

Design and Development of Gerber Data
Editing Software

A dissertation submitted for the Degree of Master of

Information Technology

A.M.D.S. Kularathna

University of Colombo School of Computing
2018

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any other
university/institute.

To the best of my knowledge it does not contain any material published or written by another person,
except as acknowledged in the text.

Student Name: A.M.D.S. Kularathna

Registration Number: 2015/MIT/029

Index Number: 15550294

Signature: Date: 12/07/2018

This is to certify that this thesis is based on the work of

Mr. A.M.D.S. Kularathna

under my supervision. The thesis has been prepared according to the format stipulated and is of
acceptable standard.

Certified by:

Supervisor Name: Dr. K.L. Jayarathne

Signature: Date:

Abstract

Solder paste application stencil design is a crucial task in Electronic Manufacturing and Service (EMS)

industry due to the complexity of modern electronics devices. Proper solder joint must be built-up

between electronics components and the printed circuit board (PCB) in order to achieve expected

functionalities, performance and durability of such device. To obtain a quality solder joint, an optimal

solder volume should be deposit by using a properly designed stencil on the component pads in the

PCB layout.

The aim of this project is to provide a software solution for designing solder paste application stencils

based on the respective Gerber data of the PCB. The Gerber is a 2-D monochrome vector image data

representation format which extensively used in EMS industry. Gerber data file is an output of PCB

designing applications. Gerber file consists of human readable series of commands that corresponds to

series of graphics objects supper imposed on top of each and ultimately generates a single image.

Since Gerber file consists of set of graphic objects, object oriented programming concept was involved

in the solution. All the basic objects as well as macro objects which are defined in the Gerber format

specification [1] were developed according to the object oriented concept. Major functionalities

required for stencil design process; reading, displaying, editing and saving were developed in the

evolutionary prototype model.

Subsequent to the main problem, important algorithm for selecting complex 2-D polygon objects was

invented during the project. The new algorithm can be used to solve common Point-In-Polygon

problem in any 2-D vector graphics application.

ACKNOWLEDGEMENT

First of all I acknowledge with gratitude to my supervisor Dr. Lakshman Jayarathne who

guided me in order to successfully complete my project throughout two semesters of study. During

that period, when I was unable to fulfill some project milestones, he never blames at me and always

encouraged me to plan the work and achieve next milestone on time. Even though he is extremely

busy, his door was never closed when I go to meet him to discuss some issues I faced.

 Secondly I would like to thank my friends who are working as an engineers in CCS Lanka

(Pvt) Limited, for the given great support and valuable inputs from requirement gathering phase to

various stages of my project. Without their support, I may not be able to successfully complete my

project.

Finally, I must express my very profound gratitude to my parents and to my wife for providing

me with unfailing support and continuous encouragement throughout my years of study and through

the process of development and writing this thesis. This accomplishment would not have been possible

without them.

