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Abstract

The term ‘Code Smells’ was first coined in the book by Folwer [1]. A code smell is a surface in-

dication that usually corresponds to a deeper problem in the system. These poor design choices

have the potential to cause an error or failure in a computer program. The objective of this study

is to use ‘Code Smells’ as a candidate metric to build a bug prediction model.

Bug prediction models are often very useful. When bugs of a software can be predicted, the

quality assurance teams can identify error prone components in advance and effectively allocate

more resources to validate those components thoroughly.

Bug prediction is an active research area in the community and various bug prediction mod-

els have been proposed using different metrics such as source code, process, network and code

smells etc.

In this study we have built a bug prediction model using both source code metrics and code smell

based metrics proposed in the literature. We cannot use code smell based metrics only as a sin-

gle predictor to predict buggy components of a software. There can be files in the source code

which do not contain code smells. Therefore we will not be able to predict bug proneness of such

components if we use code smell based metrics only. Therefore we initially built a basic model

using source code metrics and then enhanced the basic model by using code smell based metrics.

We used Naive Bayes, Random Forest and Logistic Regression as our candidate algorithms to

build the model. We have trained our model against multiple versions of thirteen different Java

based open source projects. The trained model was used to predict bugs in a particular version

of a project and a particular project. We have also trained our model among different projects

and trained model was used to predict bugs in an entirely different project.

We were able to demonstrate in this study, that code smell based metrics can significantly im-

prove the accuracy of a bug prediction model when integrated with source code metrics. Ran-

dom Forest algorithm based model showed higher accuracy within a version, within a project

and among projects when compared to other algorithms.
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Chapter 1

Introduction

1.1 Background

Software systems play a vital role in our daily lives. We use software systems to fulfill most of

our day-to-day requirements. We use software systems for finance, transportation, health care,

education, communication, and even for entertainment. Since human lives heavily depend on

software, correct functioning of software systems is crucial, but software can contain bugs.

1.1.1 What is a bug ?

A software bug is an error or failure in a computer program which causes it to produce an

incorrect or unexpected result.

1.1.2 Is it possible to write a bug free software ?

Technically ‘yes’, but practically not so much [2]. The reason is that it is not economically viable

to do so unless what we are building is a life or mission critical application. Even though it is not

practically possible to build a completely bug free application, software developers always try

to release an application with a minimal number of bugs. Therefore testing must be a mandatory

part in the software development life cycle and it should happen throughout the project in order

to make sure the business flow is correctly preserved.

1.1.3 What are code smells ?

The term ‘Code Smells’ is first coined in the book by Fowler [1]. A code smell is a surface

indication that usually corresponds to a deeper problem in the system. Code smells do not

always indicate a problem. They can be considered as an indicator of a problem rather than the

problem themselves.

1



1.1.4 Different types of code smells

SourceMaking.com [3] describes different code smells that can be found in a computer pro-

grams. They divide code smells into five categories. Bloaters, Object-Orientation Abusers,

Change Preventers, Dispensables and Couplers.

Bloaters indicate that the classes and methods in our programs have significant proportions of

Lines of Code (LOC). LongMethod, Large Class and Long Parameter Lists are some of Bloaters.

Object-Orientation Abusers describe incomplete usage of Object Oriented Programming (OOP)

principles.Use of lot of switch statements instead of polymorphism, use of temporary fields and

creation of two identical functions in two different classes but with different method names are

some of them.

There are situations that when we change something in one place of the code, we have to change

several other places too. Change Preventers indicate these situations. Divergent Change and

Shotgun Surgery are the most popular code smells under this category.

Dispensables are something which is not necessary and without them our code would be much

cleaner, understandable and easier to maintain. Comments in a program is needed, but adding

explanatory comments in a program cause the program to smell bad. ’The best comment is a

good name for a method or class’ [3]. Creating Duplicated Codes all over the program is also a

dispensable. Having classes, methods, parameters or variables in a program which are no longer

used (AKA Dead Code) also comes under this category.

Couplers indicate tight coupling between the classes. For example a method accesses data of

another object than its own data (Feature Envy).

In addition to the above categories, the code smells can also be classified as smells within the

class (e.g., as long method, long parameter list and duplicated code) and smells outside the class

(e.g., as data class, data clumps, refused bequest and etc.,) [4]

1.1.5 When and why code smells are introduced ?

Tufano et al. [5] has conducted a study by evaluating 200 open source projects to identify when

and why the code starts to smell bad. They have mined over 0.5 Million commits and manually

analyzed 9,164 of them classified as smell-introducing. As per the study most of the smell in-

stances are introduced when files are created. However, there are also cases, especially for Blob

and Complex Class, where the smells manifest themselves after several changes performed on

the file.

The study further describes smells are generally introduced by developers when enhancing ex-

isting features or implementing new ones. As expected, smells are generally introduced in the

last month before issuing a deadline, while there is a considerable number of instances intro-

duced in the first year from the project start-up. Finally, developers that introduce smells are

generally the owners of the file and they are more prone to introducing smells when they have

higher workloads.
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1.1.6 Do developers really care about code smells ?

Yamashita et al. [6] has conducted a survey on 85 software professionals and they have found out

32 % of the respondents were not aware of the code smells. The survey has indicated those who

do not care at all about code smells are the ones who do not know that much about code smells.

According to the survey respondents who are somewhat concerned on code smells have shown

the lackness of organizational support, adequate tools and deadlines pressure as the common

barriers.

1.1.7 What is a bug prediction model ?

A model which is capable of providing the list of bug-prone software artifacts in advance. A

bug prediction model requires historical data such as information retrieved fromVersion Control

Systems (VCS), issue tracking systems and so on. The metrics are derived using these data in

order to build and train the model. There have been various techniques suggested in the literature

to increase the accuracy of bug prediction models.

1.1.8 The advantages of predicting bugs

The quality of a software has a high impact on its reliability. When bugs of a software can

be predicted, the quality assurance teams can identify error prone components in advance and

effectively allocate more resources to validate those components thoroughly. Since time and

manpower are finite resources it is really advantageous to dedicatemore time andmore resources

to inspect more buggy components.

1.2 The problem

The different bug prediction models have been proposed by the research community based on

different metrics in order to identify more error prone components in a software system.

1.2.1 Available bug prediction approaches

Thewidely usedmetrics in bug prediction are source code and processmetrics.WeightedMethod

Count (WMC), Depth of Inheritance Tree (DIT), Lines of Code (LOC), Lack of Cohesion of

Methods (LCOM) and Cyclomatic Complexity (CC) are some of the measurements used by

source code metrics based approaches. Process metrics based approaches use number of newly

added lines, modified and deleted code lines and recent activity etc as their measurements.

