

Cloud Platforms Integration

Framework

A dissertation submitted for the Degree of Master of

Information Technology

N. D. Kaduruwana

University of Colombo School of Computing

2019

i

Abstract

In this report, an attempt is made to develop an extensive, scalable middleware framework

solution named Cloud Platform Integration Framework (CPIF) to port different cloud platforms

which facilitate consumer applications to utilize cloud based resources from different cloud

platforms as required. The ultimate goal of this solution is to reduce the development and long-

term maintenance cost when an application needs to connect to multiple cloud platforms or either

migrating to a different cloud platform.

Primary focus of CPIF solution is to implement a generic framework by utilizing the plug-in

architecture pattern. It acts as a cloud platforms independent solution which provides a flexibility

to implement cloud platform dependent communication channels as pluggable components with

respective integration technologies. In future this framework facilitates an option of porting a

new cloud technology by developing it as a new plug-in component.

CPIF solution consumes cloud based services by using generic set of interfaces where any

application could directly integrate with it rather concerning about its integration mechanism.

Therefore, in future, user should be able to switch into different cloud technologies with minimal

configuration changes due to use of plug-in architecture pattern without any implementation

changes.

In addition to that, CPIF solution deploys as a Windows Service. Therefore, it can be

independently hosted in a different machine and completely decouple with the consumer

application. Also it provides an opportunity to integrate any consumer application which is

implemented using any other technologies (E.g. Java, PHP, etc).

CPIF solution is implemented using Microsoft .NET related technologies. (.NET Framework

4.5). CPIF solution implements the communication channels for the cloud based resources such

as Microsoft Azure Queue and Blob storages and similarly Amazon Web Services Simple Queue

Storage and S3 Bucket in order to efficiently transfer different sizes of data. Also CPIF solution

can be easily extended to support any other cloud platform by following its plug-in component

design.

This solution is strictly evaluated for Microsoft Azure cloud platform by executing wide range of

test cases which includes functional and non-functional test cases. The evaluation results

summaries the strength and weakness of the CPIF solution.

ii

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: N. D. Kaduruwana

Registration Number: 2016/MIT/027

Index Number: 16550272

Signature: Date:

This is to certify that this thesis is based on the work of Mr. N.D. Kaduruwana under my

supervision. The thesis has been prepared according to the format stipulated and is of acceptable

standard.

Certified by:

Supervisor Name: Prof. N. D. Kodikara

Signature: Date:

iii

Acknowledgements

It is my pleasure to thank many individuals who contributed to the success of this project. First

and foremost I thank to Prof. N.D.Kodikara, Senior Professor at the University of Colombo

School of Computing (UCSC) for his valuable guidance and constructive advises given me as the

project supervisor.

Secondary, I thank to all academic staff members of the University of Colombo School of

Computing (UCSC) division for their kind support throughout this project.

Finally, I thank to my colleagues in MIT 2016 program for their generous support given me

during this project.

iv

Table of Contents

ABSTRACT ... I

DECLARATION ..II

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS ... IV

LIST OF FIGURES .. VI

LIST OF TABLES ... VII

CHAPTER 1 INTRODUCTION ... 1

1.1 SCOPE OF THE PROJECT .. 1

1.2 MOTIVATION .. 2

1.3 SUMMARY OF CHAPTERS ... 3

CHAPTER 2 BACKGROUND .. 4

2.1 INTRODUCTION .. 4

2.2 MICROSOFT AZURE CLOUD PLATFORM ... 7

2.3 AMAZON WEB SERVICES CLOUD PLATFORM ... 7

CHAPTER 3 METHODOLOGY .. 9

3.1 INTRODUCTION .. 9

3.2 DESIGN OF CPIF CORE FRAMEWORK ... 9

3.3 PLUG-IN COMPONENT DESIGN .. 12

3.3.1 Design Constraints .. 13

3.3.2 Addressing Design Constraints ... 13

3.4 ALTERNATIVE SOLUTIONS ... 20

CHAPTER 4 EVALUATION .. 21

4.1 INTRODUCTION .. 21

4.2 USABILITY TESTING ... 21

4.3 RELIABILITY TESTING .. 25

4.4 PERFORMANCE TESTING .. 32

CHAPTER 5 CONCLUSION .. 38

5.1 INTRODUCTION .. 38

5.2 SUMMARY OF RESULTS .. 38

5.3 DEFICIENCIES OF CPIF SOLUTION .. 40

5.4 FUTURE IMPROVEMENTS OF CPIF SOLUTION ... 41

v

APPENDIX .. 42

5.5 AZURE STORAGE QUEUES AND SERVICE BUS QUEUES ... 42

5.6 AZURE BLOCK BLOB VS PAGE BLOB VS APPEND BLOB ... 43

REFERENCES .. 45

vi

List of Figures

Figure 2.1 Cloud based services ... 5

Figure 3.1 Logical hierarchy of .NET reflection .. 10

Figure 3.2 MEF framework components .. 11

Figure 3.3 Flow chart for large message handling .. 15

Figure 3.4 CPIF middleware offline connectivity .. 17

Figure 3.5 CPIF middleware solution components... 19

Figure 3.6 Logging framework components ... 20

vii

List of Tables

Table 2.1 Cloud platforms feature comparisons ... 6

Table 3.1 Message sample dataset .. 13

Table 3.2 Azure Queue storage scale targets .. 14

Table 3.3 Azure blob storage scale targets ... 14

Table 3.4 Message handling mechanisms ... 15

Table 4.1 Non functional requirements .. 21

Table 4.2 Usability testing test case 1 ... 22

Table 4.3 Usability testing test case 2 ... 23

Table 4.4 Usability testing test case 3 ... 24

Table 4.5 Reliability testing test case 1 .. 25

Table 4.6 Reliability testing test case 2 .. 26

Table 4.7 Reliability testing test case 3 .. 27

Table 4.8 Reliability testing test case 4 .. 28

Table 4.9 Reliability testing test case 5 .. 29

Table 4.10 Reliability testing test case 6 .. 31

Table 4.11 Performance testing environment settings .. 32

Table 4.12 Performance test dataset ... 32

Table 4.13 Performance test case 1 ... 33

Table 4.14 Performance test case 2 ... 34

Table 4.15 Performance test case 3 ... 35

Table 4.16 Performance test case 4 ... 36

Table 4.17 Performance test case 5 ... 37

Table 5.1 Results summary ... 40

Table 5.2 CPIF solution limitations .. 40

Table 6.1 Azure Service Bus queue vs. Storage queue... 42

Table 6.2 Azure blob comparison ... 44

viii

List of Abbreviations

Abbreviation Explanation

CPIF Cloud Platforms Integration Framework

API Application Program Interface

AWS Amazon Web Services

IAAS Infrastructure As A Service

PAAS Platform As A Service

SAAS Software As A Service

MEF Managed Extensibility Framework

CLR Common Language Runtime

PE Portable Executable

FIFO First In, First Out

TCP Transmission Control Protocol

1

Chapter 1 Introduction

As of today, the Cloud computing is one of the fast-growing technology where most of the

companies around the globe are moving their software solutions into the Cloud environment due

to the vast range of services it provides and also the benefits of having flexibility, disaster

recovery, cost, performance and reliability.

Currently, there are many competitive cloud vendors who provide cloud based services by

facilitating wide range of services along with technology enhancements. Top cloud vendors in

the industry as of today are Microsoft, Amazon, Google, IBM and Oracle. Each of the cloud

platform belongs to the respective vendors provides different benefits such as benefits over cost,

usability, adaptability, etc.

However, due to the different underlying technologies used by different vendors, even though

they provide similar services, their cloud platform integrations are totally different one to

another. For an example, today if my company‟s software solution is integrated to the Microsoft

Azure cloud platform and future due to a technology change decision, company decided to move

to the Amazon Web Services cloud, it will require a significant effort for the change of the

design and code refactoring and ultimately it will increase the cost the particular change request.

In addition to that, if a software solution requires to connect to two cloud platforms and use

similar services (for example Microsoft Azure and WSO2 cloud platforms), still the software

platform integrations required to be developed individually, which ultimately results to increase

the effort, cost and moreover, difficulty of maintaining two different software integration

solutions.

1.1 Scope of the Project

This project targets to implement a generic framework as a middleware solution (CPIF) by

integrating multiple Cloud platforms. Therefore, any application which utilizes this framework

can connect to the desired cloud platform as well as provide the option of changing cloud

platforms with minimal configuration changes. The project scope includes:

 Implement a generic framework by utilizing Plug-in Architecture which should adhere to

the „Separate of Concern‟ design pattern

 CPIF framework will be developed by using Microsoft .NET technologies

 CPIF framework act as a middleware that can be integrated to any application which

developed using any technology

 CPIF framework targets to implement generic set of interfaces for accessing File Storage,

Message Queues in the desired Cloud platform

 The backend integrations of different Cloud platforms will be implemented as plug-ins

where the generic framework should support deploying a plug-in with minimal set of

configuration changes

 In this project scope, plug-ins will be developed to access Microsoft Azure cloud and

Amazon Web Services (AWS) Cloud platforms

2

 CPIF framework should support any new plug-in developed in future for a different cloud

platform

 Sample .NET application clients will be developed to showcase the middleware

framework integration and data transfers with different Cloud platforms

1.2 Motivation

 Currently, many cloud based projects are getting developed in the industry due to rapid

growth of technologies related to the cloud platforms. However, since the consumer

applications are highly coupled with the respective cloud platform which is integrated,

the flexibility of changing the cloud platform or reusability of existing codes to integrate

to a different cloud platform is extremely poor.