i

Table Contents
Chapter 1: Introduction ..1

1.1 Overview ..1

1.2 Problem ..3

1.3 Aim ...4

1.4 Objective ..4

1.5 Scope ..4

Chapter 2: Background and Literature Review ..5

2.1 About Gerber Format ...5

2.2 Graphic Objects Defined in the Gerber Format ...6

2.3 Requirements Analysis of the proposed System ..7

2.4 Review of Similar Systems ..8

Chapter 3: Analysis ... 10

3.1 Software Requirement Specification ... 10

3.1.1 Purpose ... 10

3.1.2 Scope .. 10

3.1.3 Overview .. 10

3.2 Functional Requirements... 11

3.3 User interface requirements .. 16

3.4 Other requirements .. 17

Chapter 4: Design and Methodology .. 18

4.1 Object model ... 18

4.1.1 Standard apertures .. 18

4.1.2 Macro apertures .. 19

4.2 Aperture Collection Object Structure .. 22

4.3 Graphics Object Collection Structure.. 23

4.4 Document object ... 24

4.5 System Class Diagram .. 25

Chapter 5: Implementation .. 26

5.1 Selection of the development plat form .. 26

5.2 Design Considerations... 26

5.3 Implementation of the User Interface .. 27

5.4 Special Implementation Requirements .. 29

5.4.1 Point inside a Triangle .. 29

5.4.2 Point inside an arbitrary Line Object ... 30

ii

Chapter 6: User Evaluation and Testing.. 31

6.1 Scope ... 31

6.2 User evaluation .. 31

6.2.1 Primary actor .. 31

6.2.2 Actor selection criteria ... 31

6.2.3 User knowledge evaluation .. 32

6.2.4 Goal setting .. 33

6.2.5 User performance evaluation ... 33

6.2.6 Conclusion .. 34

6.3 Testing plan ... 35

6.3.1 Introduction .. 35

6.3.2 Unit testing ... 35

6.3.3 Integration testing ... 39

6.3.4 Alpha testing .. 41

6.3.5 Summary .. 41

Chapter 7: Conclusion and Future Work ... 42

References ... 44

iii

List of tables
TABLE 1 - FEATURES COMPARISON OF GC-PREVUE .. 8

TABLE 2 - USE CASES... 11

TABLE 3 - STANDARD APERTURES ... 18

TABLE 4 - APERTURE MACRO PRIMITIVES .. 19

TABLE 5: USER EVALUATION TEMPLATE ... 33

TABLE 6: STANDARD TASK LIST ... 33

TABLE 7: TEST CASE TEMPLATE ... 35

TABLE 8: TEST CASE TEMPLATE .. 38

iv

List of figures
FIGURE 1 – MOTHER BOARD OF A MOBILE PHONE .. 1

FIGURE 2 – SOLDER PASTE APPLICATION ON PCB PADS .. 2

FIGURE 3 – GERBER FILE STRUCTURE .. 5

FIGURE 4 – GERBER IMAGE DEMONSTRATION .. 6

FIGURE 5 - BASIC USER INTERFACE ... 7

FIGURE 6 - GC PREVIEW INTERFACE ... 8

FIGURE 7 - VIEWPLOT INTERFACE ... 9

FIGURE 8 - USE CASE DIAGRAM .. 11

FIGURE 9 - BASIC USER INTERFACE .. 16

FIGURE 10 - DEFAULT COLOR SCHEME .. 17

FIGURE 11 - OBROUND PCB PAD ... 18

FIGURE 12: OBJECT STRUCTURE OF APERTURE COLLECTION .. 22

FIGURE 13: GRAPHIC OBJECTS COLLECTION DATA STRUCTURE ... 23

FIGURE 14 - CLASS DIAGRAM .. 25

FIGURE 15: INITIAL USER INTERFACE .. 27

FIGURE 16: OPEN FILE USER INTERFACE ... 28

FIGURE 17: DISPLAY FILE USER INTERFACE .. 28

FIGURE 18: TEST POINT INSIDE TRIANGLE ... 29

FIGURE 19: SIMPLE OUTLINE OBJECT .. 30

FIGURE 20: TC008 OUTPUT ... 39

FIGURE 21: TC008 SCREEN OUTPUT ... 39

v

Definitions, Acronyms and Abbreviations

Term Definition

Gerber Two dimensional vector image data representation format

2-D Two dimensional

EMS Electronic manufacturing and service

Stencil Sheet metal block consists of set of geometric shaped holes

The system Gerber Data Editing Software System

FR Functional requirement

Aperture Geometric shape

1

Chapter 1: Introduction

1.1 Overview
Today electronic devices become essential elements in human’s day to day life activities.

Especially mobile phones become the most intimate device. All those electronic devices are

manufactured by electronic manufacturing and service (EMS) industry. With the advancement

of technology, electronic devices become smarter, more complex and compact in size.

Basic building block of any electronic device is an electronic circuit. It is composed of printed

circuit board, passive components such as resistors, capacitors, inductors and active

components such as diodes, transistors integrated circuits etc. Figure 1 shows the SAMSUNG

GALAXY S 4G PCB board component layout.

Figure 1 – Mother board of a mobile phone

When the device becomes complex and compact, respective component layout is more

complex and component density is high. Assembling such a device is really a challenge for

EMS industry. Nowadays most of the component layouts come with surface mount devices

2

(SMD) to make the layout more compact. Bulky through-hole components were replaced by

small SMD components with the technology advancement.

To assemble SMD components into a PCB layout, special technology called “Reflow

Soldering” is used. Reflow soldering process can be divided into three main steps.

1. Solder paste application process

Solder paste is a mixture of tiny solder balls and a flux which formed into a paste. The

solder paste is applied on component pads of a PCB layout by using a stencil. Figure 2

shows applied solder paste on a component pad by using a stencil.

 Figure 2 – Solder paste application on PCB pads

2. Pick and place process

Placing SMD components on the relevant position of the PCB layout by using

automated machines are called the pick and place process. Normally SMD components

are received as reels from suppliers. Such reels are loaded into pick and place machines

and then the machine will pick the relevant component from specified reel and specified

location according to the given assembly program to the machine.

3. Reflow process

Actual soldering process is occurred under reflow process. Special oven called “Reflow

Oven” is involved in this process. PCB with assembled component is heated up

according to a special profile in the reflow oven. When the temperature reaches the

melting point of applied solder paste, it will create solder joint between PCB and the

placed components.