1.2.2 The problem in traditional bug prediction approaches

Traditional bug prediction approaches based on metrics mentioned above have certain issues.

For example it may be sometimes true that a codebase with large LOC is more error prone,

3



but there is no guarantee that a codebase with a relatively less LOC has less number of bugs.

Therefore it is worth to investigate on some other additional metrics to predict bugs.

1.2.3 Motivation

Code smells are supposed to point out bad designs that cause to have code with less maintain-

ability . There is a high chance that something might be wrong in the code when we have lot of

bad smells in the code. There is empirical evidence that code smells hinder understandability of

code [7], increase change and error proneness [8], [9] and lead to less maintainable code [10].

1.3 Aims and objectives

• Study on different code smells in a computer program.

• Study on available literature/ tools to detect code smells in a computer program.

• Develop a bug prediction model based on traditional source code metrics.

• Enhance the bug prediction model with the help of code smell based metrics.

• Evaluate the accuracy of the two approacheswithin a single version, within a single project

and cross projects.

1.4 Scope and limitations

Scope of this project is to build a bug prediction model which uses metrics derived from code

smells. We will use these metrics to enhance the traditional bug prediction approaches.

We will not be focusing on how to detect code smells in a given computer program and pub-

licly available datasets of open source projects will be used for this. We will be analyzing and

predicting bugs of software systems developed only in Java language.

1.5 Thesis overview

The remainder of this thesis is as follows: Chapter 2 discusses the background and related work.

In chapter 3, we present our research methodology. Chapter 4 discusses proposed solution de-

tails. In chapter 5, we present and discuss the results from the study. Finally, we conclude in

chapter 6 and discuss directions for future works.
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Chapter 2

Literature Review

Bug prediction is one of the most active research areas in software engineering and different

prediction techniques have been proposed by the research community. This chapter describes

major approaches in software defect prediction.

2.1 Brief history on bug prediction

It was assumed in the early days that complexity of a software could cause defects. Akiyama

built a simple model using LOC to represent the how complex a software is [11]. Considering

LOC as a metric for bug prediction was too simple and therefore MaCabe proposed cyclomatic

complexity as a measure for bug prediction in 1976 [12]. Cyclomatic complexity and Halstead

complexity [13] were very popular metrics during that period but those models had a major

drawback. The model could be evaluated on a new software module and therefore they demon-

strated some relationship between metrics and the number of defects.

Shen et al. [14] built a linear regression model in order to examine error proneness of new soft-

ware modules. However there were some preciseness issues in that model and Munson et al.

proposed a classification model with higher accuracy [15].

With the increased popularity of version control systems several process metrics predictionmod-

els were proposed during 2000s.

There were certain limitations in bug prediction models developed during 2000s. One limi-

tation was inability to predict defects whenever a source code file is changed. Just In Time

(JIT) bug prediction models were introduced to overcome this limitation and it is also an active

research area which allows predicting defects whenever we change the source code. Another

drawback was predicting defects for new projects and projects having very little historical infor-

mation. Cross defect prediction models were introduced as a solution to this limitation. Figure

2.1 demonstrates evolution of bud prediction models over the time.
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Figure 2.1: History on bug prediction studies

2.2 Bug prediction process

Most of the bug prediction techniques are based on machine learning. The initial step in those

approaches are to generate instances from software archives such as VCS and issue tracking

systems and etc. Each instance can then be labeled as either clean or buggy. If it is a buggy

instance, the number of bugs in the instance can be labeled too. When we have an adequate

training data set, we can train our prediction model with the use of these training data. The

training model is now able to predict whether a new given instance is buggy or not. Figure 2.2

demonstrates the common process of bug prediction.

2.3 Metrics used in bug prediction

Bug prediction metrics can be mainly categorized into two sections : Code Metrics and Pro-

cess Metrics. Code metrics are derived directly from the source code whereas process metrics

aggregate information from VCS such as Github and issue tracking systems such as Bugzilla.

2.3.1 Code metrics

As mentioned in the introduction chapter LOC, CC, number of classes, number of methods and

etc have been used as code metrics to build bug prediction models.

H.Zhang [16] has conducted a research to prove that simple static code attributes such as

LOC can be useful predictors of software quality. He has analyzed two public defect datasets:

the Eclipse dataset and the NASA dataset (Figure 2.3). The ranking ability of LOC proposed by
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Figure 2.2: The common process of bug prediction

Figure 2.3: Percentage of defects contained by top k% largest modules in Eclipse

[16]

Fenton and Ohlsson [17] has been used in this research and he has found out that this capability

can be actually modeled by aWeibull distribution function. He also has discovered that by using

defect density values aggregated from a small percentage of the largest modules, he can improve

LOC’s ability to predict the number of defects. In this research they have demonstrated by using

typical classification techniques they are able to predict defective components more accurately

based on LOC.

The results of this research is highly dependent on the datasets obtained from Eclipse and

NASA defect dataset. If there were some errors in bug data collection and recording, the results

may be invalid.
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2.3.2 Process metrics

How often code lines are added, changed and deleted as well as recent activities and etc are con-

sidered as process metrics. Process metrics require historical information from VCS and issue

tracking systems. Nagappan et al. [18] has conducted a research on relative code churn mea-

sures to predict system defect density. Code churn measures the changes made to an instance

over a period of time.They explain using already conducted literature, absolute measures such

as LOC are poor indicators and measures based on change history are better indicators.

The relative code churn measures of the research are as follows :

1. M1: Churned LOC / Total LOC

2. M2: Deleted LOC / Total LOC

3. M3: Files churned / File count

4. M4: Churn count / Files churned

5. M5: Weeks of churn / File count

6. M6: Lines worked on / Weeks of churn

7. M7: Churned LOC / Deleted LOC

8. M8: Lines worked on / Churn count

The study has compared predictive models built using absolute measures against those built

using the relative churn. They use the technique of data splitting [19] to measure the ability

of the relative code churn measures to predict system defect density. The study has randomly

selected two thirds of the binaries (1645) to build the prediction model and use the remaining

one third (820) to verify the prediction accuracy.

In order to measure the sensitivity of prediction, the study has run a correlation analysis between

the estimated and actual values.A high positive correlation coefficient indicates that when the

actual defect density increases estimated defect density also increases accordingly.
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Figure 2.4: Actual vs. estimated system defect density

[18]

The results of the study is heavily dependent on data collected from aVCS. VCS only records

information when a developer checks out or check in files. A developer might have checked out

a file for a long period and may do few changes which will display weeks of churn measures.

2.3.3 Ownership and authorship

According to some studies [20] [21] human factors have a major impact on quality of a soft-

ware. Bird et al. [22] has conducted a research to investigate the relationship between ownership

measures and software failures. They have usedWindows Vista andWindows 7 systems for this

research. Ownership describes responsibility of a developer on a particular software component.

