 

2.10 Performance Evaluation............................................................................................ 35 

2.11 Error Analysis .......................................................................................................... 39 

Chapter 03: Problem Analysis and Methodology .................................................................. 41 

3.1 Candidate Feature Vector ........................................................................................... 41 

3.2 Repository Selection for Dataset ................................................................................. 48 



 

 

6 

  

3.3 Data Extraction .......................................................................................................... 51 

3.4 Data Set...................................................................................................................... 57 

3.5 Data Set Preprocessing ............................................................................................... 59 

3.6 Feature Selection ........................................................................................................ 61 

3.7 Prediction Model Selection ......................................................................................... 62 

3.8 Training ..................................................................................................................... 67 

Chapter 04: Developer Vulnerability Prediction and Evaluation ........................................... 69 

4.1 Benchmark ................................................................................................................. 69 

4.2 All Feature Vector Performance ................................................................................. 70 

4.3 Performance through Feature Selection ...................................................................... 70 

4.4 Performance through Class Balancing ........................................................................ 74 

4.5 Ensemble Techniques ................................................................................................. 76 

4.6 Experiment Summary ................................................................................................. 77 

Chapter 05: Discussion ........................................................................................................ 80 

5.1 Summary .................................................................................................................... 80 

5.2 Findings ..................................................................................................................... 81 

5.3 Future Work ............................................................................................................... 91 

References ........................................................................................................................... 93 

Appendix ............................................................................................................................. 96 

 

 

 

 

 

 

  

 

 

 

 



 

 

7 

  

List of Abbreviations 

 

TP - True Positive 

TN - True Negative 

FP - False Positive 

FN - False Negative 

FI - File Inspection Ratio 

PF - Probability of False Alarm 

OWASP - Open Web Application Security Project 

CWE - Common Weakness Enumeration 

FSS - Feature Subset Selection 

SVM - Support Vector Machine 

HTML - Hyper Text Markup Language 

XML - eXtended Markup Language 

JSON - Javascript Object Notation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

8 

  

List of Figures 

 

Figure 1.1: Transformed Feature vs Developer Feature 

 

Figure 2.1: ROC curve behavior against confusion matrix 

Figure 2.2: Detailed Structure of a Commit Log 

Figure 2.3: ROC curve behavior against confusion matrix 

Figure 2.4: Different ROC curves and respective classification distributions 

Figure 2.5: Bias-Variance Tradeoff 

 

Figure 3.1: Top Active Languages in GitHub 

Figure 3.2: Output Data Set Format of Jmine Analyzer 

Figure 3.3: Developer Network of Metrics GitHub Project 

Figure 3.4: Sample set of security vulnerability rules 

Figure 3.5: Overall SonarQube Assessment of Netty GitHub Project 

Figure 3.6: Identified Vulnerabilities of Netty GitHub Project 

Figure 3.7: Exported Sample JSON Data Set of Vulnerable Developers 

Figure 3.8: Feature Selection Approach Diagram 

Figure 3.9: Class distribution histogram of collected dataset 

Figure 3.10: Feature Selection Approach Diagram 

Figure 3.11: Prediction Model Selection Approach Diagram 

Figure 3.12: Random Forests Algorithm 

Figure 3.13: SVM for 2-dimensional Feature Space 

Figure 3.14: K - Fold Cross Validation 

 

Figure 4.1: RUS Class Balanced Dataset Statistics in WEKA 

Figure 4.2: SMOTE Class Balanced Dataset Statistics in WEKA 

Figure 4.3: ROC curve of Zero - R Classifier 

Figure 4.4: ROC curve of Random Forest Classifier 

Figure 4.5: ROC curve of Naive Bayes Classifier 

 

Figure 5.1: Number of Rows Distribution 

Figure 5.2: Average Commit Interval Distribution 

Figure 5.3: Frequent Commit Hour Distribution Histogram 



 

 

9 

  

Figure 5.4: Lines Inserted Distribution 

Figure 5.5: Lines Deleted Distribution 

Figure 5.6: Developer Age Distribution 

Figure 5.7: Average Cyclomatic Complexity Distribution 

Figure 5.8: Comment Percentage Distribution 

Figure 5.9: Developer Closeness Distribution 

 

 

List of Tables 

 

Table 2.1: Related works on defect/vulnerability predictions 

Table 2.2: Feature vectors of related studies 

Table 3.1: General information about selected Github repositories 

Table 3.2: General statistics of complete collected dataset 

Table 4.1: Benchmarking classifier performance measures 

Table 4.2: Classifier performance measures on raw dataset 

Table 4.3: Feature elimination sequence and accuracy 

Table 4.4: Classifier performance measures on feature selected dataset 

Table 4.5: Classifier performance measures on class balanced dataset 

Table 4.6: Classifier performance measures on ensemble techniques   

Table 5.1: Feature Vector Correlation Summary 

 

 

List of Experiments 

 

Experiment 4.1: Classifier Subset Evaluation with Bagging 

Experiment 4.2: Random Forest classifier evaluation on feature selected dataset 

Experiment 5.1: Generated Decision Tree of Decision Tree Classifier 

 

 

 

 

 

 



 

 

10 

  

 

 

 

Chapter 01: Introduction 

 

This chapter exchanges the views on initial backgrounds of this study by identifying the 

problem that motivated for this study and the ultimate goals and outcomes in finding the 

solution for the problem identified. Meanwhile, it identifies the possible limitations and 

constraints that would be affected by this study and defines the scope of this study.  

 

1.1 Problem Identification 

 

Computer software basically satisfies two types of requirements in an application domain. 

Those are functional and nonfunctional requirements. Both are equally important to be satisfied 

regardless of their operational industry domain. Functional requirements basically describe how 

and what the software supposed to accomplish and non-functional requirements which also 

known as quality requirements describe the constraints of the software design and 

implementation.  

 

In the modern information era, the software development industry is gaining a drastic 

improvement since the applications of computer software are wide spreading across many 

industry domains. This potentiality has moved to the usage of computer software into large 

scale, mission and life-critical applications in high stake industries such as defense, aerospace, 

medicine, nuclear power, etc. which involves a higher tradeoff between the cost and the quality 

of output that the software can produce. Thus, it can be identified that quality is an important 

factor in many mission and life critical industries to withstand in software solutions. 

 

Although there are many Computer Aided Software Engineering (CASE) tools that are in use, 

humans still dominate as the core contributors of the software development process. But it’s a 

common and natural argument that humans tend to make mistakes. Thus, it’s an inevitably 

applicable scenario that software is vulnerable to functional and non-functional defects.  

 



 

 

11 

  

In software development projects, defects can be introduced in any phase of the software 

development lifecycle. But, most of the defects are tend to occur by the time of its development 

phase [4] and is difficult and introduces huge cost to overcome from them in later stages of 

software development. Therefore, early prediction of software defects and quality issues has 

become a vital topic in the modern world software project management domain. 

 

Software quality has been described by many characteristic aspects. There are a number of 

software quality metrics used to evaluate the qualities of the software such as Scalability, 

Security, Reliability, Usability, etc. [3] Among all these quality metrics, software security has 

been described as one of the major quality attribute concerned and it is a high critical quality 

factor [37] in above mentioned high stake industry domains [2]. Since, a security vulnerability 

can be a cause of huge disaster which can lose billion dollars of assets [1] and lives [22], [37].       

 

Generally, functional issues of software referred to a defect in software which can be tested and 

validated by executing the test scenarios of the business logic. But, infringement of non-

functional requirements such as software security requirements will lead to security 

vulnerabilities which are difficult to identify [10], [37] since it may not get exposed by the 

execution of predetermined functional test scenarios. Thus, it will be even more difficult when 

predicting the deviations of such nonfunctional requirements. 

 

In general terms, security vulnerability has a broader definition which specifically not limited 

to software related security bugs (or defects). There can be vulnerabilities that are exploitable 

due to hardware, environmental and social reasons [37]. But in this study, the term “security 

vulnerability” is specifically referred to software level security defects that can be exploitable 

through malicious execution of the software and tools. 

 

Currently, several methods have been suggested in the literature to predict future defects, 

security vulnerabilities of software components based on software-centric metrics that are 

extracted from the source code. But the tendency of defective code contribution could happen 

due to many techno-behavioral factors of each individual developer. These software-centric 

metrics alone cannot represent the exact human factors of each individual developer which can 

affect the overall quality of the software.  

 

Further, predicting the potential vulnerabilities of contributing developer profiles is a way ahead 

approach rather than predicting the security vulnerability of ongoing software projects. Because 



 

 

12 

  

if there are set of developers working on a mission-critical system who follow certain behavioral 

practices that could be contingent to contribute security vulnerable codes. Finally, it can be 

collectively affected by overall software quality attributes such as software security. Thus, 

understanding significant techno-behavioral characteristic features of the developer is required 

to have an insightful and improved prediction on the potentiality of vulnerable code 

contributions done by each developer. 

 

The remaining chapters of this dissertation will be organized as follows. Chapter 2 outlines the 

background of this work and the related works have been done in the literature. Chapter 3 

analyze the problem and its characteristics. Further, outlines the possible research 

methodologies to solve identified research problems. In Chapter 4 we discuss the current 

progress of the research and upcoming tasks scheduled to be executed in the research design. 

 

1.2 Motivation 

 

A software developer is one of the most important human resources in a software development 

project who creates and maintains software. Wurster, G. et al [32] argues that although software 

developers are most often considered as allies in software development, it won’t be a reliable 

assumption at all. Each software developer has a unique skill level, experience, capacity, 

technology interests, domain interests and many other characteristics which can affect the 

overall quality of the software positively or negatively. Based on these developer’s 

characteristics, their intentional or unintentional contributions such as the implementation of 

source code and configurations may lead to security vulnerabilities in software. Hereafter this 

developer characteristic is referred to Developer-Centric Vulnerability (DV) for convenience 

in this study. 

 

In large scale software development projects, a number of developers could be capable of 

working parallel while having many interdependencies between each other. Thus, it’s 

important, but a complex task to ensure all developers are skilled and experienced enough to 

contribute and collaborate for the project avoiding any security vulnerabilities in software 

throughout the development lifecycle. 

So in a social aspect, it will be a challenging task to evaluate and differentiate a developer’s 

tendency to contribute vulnerable software codes. For a highly secured or mission-critical 



 

 

13 

  

software project, it will be a complicated task to handle if there are non-functional loopholes 

such as security vulnerabilities identified in the middle of the software development process. If 

the developer code contributions haven’t been up to the security standards, practices and to 

avoid security defects; it’ll be a difficult situation to manage due to the human resource, 

institution policies, project timeline and many other technical and non-technical constraints and 

ultimately it will cost to the software project.        

    

When there is a need for selecting developer teams for a highly secured mission critical system 

development task, it would have been better if predicted developer-centric vulnerability taken 

as a parameter into the developer selection criteria of software project since developers with 

less or no vulnerability prediction will minimize risk of security vulnerabilities of the software 

at the later stages of SDLC. 

 

To analyze the quality aspects of a software project including security vulnerabilities, there are 

many tools and techniques. But, is there any straightforward way or measures that have been 

identified to determine the vulnerability of a particular developer who is contributing to a 

software project?  

 

Alternatively, the most possible approach to get some idea about individual developer-centric 

vulnerability is to evaluate the quality features of software through static code analysis and find 

out the responsible developers who have contributed security wise weak code fragments. But, 

that process is complex and time-consuming since there are many tools and steps to be followed. 

Additionally, in order to do that; static code analyzers need to access the code base to initiate 

the vulnerability analyzing process where sometimes the access might be restricted to the 

interested party. Thus, it would be more beneficial if there’s a way to get a general idea about 

developer-centric security vulnerability by their behavioral activities done in the software 

development process while without accessing the code level information about the contributed 

code base. 

 

According to the literature, several attempts have been made to predict software vulnerabilities 

from the perspective of software source code. But there are fewer attempts have been made to 

predict software vulnerabilities considering the behavioral features of its contributing 

developers which can improve the predicting performance. 



 

 

14 

  

Thus, it will be a huge advantage when there is a methodology on predicting possible 

vulnerabilities that could occur in a software project at each contributing developer’s level by 

analyzing each developer’s techno-behavioral features. 

 

Finally, the classifier models that are trained with a better prediction accuracy can be applied 

to predict the developer-centric vulnerability of any other developer if the identified developer 

behaviors are given. The most important advantage with that approach is that the developer-

centric vulnerability can be evaluated even source code level access to the previous historical 

software repositories are restricted or not available.  

 

1.3 Goals and Objectives 

 

This research is focusing on identifying a suitable proactive approach for predicting the 

developers who are contingent to expose security vulnerable source codes by analyzing their 

behavioral (committing pattern, development collaboration, individual code complexity, etc.) 

characteristics. The Following components have been addressed within this research. 

 

1. Identifying the most suitable developer characteristic features of the developer which 

has a higher correlation with security vulnerabilities. 

2. Ascertaining related, as well as existing mechanisms in the literature which has been 

used for software-centric, developer-centric vulnerability prediction. 

3. Adopt and modify selected mechanisms for better vulnerability prediction of 

developers. 

4. Evaluate the accuracy and performance of each mechanism against an identified set of 

developer profiles (through static code analysis and previous research outcomes) who 

had contributed for security vulnerable codes in a software project. 

5. Produce the most accurate methodology in predicting the developers who tend to expose 

more security vulnerable contributions. 

 

 

 



 

 

15 

  

1.4 Scope 

 

1. As described in section 1.1, the software security vulnerabilities that are focused here is 

limited to the vulnerabilities that get exposed through security defects in the source code 

of the software while the vulnerabilities that are exploitable by other means are 

excluded. 

2.  Software security vulnerabilities can appear in many forms and documented by many 

forms about them. But, this study only OWASP security measures [6] and CWE 

exposed security measures are considered in analyzing developers. 

3. Github [5] social coding platform will be used as the data source to extract the dataset 

for identifying developer characteristics on security error-proneness. 

4. Although GitHub contains a massive number of repositories, the most significant 

repositories that have been used and suggested in the literature will be used in the 

analysis. 

5. In the feature selection, all the developer features will be selected through the outcomes 

of the literature review. 

6. Although suggested by the literature review; some of the developer features may not be 

able to consider due to the unavailability of repository mining tools to extract those 

feature measures.   

7. There is a number of approaches that have been defined in the literature for prediction 

problems, the most significant mechanisms (maximum 5) will be used for the 

evaluation. 

 

1.5 Limitations and Constraints 

 

1. The software repositories that are used for this work are sourced from GitHub social 

coding platform where all the repositories are publicly available to explore. But there 

are limited opportunities available for validate the prediction models against private 

repositories. 

 

2. Repository mining for developer behavior features is has its limitations due to less 

availability of mining tools and weak performance of available tools. Thus, some of the 

identified developer behaviors may have to be omitted in this study.   



 

 

16 

  

3. This work intends to compare the prediction performances of several prediction models 

that has been proposed in the literature. The number of prediction models to be 

evaluated in this study has limited to minimum three since there are time constraints to 

complete this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

17 

  

 

 

 

Chapter 02: Related Work and Fundamentals 

 

In this chapter, the literature of the related previous works is compared and analyzed in order 

to get more understanding of current outcomes, future research works and the improvements to 

be done on the related domain. This study associated with the research field of data mining and 

machine learning.  Thus, this chapter intends to explore the theoretical fundamentals of the 

techniques which have been applied in this research work.    

 

2.1 Related Works 

 

As per the reviewed literature, many author’s works on this domain of vulnerability prediction 

has been focused on predicting the vulnerabilities of software or software components based 

on the features directly extracted from source code which also known as product (software) 

metrics. Further, most of the other related works have been focused on software defect 

prediction. But software vulnerability is a very specialized defect type which is more difficult 

to identify. Many related works here having the focus of identifying the predictor model from 

the perspective of software while this study mainly focusing on identifying the predictor model 

for vulnerabilities from the developer’s perspective. 

