

Masters Project Final Report

(MCS)

2019

Project Title

Automated Test Script Executing Tool

Student Name

LDSS Karunarathna

Registration No.
& Index No.

2014/MCS/039
14440395

Supervisor’s
Name

Dr. GDSP Wimalarathne

For Office Use ONLY

S

E1

E2

For Office Use Only

P a g e 1 | 69

Automated Test Script Executing Tool

A dissertation submitted for the Degree of Master of

Computer Science

LDSS Karunarathna

University of Colombo School of Computing

2019

P a g e 2 | 69

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: LDSS Karunarathna

Registration Number: 2014/MCS/039

Index Number: 14440395

Signature: Date:

This is to certify that this thesis is based on the work of Mr. LDSS Karunarathna under my

supervision. The thesis has been prepared according to the format stipulated and is of acceptable

standard.

Certified by:

Supervisor Name: Dr. GDSP Wimalarathne

Signature: Date:

P a g e 3 | 69

Abstract

Software testing process is a critical aspect of any software development process as it is essential to

verify the software product for its proper functionality with the expected quality level. With the recent

developments happening in software testing domain, test automation has been attracting a lot of

attention from the industry as a result of urgent need to increase the productivity of the process while

maintaining the accuracy.

The present day test automation tools (MarathonITE, Selenium, and Sikuli) have a wide variety of

features which makes them more suitable for different contexts. However, most of them has several

problems in common. Some significant problem areas identified are; need to access the code for GUI

component identification, not being able to execute batches of test scripts, requirement of

customized test reports for high quality outcomes, and not having compatibility with other

technologies used in the product etc. Though these problems have been resolved in certain tools,

there was not a single tool which has catered to all the issues. Thus, through this research project it

was intended to come up with a test automation tool which could help to address all the

aforementioned issues.

Image processing based GUI component identification is gaining a lot of popularity in the context of

test automation. Thus this project used a supporting tool called Sikuli which could perform the initial

tasks such as test script creation. Then the developed tool through this research project will include

the functionalities of executing a flow of test scripts (which were created by the supporting tool), and

generating customized test reports based on test statistics etc. The specialty of this automated test

script executing tool is that it does not require the code level access and doesn’t require a customized

framework to be compatible with the other technologies.

The prototype of the tool is developed using key technologies and tools such as Java, Python, OpenCV,

and Sikuli APIs. The tools underwent several testing processes to ensure that it is serving the purpose

in the correct way. Further, this prototype of the tool was also subjected to the evaluations of the

stakeholders of the test automation domain such as QA leads, QA engineers and Software engineers

etc.

P a g e 4 | 69

Table of Contents

Chapter 1 – Introduction ... 11

1.1 Chapter overview .. 11

1.2 Problem statement ... 11

1.3 Project Aim and objectives ... 12

1.4 Structure of the thesis .. 13

Chapter 2. Literature Review .. 16

2.1 Chapter Overview ... 16

2.2 Software Testing ... 16

2.3 Process of Software Testing .. 16

2.4 Why Automation of Software testing is Important .. 17

2.5 Existing tools in the Market for Automated Software Testing ... 17

2.5.1 MarathonITE .. 17

2.5.2 Selenium... 17

2.5.3 Sikuli ... 18

2.6 Literature on Related Techniques used in Software Test Automation 18

2.6.1 Types of Tools Available for Visual Workflow Automation ... 18

2.6.2 Image Processing based GUI Component Identification Method used in Sikuli 18

2.7 Literature on Alternate Approaches for Software Test Automation .. 19

2.7.1 Component Identification Techniques ... 19

2.7.2 Techniques Available for Training Process of Component Identification 21

2.7.3 Techniques to Add Enhanced Features to Test Automation Tools 22

2.8 Summary ... 23

Chapter 3. Analysis .. 25

3.1 Chapter Overview ... 25

3.2 Requirement Elicitation .. 25

3.2.1 Literature Review .. 25

3.2.2 Questionnaire .. 26

3.2.3 Brainstorming Sessions ... 27

3.3 Feedback Response Analysis ... 28

3.3.1 Understanding the Background of the Job Role of Participants .. 28

3.3.2 Analysis of Types of Automation Tools Used ... 29

3.3.3 Understanding Different Requirements of Different Job Roles 30

3.3.4. Feedback Responses Analysis for Additional Comments ... 32

3.3.5 Analyzing Brainstorming Feedback Responses ... 33

P a g e 5 | 69

3.4 Context Diagram ... 33

3.5 Use Case Model... 34

3.5.1 Use Case Diagram ... 34

3.5.2 Use Case Specifications ... 35

3.6 Functional Requirements .. 38

3.7 Non Functional Requirements .. 39

3.8 Summary ... 39

Chapter 4. Architecture and Design .. 41

4.1 Chapter Overview ... 41

4.2 High Level Design .. 41

4.2.1 Prototype features ... 41

4.2.2 Rich Picture of the ATS Executing tool ... 42

4.2.3 High Level Architecture .. 43

4.3 System Design ... 43

4.3.1 Class Diagram ... 44

4.3.2 Sequence Diagram ... 45

4.3.3 Script file and Flow file storage procedure .. 46

4.4 Design Goals for Overall Solution ... 46

4.5 Chapter Summary ... 46

Chapter 5. Implementation ... 48

5.1 Chapter Overview ... 48

5.2 Technology Selection .. 48

5.3 Core Implementation .. 48

5.3.1 Saving a New Test Script to a Test Flow ... 48

5.3.2 Executing a Test Flow ... 50

5.3.3 Generate Log Reports of the Executions Status .. 50

5.4 Look and feel of the proposed ATS System .. 51

5.5 Chapter Summary ... 52

Chapter 6. Testing and Evaluation .. 53

6.1 Chapter Overview ... 54

6.2 Objectives and Goals of Testing .. 54

6.3 Testing Criteria .. 54

6.4 Functional Testing ... 54

6.4.1 Testing Elicited Functional Requirements during Requirement Analysis 54

6.4.2 Testing Derived Functional Requirements during Implementation 55

6.5 Integration Testing .. 55

6.6 Non Functional Testing ... 55

P a g e 6 | 69

6.6.1 User Friendliness .. 55

6.6.2 Performance... 56

6.6.3 Load and Scalability Testing ... 56

6.7 Limitations of testing process ... 56

6.7.1 Difficulty in Testing the System for Various Resolutions of Display 56

6.7.2 Not Tested on Enterprise Level Environment .. 56

6.8 Evaluation Criteria ... 57

6.9 Evaluation Methodology ... 57

6.10 Evaluator Feedback ... 58

6.10.1 Overall Concept .. 58

6.10.2 Scope and Depth .. 58

6.10.3 Design and Implementation ... 59

6.10.4 Solution and Prototype .. 59

6.10.5 User-Friendliness and Performance... 59

6.10.6 Limitations and Future Enhancements .. 60

6.11 Self-Evaluation .. 60

6.12 Evaluation of Functional Requirements .. 61

6.13 Chapter Summary ... 61

Chapter 7. Conclusion ... 64

7.1 Chapter Overview ... 64

7.2 Achievement of Aims and Objectives ... 64

7.2.1 Aim ... 64

7.2.2 Objectives ... 64

7.3 Utilization of Existing Knowledge .. 65

7.4 Learning Outcomes ... 65

7.5 Problems and Challenges Faced ... 66

7.5.1 Lack of initial knowledge on key technologies used .. 66

7.5.2 Lack of academic research publications on Software Test Automation 66

7.5.3 Wide scope of the research domain .. 66

7.5.4 Time Constraint .. 66

7.6 Future Enhancements ... 66

7.6.1 Being independent of screen resolution .. 66

7.6.2 Integration of supporting tool functionalities ... 66

7.6.3 Support web-based applications ... 66

7.7 Contributions .. 66

7.8 Closing Remarks .. 67

References .. 68

P a g e 7 | 69

List of Figures

Figure 2.6.1: Sliding of Template Image over the Source Image. Image downloaded from OpenCV

2.4.13.7 documentation ... 19

Figure 2.6.2: OpenCV Algorithm for Template Matching ... 19

Figure 2.7.1 Open Window with Some Identified Widgets .. 21

Figure 2.7.2 Process Involved ... 23

Figure 3.3.1: Pie Chart - Distribution of Questionnaire Participants .. 28

Figure 3.3.2: Pie Chart - Nature of Business Involved by the Participants ... 28

Figure 3.3.3: Pie Chart - Types of Software Testing Tools Used ... 29

Figure 3.3.4: Bar Chart - Relationship between the Type of Tool and Nature of Business Involved 29

Figure 3.3.5: Bar Chart - Quantitative Representation of Reasons for not using any Test Automation

Tool ... 30

Figure 3.3.6: Pie Chart - Distribution of Mechanisms Used to Automatically Generate Reports 30

Figure 3.3.7: Bar Chart - Average Rating for Different Types of Reports Required by QA Leads 31

Figure 3.3.8: Bar Chart - Distribution of Time Spent on Writing Long Test Scripts 31

Figure 3.3.9: Bar Chart - Distribution of Time Spent on Writing Atomic Test Scripts 31

Figure 3.3.10: Bar Chart - Preference for Different Types of Test Mechanisms 32

Figure 3.3.11: Time to Familiarize with a Software Test Tool ... 32

Figure 3.4.1: High Level Context Diagram of the Proposed Solution .. 33

Figure 3.4.2: Structure of a Test Module .. 34

Figure 3.5.1: Use Case Diagram for the Automated Test Script Executing Tool 34

Figure 4.2.1 Porotype features ... 41

Figure 4.2.2: Rich Picture of the ATS System .. 42

Figure 4.2.3: High Level Architecture Diagram ... 43

Figure 4.3.1: Class Diagram of ATS System ... 44

Figure 4.3.2: Sequence Diagram of ATS System ... 45

Figure 4.3.3 ER Diagram for file storage ... 46

Figure 5.3.1: Code - Saving a new test script to a test flow .. 49

Figure 5.3.2: Code - Executing a test flow... 50

Figure 5.3.3: Generated log report for some sample test execution flows .. 51

Figure 5.4.1 Look and feel of the proposed ATS system ... 51

Figure 6.6.1: User Friendliness Test Results ... 55

file:///F:/MyStuff/project%20report/ProjectReportLatest.docx%23_Toc10061056

P a g e 8 | 69

List of Tables

Table 3.2.1: Pros and Cons of Literature Review for Requirement Elicitation 25

Table 3.2.2: Structure of the Questionnaire Prepared for the Research .. 26

Table 3.2.3: Pros and Cons of Questionnaires for Requirement Elicitation ... 27

Table 3.2.4: Pros and Cons of Brainstorming Sessions for Requirement Elicitation............................. 27

Table 3.3.1: Number of Questionnaire Participants ... 28

Table 3.3.2: Average Ratings for Convenience for Writing Different Test Scripts 31

Table 3.5.1: Use Case Specifications for 'Add Script' Task .. 35

Table 3.5.2: Use Case Specifications for 'Create Flow' Task ... 35

Table 3.5.3: Use Case Specifications for 'Run Flow' Task .. 35

Table 3.5.4: Use Case Specifications for 'View Execution Status' Task ... 36

Table 3.5.5: Use Case Specifications for 'Load Script' Task ... 36

Table 3.5.6: Use Case Specifications for 'Generate Report' Task ... 36

Table 3.5.7: Use Case Specifications for 'Create Test Execution Status' Task 37

Table 3.5.8: Use Case Specifications for 'View Error Report' Task ... 37

Table 3.5.9: Use Case Specifications for 'Create Reports for Time Elapsed' Task 37

Table 3.5.10: Use Case Specifications for 'Store History' Task ... 38

Table 3.6.1: Priority Levels Definition ... 38

Table 3.6.2: Functional Requirements .. 38

Table 3.7.1: Non-Functional Requirements .. 39

Table 4.3.1: Class Descriptions .. 44

Table 5.2.1: Technologies used ... 48

Table 6.4.1: Testing Elicited Functional Requirements during Requirement Analysis 54