According to the study every software has different kinds of contributors. A developer whose

ownership is below 5% to software component is known as a Minor contributor. A developer

whose ownership is at or above 5% is known as a Major contributor.

The study has made following recommendations based on the findings :

• Changes made by minor contributors should be reviewed with more scrutiny.

9



• Potential minor contributors should communicate desired changes to developers experi-

enced with the respective binary.

• Components with low ownership should be given priority by QA resources.

2.3.4 Network metrics

Zimmermann et al. in their study [23] evaluated how well network metrics could be used for

bug prediction. The purpose of the research was to identify the interaction between elements

and investigate how dependencies correlate with defect prediction. One of the hypothesis that

they investigated on the research was that network measures on dependency graphs can predict

the number of post release defects. The results of the research have been compared against

complexity metrics. The study concludes that the recall of prediction models built with network

metrics is 10% higher than for models built using complexity metrics. They are also better

predictors of critical bugs.

Tosun et al. [24] has shown that network measures are important indicators of defective modules

for large and complex systems, but their impact on small scale projects is not significant.

2.3.5 Code smells based metrics

The objective of this research is to develop a bug prediction model based on code smells. There

are some already conducted studies and developed bug prediction models based on code smells.

There is empirical evidence in the research community that code smells have negative impact on

error proneness and practitioners should pay more attention to systems with a high prevalence

of smells during development and maintenance [25].

Taba et al. [26] has conducted a research to investigate the relationship between anti patterns

and defect density. They have done the study on multiple versions of two open source systems

Eclipse and AgroUML.

The research has proposed 4 anti pattern based metrics

1. Average Number of Antipatterns (ANA)

2. Antipattern Complexity Metric (ACM)

3. Antipattern Recurrence Length (ARL)

4. Antipattern Cumulative Pairwise Differences (ACPD)

The study has shown the files with anti patterns tend to have a higher bug density than others.

Proposed metrics provide additional explanatory power over traditional metrics such as LOC,

PRE and Churn.Among themeasures ARL has shown a significant improvement and it improves

bug prediction both within and cross systems. They have investigated different versions of only

two projects and the accuracy of the code smell detection tool used has a higher impact since

proposed metrics are based on those results.
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F Palomba et al. [27] has conducted a study to investigate how severity of code smells im-

pacts the defect density. The intensity is computed using a code smell detector called JCodeOdor

and six different types of code smells were taken into account. They are God Class, Data Class,

Brain Method, Shotgun Surgery, Dispersed Coupling and Message Chains. The intensity index

is an estimation of the severity of a code smell, and its value is defined in the range [1,10].

For a given code smell instance, its intensity is computed based on different kinds of information

1. The code smell detection strategy.

2. The metric thresholds used in the detection strategy.

3. The statistical distribution of the metric values computed on a large dataset represented

as a quantile function.

4. The actual values of the metrics used in the detection strategies.

The code smell detector classifies the training data set as smelly and non smelly classes in

order to build a bug prediction model. Classes which do not have code smells are therefore

getting an intensity value of 0.

The results of the study indicate that the use of intensity always positively contributes to find

out bug prone code components. The study is limited in the context of within-project bug pre-

diction and does not specifically provide facts on how the model behaves within a single version

of a project. The evaluation of the model among cross projects has also not been considered in

this study.

2.4 Summary

We cannot use code smell based metrics only as a single predictor to predict buggy components

of a software. There can be files in the source code which do not contain code smells. Therefore

we will not be able to predict bug proneness of such components if we use code smell based

metrics only.

Even though there are number of code smells can be found in a code base, all the code smells do

not carry a same weight to make a software instance error prone. Some code smells may have

high impact on error proneness whereas impact of some are very minimal. Which code smells

have a significant impact on error proneness of a software instance can be studied further.

The accuracy of a bug prediction model also depends on the code smell detection strategy since

the metrics derives are based on those results. Therefore selecting a high accurate detection

strategy is also important.

Not all the software projects have enough historical data. Even though a project is in initial stage

it can contain lot of code smells. It can be further studied how to predict bugs of a newly started

projects by using code smells as a metric.
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Chapter 3

Methodology

The technical debt metaphor is obtaining a significant attraction in agile community and it de-

scribes how complexities created by short term compromises affect the long term health of a

project. According to [28], technical debt is a situation where developers accept to sacrifice one

dimension of a software product (i.e losing the quality of the software product) when they try

to optimize another dimension (i.e implementing set of new features before a deadline). Even

though this sacrifice provides short term benefits, the debt needs to be paid back later. When

there is too much technical debt it will reduce the pace of the development and cause poor main-

tainability of the code. ‘Code Smells’ are one form of technical debt and it may be possible

to use these bad smells to identify error-prone components of a software [29] . Therefore it is

obvious that code smells are design debt symptoms which are worth investigating.

3.1 Design overview

The initial bug prediction model will be built using source code metrics. We will use different

set of source code metrics suggested in the literature to train our basic model. The systems that

we analyze in this research are Apache Ant 1 , Apache Camel 2 , Apache Ivy 3 , Apache Log4j
4, Apache Forrest 5, Apache Lucene 6 , Apache POI 7, Apache Synapse 8 , Apache Tomcat 9 ,

Apache Velocity 10, Apache Xalan 11, Apache Xerces 12 and jEdit 13 .

We will then enhance our basic model by using code smell based metrics. The objective of the

1https://ant.apache.org/
2http://camel.apache.org/
3http://ant.apache.org/ivy/
4https://logging.apache.org/log4j/2.x/
5https://forrest.apache.org/
6https://lucene.apache.org/
7https://poi.apache.org/
8http://synapse.apache.org/
9http://tomcat.apache.org/
10http://velocity.apache.org/
11https://xalan.apache.org/
12http://xerces.apache.org/
13http://jedit.org/
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research is to combine code smell based metrics suggested by [26] and [27]. We will then evalu-

ate the predictive power of the enhanced model once those metrics are combined. A future work

suggested by [27] has also become a part of this research. That is to evaluate the performance of

a code smell based prediction model across projects. We will evaluate how effectively metrics

suggested by [26] and [27] contribute to the predictive power of our bug prediction model. The

study [26] has evaluated its model only on two open source systems Eclipse and AgroUML. But

we will apply the metrics on multiple versions of thirteen different open source projects.

3.2 Metrics used

Following are some of the important source codemetrics and code smell metrics that we consider

in the research.

3.2.1 Source code metrics

1. Weighted Method Count (WMC) : The sum of complexities of all methods defined in a

class.

2. Depth of Inheritance Tree (DIT) : Defines the position of the class in the inheritance hi-

erarchy. If the language supports multiple inheritance this value is equal to the maximum

length path.