 

Ostrand, T.J. et al [12] looking forward to continue and improve their preliminary works on 

defect prediction models by incorporating developer-specific information. They have defined a 

bug ratio for each individual developer and compared each individual bug ratio to the average 

bug ratio and assessed the consistency of the bug ratios across software releases. They have 

achieved minimal improvement on bug prediction performances which aren’t significant with 

respect to the actual bugs that individual developers have committed later. They claim that, 

since their study was limited to one single software repository and bug ratio is the one and only 

feature considered to predict defects; their outcomes on developer-centric defect prediction may 

not hold widely. 

 



 

 

18 

  

Going further Jiang, T et al [11] have proposed personalized defect prediction models by 

utilizing three types of feature categories which are characteristic vectors, bag-of-words, and 

metadata. In the software repository version controlling domain, a developer commit is referred 

to the recent source code changes that a developer pushed to the main software repository in 

order to make them persist in the software repository. Single developer commit may contain 

several code changes in one or more source files with one or more lines of code changes. The 

characteristic vector represents the syntactic structure of a developer commit; which is a 

mathematical representation of a developer commit (a code fragment) by counting the number 

of syntax type nodes (eg: if, for, while) in the Abstract Syntax Tree (AST). Bag-of-words is a 

vector that represents the occurrence count of keywords of a developer commit. Additionally, 

they utilize the metadata features in each developer commits such as commit hour, commit day, 

cumulative change count, cumulative buggy change count, source code file/pathnames, and file 

age in days. However, Jiang, T et al [11] concludes that this research work scope didn’t intend 

to identify the best feature combination for defect prediction while confirming the importance 

of identifying the better feature vector combination for improved defect prediction 

performances. 

 

The outcomes of this work ensure the significance of using developer behavior related metrics 

on defect prediction models. It has been rectified by the research work of Matsumoto, S et al 

[33] confirming the importance and the effectiveness of developer metrics utilization on 

developer-centric defect predictions. 

 

Jiang, T et al [11] further confirms that the approach of personalization idea has gained many 

successes at different domains and the idea could be successfully applied for related domains 

such as personalized vulnerability prediction. This idea has been facilitated by the research 

contributions done by Shin, Y et al [7] and Zimmermann, T et al [10] in the evaluation on 

possibilities of utilizing defect prediction models trained by the classical software component 

metrics to predict the vulnerabilities in software components. The main objective of this 

research works focused on whether software defect prediction models also can be used to 

predict software vulnerabilities.  

  

In the research work done by Shin, Y et al [7]; they have identified a set of traditional software 

metrics that are used in defect prediction modeling through literature and produced defect 

prediction models. Then, by utilizing the produced defect prediction models they have 

evaluated the vulnerability prediction performances of each source code file. The research 



 

 

19 

  

outcome of this study proved the hypothesis with better performance with 90% of recall 

measure. However, the precision measure of this study was very low. Thus, they have 

emphasized the identification of specialized feature metrics on software vulnerability prediction 

in order to achieve improved performances.  

 

Similarly, the research work done by Zimmermann, T et al [10] followed the same approach to 

predict software component vulnerabilities of Windows Vista project by identifying 36 

empirical software and organizational metrics that are broadly categorized into 5 categories. 

They have identified 30 out of 36 metrics are statistically significant when considering the 

correlation with the software vulnerabilities. As mentioned above; other than the software 

metrics they have considered measures of organizational structure as an input for prediction 

modeling for software vulnerabilities. As per the further analysis done by them; they have found 

there were several organizational feature metrics that are found to be having a significant 

correlation with software vulnerabilities. Addition to that, they have done another separate 

method to evaluate vulnerability prediction performances using the software library 

dependencies that have been used in particular software component. Here, they have defined a 

high-dimensional bit vector as the feature vector for their prediction models. Each bit in the bit 

vector represented a dependent software library where value 1 represented the particular library 

(dependency) has been used and value 0 represented the library hasn’t used for the particular 

software component. However, the approach on predicting software vulnerabilities using 

software dependencies doesn’t draw much attention in the scope of this study. But their work 

on software vulnerability prediction using classical software metrics approach further confirms 

the claims made by Shin, Y et al [7].      

 

On the extensive work done by Shin, Y et al [8] to identify the indicators of software 

vulnerability, they have considered some specialized feature metrics of three categories. They 

have defined complexity, code churn and developer activity as the main categories for their 

evaluation and identified many feature metrics under them. Their evaluation compared two 

software projects and confirmed 24 out of 28 feature metrics have been supporting their 

hypothesis. According to them, code churn and developer activity categories have the most 

significant prediction performances and code complexity is the weakest performing predictor 

category.  

 

According to research work done by Meneely, A. et al [34] investigating the way of developer 

collaboration has a significant correlated effect on the software defects. They have modeled 



 

 

20 

  

collaboration and developer network between contributing developers and source files in the 

repository and utilized network analysis mechanisms to derive developer features such a 

connectivity and centrality measures. But, in order to predict software defects in source files, 

these developer features need to be compatible with other software metrics based on source 

code files. Thus, they transform developer features into software features using several 

techniques before they apply them on file (software) based feature vector to train the models.         

 

Instead of using software metrics or developer metrics Walden, J et al [9] proposed a novel 

approach for vulnerability prediction using text mining methods. There, the source code sent 

through a text mining process and tokenized into a vector of monograms where each monogram 

is followed by a count. This monogram vector is used as the feature vector in their study to 

compare with various prediction models and has obtained similar and higher performance than 

the other available prediction models. Further, they have done a comparison of prediction 

capabilities between text mining and software metric methods by introducing 12 software 

feature metrics. 

 

But this text mining method does not help to draw any meaningful characteristics of individual 

developers. The text mining method involves the direct analysis of source code to extract the 

monogram vector data. According to the goals and objectives of this study feature metrics 

obtained through direct source code analysis is not desirable.   

 

Study Predicts For  Perspective Technique 

Ostrand, T.J. et al [12] Defect Developer Developer Features 

 

Jiang, T et al [11] Defect Developer Software + 

Developer Features  

Matsumoto, S et al [33] Defect Developer Developer Features 

Meneely, A. et al [34] Defect Software Software Features 

(Transformed 

Developer Features) 

Shin Y, et al [7] Vulnerability Software Software Features 

Zimmermann, T et al 

[10] 

Vulnerability Software Software Features + 

Organizational 



 

 

21 

  

Shin Y, et al [8] Vulnerability Software Software + 

Developer 

(Transformed) 

Features 

Walden, J et al [9] Vulnerability Software Monogram Vector 

Table 2.1: Related works on defect/vulnerability predictions 

 

As described in Table 2.1, there are several attempts have been made to develop prediction 

models for software vulnerabilities. In most instances, software related metrics selected as the 

core predictor variables in prediction models. Additionally, there are instances that employ 

different methods such as features of developer activity and tokenized vector of source codes 

as predictor variables of vulnerability prediction models. In most of the works reviewed, the 

attempts have been made to identify predictor variables in order to predict vulnerable software 

components while this study focuses on predicting vulnerable developers. Thus, further 

research work is required to derive the most suitable feature set for this study and analyze their 

discriminative power and correlation in developer-centric vulnerability prediction. 

 

Study Feature Type Feature 

Ostrand, T.J. et al [12] Developer  Bug Ratio 

Jiang, T et al [11] Software Characteristic Vector 

Word Vector 

File Age 

Source code file/path names 

Developer Commit Hour 

Commit Day 

Cumulative Change Count 

Cumulative Buggy Change Count 

Matsumoto, S et al [33] Developer Number of Commitments 



 

 

22 

  

Number of Lines Revised 

Number of Unique Modules 

Revised 

Number of Unique Packages 

Revised 

Average Number of Faults Injected 

By Commit 

Number of Developers Revising 

Module 

Lines of Code Revised By a 

Developer 

Meneely, A. et al [34] Software 

 (Transformed 

Developer Features) 

Code Churn 

Number of Updates 

Number of Developers 

(Sum/Average/Max) of Degree 

(Sum/Average/Max) of Closeness 

(Sum/Average/Max) of 

Betweenness 

Number of Hub Developers 

Shin Y, et al [7] Software Lines of Code Count 

Lines of Variable Declarations 

Count of Function Declarations 

Essential Complexity (Avg, Sum) 

Number of Conditional Statements 

(Avg, Sum, Max) 

Control Structure Nesting Level 

(Avg, Sum, Max) 

Comment Density 



 

 

23 

  

Number of Inputs to a Function 

(Avg, Sum, Max) 

Number of Assignments to 

Parameters (Avg, Sum, Max) 

Number of Changes (Commits) 

Lines Changed 

Lines Inserted 

Lines Deleted 

Lines New 

Number of Prior Faults 

Zimmermann, T et al [10] Software Total Churn 

Frequency 

Repeat Frequency 

Cyclomatic Complexity (Max, 

Total) 

Fan-In (Max, Total) 

Fan-Out (Max, Total) 

Lines of  Code (Max, Total) 

Weighted Methods Per Class (Max, 

Total) 

Depth of Inheritance (Max, Total) 

Coupling between Objects (Max, 

Total) 

Number of Subclasses (Max, Total) 

Total Global Variables 



 

 

24 

  

Incoming Direct 

Incoming Closure 

Outgoing Direct 

Outgoing Closure 

Layer Information 

Block Coverage 

Arc Coverage 

Organizational Number of Engineers 

Number of Ex-Engineers 

Edit Frequency 

Depth of Master Ownership 

Percentage of Org Contributing to 

Development 

Level of Organizational Code 

Ownership 

Overall Organization Ownership 

Organization Intersection Factor 

Shin Y, et al [8] Software (In addition to 

Shin Y, et al [7]) 

 

 (Transformed 

Developer Features) 

Consolidated Developer Network 

Degree Value of File (Avg, Sum, 

Max) 

Consolidated Developer Network 

Closeness Value of File (Avg, Sum, 

Max) 

Consolidated Developer Network 

Betweenness Value of File (Avg, 

Sum, Max) 

Consolidated Developer Network 

Edge Betweenness Value of File 

(Avg, Max) 



 

 

25 

  

Consolidated Contribution Network 

Closeness Value of File 

Consolidated Contribution Network 

Betweenness Value of File 

Walden, J et al [9] Software Monogram Vector 

    Table 2.2: Feature vectors of related studies 

 

Many authors have been used a number of feature metrics in predicting software defects in the 

literature. As identifiable through the comparison of previous works in this domain, none of the 

research work has been focused topic of this study which is developer-centric vulnerability 

prediction. But, several authors [8], [11], [12], [33], [34] outlined that a set of developer-centric 

features used in defect prediction models also can be effectively utilized to do predictions on 

vulnerabilities.  

 

Further, it’s a notable fact that some authors have been transforming developer features into 

software features and achieve positive outcomes in their results. In most of the authors outlined 

earlier; the main goal is to predict the vulnerability of each software component (modules, 

packages or files) are the reason for the transformation of these developer features into software 

features.  

 

This transformation has achieved through accounting developer features separately for each 

and every software component. Figure 1.1 shows that the same number of commits feature can 

be considered in different aspects. For a file, a number of commits affected can be considered 

as a good software feature and meanwhile number of commits done by a developer would be 

an important feature for a developer. For example, Shin T, et al [8] has considered all these 

developer and contribution network related centrality measures specific to each and every 

source code file. So, those features are considered as a feature of the source code file but not as 

an overall feature of the developer who has contributed.    

 



 

 

26 

  

 

Figure 2.1: Transformed Feature vs Developer Feature 

 

Thus, it can be assumed that this transformation can be applied vice versa to gain positive results 

in developer-centric vulnerability predictions. It has shown that the feature metrics that are used 

in software defect prediction can be used in vulnerability prediction since both defects and 

vulnerabilities have many similarities. 

 

2.2 Related Work Summary 

 

According to the reviewed literature; the attempts have been made on three different 

perspectives so far. 

 

1. Defect Prediction - Software Perspective 

2. Vulnerability Prediction - Software Perspective 

3. Defect Prediction - Developer (Personalized) Perspective  

 

Thus, it is clearly identifiable that there’s less or no attempt has been done towards identifying 

vulnerability prediction methods from a developer’s perspective.  As outlined in the previous 

sections, the prediction of security and functional defects from a software perspective is 

possible when there is an ongoing software project which can be accessible to the source code. 

However, that doesn’t provide a clear picture of how the individual developer contribution 

relates to the functional or security defects that can occur in the software.  

 

 

File Developer 

Number of 
Commits 

Number of 
Commits 



 

 

27 

  

But, methods of predicting the individual functional and security defect-proneness of 

developers (developer perspective) can produce better foresight about the software project risks 

at the early stages of software development projects. 

 

When predicting software defects or vulnerabilities, most of the work has been focused on 

predicting the future potentiality of the same software components with respect to its software 

defect or vulnerability measures. But predicting the developer-centric vulnerability of 

developer is all about predicting a personalized characteristic based on the techno-behavioral 

practices that have been recorded in the past software project contributions. 

 

Therefore, to extract software feature metrics; it always needs to have access to the source code 

of the software component. But developer features or personalized software features are always 

extracted through mining the past developer contribution interaction records (commits) of the 

associated version controlling system in the software project. Thus, in order to extract developer 

features; accessibility to the software code is not required. 

 

2.3 Security Vulnerabilities 

 

A software security vulnerability can be described as a kind of an error in a software 

specification, implementation or configuration which allows to exploit its security policies at 

the execution [7].  Specifically, the security vulnerabilities in the software implementation are 

considered as developer-centric vulnerabilities. Execution of a vulnerable implementation may 

provide functionality that is beyond its expected functionality by enabling attackers to exploit 

the defined policies and business logic in software. 

 

Software defects and vulnerabilities have many similarities since both are incurred due to 

human mistakes. But vulnerabilities differ from defects since they are actively observed by the 

attackers with malicious and criminal intent while defects are exposed through the valid use 

cases of its functional usage. 

 

 



 

 

28 

  

2.4 Developer-Centric Security Vulnerabilities 

 

The vulnerability of a software application could occur at any stage of software development 

life cycle. Vulnerabilities may be introduced due to invalid requirement specification, weak 

architectural designs, weak and vulnerable implementation techniques,  algorithms and weak 

test scenarios executed and so on. In this study, the focus is scoped on developer-centric 

vulnerabilities which can be defined as the weaknesses of software developer implementations. 

Those have been identified as the most possible cause of security exploitations against the 

software security measures which has been defined by its functional and nonfunctional 

requirements. 

      

Open Web Application Security Project (OWASP) is an online community, a nonprofit 

organization that provides documentation, methodologies, tools and technologies in the field of 

security in web applications. OWASP is famous for its top 10 developer-centric security 

vulnerabilities published at each year. In most situations, this OWASP top 10 security 

vulnerabilities has become the de facto checklist to ensure application security. 

 

Common Weakness Enumeration (CWE) is another community project which aims to create 

and maintain a catalog of software weaknesses and vulnerabilities. It’s also a community 

developed list for common security weaknesses in software. It has served as a common baseline 

for security weakness identification, mitigation and prevention efforts. According to CWE; they 

have documented about 700 identified weaknesses. But there’s no such tool that can identify 

all of them. Thus, CWE has presented and a short list of top 25 issues which is known as 

CWE/SANS top 25 which contains mostly widespread and critical weaknesses.    

 

In most of the security assessments, both OWASP top 10 and CWE top 25 lists have been used 

as the benchmarking guidelines and there are many tools has been developed to analyze 

software source codes by adopting OWASP and CWE as the main rule set. 