The proposed CPIF solution will provide a generalized framework, where developers can

reduce the complexity of platform integrations. Also quality assurance team could reduce

their testing effort due to integration already tested framework and make maintenance

and support engineers‟ lives to be easier due to plug-in oriented framework. Ultimately,

the CPIF solution will reduce the cost for the customer by giving opportunity of choosing

any cloud platform as they desired.

 Proposed CPIF framework is to consume Cloud based services using generic set of

interfaces where any application could directly integrate with the framework rather

concerning about the Cloud technology. The major benefit here is complete development

effort of new cloud platform integration can be cut-off and instead, support engineer

should be able to switch into different cloud technologies with minimal configuration

changes due to its Plug-in architecture.

 Implement a generic framework by utilizing the plug-in architecture. The vendor

dependent cloud communication channels will be developed as plug-in. Therefore, in

future the framework facilitates the option of porting a new cloud technology by

developing it as a new plug-in. For an example if the client needs to utilize the features of

WSO2 cloud platform tomorrow, still this framework support this and we could develop

the integration as a unique plug-in and port it without impacting the changes to the core

framework

 CPIF solution should support offline capabilities. Which means the CPIF solution should

be host and executes independently therefore, it could all the data transfer communication

will be done in asynchronous mode without maintaining a synchronous connectivity with

consumer application. The ultimate objective is bottlenecks of consumer application

should not flow into the CPIF middleware solution, vice-versa.

 CPIF solution should be able to integrate the any consumer application which is

implemented using any technology (E.g. Java, PHP, etc). Therefore, integration of CPIF

solution is technology independent.

3

1.3 Summary of Chapters

Chapter 2: Background

This chapter includes an up-to-date and comprehensive review of relevant literature. Also it

demonstrates the awareness and understanding of the background literature of this topic.

Chapter 3: Methodology

This chapter describes the structure of the overall system, design methodologies, logical

diagrams, proof of concepts and the implementation which includes important code snippets.

Also it describes the design constraints of this research project and how those were addressed.

Chapter 5: Evaluation

This chapter provides the complete assessment of developed system‟s effectiveness, efficiency

and also the user friendliness of the system and explains how project goal and objective

achieved. Major functional and non-functional test cases and test results are specified within this

chapter for the evidence.

Chapter 6: Conclusion

This chapter describes the summary of the project outcome, deficiencies and future extensibility

of the project.

4

Chapter 2 Background

2.1 Introduction

With the vast development of information technologies in 21
st
 century, we named this Era as

Information Age. Due to that fact the information technology became a backbone of industrial

development and economical growth around the globe. Moreover, all countries move toward the

concept of globalization by strengthening their interaction between organizations and people

worldwide. Ultimately the availability and sharing information worldwide became the key factor

as of today regardless of the distance. Therefore, the trend of information technology moves

toward innovating and inventing new information storage devices and information distribution

technologies. Global technology leaders put some significant effort to provide new technology

innovations to make the effort worth. Even though there are multiple solutions invented for

storing and sharing information, the challenge is to achieve following factors.

 Flexibility

 Reliability

 Disaster recovery

 Work from anywhere

 Security

 Cost saving

Without achieving above factors, it is difficult for any organization to adapt for the information

sharing platforms and technologies since their ultimate goal is to increase the sales by optimizing

the efficiency of producing product and services by mitigating the risks. As a solution the cloud

computing based technologies were introduced by achieving above factors and moreover

providing adaptability where any organization could utilize it. Therefore, it is one of the most

successful technologies in this era and it became the future trend of any organization to adapt it

because of its benefits to improve the cash flows. It provides a centralize platform for the

information by providing flexible way to share the information which is much more effective for

the business, as well as for the humans that run it. With the information technology revolution,

the following Cloud computing technologies taking place on top of all other similar technologies.

 IAAS – Infrastructure As A Service

 PAAS – Platform As A Service

 SAAS – Software As A Service

5

Figure 2.1 Cloud based services

Due to the increase of market value for the cloud data platforms, many vendors spent vast

investment on building and strengthening their own cloud platforms. As of today there are many

number of cloud platforms provided by different vendors in the industry and Microsoft, Amazon,

Google, IBM and Oracle are the top vendors who gained high ranks due their ultimate features

provided on their cloud platforms.

Following article provides the evolution of cloud platforms and importance of it.

[1]. Prof Dr, Claudia Müller-birn. (2012). Cloud Computing. Retrieved April 4, 2019 from

http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.462.4311

[2]. University of California at Berkeley. (2009). Above the Clouds. Retrieved January 14, 2019

from https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

Therefore, it is a costly decision to choose the right cloud platform since migrating one cloud

platform to another will increase the cost due to the different integration patterns in addition to

the vendor charges. Due to that reason either customer has to rely on one cloud platform even

they need to migrate to another platform or either they have to migrate with an additional cost.

CPIF (Cloud Platform Integration Framework) provides a centralized middleware framework to

solve the above problem where it facilitates customer to migrate one cloud platform to another

only with configuration change and no development cost at all. In addition to that, it is beneficial

for any company to utilize it due to its extensibility where the adaption of plug-in architecture

pattern to the CPIF allows any new cloud platform to plug-into CPIF framework.

CPIF will solve the ongoing debate about having different cloud platforms with similar features

but completely different integration technologies. Therefore, CPIF is a vendor independent

middleware solution. It saves the time and development cost requires to switching between

different cloud platforms.

http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.462.4311
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

6

Infrastructure as a Service (IaaS) provider is the complete cloud based solution to eliminate on-

premises data centers, including servers, storage and networking hardware, etc. It supplies

infrastructure components which include monitoring, log access, security, load balancing and

clustering, as well as storage resiliency, such as backup, replication and recovery. CPIF utilizes

the IaaS based services to interact with Cloud platforms for effective data communication.

Therefore, it completely isolates the customer application from utilizing laaS services to build a

data communication channel and CPIF will take the full responsibility of it. Therefore, by

utilizing CPIF solution will cut-down the development cost required to integrating to a cloud

platform and provide the flexibility of connecting to the preferred cloud platform by changing

the CPIF configuration settings.

In this project scope, 2 major cloud platforms are chosen to build the CPIF middleware solution.

Those two cloud platforms are Microsoft Azure and Amazon Web Services (AWS). Currently,

those 2 cloud platforms are high ranked cloud solution providers due to their extensive features.

Following table provides the IaaS based service comparison of top industry leading cloud

platforms.

 Amazon

AWS

Microsoft

Azure

Google

Compute

Engine Rackspace

IBM

Smart

Cloud HP Cloud

 Virtual CPUs 43108 43108 43108 43108 43116 43108

Memory

613MB -

68.4GB

1.7GB -

14GB

3.7GB -

52GB

512MB -

30GB

2GB -

16GB

1GB -

32GB

Cost/HR

Free -

$4.60

$0.02 -

$2.04

$0.145 -

$1.375

$0.022 -

$1.20

(Linux)

See cost

IBM

estimator

$0.035 -

$1.12

(Linux)

Storage Costs

$0.095

GB/mo

(S3) 0.095

$0.10

GB/mo

$0.15

GB/month

See cost

IBM

estimator

$0.10

GB/mo

Availability 0.9995 0.9995 0.9995 0.9999 0.999 0.9995

Compensation

for Outage

10% -

30% credit

10% -

25%

credit

10% -

50% credit

5% off

server fees

Credit

equal to

outage time

5% - 30%

credit

Distinguishing

Features

Wide array

of storages

&

specialized

services.

Flexibility

in

administra

tive

control.

Designed for

data

intensive &

high

performance

Easy to

use.

Easy to

manage

multiple

developers,

IBM assets.

Easy access

to HP's

CDN.

Table 2.1 Cloud platforms feature comparisons

http://www-935.ibm.com/services/us/en/cloud-enterprise/tab-pricing-licensing.html
http://www-935.ibm.com/services/us/en/cloud-enterprise/tab-pricing-licensing.html
http://www-935.ibm.com/services/us/en/cloud-enterprise/tab-pricing-licensing.html
http://www-935.ibm.com/services/us/en/cloud-enterprise/tab-pricing-licensing.html
http://www-935.ibm.com/services/us/en/cloud-enterprise/tab-pricing-licensing.html
http://www-935.ibm.com/services/us/en/cloud-enterprise/tab-pricing-licensing.html

7

2.2 Microsoft Azure Cloud Platform

Microsoft Azure provides a full range of solutions for the developers to build enterprise

applications. The Azure platform itself provides the automatic application deployment and

managing virtual machines as scale. User could on-demand scale the resources at any capacity as

required within few minutes of time. It provides the ideal platform to develop enterprise

applications which requires high load of data storage and on-demand scaling and also many other

non functional requirements.