3

Most challenging part of above mentioned processes is applying optimal solder paste volume

on component pads. In other words, designing most appropriate solder paste application

stencil for a given PCB layout is the challenging part. Stencil fabrication part is not so much

challenging, because laser cutting technology is available to cut any arbitrary shape in a thin

stainless steel sheet. Next section focuses on the design process of solder paste application

stencil.

1.2 Problem
Most of the standard PCB design software has a capability of exporting layers of the PCB as

two dimensional monochrome vector image format called “Gerber”. Since design file has all

the intelligence about the circuit, design files are not interchanged between industries because

the possibility of copying the design by another party. The Gerber Format has become de

facto standard of image data transferring format among electronics industry. Basic resource

available for stencil design process is the respective Gerber file of the PCB layout.

As mentioned earlier, Gerber is a two dimensional monochrome vector image data

representation format. The format was originally developed by Gerber Systems Corp., a

division of Gerber Scientific, founded by Joseph Gerber. Now it is owned by Ucamco. Latest

version is 2017.11 in [1].

Gerber is a simple, compact and clear format which uses human readable 7 bit ASCII

characters for image data representation. One Gerber file completely describes one single

image. It consists of series of graphic objects super imposing on top of each other with

polarity dark or clear. Graphic object with clear polarity will clear all the objects beneath it

according to its contour whereas object with dark polarity creates mark on the image. Simple

Gerber is mentioned below to understand its simplicity.

Sample Gerber file:

% FSLAX3.5Y3.5*%

%MOMM*%

%AD20C,0.75*%

D20*

X0Y0D03*

M02*

4

1.3 Aim

To develop a software solution for EMS industry to design solder paste application stencils

efficiently and effectively using Gerber files.

1.4 Objective

• Gerber file format will be studied.

• Classes will be created based on the defined graphics objects in the Gerber format

specification according to object oriented programming concept.

• A graphics API will be used to display graphics objects on the screen by creating user

friendly user interface.

• Object selection method will be created for each graphic object class.

• A prototype software system will be created and tested using a sample Gerber file.

1.5 Scope

All the features defined in the current Gerber format specification will not be considered for

the development of the initial prototype system. Essential graphics objects which are required

to design solder paste stencil will be considered in the initial solution. Only one Gerber file

will be possible to open at a time in the first prototype version. User will be given access to

open, view, select, edit and save actions in the system. Rest of the features will be added

iteratively into the prototype system.

5

Chapter 2: Background and Literature Review

2.1 About Gerber Format
As mentioned in previous chapter, Gerber format is a bi-level (two color) two dimensional

vector image data representation format. Printable 7-bit ACSII characters are used in the

representation. Single Gerber file consists of series of commands. All the commands are

classified into two major groups called “Function Codes” and “Extended Codes” in [1].

Commands

Function
Codes

Extended
Codes

D-Codes G-Codes
End of File
Command

M02

Operation
codes – D01,

D02, D03

Select
aperture

code - Dnn

Interpolation
mode codes

G01, G02, G03

Region mode
commands
G36, G37

Quadrant mode
commands
G74, G75

Comment
command G04

Mode and Unit
commands FS,

MO

Aperture
commands AD,

AM

Step and
repeat

command - SR

Level polarity
command - LP

Attribute
commands TF,

TA, TD

Figure 3 – Gerber file structure

6

Single Gerber file completely describes single image. A Gerber file can be processed in a

single pass. Like other programming languages, parameters and objects must be specified

before they are used. As an example, simple Gerber file is illustrated below. It will create

3x1.5mm rectangle in the origin with 0.5mm hole at the center as shown in Figure 4.

%FSLAX23Y23*%

%MOMM*%

%AD10R,3X1.5X0.5*%

D10*

X0Y0D03*

M02*

2.2 Graphic Objects Defined in the Gerber Format

Special name called “Aperture” is used in the Gerber format to denote a graphic object. Two

types of apertures are defined as standard apertures and macro apertures. Standard apertures

consist of basic geometric shapes which are pre-defined. Circle (C), rectangle (R), obround

(O) and polygon (P) are the standard apertures defined in Gerber format. Arbitrary geometric

shapes can be defined using Macro Apertures. A hole can be defined with the standard

apertures but cannot be done the same with macro apertures.