 

 

 



 

 

29 

  

2.5 Commit Log 

 

Commit log is the detailed informational log in Git VCS which records all the changes that has 

done by each and every developer in the repository by reverse chronological order. This log is 

a very useful data source in this study since there are many rich data contents available related 

to developer’s techno-behavioral features.  

 

 

Figure 2.2: Detailed Structure of a Commit Log 

 

Figure 2.2 shows a sample structure of a recorded commit log details in Git Version Controlling 

System (VCS). Not only are this but also there many other details captured by the VCS. Thus, 



 

 

30 

  

these repository mining tools are capable of capturing the statistical data about the features by 

analyzing through the commit logs even access to relate software components are not available 

or restricted. 

 

2.6 Feature Metrics 

 

A feature metric is a numerical representation of particular object property. In classification 

models, set of features which is known as feature vector used as variables of classification. 

Literature suggests that it’s an important factor to have fine grained feature vector in order to 

model better performing classifier. Classifiers are the main component used in prediction 

models of this research work. Thus, identification of features with higher predictability with 

vulnerable developers is important concern. 

 

2.7 Feature Subset Selection (FSS) 

 

A number of features in a data set are known as the dimensionality of the data set. Many studies 

on prediction models report that using high dimensional data set for prediction doesn’t increase 

the performance at all [13], [14]. Instead, performance will start to decline after an optimal 

amount of feature set since many features can contain noise and redundant information. Having 

a data set with a large set of features introduces many other problems such as complexity, higher 

computational overhead on training. Therefore, an optimum set of features needs to be 

identified in order to provide the maximum performance gain from prediction models and 

simplicity. Thus, there are techniques to select the best subset of features from a large feature 

set available in a prediction problem. There are two main approaches discussed under feature 

subset selection in machine learning domain which known as filter methods and wrapper 

methods [17]. 

 

2.7.1 Filter Methods 

 

Filter methods are focusing on identifying the relevance of the feature based on univariate 

statistical measurements. They are independent of the learning algorithm and may apply in the 

data preprocessing phase. These methods are computationally faster and simple, but the 



 

 

31 

  

resulting feature subset may not be effective on the selected learning model. Below outline 

some filter methods that are used for FSS. 

 

● Information Gain 

● Chi-square Test 

● Fisher Score 

● Correlation Coefficient 

● Variance Threshold 

 

2.7.2 Wrapper Methods  

 

Wrapper methods focus on solving the real problem by repeated optimizations of the learning 

model starting with all the feature sets and later selecting the optimal feature subset based on 

the learning model performances. Since there are many repeated learning steps and cross-

validations in wrapper methods, it is more computationally expensive than filter methods. 

Below outline some wrapper methods that are used for FSS. 

 

● Recursive Feature Elimination     

● Sequential Feature Selection Algorithms 

● Genetic Algorithms 

 

2.7.3 Summary 

 

The techniques used for feature selection are in a wide range and specific based on many criteria 

and no known technique uniformly performs well in all feature selection problems. Under this 

domain of vulnerability prediction Shin Y, et al [7] have used information gain ranking 

technique and correlation based greedy feature selection technique to select the most suitable 

feature vector and have obtained similar prediction performances by both techniques. Even 

though the wrapper methods are computationally expensive than filter methods it employs 

many learning steps and cross-validations. Since this study having a lesser feature vector 

dimension; the computational complexity problem will be less significant. Thus, the usage of 

the wrapper method would be the most suitable approach for this study on feature selection.  

 

 



 

 

32 

  

2.8 Class Balancing 

 

In real-world classification problems, the datasets that are used to train classifiers suffer from a 

common weakness known as class imbalance problem. A dataset identified as an imbalanced 

dataset if there are data points belongs to one class more than the other classes. This causes 

serious negative effects on trained classifiers such as impair its best possible performances and 

tendency to over fit towards the majority classes. To deal with this problem there are two 

approaches suggested in the literature. The dataset imbalance problem either can be resolved in 

the algorithmic level or data level. 

 

2.8.1 Algorithmic Level Approach 

 

On algorithmic level, this can be resolved by applying some modifications to the generic 

algorithms. But these modifications are specific to each classification algorithm [25], [26] such 

as adjusting probabilistic estimates, decision thresholds and many other modifications to 

minimize the effect on class imbalance [24].   

 

2.8.2 Data Level Approach 

 

At the data level, this is solved by employing many different re-sampling techniques to balance 

the dataset classes. Addressing this problem on data level is the generic and most commonly 

practiced method which attempts to balance the dataset classes artificially through some 

techniques such as oversampling and undersampling [23].  

 

Further, there are many data level improved derivatives of sampling techniques has been 

proposed on class balancing such as Random Over Sampling (ROS), Random Under Sampling 

(RUS), Synthetic Minority Oversampling Technique (SMOTE) [27], Condensed Nearest 

Neighbor Rule, One-Sided Selection (OSS). Etc.  

 

2.8.3 Summary 

 

Although there are many applicable versions to avoid the dataset imbalance problem, there are 

inherent problems in each approach. For example, oversampling techniques are known for 

overfitting problems due to artificially generated data points and undersampling causes for loss 



 

 

33 

  

of information by reduction of data points. However, Ganganwar, V. [23] confirms that still the 

data level solutions are more preferable to solve this problem since there are not many 

implementations available for all algorithms to handle this problem in algorithmic level.   

 

According to Hulse et al. [28] selection of suitable class balancing technique mostly depends 

on the domain and dataset characteristics. Meanwhile, Chawla, N. et al. [24] claim that the data 

imbalance problem is an intrinsic characteristic of some domains such as fraud/intrusion 

detection, risk management, text classification and medical diagnosis/monitoring. In these 

classification problems, the most focused intention is to accurate detection of the minority class 

rather than the most common majority class. Generally, this study also can be identified as a 

similar variant of the above-mentioned problems where vulnerable developer class can become 

the minority class while non-vulnerable developer class is the majority. According to the 

observations of Walden, J. et al [9] the ratio between minor and major class have been around 

1:100.       

 

In the related attempts on literature [7], [8], [9] for software defect/vulnerability predictions, 

random undersampling (RUS) technique has been utilized to solve the class imbalance problem. 

Therefore, it will be worth enough to evaluate performance measures for both RUS and SMOTE 

techniques to get better understanding while the ROS method can be overlooked since the study 

evaluates with SMOTE which is an improved version of the ROS technique.    

 

2.9 Prediction Models 

 

Prediction modeling is a way of creating a systematic method to predict a future condition that 

could occur by analyzing a set of correlated predictor parameters that can be observed at the 

present. In the academic and research context there are a number of prediction models have 

been developed and employed to solve prediction problems. This study also intends to get the 

use of prediction models to predict vulnerable developers. Thus, it’s an important thing to refer 

the literature to explore what are the prediction models that have been used in the related 

domains of this study.    

 

There are two main streams in prediction models. Statistical prediction models coming from 

the mathematical background to solve prediction problems. The second approach has been 



 

 

34 

  

developed with the advancement of artificial intelligence (AI) and machine learning (ML) 

techniques in computing. The models discussed in both of these approaches solve three types 

of prediction problems. Regression is a supervised prediction model used to predict the value 

of a continuous dependent output parameter based on a set of independent parameters. 

Classification is the other method under supervised models used to make predictions on a 

discrete dependent parameter based on a set of independent parameters. Clustering is an 

unsupervised method in prediction models which mostly used in data mining to discover a new 

set of important information and facts from an available dataset.  

 

In the literature, many authors suggest that Logistic Regression is effective as a defect and 

vulnerability prediction model. Logistic regression is a statistical prediction model that is used 

to predict on discrete binary parameter.  Shin, Y et al [7], [8] employed logistic regression as 

the main prediction model to evaluate software metrics, code churn and developer activity 

measures to predict vulnerable software components and achieved good prediction 

performances. Additionally, they have compared the result outcomes for other effectively used 

prediction techniques such as Random Forests, Naïve Bayes and Bayesian Network. Most of 

them have performed the classification in a similar capacity while Naïve Bayes provided higher 

PD with higher FI than other methods. According to their approach in the logistic regression 

model a software component considered to be vulnerable if the probability of the output is 

greater than 0.5 and considered to be clean otherwise. In the study of Zimmermann, T et al [10] 

to predict software vulnerabilities in windows vista outputs were evaluated with logistic 

regression and Support Vector Machines (SVM). But it’s notable that they have applied SVM 

only for predicting high dimensional bit vector while logistic regression only applied for 

classical feature vector with lower dimensionality. In the text mining approach of Walden, J et 

al [9] to predict software vulnerabilities techniques, they have used the Random Forest machine 

learning algorithm as the primary classifier and achieved better recall performance in all three 

case studies evaluated.   

 

Recent studies in the literature, there are two main techniques has been employed as 

vulnerability prediction models. Logistic regression which is a statistical technique and 

Random Forests, Naïve Bayes, Bayesian networks and SVM are key machine learning 

techniques used in vulnerability prediction. It can be notable that these authors have been used 

different types of prediction algorithms to train the prediction models such as regression 

algorithms, tree algorithms and Bayesian algorithms. Thus, it would be worth enough to do an 



 

 

35 

  

evaluation for each of these algorithms and compare the most performing one on developer-

centric vulnerability predictions.   

 

2.10 Performance Evaluation 

 

Performance evaluation describes how well and how accurate a prediction model predicts 

particular developer is contingent to do security vulnerable codes or not. The classification of 

developer profile into vulnerable class or non-vulnerable class is a binary classification. There 

are several approaches suggested in the literature which has been used to evaluate the 

performance of binary classification problems.  

 

2.10.1 Confusion Matrix 

 

Confusion matrix is the most common technique utilized in measuring the performance of 

classifiers. This technique simplifies and summarize the classifier results in order to provide a 

better understanding on its performance. In confusion matrix representation for a classifier 

results, there are four possible states.  

 

● If the instance is POSITIVE and it is classified as POSITIVE it is counted as TRUE 

POSITIVE (TP). 

● If the instance is POSITIVE and it is classified as NEGATIVE it is counted as FALSE 

NEGATIVE (FN). 

● If the instance is NEGATIVE and it is classified as NEGATIVE it is counted as TRUE 

NEGATIVE (TN). 

● If the instance is NEGATIVE and it is classified as POSITIVE it is counted as FALSE 

POSITIVE (FP). 

 

In a binary classification model, there exist two possible errors. One is False Positive (FP) and 

the other one is False Negative (FN).  True Positive (TP) and True Negative (TN) considered 

being two classification results that are accurately classified by the classification model.  

 

Accuracy, Precision (P) and Recall / Sensitivity (R) are most frequently used performance 

measures in classification models where precision determines how many positive instances 



 

 

36 

  

classified are actually positive while recall determines how many positive instances are actually 

classified by the model. Thus, the higher the precision and higher the recall resembles the 

classifying model has a better performance. But precision and recall have a trade-off in between 

since it’s difficult to expect both in higher rates at once. Thus, difficult to analyze a predictor 

model alone with precision and recall. According to the confusion matrix, the above-mentioned 

performance measures can be described as follows.   

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 

 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F-Measure or F1 measure is another performance measure which comes along with the above 

mentioned precision and recall. F1 measure described as the harmonic mean of precision and 

recall. An increase in F1 measure indicates an increase of both precision and recall.  

 

𝐹1 = 2 ×  
(𝑃 𝑥 𝑅)

(𝑃 + 𝑅)
 

 

Additionally, there are several custom defined or modified measures that have been used to 

evaluate binary classification models in the related domain of defect and vulnerability 

prediction. 

 

In the attempt of personalized defect prediction models of Jiang, T et al [11] they get the use of 

cost-effectiveness as a performance measure on prediction models. Cost-effectiveness of 

prediction models describes how maximum prediction can be achieved at a minimum amount 

of code line inspections. 

 

Shin, Y et al. [7] suggests two additional custom defined performance criteria, file inspection 

ratio (FI) and line inspection ratio (LI) on vulnerability prediction models of software sources 

which gives feedback on cost-effectiveness. Further, they introduce the probability of false 

alarm (PF) measure as the ratio of files incorrectly predicted as vulnerable to actual neutral 

files. However, this study doesn’t intend to evaluate the performance based on such specific 



 

 

37 

  

criteria since it may not be applicable for developer-centric vulnerability prediction 

performances 

 

The approach of Scandariato, R et al [9] to predict vulnerable software components using text 

mining methods suggests an additional measure called fall-out / false positive rate (ϑ) which 

gives the probability of false positive results that can be produced by a prediction model. This 

is similar to the PF measure which has been suggested by Shin, Y et al. [7]. The fall-out measure 

enables to do comparisons with other studies in the domain and a lesser value is preferred.   

𝜗 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

In addition to the performance measures which has been suggested by the authors in reviewed 

literature on vulnerability classification, many authors on classifier modeling have employed 

few other important performance measures such as Receiver Operating Characteristic (ROC) 

and Kappa Statistic 

 

2.10.2 Receiver Operating Characteristic 

 

The ROC curve is a graphical representation that illustrates the classification performance in 

binary classifiers. This curve is created by plotting True Positive Rate (sensitivity/recall) against 

False Positive Rate (fall-out). Thus, the ROC curve (Figure 2.3) is a sensitivity function of fall-

out. 

 

 



 

 

38 

  

Figure 2.3: ROC curve behavior against confusion matrix   

 

A classifier with perfect classification (no overlap in the two positive and negative distributions) 

has an ROC plot that passes through the upper left corner (100% sensitivity, 100% specificity). 

So, the overall accuracy of the classifier will be highest when the ROC plot is closer to the 

upper left corner. In ROC curve Area Under Curve (AUC) gives a numeric measure about the 

classifier performance. 

 

 

Figure 2.4: Different ROC curves and respective classification distributions  

 

Figure 2.4 depicts the results of three different classifications and the respective ROC curves. 

The classification accuracies are decreasing subsequently towards the right side. As it can be 

observed the AUC values also decreasing with the decreasing classification performances.  

 

2.10.3 Kappa Statistic 

 

The Kappa statistic (or value) is a metric that compares an observed accuracy with an expected 

accuracy (random chance). Observed accuracy is simply the number of instances that were 

classified correctly throughout the entire confusion matrix. Expected accuracy is the accuracy 

that any random classifier would be expected to achieve based on the confusion matrix. 

 



 

 

39 

  

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

( 1 −  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
 

 

 

2.10.4 Summary 

 

According to the literature, the main prediction model performance measures on binary 

classification are accuracy, precision, recall, F1, ROC and the Kappa Statistic. Additionally, 

there are other measures that have been introduced by many authors specifically in vulnerability 

prediction such as cost-effectiveness and probability of false alarm to have a fine-grained 

comparison between different prediction models. 

 

2.11 Error Analysis 

 

Generally, in supervised learning, it has been identified that there are two main controllable 

components of errors that can effect on the trained models. Those are biased error and variance 

error. According to Fortmann-Roe, S. [31] total error (Err(x)) of a learning model can be 

decomposed as follows. 

 

 

The third component, Irreducible Error has been identified as the error that cannot 

fundamentally reducible by any of the models.  Thus, the minimum error rate can be desirable 

if bias and variance components are zero. 

 

2.11.1 Bias Error 

 

Bias error increases with the oversimplification of the trained model when an important feature 

relationship of the training dataset has been ignored by the learning algorithm. Models with 

high bias error rates represent under fitting problem. 

 

 

 



 

 

40 

  

2.11.2 Variance Error 

 

High variance error is caused due to the learning model oversensitivity on the training dataset. 

Higher variance error rates in trained models introduce random noise to the test data output 

which causes a higher error rate on expected vs resulted values. 

 

Figure 2.5: Bias-Variance Tradeoff  

 

2.11.3 Summary  

 

As identified, bias and variance are the two main components of the total error in a supervised 

learning model. Figure 2.5 shows the two problems of underfitting and overfitting scenarios 

that can be caused by high bias or variance. Thus, in order to produce a model with a lesser 

error rate, the models should be designed and trained in such a way that can balance bias-

variance tradeoff.  