Table 6.4.2: Testing Derived Functional Requirements during Implementation 55

Table 6.6.1: Performance Test Results ... 56

Table 6.8.1: Evaluation Criteria ... 57

Table 6.9.1: Evaluation Survey Questions ... 57

Table 6.10.1: Feedback and Review on Overall Concept .. 58

Table 6.10.2: Feedback and Review on Scope and Depth .. 58

Table 6.10.3: Feedback and Review on Design and Implementation ... 59

Table 6.10.4: Feedback and Review on Solution and Prototype .. 59

Table 6.10.5: Feedback and Review on User-Friendliness and Performance 60

Table 6.5.6: Feedback and Review on Limitations and Future Enhancements 60

Table 6.11.1: Self-Evaluation .. 60

Table 6.12.1: Evaluation of Functional Requirements .. 61

P a g e 9 | 69

List of Abbreviations

ATS - Automated Test Script

FADEC - Full Authority Digital Engine Control

IPBCI -Image Processing Based Component Identification

API – Application Program Interface

QA – Quality Assurance

PRINCE2- Projects in Controlled Environments, version 2

SDK- Software Development Kit

JRE- JAVA Runtime Environment

STLC – Software Testing Life Cycle

GUI – Graphical User Interface

DAG - Directed Acyclic Graph

NN- Neural Network

NASA - National Aeronautics and Space Administration

IEEE – Institute of Electrical and Electronic Engineers

IBM - International Business Machines

UML - Unified Modeling Language

IDE - Integrated Development Environment

API - Application Program Interface

OOD – Object Oriented Design

P a g e 10 | 69

Chapter 1: Introduction

 1 Chapter Overview

 1.2 Problem Identification

 1.3 Prior Work

 1.4 Project Aim

 1.5 Objectives

 1.6 Prototype Features

 1.7 Project Deliverables

 1.8 Resource Requirement

 1.9 Project Documentation

 1.10 Chapter Summary

P a g e 11 | 69

Chapter 1 – Introduction
1.1 Chapter overview
This chapter intends to provide an overall idea of the research project titled as ‘Automated Test Script

Executing Tool’. The chapter will begin with the elaboration of the problem domain which justify the

need to have a new test automation tool with enhanced functionalities. This is followed by the

definition of the aim and objectives of the project, basics of requirement analysis process, overview

about the development of the prototype, testing, critical evaluation and the documentation aspects

of the proposed solution.

1.2 Problem statement
Software testing has become an integral part of the software engineering process in today’s context.

The customer’s expectation on obtaining the highest possible quality product for the price being paid

has resulted in increasing attention towards ensuring the quality aspect of the final software product.

Throughout the entire development process of the software, testing is involved in various phases. As

the amount of testing being done is increasing at a rapid pace, it is very common to see that various

types of automation tools are being introduced to the market, to automate the test cases being

performed on the product. This has drastically resulted in enhanced accuracy and the improved

efficiency in the software testing process.

There are several tools to Automate Web clients (Eg: Selenium [1]). But there are only few software

automation tools for Java/Swinging applications (Eg: Marathon [2]) at the moment.

However the solutions which are present at the moment to serve this purpose have some drawbacks

which limit the scope of expanding the efficiency furthermore. Also, most of these solutions still

require a certain amount of human involvement during the test case automation procedure. For an

example, most of the automated tools still require the user to define the components of a software

product before starting the test case automation process. In this context, there are some instances

where the components are just labeled as unidentified or duplicate resulting in complicated

maintenance issues.

The aforementioned drawback is overcome by another software test automation tool called ‘Sikuli’

[3], where it has the capability to automate anything that appears on the screen. This tool does not

require code level access and uses image recognition techniques to control and identify GUI

components (Described in detail in Chapter 2).

Yet, even ‘Sikuli’ still has several weaknesses which should be overcome to provide a smoother testing

mechanism. Even though it can automate a single test script, it cannot execute a bunch of test scripts

at the same run. Also it cannot generate the test reports which contains the status of the tests (pass

or fail), and types of errors etc. This deprives the ability to decide whether the software product under

test is verified or not.

The research work currently being done under this area is as follows.

A Study on an Intelligent General-Purpose Automated Software Testing Suite [4] shows that this

manual software testing can be automated with the aid of an automated software testing scheduler

and a log file error analyzer. This has enabled the testing engineer to keep track of the test process

even from an outside location through a report generated during the process.

P a g e 12 | 69

Another software testing automation framework [5] being published by IEEE suggests a multiplatform,

multi-language approach for the reuse the services that can be used to automate major activities in

the testing process. Here reusing has been identified as a potential solution to efficiently automate

resource-intensive test suites and was actually tested in IBM.

Analysis of a software automation test protocol [6] also covers a deep analysis of software automation

testing, and the definition, characteristics and functions which will be very useful in coming up with a

suitable solution to the problem being addressed through this project.

Using these concepts and research work material currently available, it is assumed that a new

approach which is more effective could be introduced for the automated software testing process

1.3 Project Aim and objectives
To design, develop and evaluate a software tool which can automate the execution of multiple

software test scripts during one test cycle, using a readily available image processing based

component identification tool. The new test tool will include several other enhanced features such as,

generation of test reports, and ability to add the executing conditions to the script level etc.

Further, the new test automation tool will make use of the API of ‘Sikuli’ automation tool in

component identification.

This project involves the following set of objectives to be achieved during the project.

 Literature survey being conducted to get a solid idea on how the test case automation is being

done at the moment. This will involve deeply analyzing the existing test automation tools in

the market. Literature survey will also cover the understanding of present research work being

carried out in line with this purpose.

 Requirement analysis on the topic being selected for the project. The drawbacks of the

present solutions and the exact expectation of the end user is taken into account in this case.

 The design and the framework of specifications to implement the project. This design will be

the foundation to carry out the development of the new test automation tool.

 Considering the complexity, features of the design and the specifications, define the set of

development tools that will be used for the project.

 Development of a fully functioning prototype to demonstrate the goal of the project being

proposed.

 Testing of the prototype to ensure that it adheres to the final expectations of the project.

 Critical evaluation of the parts of the tools being developed to check whether the expected

outcome is achieved and the expected performance standards are being met.

 Clear and descriptive documentation of the entire process of developing the test automation

tool.

P a g e 13 | 69

1.4 Structure of the thesis
Chapter 1 – Introduction

This will provide the overview of this research project including problem identification, prior work,

project aim, objectives, prototype features, deliverables, resource requirements and the final

documentation structure.

Chapter 2 – Literature Review

The purpose of this chapter is to provide details on related work for the research topic. This chapter

will cover the information extracted from the relevant documented literature available. This chapter

covers the importance of software testing, already available software test automation tools and their

novelties and limitations, and technical details on how the image processing based GUI component

identification is done etc.

Chapter 3 - Project Management

The project management chapter will focus on the project plan of this research including the work

schedule, risk mitigation plan, the most feasible software development methodology, and the

research methodology proposed for the project.

Chapter 4 - Requirements Analysis

This chapter will cover the process of requirement elicitation which included the process of

information gathered via various sources such as literature review, questionnaires and brainstorming

sessions. It also includes the identifying the stakeholders of the system, use case model, and finalized

set of functional and non-functional requirements.

Chapter 5 - Architecture and Design

Chapter 5 intends to cover the design considerations, design goals, high level design in terms of rich

picture and high level architecture, and system design in terms of class diagram, sequence diagram,

and entity relationship diagram.

Chapter 6 – Implementation

The chapter on Implementation provides a detailed explanation as to how the proposed design was

implemented to develop the prototype. Technology selection and the core functionalities description

with the aid of code snippets. Finally, the outcome of the prototype and sample results are presented.

Chapter 7 – Testing

This chapter will focus on describing how the testing is carried for the implemented prototype. The

testing criteria will be defined at the beginning. Then the testing results of functional requirements

(elicited during requirement analysis stage and during the implementation stage as well) and the

nonfunctional requirements are presented. The chapter closes with stating the limitations of the

testing process conducted.

Chapter 8 – Evaluation

The purpose of this chapter is to present the evaluation carried out by external parties such as QA

Leads, QA engineers and software engineers etc. Their feedback was gathered under 6 aspects and

for each aspect the summary of the feedback and the review is presented. This chapter mainly focuses

on providing a qualitative evaluation for the system developed. Finally a self-evaluation is carried out

with the purpose of identifying the strengths and weaknesses of the project.

P a g e 14 | 69

Chapter 9 – Conclusion

This chapter will provide the closing remarks of the entire project through a brief analysis of the

achievement of the aim and objectives defined in chapter 1, how the modules followed in the course

helped to carry on the project, utilization of existing knowledge, the learning outcomes, challenges

faced and the future improvements.

P a g e 15 | 69

 Chapter 2: Literature Review

2.1 Chapter Overview

2.2 Introduction to Software Testing

2.3 Process of Software Testing

2.4 Why Automation of Software testing is Important

2.5 Existing tools in the Market for Automated Software

Testing

2.6 Literature on Related Techniques used in Software Test

Automation

2.7 Literature on Alternate Approaches for Software Test

Automation

2.8 Summary

P a g e 16 | 69

Chapter 2. Literature Review
2.1 Chapter Overview
This chapter is prepared to give the reader an overview of the software testing process in today’s

context. This will provide the background of the problem being addressed through this research

project and will also will testify the need to incorporate automated software testing tools. This also

provides detailed descriptions as to how the existing methodologies will function, their drawbacks and

related technologies and tools available to overcome the said issues. The knowledge gathered from

this literature review will be thoroughly used to develop the new approach introduced in this research

to improve the automated software testing procedures.

2.2 Software Testing
To identify the completeness, quality and correctness of a developed product or application is known

as Software testing. This includes set of activities conducted, to identify errors in software so that it

can be corrected before the product is released to the customer.

Software testing has become an integral part of the software engineering process in today’s context.

The customer’s expectation on obtaining the highest possible quality product for the price being paid

has resulted in increasing attention towards ensuring the quality aspect of the final software product.

Throughout the entire development process of the software, testing is involved in various phases.

Moreover, unattended software defects can end up dangerous and even expensive [7]. Following are

few of the instances which provide evidences as to the extent of damage those could cause.

 Chinook [8] helicopter crashed due to a software flaw in the FADEC system in 1994 in Scotland,

killing 29 passengers on board.

 A software bug in Canada's Therac-25 [9] radiation therapy machine caused it to severely

malfunction in 1985 which caused to deliver lethal radiation doses to patients, leaving 3

people dead and critically injuring 3 others.

 A failure worth of USD 1.2 billion was caused during a military [10] satellite launch as a result

of a software bug in April 1999. This considered as one of the costliest accidents in the

history of Cape Canaveral launches.

2.3 Process of Software Testing
As stated in section 2.2, Software Testing [11] is involved throughout the various phases involved in

a Software project. At the same time, the process does not include just a single activity, but a series

of activities carried out in a well-planned manner which will ultimately guarantee the quality of the

software product. This series of activities are technically known as the Software Testing Life Cycle

(STLC). STLC has the following steps.

 Requirement analysis

 Test planning

 Test case development

 Test environment setup

 Test execution

 Test cycle closure

P a g e 17 | 69

2.4 Why Automation of Software testing is Important
As the amount of testing being done is increasing at a rapid pace, it is very common to see that

various types of automation tools are being introduced to the market, to automate the test cases

being performed on the product. This has drastically resulted in enhanced accuracy and the

improved efficiency in the software testing process.

Basic functioning of automation testing would be, using a special tool which could execute test scripts

automatically to run a software application. Cost of automated testing is evaluated based on the effort

and time required to create the tests. Thus, based on the cost-benefit analysis, a particular test can

be decided to automate [12].

The requirement of test automation is further justified by following reasons.

 Need to do regression testing – This involves reusing existing test cases repeatedly to check

whether new additions to a particular product does not create a negative impact or a defect

in the software product. This approach is useful to provide efficient results.

 When there is a need to run test cases multiple times iteratively using different datasets.

 These days it is a very common practice to use agile approach to perform test cases. Test

automation eases this process as it reduces the effort required.

 Different stakeholders require different types of test reports on a test being done. Automation

can helps to generate customized reports as per the requirement.