3. Number of Children (NOC) : Measures the number of child classes of a particular class.

4. Coupling Between object classes (CBO) : The number of classes coupled to a class.

5. Response for a Class (RFC) : The number of unique methods and constructors invoked

by a class.

6. Lack of Cohesion of Methods (LCOM) : Defines the set of methods in a class that are not

related.

7. Number of Public Methods (NPM): Number of public methods defined in the class.

8. Data Access Metric (DAM) : The ratio of the number of private (protected) attributes to

the total number of attributes declared in the class.

9. Lines of Code (LOC) : The number of lines in a class.

10. Inheritance Coupling (IC) : The number of parent classes to which a particular class is

coupled.
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3.2.2 Code smell based metrics

1. Intensity index

The intensity index is an estimation of the severity of a code smell, and its value is defined

in the range [1,10].

2. Average Number of Antipatterns (ANA)

Measures the distribution of antipatterns in previous buggy versions of a file.

3. Antipattern Recurrence Length (ARL)

Captures the consecutive occurrence of antipatterns in a file.

4. Antipattern Cumulative Pairwise Differences (ACPD)

Measures the growth tendency of the antipatterns in a file over time.

5. Antipattern Complexity Metric (ACM)

Measures complexity of code smells.
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3.3 Model architecture

Figure 3.1: Proposed architecture of the bug prediction model

Software systems developed only using Java language will be considered in this research.

A project consists of different versions and a version archive is used to maintain historical in-

formation of a project. It stores information related to which files added, deleted, modified to

implement a new feature or fix an issue. This is known as a ‘Commit’. A commit is always

associated with a commit ID, timestamp and the person/developer who made this commit.

Bug reports provide information on erroneous of the existing software components. A bug has

a severity. It could be a critical, major, minor or trivial bug. A bug is raised against a version of

a software system and assigned to a developer. We consider source code files participating in a
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particular file.

The bug prediction model will be built using the above mentioned metrics and its accuracy will

be evaluated. The model will also be used to predict the defect likelihood of a new component.

Figure 3.1 demonstrates the proposed model architecture.

3.4 Data collection and data processing

We have collected data from publicly available data repositories for this study [30]. Table 3.1

illustrates datasets of different projects and their versions we have gathered for the study.

Project Name Version Numbers

Apache Ant 1.3, 1.4, 1.5, 1.6, 1.7

Apache Camel 1.0, 1.2, 1.4, 1.6

Apache Ivy 2

Apache Log4j 1.0, 1.1, 1.2

Apache Forrest 0.7, 0.8

Apache Lucene 2.0, 2.2, 2.4

Apache POI 1.5, 2.0, 2.5.1, 3.0

Apache Synapse 1.0, 1.1, 1.2

Apache Tomcat 6

Apache Velocity 1.4, 1.5, 1.6.1

Apache Xalan 2.4, 2.5, 2.6, 2.7

Apache Xerces 1.2, 1.3, 1.4.4

jEdit 3.2, 4.0, 4.1, 4.2, 4.3

Table 3.1: Projects and version numbers

The correct preparation of data is essential in order to increase the accuracy of the trainingmodel.

All the gathered data was in Comma Separated Values (CSV) format and all the files had same

set of attributes. The attributes present in a data file is as follows :

Source code metrics present in a data file are : Project name, Version, File name, Bugs count

per file, isBuggyFile,Weighted Method Count (WMC), Depth of Inheritance Tree (DIT), Num-

ber of Children (NOC), Coupling Between object classes (CBO), Response for a Class (RFC),

Lack of Cohesion of Methods (LCOM), Afferent couplings (Ca), Efferent couplings (Ce), Num-

ber of Public Methods (NPM), Lines of Code (LOC), Data Access Metric (DAM), Measure Of

Aggregation (MOA), Measure of Functional Abstraction (MFA), Cohesion Among Class Meth-

ods (CAM), Inheritance Coupling (IC), Coupling Between Methods (CBM), Average Method

Complexity (AMC), Maximum Cyclomatic Complextiy (MCC) and Average Cyclomatic Com-

plexity (ACC). Intensity, Average Number of Antipatterns (ANA), Antipattern Complexity Metric

(ACM), Antipattern Recurrence Length (ARL) and Antipattern Cumulative Pairwise Differences

(ACPD) are the code smell based metrics present in a data file.

Every dataset contains some meta data other than the metric information. Some of the attributes
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present in each file has no impact on the bug prediction model. Therefore we have eliminated

Project name, File name and Version name from the data sets. If there is at least one bug reported

against a file in a particular version that file is considered as a ‘isBuggyFile’ in the data set. The

same file can be a non buggy file in a later version. The number of bugs reported against a file

has also been recorded. Since predicting number of bugs against a file is not in the scope of this

research, we removed ’Bugs count per file’ attribute too.

The data needs to be in numerical format in order to improve the accuracy. Therefore when

designing the model we have considered only the numerical attributes. Some of the attributes

have higher correlations with another attribute.

Figure 3.2: Matplotlib representation of higher correlations of some attributes

The Figure 3.2 is the Matplotlib representation of correlation between columns. Blue, Cyan,

Yellow, Red to Darked will represent less to more correlations respectively. We do expect a

darked line running from top left to bottom right. This diagonal indicates overlapping of the

same column in both x and y axis, but red or darked lines in other areas represent that different

columns in our dataset have higher correlations. We have observed the impact of each attribute
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on our training model and only the most effective attributes were selected for prediction.

3.5 The role of the algorithm

We will use machine learning classifiers to build the model. We will supply training data to

the algorithm. As demonstrates in the Figure 3.3 the data is analyzed using the logic of the

algorithm. This analysis evaluates the data with respective to a mathematical model and logic

associated with the algorithm. The algorithm uses the results of the analysis to adjust internal

parameters to produce the model that has been trained to best fit the features in the training data

to produce the associated class results. This best is defined by evaluating a function specific

to a particular algorithm. When the model is trained it is later called via predict function by

passing the real data. Using only the features in the real data, the train model is now capable of

classifying the real data.

Figure 3.3: The role of algorithm

3.6 Algorithm selection factors

There are different machine learning techniques available. This is a predictive mode. Therefore

our Learning Typewould be Supervised Learning. We will consider only the algorithms which
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support Supervised Learning in this study. The prediction results can be classified into two cat-

egories : Regression and Classification. Regression predictive modeling maps inputs variables

to a continuous output variables whereas classification maps input variable to a discrete output

value. The Result Type of the bug prediction model needs to be a binary outcome. i.e whether

we can classify a source code file as buggy or not. Since this is a classification problem we will

consider only the algorithms which supports binary classification.