 

To deal with the bias-variance tradeoff management problem, several techniques have been 

suggested [31] such as the use of ensemble techniques, K-fold cross-validation and feature 

selection. Thus, this study will focus on these identified techniques when managing the 

prediction model performance errors.   

 

 

 

 

 

 

 

 

 



 

 

41 

  

 

 

 

Chapter 03: Problem Analysis and Methodology 

 

Generally, we can see this prediction problem as a binary classification problem that classifies 

whether a particular developer is vulnerable or not. However, there can be an argument on this 

since two vulnerable developers cannot be differentiated for their vulnerability by this 

approach. As per the scope, this study only focuses on predicting the vulnerable developers but 

not to produce a comparison between two developers who have been predicted as vulnerable. 

However. This research work can be taken as the underpinning work towards producing 

prediction models that can further differentiate each developer-centric vulnerability.  Since the 

classifying classes are known and the dataset is available with the target classes; this can be 

solved through the supervised classification method discussed in the previous chapter.     

 

Within the scope of this study, there are two main research questions to be answered in order 

to develop an efficient model for predicting vulnerable developer profiles based on each 

developer’s superficial characteristics of developer behavior. First, it needs to be identified what 

is the most suitable set of behavioral features of developer profiles that predicts the developer-

centric vulnerability. Second, it needs to be identified what are the most suitable classifiers that 

predict vulnerable developers effectively and efficiently and further techniques can be used to 

improve the performances of classifiers. In Chapter 03 we analyze the methods and approaches 

that can be used to answer the above research questions in detail and define the appropriate 

research methodologies to derive conclusions. 

 

3.1 Candidate Feature Vector 

 

Chapter 2 reveals that there are many metrics that have been used as the features of the defect 

and vulnerability prediction. As the initial step, a set of candidate developer behavioral metrics 

is selected based on the requirements, constraints and limitations discussed in previous 

chapters. Further, in selecting developer features for this study; some of the software features 

also have been considered to be selected as personalized software features. 

 



 

 

42 

  

As per the reviewed literature, there have been several instances that some of the authors have 

transformed developer feature metrics into software feature metrics. Similarly, this study 

focused on identifying several software features that can be measured at a personalized level. 

For example, the number of commits feature metric can be considered in both  software 

component level as well as the personal level of each developer.  Thus, the feature vector 

selected for this study is a combination of personalized software features and developer techno-

behavioral features. Since these personalized software feature metrics also characterize the 

similar notions of developer features; ultimately the selected feature metric vector is considered 

as a vector of developer techno-behavioral feature metrics.  

 

According to previous studies, different authors have been using different or similar types of 

feature vectors. In the selection of candidate feature vector for this evaluation, it basically 

hypothesizes that the developer features used by the previous works (in the literature review) 

can be significant for developer-centric vulnerability predictions as well with the support of 

claims done by Shin Y, et al [7]. Finally, the feature selection techniques discussed in Chapter 

2 can be applied to derive a fine-grained feature vector which has a higher correlation with 

developer-centric vulnerabilities.    

 

Data points for each developer feature metric captured through identified and custom developed 

mining tools on identified repositories. Based on hypotheses that may have good discriminative 

power on developer-centric vulnerability prediction.   

 

In the below sections outline the detailed descriptions and hypothetical justifications on all 

candidate feature metrics selected for this study.   

 

3.1.1 Comment Percentage 

 

It’s a common practice for developers to add textual comments in their source code 

contributions and it’s a known fact that documentation on source code is best practice to avoid 

many issues in development including vulnerabilities and defects.  Shin Y, et al [7], [8] has 

been used comment density of the files as a software metric. This metric can be transformed 

into a personalized software feature metric (a kind of developer metric) if comments added by 

each developer considered as a percentage of total number lines of code contributed by the 

developer.  

 



 

 

43 

  

Hypothetically it can be assumed that developers who do better documentation in source codes 

have a better understanding and background knowledge about the domain and the code. 

Therefore lesser vulnerable code contributions are desirable for the developers with higher 

comment percentages. Thus, developer comment percentage is considered as a candidate 

feature metric for developer vulnerability prediction. 

 

3.1.2 Lines of Code Count 

 

Lines of code per each developer represent the overall contribution amount of a developer in a 

revision of a project. Lines of code is a characteristic variable for each developer defines their 

implementation pattern. 

 

Lines of Code Count has been utilized as a feature metric on software defect/vulnerability 

prediction studies by different authors [7], [8], [33] whose main focus to consider the lines of 

code counts in individual source code files or software components. In this study, this has been 

redefined as a count of code lines contributed by the individual developer in order to 

characterize it as a developer related behavior. According to the research work done by Zhang, 

H. [36] lines of code in software components have a positive correlation with the defects. Thus, 

it can be assumed that the developers who contribute more lines of codes can be susceptible to 

introduce security defects rather than those who do less number of code lines.       

 

3.1.3 Change Percentage 

 

Change percentage of a developer measures the percentage of contribution (line insertions and 

deletions) that have been done by a developer in the project so far. The overall percentage of 

the contributions that have been done by each developer to a software project can describe the 

role and involvement of each developer on that particular software repository.  

 

Matsumoto, S et al [33] also suggested a similar set of metrics in his study to predict the 

software defects and has obtained successful outcomes. Thus, developer change percentage can 

be a possible candidate developer behavior feature metric correlates with individual developer-

centric vulnerability. The hypothesis that has made to select this as a candidate feature is that 

the developer who claims for a higher percentage of changes has a higher probability to account 

for the vulnerabilities in the project.    

 



 

 

44 

  

3.1.4 Lines Deleted 

 

This feature metric describes the number of lines deleted by the developer. During the 

contributions done by developers, some of the existing code fragments can be deleted. In the 

works done by Shin Y, et al [7], [8] number of deleted lines considered as a software metric. 

But it can be simply transformed into a developer feature by just calculating the line deletions 

done by individual developers by analyzing through each commit logs. Thus, lines deleted by 

an individual developer is considered as a behavioral characteristic which can be used in this 

study.   

 

Source code lines of software may get deleted by users due to many reasons. Among the 

developer’s under engagement, unclear requirements, problem complexities are the most 

common reasons. This study hypothesized that the developers who delete code lines since 

previous lines have some functional or non-functional weakness and the developer has a good 

understanding of the expected functionality. So, the assumption to select this feature is that 

developers who do a higher number of code lines may have a lesser developer-centric 

vulnerability.       

 

3.1.5 Lines Inserted 

 

The number of lines inserted by the developer. Same as lines deleted measure, lines of code 

inserted by each individual counted as a behavioral characteristic of the developer. As 

mentioned above; Shin Y, et al [7], [8] have used this software feature metric to predict software 

component vulnerabilities.  

 

The hypothetical assumption that has made to select Lines Inserted as a candidate developer 

feature is similar to the lines of code count feature. Although the developer might contributing 

to a new feature; a higher number of code lines insertions can be a cause of a higher number of 

security vulnerabilities. 

 

3.1.6 Change Stability 

 

Change stability describes how stable the source code contributions that has been done by the 

developer so far in the project. This is the percentage of source code lines remaining so far from 



 

 

45 

  

inserted lines of code. The feature is similar to the opposite of code churn software metric used 

by Meneely, A. et al [34] in order to predict defects on source files.  

 

Code churn is a metric that counts the evolving rate of code in a software component. Thus, it 

can be assumed that the change stability feature is the transformed developer feature of code 

churn software metric which will support to predict developer-centric vulnerability. The initial 

hypothetical basis for selecting this feature it the assumption that the developers who have 

higher change stability may have done less security vulnerable code contributions.   

 

3.1.7 Average Cyclomatic Complexity 

 

Cyclomatic complexity is a software metric that is used to measure the complexity of the source 

codes. The expectation is to measure the developer-specific complexity of the code 

contributions of each developer. Since the complexity measures will vary from one code 

fragment commit to another done by an individual developer, an average value of all 

contributions will be calculated as the developer’s cyclomatic complexity for convenience.  

 

Cyclomatic complexity has been used as a software metric by several authors in their studies.  

Zimmermann, T et al [10] used the total and average cyclomatic complexities of software 

components and a similar variant of this feature has been used by Shin Y, et al [7], [8] to predict 

the vulnerabilities in software components.   

 

The hypothetical assumption that has made in selecting this as a candidate feature is that the 

developers who contribute with higher average cyclomatic complexity may contain security 

vulnerabilities in their contributions due to overlooked scenarios that developers might miss to 

cover up. 

 

3.1.8 Developer Contribution Age 

 

Developers are starting to contribute to software projects at different times. Thus, their 

knowledge of the project differs based on the time that they started to contribute to the software 

project. Developer contribution age is the metric that counts a number of days so far since 

particular developer’s first commit. It can be assumed that the developers with higher 

contribution age are experienced enough to understand the security standards in the project do 

fewer vulnerability defects in their code contributions.  



 

 

46 

  

In the research work of Jiang, T et al [11], have used a software metric for file age in order to 

do predict software defects. Thus, it can be identified that the developer contribution age feature 

metric is the transformed version of the file age metric which can be used to predict developer-

centric vulnerability.     

 

3.1.9 Developer Closeness 

 

Closeness is a centrality metric of a developer network that is created by identifying developer 

interconnections. The closeness of a developer is measured by calculating the average distance 

to any other developer in the network graph.  

 

This developer feature has been used as a transformed software component feature in the works 

done by Shin Y, et al [8] which can indicate whether the particular software component has 

been contributed by central or non-central developers of the developer network.   

 

This metric measures how closely these developers are interconnected when collaborating to 

the software project and it supports to understand and capture the collaborative behavior of 

developers which can be important on vulnerability prediction. Hypothetically it can be 

concluded that the developers with higher collaboration behavior with other developers; will 

share the security standards and norms towards avoiding security defects. So, developers with 

higher collaboration behavior will have reduced developer-centric vulnerability measures.     

 

3.1.10 Developer Betweenness 

 

Betweenness is another centrality metric that can be derived from developer network graphs. 

In a network graph, the path is a non-repeating sequence of adjacent nodes. The shortest path 

between two nodes is identified as the Geodesic path.  

 

As same as the developer closeness, betweenness also a developer feature metric used by Shin 

Y, et al [8] as a transformed feature for software component files to indicate particular software 

component has been contributed by the central or non-central developer of the developer 

network graph. 

 

The developer betweenness is the number of geodesic paths that include a particular developer 

over a total number of geodesic paths in the network graph. As same as closeness, betweenness 



 

 

47 

  

also measures the developer interconnectivity and possibly correlated feature for developer-

centric vulnerability predictions. As similar to developer closeness; this feature also describes 

another aspect of developer-developer collaboration behavior. Thus the hypothesis made on 

developer closeness also would be valid for this feature as well.    

 

3.1.11 Number of Commits 

 

A number of commits by the developer also a primary behavioral feature. Many authors [7], 

[8], [11], [33], [34] who have done related works have been suggested to utilize a number of 

commits as a feature metric. Thus, this study also intends to use this feature in the final feature 

vector on predicting developer-centric vulnerability. It can be assumed that a higher number of 

commits may contain a higher number of code lines per each developer. As same as the 

hypothetical assumption discussed in lines of code feature; a number of commits that have been 

contributed by a developer also considered as a developer-centric feature for this analysis. 

 

3.1.12 Frequent Commit Hour 

 

In the study of Jiang, T et al [11] they have been using the commit hour as a feature metric on 

software defect prediction. As we can identify this feature can be transformed to developer’s 

feature by selecting the frequent commit hour of the day on each developer. Developers do 

commits to the source control system in different times in a day. Due to natural reasons human 

developers working skills, the mood may get affected (impaired or enhanced) based on the time 

that they work. So the expected coding quality may get affected and could be a cause to 

contribute to vulnerable codes. Thus, there is a hypothetical assumption to select frequent 

commit hour as a developer feature metric that can describe the most frequent hours that the 

developer has worked.    

 

3.1.13 Average Commit Interval 

 

Developers are committing their code changes to the version control system from time to time. 

Some developers are frequent committers and some are not. In the study of Weicheng, Y et al 

[21] to analyze the developer commit patterns they have used average time distance in between 

commits per developer. They have omitted the distances more than 10 days since they are 

making some unnecessary noise in the data set. The average distance between commit intervals 

of each developer also can be a candidate feature measure in this study as well since it captures 



 

 

48 

  

some behavioral patterns of the developer. The hypothesis that is considered on this feature is 

the developers who have lesser commit intervals may not take time to think or re-evaluate on 

the security standards or security defects on their contribution and commit frequently. Thus, the 

developers with lesser average commit intervals may be having a higher developer-centric 

vulnerability.       

 

Following the outcomes from Weicheng, Y et al [21] this study adopts an average commit 

interval feature as a vital developer behavioral metric that can cause an effect on vulnerable 

code contributions.    

 

3.2 Repository Selection for Dataset 

 

As defined in the scope of this study, we are focusing on software repositories that are openly 

available in GitHub social coding platform to capture the required dataset. Since there are many 

open source repositories available, it’s required to select the most suitable repositories 

considering the requirements, scope and the limitations of this study. 

 

In the selection of software repositories for this study, the following characteristics have been 

considered. 

 

3.2.1 Implementation Language 

 

 

Figure 3.1: Top Active Languages in GitHub (source: http://githut.info/) 

 



 

 

49 

  

GitHub has software repositories implemented in many languages. But we have considered the 

repositories that are implemented in Java language since it is popular, widely used and Figure 

3.1 shows that Java has been ranked as the second most active repository holding language in 

GitHub. The availability of many supported repositories analyzing tools for Java language is 

another plus point for this decision. 

 

3.2.2 Build Tool 

 

Java projects in Github uses several types of build management tools such as Ant, Maven, 

Gradle, etc. But SonarQube tool that is used to filter out vulnerable developer profile is only 

supported for the projects developed using Maven and Gradle build tools. Thus, the projects 

that are built with Maven or Gradle build management tool will need to be filtered out from 

Github. 

 

3.2.3 Number of Contributors 

 

In order to train and develop a good prediction model, there should be richer and complete data 

set for training and verifications. When a repository has a higher number of contributors 

increases the chances of having a good dataset to develop a high performing prediction model. 

Thus, having a higher number of contributors is strongly considered a point for repository 

selection. 

 

3.2.4 Number of Commits 

 

A higher number of commits represents more interactions of the developers with the repository. 

That enriches the extracting dataset which also helps to train the high performing prediction 

model. 

 

3.2.5 Number of Releases 

 

A higher number of releases represents the stability and continuity of the software. Thus, having 

a higher number of releases imposes the importance and the significance of the repository to be 

chosen as a candidate repository for data extraction. 

 

 



 

 

50 

  

3.2.6 Selected Repositories 

 

According to the above criteria following repositories has been examined to capture the features 

that are identified. 

 

Repository Description Build 

Tool 

Contributo

rs 

Commits Releases 

Apache 

Curator 

Apache Curator is a 

Java/JVM client library for 

Apache ZooKeeper 

Maven 74 2,571 108 

Apache 

Ignite 

Memory-centric distributed 

database, caching and 

processing platform  

Maven 198 25,375 83 

Guava Google Guava is an open-

source set of common 

libraries for Java 

Maven 170 4,860 170 

Netty Netty is an asynchronous 

event-driven network 

application framework 

Maven 357 9,098 199 

Nifi Easy to use, powerful, and 

reliable system to process and 

distribute data. 