A Gerber file consists of series of graphic objects which can be a standard or macro aperture

as a stream of commands mentioned in a Gerber file. Final image is generated by super

imposing all the individual graphic objects. Important parameter of the state of any graphic

object is its polarity. Polarity has two values such as Dark and Clear. Graphic object with dark

polarity will mark the canvas whereas clear polarity object clear the canvas irrespective of

underneath graphic objects. Single graphic object is defined only once at the beginning of the

file. Defined object can be use any times in different locations. Lines and arcs can be

generated by stroking circle (C) and rectangle (R) standard apertures.

To interpret actual size and location of graphic objects, functional attributes which are valid

for entire file is defined at the start of Gerber file. Coordinate format and measurement units

are one of such important attributes mentioned in Gerber files. As an example, such attributes

are mentioned in the above illustrated simple Gerber file.

X

Y

Figure 2.2
Figure 4 – Gerber image demonstration

7

2.3 Requirements Analysis of the proposed System

Basic requirement of the proposed system is the ability of reading a Gerber file without

missing any important information. System should be capable of reading and identification of

Function codes, Operation codes and Graphic State Variables. While reading the file, system

should be able to generate the aperture table which including all the defined apertures in the

Gerber file. When executing operation codes, relevant stream of graphic objects should be

created.

Graphical representation of Gerber file on the screen is another requirement. Interactive user

interface also an essential part of the system. Appearance of such prototype interface for the

proposed system is shown in Figure 5.

Figure 5 - Basic User Interface

User could be able to select any aperture in the Gerber file through the interface. Clear

difference of selected object with other unselect objects should appear. Properties of selected

object should be displayed on the left pane of above shown prototype interface. If the editing

mode is enabled, text boxes which display the properties of selected object should be

unlocked to enter new values by the user. When the values get changed, screen should update

immediately with respond to the user input. System should respond not only for the keyboard

input, but also to the mouse input as well. When mouse click on a graphic object, control

handles should be appear on its nodes in order to facilitate editing by mouse input. Apart from

Stencil Designer - sample
File Edit View Select Tools Window Help

Document Properties

Units
Measure

Zero Omission

Precision

Millimeters

Leading

Abs

X:2/5, Y: 2/5

Object Properties

Parameter Value

0.0000, 0.0000

X _

8

selection and editing functionalities, basic Save and Print function should be available.

Requirements are described in detail in the next chapter.

2.4 Review of Similar Systems

There are commercial Gerber data editing tools available in the industry. Those are expensive

and difficult to customize. Available features and limitations of those systems are described

below.

GraphiCode [3] provides several software solutions for different industries. GC-Prevue is a

free tool up to the end of year 2017 as shown in Figure 2.4 from GraphiCode which offer only

viewing facility of Gerber data. GC Power Station is the commercially available tool from

GraphiCode.

Figure 6 - GC Preview interface

Table 1 - Features Comparison of GC-Prevue

Features Limitations

Import Gerber, PDF and DXF files Unable to perform Cut, Copy and Paste
operations

Open several files together with layer
option

New data creation is not possible

Layer alignment facility Feature editing is not supported

Printing and screen capture facility Selection facility is very basic

Measurement capability Centroid extraction is not possible

Customization of user interface Gerber output format is not available

9

Viewplot [4] is also another CAD data editing and viewing tool provider. It supports industry

standard formats such as ODB++, HPGL, DXF, Drill/NC etc. apart from Gerber. The viewer

of the Viewplot is a free version. The interface of the Viewplot application which is displayed

in its website is shown in Figure 7 below.

Figure 7 - Viewplot Interface

Features of Viewplot application was identified as follows.

• Verify design data / design complexity

• Create high quality PDF documentation

• Basic design modification

• Conversion of RS-274D (obsolete Gerber format) to RS-274X (new format)

• Read various input formats

There are various similar kind of software solution providers can be found in the internet, but

during the review of most of them found that providers who offer free Gerber data editing

solution is very rare and most of them provides free tool for only viewing Gerber files. Two

popular vendors of such were reviewed in details above.

10

Chapter 3: Analysis

3.1 Software Requirement Specification

3.1.1 Purpose

The purpose of this section is to give a detailed description of the requirements for the

“Gerber Data Editor” software. The document contains the complete functional and non-

functional requirements and design constraints to developers. It will further explain system

interfaces and interactions with primary users. This document is primarily intended to be

proposed to the customer for its approval and a reference for developing the first version of

the system for the development team.

3.1.2 Scope

The “Gerber Data Editor” is a 2-D vector image data processor which intended to use for

designing of solder paste application stencils in EMS industry. Application is a standalone PC

software package with a license which can be installed in a Windows operation system.

Main input of the software is a Gerber file and system can output the same format file as

Gerber. Within the application, user will be able to select and edit graphic objects which

consist in the original input file. Details of those operations will be described in details in

functional requirements section.