2.5 Existing tools in the Market for Automated Software Testing

2.5.1 MarathonITE
Marathon Integrated Test Environment (MarathonITE) [2] is a cross platform test automation

framework for Java/Swing applications. This has an inbuilt script recorder, which can create test

scripts, and then run later separately or as a batch. Refactoring tools used in MarathonITE helps to

have a better reusability of test scripts. Its ability to continuously monitor the actions of the test

performer, helps to conduct exploratory testings more efficiently. Semi-automatic tests can be

performed as well in the case where manual handling is required.

However performance of MarathonITE is limited as it sometimes doesn’t function properly with the

subjected software product due to certain incompatibilities. In such cases, the company using this tool

will develop their own framework to enable these functionalities.

2.5.2 Selenium
Selenium, is an automated web testing tool [1] which is quite popular around the world. It is a set of

different test tools (tool suite), in which the user can choose the tools they prefer. Each tool has a

different set of capabilities and options, so it is easier to build a customized test tool according to the

requirement.

Tool suite of Selenium includes the following.

Selenium 1 - This is the very first tool came under Selenium. Introduction of this was the first time to

witness an automated test tool which allowed to control browser actions from any language. However

the benefits were limited of this version due to Javascript based automation engine, and security

limitations imposed by the browsers on Javascript.

P a g e 18 | 69

Selenium 2 - This is also known as the Selenium WebDriver which provides an advanced object

oriented API to overcome the issues in the previous version.

Selenium IDE - This prototype tool serves the purpose of writing test scripts. Its recording feature

helps to record the steps as they are executed and then allows to export them as reusable scripts.

However features like iteration and conditional statements of test scripts do not include in this.

Selenium Grid - This is an extended version of Selenium 1 which has the capability to run very large

test cases, and to run in multiple test environments making use of the parallel processing techniques.

Limitations [13] of Selenium tools include not supporting non-web based applications, and no in-built

reporting tools (thus need plugins such as JUnit).

2.5.3 Sikuli
This open source software test automation tool [3] identifies and controls GUI components of the

software product through image recognition. In contrast to the other tools in the market, this doesn’t

require code level access making it less complex and more user friendly for the user. More information

could be found in 2.6.2.

Yet, the performance is limited as the test scripts can be run only one at a time

2.6 Literature on Related Techniques used in Software Test

Automation
This section covers the findings on the most relevant literature for the proposed solution.

2.6.1 Types of Tools Available for Visual Workflow Automation
Visual Workflow of a particular task can be defined as the set of steps being conducted to perform

that task. If that is being performed repeatedly, it is easy to use an automatic approach. There are 3

types of techniques been used in tools available for visual workflow automation.

Recorder – This is when the tool tracks the action of the mouse pointer and keyboard and record

those actions and then play back when needed. These recordings are usually flexible to amend with

any additional features. [14]

GUI aware – This is where the code level of GUI components being accessed and program the task to

happen automatically.

Visually – This approach will observe the screen as images, and the mouse and keyboard can perform

simulations on these images to depict the actual task being done. Most of the times this will not

require the code level access which makes this category more suitable for the proposed solution.

2.6.2 Image Processing based GUI Component Identification Method used in

Sikuli
Sikuli’s approach [14] for visual workflow is the 3rd category mentioned in 2.6.1. This section will briefly

describe the major aspects involved in this process which are specific to Sikuli

2.6.2.1 Template Matching Technique to Find Images on the Screen
This tool [15] utilizes the OpenCV package which uses template matching technique. Basically this will

find areas of an image that will match to a template image. Given that, there are 2 primary

components namely source image (the image subjected to find matches with a template image) and

P a g e 19 | 69

template image (which will act as the reference to find matches). The area which has the highest

matching will be will be identified through this process. To find the matching area for two images, the

template image will be slid across the source image.

Figure 2.6.1: Sliding of Template Image over the Source Image. Image

downloaded from OpenCV 2.4.13.7 documentation

As shown in Figure 2.6.1, the template image will be moved one pixel at a time from left to right and

up to down. At each point, a metric as to the extent of matching will be calculated and these values

will be stored in a matrix. I.e. This matrix will have match metrics for each location with the

corresponding {x, y} coordinates. Based on the 6 types of different matching methods available [15],

the respective location coordinates of the highest (or lowest) metric value, will be taken as the most

matching location. The Figure 2.6.2 depicts the steps involved in the OpenCV code for template

matching process.

Figure 2.6.2: OpenCV Algorithm for Template Matching

2.7 Literature on Alternate Approaches for Software Test Automation

2.7.1 Component Identification Techniques
GUI Ripping: Reverse Engineering of Graphical User Interfaces for Testing [16]

As Graphical User Interfaces (GUIs) plays a vital role in ensuring the expected behavior of the entire

software, their correct execution is quite critical in today’s context. This research has identified this

requirement has proposed a new mechanism for automated GUI testing, which can identify the

components of the GUI and store them in the manner of test cases.

The researchers have used a reverse engineering approach of a model represented by structures

which are known as GUI forest, event-flow graphs and an integration tree directly from the executable

P a g e 20 | 69

GUI. The term “GUI Ripping” has been used to describe a dynamic process where the particular

software’s GUI is automatically travelled across by opening all windows of the software. Through this

way, all their widgets which are also known as GUI objects, properties and values are extracted. This

information will then be verified by the test designer and then will be used to generate the test cases

automatically. The outcome of this research was to build algorithms to facilitate this ripping process

and those have been implemented in a tool suite which operates on Java and Microsoft Window’s

GUI. The results of a set of case studies prove that this approach can be handled with very little human

engagement. Thus, it is obvious that this will be very useful in regression testing of software which is

modified quite frequently. Through this concept being tested in several large experiments, now it is

available as a downloadable tool.

GUI Forest

For the purpose of this proposed research topic, having an insight to the concept of “GUI Forest” is

quite worthwhile. This is very first GUI portrayal obtained during the aforementioned ripping process.

As the name implies, GUI forests will represent the structure of the windows of a GUI as nodes of the

forest and the hierarchical relationship between each of the windows as edges. Enclosed in each node

is the state of a window which comprises of the window’s widgets, their properties and the values. In

other words, a GUI window is modeled as a set of widgets (e.g., buttons, labels, text fields) that creates

the window, a set of properties (e.g., background color, size, and font) of these widgets, and a set of

values (e.g., red, bold, 16pt) associated with the properties as each window will contain certain types

of widgets with different properties. As a result of this, the window could be described in terms of

specific widgets it possess at the moment of its execution along with the values of their various

properties.

Symbolically, a window at time t can be modeled in terms of

 Widgets W = {w1,w2,...,wl}, i.e., the widgets that the window currently contains,

 Properties P = {p1,p2...,pm} of the widgets, and

 Values V = {v1,v2...,vn} of the properties.

For example, consider the Open window shown in Figure 1. Though this window contain several

widgets, it has specifically named two widgets as Button1 and Label1. A small subset of properties for

these two widgets were also shown. It is important to note that have a predefined set of properties

where each of this property can take values in a predefined set again. The set of widgets and their

properties will be used to create a model for the state of the window.

Thus, the state of a window at a particular time t is the set S of triples {(wi,pj,vk)}, where wi ∈ W , pj ∈

P ,and vk ∈ V .

P a g e 21 | 69

Figure 2.7.1 Open Window with Some Identified Widgets

Ultimately, to describe the complete state of a window, it has to contain information of the types of

all the widgets that are currently in the window along with the values of the properties of each widget.

GUI’s windows form a hierarchical structure where the user will be prompted with a top level window

(or a set of windows) at the time of being invoked. Other windows of the GUI will be called via one of

these top level windows or their descendants. Usually, these relationships among the windows can be

illustrated through a set of Directed Acyclic Graphs (DAGs) as multiple windows can be used to invoke

a single window.

Though a direct representation of the relationships can be obtained from DAGs, a tree model is quite

simple to build algorithms which requires traversing across the nodes. This, each DAG will be

converted to a tree by copying nodes. As most GUIs have only a single top level window, the forest

can be simplified to a single tree.

The above process will be useful in identifying the components of GUI application, which I will store

in separate location, so that it can be easily accessible, without digging into the code.

2.7.2 Techniques Available for Training Process of Component Identification

A Neural Network Based Approach for Modeling of Severity of Defects in Function Based Software

Systems [17]

To predict the robustness of a software systems towards the possible faults, a lot of technical work is

conducted. Yet, what matters most is the severity of the faults that could incur rather than the number

of faults which exists in the developed system. This is because, major faults requires the immediate

attention of the developers. Neural Networks (NN) have become a popular concept which is being

used in the software engineering applications where those could be deployed to build reliability

growth models.

NNs are non-linear modeling techniques which has the capability to model complex functions. At the

times where the exact number of inputs and outputs cannot be determined, NN techniques can be

used. A training process is used to learn the relationship between the input parameters and the

output. This research has focused on exploring five key NN based techniques along with a comparative

analysis as to the modeling of severity of faults which are present in function based software systems.

A NN can be considered as a network consisting of connected neurons. Similar to the behavior of

neurons in human nerves system, information in NN will be propagated by firing electric pulses

P a g e 22 | 69

through its connections. NNs use the fact that the connection changes throughout the lifetime of a

neuron and the amount of incoming pulses needed to activate a neuron also changes to perform the

learning process. This way a NN can be trained to perform a certain function by adjusting the values

of the connections between the neurons.

The researchers have used NASA’s public domain defect dataset for the modeling purposes.

Parameters such as Mean Absolute Error, Root Mean Square Error and Accuracy Values are used to

perform the quantitative comparison among different algorithms.

The authors have tried to find a suitable algorithm to model software components into different levels

of fault severity in software systems. For this, the following five Neural Network algorithms are

experimented:

 Batch Gradient Descent

 Batch Gradient Descent with momentum

 Variable Learning Rate

 Variable Learning Rate training with momentum

 Resilient Backpropagation

The Resilient Backpropagation algorithm based NN has proven to be the best for the purpose of

modeling the components of the software into different levels of severity. Through that way, the

authors are suggesting that it can be used to identify the modules which contains most.

This research could be considered as a guideline to identify the characteristics of each algorithm which

has the possibility to be deployed in the training mechanism of the proposed new research. Depending

on the exact requirement, the algorithm to be used can be finalized.

2.7.3 Techniques to Add Enhanced Features to Test Automation Tools

A Study on an Intelligent General-Purpose Automated Software Testing Suit [4] shows that this manual

software testing can be automated with the aid of an automated software testing scheduler and a log

file error analyzer. This has enabled the testing engineer to keep track of the test process even from

an outside location through a report generated during the process.

In this article, they have built an Automation Software tool, which will overcome the difficulties in

manual testing. Also the time has been saved due to automating, repeated testing scenarios. So, that’s

the tester only will focus on the fail scenarios.

The process in Figure 2.7.2 will be executed in this approach.

P a g e 23 | 69

Figure 2.7.2 Process Involved

By using above methods, I can use to create the scripts, handle exceptions, log reports and organize

the test case structure.

All these functionality and features help to increase the testing efficiency, reduce the labor intensity

of software testing, which in turn, leads to the decrease in testing cost.

Another software testing automation framework [5] being published by IEEE suggests a multiplatform,

multi-language approach for the reuse the services that can be used to automate major activities in

the testing process. Here reusing has been identified as a potential solution to efficiently

automate resource-intensive test suites and was actually tested in IBM.

Analysis of a software automation test protocol [6] also covers a deep analysis of software

automation testing, and the definition, characteristics and functions which will be very useful in

coming up with a suitable solution to the problem being addressed through this project.

2.8 Summary

This literature survey reviewed the available related work for the chosen research topic which was to

develop an automated test script executing tool. It can be seen that there are several resources

available which has incorporated things such as creating test scripts in their automated software

testing tools, however, there are not any techniques to run a bundle of test scripts at one run and also

to generate customized test reports. Even though these features are separately available in different

tools, there is not a single tool which can achieve both the tasks. The literature review helped to

identify the limitations of each tool available in the market which helped to lay the foundation as to

what aspects should be covered in this new tool being developed.