Maven 213 4,898 67 

OkHTTP An HTTP & HTTP/2 client 

for Android and Java 

applications 

Maven 171 3,454 55 

RxJava Reactive Extensions for the 

JVM 

Gradle 233 5,505 209 

Spring - 

Boot 

Spring Boot is an open source 

Java-based microservices 

framework 

Maven 531 19,973 115 

WSO2 - IS WSO2 Identity Server is an 

open source Identity and 

Access Management solution 

Maven 96 3,715 117 

WSO2 - 

Test Grid 

TestGrid provides the 

enterprise customers 

confidence in the products 

and updates WSO2 ship 

Maven 14 1,619 44 

Table 3.1: General information about selected Github repositories 

 



 

 

51 

  

3.3 Data Extraction 

 

Data extraction of the features on selected data repositories is an important and critical point of 

this study. The accurate set of data is expected to get a valid prediction model. To extract the 

data from repositories, we use a set of tools that are already available and custom developed 

scripts for certain features when there are no tools available to extract those features from the 

repository. Below describes the tools and techniques that are used in this study to extract the 

features discussed in 3.1  

 

3.3.1 Gitinspector 

 

Gitinspector is a statistical analysis tool for Git repositories that originally developed to fetch 

repository statistics from student projects at Chalmers University of Technology and 

Gothenburg University [15]. Gitinspector tool provides a wide range of detailed and useful 

statistical data about the Git repository and its developer characteristics that are inspected and 

provides sophisticated options to manipulate the analysis. It supports for several output formats 

such as JSON, XML, HTML and plain text to export the generated analytic data of a repository. 

 

The JSON output format (See Appendix A) of statistical data will be used in this study and will 

be further processed in the analysis phase.  

    

3.3.2 Jmine 

 

Jmine is a custom-built tool by the author of this study using jGit java library to mine 

repositories for identifying developer relationships in a software project based on file 

modifications that have been done on .java file extensions. If two developers have done 

modifications in the same java file, it’s considered that there’s a connection in between them. 

These relationships aim to build a developer network of each repository to identify the inter-

developer interaction behaviors and that can derive networking measures such as centrality, 

closeness and clusters. 

 



 

 

52 

  

 

 

Figure 3.2: Output Data Set Format of Jmine Analyzer 

 

This tool produces a dataset in a comma separated value (CSV) format containing three values. 

The first and second value of the series represent unique developer ids that are assigned by the 

tool representing a developer-developer non-directed connection and last value represents the 

percentage of the weighted average value of that connection. Generally in the dataset; the 

developer email id has been considered as the unique identifier of the developer data. But in 

order to produce the developer network graph, another unique key had to be introduced for 

convenience. Thus, in Figure 3.3 shows that the developer network connections that indicate 

the collaboration links between different developers in a software project.  In this graph, each 

edge represents a software component (source file) collaboration and the edges represent the 

developers.     

    

171,184,10.0 

Developer 1 ID Developer 2 ID Percentage of Weighted 
Average 



 

 

53 

  

 

Figure 3.3: Developer Network Graph of Metrics GitHub Project 

 

 

3.3.3 R and R Studio 

 

R is a well-known programming language for statistical computing which supports in 

applications of statistics, data mining and data analytics. R Studio is an Integrated Development 

Environment (IDE) for R language which supports R developers by providing a sophisticated 

development environment. 

 

In this study, R and R Studio is used to produce developer network graphs using igraph [20] 

package and get the statistical measures of developer networks. The CSV output of the Jmine 

tool is the input source for R and igraph package to produce the developer network. The known 



 

 

54 

  

popularity, support and availability of sophisticated packages are the primary reasons for 

adopting R and R Studio as the main experimenting environment.    

 

3.3.4 SonarQube Tool 

 

SonarQube is a tool used to manage continuous code quality measures and allows to do analysis 

on software projects with more insightful details regarding bugs and vulnerability issues. 

SonarQube supports for OWASP, CWE and many other vulnerability rules and it is supported 

for Gradle and Maven build tools.  

 

SonarQube Quality Profiles feature facilitates a sophisticated way to select set of defect, 

vulnerability, technical debt and code smell rules from a predefined standard (by referring 

OWASP, CWE, etc.) and verified rule set collection. These rules set collection can be filtered 

by the programming language (Java, Javascript, Python, etc.) and type (Bug, Vulnerability or 

Code Smell). 

 

In the process of scanning for software vulnerable codes, a custom configured scanner quality 

profile created which only contain only security rules of Java programming language with the 

type labeled as Vulnerability. According to this custom-created quality profile; there are 33 

rules that are used to do the software code vulnerability scanning. 

 

 

Figure 3.4: Sample set of security vulnerability rules  

 

Thus, all other issues such as Bugs, Technical Debts and Code Smells will be ignored through 

the scan (Figure 3.5). The data set that captured through this tool will be used as the dependent 

data set to train the prediction models.  



 

 

55 

  

 

 

Figure 3.5: Overall SonarQube Assessment Sample of Netty GitHub Project 

 

Figure 3.5 describes the top level statistics about the project which has been scanned. Since 

bugs, technical debts, code smells have been ignored in the custom defined scanning profile it 

shows only a number of vulnerabilities (1.1K = 1100 vulnerabilities according to the figure) 

which has been detected by the scanning process. 

 

3.3.5 Technique 

 

In the process of data extraction; each repository identified in Table 3.1 mined using the tools 

to extract all features in the feature vector. Meanwhile, in order to identify each feature 

extracted developer’s class (has contributed vulnerable code or not), the software repository 

scanned separately through the SonarQube tool. At the end of the successful scanning process; 

the SonarQube tool persists all identified vulnerable code fragments (Figure 3.6) into a 

relational database with the particular developer information who has committed the security 

weakness. 



 

 

56 

  

 

Figure 3.6: Identified Vulnerabilities of Netty GitHub Project 

 

These persisted data manually extracted through SQL query and exported to JSON 

representation (Figure 3.7, the image has been distorted due to privacy concerns of the 

developers) for further processing and association purposes through the custom developed 

Jmine tool. Both extracted feature data and vulnerability class and other details exported from 

the SonarQube tool are fed into Jmine tool and it maps and consolidates each developer’s 

feature vector with identified class. Finally, it produces the finalized dataset for the particular 

software repository.  

 

 

Figure 3.7: Exported Sample JSON Data Set of Vulnerable Developers 

 

The abstract functionality of the Jmine tool is to iterate through all feature extracted developers 

and cross check with the vulnerable developer list (Figure 3.7) to identify whether a particular 

developer has an entry there. If the entry was found in the vulnerable list; the class of that 

developer identified as vulnerable while others who haven’t found an entry are decided as non-

vulnerable developers. To produce the complete dataset; all finalized repository datasets are 

combined together (Figure 3.8). 



 

 

57 

  

 

 

Figure 3.8: Feature Data Set Creation Process 

 

3.4 Data Set 

 

As described in previous Section 3.3 complete dataset collected through various existing and 

developed mining tools and techniques mentioned and analyzed and merged together into one 

main dataset at the end. 

 

The final dataset that is collected by mining 10 GitHub repositories consists of 13 characteristic 

features of 1827 developers. According to the dataset (Figure 3.9) there are 383 identified 

developers who have contributed security vulnerable codes while others aren’t contributed such 

codes. 



 

 

58 

  

 

Figure 3.9: Class distribution histogram of collected dataset 

 

Table 3.2 describes some basic statistical information about the dataset. 

 

 

Feature Missing 

Value (%) 

Min Max Mean Standard 

Deviation  

lines_of_code_count 15 1 163460 1673.116 8178.325 

average_commit_interval 42 0.2 185 44.822 33.085 

frequent_commit_hour 2 0 23 11.699 7.715 

lines_inserted 0 0 245008 2284.212 13263.096 

lines_deleted 0 0 128530 1194.859 7944.188 

developer_age 15 0.1 486.2 101.618 76.494 

average_cyclomatic_complexity 41 51 1059 190.523 160.589 

change_stability 15 0.2 4414.3 95.248 191.811 

comment_percentage 15 51 100 20.856 28.47 

developer_closeness 15 0.001 0.05 0.003 0.004 

developer_betweennes 15 0 5736.206 81.492 407.337 

number_of_commits 0 1 2123 16.066 100.016 

change_percentage 0 0.001 66.02 0.293 2.436 

Table 3.2 : General statistics of complete collected dataset 

 



 

 

59 

  

3.5 Data Set Preprocessing 

 

As discussed in Section 3.3, several approaches have been utilized to fetch the developer related 

data for the selected feature vector. After that, all the datasets coming from various sources 

need to be combined into a single dataset and preprocessed before where it can be used as the 

training and testing dataset of the prediction model. Preprocessing of data is an essential step 

before using them as the core data set for model training since it ensures the quality of the data 

set which leads to the accuracy of trained models.   

 

3.5.1 Missing Values 

 

It’s an obvious situation that a data set can have missing values. Here, there are such situations 

that the tools and techniques used to extract developer features aren’t capable of capturing the 

data for all the developers or the data may not exist in the repository at all. Thus, there are a set 

of developers in the collected dataset who doesn’t have a complete data set for all the feature 

vector. Although there are missing values in the dataset the tools and algorithms that are used 

on classification techniques are capable of handling the missing values in data points. So, there 

is less possibility for any negative impact on the experimental methodology.   

 

3.5.2 Standardization 

 

Standardization or z-score normalization of feature data is a general data preprocessing 

requirement in many machine learning problems. In the standardization process, feature data 

will be rescaled to be centered on 0 with a standard deviation (σ) of 1. Standardization is an 

important requirement when there are different types of feature data measured in different kinds 

of units. 

 

3.5.3 Normalization 

 

Normalization is an alternative method for standardization which is also known as min-max 

scaling. This approach scales the data into a fixed range which 1 - 0 range chosen typically. 

Normalization produces a data set with a lesser standard deviation while suppressing the effects 

of outliers. 

 



 

 

60 

  

3.5.4 Sampling 

 

As identified in Chapter 2 sampling techniques will be applied to resolve the class imbalance 

problems of the collected dataset. Here, the dataset will be refined by the RUS technique which 

is the most preferred technique used in previous works as well as another preferred 

oversampling technique known as SMOTE. Both techniques are applied separately to the 

dataset and the performance will be compared in order to select the better technique. 

 

3.5.5 Outliers 

 

Outliers are the data that are abnormal observations in the data set which could have very higher 

or lesser values than the general observed population. These outliers cause deterioration of 

correct results on experiments. According to the statistical studies, the data observations that 

are beyond interquartile range can be identified as outliers of the dataset and normally those are 

excluded during the data preprocessing stage.     

 

3.5.6 WEKA 

 

WEKA (Waikato Environment for Knowledge Analysis) is a tool with a huge collection of data 

mining, machine learning algorithms and data preprocessing filters developed by the University 

of Waikato, New Zealand. WEKA tool flexibly supports for almost all the requirements of 

machine learning tasks for dataset preprocessing, classification, clustering, etc. It is used to 

preprocess the collected dataset and train different classifiers and evaluate the results in this 

study.  

 

WEKA tool itself contains a collection of data preprocessing filters that can be readily 

applicable to the data set. Thus data preprocessing filters such as normalization, sampling are 

intended to be used on the data set to improve the prediction performances in the later stage 

classifier models. Additionally, some of the abnormal extreme values (obvious outliers) that 

have been observed in the data set had to be manually removed before the data preprocessing 

phase.     

 



 

 

61 

  

3.6 Feature Selection 

 

In the feature selection process for this study, we have decided to go with wrapper methods. 

Since this study expects to compare four different types of learning models, the feature selection 

method should be unique and independent from the models in order to make a clear comparison 

between each. Further, wrapper methods are optimized and easy to configure. Although they 

have higher computational overheads, that’s less significant for this study since it has a small 

feature vector. 

 

 

Figure 3.10: Feature Selection Approach Diagram 

 

To select the most suitable feature subset from the identified feature set, the recursive feature 

elimination (RFE) technique will be employed. It is a wrapper method that has been identified 

in Chapter 2. Although the wrapper methods are computationally expensive than filter methods 

it’s more convenient and advantageous to use a wrapper method since those handles the 

complexities of each and every feature of the data set. Additionally, according to the literature, 

the selection method doesn’t affect much on the prediction performance. Thus, in order to select 

the most suitable feature vector for this study, an RFE technique will be used.  

 

The Classifier Subset Evaluator in the WEKA tool provides a decent implementation of the 

Wrapper method [35]. For each & every feature analyzed, it provides a clear comparison of 

performance measures such as Root Mean Squared Error (RMSE), Mean Absolute Error 



 

 

62 

  

(MAE), etc. Then, based on a performance measure threshold, a subset of features can be 

selected for further training on selected prediction models.    

 

3.7 Prediction Model Selection 

 

The requirements and characteristics of this problem which identified in previous sections 

conclude that the most suitable prediction model for this problem is a regression model. In this 

study, we expect to focus on four different models from three different varieties and train them 

for prediction and evaluate them to identify the best performing model. Based on the 

suggestions in previous studies, related works, scope constraints and the findings of problem 

analysis Logistic Regression, Naive Bayes, Decision Tree and Random Forest algorithms were 

selected from a pool of classification algorithms available in WEKA tool as the better options 

to be evaluated as candidate model for this research problem. In Figure 3.11, M1 to M4 

represents the candidate prediction models that are trained using four different candidate 

algorithms.     

 

 

Figure 3.11: Prediction Model Selection Approach Diagram 

 

 

 



 

 

63 

  

3.7.1 Logistic Regression 

 

The logistic regression is initially used in the field of statistics but later adopted in machine 

learning domain as well. It basically supports binary classification problems where the 

prediction target is categorical. But it can be applicable for multiclass classifications with some 

derivative works.  It assumes the input variables are numeric and have a Gaussian (bell curve) 

distribution. But even the input variables do not show a Gaussian distribution still this algorithm 

achieves good results. Further, it assumes conditions such as less noisy, non-existence of 

multiple highly correlated features and less missing values in the dataset to produce better 

performances on prediction accuracy.   

 

The algorithm learns a coefficient for each input value, which is linearly combined into a 

regression function and transformed using a logistic (S-shaped) function. Logistic regression is 

a fast and simple technique. 

 

In WEKA tool logistic regression classifier can be used by selecting Logistic in classifier tab 

classifier collection list under the functions category. 

 

3.7.2 Decision Tree 

 

Decisions trees will create a tree to evaluate an instance of data start at the root of the tree and 

moving towards to the leaves (roots) until a prediction can be made. The process of creating a 

decision tree works by greedily selecting the best split point in order to make predictions and 

repeating the process until the tree is a fixed depth. After a decision tree is constructed the 

concept 'Pruning' can be used to reduce the size of the tree by removing the sections of the tree 

that provide very little power to classify the instances.  

 

Decision tree models produce very intuitive rules which can be easy to explain and understand. 

Further, it efficiently handles non-linear feature correlations in the datasets which can be 

obviously contained in the dataset of this study. But decision trees are very vulnerable to 

overfitting problems with the training dataset. However, cross-validation techniques are there 

to overcome from overfitting problem in the Decision Tree algorithm. 

 

In the WEKA tool, the decision tree classifier can be used by selecting REPTree in classifier 

tab classifier collection list under tree category. 



 

 

64 

  

3.7.3 NaïveBayes 

 

Naïve Bayes is a simple and commonly used classifier algorithm in machine learning. It is a 

probabilistic classifier and it employs the Maximum A Posteriori decision rule to derive the 

classifications. In any of the probabilistic classifier attempts to determine the probability of 

each feature (x1, x2, .., xn) occur in each class (c1, c2, .., cn) and finally identifies the class 

which is most likely to occur. Therefore, the probability of each class needs to calculate for a 

given feature vector that occurred [ P(ci | x1, …, xn ) ]. 

 

In order to calculate these probabilistic values for each class, the Bayes rule is applied.  

 

 

 

P(ci | x1, …, xn ) = P(x1, …, xn | ci) * P(ci) / P(x1, …, xn) 

 

A, B components are replaced with the class and the feature vector components respectively. 