3.1.3 Overview

The rest of this chapter is focused on functional and non-functional requirements of the

system. First part is consists of functional requirements which the system should offer. The

second part consists of interactions and interfaces that the system should support to achieve

the intended functional requirements. The last part is focused on non-functional requirements

and specific constraints of the system.

11

3.2 Functional Requirements

Main functional requirement of the proposed system is to edit Gerber files graphically with

the aid of user friendly interface. User and the system are the major actors of this system. User

and the system should be able to perform below mentioned actions using the system.

Table 2 - Use cases

Actor Use Cases
User Installation
 Import Gerber file
 Select graphic object
 Edit selected graphic object
 Save edited file in Gerber format

System Read the content of imported Gerber file
 Display the read file graphically in the screen
 Highlight graphic object which user select by mouse
 Display the properties of selected graphic object
 Prompt editing options available for selected graphic object
 Output edited Gerber file

Figure 8 - Use Case Diagram

12

Detailed functional requirements.

Functional requirement 01:

ID: FR-01

Title: Installation of software application

Primary actor: User

Description: User should be able to install the application without facing any trouble like

usual windows installation package. Unique activation key is given to the user in order to

activate the software. User will able to try the application ten times as trial. After expiration of

the trial period, application should not be open and display message to user to activate the

product.

Dependency: None

Functional requirement 02:

ID: FR-02

Title: Registering the application

Primary actor: User

Description: User enters the given unique product key after installation of the system. System

will verify the key and register the key for particular user.

Alternative path: User can use the system as trial until trial period expires.

Dependency: FR-01

Functional requirement 03:

ID: FR-03

Title: Launching the application

Primary actor: User

Description: User should be able to launch the application either double clicking on the

desktop icon or selecting appropriate program name in the windows start menu.

Installer should create both desktop icon as well as program group.

Dependency: FR-01

13

Functional requirement 04:

ID: FR-04

Title: Open a Gerber file

Primary actor: User

Description: User should able to open a Gerber file using a menu icon / menu.

Dependency: FR-03

Functional requirement 05:

ID: FR-05

Title: Displaying file dialog

Primary actor: System

Description: When user click “Open” menu icon or select “Open file” option under “File”

menu, system should display the file dialog pointing “My Documents” system folder with

applying file filter “.gbr” and “all files”. User should able to select the desired Gerber file in

the file dialog box.

Dependency: FR-04

Functional requirement 06:

ID: FR-06

Title: Read content of user selected Gerber file

Primary actor: System

Description: System should be able to read the content of the selected Gerber file according

the [1] Gerber format specification. While reading the content of the file, system should able

to construct the graphic object model which is described in design and methodology chapter.

Dependency: FR-04

14

Functional requirement 07:

ID: FR-07

Title: Display content of an opened Gerber file graphically on the screen

Primary actor: System

Description: Using proper color scheme which is described in details in “User Interface

Requirements” section, graphic objects contain in the opened Gerber file should be displayed

in the screen using appropriate scale factor. Final image should be initially center in the

display area as well as whole image should be displayed.

Dependency: FR-06

Functional requirement 08:

ID: FR-08

Title: Select graphic elements in the file

Primary actor: User

Description: User should be able to select visually graphic objects which are displayed on the

screen by using the mouse. Color scheme of selected graphic objects should be changed in

order to distinguish with unselected objects. Properties of selected graphic object should be

displayed on a property window. If more than one object is selected, only common properties

are displayed in the property window.

Dependency: FR-07

Functional requirement 09:

ID: FR-09

Title: Identify selected graphic

Primary actor: System

Description: System should be able to track mouse pointer movements. If user perform left

mouse click on an object while the mouse pointer lies within a boundary of a graphic object,

resulting object is considered as selected. If the mouse pointer is in an intersecting area of

several graphic objects, least distance from mouse pointer to the center of resulting graphic

object is considered as selected.

Dependency: FR-07

15

Functional requirement 10:

ID: FR-10

Title: Display properties of a selected graphic

Primary actor: System

Description: System refers the graphic objects collection and identifies the selected object in

the collection and displays the properties relevant to that object.

Dependency: FR-09

Functional requirement 11:

ID: FR-11

Title: Change properties of graphic objects

Primary actor: User

Description: User should able to change the parametric properties of selected object using the

property window.

Dependency: FR-10

Functional requirement 12:

ID: FR-12

Title: Update object parameters

Primary actor: System

Description: When user changes any property, change should be updated in the relevant

graphic object in the objects collection.