Key Strengths:

 Unlike AWS, Azure has a unique focus on hybrid cloud setups (combination of private

and public cloud services). As of today it is the common cloud architecture for large

enterprises to have hybrid cloud setups (setups that often can‟t be easily achieved with

AWS).

 Also best platform to utilize Microsoft Services (SQL, Active Directory, and .NET) and it

will integrate quickly and easily with existing on-premises Microsoft infrastructure.

 Provides customer the wide range of options like „Basic‟ service level, which is a

bargain-priced compute service that does not include auto-scaling or load balancing,

making it an ideal selection for things like development environments and other non-

public-facing sites.

 Azure‟s unique strengths, enhancements and moreover the customer satisfaction

predicted that it will be the largest IaaS provider by 2019.

Weaknesses:

 Lack of Hyper-V Snapshot Support

 Inability to Upload Custom Images

 Provisioning Virtual Machines in the Cloud Takes Longer than On-Premise

 Lack of Integrated Backup

 Poor Management GUI and Tools

2.3 Amazon Web Services Cloud Platform

Amazon Web Services became more popular due to the broad variety of infrastructure

applications and flexible platforms. It allows easy and flexible ways for users to access

computing power, data storage and it core feature as necessary for the developers. Also it

provides a vast range of developer tools, management tools, mobile services and applications

services.

Key Strengths

 AWS was the first to offer public IaaS, as far back as 2006 and due to that reason it key

strengths is the maturity of its IaaS offerings

 AWS has vast range of services available, from DNS routing to caching to load

balancers: virtually anything you could ever need out of the cloud, AWS can deliver.

8

 AWS has the most data centers of any IaaS provider, which means they have the most

comprehensive global coverage and the most robust, reliable network.

 These two key strengths are often the main draw to AWS for many customers: it‟s almost

guaranteed that you can do what you need to do on AWS, no matter how obscure, and it

will offer suitable reliability for even the most sensitive applications.

Weaknesses

 AWS is actually pretty expensive as compared to Azure and most of other Cloud

vendors.

 The platform involves with complexities and quite steep learning curve and mastering all

the required services on your own is hardly possible. For example, to build a truly

resilient, secure and fail-safe IT infrastructure the company would have to figure out the

use of routing and IAM politics - or hire an AWS-certified partner to configure the thing

for them.

9

Chapter 3 Methodology

3.1 Introduction

This chapter focuses on describing methodologies used for designing of Cloud Platforms

Integration Framework. Since this is a middleware solution, the design of this framework should

achieve the general cloud platform data transfer functional requirements as well as non

functional requirements by adhering to the software design patterns and methodologies.

In addition to the design of core framework in CPIF solution, mainly this chapter provides the

evidence and examples of designing one of the plug-in components which is similar of designing

other plug-in components.

As a summary this chapter covers the design methodologies of following CPIF application

components.

 CPIF core framework –All the plug-in components relates to different cloud platforms

are connecting to the core framework. Therefore, the design of core framework should

accommodate the future extensibility requirement of supporting new plug-in components

associate with new cloud platform. Also core framework facilitates configuring plug-ins,

and provides simplified common interface to the other applications to integrate and use

CPIF middleware solution

 Plug-in component design – This section covers the generic plug-in component design

independent of the cloud platform technology. However, Microsoft Azure cloud platform

is selected to provide the evidence and examples of designing one of the plug-in

components.

3.2 Design of CPIF Core Framework

The design of CPIF Core Framework should mainly achieve the following 2 requirements

1. Configuring Plug-in components without any core framework implementation changes

2. Provides common interface for connecting application to utilize the CPIF solution

The CPIF middleware solution will be implemented using Microsoft .NET related technologies.

In order to support Plug-In components, the “Plug-in Architecture” is used. Main, goal of

utilizing Plug-in Architecture is to achieve the “Separation of Concern” design pattern. The

Separation of Concern design pattern is one of the most useful design patterns, which helps to

develop loosely coupled system which divides the responsibility in different units. Primary

purpose of this design is one unit completely responsible of undertaking the responsibility and

will not take any other responsibilities. Next section further elaborates how plug-in component

design adheres to this design pattern.

When implementing CPIF core framework using plug-in architecture, following Microsoft

technologies have been deeply evaluated.

10

 .NET reflection

 Managed Extensibility Framework(MEF)

.NET Reflection

.NET reflection is the mechanism of dynamically loading assemblies during .NET runtime.

Basically, during the .Net compile time metadata created with Microsoft Intermediate language

(MSIL) are getting stored in the Manifest file. Both Metadata and Microsoft Intermediate

Language relates to the code we developed together wrapped in a Portable Executable (PE).

The reflection is used to dynamically access the PE file at the .NET runtime and read metadata,

then creates the respective Types associate with the PE file and finally, invoke the methods and

access properties inside the PE file.

Figure 3.1 Logical hierarchy of .NET reflection

The reflection provides the flexibility and expansibility for your application by completely

omitting the coupling to improve the application adaptability. Therefore, it would be one of the

good choices to achieve modularization and to develop the plug-in based applications.

Managed Extensibility Framework(MEF)

MEF is introduced with .NET 4.0 framework and it is built on top of the Reflection API. It is

specially design to modularizing your application and to support extensibility. The Reflection

API has a strict constraint where you need to configure your loading assembly namespaces in

order to load it dynamically at the runtime. Also does not provide a facility to tag your loading

assemblies. Therefore, it has the limitation where other application might also have the

opportunity of using the pluggable components.

However, the MEF addressed all the above limitations. Basically, MEF allows tagging pluggable

components with additional metadata which facilitates querying and filtering at the runtime. It

provides standard host for any plug-in without the need of configuring your assembly

11

namespaces. Therefore, it is as self-container for any plug-in which contains the metadata

information which could use at the runtime.

In the scope of CPIF solution, choosing MEF has a huge advantage. Since CPIF solution requires

a flexible plug-in based solution, the MEF is the ideal technology selection. Moreover, the

attribute based discovery mechanism in MEF will promote extensibility for CPIF plug-ins

without the need of any additional configuration. It has the option of categorizing the classes

related to plug-in components using meta-data attributes without the need of registering them

individually.

Figure 3.2 MEF framework components

As per the above diagram, “Exports” are the plug-in components which are decorated with

exported values of plug-in components are all stored in a container. Following code snippet

indicates how CPIF plug-in components are decorated with Export metadata data values.

As explained in the above diagram, all the plug-in components are accessed through the

“Catalog”. All the exported data are getting stored in a container.

The following class shows how CPIF framework built a custom MEF container and stores inside

it all the plug-in exports from the directory where the plug-in components assemblies reside.

12

During the composition of an application to use the CPIF framework, the exports in the catalog

are assigned to requested imports. Following is the code snippet associate with imports of

common interface in order to use the plug-in component features.

3.3 Plug-in component design

In this scope of project CPIF framework contains two completely developed and tested plug-in

components. Those two plug-in components contain individual implementations to facilitate the

data exchanges of Microsoft Azure and Amazon AWS cloud platforms. In addition to that, CPIF

framework supports extensibility by providing opportunity to develop new plug-in component

with completely different cloud platform technology and plug-in to the CPIF framework with

minimal configuration changes keep the new cloud platform related connectivity information

however, no code changes required.

Since the any .NET based consumer application could integrate with CPIF framework, all the

plug-in components must be well designed and implemented to cater all the data exchange

requirements. Following section explains the design constraints respective to the user

requirements which have been followed when designing CPIF solution.

13

3.3.1 Design Constraints

1. User should be able to exchange data with preferred cloud platform without any size

limitation using CPIF middleware solution. Plug-in component should be completely

responsible of handling large size of messages.

2. Plug-in component should support offline data communication capabilities.

3. CPIF should support high data loads and delivered respective to the network bandwidth and

available hardware computing resources. CPIF solution should not have any performance

bottlenecks when supporting high data loads

4. Design of plug-in component should support a loosely coupled design by following

“Separation of Concern” design pattern. Therefore, same design could be followed when

implementing new plug-in components

5. Any exception occurs within plug-in component should be properly handled within plug-in

component itself and notify the calling consumer application with proper error details.

3.3.2 Addressing Design Constraints

Addressing Design Constraint -1

To handle the first design constraint, plug-in component is designed in a way that it could make

decision when there is large size of messages.

For an example consumer application required to transfer following size of messages

Message No. Size

Message -1 5 KB

Message-2 10 MB

Message-3 100 MB

Message-4 1 GB

Table 3.1 Message sample dataset

The design of plug-in component to cater the above message size requirement is completely

depend on the data storage capacity supports by respective cloud platform

Please find below the data capacity limits of Azure cloud platform.