3.7 Candidate algorithms

3.7.1 Naive Bayes algorithm

Naive Bayes algorithm is based on Bayes Theorem. Naive Bayes classifier assumes that all the

features are unrelated and independent from each other. Therefore the availability or absence of

a feature does not influence the availability or absence of any other feature.It calculates the prob-

ability based on likelihood and probability of previous data. The class with highest probability

is considered as the most likely class.

3.7.2 Logistic Regression

Logistic regression is based on logistic function (AKA sigmoid function). The algorithm mea-

sures the relationship of each feature and weights them based on their impact and result. The

resultant value is in between 1 and 0.

3.7.3 Random Forest

This algorithm is based on Decision Trees. It creates the forest with a number of trees. The

classifier produces a higher accurate result when there are higher number of trees in the forest.

3.7.4 Rationale for the use of the algorithms

We selected Naive Bayes, Logistic Regression and Random Forest as our candidate algorithms

to build the model. The main reasons for selecting these three algorithms are we have labeled

data, they are in numerical format and they are categorical data, we do experiments with the

increasing number of examples and we do the training incrementally.
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Chapter 4

Proposed Solution Details

4.1 Programming environment

We have used Python 3 as the programming language. Python has a rich set of libraries which is

very useful for Machine Learning development. We have used scikit-learn, NumPy, Pandas and

Matplotlib libraries to build the model. We have used the Jupyter Notebook as our programming

environment. The Jupyter Notebook is an open-source web application that allows to create and

share documents that contain live code, equations, visualizations and narrative text.

4.2 Preparing data

The objective of this research is to evaluate the model within a particular version of a project,

within a particular project and across multiple projects. We split every dataset into two parts.

We have used 70% of each dataset to train the model and 30% of each dataset to test the model.

We have never used test instances to train the model.

For example if we consider within version scenario, there were 745 instances in Apache Ant

1.7 version. We first randomly removed 5 instances of this dataset to be used as real data. The

real data will be used to evaluate the accuracy of the prediction. There were 740 instances left

in the dataset. We used 518 instances (70%) to train our model and 222 instances (30%) to

test the model. Similarly for within project scenario, we studied 5 different versions of Apache

Ant. They were 1.3, 1.4, 1.5, 1.6 and 1.7. We selected version 1.7 as the real dataset and other

versions were used to train and test the model. There were 947 instances in the other 4 versions

of Apache Ant. There were 662 training instances (70%) and 285 test instances (30%). For

cross project prediction we used Apache Ivy version 2 as the real dataset. This can be assumed

as a newly started project with less historical information. There were 16576 instances in all

the versions in all the projects. We used 11603 instances to train the model (70%) and 4973

instances (30%) to test the model.

The boolean attribute is-buggy will indicate whether a file in a particular version is buggy (rep-

resented as 1) or not (represented as 0). The number of true instances contain in the dataset will

also have an impact on the accuracy of the model. There must be a balanced number of true and
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false instances in our datasets. Preparing a real dataset with balanced number of buggy and not

buggy instances is really challenging. The number of buggy instances in all versions of Apache

Ant project were only 19.43%. In all versions of all projects, the number of instances reported

as buggy were 33.96%.

4.3 Building the model

4.3.1 Modules

1. File Loader Module

All the datasets used in the study were in CSV format and they all had same number of

attributes. We used read_csv() method of Pandas library to read the files.

2. Feature Column Selector Module

There are some redundant attributes in the dataset which do not have impact on the bug

prediction. We should train the model only using the optimal attributes. This module will

filter only the feature columns from the dataset.

3. Data Split Module

As discussed in Preparing Data module 70% of the dataset will be used to train the model

and 30% will be used for testing purposes. The below Python code snippet shows data

splitting functionality.

Figure 4.1: Python code for data split module

4. Imputer

Sometimes certain values can be null. Even though they are not null, they may be repre-

sented in the form empty strings or empty spaces. These null values need to be removed

or replaced. We have used imputer function provided by scikit-learn for this.

5. Training with the data

We used scikit-learn implementations to develop Machine Learning algorithms. Using a

Machine Learning algorithm with scikit-learn involves three steps.

(a) Import the particular algorithm implementation.

(b) Initiate the model object.

(c) Invoking fit() method with training data.

We have used GaussianNB, RandomForestClassifier and LogisticRegression provided by

scikit-learn to train the model.
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Chapter 5

Evaluation and Results

This chapter describes how the bug prediction model was evaluated against different evaluation

metrics.

5.1 Evaluation measures

There are four different prediction outcomes provided by a classification model.

• True positive (TP): Buggy instances predicted as buggy.

• False positives (FP): Clean instances predicted as buggy.

• True negative (TN): Clean instances predicted as clean.

• False negative (FN): Buggy instances predicted as clean.

There are different evaluation measures proposed in the literature based on the above pre-

diction outcomes.

5.1.1 Accuracy

The fraction of all correctly classified instances with respect to all the instances.

TP + TN

TP + FP + TN + FN
(5.1)

5.1.2 Precision

The fraction of the positive predictions that are actually positive.

TP

TP + FP
(5.2)
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5.1.3 Recall

The fraction of correctly predicted buggy instances among all buggy instances.

TP

TP + FN
(5.3)

5.1.4 F-measure

F-measure is a harmonic mean of precision and recall.

2x(PrecisionxRecall)

Precision+Recall
(5.4)

5.1.5 Receiver Operating Characteristic (ROC) curve

ROC curve plots TP rate Vs FP rate.

5.1.6 Precision Recall (PR) curve

PR curve plots Precision Vs Recall.

5.2 Evaluation results

5.2.1 Within version

Following are the results of Apache Ant 1.7 version.

5.2.1.1 Basic model

We selected relatively less correlated features as our source code metrics. The selected attributes

were

1. Weighted Method Count (WMC)

2. Depth of Inheritance Tree (DIT)

3. Number of Children (NOC)

4. Afferent couplings (Ca)

5. Lines of Code (LOC)

6. Data Access Metric (DAM)

7. Measure Of Aggregation (MOA)

8. Cohesion Among Class Methods (CAM)
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9. Inheritance Coupling (IC)

10. Coupling Between Methods (CBM)

11. Average Method Complexity (AMC)

12. Maximum Cyclomatic Complextiy (MCC)

Figure 5.1: Matplotlib representation of correlations of selected source code attributes
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Measure
Naive

Bayes

Random

Forest
Logistic Regression

Accuracy of train data 81.27 % 98.84% 83.20 %

Accuracy of test data 80.63 % 82.43% 82.88 %

TP 10.36% 10.36% 9.01%

TN 70.27% 72.07% 73.87%

FP 6.76% 4.95% 3.15%

FN 12.61% 12.61% 13.96%

Precision 0.61 0.68 0.74

Recall 0.45 0.45 0.39

F1 score 0.52 0.54 0.51

Number of True

cases in train data
22.16%

Number of False

cases in train data
77.84%

Real Data Set [1, 0, 0, 1, 0]

NB Prediction [1, 1, 1, 1 ,1]

RF Prediction [1, 0 ,1, 0 ,0]

LR Prediction [1, 0, 0, 0 ,0]

Table 5.1: Basic model within version Apache Ant 1.7

As per Table 5.1 Random Forest and Logistic Regression algorithms provide good results com-

pared to Naive Bayes, but none of the algorithms are showing a good precision and recall. Lo-

gistic Regression algorithm based model has predicted 4/5 randomly selected instances of the

real data accurately, but none of the algorithms show good prediction results within version.