Dependency: FR-09

Functional requirement 13:

ID: FR-13

Title: Undo operation

Primary actor: User

Description: When user click on the “Undo” button in the interface, system should go to the

previous state. User should be able to go back at least 5 stages.

Dependency: FR-06

16

Functional requirement 14:

ID: FR-14

Title: Save operation

Primary actor: User

Description: System should offer both “Save” and “Save As” options. “Save” operation will

overwrite the input file. “Save As” operation will create new file with Gerber file format. If

user selects “Save As” option, file dialog should be displayed to user to create a folder and

provide a file name for the output file.

Dependency: FR-06

3.3 User interface requirements

Software should be a windows form application. It should consist of title bar, menu bar, tool

bars, property windows, graphic display area and status bar. Sample layout of proposed

system is shown below.

Figure 9 - Basic user interface

1
2

3

4

5

6

7

17

Elements of the user interface

1. Menu bar

2. Tool bar

3. File information pane

4. Display area

5. Status bar

6. Ruler

7. Object property view

Self-descriptive icons should be used for the tool bar. When the user move the mouse move

over any tool bar icon, respective action should be displayed as tool tip. Left side pane is

allocated to display the properties of selected objects. Large black area is allocated for the

canvas of the graphic display. Background color black is chosen to improve the visibility to

the user. The default display color of graphic objects is yellow and default color of selected

graphics is white as shown in Figure 10.

3.4 Other requirements

1. Computer with Windows operating system with latest .NET framework.

2. Minimum 1GB RAM

3. Minimum 2GB free hard disk space

4. Minimum 512MB VGA

5. Pointing device (mouse)

6. Screen with minimum resolution 1280 x 1024

Figure 10 - Default color scheme

18

Chapter 4: Design and Methodology

Some of the functional requirements mentioned in the previous chapter might be subjected to

change. Gerber file format specification also getting updated when considers its revision

history. Each revision it introduces new features into the format. So it is not possible to follow

concrete design methodology for this project. Iterative approach is the best suitable design

methodology for such problem.

4.1 Object model
Gerber file consists of two basic graphic object types.

1. Standard aperture

2. Macro aperture

4.1.1 Standard apertures

There are four different types of standard apertures defined in the Gerber format specification
as mentioned in Table 3.

Table 3 - Standard apertures

Aperture name Aperture code
Circle C
Rectangle R
Obround O
Polygon P

Circle, rectangle and polygon are common shapes, but obround is a special shape which is

extensively used in PCB layouts. It consists of equal semi-circles connected with equal

parallel lines as shown in Figure-11.

Figure 11 - Obround PCB pad

19

Standard apertures have below mentioned properties.

 Circle

 D: Diameter (decimal, >= 0)

 d: Hole diameter (decimal, >0)

Rectangle

 W: X Size (decimal, >0)

 H: Y Size (decimal, >0)

 d: Hole diameter (decimal, >0)

Obround

 W: X Size (decimal, >0)

 H: Y Size (decimal, >0)

 d: Hole diameter (decimal, >0)

Polygon

 D: Outer diameter of circumscribed circle
(decimal, >0)

 Number of vertices (integer, 3≤n≤12)

 θ: Rotation angle (decimal): positive in
counter clockwise direction with respect to X-axis

 d: Hole diameter (decimal, >0)

4.1.2 Macro apertures

Macro aperture is a customized shape which defined in the macro definition. Any complex

shape can be defined by using macro. Macro definition consists of one or more basic shapes

called “Primitives”. There are eight primitives defined in the current Gerber format

specification as mentioned below

Table 4 - Aperture macro primitives

Primitive Primitive Code
Comment 0
Circle 1
Vector line 20
Center line 21
Outline 4
Polygon 5
Moire 6
Thermal 7

20

Primitives have below mentioned properties.

Comment

 Comment text (String)

Circle

 Exposure (Boolean)

 Diameter (Decimal, >0)

 Center X (Decimal)

 Center Y (Decimal)

 Rotation angle (Decimal)

Vector line

 Exposure (Boolean)

 Line width (Decimal, ≥0)

 Start point X (Decimal)

 Start point Y (Decimal)

 End point X (Decimal)

 End point Y (Decimal)

 Rotation angle (Decimal)

Center line

 Exposure (Boolean)

 Width (Decimal)

 Height (Decimal)

 Center point X (Decimal)

 Center point Y (Decimal)

 Rotation angle (Decimal)

Outline

 Exposure (Boolean)

 Number of sub sequent points (Integer ≥ 1)

 Sub sequent points (List)

 Rotation angle (Decimal)