P a g e 24 | 69

Chapter 3: Analysis
3.1 Chapter Overview

3.2 Requirement Elicitation

3.3 Feedback Response Analysis

3.4 Context Diagram

3.5 Use Case Model

3.6 Functional Requirements

3.7 Non Functional Requirements

3.8 Chapter Summary

P a g e 25 | 69

Chapter 3. Analysis
3.1 Chapter Overview

This chapter will cover the in-depth analysis of the requirements for the proposed solution. The exact

set of requirements were derived through the date gathered from the literature reviews,
questionnaires and brainstorming sessions with the peers. This data was analyzed to get quantitative

and qualitative information to build the functional and non-functional requirements. This chapter also

presents a context diagram of the solution, and use case specifications as well.

3.2 Requirement Elicitation
When the process of software testing is considered, the test environment varies from one software
product to another. As stated in 2.3.4, factors such as software, hardware and network configurations
act as building blocks of the test environments. Thus, it is obvious that the scope of testing will differ
from one test environment to another.

When building a new test automation tool, it is necessary, that the tool will be compatible with all the
possible types of test environments. The performance of the tool should not be limited to one type of
a test environment.

Requirement elicitation was carried out in order to understand the common aspects required for the
tool to operate without any restrictions. Two main approaches were undertaken.

 Questionnaire – A standard of set of questions were developed to understand the aspects of the
new automation tool being developed. This was shared among different people from different
organizations so that an unbiased sample is taken into consideration.

 Brainstorming sessions – These were carried out with my co-workers in order to grasp any special
requirements or customizations that should be considered in developing the new tool.

3.2.1 Literature Review

The purpose of the literature survey was to investigate the existing mechanisms available for software
test automation. The pros and cons of each method were analyzed extensively through this review.
This was helpful to understand the drawback of the existing mechanisms which should be taken into
account when developing the new tool

Table 3.2.1: Pros and Cons of Literature Review for Requirement Elicitation

Advantages

 Available literature on the research area helps to understand the
aspects which requires improvement or needs revision.

 Proper documentation is available which is more reliable.
 As a result, it provides the foundation for requirement elicitation and

provide the path to understand what areas should be covered from
other requirement elicitation techniques.

Disadvantages

 Very time consuming, as this requires searching for all the available
resources such as online documents, journal papers, conference
proceedings etc.

 The effort required to review, analyze and extract necessary
information is comparatively high as the required facts are not readily
available.

P a g e 26 | 69

3.2.2 Questionnaire

An online form with the questions mentioned in Table 3.2.2 was circulated among various members

in the company. The purpose of this was to obtain a feedback about the functionality, performance
and expectations related to test automation tools.

The questions were categorized in to three main segments.

 Basic questions – which are common to everyone despite the difference of roles
 Questions specific to each type of role
 Final common questions to cover other useful information which are not being directly asked

through the questionnaire.

Table 3.2.2: Structure of the Questionnaire Prepared for the Research

Basic Questions What are you? (E.g: QA Lead, QA Engineer, Developer, Intern)

 Do you work with only local clients or both local and foreign clients?

 What is the tool you are using as the test automation tool? (Eg:

MarathonITE, Sikuli, Selenium, Other or None)

 If you are not using any of the automation tools, what is the main

reason? (Eg: The software product is complex to undergo an

automated testing process, product development frameworks and

technologies do not support automation tools, Lack of knowledge on

software automation tools and other (specify))

As a QA Lead

 Does your automation tool automatically generate reports based on

the test outcomes? (Yes or No)

 If yes,

- What is the mechanism used to automatically generate the

report? (Readily available in the automation tool, a customized

plugin was developed by the company itself)

- What are the types of reports being generated by the tool? (Eg:

Test execution status, Error reports, Reports of time elapsed,

History reports, and Other)

- Rate your preference (how important it is) for each type of

report from 1-5 (where 5 being the highest preference)

As a QA Engineer

 What is the average time do you spend on writing a long test script

(scenario wise)? (Less than 20 mins, 20-40mins, more than 40 mins)

 What is the average time do you spend on writing an atomic test

script? (Less than 10 mins, 10-20mins, more than 20 mins)

 How do you rate the convenience of writing long test scripts from the

automation tool?(E.g:1-5 where 5 is the most convenient)

 How do you rate the convenience of writing atomic test scripts from

the automation tool?(E.g:1-5 where 5 is the most convenient)

As a Developer

 Out of the following test mechanisms what approach do you prefer or

more convenient?

- Writing unit tests (coding required)

- Image based identification of test components for testing

(code level access not required)

P a g e 27 | 69

As an Intern How long did it take to familiarize with the test automation tool you

are using? (Less than 1 week, 1-4 weeks, more than 4 weeks)

Common question

(Last Comments)

 What are the drawbacks you notice in the current automation tool?

(Which is not highlighted through this questionnaire)

 What are the additional features you would like to see in a new

automation tool?

Table 3.2.3: Pros and Cons of Questionnaires for Requirement Elicitation

Advantages

 Can obtain different perspectives of the same scenario in accordance
 with the role undertaken by each of the participant.

 Relatively less time consuming.

 Data can be easily processed to obtain both quantitative and
 qualitative information.

Disadvantages
 The reliability of the answers is not guaranteed as the responses can
 be more personalized than the general context.

 When the answers are open ended, analysis becomes complex.

3.2.3 Brainstorming Sessions
Several brainstorming sessions were conducted with the participation of my co-workers at the work
place. For each session about 3-4 people participated and the discussions on the requirement of more
improved versions of test automation tools took place. The discussions also focused on more desired
expectations of a QA engineer in contrast to the existing software test automation tools.

General questions covered in there sessions are as follows.

 What are the advantages and disadvantages of each software automation tool available in

the industry from the perspective of a QA engineer?

 Are there any customization tools available and what are the restrictions?

 How can we improve the existing mechanisms in test automation?

 What are the technologies which will be more suitable to develop a new test automation

tool?

 What could be different types of approaches to develop a new test automation tool?

 What could be the added benefits of a new test automation tool?

 What challenges could incur when developing the new test automation tool?

Table 3.2.4: Pros and Cons of Brainstorming Sessions for Requirement Elicitation

Advantages

 As the discussion happens in real time, it is easy to clarify any doubts
 on the answers. i.e. Ambiguity of answers can be eliminated.

 Validity of the answers can be higher as the discussion points are
 subjected to further analysis.

 Limitations and restrictions are easily understood.

Disadvantages

 Very time consuming, as the discussions are open ended.

 As the number of participant increases, there is a possibility to
 compromise with the productivity.

 As the audience requires to prepare in advance to give a more fruitful
 outcome, they might be reluctant to engage sometimes.

P a g e 28 | 69

3.3 Feedback Response Analysis

3.3.1 Understanding the Background of the Job Role of Participants

Table 3.3.1: Number of Questionnaire Participants

Job Role Count

QA Lead 11

QA Engineer 38

Developer 19

QA Intern 13

Total 81

Figure 3.3.1: Pie Chart - Distribution of Questionnaire Participants

14%

47%

23%

16%

Distribution of Participants

QA Lead QA Engineer Developer QA Intern

64%

26%

10%

Nature of Business Involved

International clients only Both International clients only Local clients only

Figure 3.3.2: Pie Chart - Nature of Business Involved by the Participants

P a g e 29 | 69

3.3.2 Analysis of Types of Automation Tools Used

Figure 3.3.3: Pie Chart - Types of Software Testing Tools Used

Figure 3.3.4: Bar Chart - Relationship between the Type of Tool and Nature of

Business Involved

Marathenite
43%

Selenium
26%

Sikuli
10%

ScriptTech
6%

Other
6%

None
9%

Types of Software Testing Tools used

Marathenite Selenium Sikuli ScriptTech Other None

36

8

3 3 2
00

9

5

2 2 3

0

4

0 0 0

4

0

5

10

15

20

25

30

35

40

Marathenite Selenium Sikuli ScriptTech Other None

N
u

m
b

er

Relationship Between the Type of Tool and Nature of Business
Involved

International clients only Both international and local clients Local clients only

P a g e 30 | 69

The purpose of Figure 3.3.4 was to understand the most common features a software testing tool

should have for each type of business operation.

Figure 3.3.5: Bar Chart - Quantitative Representation of Reasons for not using any

Test Automation Tool

Through Figure 3.3.5 it was easy to understand what improvements were expected in the new

software test automation tool being developed through this project.

3.3.3 Understanding Different Requirements of Different Job Roles
This section summarizes the responses obtained from each of the job role in separately aggregated

levels.

3.3.3.1 QA Lead
All the participated QA leads have indicated that there is a mechanism to generate the reports

automatically in their testing tool being used.

Figure 3.3.6: Pie Chart - Distribution of Mechanisms Used to Automatically

Generate Reports

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

The software product is complex to undergo an
automated testing process

Product development frameworks and technologies
do not support automation tools

Lack of knowladge on software automation tools

Reasons for not using any Test Automation
Tool

73%

27%

Mechanism of automaticaly generating reports

Readily available in the automation tool

A customized plugin was developed by the company itself

P a g e 31 | 69

Figure 3.3.7: Bar Chart - Average Rating for Different Types of Reports Required

by QA Leads

It can be seen that there is not much of a difference in the ratings for different types of reports. It

can be concluded that every type of report is essential in general for a QA Lead.

3.3.3.2 QA Engineer

Figure 3.3.8: Bar Chart - Distribution of Time Spent on Writing Long Test Scripts

Figure 3.3.9: Bar Chart - Distribution of Time Spent on Writing Atomic Test Scripts

Table 3.3.2: Average Ratings for Convenience for Writing Different Test Scripts

Convenience for writing long test scripts 4.12/5.00

Convenience for writing atomic test scripts 3.65/5.00

4

4.0909

3.272727

4.272727

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

History reports

Reports of time elapsed

Error reports

Test execution status

Average rating for different types of reports (On a scale of 5)

14

16

8

0 2 4 6 8 10 12 14 16 18

More than 40 mins

20-40 mins

less than 20 mins

Time spent on writting long test scripts

8

21

9

0 5 10 15 20 25

More than 20 mins

10-20 mins

Less than 20 mins

Time spent on writing atomic test scripts

P a g e 32 | 69

From the above figures, it can be seen that on average, the time being spent to write a long test script

will be 20-40 minutes, which is relatively high. Thus the new tool needed a feature to compile a long

test script within a less time duration. Also according to Table 4.3.2, participants have indicated that

they find it more convenient to write a long test script rather than an atomic test script. This could be

incorporated to the new tool by the feature to create test flows.

3.3.3.3 Developer

Figure 3.3.10: Bar Chart - Preference for Different Types of Test Mechanisms

According to Figure 3.3.10, a higher number of developers prefer an approach to eliminate the code

level access requirement in the test mechanisms.

3.3.3.4 QA Intern

Figure 3.3.11: Time to Familiarize with a Software Test Tool

Figure 4.3.11 shows that average time for an intern to familiarize with a software automation tool is

from one week to four weeks which is a considerable time period when compared to the total period

of time he/she works in the particular company. Thus, the new tool should have a shorter learning

period which also needs the feature of easiness to handle.

3.3.4. Feedback Responses Analysis for Additional Comments

Mostly stated drawbacks of currently used software test automation tools were,

 Need code level access to identify the test components

 Most tools required the company to write a framework to enable the compatibility between
the software product and the test tool

 Complexity of the testing tool in terms of writing test scripts

8

11

0 2 4 6 8 10 12

Writing Unit Test

Image Processing Based Component Identification
Tests

Preference of Different Types of Mechanisms

1

7

5

0 1 2 3 4 5 6 7 8

Less than 1Weeks

1-4 Weeks

More than 4 Weeks

Time to Familiarize with a Software Test Tool

P a g e 33 | 69

3.3.5 Analyzing Brainstorming Feedback Responses

Brainstorming session was carried out with 14 QA Engineers at my workplace. The summary of the

responses are as follows.

 What are the drawbacks of software automation tools in general from the perspective of a QA

engineer?

- Incompatibilities between the software product and the test tool platform. QA teams may

 sometimes have to implement a framework on their own to fully support the system.

- Occurrence of complex test scenarios which cannot be automated easily using the existing

 tools.

 How can we improve the existing mechanisms in test automation?

- Most needed requirement was suggested as to come up with a tool which doesn’t require

 code level access to identify GUI components.

- The new tool have to work well in multiple platforms (Eg: Windows, Linux, Mac, Android, etc.)