Number of buggy instances presented in the dataset is 22.16% and we have a huge number of

clean instances in the dataset. This could be a reason why our basic model is not performing as

expected. Therefore we used the same dataset on our enhanced model to check whether there is

an improvement in prediction accuracy.
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Figure 5.2: Apache Ant 1.7 ROC curve for basic model - Random Forest

Figure 5.3: Apache Ant 1.7 PR curve for basic model - Random Forest

26



5.2.1.2 Enhanced model with code smell based metrics

Following are the results of enhanced model once code smell based metrics

1. Intensity

2. Average Number of Antipatterns (ANA)

3. Antipattern Complexity Metric (ACM)

4. Antipattern Recurrence Length (ARL)

5. Antipattern Cumulative Pairwise Differences (ACPD)

are integrated into Apache 1.7 Version.

Measure
Naive

Bayes

Random

Forest
Logistic Regression

Accuracy of train data 85.91 % 100.00 % 95.17 %

Accuracy of test data 86.49 % 100.00 % 98.20 %

TP 13.96% 22.97% 22.52%

TN 72.52% 77.03% 75.68%

FP 4.50% 0.00% 1.35%

FN 9.01% 0.00% 0.45%

Precision 0.76 1.00 0.94

Recall 0.61 1.00 0.98

F1 score 0.67 1.00 0.96

Number of True

cases in train data
22.16%

Number of False

cases in train data
77.84%

Real Data Set [1, 0, 0, 1, 0]

NB Prediction [1, 1, 1, 1 ,1]

RF Prediction [1, 0, 0, 1, 0]

LR Prediction [1, 0, 0, 0 ,0]

Table 5.2: Enhanced model within version Apache Ant 1.7

As Table 5.2 has demonstrated we were able to achieve a very good results by integrating code

smell based metrics to our basic model. Random Forest Algorithm provided very accurate re-

sults with both Precision and Recall to be 1.00. Logistic Regression based model also provided

significantly improved results compared to source code based metrics. RF algorithm based

model also accurately predicted randomly selected read data instances.
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Figure 5.4: Apache Ant 1.7 ROC curve for enhanced model - Random Forest

Figure 5.5: Apache Ant 1.7 PR curve for enhanced model
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5.2.2 Within project

Following are the results for Apache Ant project. We have analyzed five versions.

5.2.2.1 Basic model

Measure
Naive

Bayes

Random

Forest
Logistic Regression

Accuracy of train data 77.49 % 96.53 % 81.42 %

Accuracy of test data 74.39 % 77.54 % 81.75 %

TP 8.77% 7.02% 2.81%

TN 65.61% 70.53% 78.95%

FP 15.79% 10.88% 2.46%

FN 9.82% 11.58% 15.79%

Precision 0.36 0.39 0.53

Recall 0.47 0.38 0.15

F1 score 0.41 0.38 0.24

Number of True

cases in train data
19.43%

Number of False

cases in train data
80.57%

Real Data Set (V 1.7) [1,1,1,1,1]

NB Prediction [1, 0, 1, 1, 1]

RF Prediction [0 ,0 ,1, 1, 0]

LR Prediction [0, 0, 0, 0, 0]

Table 5.3: Basic model within Apache Ant project

As we can see in the Table 5.3 none of the algorithms has performed well within the project. We

have analyzed the same dataset against our enhanced bug prediction model.

29



5.2.2.2 Enhanced model with code smell based metrics

Measure
Naive

Bayes

Random

Forest
Logistic Regression

Accuracy of train data 83.38 % 100.00 % 91.09 %

Accuracy of test data 81.75 % 87.72 % 87.72 %

TP 10.88% 7.37% 10.18%

TN 70.88% 80.35% 77.54%

FP 10.53% 1.05% 3.86%

FN 7.72% 11.23% 8.42%

Precision 0.51 0.88 0.72

Recall 0.58 0.40 0.55

F1 score 0.54 0.55 0.62

Number of True

cases in train data
19.43%

Number of False

cases in train data
80.57%

Real Data Set (V 1.7) [1,1,1,1,1]

NB Prediction [1, 0 ,1 ,1 ,1]

RF Prediction [0 1 1 1 0]

LR Prediction [1, 1, 1 ,1 ,1]

Table 5.4: Enhanced model within Apache Ant project

The evaluation results show some progress with respect to precision and recall in the enhanced

model, but our model is not performing as expected in Apache Ant project even when code smell

based metrics are integrated.

The number of True instances in the training set is relatively less. It is 19.43% of the total dataset.

This could also be a reason. Therefore we have tested our model in a more balanced data set.

We analyzed 4 versions Apache Xalan project. The total number of all instances were 2411

and there were 37.66% of buggy instances in the data set.

30



Measure
Naive

Bayes

Random

Forest
Logistic Regression

Accuracy of train data 71.25 % 100.00 % 96.38 %

Accuracy of test data 71.55 % 100.00 % 95.30 %

TP 15.33% 38.95% 38.40%

TN 56.22% 61.05% 56.91%

FP 4.83% 0.00% 4.14%

FN 23.62% 0.00% 0.55%

Precision 0.76 1.00 0.90

Recall 0.39 1.00 0.99

F1 score 0.52 1.00 0.94

Number of True

cases in train data
37.66%

Number of False

cases in train data
62.34%

Real Data Set (V 1.7) [1,1,1,1,1]

NB Prediction [1,1,1,1,1]

RF Prediction [1,1,1,1,1]

LR Prediction [1,1,1,1,1]

Table 5.5: Enhanced model within Apache Xalan

As we can see in the Table 5.5 when we have a good amount of buggy instances in the training

set the enhanced model has produced significantly good results and particularly Random Forest

algorithm based model has provided the most accurate results.

5.2.3 Cross projects prediction

We used all the versions of all the projects to train our both basic model and enhanced model.