C

D

θ

θ C
P

Q
W

θ C

W

H

θ C
P1

P2

P3

P4
P5

21

Polygon

 Exposure (Boolean)

 Number of vertices (Integer 3≤n≤12)

 Center point X (Decimal)

 Center point Y (Decimal)

 Diameter of circumscribed circle (Decimal, ≥0)

 Rotation angle (Decimal)

Moire

 Center point X (Decimal)

 Center point Y (Decimal)

 Outer diameter of outer

concentric ring (Decimal, ≥0)

 Ring thickness (Decimal, ≥0)

 Gap between rings (Decimal, ≥0)

 Maximum number of rings (Integer, ≥0)

 Cross hair thickness (Decimal, ≥0)

 Cross hair length (Decimal, ≥0)

 Rotation angle (Decimal)

Thermal

 Center point X (Decimal)

 Center point Y (Decimal)

 Outer diameter (Decimal,

outer diameter > inner diameter)

 Inner diameter (Decimal, ≥0)

 Gap thickness (Decimal)

 Rotation angle (Decimal)

C

D

θ

θ D

t l

e

g

θ
DO

DI

g

22

4.2 Aperture Collection Object Structure

Figure 12: Object Structure of Aperture Collection

23

4.3 Graphics Object Collection Structure

Figure 13: Graphic Objects Collection Data Structure

24

4.4 Document object

Document object consists of all the graphic objects including standard apertures and macro

apertures. Apart from that it consists of basic properties which are valid for the entire file.

Basic document properties

 Coordinate format

• Integer precision (Integer, 0≤ N≤6)

• Decimal precision (Integer, 4≤ M≤6)

• Leading zeros omission (Boolean)

• Absolute measurement (Boolean, False: incremental measurement)

 Unit (Boolean, True: millimeters, False: inches)

 Level polarity (Boolean)

 Operation mode (Integer, 1≤N≤3)

• 1 – Interpolation

• 2 – Move

• 3 – Flash

 Interpolation mode (Boolean)

• True – Linear

• False - Circular

 Quadrant mode (Boolean)

• True – Single quadrant mode

• False – Multi-quadrant mode

Document object should support below mentioned methods.

 Add aperture (both standard and macro type)

 Select aperture

 Edit aperture

 Delete aperture

25

4.5 System Class Diagram

Figure 14 - Class diagram

26

Chapter 5: Implementation

5.1 Selection of the development plat form

Since the client of this application uses computers with Windows operating system, as it

mentioned in the software requirement specification, it was decided to use Visual Basic 2010

as application development environment. The free version of Visual Basic Express 2010 was

more than enough for the implementation of required components. Since the Visual Basic

2010 supports Object Oriented Programming concept, it is much easier to develop the

designed objects without any issues. Furthermore Visual Studio comes with readymade user

interface components such as forms, buttons, menu strips, tool strips and so, no need to add

third part plugins or components to develop interactive user interfaces. At the same time most

of the people are familiar with Windows based applications and it would be helpful when

perform the user evaluation and testing task.

Since the main functionality of this application is 2-D vector graphics manipulation and

programming, support of an API which has graphics programming capability is required for

the implementation. Visual Basic is distributed with a powerful graphics programming API

called GDI+. It has inbuilt very useful graphics objects such as rectangle, ellipse, line,

graphics path, region and text etc. in order to develop powerful graphics programming.

However some of the features available in GDI+ are not enough for some of the functional

requirements mentioned earlier. For example, there are no direct graphic objects in GDI+ for

obround and polygon objects which are defined in the Gerber Format Specification. So such

objects have to be developed by extending the existing graphic path object.

5.2 Design Considerations

There are objects with similar properties were found in the design phase. For example each

basic graphic object has similar properties such as MidX, MidY, HoleDiameter etc. So

inheritance concept discussed in software engineering principles was implemented such

classes. Generalized class is developed by considering similarities in the sub-classes. This is

clearly demonstrated in the class diagram of the entire system.

Encapsulation is another important software engineering design principle which hides some of

the internal functionalities of any object. Two objects can only be interacted with properly

designed interfaces. Public methods with proper input parameters are created inside the

27

objects in order to interact with other objects. For example when particular graphic object

need to display on the screen, paint method of the form object will call the GetOutline()

method inside the particular graphic object.

Polymorphism is also another important concept that should embedded into the objects to

improve the functionalities and reduce the complexity of the objects. Same function or

method could be developed to behave in different ways according to the situation. This

concept was implemented in the GetHole() and GetCenter() method in graphic objects. Visual

Basic provides “Overridable” and “Overloads” key words to implement such concept in

object level.