Azure Queue storage scale targets

Resource Target

Max size of single queue 500 TiB

Max size of a message in a queue 64 KiB

Max number of stored access policies per queue 5

Maximum request rate per storage account 20,000 messages per second assuming 1 KiB

message size

14

Resource Target

Target throughput for single queue (1 KiB

messages)

Up to 2000 messages per second

Table 3.2 Azure Queue storage scale targets

Azure Blob storage scale targets

Resource Target

Max size of single blob container Same as max storage account capacity

Max number of blocks in a block blob or

append blob

50,000 blocks

Max size of a block in a block blob 100 MiB

Max size of a block blob 50,000 X 100 MiB (approx. 4.75 TiB)

Max size of a block in an append blob 4 MiB

Max size of an append blob 50,000 x 4 MiB (approx. 195 GiB)

Max size of a page blob 8 TiB

Max number of stored access policies per blob

container

5

Target throughput for single blob Up to 60 MiB per second, or up to 500 requests

per second

Table 3.3 Azure blob storage scale targets

Reference:

Microsoft Azure. (2019). Azure Storage scalability and performance targets for storage accounts.

Retrieved April 4, 2019 from https://docs.microsoft.com/en-us/azure/storage/common/storage-

scalability-targets

Usually, Azure queue is used to store small file sizes and Azure blob is used to handle large file

sizes. However, as per the above figures, both have limitations. Given the fact that Azure queue

storage supports max size of 64 KB and blob storage supports max size of 100 MB for a single

message.

Following flowchart describes the way of handling small and large file sizes the respective to the

storage limitations

https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets

15

Figure 3.3 Flow chart for large message handling

Above diagram explains the how the plug-in component is designed to handle the small and

large messages. The max size of the message is stored in the application configuration file where

user could modify as required. For the small message sizes, still the queue storage is used, since

queue storage provides efficient data transfers and wide range of features.

Therefore, as per the above design following table explain the how following file sizes are

getting handled.

Message No. Size Message Handling Mechanism

Message -1 5 KB Use message queue since max message size queue

supports is 64 KB

Message-2 10 MB Use blob

Message-3 100 MB Use blob

Message-4 1 GB Cannot use blob since max message size blob supports is

100MB. Therefore, this requires a special mechanism to

disassemble the file size into smaller set of files and

uploads to the blob. When receiving assemble the message

accordingly.

However, in this project scope, this will not be

implemented. Therefore, max file size will be limited to

100MB size.

Table 3.4 Message handling mechanisms

16

Notes:

- Azure Service Bus Queue is utilized to develop the CPIF Azure based plug-in

component. Please refer Appendix Sec. “6.1 Azure Storage queues and Service Bus

queues” for more information.

- Additionally, the Azure Block Blob is utilized to develop the CPIF Azure based plug-in

component. Please refer Appendix Sec. “6.2. Azure Block Blob vs Page Blob vs Append

Blob” for more information.

Addressing Design Constraint -2

As per the 2
nd

 design constraint, the plug-in component should support the capability of offline

messaging.

The reason behind this constraint is, the message generation rate by the consumer application

and the message delivering rate by the CPIF framework to the cloud platform could different. In

that case, the consumer application should not get blocked or slowdown the message generation

performance due to rate of message delivery supports by the CPIF framework.

On the other hand, message receiving rate by the CPIF framework from cloud platform and the

message consuming rate by the consumer application could different. Therefore, CPIF

framework should not slowdown its performance or gets blocked due to bottlenecks in the

consumer application.

Another reason is, exception of consumer application should not bubble-up to the CPIF

framework and vice-versa.

Due to the above-mentioned facts, the CPIF framework is implemented to support offline

capabilities as represent in below diagram.

17

Figure 3.4 CPIF middleware offline connectivity

As explained in above diagram, data communication happened through preconfigured folders.

“Server-In” folder is to receive files to the CPIF framework and “Server-Out” folder is to send

files to the consumer application. According to this design, there is no direct data communication

link between CPIF framework and the consumer application. Also, another advantage of this

design is, the CPIF framework could completely execute as a separate job through a Windows

Service or any other application hosting mechanism. Therefore, the CPIF middleware solution

completely could completely execute as a completely isolated job rather coupling with consumer

application. In this mechanism, the CPIF solution adhere to the “Separate of Concerns” design

patter with a loosely coupled design.

Addressing Design Constraint -3

Since CPIF middleware solution works as an independent tool, it should support high data loads

and guaranteed delivery.

In this case, the design should support low cohesion by reducing the complexity of delivering

and receiving data loads. However, the actual performance could be measured during solution

evaluation step by executing a performance test.

When dealing with Azure Service Bus queues, the Broker Message should not be expired due to

delay of processing time. That will reduce the CPIF solution reliability due to the issue of

guaranteed delivery. Typically, a Broker Message received through an Azure Service Bus queue

has a strict expiration time. (maximum 5 minutes).

18

Therefore, in order to overcome this issue, after receiving the Broker Message from Service Bus

queue, it has to be renewed during the processing time as specified below.

var stopwatch = new Stopwatch();

stopWatch.Start();

for (inti=0;i<=maxLimit;i++)

{

 if(stopWatch.Elapsed.TotalSeconds > 120)

 {

 Trace.TraceInformation("Renewing BrokeredMessage Lock");

 brokeredMessage.RenewLock();

 stopWatch.Restart ();

 }

}

Reference:

DotNet Artisan Cloud Consultant. (2016). Renew lock time for BrokeredMessage. Retrieved

February 4, 2019 from http://dotnetartisan.in/avoiding-messagelocklostexception-using-auto-

renew-pattern-for-brokeredmessage-service-bus-queue/

Addressing Design Constraint -4

As explained in above sections, the rule of thumb of designing CPIF middleware solution is to

come-up with a loosely coupled design by adhering to the “Separation of Concern” design

pattern.

Following diagram provides a high-level overall view of how Plug-in architectures is utilized to

achieve the requirement of CPIF solution with a loosely coupled design

http://dotnetartisan.in/avoiding-messagelocklostexception-using-auto-renew-pattern-for-brokeredmessage-service-bus-queue/
http://dotnetartisan.in/avoiding-messagelocklostexception-using-auto-renew-pattern-for-brokeredmessage-service-bus-queue/

19

Figure 3.5 CPIF middleware solution components

The components of above architecture diagram are described below.

Main Assembly – This component contains the core of the CPIF architecture. The MEF

framework is implemented within this assembly with the mechanism of loading plug-in

components. Therefore, this component responsible for activating/deactivating plug-ins as

needed. Refer “3.1 Design of CPIF Core Framework” section for more information

Infrastructure Assembly – This component contains all the interfaces to the external

applications. Mainly, the Message Queue and File Storage interfaces are available within this

component. Those interfaces are common and do not specific to any of the cloud platform

Microsoft Azure Plug-in – This is one of the plug-in in the framework which used to connect to

the Microsoft Azure. The Microsoft Azure platform dependent logic resides within this

component.

Refer “3.2 Plug-in Component Design” section for more information

20

Amazon Web Services Plug-in – This is one of the plug-in in the framework which used to

connect to the Amazon Web Services(AWS). The AWS platform dependent logic resides within

this comment.

Refer “3.2 Plug-in Component Design” section for more information

Addressing Design Constraint -5

Any exception occurs within plug-in component should be properly handled within plug-in

component itself and notify the calling consumer application with proper error details. In order to

achieve this requirement, a logging framework is introduced for the CPIF solution. The purpose

of the logging framework is to provide logging capabilities to other components and business

applications for debugging and tracing purposes.

The logging framework is implemented over the Log4net log engine. The logging framework is

designed as a framework and is accessible from other application domains.

Figure 3.6 Logging framework components

The Log4net engine is a simple and an elegant way to log in errors, informational messages, and

warnings.

3.4 Alternative Solutions

As per the current requirement, this application has been implemented using .NET Framework

version 4.5 and Visual Studio 2015 version. This limit deployment environment only support

Microsoft Windows platform with .NET CLR.

However, implementing this solution with the latest .NET Core technology will provide the

benefit of supporting cross-platforms. Currently, the .NET Core delivers a fast and modular

platform for creating server apps that run on multiple platforms such as Windows, Linux, and

macOS. Additionally, it supports different types CPU architectures.

21

Chapter 4 Evaluation

4.1 Introduction

Since CPIF solution is a middleware solution which could be integrated into any cloud based

application, this solution required to be deeply evaluated. As the outcome of the evaluation, the

CPIF solution should achieve the high usability, reliability, performance and guaranteed

delivery. Following table indicates how above factors are evaluated with respect to the CPIF

testing.

Usability CPIF middleware solution is a framework which contains plug and play logical

modules. In fact that each plug-in component is designed to integrate seamlessly

to the framework with minimal set of configuration changes. In the scope of

usability testing, tester required to deploy the CPIF solution with consumer

application by simulating a production environment and then deploy a new plug-

in component by modifying exiting configurations and verify the functionality of

new plug-in component.

Reliability In the scope of reliability evaluation, all the functional test cases required to be

executed to verify there no error occurred during the functional test case

execution. All the functional flows required to be verified and during the scope

of testing. Since this is a middleware solution, error and info logs required to be

strictly monitored.