The trained models were tested against one version of Apache Ivy project (Version 2).
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Measure
Naive

Bayes

Random

Forest
Logistic Regression

Accuracy of train data 66.43 % 90.88 % 68.40 %

Accuracy of test data 66.66 % 68.05 % 68.79 %

TP 4.12% 13.47% 6.94%

TN 62.54% 54.57% 61.85%

FP 4.14% 12.11% 4.83%

FN 29.20% 19.85% 26.38%

Precision 0.50 0.53 0.59

Recall 0.12 0.40 0.21

F1 score 0.20 0.46 0.31

Number of True

cases in train data
33.96%

Number of False

cases in train data
66.04%

Real Data Set (V 1.7) [0,0,0,0,1]

NB Prediction [0, 0, 1, 0 ,0]

RF Prediction [0, 1, 1, 0, 1 ]

LR Prediction [1,1,1,1,1]

Table 5.6: Basic model prediction on cross projects
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Measure
Naive

Bayes

Random

Forest
Logistic Regression

Accuracy of train data 71.58 % 99.73 % 90.46 %

Accuracy of test data 71.91 % 91.72 % 90.39 %

TP 10.84% 31.61% 33.18%

TN 61.07% 60.10% 57.21%

FP 5.61% 6.58% 9.47%

FN 22.48% 1.71% 0.14%

Precision 0.66 0.83 0.78

Recall 0.33 0.95 1.00

F1 score 0.44 0.88 0.87

Number of True

cases in train data
33.96%

Number of False

cases in train data
66.04%

Real Data Set (V 1.7) [0,0,0,0,1]

NB Prediction [0, 0 ,1, 0 ,1]

RF Prediction [0 ,0, 0 ,0 ,1]

LR Prediction [0, 0, 0, 0, 1]

Table 5.7: Enhanced model prediction on cross projects

There were 16576 instances in the training data set and 33.96% were buggy instances. Similar

to within version and within project prediction, the accuracy of the basic model across projects

is very low even when there are more than 30% of buggy instances in the training set. We can

clearly observe the prediction accuracy is much higher across projects in our enhanced model.

Random Forest based model has shown the most accurate results and the accuracy of Logistic

Regression based model also has improved significantly when compared with the basic model.
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Chapter 6

Conclusion and Future Work

This chapter summarizes the work that has been done in the study, limitations and the future

work.

6.1 Conclusion

In this study we provided empirical evidence that code smells based metrics can be really helpful

in bug prediction. We developed a bug prediction model by using different source code metrics

and code smell based metrics proposed in the literature. We used Naive Bayes, Random Forest

and Logistic Regression as our algorithms to build the model. The developed prediction model

was trained against multiple versions of thirteen different open source projects. We analyzed

the behavior of our bug prediction model within a particular version, within a particular project

and across different projects.

We would like to highlight analysis of our study as follows :

• Only the use of source code metrics is not sufficient to predict bugs of a project.

• Higher accuracy could be obtained when code smell based metrics are integrated with

source code metrics.

• Among the used algorithms Random Forest has shown a higher accuracy compared to

other algorithms. Having rich amount of numerical/ categorical data and training with

the increasing number of examples could be main reasons why Random Forest provided

better results. The reasons why Naive Bayes did not perform well in the study are our

features are not fully independent of each other.

• Cross project bug prediction can be accurately done with the help of code smell based

metrics.

• We were able to obtain higher accurate results when no of buggy instances in the training

set were more than 30%.
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6.2 Future work

The basic model is still based on source code based metrics and we would like to incorporate

process and network based metrics to the model and check the accuracy of the model. The

current model has been evaluated against only Java based projects. We would like to evaluate

the accuracy of this model against Javascript based projects as a future work. This model cannot

be used to provide warnings to developers whenever they change the files. As a future work,

we would like to investigate how this model could be used for just-in-time (JIT) prediction.
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Appendix A

Code Smells

A.1 Bloaters

Bloaters are introduced due to long term poor code choices. They start to emerge as the program

evolves. Bloaters hinder maintainability of the code.

Figure A.1: Different types of Bloaters

• Long Methods : A method which has too many lines.

• Large Class : A class with too much of lines of codes. It contains lot of variables and

methods.

• Primitive Obsession : Primitives are used in the code more often rather than grouping

them into meaningful classes.

• Long Parameter List : A method which accepts lot of arguments. An idea method will

have maximum of 3-4 parameters.

• Data Clumps : There can be code segments which has similar set of variables which need

to be grouped into its own classes.

A.2 Object-Orientation Abusers

Improper implementation of object oriented principles are the reason for Object-Orientation

Abusers
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Figure A.2: Different types of Object-Orientation Abusers

• Switch Statements : Having complicated switch statements or if-else statements.

• Temporary Field : The values of these fields are set only under certain circumstances.

• Refused Bequest : A subclass inherits members from its super class, but what is actually

needed is a very little of it.

• Alternative Classes with Different Interfaces : There are two different classes which func-

tions identically, but they have different names.

A.3 Change Preventers

These smells indicate that we will have to change multiple places due to a change done in one

place.

Figure A.3: Different types of Object-Orientation Abusers

• Divergent Change : Having to change many unrelated methods due to a change done in

one class.

• Shotgun Surgery : Making a modification leads to make small modifications to many

different classes.

• Parallel Inheritance Hierarchies : In order to create a subclass of a class we will have to

create a subclass of another.
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A.4 Dispensables

Dispensables are useless to have in the code and without them the code will be much more

cleaner and maintainable.

Figure A.4: Different types of Dispensables

• Comments : Filling a method or class with too much of unnecessary comments.

• Duplicate Code : Two code segments which are identical

• Lazy Class : A class does not seem to be doing enough to consider it as a standalone class.

• Data Class : Classes with only fields, getters and setters, but no methods.

• Speculative Generality : There is an unused class, method, field or parameter.

• Dead Code : A variable, method or class which is no longer used or referred in the code.

A.5 Couplers

As the name indicates tightly bound classes are the reason for these code smells.

Figure A.5: Different types of Couplers

• Feature Envy : A method refers more features from a class other than the one it attached

to.

• Message Chains : One class refers another class which in turns refers to another class thus

creating a message chain.
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• Middle Man : The sole purpose of this class is to delegate tasks to other class and does

not perform its own task.

• Inappropriate Intimacy : One class uses internal fields and methods of another class.
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Appendix B

Environment Setup

The bug prediction model in this study has been developed using Python 3. We have used

Jupyter Notebook as our programming environment. There are numerous ways to setup the

environment.

B.1 Installing Jupyter using Anaconda and conda

Anaconda installs Python, the Jupyter Notebook, and other commonly used packages for scien-

tific computing and data science easily. Therefore installing Anaconda is the most convenient

method.

1. Download the latest Anaconda distribution depending on your operating system from

https://www.anaconda.com/download/.