 What are the technologies which will be more suitable to develop a new test automation tool?

- Image processing, neural networks, Data mining

 What could be the added benefits of a new test automation tool?

- Ability to generate test reports in a wide range

 What challenges could incur when developing the new test automation tool?

- Making the new tool compatible with all the platforms (i.e. ensure that there is no need of a

 tailor-made framework).

- Not compromising the operating speed of the tool when the number of features added is

 increased.

3.4 Context Diagram

Figure 3.4.1: High Level Context Diagram of the Proposed Solution

Python

Test

Scripts

Test Automation

Tool

Test

Outcome

Reports

 Create a test module

 Define flows associated with the test module

 Add scripts to the created test flow

 Add conditions for the script executions

 Save test flows

 Run test flows separately or the entire test module

P a g e 34 | 69

A high level context diagram (Figure 4.4.1) could give a bird’s eye view about the proposed test

automation tool. Here, the proposed test automation tool will load the python test scripts generated

by the image processing based component identification tool (Eg: Sikuli) and will perform the tasks

mentioned in the diagram. More understanding of the test modules and test flows can be obtained

from Figure 4.4.2. At the end of the testing process, necessary reports will be generated automatically

based on the test outcome.

Figure 3.4.2: Structure of a Test Module

3.5 Use Case Model

3.5.1 Use Case Diagram

Figure 3.5.1: Use Case Diagram for the Automated Test Script Executing Tool

Figure 4.5.1 illustrates different types of users which could interact with the proposed automated test

script executing tool. There are five actors involved in this use case diagram. They are, QA Engineer,

Developer, the Intern (All three inherits from class Engineer), QA Lead, and the IPBCI tool.

Test
Module

Test Flow 1

Test Script 1

Test Script 2

Test Flow 2 Test Script 1

P a g e 35 | 69

Initially IPBCI tool will load the predefined test scripts to the system. Then the three types of engineers

can add those scripts to test flows and execute these flows using the tool. They can also view the

execution status of each test script being run. The QA lead, whose interest lies much on the reports

generated by test outcomes for further analysis. Using these reports he can obtain information on test

statuses, errors incurred, time elapsed for each test case and history details. Based on these

information he can prepare other analytical documents to provide in-depth details on the testing

process.

3.5.2 Use Case Specifications

Table 3.5.1: Use Case Specifications for 'Add Script' Task

Use Case Add Script

Description Tester load created test scripts

Actor QA Engineer, Developer, Intern

Pre-condition Created test scripts should be available

Extend Use case Load Scripts

Main Flows

1. Create a module
2. Create a test flow to the module
3. Load test scripts
4. Use case terminate

Post Condition Scripts are available to add to the flows

Table 3.5.2: Use Case Specifications for 'Create Flow' Task

Use Case Create Flow

Description Tester create flows by adding test scripts

Actor QA Engineer, Developer, Intern

Pre-condition Test scripts and module name should be available

Main Flows

1. Create a module
2. Create a test flow to the module
3. Load test scripts
4. Add test scripts to the test flow
5. Save test flow
6. Use case terminate

Exceptional flows
User try to load test scripts – Error message will pop-up if there
are no test
scripts available

Post Condition Created test flows will be available

Table 3.5.3: Use Case Specifications for 'Run Flow' Task

Use Case Run Flow

Description Tester can execute the created flows

Actor QA Engineer, Developer, Intern

Pre-condition Already created test flows should be available for particular module

Main Flows
1. Select the module
2. Select the test flows, which needs to run a particular module

P a g e 36 | 69

3. Run the module
4. Use case terminate

Exceptional flows
User try to run the module – Error message will pop-up if there are no
test flows available for the selected module, Error message will pop-
up if there is a corrupted test scripts file

Post Condition Execution results will be available for the tested module

Table 3.5.4: Use Case Specifications for 'View Execution Status' Task

Use Case View Execution Status

Description Tester can examine the test results

Actor QA Engineer, Developer, Intern

Pre-condition At least on module must have completed the test execution

Extend Use case View Error Reports

Main Flows

1. Select the module
2. Select View Execution Status
3. Check the pass and fail test flows
4. Use case terminate

Exceptional flows
User try to run the module – Error message will pop-up if there
was no test execution done for a particular module

Table 3.5.5: Use Case Specifications for 'Load Script' Task

Use Case Load Scripts

Description Load the test scripts, which was created from the IPBCI tool

Actor QA Engineer, Developer, Intern

Pre-condition
Test Scripts should be available, which was created from IPBCI
tool

Main Flows

1. Create test scripts from IPBCI tool
2. Store them on shared location which will be visible for the
ATS System
3. Use case terminate

Post Condition Test scripts will be available

Table 3.5.6: Use Case Specifications for 'Generate Report' Task

Use Case Generate Reports

Description Here the reports can be generated to the particular tested module

Actor IPBCI tool

Pre-condition
There should be a tested module or modules available for
particular environment

Include Use case
Create Test Execution Status, View Error Reports, Create Reports
of Time Elapsed

Extend Use case Store History

P a g e 37 | 69

Main Flows
1. Select the module
2. Select which report is required
3. Use case terminate

Exceptional flows
User try to run the module – Error message will pop-up If there is
no tested module or modules

Post Condition Execution reports will be available

Table 3.5.7: Use Case Specifications for 'Create Test Execution Status' Task

Use Case Create Test Execution Status

Description Test execution status reports creator

Actor QA Lead

Pre-condition
There should be module or module which has completed the test
execution

Include Use case Generate Reports

Main Flows

1. Select the module or modules
2. Select Create test execution report
3. Then select which statue you want, pass/fail/block/did not
execute
4. Use case terminate

Exceptional flows
User try to run the module – Error message will pop-up If there is
no tested module or modules

Post Condition
Execution results will be available for the tested module or
modules

Table 3.5.8: Use Case Specifications for 'View Error Report' Task

Use Case View Error Reports

Description Test execution Error report state

Actor QA Lead

Pre-condition
There should be module or modules which has completed the test
execution

Include Use case Generate Reports

Main Flows

1. Select the module or modules
2. Select View Error report
3. Then select which error report need to view
4. Use case terminate

Exceptional flows
User try to run the module – Error message will pop-up If there is
no tested module or modules

Post Condition
Execution error results will be available for the tested module or
modules

Table 3.5.9: Use Case Specifications for 'Create Reports for Time Elapsed' Task

Use Case Create Reports of Time Elapsed

Description Test execution Time elapsed state

Actor QA Lead

Pre-condition
There should be module or modules which has completed the test
execution

P a g e 38 | 69

Include Use case Generate Reports

Main Flows
1. Select the module or modules
2. Select Create Reports of Time Elapsed
3. Use case terminate

Exceptional flows
User try to run the module – Error message will pop-up If there is
no tested module or modules

Post Condition
Execution Time Elapsed will be available for the tested module or
modules

Table 3.5.10: Use Case Specifications for 'Store History' Task

Use Case Store History

Description Past test execution History can be viewed from here

Actor QA Lead

Pre-condition
There should be module or modules which has completed the test
execution

Include Use case Generate Reports

Main Flows
1. Select the module or modules
2. Select History
3. Use case terminate

Exceptional flows
User try to run the module – Error message will pop-up If there is
no tested module or modules

Post Condition
Execution History will be available for the tested module or
modules

3.6 Functional Requirements
Time and resource constraints make it essential to prioritize the identified requirements found via the

requirement elicitation process, in order to ensure the most critical requirements are given the highest

attention. Table 4.6.1 depicts the definition of priority levels which will be used to categorize both

functional and non-functional requirements.

Table 3.6.1: Priority Levels Definition

Priority level Description

Critical Mandatory to be implement and it’s the core functionality of the system

Important Considered as necessary even though it’s not essential

Desirable Need further development and out of scope

Table 3.6.2 shows the identified functional requirements along with their corresponding priority

levels and the use case.

Table 3.6.2: Functional Requirements

Requirement description Priority Level Use case mapping

User should be able to load scripts to the ATS System Critical Add Script

User should be able to add scripts to a flow Critical Add Script

User should be able to create a new flow Critical Create Flow

User should able to run the created test flow Critical Run Flow

User should be able to run the created test module Critical Run Flow

User should be able to view the execution status Critical View Execution Status

P a g e 39 | 69

User should be able to create reports related to Execution
status of an environment

Critical Create Test Execution

User should be able to view error reports which are
reported in test execution

Important View Error Reports

User should be able to keep a History record on tested
environment

Important Store History

User should be able to create reports for the time elapsed Important
Create Reports of Time
Elapsed

Integrate Sikuli IDE with ATS system Desirable Add Scripts

3.7 Non Functional Requirements
With the purpose of providing better user satisfaction, enhancing performance and maintainability, a

set of non-functional requirements are defined for the project and they are also prioritized according

to the importance of each.

Table 3.7.1: Non-Functional Requirements

Requirement description Priority Level

Test execution should not be slow due to many test flow executions Critical

This tool should be user friendly Critical

Should work on any windows operating system above Windows XP Important

Need to verify whether there are unnecessarily scripts getting load into the
system

Desirable

3.8 Summary

This chapter presented about how the project scope would be redefined and restructured to

incorporate the requirements of various stakeholders, namely, QA Lead, QA Engineer, Developer and

Intern. Their expectations and information gathered from the literature review was very useful to

define the final set of functional and non-functional requirements.

As per Chapter 2, it was identified that software test automation tools which could execute the test

scripts in batches, and also generate customized reports with various test statistics was not available

in the market. Even there are tools which could perform these tasks to a certain extent, it was still

questionable, as the expected outcomes are limited due to various reasons.

This need to come up with a novel solution was further justified by the information processed via

other requirement elicitation processes such as questionnaires and brainstorming sessions. The final

model of the system is depicted in the form of a context diagram and the related users were modeled

in the use case diagram.

Finally, with all the information gathered, functional and non-functional requirements were defined

and they were prioritized based on the importance and the impact.

P a g e 40 | 69

 Chapter 4: Design

4.1 Chapter Overview

4.2 High Level Design

4.3 System Design

4.4 Design Goals for Overall Solution

4.5 Chapter Summary

P a g e 41 | 69

Chapter 4. Architecture and Design
4.1 Chapter Overview
Chapter 5 intends to provide an in-depth analysis over the proposed system architecture for the ATS

tool. It starts with the presentation of the high level design of the solution via a rich picture and the

high level architecture diagram. The purpose of the high level design would be to provide a bird’s

eye view to the system. Later on, the system design will be presented through a class diagram and

sequence diagram with the descriptions and finally the overall design goals are stated.

4.2 High Level Design
The purpose of high level design is to provide the big picture of the proposed solution also

incorporating the requirements gathered via requirement elicitation process. Here the overall

solution is provided with more precise details. Later on, these designs can be improved with finer

details in order to obtain the detailed steps involved to develop the project.

4.2.1 Prototype features

Figure 4.2.1 Porotype features

P a g e 42 | 69

4.2.2 Rich Picture of the ATS Executing tool

Figure 4.2.2: Rich Picture of the ATS System

Figure 4.2.2 depicts the rich picture of the proposed automated test script executing system. It

displays how the tool is connected to the users and how the overall system would function. The rich

picture will define the high level idea through a graphical representation, creating a very basic design

model. Using a suitable design methodology, this could be expanded.

In brief, the new ATS tool will be initially installed to a centralized remote server, in which the

environment installation team will set up the test environments to execute the test scenarios. Then

the tool will create the test module and corresponding test flows and QA engineers could add test

scripts accordingly. Several QA engineers could perform this task simultaneously. Once the test is over,

test statistics will be presented in the form of test reports to the QA Leads.

QA Engineer 2

QA Engineer 3

QA Lead

ATS Tool pre - installed

Remote Servers

QA Engineer 1 Environment Installation Team

Add

Automated

Test Flows

P a g e 43 | 69

4.2.3 High Level Architecture

Presentation Tie
Presentation Tie

Figure 4.2.3: High Level Architecture Diagram

Three - Tier architecture is an industry certified software architecture model which support modelling

of enterprise-level client/server applications. Main advantage of the three-tier architecture is to be

upgraded or replaced independently by allowing any of the three tiers. Scalability, security and fault

tolerance are capable in three-tier architecture. The high level architecture of the proposed system

was modelled using the three-tier architecture due to the above mentioned reasons.