Since it is difficult to calculate P(B) component which is P(x1, x2, .., xn), the Bayes rule 

redefined as a proportional relationship by ignoring that component. 

 

As identified; Naïve Bayes is a simple implementation and it is computationally fast. Thus, it 

is capable of handling high dimensional datasets. But in the specification of the Naïve Bayes 

algorithm; it relies on several assumptions about the dataset which may become false on typical 

datasets.   

  

In the WEKA tool, naive Bayes classifier can be used by selecting Naive Bayes in classifier tab 

classifier collection list under the Bayes category. 

 

 

 

 

 

 



 

 

65 

  

3.7.4 Random Forest 

 

Random forest is an algorithm that can be used for both classification and regression problems. 

This algorithm creates a forest with several decision trees. The larger the number of trees we 

can produce the more accurate the results will be. The rationale behind this algorithm is using 

a combination of learning models will increase the classification accuracy. This concept is 

known as bagging. Bagging generates diverse classifiers only if the base learning algorithm is 

unstable. That is small changes in the training set to result in large changes in the learned 

classifier. Since neural networks and decision trees are unstable classifiers, they are good 

candidates to apply the technique. 

 

 

Figure 3.12: Random Forests Algorithm 

 

Overfitting is one critical problem in most of the other algorithms that may make the results 

worse, but for the Random Forest algorithm, if there are enough trees in the forest, the classifier 

won’t overfit the model. Further, the Random Forest algorithm is immune to the issues when 

dealing with a set of features that may have inter-correlations.  

 

To classify a given instance it will use the rules of each randomly created decision tree to predict 

the outcome and then calculates the votes for each of the predicted targets. Then it will highest 

be voted predicted target as the final prediction. 

 



 

 

66 

  

In the WEKA tool random forest classifier can be used by selecting RandomForest in classifier 

tab classifier collection list under tree category. 

 

3.7.5 Support Vector Machine (SVM) 

 

Support Vector Machine is also an algorithm that can be applied for both supervised 

classification and regression problems. In the classification problems, SVM attempts to identify 

a hyperplane in an N-dimensional feature space that can classify the data points into the target 

classes. When there are multiple hyperplanes can be identified for a classification problem; 

SVM attempts to find out the hyperplane that can produce Maximum margin in between data 

points of classes (Figure 3.13). 

 

 

Figure 3.13: SVM for 2-dimensional Feature Space 

 

SVM is capable of handling high dimensional datasets, but it performs well with smaller and 

clean datasets. Thus, the performance will get affected if the dataset is large and noisier.      

 

In the WEKA tool, two implementations of the SVM algorithm are available to select under 

functions algorithm category collection. SMO or LibSVM can be selected in the experiments 

to get the use of SVM classification. However, LibSVM is a third party implementation of SVM 

which doesn’t contain in the WEKA tool by default. So, SMO implementation is being used as 

the SVM implementations in the study experiments. 



 

 

67 

  

3.8 Training 

 

Supervised predictive modeling is always involved in two phases. The first phase is the learning 

or the training phase where the prediction model is trained by a set of data that is already 

available with known independent and dependent parameters. The next phase is to evaluate the 

success of the learning phase through a verification and validation process. Training and 

evaluation of the models are about supervising the learning process of the models from a 

training dataset and validating the effectiveness of the learning process through a testing dataset. 

 

3.8.1 Train-Test Split 

 

The traditional approach to get these two datasets, the collected data set needs to be divided 

into two parts which can be named as training dataset and testing dataset. In supervised machine 

learning; the heuristic ratio for this separation is 7:3 where 70% from the whole dataset is taken 

into a training dataset and the remaining 30% as testing dataset. 

 

But with this approach, the performances of the classifiers would be suboptimal. Since there’s 

always a tradeoff between selecting the training : testing ratio from the full dataset. Further, 

there is some uncertainty of bias effects on classifier performance due to some noise or 

randomness in training or testing datasets. 

 

3.8.2 K-Fold Cross Validation 

 

K-Fold Cross Validation is another approach that is used to train and validate classifier models 

which can avoid the difficulties that can be experienced with the previous train-test split 

method. As shown in Figure 3.14 the dataset is divided into K number of folds/bins and K-1 

number of folds are selected as training dataset while the other one is used as the testing dataset. 

 

The process will go through a K number of iterations and the average performance of all 

iterations will be considered as the final classifier performance. The value of K is an arbitrary 

number decided based on the dataset size and time constraints of the training-validation process. 

Heuristically, the value of K has been selected as 10 in most experiments. 

  

 



 

 

68 

  

 

Figure 3.14: K - Fold Cross Validation 

  

 

3.8.3 Summary 

  

This study gets the use of K-fold cross-validation technique when training and validating the 

classifier performances and K value selected as 10 as suggested in most of the other examples. 

But fine tunes on this value and method may have to be considered based on any new knowledge 

and findings throughout the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

69 

  

 

 

 

Chapter 04: Developer Vulnerability Prediction and Evaluation 

 

This chapter discusses the techniques and experimentation approaches that have been carried 

out to produce the prediction models. Further the mechanisms on evaluating and comparing 

their performances. 

 

4.1 Benchmark 

 

It's important to have benchmarking models to compare the performance measures of the 

classifier models that are produced as this research outcome. As per the evaluations are done in 

the literature review, there’s no predefined classifier model to be taken as the benchmarking 

model.  

 

Hence, Zero Rule (ZeroR or 0-R) classifier which is a basic and simple classifier model 

employed as the benchmark. ZeroR classifier algorithm always classifies the instances into the 

majority class of the trained dataset ignoring all the predictor features.   

 

Here, the basic model will be trained using the complete feature vector and the performance 

measures will be taken as the benchmarking figures for the improved versions of classifier 

models.    

 

Table 4.1 shows the benchmark performance measures of the ZeroR classifier. 

 

Classifier Accuracy F-Measure  ROC Area 

(AUC) 

Kappa 

ZeroR 79.0367% 0.883 0.496 0 

Table 4.1: Benchmarking classifier performance measures 

 

 



 

 

70 

  

4.2 All Feature Vector Performance 

 

At this stage, the initial performances of all selected classifiers are evaluated without applying 

any data preprocessing technique or feature selection technique. These results produce a general 

idea about how each classifier algorithm behaves with the raw dataset. 

  

 ZeroR Naive 

Bayes 

Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

SVM 

Accuracy 

(%) 

79.0367 83.1081 83.7297 85.5676 85.2432 82.1018 

F-Measure - 0.779 0.808 0.848 0.840 0.770 

AUC 0.496 0.672 0.792 0.838 0.890 0.583 

Kappa 0 0.2846 0.3814 0.5322 0.4987 0.2344 

Precision - 0.828 0.84 0.854 0.848 0.829 

Recall 0.79 0.835 0.843 0.861 0.858 0.821 

Table 4.2: Classifier performance measures on raw dataset 

 

According to the classifier performances (Table 4.2) the Random Forest classifier produces the 

best results on the full feature set by using K-fold cross-validation. For this experiment, the K 

value was selected as 10 which is the default value in the referred literature as well.  

 

4.3 Performance through Feature Selection 

 

As the next step dataset evaluated through feature subset selection process discussed in Chapter 

3 and the most significant predictors will be identified. The classifiers are trained using filtered 

dataset and performance measures are evaluated. 

 

The feature subset is selected through a wrapper method by employing the Bagging meta-

algorithm as the learning scheme with a full dataset in the WEKA tool. Here in the wrapper 

method, attempts to find out the best possible feature subsets by traversing through the feature 

subset space by using a greedy best first search algorithm. Next, the performances of each 

feature subset will be evaluated by the K-fold cross-validation technique. The final output of 



 

 

71 

  

this process will produce the average significance rank of each feature attribute identified by 

the forward and backward elimination searches in the best first search algorithm.      

 

Then the performances of each classifier can be evaluated while step by step elimination of 

least significant features of the feature vector.   

 

=== Run information === 

 

Evaluator:    weka.attributeSelection.ClassifierSubsetEval -B weka.classifiers.meta.Bagging -T 

-H "Click to set hold out or test instances" -E DEFAULT -- -P 100 -S 1 -num-slots 1 -I 10 -W 

weka.classifiers.trees.REPTree -- -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0 

Search:       weka.attributeSelection.BestFirst -D 1 -N 5 

Relation:     FinalDataProcessed_v3-weka.filters.unsupervised.attribute.Remove-R1 

Instances:    1827 

Attributes:   14 

              lines_of_code_count 

              number_of_commits 

              average_commit_interval 

              frequent_commit_hour 

              lines_inserted 

              lines_deleted 

              developer_age 

              change_stability 

              average_cyclomatic_complexity 

              comment_percentage 

              change_percentage 

              developer_betweenness 

              developer_closeness 

              issues 

Evaluation mode:    evaluate on all training data 

 

 

 

=== Attribute Selection on all input data === 

 

Search Method: 

 Best first. 

 Start set: no attributes 

 Search direction: forward 

 Stale search after 5 node expansions 

 Total number of subsets evaluated: 111 

 Merit of best subset found:    0.926 

 

Attribute Subset Evaluator (supervised, Class (nominal): 14 issues): 

 Classifier Subset Evaluator 

 Learning scheme: weka.classifiers.meta.Bagging 

 Scheme options: -P 100 -S 1 -num-slots 1 -I 10 -W weka.classifiers.trees.REPTree -- -M 

2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0  

 Hold out/test set: Training data 

 Subset evaluation: classification error 



 

 

72 

  

 

Selected attributes: 1,3,4,5,6,7,9,10,13 : 9 

                     lines_of_code_count 

                     average_commit_interval 

                     frequent_commit_hour 

                     lines_inserted 

                     lines_deleted 

                     developer_age 

                     average_cyclomatic_complexity 

                     comment_percentage 

                     developer_closeness 

 

Experiment 4.1: Classifier Subset Evaluation with Bagging  

 

As per the experiment 4.1 results on feature subset selection process, 4 out of 13 feature 

matrices have been eliminated due to less significant correlation with target attribute (issues).   

developer_betweenness, change_percentage, number_of_commits, change_stability appears to 

be having the least predictive power while others are having better predictive power on 

developer vulnerability classification. Thus, the performance of each classifier re-evaluated to 

identify how the classifier performances are affected by the feature selection technique. 

 

 ZeroR Naive 

Bayes 

Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

SVM 

Accuracy 

(%) 

79.03 83.1965 84.0175 85.3859 85.6596 82.0471 

F-Measure - 0.796 0.809 0.850 0.843 0.768 

AUC 0.496 0.732 0.800 0.861 0.893 0.580 

Kappa 0 0.3253 0.3687 0.5391 0.4945 0.2289 

Precision - 0.828 0.839 0.848 0.847 0.83 

Recall 0.79 0.832 0.84 0.854 0.857 0.82 

Table 4.4 : Classifier performance measures on feature selected dataset 

 

=== Run information === 

 

Scheme:       weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 

0.001 -S 1 

Relation:     FinalDataProcessed_v3-weka.filters.unsupervised.attribute.Remove-R1-

weka.filters.unsupervised.attribute.Remove-R2,8,11-12 

Instances:    1827 

Attributes:   10 

              lines_of_code_count 



 

 

73 

  

              average_commit_interval 

              frequent_commit_hour 

              lines_inserted 

              lines_deleted 

              developer_age 

              average_cyclomatic_complexity 

              comment_percentage 

              developer_closeness 

              issues 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

RandomForest 

 

Bagging with 100 iterations and base learner 

 

weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-check-capabilities 

 

Time taken to build model: 1.03 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances        1565               85.6596 % 

Incorrectly Classified Instances       262               14.3404 % 

Kappa statistic                          0.4945 

Mean absolute error                      0.1828 

Root mean squared error                  0.3194 

Relative absolute error                 55.1226 % 

Root relative squared error             78.4662 % 

Total Number of Instances             1827      

 

=== Detailed Accuracy By Class === 

 

            TP Rate FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

           0.961    0.538    0.871      0.961    0.914      0.517    0.893     0.965     FALSE 

           0.462    0.039    0.760      0.462    0.575      0.517    0.893     0.702     TRUE 

Weighted   0.857    0.433    0.847      0.857    0.843      0.517    0.893     0.910      

Avg. 

 

=== Confusion Matrix === 

 

    a    b   <-- classified as 

 1388   56 |    a = FALSE 

  206  177 |    b = TRUE 

 

 

Experiment 4.2: Random Forest classifier evaluation on feature selected dataset 

 



 

 

74 

  

As per the experiment 4.2, the feature selected dataset is the best performing subset for the 

Random Forest classifier with 10-fold cross-validation. Further, the identified feature subset is 

evaluated with other classifiers to understand and compare the performance gain or loss on 

Table 4.4  

 

In Table 4.4 performance values compared against previous all dataset training performances 

to evaluate the effects of feature selection in each classifier. As per the figures Naive Bayes, 

Logistic Regression and Random Forest classifiers show slight improvements on the accuracy 

while other classifiers show some accuracy drop with the refined feature subset. 

 

4.4 Performance through Class Balancing 

 

As identified in previous chapters, the class imbalance problem may produce a negative effect 

on classifier performances. Thus, this stage is attempting to evaluate the classifier performances 

by correcting the class imbalance problem to improve the classifiers. Here in Table 4.5, the 

performances will be evaluated over two (RUS and SMOTE) approach. 

 

In the RUS approach majority class reduced by randomly selecting 383 data points to match 

the number of data points in the minority class. Then the total number of data points (Figure 

4.2) will be reduced to 766 in the dataset. In order to apply RUS to the dataset SpreadSubsample 

filter can be utilized which is available under WEKA tool supervised instance filter collection. 

 

 

Figure 4.1: RUS Class Balanced Dataset Statistics in WEKA 

 

By applying the SMOTE filter in WEKA, minority class has been increased by 276% to match 

the majority class which was containing 1444 data points. Now complete dataset (Figure 4.3) 

consists of 2884 data points. In the WEKA tool’s supervised instance filter collection list; the 

SMOTE filter is available to oversample the minority class.   

 



 

 

75 

  

 

Figure 4.2: SMOTE Class Balanced Dataset Statistics in WEKA 

 

 

 ZeroR Naive 

Bayes 

Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

SVM 

RUS 

Accuracy 

(%) 

49.6084 68.2768 75.8486 80.5483 81.9843 63.9687 

F-Measure 0.475 0.653 0.753 0.805 0.820 0.670 

AUC 0.495 0.759 0.836 0.848 0.898 0.640 

Kappa -0.0078 0.3655 0.517 0.611 0.6397 0.2794 

Precision 0.495 0.779 0.786 0.806 0.822 0.645 

Recall 0.475 0.683 0.758 0.805 0.820 0.640 

SMOTE 

Accuracy 

(%) 

50.0693 65.4646 77.2191 86.8585 89.3551 69.8682 

F-Measure ? 0.613 0.766 0.869 0.894 0.699 

AUC 0.499 0.811 0.865 0.925 0.952 0.699 

Kappa 0 0.3087 0.5442 0.7372 0.7871 0.3973 

Precision - 0.771 0.804 0.869 0.894 0.699 

Recall 0.501 0.655 0.772 0.869 0.894 0.699 

Table 4.5: Classifier performance measures on class balanced dataset  

 

The performance figures in Table 4.5 shows that SMOTE class balancing supported to 

outperform most of the classifiers while RUS class balancing affected negatively to some of 

the previous classifier performances. According to the overall performance results of these 

classifier algorithms, the Random Forest algorithm has been showing a higher classification 

capacity which is around 39% improvement compared to the benchmarking ZeroR algorithm. 



 

 

76 

  

Meanwhile, the Decision Tree algorithm also shows closely followed performance gains with 

the improvement done to the dataset and training methods. 