2. Install the executable file by following the instructions.

3. Run Jupyter notebook with the command jupyter notebook.

B.2 Installing Jupyter with pip

We can also install Jupyter with the python package manager pip.

1. Download and install the latest version (3.X) of Python.

2. Check the pip version through pip -V.

3. Run Jupyter notebook with the command jupyter notebook.

4. Then install Jupyter Notebook with pip3 install jupyter.

5. Run Jupyter notebook with the command jupyter notebook.
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Appendix C

Evaluation Results

C.1 Basic model within version

C.1.1 Apache Tomcat version 6

Measure Naive Bayes Random Forest Logistic Regression

Accuracy of train data 85.83 % 97.98 % 93.25 %

Accuracy of test data 87.84 % 94.12 % 94.12 %

TP 0.78% 0.39% 0.39%

TN 87.06% 93.73% 93.73%

FP 7.45% 0.78% 0.78%

FN 4.71% 5.10% 5.10%

Precision 0.10 0.33 0.33

Recall 0.14 0.07 0.07

F1 score 0.11 0.12 0.12

Number of True

cases in train data
6.49%

Number of False

cases in train data
93.51%

Real Data Set [0, 0, 0, 0, 0]

NB Prediction [1, 0, 0, 0, 0]

RF Prediction [0, 0, 0, 0, 0]

LR Prediction [0, 0, 0, 0, 0]

Table C.1: Basic model within version Apache Tomcat 6
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C.1.2 Apache Xalan version 2.7

Measure Naive Bayes Random Forest Logistic Regression

Accuracy of train data 95.07 % 100.00 % 98.57 %

Accuracy of test data 98.89 % 99.26 % 98.52 %

TP 98.89% 98.89% 98.52%

TN 0.00% 0.37% 0.00%

FP 1.11% 0.74% 1.11%

FN 0.00% 0.00% 0.37%

Precision 0.99 0.99 0.99

Recall 1.00 1.00 1.00

F1 score 0.99 1.00 0.99

Number of True

cases in train data
98.78%

Number of False

cases in train data
1.22%

Real Data Set [1,1,1,1,1]

NB Prediction [1,1,1,1,1]

RF Prediction [1,1,1,1,1]

LR Prediction [0, 0, 0, 0, 0]

Table C.2: Basic model within version Apache Xalan 2.7
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C.2 Enhanced model with code smell based metrics within

version

C.2.1 Apache Xalan version 2.7

Measure Naive Bayes Random Forest Logistic Regression

Accuracy of train data 95.07 % 100.00 % 98.89 %

Accuracy of test data 98.89 % 99.26 % 98.89 %

TP 98.89% 98.89% 98.89%

TN 0.00% 0.37% 0.00%

FP 1.11% 0.74% 1.11%

FN 0.00% 0.00% 0.00%

Precision 0.99 0.99 0.99

Recall 1.00 1.00 1.00

F1 score 0.99 1.00 0.99

Number of True

cases in train data
98.78%

Number of False

cases in train data
1.22%

Real Data Set [1,1,1,1,1]

NB Prediction [1, 1,1,1,1]

RF Prediction [1,1,1,1,1]

LR Prediction [1,1,1,1,1]

Table C.3: Enhanced model within version Apache Xalan 2.7
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C.3 Basic model within project

C.3.1 Apache Camel

Measure Naive Bayes Random Forest Logistic Regression

Accuracy of train data 76.04 % 96.07 % 79.73 %

Accuracy of test data 77.66 % 78.57 % 79.12 %

TP 6.96% 5.68% 1.83%

TN 70.70% 72.89% 77.29%

FP 8.79% 6.59% 2.20%

FN 13.55% 14.84% 18.68%

Precision 0.44 0.46 0.45

Recall 0.34 0.28 0.09

F1 score 0.38 0.35 0.15

Number of True

cases in train data
20.56%

Number of False

cases in train data
79.44%

Real Data Set [0,0,0,1,1]

NB Prediction [0,0,1,1,0]

RF Prediction [1,0,0,1,0]

LR Prediction [0,0,0,0,0]

Table C.4: Basic model within project Apache Camel
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C.3.2 Apache Log4j

Measure Naive Bayes Random Forest Logistic Regression

Accuracy of train data 82.35 % 96.47 % 85.29 %

Accuracy of test data 83.78 % 82.43 % 85.14 %

TP 13.51% 13.51% 13.51%

TN 70.27% 68.92% 71.62%

FP 6.76% 8.11% 5.41%

FN 9.46% 9.46% 9.46%

Precision 0.67 0.62 0.71

Recall 0.59 0.59 0.59

F1 score 0.62 0.61 0.65

Number of True

cases in train data
29.10%

Number of False

cases in train data
70.90%

Real Data Set [1,1,1,1,1]

NB Prediction [1,1,1,1,0]

RF Prediction [1,1,1,1,0]

LR Prediction [1,1,1,1,0]

Table C.5: Basic model within project Apache Log4j
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C.4 Enhanced model with code smell based metrics within

project

C.4.1 Apache Camel

Measure Naive Bayes Random Forest Logistic Regression

Accuracy of train data 79.73 % 100.00 % 83.82 %

Accuracy of test data 80.77 % 83.70 % 85.35 %

TP 8.79% 5.31% 6.96%

TN 71.98% 78.39% 78.39%

FP 7.51% 1.10% 1.10%

FN 11.72% 15.20% 13.55%

Precision 0.54 0.83 0.86

Recall 0.43 0.26 0.34

F1 score 0.48 0.39 0.49

Number of True

cases in train data
20.56%

Number of False

cases in train data
79.44%

Real Data Set [0,0,0,1,1]

NB Prediction [0,0,1,1,0]

RF Prediction [0,0,0,0,0]

LR Prediction [0,0,0,1,0]

Table C.6: Enhanced model within project Apache Camel

C.4.2 Apache Log4j
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Measure Naive Bayes Random Forest Logistic Regression

Accuracy of train data 84.12 % 100.00 % 93.53 %

Accuracy of test data 82.43 % 81.08 % 79.73 %

TP 10.81% 4.05% 8.11%

TN 71.62% 77.03% 71.62%

FP 5.41% 0.00% 5.41%

FN 12.16% 18.92% 14.86%

Precision 0.67 1.00 0.60

Recall 0.47 0.18 0.35

F1 score 0.55 0.30 0.44

Number of True

cases in train data
29.10%

Number of False

cases in train data
70.90%

Real Data Set [1,1,1,1,1]

NB Prediction [1,1,1,1,1]

RF Prediction [1,1,1,1,1]

LR Prediction [1,1,1,1,1]

Table C.7: Enhanced model within project Apache Log4j
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