Performance One of the core factors considered during the CPIF solution design is the

performance. Sine CPIF solution includes a data delivery channel integrate with

cloud platform, there should not be any sort of performance overhead due to the

design of this solution. In the scope of performance testing, high, medium and

low data loads required to be transferred with respect to the different file sizes

and evaluate the performance.

Guaranteed

Delivery

Since CPIF solution consists with data delivery mechanism from on-premises to

cloud platform and vice-versa, there should not be any data-loss happened.

More importantly, there should not be any data corruption during the delivery.

This will be covered during functional and performance testing.

 Table 4.1 Non functional requirements

4.2 Usability Testing

Following test cases are executed to evaluate the usability aspects of the CPIF solution. One of

the CPIF core framework features of utilizing plug-in architecture pattern to facilitates

application administrators to switching between different cloud platforms are evaluated by

executing following test cases.

22

Test Case Field Description

Test case ID UT001

Test Severity High

Name or Test Title

Switching to a different Cloud Platform - Uplink Testing

Description/Summary of

Test

This test case is to validate the file upload feature of CPIF

framework by switching to a different cloud platform after the

CPIF is on production

Pre-condition

1. Two plug-in components are developed and ready for this

test. Plug-in-1 is for Azure cloud platform and plug-in-2 is for

AWS cloud platform

2. CPIF solution should be deployed and up and running

3. Plug-in component for Azure cloud platform should be

deployed and running

Test Steps

1. Stop the server of CPIF solution

2. Copy and paste AWS Plug-in component into "Plug-in"

folder locates under deployment folder

3. Modify the App.config file to add AWS connection related

details

4. Start the server of CPIF solution

5. Copy and paste 10 files less than 100Kb and 10 files greater

than 100Kb to the "Server-In" folder.

Test Data

10 files less than 100 Kb

10 files greater than 100 Kb

Expected Results

Files less than 100 Kb should be moved to the AWS queue

Files greater than 100 Kb should be moved to the AWS bucket

Post-Condition AWS queue and bucket should consist with transferred data

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Table 4.2 Usability testing test case 1

23

Test Case Field Description

Test case ID UT002

Test Severity High

Name or Test Title Switching to a different Cloud Platform - Downlink Testing

Description/Summary of

Test

This test case is to validate the file download feature of CPIF

framework by switching to a different cloud platform after the

CPIF is on production

Pre-condition

1. Two plug-in components are developed and ready for this

test. Plug-in-1 is for Azure cloud platform and plug-in-2 is for

AWS cloud platform

2. CPIF solution should be deployed and up and running

3. Plugin component for Azure cloud platform should be

deployed and running

4. Files should be available at AWS queue and bucket

Test Steps

1. Stop the server of CPIF solution

2. Copy and past AWS Plug-in component into "Plug-in" folder

locates under deployment folder

3. Modify the App.config file to add AWS connection related

details

4. Start the server of CPIF solution

Test Data

10 files less than 100 Kb

10 files greater than 100 Kb

Expected Results

Files less than 100 Kb should be downloaded to the

"ServerOut" folder from the AWS queue

Files greater than 100 Kb should be downloaded to the

"ServerOut" folder from AWS bucket

Post-Condition AWS queue and bucket should be get cleared

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Table 4.3 Usability testing test case 2

24

Test Case Field Description

Test case ID UT003

Test Severity High

Name or Test Title Switching to a different Cloud Platform - Negative scenario

Description/Summary of

Test

This test case is to validate the CPIF framework behaviour

when there is no plug-in component deployed

Pre-condition

1. One plug-in (Azure) component should be developed and

ready for this test.

2. CPIF solution should be deployed and up and running

3. Plug-in component for Azure cloud platform should be

deployed and running

Test Steps

1. Stop the server of CPIF solution

2. Remove all plug-in components from "Plug-in" folder locates

under deployment folder

4. Start the server of CPIF solution

Test Data N/A

Expected Results CPIF framework should log and error in the error log file

Post-Condition CPIF solution should be up and running and not be crashed

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Table 4.4 Usability testing test case 3

25

4.3 Reliability Testing

Under the scope of reliability testing following functional test cases are executed to verify the

CPIF functionalities. During the scope of testing, major main functional flows will be tested to

confirm the CPIF reliability aspects and the guaranteed delivery.

Note: Functional testing scope includes, testing of the framework and the Azure plug-in

components. In the following section includes only the severity high test cases.

Test Case Field Description

Test case ID RT001

Test Severity High

Name or Test Title Azure Queue uplink Testing

Description/Summary of

Test

This test case is to validate the file upload feature of CPIF

framework using Azure Plug-in component for Azure Queues

Pre-condition

1. Azure plug-in component is developed and ready for this

test.

2. CPIF solution should be deployed and up and running

3. Plug-in component for Azure cloud platform should be

deployed and running

4. Azure service bus queue should be created in the Azure

portal

Test Steps

1. Browse https://portal.azure.com in web browser

2. Login to Azure portal by providing authentication details

3. Navigate to All Resources > Service Bus > Select queue and

open queue overview page

4. Make sure zero record count in selected queue

5. Copy and paste 10 files less than 100Kb to the "Server-In"

folder.

6. Monitor queue count and the CPIF log files

Test Data 10 files less than 100 Kb

Expected Results

10 Files less than 100 Kb should be moved to the Azure

service bus queue. Queue count should be 20. Which includes

metadata files and the original files

No error logged in under CPIF error log file

Info log file should contains file names and delivery status to

the Azure queue

Post-Condition

Azure service bus queue should consist with transferred data

(20 files => 10 original Files + 10 metadata file)

ServerIn folder should be empty

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Table 4.5 Reliability testing test case 1

26

Test Case Field Description

Test case ID RT002

Test Severity High

Name or Test Title Azure Queue Downlink Testing

Description/Summary of

Test

This test case is to validate the file dowload feature of CPIF

framework using Azure Plug-in component (Azure Queues)

Pre-condition

1. Azure plug-in component is developed and ready for this

test.

2. CPIF solution should be deployed and up and running

3. Plugin component for Azure cloud platform should be

deployed and running

4. Azure servicebus queue should be created in the Azure portal

5. Azure servicebus queue should contains 20 files which

includes 10 original files + 10 metadata files belongs to original

files

Test Steps

1. Browse https://portal.azure.com in web browser

2. Login to Azure portal by providing authentication details

3. Navigate to All Resources > Service Bus > Select queue and

open queue overview page

4. Make sure record count is 20 in the selected queue

5. Start CPIF server and monitor "Server-Out" folder.

6. Monitor queue count and the CPIF log files

Test Data 10 files less than 100 Kb

Expected Results

Files less than 100 Kb should be moved from Azure service

bus queue to the "ServerOut" folder. 10 files should be created

and queue count should be zero

No error logged under CPIF error log file

Info log file should contains file names and data consume status

from the Azure queue

Post-Condition

Azure servicebus queue record count should be zero

ServerOut folder should contains 10 files

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Table 4.6 Reliability testing test case 2

27

Test Case Field Description

Test case ID RT 003

Test Severity High

Name or Test Title Azure Blob uplink Testing

Description/Summary of

Test

This test case is to validate the file upload feature of CPIF

framework using Azure Plug-in component (Azure Blobs)

Pre-condition

1. Azure plug-in component is developed and ready for this

test.

2. CPIF solution should be deployed and up and running

3. Plugin component for Azure cloud platform should be

deployed and running

4. Azure Queue and Blob should be created in the Azure portal

Test Steps

1. Browse https://portal.azure.com in web browser

2. Login to Azure portal by providing authentication details

3. Navigate to All Resources > Service Bus > Select queue and

open queue overview page

4. Open a different browser and follow first two steps and

navigate to the Azure Blob

5. Make sure record count is zero in the selected queue

6. Make sure record count is zero in the Azure Blob

5. Copy and paste 10 files less than 100Kb to the "Server-In"

folder.

6. Monitor Blob count and the CPIF log files

Test Data 10 files greater than 100 Kb

Expected Results

Files greater than 100 Kb should be moved to the Azure Blob.

Also Azure queue count should be 10, which includes metadata

files belong to original files exist in Azure Blob

No error logged under CPIF error log file

Info log file should contain file names and delivery status to the

Azure Blob

Post-Condition

Azure Blob should consist with transferred 10 files

Azure servicebus queue should consist with 10 metadata files

ServerIn folder should be empty

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Table 4.7 Reliability testing test case 3

28

Test Case Field Description

Test case ID RT 004

Test Severity High

Name or Test Title Azure Blob Downlink Testing

Description/Summary of

Test

This test case is to validate the file download feature of CPIF

framework using Azure Plug-in component. (Azure Blobs)

Pre-condition

1. Azure plug-in component is developed and ready for this

test.