Presentation tire contains three modules that would be exposed to the outside world.

 ATS Runner: This module has the potential to select the modules for the test execution.

 Test Reports: This generates the test reports for the test execution.

 New Test Criteria: This module can define a new testing scenario/area.

The business logic of the system was carried out in the domain logic tier.

 Test Execution Engine: This module will load and execute the test scripts which are

corresponding to the given test flow.

 Test Flow Design: This will design the flows by adding test scripts.

Data storage tier contains the storage procedure of the modules, flows and Scripts.

4.3 System Design

The set of tasks being followed from the beginning till the completion of a software development

process if known as the design methodology. The chosen approach is chosen based on several

factors like requirements of various stakeholders, type of software being developed (i.e. desktop

application or mobile application etc.), the development environment, and time period of the

project etc. In this project, the system design could be elaborated in two ways namely, class

diagram, and the sequence diagram.

Data Storage Tier Module

Flow
Script

Presentation Tie

Domain Logic Tier Test Execution

Engine
Test Flow Design

ATS Runner Test Reports New Test Criteria

P a g e 44 | 69

4.3.1 Class Diagram

The class diagram [21] is a static representation of the software application being developed. Apart

from the visualization and documentation of the system, this class diagram could be used as the

foundation to develop executable code of the software system. As class diagrams could be directly

mapped with object oriented languages, it is widely being used in practice. It depicts the attributes

and operations of a class as well as the different types of constraints, associations and collaborations

of the system. Unlike to other UML diagrams which only shows the sequential flow of an application,

class diagram serves a multiple number of purposes including describing the functionalities of a

system, analyzing the static view of an application and also to be used as the underlying path in

creating component and deployment diagrams.

Figure 4.3.1: Class Diagram of ATS System
Classes shown in Figure 4.3.1 are the core classes of the ATS system which handle the main work flow

of the system. Table 4.3.1 describes the purpose of each Class.
Table 4.3.1: Class Descriptions

Class Description

FlowManager
This will focus on saving test scripts to a flow and the file storage
functionality.

P a g e 45 | 69

Handler
This will handle the object instance creating part of each class including
threads.

ScriptRunner
This will focus on the running of a particular test flow or set of test flows
(Module).

Model
This will create the structure of the data store of a test flow and load the
scripts.

Main Frame Main GUI (Eg: test flows list and test script list).

Status
This will give the execution result of a test flow or a set of test flows
(Module).

4.3.2 Sequence Diagram
The sequence diagram (Figure 4.3.2) shows the sequence of actions taking place when a certain action

is performed.

Figure 4.3.2: Sequence Diagram of ATS System

P a g e 46 | 69

4.3.3 Script file and Flow file storage procedure

Entity Relationship diagram for module, flow and script file storage is as in the Figure 4.3.3.

Figure 4.3.3 ER Diagram for file storage
Module to flow and flow to module has one to many entity relationship.

4.4 Design Goals for Overall Solution

Throughout the design phase, following aspects were paid keen attention as the design goal of the
overall solution.

 Accuracy
 Accuracy of the overall solution is considered to be a very important design goal as this tool
is being directly deployed for the QA activities in a company. As QA activities being very
critical to ensure the correct functionality without any bugs, accuracy of the solution is
considered crucial. Highest possible accuracy of all the related modules in the proposed
architecture will ensure the accuracy of the outcome of the tool.

 Scalability
Scalability in the design means that its ability to support expansions. As the scalability of the
design is increased, it is easier to incorporate various changes and increase the number of
users without compromising the performance and the functionality of the system. It gives
more flexibility to the system.

 Neatness

The non-technical users. The neatness of the design also contributes towards the ability to

easily debug the source code as well as the understandability.

 Portability

System can be easily installed in several servers to run the automated scripts and could be

executed in any test environment.

4.5 Chapter Summary
The high level design of the proposed solution is presented via a rich picture and a high level

architecture which highlighted the basic functionality the ATS executing system. The system design

was described using Class diagram, Entity Relationship diagram and Sequence diagram. The set of

defined classes include FlowManager, Handler, ScriptRunner, Model, Main Frame, and Status. The

actions happening in the system from creating test module to executing the module, is presented in

the sequence diagram. The relationship between the three main entities related to the system;

module, flow, and script is presented in the entity relationship diagram. Finally, the overall design

goals such as accuracy, scalability, neatness, and portability were discussed with reference to the ATS

tool.

P a g e 47 | 69

Chapter 5: Implementation
5.1 Chapter Overview

5.2 Technology Selection

5.3 Core Implementation

5.4 Look and feel of the proposed ATS System

5.5 Chapter Summary

P a g e 48 | 69

Chapter 5. Implementation
5.1 Chapter Overview
Following the design phase, implementation will come as the next stage of the software development

life cycle. This chapter discusses about the implementation of the proposed conceptual design of the

solution. The chapter starts with the technology selection for the prototype development and then

goes to describe the implementation process in detail. The corresponding code snippets and

screenshots are included in order to describe the actual implementation details more clearly.

5.2 Technology Selection
There are so many different technologies that has been coincided and used to develop various types
of automation tools. For this project I have selected the following list of technologies (Table 5.2.1).

Table 5.2.1: Technologies used

Technology Description

Java
Java provides a system for develop software and deploying it in a cross
platform computing environment.

IntelliJ IDEA
This IDE is used for development of this project. It is a java integrated
development environment.

Python Python is the scripting language used to write test steps

OpenCV
Template matching technology is used from OpenCV to identify the
components of a given screenshot.

Sikuli API Sikuli API was used to run the Python scripts.

5.3 Core Implementation
This section outlines several important core functionalities of the proposed system.

5.3.1 Saving a New Test Script to a Test Flow
In the below Figure 5.3.1, the code implementation done for the execution of a test flow is shown.

This is one of the most important areas where the already created test script file names are stored in

an execution order so that this file can be later read for the execution purpose.

This saved test flow file also contains the conditions which have been set for a particular script (Eg:

Repeated conditions like for loop, for, while and also If, else are define in this saved test flow).

P a g e 49 | 69

Figure 5.3.1: Code - Saving a new test script to a test flow

P a g e 50 | 69

5.3.2 Executing a Test Flow

Below Figure 6.3.2 shows the code implementation done for test flow creation. This is one of the most

import areas where the already created test flow file is identified and execute the test scripts in an

order which is stored in the test flow file. When a module is executed also, they will go through the

flow names which are assigned to the module and execute the below code for the each test flow file

by taking test flow file as an input.

Figure 5.3.2: Code - Executing a test flow
5.3.3 Generate Log Reports of the Executions Status
In the implementation of the log files generator, first the system will generate xml file with the

execution details. After that the system will generate a user friendly jasper report by reading the xml

P a g e 51 | 69

file content. This area is very important as it is the case where the status of the execution and the

error logs are generated. Generated sample log report is shown below.

Figure 5.3.3: Generated log report for some sample test execution flows

5.4 Look and feel of the proposed ATS System

Figure 5.4.1 Look and feel of the proposed ATS system

P a g e 52 | 69

5.5 Chapter Summary

This chapter discussed about the implementation details of the proposed ATS tool. First it begins with

the technologies and tools selection with reasoning. JAVA, IntelliJ IDEA, Python, OpenCV, and Sikuli

API are the selected set of development tools for this project. Implementation details of saving test

scripts to a test flow, executing a test flow, and generating log reports based on the test statistics are

given through snapshots of the codes. The chapter ends with the look and feel of the implemented

system.

P a g e 53 | 69

Chapter 6: Testing and Evaluation
6.1 Chapter Overview

6.2 Objectives and Goals of Testing

6.3 Testing Criteria

6.4 Functional Testing

6.5 Integration Testing

6.6 Non Functional Testing

6.7 Limitations of testing process

6.8 Evaluation Criteria

6.9 Selection of Evaluators

6.10 Evaluation Methodology

6.11 Evaluator Feedback

6.12 Self-Evaluation

6.13 Evaluation of Functional Requirements

6.14 Chapter Summary

P a g e 54 | 69

Chapter 6. Testing and Evaluation
6.1 Chapter Overview
After the implementation stage of the proposed solution, the most important task is to perform the
testing of both functional and non-functional requirements against the expected standard of level.
The chapter will outline the testing criteria, testing methods, and finally, a thorough evaluation of
the testing results in order to identify the remedies required in the future (if any).

In the testing process, to evaluate the performance of the system against the functional and the non-

functional requirements was presented. Through this chapter, testing and the evaluation carried out

by the external reviewers (mostly the different types of stakeholders) is presented along with their

views and feedback given to the new ATS system. This also includes the self-evaluation carried out in

order to identify the strengths and weaknesses of the project.

6.2 Objectives and Goals of Testing
In order to verify that the developed software system performs according to the defined
requirements and produces the expected outcomes, software testing procedure is carried out. The
key objectives of this process could be listed as:

 To verify and validate the functional and non-functional requirements of the system.

 To isolate the errors and defects of the system on order to revise those to get eliminated from.

 To ensure that final products contains no or negligible number of errors and bug.

 To keep enhancing and improving the product based on the test results.

6.3 Testing Criteria
When the implemented software system undergoes the testing process, it is the rigorous examination
of the system to ensure that the pre-defined functional and non-functional requirements are satisfied
and also, the quality expectations are met. To measure the software quality, there are two aspects
being considered:

 Functional quality – This focuses on both the product development features and the technical
 requirements based on the pre-defined functional requirements.

 Non-functional quality – This is where the product is assessed against the fulfillment of the
nonfunctional requirements defined for the product.
6.4 Functional Testing
The chosen software development methodology in <referance>. the Spiral Methodology, has the
flexibility of conducting the testing tasks of the system being built in parallel with the product
implementation phase. Thus, for this project, functional requirements of the Product were tested in
the implementation stage itself which allowed more freedom to do necessary changes to eliminate
the undesired results.

6.4.1 Testing Elicited Functional Requirements during Requirement Analysis

Table 6.4.1: Testing Elicited Functional Requirements during Requirement Analysis

Requirement Status

Load scripts from IPBCI to the ATS System Passed

Add test Script to a test flow Passed

Create new test flow Passed

Run created test flow Passed

P a g e 55 | 69

Run created test module Passed

View execution history Passed

Report creation for the execution history Passed

Generate error reports Passed

View history record Passed

Generate report for the time elapsed Passed

6.4.2 Testing Derived Functional Requirements during Implementation

It’s not only the functional requirements which were finalized at the requirement analysis stage which

is sufficient to guarantee the proper functionality of the developed solution. There are certain test

cases which will be required for further evaluations with regard to the testing performance of the

system and they are mentioned in Table 6.4.2.
Table 6.4.2: Testing Derived Functional Requirements during Implementation

Requirement Status

All field during data entering has to be validated Passed

Navigation path using keyboard(Tab navigations) should work fine Passed

6.5 Integration Testing
As the name implies, integration testing involves integrating each module of the system to test as a

complete unit. In this ATS system there are several modules which perform tasks like adding scripts

to the test flows, executing test flows, and generating customized test reports etc. It is important

that a testing mechanism is there to test the entire product at one run.

The system was tested as to whether it could navigate from one function to another without any

errors. No error was found with regard to that. Also, it was tested whether the connection with the

file storage works properly and it is also verified as correct. Thus, it can be concluded that the system

successfully passed the integration testing as well.
6.6 Non Functional Testing
The Spiral methodology not only allows the functional requirements to be tested, but also the

nonfunctional requirements as well. The following sub sections describes about the testing results on

the non-functional requirements defined earlier.
6.6.1 User Friendliness
This system was tested with 15 different users (QA Engineers, QA Leads and Developers) to check

how much ratings they will give on user friendliness.

Figure 6.6.1: User Friendliness Test Results

11

4

0 2 4 6 8 10 12

GOOD

NEED MORE FEATURES

User ratings on User Friendlines

P a g e 56 | 69

From those 15 participants, some suggested that it will be easier for the users, if there is an option

to drag and drop scripts and flows. And they also noted that it will look more supportive if there is

more customization options for the reports like charts, fonts etc.