 

4.5 Ensemble Techniques 

 

Ensemble technique is a way of combining multiple classifier algorithms together to achieve 

higher classification performances as a combined system. This approach of combining a set of 

classifier algorithms can support to manage the bias-variance tradeoff for better classification 

performance.  

 

This study attempts to analyze the performance behavior of developer vulnerability prediction 

classifiers by employing two well-known ensemble techniques named as Boosting and Bagging 

(Bootstrap Aggregating). 

 

4.5.1 Boosting 

 

Boosting is an ensemble method which converting weak learner to strong learners by fitting 

them to a sequence. Boosting is a two-step method. It initially produces averagely performing 

models and improve (boost) their performance by combining them together as the second step. 

The predictions are combined through a weighted classification or weighted regression in order 

to produce the final result. The algorithm known as adaptive boosting (AdaBoost) is the most 

widely used algorithm as a boosting ensemble technique.   

 

4.5.2 Bagging 

 

Bagging is a way of reducing the variance of the learner prediction by generating additional 

data for training from the original dataset. Although increased dataset size doesn’t improve the 

predictive power it supports to reduce the variance while narrowly tuning the prediction to an 

expected outcome. 

 

 

 

 ZeroR Naive Logistic Decision Random SVM 



 

 

77 

  

Bayes Regression Tree Forest 

 Boosting (AdaBoost) 

Accuracy 

(%) 

50.0693 65.4646 77.6006 88.3495 89.5284 65.8807 

F-Measure ? 0.613 0.770 0.883 0.895 0.623 

AUC 0.499 0.811 0.841 0.943 0.930 0.718 

Kappa 0 0.3087 0.5518 0.767 0.7906 0.317 

Precision - 0.771 0.807 0.883 0.895 0.756 

Recall 0.501 0.655 0.776 0.883 0.895 0.659 

Bagging  

Accuracy 

(%) 

50 66.4355 77.9126 88.835 89.251 65.9501 

F-Measure 0.5 0.627 0.774 0.888 0.893 0.624 

AUC 0.5 0.817 0.870 0.948 0.951 0.69 

Kappa 0 0.3281 0.5581 0.7767 0.7857 0.3184 

Precision 0.5 0.774 0.806 0.889 0.893 0.755 

Recall 0.5 0.664 0.779 0.888 0.893 0.66 

Table 4.6: Classifier performance measures on ensemble techniques   

 

In this experiment, ensemble techniques were applied to the class balanced dataset using 

SMOTE which has shown better performance results in the previous step.  According to the 

results, both ensemble techniques applied here produce a minor improvement on most classifier 

models. Random Forest is still the best performing classifier with closely followed performance 

gains on both ensemble techniques evaluated here.  

 

4.6 Experiment Summary 

 

The main goal of the experiments conducted in this chapter is to answer the second research 

question of this study. The study used some general classifier algorithms which have been 

utilized to classification prediction models in the related domain as also suggested in the 



 

 

78 

  

literature. According to the performance measures of the classifier model evaluated, it has been 

clearly identifiable that developer-centric vulnerability can be predictable with better 

performance by their behavioral characteristics. Below figures show the ROC figures of final 

classifier performance respectively to the benchmarking Zero - R classifier. The figures are 

captured through the experiments done in the WEKA tool.   

 

 

Figure 4.3: ROC curve of Zero - R Classifier 

 

 

 



 

 

79 

  

 

Figure 4.4: ROC curve of Random Forest Classifier 

 

 

Figure 4.5: ROC curve of Naive Bayes Classifier 

 

 

 

 

 

 



 

 

80 

  

 

 

 

Chapter 05: Discussion 

 

This chapter intends to discuss the abstract summary of the works that are done in this study so 

far and the final outcomes of this study. Further, it will review the future research areas that can 

be done based on this study.     

 

5.1 Summary 

 

Many related studies that have been done on this domain area are mostly attempted to focus on 

predicting defect/vulnerabilities in software components. This research work motivated by 

some of the preliminary attempts done by several authors who attempted to see this prediction 

problem from the perspective of developers and attempted to identify the human factors which 

can be correlated with defects and vulnerabilities in software components. Based on the results 

and hints from those research works; this study was conducted in order to address two main 

research questions that were prevailing under the software defect/vulnerability prediction 

domain.  

 

First, this study attempted to identify if there exist any superficial features of developer behavior 

that can be mined through software repositories without analyzing the syntactic level of source 

code which can be correlated to intentional or unintentional vulnerable contributions done by 

developers. Secondly, the study focused on identifying algorithms and techniques that can be 

applied in order to train a better performing classification model for developer-centric 

vulnerability prediction based on the identified techno-behavioral feature vector of developers.  

 

Considering literature reviews, available repository mining tools and other project constraints 

a candidate feature vector for developer behavior identified. Then 10 open source software 

repositories are selected from GitHub social coding platform based on several criteria 

considered in Chapter 02. All repositories mined using identified and custom-built mining and 

analyzing tools. The mined and preprocessed dataset contained data points of 1827 developers 



 

 

81 

  

with 383 developers have contributed at least one vulnerable code while others haven’t 

contributed for any security vulnerable code to the repositories.  

 

To analyze the prediction performance of developer-centric vulnerability by the selected feature 

vector, it has been decided to evaluate the performances with 4 different classifier models while 

keeping the Zero - R classifier performances as the benchmarking performance values. The 

study has utilized Naive Bayes, Logistic Regression, Decision Tree, Random Forest and 

Support Vector Machine algorithms to train the classifier models and applied feature selection, 

class balancing and ensemble techniques to analyze their effects on classifier performances. As 

per the results, a random forest classifier performed best with all the techniques applied 

produced 89% classification accuracy performance with 10 - fold cross-validated training.  

 

The highest performance was recorded with the Random Forest algorithm when it applied with 

the AdaBoost ensemble technique while the feature selected dataset with SMOTE class 

balancing is used for model training. It is more than 39% performance in accuracy gain 

compared to the benchmarking Zero-R classifier performance. Meanwhile, it can be noted that 

the performance of the Decision Tree algorithm trained models are closely following the 

performance accuracies of the Random Forest algorithm. The obvious reason for this could be 

both algorithms are classified into tree algorithms. Surprisingly; SVM algorithm didn’t produce 

a significant performance on developer-centric vulnerability predictions  

  

Finally, it has been identified that potential contributions of vulnerable codes to software 

projects can be predicted through analyzing the developer’s techno-behavioral features. This is 

more beneficial in understanding each developer-centric vulnerability (whether a developer is 

contingent to contribute security vulnerable code fragments) when there is limited or restricted 

access to the source code repository. Further, it has been identified that general classifier models 

can predict developer-centric vulnerability with better accuracy, precision and recall with the 

application of general ML techniques.    

 

5.2 Findings 

 

As identified through the feature selection phase, there were several feature metrics have been 

eliminated from the feature vector due to an insignificant correlation between the target 



 

 

82 

  

variable. But 9 developer features retained through the feature elimination process. Thus, it is 

important to find out and discuss the relationship between developer-centric vulnerability. In 

order to get a better idea on the relationship with developer-centric vulnerability, it’s worth to 

look into the decision tree of decision tree classifier. 

 

REPTree 

============ 

 

lines_inserted < 133.15 

|   lines_of_code_count < 58.14 

|   |   lines_deleted < 50.5 : FALSE (613.51/12) [309.59/15] 

|   |   lines_deleted >= 50.5 

|   |   |   frequent_commit_hour < 8.5 : FALSE (11.29/0) [3.48/0] 

|   |   |   frequent_commit_hour >= 8.5 

|   |   |   |   frequent_commit_hour < 12.56 : TRUE (4.65/0) [1/0] 

|   |   |   |   frequent_commit_hour >= 12.56 : FALSE (13.94/1.65) [3.83/1.82] 

|   lines_of_code_count >= 58.14 

|   |   lines_inserted < 35.1 : FALSE (28.53/1) [12.94/3] 

|   |   lines_inserted >= 35.1 

|   |   |   lines_of_code_count < 136.61 : FALSE (92.58/29.6) [50.24/11.15] 

|   |   |   lines_of_code_count >= 136.61 

|   |   |   |   comment_percentage < 18.47 : TRUE (11.44/0.37) [5.28/2.26] 

|   |   |   |   comment_percentage >= 18.47 

|   |   |   |   |   lines_of_code_count < 847 : FALSE (2.08/0.01) [3.05/1] 

|   |   |   |   |   lines_of_code_count >= 847 : TRUE (3.79/0.77) [1.41/0.41] 

lines_inserted >= 133.15 

|   lines_of_code_count < 338 

|   |   developer_closeness < 0 

|   |   |   lines_of_code_count < 98 : FALSE (49.97/3.73) [19.23/2.19] 

|   |   |   lines_of_code_count >= 98 

|   |   |   |   comment_percentage < 18.02 

|   |   |   |   |   developer_age < 148 

|   |   |   |   |   |   lines_of_code_count < 278 

|   |   |   |   |   |   |   average_cyclomatic_complexity < 200.76 

|   |   |   |   |   |   |   |   developer_age < 60.2 : FALSE (11.85/2.76) [5.96/2.05] 

|   |   |   |   |   |   |   |   developer_age >= 60.2 : TRUE (25.51/11.3) [6.56/3.22] 

|   |   |   |   |   |   |   average_cyclomatic_complexity >= 200.76 

|   |   |   |   |   |   |   |   lines_inserted < 170.54 : TRUE (7.22/0.12) [2/2] 

|   |   |   |   |   |   |   |   lines_inserted >= 170.54 

|   |   |   |   |   |   |   |   |   lines_inserted < 207.05 : FALSE (2.48/0) [2.37/0] 

|   |   |   |   |   |   |   |   |   lines_inserted >= 207.05 

|   |   |   |   |   |   |   |   |   |   average_cyclomatic_complexity < 515.58 : TRUE (7.55/0.6) 

[3.47/1.15] 

|   |   |   |   |   |   |   |   |   |   average_cyclomatic_complexity >= 515.58 : FALSE 

(2.45/1.25) [1.29/0.1] 

|   |   |   |   |   |   lines_of_code_count >= 278 : TRUE (6.99/0.3) [5.77/0.74] 

|   |   |   |   |   developer_age >= 148 

|   |   |   |   |   |   comment_percentage < 10.85 

|   |   |   |   |   |   |   comment_percentage < 9.98 : FALSE (9.55/2.14) [9.25/6.04] 

|   |   |   |   |   |   |   comment_percentage >= 9.98 : TRUE (2.12/0.09) [1.06/0.05] 



 

 

83 

  

|   |   |   |   |   |   comment_percentage >= 10.85 : FALSE (6.11/0.09) [1.16/0.02] 

|   |   |   |   comment_percentage >= 18.02 

|   |   |   |   |   lines_deleted < 12.5 : FALSE (6.9/0) [8.28/0] 

|   |   |   |   |   lines_deleted >= 12.5 

|   |   |   |   |   |   lines_inserted < 184 

|   |   |   |   |   |   |   comment_percentage < 26.41 : FALSE (4.7/1) [1/0] 

|   |   |   |   |   |   |   comment_percentage >= 26.41 : TRUE (4.09/0.09) [0/0] 

|   |   |   |   |   |   lines_inserted >= 184 

|   |   |   |   |   |   |   lines_of_code_count < 255.5 : FALSE (15.69/0.35) [8.82/1.68] 

|   |   |   |   |   |   |   lines_of_code_count >= 255.5 

|   |   |   |   |   |   |   |   lines_of_code_count < 275 : TRUE (2.15/0.1) [1.06/0.05] 

|   |   |   |   |   |   |   |   lines_of_code_count >= 275 

|   |   |   |   |   |   |   |   |   lines_inserted < 2348 : FALSE (9.62/1.18) [1.33/0.04] 

|   |   |   |   |   |   |   |   |   lines_inserted >= 2348 : TRUE (2.22/0.14) [0.03/0] 

|   |   developer_closeness >= 0 

|   |   |   lines_deleted < 19.66 : FALSE (18.95/5.41) [8.35/2] 

|   |   |   lines_deleted >= 19.66 

|   |   |   |   developer_age < 222.9 : TRUE (102.02/18.58) [55.94/7.73] 

|   |   |   |   developer_age >= 222.9 : FALSE (4.03/0.15) [4.09/1.05] 

|   lines_of_code_count >= 338 

|   |   lines_deleted < 289.33 : TRUE (230.32/53.44) [119.86/32.66] 

|   |   lines_deleted >= 289.33 

|   |   |   frequent_commit_hour < 22.99 

|   |   |   |   developer_age < 12.81 : TRUE (17.54/5.17) [4.17/2.06] 

|   |   |   |   developer_age >= 12.81 

|   |   |   |   |   lines_deleted < 3810.14 : TRUE (360.61/22.81) [193.1/18.4] 

|   |   |   |   |   lines_deleted >= 3810.14 

|   |   |   |   |   |   average_cyclomatic_complexity < 864.87 

|   |   |   |   |   |   |   developer_closeness < 0 

|   |   |   |   |   |   |   |   lines_deleted < 11976.71 

|   |   |   |   |   |   |   |   |   lines_deleted < 9240.18 : TRUE (6.61/0.01) [7/1] 

|   |   |   |   |   |   |   |   |   lines_deleted >= 9240.18 : FALSE (2.5/1.09) [0/0] 

|   |   |   |   |   |   |   |   lines_deleted >= 11976.71 : TRUE (13.19/0.02) [0.11/0.01] 

|   |   |   |   |   |   |   developer_closeness >= 0 : TRUE (198.41/0.29) [96.81/2.15] 

|   |   |   |   |   |   average_cyclomatic_complexity >= 864.87 : TRUE (3.32/1.02) [0.09/0] 

|   |   |   frequent_commit_hour >= 22.99 

|   |   |   |   average_cyclomatic_complexity < 248.7 : TRUE (2.78/0.74) [1.02/0] 

|   |   |   |   average_cyclomatic_complexity >= 248.7 : FALSE (2.74/0.01) [2/1] 

 

Size of the tree : 79 

 

Experiment 5.1: Generated Decision Tree of Decision Tree Classifier 

 

According to the decision tree, it can be identified that what are the possible ways of 

determining whether a developer has a potential vulnerability or not. As per the decision tree 

rules, it seems to be difficult in identifying specific threshold value for each feature separately. 

Therefore, the selection of developer-centric vulnerability is based on the combined output of 

several threshold values. 

 



 

 

84 

  

But, the class distribution of each feature can produce a general understanding of how these 

features correlate with developer-centric vulnerability. Below boxplots describes the data 

distributions of each feature.       

 

5.2.1 Number of Rows 

 

Figure 5.1: Number of Rows Distribution 

 

The figure shows that most developer who has contributed vulnerabilities done a higher number 

of code lines in the project. This could be an obvious reason since mostly software defects are 

also proportional to the lines of code. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

85 

  

5.2.2 Average Commit Interval 

 

  Figure 5.2: Average Commit Interval Distribution 

 

According to the boxplot even though both classes have closely similar median values; as per 

the data distribution comparison, it can be identified that the majority of the developers who 

have done their commits in lesser time intervals are the ones who have most security vulnerable 

codes. Thus, presumably, these developers may not take time to evaluate and analyze their 

source code for security vulnerabilities and push their code changes in lesser time intervals.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

86 

  

5.2.3 Frequent Commit Hour 

 

 

 

Figure 5.3: Frequent Commit Hour Distribution Histogram 

 

It's a little bit difficult to determine the developer behavior based on the frequent commit hour 

distribution in the box plot. But the distribution histogram can produce a better idea on the 

developer-centric vulnerability. According to the distribution histogram frequent commit hour 

can be identified as a kind of time series data where the developers who have done commits in 

between 5 am to 11 am having less potential to do vulnerable codes into repositories.    