2. CPIF solution should be deployed and up and running

3. Plugin component for Azure cloud platform should be

deployed and running

4. Azure Blob should be created in the Azure portal

5. Azure Blob should contains 10 files

6. Azure Queue should contains 10 metadata files belongs to

original files which are in blob

Test Steps

1. Browse https://portal.azure.com in web browser

2. Login to Azure portal by providing authentication details

3. Navigate to All Resources > Service Bus > Select queue and

open queue overview page

4. Open a different browser and follow first two steps and

navigate to the Azure Blob

5. Make sure record count is 10 in the selected queue

6. Make sure record count is 10 in the Azure Blob

7. Start CPIF server and monitor "Server-Out" folder.

8. Monitor queue count and the CPIF log files

Test Data 10 files greater than 100 Kb

Expected Results

Files greater than 100 Kb should be moved from Azure Blob to

the "ServerOut" folder. 10 files should be created under

particular folder.

The Azure Blob count and the Azure queue count should be

zero

No error logged in under CPIF error log file

Info log file should contains file names and data consume status

from the Azure Blob

Post-Condition

Azure Blob count and the Azure queue count should be zero

ServerOut folder should contain 10 files

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Test Case Field Description

Table 4.8 Reliability testing test case 4

29

Test Case Field Description

Test case ID RT 005

Test Severity High

Name or Test Title Azure Queue and Blob Downlink Testing in Parallel

Description/Summary of

Test

This test case is to validate the file download feature of CPIF

framework using Azure Plug-in component simultaneously

through Azure Blob and Queue.

Pre-condition

1. Azure plug-in component is developed and ready for this

test.

2. CPIF solution should be deployed and up and running

3. Plugin component for Azure cloud platform should be

deployed and running

4. Azure Blob should be created in the Azure portal. Azure

Blob should contains 10 files

6. Azure Queue should be created in the Azure portal and it

should contains 30 messages (10 original messages + 20

metadata files)

Test Steps

1. Browse https://portal.azure.com in web browser

2. Login to Azure portal by providing authentication details

3. Navigate to All Resources > Service Bus > Select queue and

open queue overview page

4. Open a different browser and follow first two steps and

navigate to the Azure Blob

5. Make sure record count is 20 in the selected queue

6. Make sure record count is 10 in the Azure Blob

7. Start CPIF server and monitor "Server-Out" folder.

8. Monitor blob and queue counts and the CPIF log files

Test Data

10 files less than 100 Kb

10 files greater than 100 Kb

Expected Results

Files greater than 100 Kb should be moved from Azure Blob to

the "ServerOut" folder.

Files less than 100 Kb should be moved from Azure Queue to

the "ServerOut" folder.

Total 20 files should be created under particular folder.

The Azure Blob count and the Azure queue count should be

zero

No error logged in under CPIF error log file

Info log file should contains file names and data consume status

from the Azure Blob and Queue

Post-Condition Azure Blob count and the Azure queue count should be zero

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Table 4.9 Reliability testing test case 5

30

Test Case Field Description

Test case ID RT 006

Test Severity High

Name or Test Title

Azure Queue and Blob Uplink and Downlink Testing in

Parallel

Description/Summary of

Test

This test case is to validate the file upload and download

features of CPIF framework using Azure Plug-in component

simultaneously through Azure Blob and Queue.

Pre-condition

1. Azure plug-in component is developed and ready for this

test.

2. CPIF solution should be deployed and up and running

3. Plugin component for Azure cloud platform should be

deployed and running

4. Azure Blob should be created in the Azure portal. Azure

Blob should contains 10 files

6. Azure Queue should be created in the Azure portal and it

should contains 30 messages (10 original messages + 20

metadata files)

Test Steps

1. Browse https://portal.azure.com in web browser

2. Login to Azure portal by providing authentication details

3. Navigate to All Resources > Service Bus > Select queue and

open queue overview page

4. Open a different browser and follow first two steps and

navigate to the Azure Blob

5. Make sure record count is 20 in the selected queue

6. Make sure record count is 10 in the Azure Blob

7. Copy 20 files to "Server-In" folder. (10 files > 100Kb and 10

files <100 Kb)

7. Start CPIF server and monitor "Server-Out" folder.

8. Monitor queue count and the CPIF log files

Test Data

10 files less than 100 Kb (in Azure Queue)

10 files greater than 100 Kb (in Azure Blob)

20 files in file system (10 files > 100Kb and 10 files <100 Kb)

31

Test Case Field Description

Expected Results

1 Uplink test results:

1.1 Files greater than 100 Kb should be moved from Azure

Blob to the "ServerOut" folder.

1.2 Files less than 100 Kb should be moved from Azure Queue

to the "ServerOut" folder.

1.3 Total 20 files should be created under "ServerOut" folder.

2 Downlink Test results

2.1 Files greater than 100 Kb should be moved to the Azure

Blob. (10 files)

2.2 Files less than 100 Kb should be moved to the Azure

Queue. (10 files)

2.3 Azure queue count should be 30, which includes original

files (10 files) and metadata files belong to original files exist

in Azure Blob and Queue (20 files)

No error logged in under CPIF error log file

Info log file should contains file names and data download and

upload statuses from the Azure Blob and queue

Post-Condition

Azure Blob should consist with transferred 10 files

Azure service bus queue should consist with 30 messages

ServerOut folder should contains total 20 files

Status (Fail/Pass) Pass

Notes/Comments/Questions: N/A

Attachments/References N/A

Table 4.10 Reliability testing test case 6

32

4.4 Performance Testing

The CPIF middleware solution required to be tested with high, medium and low data loads and

different file sizes to verify the performance.

However, it is must to baseline the system requirements which includes all the hardware,

software and network bandwidth requirements before starting any performance test, that can be

impact the application performance.

Hardware and Software Baseline Requirements

Processor Intel(R) Core(TM) i3-5005U CPU @ 2.00GHz, 2000 Mhz, 2

Core(s), 4 Logical Processor(s)

Installed Physical Memory

(RAM)

8.00 GB

Total Virtual Memory 13.3 GB

System Type x64-based PC

OS Name Microsoft Windows 8.1

Network bandwidth (speed) 20 Mbps

Microsoft Azure Region North Central US

Table 4.11 Performance testing environment settings

Following performance tests are executed to measure the performance statistics of CPIF solution.

Note: Azure Plug-in is utilized to execute the following performance tests.

Performance Test -1 Test the performance of uplink dataflow. File sizes < 100 KB

Performance Test -2 Test the performance of uplink dataflow. File sizes >100 KB

Performance Test -3 Test the performance of downlink dataflow. File sizes < 100 KB

Performance Test -4 Test the performance of downlink dataflow. File sizes >100 KB

Performance Test -5 Test the performance of uplink and downlink dataflows parallelly with

mixed file sizes

Table 4.12 Performance test dataset

33

Performance Test -1

Test Scenario Test the performance of uplink dataflow. File sizes < 100 KB

Description CPIF server is stopped before starting this test.

Then the 500 files of less than 100 KB files are placed under the “ServerIn”

folder.

 Afterwards, CPIF server will be started.

Monitor ServerIn folder, Azure Queue and log files until the test ends

File set 100 files with each 5KB in size (5 KB X 100)

100 files with each 10KB in size (10KB X 100)

100 files with each 20KB in size (20 KB X 100)

100 files with each 50KB in size (50 KB X 100)

100 files with each 90KB in size (90 KB X 100)

Total size of file

set

~17 MB

Test Results - All files are transferred to the Azure queue

- No errors logged in the error log file

- No files remained at ServerIn folder

- 1000 Messages are available in Azure Queue (500 orginal files + 500

Metadata files)

-

Performance

Statistics

File Transfer Duration 2.5 Minutes

File losses 0

Table 4.13 Performance test case 1

34

Performance Test -2

Test Scenario Test the performance of uplink dataflow. File sizes >100 KB

Description CPIF server is stopped before starting this test.

Then the 500 files of greater than 100 KB files are placed under the

“ServerIn” folder.

 Afterwards, CPIF server will be started.

Monitor ServerIn folder, Azure Blob, Queue and log files until the test ends

File set 100 files with each 110KB in size (110 KB X 100)

100 files with each 200KB in size (200KB X 100)

100 files with each 500KB in size (500 KB X 100)

100 files with each 1MB in size (1 MB X 100)

100 files with each 2MB in size (2 MB X 100)

Total size of file

set

~380 MB

Test Results - All files are transferred to the Azure queue

- No errors logged in the error log file

- No files remained at ServerIn folder

- 500 Files are available in Azure Blob

- 500 Messages are available in Azure Queue (500 Metadata files)

-

Performance

Statistics

File Transfer Duration 1 Hour and 7 Minutes

File losses 0

Table 4.14 Performance test case 2

35

Performance Test -3

Test Scenario Test the performance of downlink dataflow. File sizes < 100 KB

Description CPIF server is stopped before starting this test.

Then the 500 files of less than 100 KB files are already enqueued in the

Azure queue and “ServerOut” folder should be empty

 Afterwards, CPIF server will be started.