6.6.2 Performance
According to Table 7.6.1, the elapsed time to perform the tasks of loading the ATS tool, loading 50

scripts to the system, running a single test script of 5 steps and generating a module report was

calculated. It can be seen that, the actual time spent on the relevant tasks are reasonable with the

weight of workload.
Table 6.6.1: Performance Test Results

Tested Areas Actual Time

Loading the ATS Tool 8.24 Sec

Loading test scripts to the ATS System(50 Scripts) 2.5 Sec

To run a single test script file(5 Steps) 1.3 Sec (Excluding the functional time)

To generate a module report 1.5 Sec

6.6.3 Load and Scalability Testing
To test the quality and the efficiency of a system in handling the load and the resources allocated is

used to test the load and scalability of the system. There are many tools available in the market to do

the load and scalability testing. The most popular tool is ApacheBenchmark [22] as it is much easier to

present the test results. This tool was used to test the load and scalability of the ATS system. Core i7

processor of 3 GHz and 8GB of Ram and Windows 10 64bit version as the operating system.

Below are the results got from the ApacheBenchmark tool.

 Total data transferred is 871000 bytes for 1500 requests. It is around 50 test flows which has

around 200 test scripts
 Test completed in 50.270s.
 Time per request was 14269.823 ms.
 Transfer rate is received as: 48.45 (Kbytes/sec).
 The conclusion of the load testing of the ATS system has the capability of handling at least

100 or more.
6.7 Limitations of testing process

6.7.1 Difficulty in Testing the System for Various Resolutions of Display
As this tool uses image processing techniques, the resolution of the display, plays a vital role in correct

functioning of the tasks. However, from the testing perspective, it is quite difficult to test the system

for different types of resolutions of the displays. Thus, the validity of the test results is limited by the

different types of resolutions that underwent the testing process.

6.7.2 Not Tested on Enterprise Level Environment
As the testing could not be done in a company-level where there are other factors which could affect

the performance of the ATS tool, there is a possibility that the testing process did not cover all the

P a g e 57 | 69

aspects of an enterprise level environment. There is room for several complications when it is

deployed and tested in an enterprise level.

6.8 Evaluation Criteria
The criteria mentioned in Table 6.8.1 will be used as the base for the evaluation process. This will

cover the main aspects of the ATS tool.

Table 6.8.1: Evaluation Criteria

Evaluator Category Description

QA Engineers
QA engineers who are doing manual testing and automation
testing

QA Lead
QA Leads who are reviewing the test flows and the execution
status

Software Developer Developers who are responsible of developing the tested product

6.9 Evaluation Methodology

Through this evaluation process, the extent to which the success has been achieved in the project

could be understood from the feedback given by the evaluators in various domains. Feedback is

provided to all the stages of the software product life cycle such as problem identification,

requirement analysis, design and implementation etc. This project was evaluated in both

quantitative and qualitative aspects.

The quantitative analysis was completed to a greater extent in the software testing phase of the

project. Thus, in this section, qualitative aspect of the project is evaluated a lot. Evaluation of the ATS

tool was carried out via a questionnaire (Table 8.4.1) and one-on-one interviews.

Table 6.9.1: Evaluation Survey Questions

No Question
User related Questions

1 How many years of experience do you have in testing and automation tools?(QA)

2 How do you see this ATS tool and Unit testing? (Developer)

Overall comment about the concept and the complete project
3 What is you general idea about the ATS tool?

4 What would be the benefit of this solution would have on the selected user groups?

Scope and depth of the project

5 Do you think the scope of the project is accepted for postgraduate level?

6 To which extend has this ATS tool addressed the problems identified?

System design architecture and implementation
7 What is your feedback on design and architecture with regards to the project idea?

8 What are you suggestions on the design and the implementation?

Solution and prototype

9 How do you rate the solution and prototype?

10 Do you think the system provides a solution to the identified problem?

User friendliness and performance
11 How do you rate the user-friendliness and performance?

Limitations of the Systems and future enhancements

12 What are the limitations of the proposed solution?

P a g e 58 | 69

13 What are the possible improvement can be added to the ATS tool?

6.10 Evaluator Feedback
The information gathered through the evaluation questionnaire and other interviews are

summarized and presented in this section. User related questions helped to support the credibility

of the opinions provided.

6.10.1 Overall Concept
“Though the idea seemed quite simple, the problem it has addressed is very critical and a very

timely issue for most of the IT organizations. The solution has introduced a novel and feasible

approach to overcome the issues.”
 QA Lead – Cambio Software Engineering

“Out of box thinking to address the issues in Software test automation through techniques such as

image processing. These techniques will definitely improve the performance of the test tools which

will help to produce a more fruitful outcome for the testing processes.”
 Senior Software Engineer – Cambio Software Engineering

Table 6.10.1: Feedback and Review on Overall Concept

Feedback
The feedback suggested that the developed solution is a good approach in increasing
the efficiency of the software test automation.

Review

Strongly agree with the feedback as this solution is intended to overcome the
drawbacks of current tools in the market. The features of the solution helps to perform
the tests much faster.

6.10.2 Scope and Depth
“The domain of test automation has a huge scope depending on its applications. It is clearly evident

that this project has covered a significant portion of this problem domain with some advanced

techniques. It would have been better, if the functionalities used in the supporting tool is integrated

to the ATS tool as well.”
 QA Lead – Cambio Software Engineering

“There is a lot of room for improvement when it comes to test automation. The project has

addressed some crucial and advanced problems in automated testing with aspects such as

elimination of code level access, and not requiring a customized framework to support the tool.”
 QA Lead – Cambio Software Engineering

Table 6.10.2: Feedback and Review on Scope and Depth

Feedback

The feedback has recognized test automation as a very wide domain with lots of
possible avenues for improvements. It is said that the aspects covered by this ATS
tool are very significant. A suggestion to integrate the features of supporting tool
to the ATS tool has been mentioned.

Review

The comments about the scope of test automation are very valid as there is no
common tool to address all the expectations of QA engineers. The suggestion on
integrating the functionalities of supporting tool to the ATS tool is a very good
suggestion for future improvements.

P a g e 59 | 69

6.10.3 Design and Implementation
“The decision to develop this project using JAVA technologies is a very wise decision as it supports

cross-platform functionality as well as the ease of maintenance. Future improvement of the design

could be that, this tool works fine for any resolution of the displays.”
 QA Lead – Cambio Software Engineering
“The approach to use OpenCV technologies seems quite visionary, as this project could be extended

as an open source tool. Design approach to use 3-Tier architecture has increased the

maintainability of the product.”
 Senior Software Engineer – Cambio Software Engineering

Table 6.10.3: Feedback and Review on Design and Implementation

Feedback

Use of Java and OpenCV technologies is highly appreciated due to various added benefits.
3-Tier architecture is recognized as a suitable approach. Suggestion to further improve
the system to support any resolution is mentioned.

Review

As a result of 3-tier architecture, the design has the flexibility to change a part of the
design without much hassle. Using JAVA is helpful as it can accommodate technology
upgrades. Further research would help to improve the system to support different
resolutions.

6.10.4 Solution and Prototype
“It is very interesting to see how this solution has integrated various useful functionalities of

different QA tools into a single system.”
 Associate QA Lead – Cambio Software Engineering

“The prototype depicts that this solution will help to make the QA tasks more productive.”
 QA Engineer – Cambio Software Engineering

Table 6.10.4: Feedback and Review on Solution and Prototype

Feedback

The solution has included various desired aspects of available QA tools in the
market to a single system which will help to perform software automations more
effectively.

Review

Features such as no code level access needed to identify GUI components,
generation of customized reports, ability to execute multiple test scripts in a
single flow etc. contribute towards the enhanced efficiency of the testing process
using this tool.

6.10.5 User-Friendliness and Performance

“Performance wise this tool is a big leap for test automation. Ability to execute test flows is very

useful and the test reports which could be generated via this tool helps to analyze the test outcomes

more rigorously.”
 Automation Tech Lead – Cambio Software Engineering

“The tool is easily understandable and very user-friendly with a simple GUI.”
 QA Engineer – ISM APAC

“Though it is quite easy to understand the functionalities of the tool, it would have been better if

P a g e 60 | 69

there was a user manual and a help guide with all the instructions.”
 Intern-Cambio Software Engineer

Table 6.10.5: Feedback and Review on User-Friendliness and Performance

Feedback

GUI of the tool is very understandable which makes this more user-friendly. Performance
of the ATS tool is highly appreciated in terms of time being taken to perform various tasks
and accuracy of the results produced. Suggestion to produce a user manual is mentioned.

Review

The feedback could be justified because of the code reusability which helps to increase
the performance and simple structure of GUI which makes the tool more user-friendly. If
the product is commercialized, a user-manual can be created.

6.10.6 Limitations and Future Enhancements
“When executing the test flows, the execution server needs to have the same resolution all the time

when it is writing the test flows.”
 Senior Software Engineer – Mubasher

“Currently the tool has the support for executing a single module. When it comes to the domain of

team level, there can be multiple modules within a team CI environment. It could be better to have

the support of run multiple modules at a time.”
 Senior QA Engineer – Cambio Software Engineering

Table 6.5.6: Feedback and Review on Limitations and Future Enhancements

Feedback

Limitation of need to have the same resolution is highlighted in several
feedbacks. It was also suggested as a future improvement to extend this tool to
run multiple modules at a time.

Review

Since the tool is still in the prototype level, this could be easily integrate with supporting
of multiple modules. The tool’s applicability would have been increased if it can support
multiple modules as well which could be incorporated as a future enhancement.

6.11 Self-Evaluation
Table 8.6.1 presents the self-evaluation by myself about the ATS tool.

Table 6.11.1: Self-Evaluation

Criteria Description
Overall concept and
whole project The concept of this project can be used to develop a promising business

model because it has identified the problem areas in the current test
automation domain and has provided a solution to overcome them.

Scope and depth of the
project

Satisfied about the scope covered through this project as the field of test
automation is a very wide subject area which keeps on expanding day
by day.

P a g e 61 | 69

System design and
implementation The design of the system was done with very much consideration to its

adaptability to any system condition. In that case, the design supports
different test environments. With the use of 3-tier architecture, it is
easier to incorporate any changes without affecting the entire design.
Elimination of the need to have code level access to identify GUI
components is a significant achievement.

Solution and prototype The solution has addressed several critical drawbacks of the existing test
automation tools such as need of tailor-made frameworks to support
the software product, inability to execute test flows etc. This solution
provides a robust platform to make it compatible with any software
product without any bridging framework.

User-friendliness and
performance

Simple structure of GUI makes it easier for a user to grasp the basics of
using the tool very easily. Code reusability significantly affects the
increased performance of the ATS tool.

Limitations of the
Systems and future
enhancements

The issue of this tool not supporting all the resolutions due to the fact
that it uses image processing techniques is a considerable limitation in
this new solution. The ability to make the system independent of
resolutions should be incorporated as a future enhancement.
Furthermore, in the future, the functionalities of the supporting tool
could be integrated to the ATS tool itself.

6.12 Evaluation of Functional Requirements
The functional requirements gathered during requirement analysis stage was presented to the

evaluators in order to review on the level of completion (Table 6.7.1).

Table 6.12.1: Evaluation of Functional Requirements

Requirement Status Evaluator Feedback
Load scripts from IPBCI to the ATS System Passed Fully Achieved

Add test Script to a test flow Passed Fully Achieved

Create new test flow Passed Fully Achieved

Run created test flow Passed Fully Achieved

Run created test module Passed Fully Achieved

View execution history Passed Fully Achieved

Report creation for the execution history Passed Fully Achieved

Generate error reports Passed Fully Achieved

View history record Passed Fully Achieved

Generate report for the time elapsed Passed Fully Achieved

Being independent of screen resolution - Not Implemented

Integration of supporting tool functionalities - Not Implemented

Support web-based applications Passed Not Implemented

6.13 Chapter Summary

This chapter presented about the rigorous tastings that were conducted to the ATS tool in order to

verify the correct functionality of the ATS system. After stating the objectives of this testing phase, the

testing criteria was defined. This included the testing being conducted on both functional and

P a g e 62 | 69

nonfunctional aspects. Under functional testing, the functional requirements elicited during the

requirement analysis phase and the functional requirements derived in the implementation phase

were both tested. Then the non-functional testing was performed based on the performance, user-

friendliness, and scalability. It was identified that all the tests passed the expected outcome and thus

it can be concluded that the system is up to the standard and overall testing was concluded on a

satisfactory level. The limitations of this testing mechanism was discussed after that under the testing

mechanism, which included points of testing for various resolutions and not being able to test the

system in the enterprise level. Next, briefly described about the evaluation methodology. Under that,

how this tool was evaluated using external evaluators is presented. First, the evaluation criteria was

defined with 6 aspects in consideration. The collection of feedback was conducted via questionnaires

and face-to-face interviews. In brief, the project received a lot of positive responses where most of

them appreciated the effort put on to integrate essential functionalities of the existing systems into a

single system and making it more user-friendly and efficient to handle. At the same time, suggestions

to extend this project into web-based applications and to integrate the supporting tool functionalities

to the ATS tool were given as main possible improvements in the future. Finally, a self-evaluation of

the project is presented.