 

 

 

 

 



 

 

87 

  

5.2.4 Lines Inserted 

 

 

Figure 5.4: Lines Inserted Distribution 

 

Similar as lines of code developers with higher number of lines inserted are more contingent to 

do security vulnerabilities to the code.  

 

5.2.5 Lines Deleted 

 

 

Figure 5.5: Lines Deleted Distribution 



 

 

88 

  

 

Similar as lines of code developers with higher number of lines deleted are more contingent to 

do security vulnerabilities to the code. 

 

5.2.6 Developer Age 

 

 

Figure 5.6: Developer Age Distribution 

 

This is another important observation in the dataset that mined from repositories. Although the 

median values are closely similar; the interpretation of the box plot data distribution suggests 

that the developers who have done security vulnerable codes have more centering towards 

lesser developer contribution age with lesser interquartile range. This observation concludes 

the developers who are new to the projects, do more vulnerable code contributions. 

 

 

 

 

 

 

 

 

 

 



 

 

89 

  

5.2.7 Average Cyclomatic Complexity 

 

 

Figure 5.7: Average Cyclomatic Complexity Distribution 

 

According to the box plot most of the developers who tend to work with lesser average 

complexity codes are having minor tendency to do vulnerable codes than others.   

  

5.2.8 Comment Percentage 

 

 

Figure 5.8: Comment Percentage Distribution 



 

 

90 

  

 

As identifiable in the plot, developers who has done less comment percentage in their source 

contributions have done more vulnerable code contributions compared to the developers who 

has done more comments.  

 

5.2.9 Developer Closeness 

 

Figure 5.9: Developer Closeness Distribution 

 

Developer closeness describes how much a developer is interconnected with other developers. 

Developers with higher closeness distance averages mean they are not closely connected and 

not collaborating enough with other developers. As per the plot, it can be clearly identified that 

most of the developers with higher closeness distance have contributed more security 

vulnerable source codes to the repositories. Thus, it can be concluded that the developers who 

don't closely collaborate with the other developers tend to do more security vulnerable codes. 

 

5.2.10 Summary  

 

According to the evaluated graphs, it can be identified that most of the features in the feature 

vector shows positive or negative correlation patterns with developer-centric vulnerability 

except frequent commit hour. 

 

 



 

 

91 

  

Feature Correlation 

Number of Rows Positive 

Average Commit Interval Negative 

Frequent Commit Hour - 

Lines Inserted Positive 

Lines Deleted Positive 

Developer Age Negative 

Average Cyclomatic Complexity Positive 

Comment Percentage Negative 

Developer Closeness Positive 

Table 5.1: Feature Vector Correlation Summary 

 

In Table 5.1, a feature is identified as positively correlated if the developer-centric vulnerability 

increases with the increment of the feature value and negatively correlated if developer-centric 

vulnerability decreases with the increment of the feature value. Frequent Commit Hour feature 

doesn’t have an identifiable linear correlation. 

 

5.3 Future Work 

 

The outcomes of this study confirm that the vulnerability of individual developers can be 

predicted by their behavioral patterns on the development process. Due to the limitations and 

constraints, the number of behavioral features analyzed in this study was limited or elementary. 

But there exist many other developer behavior related features that are complex to mine from 

software repositories yet effective on developer-centric vulnerability prediction. Thus, this 

research work can be extended further through the development of advanced repository mining 

tools and the identification of more effective techno-behavioral features.  

 



 

 

92 

  

Further, this study attempts to classify developers into two classes which are vulnerable and 

non-vulnerable. But there is a potential that developers can be classified into more classes which 

describes the severity levels of the developer-centric vulnerability of each developer. Thus, it 

allows doing a more detailed comparison between two or more developers to support a flexible 

assessment of developer-centric vulnerability.    

 

This study trained and evaluated classifications using general purpose classifier algorithms and 

techniques. As discussed previously, some of the classifiers performed well in this setup and 

produced better classification accuracy. But there are many opportunities to do future works to 

improve these classification performances with the application of more focused and customized 

techniques on this classification problem.   

 

******** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

93 

  

References 

 

[1]. The Department for Business, Innovation and Skills (BIS) . (2014). INFORMATION SECURITY 

BREACHES SURVEY 2014 | technical report. Available: https://www.pwc.co.uk/assets/pdf/cyber-security-2014-

technical-report.pdf. Last accessed 1st July 2017. 

 

[2]. United States General Accounting Office. (1992). MISSION-CRITICAL SYSTEMS Defense Attempting to 

Address Major Software Challenges. Available: http://www.gao.gov/assets/220/217352.pdf. Last accessed 1st 

July 2017. 

 

[3]. I. Gorton (2011). Essential Software Architecture. 2nd ed. USA: Springer-Verlag Berlin Heidelberg. P23-38. 

 

[4]. Dan Suceava. (2005). The Importance of Defect Tracking in Software Development. Available: 

https://www.axosoft.com/downloads/axowp_importance_of_defect_tracking.pdf. Last accessed 2nd July 2017.  

 

[5]. "Build Software Better, Together". GitHub. N.p., 2017. Web. 28 May 2017. 

 

[6]. van der Stock, A., Gonçalves, I.R. and Correa, J. (2015). OWASP top Ten cheat sheet. Available: 

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet. Last accessed 11th July 2017 

 

[7]. Shin, Y. and Williams, L., 2013. Can traditional fault prediction models be used for vulnerability prediction?. 

Empirical Software Engineering, 18(1), pp.25-59. 

 

[8]. Shin, Y., Meneely, A., Williams, L. and Osborne, J.A., 2011. Evaluating complexity, code churn, and 

developer activity metrics as indicators of software vulnerabilities. IEEE Transactions on Software Engineering, 

37(6), pp.772-787. 

 

[9]. Walden, J., Stuckman, J. and Scandariato, R., 2014, November. Predicting vulnerable components: Software 

metrics vs text mining. In Software Reliability Engineering (ISSRE), 2014 IEEE 25th International Symposium 

on (pp. 23-33). IEEE. 

 

[10]. Zimmermann, T., Nagappan, N. and Williams, L., 2010, April. Searching for a needle in a haystack: 

Predicting security vulnerabilities for windows vista. In Software Testing, Verification and Validation (ICST), 

2010 Third International Conference on (pp. 421-428). IEEE. 

 

[11]. Jiang, T., Tan, L. and Kim, S., 2013, November. Personalized defect prediction. In Proceedings of the 28th 

IEEE/ACM International Conference on Automated Software Engineering (pp. 279-289). IEEE Press. 

 

[12]. Ostrand, T.J., Weyuker, E.J. and Bell, R.M., 2010, September. Programmer-based fault prediction. In 

Proceedings of the 6th International Conference on Predictive Models in Software Engineering (p. 19). ACM. 

 



 

 

94 

  

[13]. Chandrashekar, G. and Sahin, F., 2014. A survey on feature selection methods. Computers & Electrical 

Engineering, 40(1), pp.16-28. 

 

[14]. Guyon, I. and Elisseeff, A., 2003. An introduction to variable and feature selection. Journal of machine 

learning research, 3(Mar), pp.1157-1182. 

 

[15]. The statistical analysis tool for git repositories. (2017). Ejwa Software. Available: 

https://github.com/ejwa/gitinspector. Last accessed 9th September 2017. 

 

[16]. Five Data Characteristics: Building a Great Data Analytics Solution. (2015). Ashish Soni. Available: 

https://www.linkedin.com/pulse/five-data-characteristics-building-great-analytics-solution-soni. Last accessed 

9th September 2017. 

 

[17]. Tang, J., Alelyani, S. and Liu, H., 2014. Feature selection for classification: A review. Data Classification: 

Algorithms and Applications, p.37. 

 

[18]. Hall, M.A., 2000. Correlation-based feature selection of discrete and numeric class machine learning. 

 

[19].  "dropwizard/metrics", GitHub, 2017. [Online]. Available: https://github.com/dropwizard/metrics. 

[Accessed: 12- Oct- 2017]. 

 

[20]. "igraph R package", Igraph.org, 2017. [Online]. Available: http://igraph.org/r/. [Accessed: 12- Oct- 2017].  

 

[21]. Weicheng, Y., Beijun, S. and Ben, X., 2013, December. Mining GitHub: Why Commit Stops--Exploring the 

Relationship between Developer's Commit Pattern and File Version Evolution. In Software Engineering 

Conference (APSEC), 2013 20th Asia-Pacific (Vol. 2, pp. 165-169). IEEE. 

 

[22] HEALTH CARE INDUSTRY CYBERSECURITY TASK FORCE. (2017). REPORT ON IMPROVING 

CYBERSECURITY IN THE HEALTH CARE INDUSTRY. Available: 

https://www.phe.gov/Preparedness/planning/CyberTF/Documents/report2017.pdf. Last 

accessed 28th July 2018. 

 

[23] Ganganwar, V., 2012. An overview of classification algorithms for imbalanced datasets. International Journal 

of Emerging Technology and Advanced Engineering, 2(4), pp.42-47. 

 

[24] Chawla, N.V., Japkowicz, N. and Kotcz, A., 2004. Special issue on learning from imbalanced data sets. ACM 

Sigkdd Explorations Newsletter, 6(1), pp.1-6. 

 

[25] Tang, Y., Zhang, Y.Q., Chawla, N.V. and Krasser, S., 2009. SVMs modeling for highly imbalanced 

classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(1), pp.281-288. 

 



 

 

95 

  

[26] Liu, W., Chawla, S., Cieslak, D.A. and Chawla, N.V., 2010, April. A robust decision tree algorithm for 

imbalanced data sets. In Proceedings of the 2010 SIAM International Conference on Data Mining (pp. 766-777). 

Society for Industrial and Applied Mathematics. 

 

[27] Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P., 2002. SMOTE: synthetic minority over-

sampling technique. Journal of artificial intelligence research, 16, pp.321-357. 

 

[28] Van Hulse, J., Khoshgoftaar, T.M. and Napolitano, A., 2007, June. Experimental perspectives on learning 

from imbalanced data. In Proceedings of the 24th international conference on Machine learning (pp. 935-942). 

ACM. 

 

[29] Dietterich, T.G., 2000, June. Ensemble methods in machine learning. In International workshop on multiple 

classifier systems (pp. 1-15). Springer, Berlin, Heidelberg. 

 

[30] Kotsiantis, S.B., Zaharakis, I. and Pintelas, P., 2007. Supervised machine learning: A review of classification 

techniques. Emerging artificial intelligence applications in computer engineering, 160, pp.3-24. 

 

[31] Fortmann-Roe, S., 2012. Understanding the bias-variance tradeoff. 

 

[32] Wurster, G. and Van Oorschot, P.C., 2009, August. The developer is the enemy. In Proceedings of the 2008 

New Security Paradigms Workshop (pp. 89-97). ACM. 

 

[33] Matsumoto, S., Kamei, Y., Monden, A., Matsumoto, K.I. and Nakamura, M., 2010, September. An analysis 

of developer metrics for fault prediction. In Proceedings of the 6th International Conference on Predictive Models 

in Software Engineering (p. 18). ACM. 

 

[34] Meneely, A., Williams, L., Snipes, W. and Osborne, J., 2008, November. Predicting failures with developer 

networks and social network analysis. In Proceedings of the 16th ACM SIGSOFT International Symposium on 

Foundations of software engineering (pp. 13-23). ACM. 

 

[35] Witten IH. 2014. More data mining with Weka. The university of Waikato, 

http://www.cs.waikato.ac.nz/ml/weka/mooc/ moredataminingwithweka/slides/Class4-

MoreDataMiningWithWeka-2014.pdf 

 

[36] Zhang, H., 2009, September. An investigation of the relationships between lines of code and defects. In 2009 

IEEE International Conference on Software Maintenance (pp. 274-283). IEEE. 

 

[37] Krsul, I.V., 1998. Software vulnerability analysis. West Lafayette, IN: Purdue University. 



 

 

96 

  

 

Appendix 

 

Appendix A: Gitinspector JSON Output Format Sample 

 

{ 

    "gitinspector": { 

     "version": "0.5.0dev", 

     "repository": "metrics.git", 

     "report_date": "2017/08/19", 

     "changes": { 

      "message": "The following historical commit information, by author, was found", 

      "authors": [ 

      { 

       "name": "xxxx", 

       "email": "xxxx@example.com", 

       "gravatar": "", 

       "commits": 2, 

       "insertions": 15, 

       "deletions": 2, 

       "percentage_of_changes": 0.02 

      },{ 

       "name": "xxxx", 

       "email": "xxxx@example.com", 

       "gravatar": "", 

       "commits": 1, 

       "insertions": 1, 

       "deletions": 1, 

       "percentage_of_changes": 0.00 

      }] 

     }, 

     "blame": { 

      "message": "Below are the number of rows from each author that have survived 

and are still intact in the current revision", 

      "authors": [ 

      { 

       "name": "xxxx", 

       "email": "xxxx@example.com", 

       "gravatar": "", 

       "rows": 14, 

       "stability": 93.3, 

       "age": 221.7, 

       "percentage_in_comments": 0.00 

      },{ 

       "name": "xxxx", 

       "email": "xxxx@example.com", 

       "gravatar": "", 

       "rows": 6, 

       "stability": 100.0, 



 

 

97 

  

       "age": 150.0, 

       "percentage_in_comments": 0.00 

      }] 

     }, 

     "timeline": { 

      "message": "The following history timeline has been gathered from the 

repository", 

      "period_length": "week", 

      "periods": [ 

      { 

       "name": "2010W49", 

       "authors": [ 

       { 

        "name": "xxxx", 

        "email": "xxxx@example.com", 

        "gravatar": "", 

        "work": "-++++++++++++++++++++++" 

       }], 

       "modified_rows": 1215 

      },{ 

       "name": "2010W50", 

       "authors": [ 

       { 

        "name": "xxxx", 

        "email": "xxxx@example.com", 

        "gravatar": "", 

        "work": "--+++++++++++++++++++++" 

       }], 

       "modified_rows": 1148 

      }] 

     }, 

     "metrics": { 

      "violations": [ 

      { 

       "type": "estimated-lines-of-code", 

       "file_name": "metrics-

jmx/src/main/java/com/codahale/metrics/jmx/JmxReporter.java", 

       "value": 676 

      },{ 

       "type": "cyclomatic-complexity", 

       "file_name": "metrics-

core/src/main/java/com/codahale/metrics/MetricRegistry.java", 

       "value": 135 

      },{ 

       "type": "cyclomatic-complexity", 

       "file_name": "metrics-

core/src/test/java/com/codahale/metrics/InstrumentedScheduledExecutorServiceTest.java", 

       "value": 128 

      }] 

     }, 

     "responsibilities": { 

      "message": "The following responsibilities, by author, were found in the current 

revision of the repository (comments are excluded from the line count, if possible)", 



 

 

98 

  

      "authors": [ 

      { 

       "name": "xxxx", 

       "email": "xxxx@example.com", 

       "gravatar": "", 

       "files": [ 

       { 

        "name": "metrics-

core/src/test/java/com/codahale/metrics/MetricRegistryTest.java", 

        "rows": 8 

       }] 

      },{ 

       "name": "xxxx", 

       "email": "xxxx@example.com", 

       "gravatar": "", 

       "files": [ 

       { 

        "name": "metrics-

servlet/src/main/java/com/codahale/metrics/servlet/AbstractInstrumentedFilter.java", 

        "rows": 6 

       }] 

      }] 

     }, 

     "extensions": { 

      "message": "The extensions below were found in the repository history", 

      "used": [ "java" ], 

      "unused": [ "*", "ai", "conf", "css", "erb", "handlers", "html", "io", "js", 

"less", "markdown", "md", "prefs", "properties", "py", "r", "rb", "rst", "scala", "schemas", 

"xml", "xsd", "yml" ] 

     } 

    } 

} 

 