Monitor ServerOut folder, Azure Queue and log files until the test ends

File set 100 files with each 5KB in size (5 KB X 100)

100 files with each 10KB in size (10KB X 100)

100 files with each 20KB in size (20 KB X 100)

100 files with each 50KB in size (50 KB X 100)

100 files with each 90KB in size (90 KB X 100)

Total size of file

set

~17 MB

Test Results - All files are downloaded from Azure queue to the ServerOut folder

- No errors logged in the error log file

- No files remained at Azure queue

- 500 files are available in ServerOut

-

Performance

Statistics

File Transfer Duration 1 Minute and 55 seconds

File losses 0

Table 4.15 Performance test case 3

36

Performance Test -4

Test Scenario Test the performance of downlink dataflow. File sizes >100 KB

Description CPIF server is stopped before starting this test.

Then the 500 files of greater than 100 KB files enqued to Azure Blob

(through CPIF solution)

 Afterwards, CPIF server will be started.

Monitor ServerOut folder, Azure Blob, Queue and log files until the test ends

File set 100 files with each 110KB in size (110 KB X 100)

100 files with each 200KB in size (200KB X 100)

100 files with each 500KB in size (500 KB X 100)

100 files with each 1MB in size (1 MB X 100)

100 files with each 2MB in size (2 MB X 100)

Total size of file

set

~380 MB

Test Results - All files are downloaded to the ServerOut folder

- No errors logged in the error log file

- No files remained at Azure Blob

- 500 Files are available in ServerOut folder

-

Performance

Statistics

File Transfer Duration 55 Minutes

File losses 0

Table 4.16 Performance test case 4

37

Performance Test -5

Test Scenario Test the performance of uplink and downlink dataflows parallelly with

mixed file sizes

Description CPIF server is stopped before starting this test.

Then the 500 files with mixed file sizes enqued to Azure Queue and Blob

(through CPIF solution)

500 files with mixed file sizes are placed under “ServerIn” folder.

 Afterwards, CPIF server will be started.

Monitor ServerOut folder, Azure Blob, Queue and log files until the test ends

File set Uplink file load (Already placed under ServerOut folder)

100 files with each 50KB in size (50 KB X 100)

100 files with each 90KB in size (90 KB X 100)

100 files with each 200KB in size (200 KB X 100)

100 files with each 500KB in size (500 KB X 100)

100 files with each 1MB in size (1 MB X 100)

Downlink file load (Already placed under Azure Queue and Blob)

100 files with each 50KB in size (50 KB X 100)

100 files with each 90KB in size (90 KB X 100)

100 files with each 200KB in size (200 KB X 100)

100 files with each 500KB in size (500 KB X 100)

100 files with each 1MB in size (1 MB X 100)

Total size of file

set

Uplink fileload size ~182 MB

Downlink fileload size ~182 MB

Test Results - 500 files are downloaded to the ServerOut folder

- 300 files are available in Azure Blob

- 1000 messages are available in Azure Queue (200 original files + 800

meta data files)

Performance

Statistics

File Transfer Duration for

uplink

52 Minutes

File Transfer Duration for

downlink

42 minitues

File losses 0

Table 4.17 Performance test case 5

38

Chapter 5 Conclusion

5.1 Introduction

This section provides you the summary of how CPIF solution succeeds toward achieving its

design objectives. In addition to that, this section also includes existing deficiencies of CPIF

solution and the further improvements which could make on top of CPIF solution.

5.2 Summary of Results

This section summarizes how each objective is met through the development of CPIF solution.

In the Introduction chapter, it was clearly mentioned all the detailed objective of developing the

CPIF solution under the Motivation subsection. Therefore, high-level objective and how there

were met describe in below table.

Project Objective How CPIF Solution Met Its Objectives

Client applications are highly coupled with the

cloud platforms which are integrated; therefore

the flexibility of changing the cloud platform

or integrating to another cloud platform is

extremely difficult. As the primary objective,

the CPIF solution should address the above

problem

CPIF solution is developed by accommodating

a loosely coupled design by adhering to the

Separation of Concern design principle. It

utilizes the Plug-in Architecture pattern.

Therefore, it provides the flexibility of

integrating different cloud platforms without

affecting existing components. Additionally,

the difficulty on switching between different

cloud platforms became extremely easier since

it only requires configuration changes to

switch to a another cloud platform.

Cost of integrating new cloud platform is high

since it requires development and quality

assurance effort.

CPIF framework and its respective plug-in

components contain the cloud platform

integration methodologies. The quality

assurance of CPIF solution is already

completed. Therefore, if the respective plug-in

components for the particular cloud platform is

already developed, there will not be any

additional cost involves for the integration.

39

Project Objective How CPIF Solution Met Its Objectives

Providing Cloud vendor independent

framework is another objective of developing

the CPIF solution.

CPIF framework exposes generic set of

interfaces where any application could directly

integrate with the framework rather concerning

about the Cloud technology. Therefore, by

integrating CPIF framework provides

consumer application to integrate and transfer

data without thinking of the integration

methodologies involves with respective cloud

platform

Future extensibility of porting new cloud

platform CPIF solution without impacting core

CPIF framework and the consumer application

is an another objective of implementing CPIF

solution

CPIF solution is implemented by utilizing the

Plug-in architecture. Therefore, the integration

technology of each cloud platform resides in

respective plug-in component.

Each plug-in component port to the core CPIF

framework with minimal configuration

changes.

Therefore, by thinking about extensibility

aspects of CPIF solution, integrating new cloud

platform became extremely simpler since that

can be done without impacting the changes to

the core framework or to the other plug-in

components

CPIF solution should support offline

capabilities. Which means the CPIF solution

should host and executes independently;

Therefore, all the data transfer communication

can be done in asynchronous mode without

maintaining a synchronous connectivity with

consumer application. The ultimate objective is

bottlenecks of consumer application should not

flow into the CPIF middleware solution, vice-

versa.

CPIF solution is implemented in a way that can

be self-hosted as an executable component or

either as a windows service.

As per the design integration of CPIF solution

is done through windows directory storage.

The consumer application is completely

disconnected through the CPIF solution since

the data communications happen through the

configured send and receive directory paths.

40

Project Objective How CPIF Solution Met Its Objectives

CPIF solution should be able to integrate with

any consumer application which is

implemented using any technology (E.g. Java,

PHP, etc). Therefore, integration of CPIF

solution should be technology independent.

The CPIF solution is a middleware solution

which is implemented using Microsoft .NET

based technologies. Since it is a middleware

solution it is beneficial if it provides the

flexibility on integrating consumer applications

with different technologies.

CPIF solution is designed and implemented in

way that integration happened through offline

directory storages. Therefore, consumer

applications which are implemented using any

technology should be able to communicate

effectively through the CPIF middleware

solution without any issues.

Table 5.1 Results summary

5.3 Deficiencies of CPIF Solution

This section provides the summary of issues exist in CPIF solution.

Issue/limitations Resolution

Failures in network during data

transfer may cause consumer to resend

files.

Currently, CPIF solution does not

contain any retry mechanism.

Usually, this issue applies when

transferring large files

Consumer application requires monitoring the status of

delivering files and if any error occurs, particular file

need to be resent.

Currently, CPIF solution is limited to

use one cloud platform after the

integration.

Hosting two instances of CPIF solution with respective

cloud platform plug-ins will solve this issue. Therefore,

one instance will take care of data transfer to a one

cloud platform while other instance will take care of

transferring data to the other cloud platform

Table 5.2 CPIF solution limitations

41

5.4 Future Improvements of CPIF Solution

This section describes future improvements of CPIF solution.

 Implement more plug-in components which represent different cloud platforms by

following CPIF plug-in component design describes in Methodology chapter.

As of today, there are different cloud vendors in the industry in addition to the Microsoft

Azure an Amazon Web Services. Some of them are IBM Cloud, WSO2 Cloud, etc. By

developing plug-in components for those Cloud platforms will increase the overall

market value of CPIF solution.

 Within the scope of CPIF solution, it covers data transfers to Queue storages and Blob

(Block Blob) storages in Azure. (Queue and Bucket in AWS). However, there is more

data storage mechanisms exist in Cloud platforms. For an example Azure Topics, Azure

Append Blobs, Page Blobs and Azure Table Storages are some of the data storage

mechanism. By utilizing existing CPIF design architecture, the CPIF solution could be

extended to use the above mentioned additional storage mechanism. That will help to

utilize CPIF solution for different purposes of data transfers.

 Currently CPIF middleware solution hosted independently either as Windows executable

component or either a Windows Service. Integration happened through the configured

directory storages. This will restrict consumer application to hosted in same network

environment in order to access the configured directory storages.

Therefore, as a future extensibility of CPIF solution, Web API could be developed and

expose with set of API contracts by wrapping up the existing CPIF framework

implementation instead of hosting as Windows executable or Windows Service. This

enables CPIF solution to host in different server environment with different network

rather hosting on same network where consumer application hosted. Therefore, consumer

applications directly connect with Web API and the Web API is responsible of sending

and receiving data streams with Base64 Encryption mechanism and communicates with

the CPIF framework.