P a g e 63 | 69

Chapter 7: Conclusion

7.1 Chapter Overview

7.2 Achievement of Aims and Objectives

7.3 Utilization of Existing Knowledge

7.4 Learning Outcomes

7.5 Problems and Challenges Faced

7.6 Future Enhancements

7.7 Contributions

7.8 Closing Remarks

7.8 Chapter Summary

P a g e 64 | 69

Chapter 7. Conclusion

7.1 Chapter Overview
The purpose of this chapter is to denote the closing remarks of the project where there is an analysis
carried on to understand if the project aim and objectives were successfully achieved, a justification
of learning outcomes, a highlight of the challenges faced and a set of future enhancements which
will add value to the novelty of the ATS tool.

7.2 Achievement of Aims and Objectives

7.2.1 Aim
To design, develop and evaluate a software tool which can automate the execution of multiple

software test scripts during one test cycle, using a readily available image processing based component

identification tool. The new test tool will include several other enhanced features such as, generation

of test reports, and ability to add the executing conditions to the script level etc.

It can be stated that the project aim was achieved successfully within the dedicated time frame and
the developed prototype is critically evaluated in both quantitative and qualitative aspects via external
evaluations of stakeholders and a self-evaluation process as well.

7.2.2 Objectives

This project involves the following set of objectives to be achieved during the project.

 Literature Survey
Thoroughly analyzing the existing knowledge about the software test automation tools was
very helpful in understanding the constraints in the existing tools and possible avenues for
improvement. These sources helped to obtain a clear idea about the basics of test automation
as well as how novel technologies could be utilized to enhance the performance of the existing
test automation tools. The sources include, conference proceedings, online articles, and
technical sessions. Chapter 2 of the report contains the complete literature survey conducted
with related to this project.

 Requirement Analysis
As a result of this, I was able to clearly understand, the exact requirements which should be
addressed through this project. Questionnaire was completed with the participation of 81
people in the related domain, but with different job roles. Apart from that several
brainstorming sessions were conducted with the peers. These activities gave an insight to the
real world expectations in test automation. A proper set of functional and non-functional
requirements were drafted at the end of this stage so that it will act as a set of guidelines in
the next phases. Please refer Chapter 4 for the detailed presentation of requirement analysis.

 Design and Framework
A successful design framework was established with the use of 3-tier architecture model, class
diagram, sequence diagram, and entity relationship diagram etc. A foundation was laid
through this to implement the prototype in real time. Chapter 5 will elaborate more about
how the design of the entire system was created from simple illustrations to detailed designs.

 Selection of Development Tools
Based on the design, complexity, and features of the proposed ATS tool, a suitable and feasible
set of development tools was chosen (as in Chapter 6). The proper selection of development

P a g e 65 | 69

tools and technologies was very helpful in optimizing the performance of the prototype and
ensuring its functionality.

 Prototype Development
The level of completion of the prototype is in a satisfactory level as it is capable of performing
the tasks defined in the design phase. It was able to understand that the ATS tool prototype
has overcome the said issues identified in the existing systems. Please refer Chapter 6 to get
more insight to the implementation details.

 Testing of the prototype
This testing is performed to get more of a quantitative perspective of the quality of the
prototype developed. A certain amount of testing was carried out in the development stages
as well due to the adopted development methodology (Spiral). Testing described in Chapter
7 describes about how each functional and non-function requirement (pre-defined and
popped up during the development stage) is verified for its functionality.

 Critical Evaluation
This critical evaluation of the prototype was carried out to obtain a qualitative analysis as to
whether the functionalities of the prototype is achieved successfully. The feedback from QA
engineers, QA leads, and software engineers was helpful to understand that this project has
catered to an untouched area of test automation domain. This was further analyzed with a
self-review of the project outcomes.

 Documentation
Proper, clear, and descriptive documentation of each phase was carefully carried out, so that
in the end every aspect the project is well documented. This also includes proper referencing
to the original sources as well.

7.3 Utilization of Existing Knowledge

The knowledge I currently possess on design skills such as context diagrams and flow charts were very
useful in converting the conceptual idea into the implementable software design during the design
phase of this project. At the same time, my previous experience and knowledge in programming
techniques and tools such as object oriented programming and JAVA technologies. My hands – on
experience with software test automation was very instrumental in adding novelty to the ATS tool
being developed.

7.4 Learning Outcomes
 Even though the knowledge gained through the MSc program with related to different aspects of

software engineering was very useful, it was not very specific to the software test automation
domain. Keeping the basic knowledge as a guide, I had to Self-learn most of the knowledge
required to build this tool via online tutorials and documents etc.

 Several technologies used in the project such as, Python, OpenCV, Jasper Reports were not much
familiar to me at the beginning of this project. However, with the base knowledge. I was able to
polish the knowledge and expertise in these technologies which were extensively used throughout
the research project.

 Essential soft skills for a technical career such as formal documentation skills and creativity were
developed to a great extent as a result of hands on experience and learning.

It can be justified that the success of the project had contributions from all three segments discussed
above; knowledge from the MSc curriculum, existing knowledge areas and self-learned knowledge
and skills.

P a g e 66 | 69

7.5 Problems and Challenges Faced

7.5.1 Lack of initial knowledge on key technologies used
 As stated in 9.5, several technologies such as Python and OpenCV had to be learnt at the initial stages

of the project. As this required additional work, there were certain instances where the original

objective of the research project which was to build the ATS tool was diverted.

7.5.2 Lack of academic research publications on Software Test Automation
Though test automation is a vast knowledge area academic publications related to test automation

was quite limited. This may be as a result of this topic is more prominent in the corporate level.

However through rigorous search in other information sources such as online articles videos, I was

able to overcome this challenge.

7.5.3 Wide scope of the research domain
Extensive scope of the domain of test automation became challenging when choosing the research

topic. I had to analyze many possible research topics in the domain before finalizing what is most

suitable as the project. The factors like importance and the significance of the problem being

addressed, ability of maintaining the compatibility with existing tools and the time frame etc. were

taken into consideration.

7.5.4 Time Constraint
This research project being subjected to a limited time frame, there was always a challenge to stick

with the proposed timeline in order to ensure the timely completion of the project. Even with small

deviations from the original timeline, due to facts such as revision of requirements at certain stages

and the need to obtain knowledge on technologies being used, the project was completed on time.

7.6 Future Enhancements

7.6.1 Being independent of screen resolution
At the moment, when executing the automation scripts, resolution of the system should be as same
as that was there during the creation of that automation script. This limitation could be overcome by
making the tool independent of screen resolution. This requires further extensive research to be
carried out in this domain.

7.6.2 Integration of supporting tool functionalities
As a further improvement, the supporting tool which creates the test scripts at the moment could be
integrated to the ATS tool. It will make the test automation process easier.

7.6.3 Support web-based applications
As this tool was developed using Java swinging, this need to convert in to a web based tool, so that
accessing the tool becomes more convenient.

These points are identified through the critical evaluation stated in Chapter 8. These feature could be
implemented to the solution in the future as further enhancements. As much as this new ATS tool
increase the productivity of the current tools, all these features will make the tool more suitable to be
implemented in the corporate level as they will contribute towards overcoming more and more
limitations in the existing test automation tools.

7.7 Contributions
This research project will help the Software development companies to save the time of the manual
testing work and also this tool automates an application without going through the code to find

P a g e 67 | 69

component names. From the perspectives of increasing efficiency via time saving, reduction of
complexity by no need of code-level access, and being compatible with present frameworks, this tool
stands out from the existing software test automation tools. Thus it can be said that given the fact
that this ATS tool is extended into the enterprise level, it will be a very popular solution in the test
automation domain.

7.8 Closing Remarks
This time saving and user friendly test script automation tool opens up a new pathway for software
test automation processes as it is addressing several crucial requirements such as elimination of code
level access for GUI component identification, ability to execute a batch of test scripts at one run,
generation of customized test reports, and elimination of the need to write a customized framework
to enable the compatibility etc. This image processing based test automation tool with enhanced
features can said to be a very good match to the corporate level expectations.

P a g e 68 | 69

References

[1] S. Badle, J. Bakken and A. Barantsev, "Selenium," 2008-2012. [Online]. Available:

http://www.seleniumhq.org/docs/02_selenium_ide.jsp#introduction.

[2] Jalian Systems Pvt. Ltd, "marathon," [Online]. Available: https://marathontesting.com/.

[3] R. Hocke, "sikuli," [Online]. Available: http://www.sikuli.org/.

[4] X. Wu and J. S. in, "The Study on an Intelligent General-Purpose Automated Software Testing

Suite," in International Conference on Intelligent Computation Technology and Automation
(ICICTA), 2010.

[5] C. Rankin, "The Software Testing Automation Framework," IBM Systems Journal, pp. 126-139.

[6] X. Meng, "Analysis of software automation test protocol," in International Conference

on Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011.

[7] TECH BLOG, "Royal pingdom," 19 03 2009. [Online]. Available:

http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-
consequences/.

[8] P. S. Rogerson, "The Chinook Helicopter," ETHIcol in the IMIS, vol. 12, p. 4, 2002.

[9] B. W. Rose, "ccnr," 06 1994. [Online]. Available: http://www.ccnr.org/fatal_dose.html.

[Accessed 06 02 2016].

[10] R. Hower, "softwareqatest," 1996-2016. [Online]. Available:

http://www.softwareqatest.com/qatfaq1.html.

[11] Guru, "guru99," 2016. [Online]. Available: http://www.guru99.com/software-testing-

life-cycle.html.

[12] G. Sohoni, "dotnetcurry," Comparison of Automated Testing Tools: Coded UI Test, Selenium and

QTP, no. DotNetCurry .NET Magazine , 2014.

[13] M. Verma, "softwaretestingmentor," 27 01 2013. [Online]. Available:

http://www.softwaretestingmentor.com/selenium-tutorials/limitations-of-
selenium/.

[14] R. H. a. RaiMan, "readthedocs," 2014. [Online]. Available: http://sikulix-
2014.readthedocs.io/en/latest/basicinfo.html.

[15] OpenCV, "doc.opencv," [Online]. Available:
http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_
matching.html#template-matching.

P a g e 69 | 69

[16] A. Memon, I. Banerjee and A. Nagarajan, "GUI ripping: reverse engineering of graphical user
interfaces for testing," in 10th Working Conference on Reverse Engineering, 2003.

[17] Z. Jianhong, P. S. Sandhu and S. Rani, "A Neural Network Based Approach for Modeling of

Severity of Defects in Function Based Software Systems," in IEEE International Conference on
Electronics and Information Engineering, 2010.

[18] ILX Group, "prince2," 2016. [Online]. Available: https://www.prince2.com/uk/what-is-

prince2.

[19] J. Wilson, "Essentials of Business Research: A Guide to Doing Your Research Project," SAGE

Publications, 2010.

[20] W. &. M. S. Goddard, Research Methodology: An Introduction, 2nd ed., Blackwell, 2004.

[21] M. M, "tutorialspoint," 2016. [Online]. Available:

http://www.tutorialspoint.com/uml/uml_class_diagram.htm.

[22] wordpress, "devside," 19 09 2014. [Online]. Available:

https://www.devside.net/wampserver/load-testing-apache-with-ab-apache-bench.