42

Appendix

5.5 Azure Storage queues and Service Bus queues

When developing CPIF Azure plug-in components, there are two types of queues available.

However, as evaluated only one type of queue is selected which is Service Bus queue. Following

table represents the detailed comparison of Azure Storage queue and Service Bus queue.

Comparison Criteria Storage queues Service Bus queues
Ordering guarantee No Yes - First-In-First-Out (FIFO)
Delivery guarantee At-Least-Once At-Least-Once

At-Most-Once
Atomic operation support No Yes
Batched receive Yes Yes
Batched send No Yes

Table 0.1 Azure Service Bus queue vs. Storage queue

In addition to the above comparison, usually the Storage Queues are utilized when an application

requires storing over 80 GB of messages in a queue. Due to large set of messages application

could track the progress for processing a message inside of the storage queue. Also it may

require the server side logs for all of the transactions which are getting executed against the

storage queues.

In contrast, Service Bus queues able to receive messages without polling the queue and it support

TCP-based protocol. Therefore, we can implement transactional behavior to achieve atomicity

when communicating with multiple messages with service bus queue. Additional advantage is it

provides guaranteed first-in-first-out (FIFO) ordered delivery. However, the one limitation is

service bus queue size should not grow larger than 80 GB. Due to these advantages Service Bus

queue is selected to implement the Azure Plug-in component by assuming client applications

does not have a requirement of sending over 80GB of messages to a single queue.

43

5.6 Azure Block Blob vs Page Blob vs Append Blob

Azure storage has following three types of blobs.

 Block blob

 Page blob

 Append blob

The following table provides a comparison between them.

Block Blob Page Blob Append Blob

Block Blobs are comprised of

blocks and each Block is

identifiable by a Block ID

Page blobs are collection

of pages that are optimized

for random read write

operations.

Append blobs are

similar to block blobs

but are optimized for

Append operations

Usually used for streaming

Sequential Data like Video

Usually used for non-

Sequential Read and

Write.

Usually used for

activities like Logging

Each Block can be up to 4 MB Page can be up to 512

bytes

Each Block can be up

to 4 MB

Up to 50,000 Blocks can be

created.

No limitations on the

number of Pages created

Up to 50,000 Blocks

can be created.

Blocks can be uploaded in any

order and need to commit the

blocks by sending the order at the

end of the process. (A.K.A two-

step block upload-then-commit

process).

Any writes that are done

get committed

immediately (in-place

process)

Cannot Update or

delete the existing

blocks in a blob.

Any uncommitted blocks will be

deleted after a week time period

or another blob with same name is

created with commit process

-NA- -NA-

Any Uncommitted block can be

over written by using the same

block ID.

Write operation can

overwrite a page or a

number of pages.

Updating or

overwriting a block is

not possible.

Maximum Size of block blob :

195 GB

Maximum uncommitted blobs

:100000 (Max size :20000MB)

Maximum size of page

blob : 1TB

Maximum size of page

blob : 195 GB

44

Multiple clients writing to same

blob is not possible

(synchronization needed)

Multiple clients writing to

same blob is not possible

(synchronization needed)

Multiple clients writing

to same blob is possible

(no synchronization

needed)

Table 0.2 Azure blob comparison

Reference:

[1] Vijaya Manikandan. (2015). Block Blob vs Page blob vs Append Blob. Retrieved April 4,

2019 from http://www.techxperiments.com/2015/10/14/block-blob-vs-page-blob-vs-append-

blob/

Reference [1] verified through following references [2] and [3].

[2] Microsoft Azure. (2019) Understanding Block Blobs, Append Blobs, and Page Blobs.

Retrieved April 4, 2019 from https://docs.microsoft.com/en-

us/rest/api/storageservices/understanding-block-blobs--append-blobs--and-page-blobs

[3] Microsoft Azure. (2010) Using Windows Azure Page Blobs and How to Efficiently Upload

and Download Page Blobs. Retrieved April 4, 2019 from

https://blogs.msdn.microsoft.com/windowsazurestorage/2010/04/10/using-windows-azure-page-

blobs-and-how-to-efficiently-upload-and-download-page-blobs/

By evaluating above comparison, Block Blob storage is selected for the CPIF Azure Plug-in

development since our requirement is only to access to the files, but not to change them inside

the blob storage. Also Block Blobs more suitable for storing user specific files compare to other

Blob types.

http://www.techxperiments.com/2015/10/14/block-blob-vs-page-blob-vs-append-blob/
http://www.techxperiments.com/2015/10/14/block-blob-vs-page-blob-vs-append-blob/
https://docs.microsoft.com/en-us/rest/api/storageservices/understanding-block-blobs--append-blobs--and-page-blobs
https://docs.microsoft.com/en-us/rest/api/storageservices/understanding-block-blobs--append-blobs--and-page-blobs
https://blogs.msdn.microsoft.com/windowsazurestorage/2010/04/10/using-windows-azure-page-blobs-and-how-to-efficiently-upload-and-download-page-blobs/
https://blogs.msdn.microsoft.com/windowsazurestorage/2010/04/10/using-windows-azure-page-blobs-and-how-to-efficiently-upload-and-download-page-blobs/

45

References

[1]. Prof Dr, Claudia Müller-birn. (2012). Cloud Computing. Retrieved April 4, 2019 from

http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.462.4311

[2]. University of California at Berkeley. (2009). Above the Clouds. Retrieved January 14,

2019 from https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

[3]. Saurabh Gupta, Saurabh Gupta, Saurabh Gupta. (2012). Microsoft Azure vs Amazon

EC2. Retrieved January 4, 2019 from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.471.7343&rank=1

[4]. Microsoft Azure. (2019). Azure Storage scalability and performance targets for storage

accounts. Retrieved April 4, 2019 from https://docs.microsoft.com/en-

us/azure/storage/common/storage-scalability-targets

[5]. Microsoft Azure. Azure Storage Documentation. Retrieved January 4. 2019 from

https://docs.microsoft.com/en-us/azure/storage/

[6]. Microsoft Azure. Azure Service Bus Messaging Documentation. Retrieved April 4, 2019

from https://docs.microsoft.com/en-us/azure/service-bus-messaging/

[7]. Microsoft Azure. Hybrid Cloud Architectures with AWS. Retrieved April 4, 2019 from

https://aws.amazon.com/enterprise/hybrid/

[8]. Microsoft Azure. (2017). Managed Extensibility Framework (MEF). Retrieved February

2, 2019 from https://docs.microsoft.com/en-us/dotnet/framework/mef/

[9]. Microsoft Azure. (2019). Azure Storage scalability and performance targets for storage

accounts. Retrieved April 6, 2019 from https://docs.microsoft.com/en-

us/azure/storage/common/storage-scalability-targets

[10]. Microsoft Azure. (2019). Storage queues and Service Bus queues - compared and

contrasted. Retrieved April 6, 2019 from https://docs.microsoft.com/en-us/azure/service-

bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted

[11]. Microsoft Azure. (2019) Understanding Block Blobs, Append Blobs, and Page Blobs.

Retrieved April 4, 2019 from https://docs.microsoft.com/en-

us/rest/api/storageservices/understanding-block-blobs--append-blobs--and-page-blobs

[12]. Microsoft Azure. (2010) Using Windows Azure Page Blobs and How to Efficiently

Upload and Download Page Blobs. Retrieved April 4, 2019 from

https://blogs.msdn.microsoft.com/windowsazurestorage/2010/04/10/using-windows-

azure-page-blobs-and-how-to-efficiently-upload-and-download-page-blobs/

http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.462.4311
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.471.7343&rank=1
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://aws.amazon.com/enterprise/hybrid/
https://docs.microsoft.com/en-us/dotnet/framework/mef/
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://docs.microsoft.com/en-us/rest/api/storageservices/understanding-block-blobs--append-blobs--and-page-blobs
https://docs.microsoft.com/en-us/rest/api/storageservices/understanding-block-blobs--append-blobs--and-page-blobs
https://blogs.msdn.microsoft.com/windowsazurestorage/2010/04/10/using-windows-azure-page-blobs-and-how-to-efficiently-upload-and-download-page-blobs/
https://blogs.msdn.microsoft.com/windowsazurestorage/2010/04/10/using-windows-azure-page-blobs-and-how-to-efficiently-upload-and-download-page-blobs/

46

[13]. Amazon AWS. (2019). Amazon Simple Storage Service API Reference

. Retrieved April 30, 2019 from https://docs.aws.amazon.com/AmazonS3/latest/API/s3-

api.pdf

[14]. Amazon AWS. (2006). Amazon Simple Storage Service Developer Guide. Retrieved

April 30, 2019 from https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-dg.pdf

[15]. Amazon AWS. (2012). Amazon Simple Queue Service API Reference

. Retrieved April 30, 2019 from

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/sqs-api.pdf

[16]. Amazon AWS. (2019). Amazon Simple Queue Service Developer Guide. Retrieved

April 30, 2019 from

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-

dg.pdf

https://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf
https://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-dg.pdf
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/sqs-api.pdf
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dg.pdf
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dg.pdf