5.3 Implementation of the User Interface

Common windows application appearance is selected for the interface. Useful features of

similar applications also included into the interface especially for color scheme of the display

area. Further popular mouse interaction, menu and tool bar based command execution

features are built in into the interface. Apart from that, optional ruler object is included into

the interface to satisfy the user convenience.

Figure 15: Initial User Interface

28

Windows File Dialog is used to easily fetch the required file to open.

Figure 16: Open file User Interface

High contrast color scheme is used in the display area in order to visualize graphics objects

very clearly. Background color is set to black in order to reduce eye irritation, because user

will keep close eye contact with the screen for long time period. Default object display color

is set to yellow because yellow is comfortable to the eye. The selected objects will displayed

using white color from which maximum contrast can be obtained from black color

background.

Figure 17: Display File User Interface

29

Editing facility is provided through the graphical screen in such a way that, user is able to

select any object in the screen using his pointing device of the computer. Then the

corresponding object’s properties are displayed in the interactive grid view exist in the left

pane. Then user can adjust any property in the grid view and the result is updated in real time

on the screen.

5.4 Special Implementation Requirements

Selection method of graphic objects required special techniques and algorithms, because

standard methods available in GDI+ API do not offer that functionality for complex objects

especially for polygons and outline objects.

5.4.1 Point inside a Triangle

In order to include the given point “P” inside the given triangle “ABC”, marked three counter

clockwise angles (APB, BPC and CPA) should be less than 180°.

Given point - P

A B

C

Figure 18: Test Point inside Triangle

30

5.4.2 Point inside an arbitrary Line Object

Gradual Triangular Scanning Algorithm.

Above mentioned special scanning algorithm is used to check whether a given point included

in an arbitrary closed object consist of any number of nodes. According to the Gerber Format

maximum number of nodes is limited to 5000. Internal structure of this new algorithm is

described below.

Steps involved in the algorithm:

1. Divide the object into triangles by considering consecutive points starting from first

point P0.

2. Test the triangle is a valid one for the evaluation of given point inside it. In order to

evaluate the triangle, two conditions are checked.

a. Test whether the triangle is inside the object or outside the object.

b. Ensure that, none of the rest of nodes are included in that triangle.

3. If the validity condition got passed, test whether the given point inside of that triangle.

4. If the point exist, algorithm stop and otherwise tested triangle is marked and proceed

to the next triangle.

5. Algorithm is continues until all possible triangles are covered.

P0 P1

P2

P3 P4

Figure 19: Simple Outline Object

31

Chapter 6: User Evaluation and Testing

6.1 Scope
Scope of this document is to provide the way of selection of primary actor for Gerber Data

Editing Software Package and the investigation of minimum capability requirements of

intended user and analyze the performance of selected actors.

Second part of this document is focused on testing plan of the proposed system. Testing plan

is carried out in three basic levels. In modular level each individual component is tested for

possible range of input parameters. Integration testing is performed by interacting two or

more components together with intended functionalities. Finally alpha testing is performed for

the completed system by using selected group of users.

6.2 User evaluation

6.2.1 Primary actor
Primary actor is the user who is actively interacting with the system. Primary actor should be

able to perform the intended functionalities which are mentioned in the Software Requirement

Specification (SRS) without any problem. Further he should possess basic requirement which

are described in following sections in order to access the system.

6.2.2 Actor selection criteria
Since the software solution is a specific one for an intended purpose, primary actors are

specific group of people who involve in CAD / CAM industry. The intended actor should

possess the required technical background knowledge to use the system effectively. Actors

who do not possess the technical background knowledge also will be able to use the system

by reading and understanding the technical documentation of the system.

For an effective interaction with the system and the user, below mentioned skills are expected

from the primary actor.

 Basic knowledge of Mathematics, especially Cartesian geometry.

 Ability to interact with Windows applications.

 English knowledge

 Experience in 2D drafting packages or graphic design software

 Handling the pointing device smoothly

32

6.2.3 User knowledge evaluation

There are several ways of evaluating the knowledge of intended users. Most basic and

difficult one is make a structured interview with the intended users. The result of that method

is very accurate and fast. However the size of the target group is larger, interview method is

difficult and time consuming.

The most easiest and faster method of evaluating primary actor is issuing a questionnaire.

Preparing a questionnaire is bit tricky, because it should cover the above mentioned

requirements while obtaining short answers from the user.

Two types of questions can be included into a questionnaire.

1. Open-ended questions: In this type of question, freedom is given to the audience to

answer the question according to their opinion. To answer such question takes some

time, so answering rate of such questions are lower.

2. Closed-ended questions: Respondent is restricted to select or rate the answer of

closed-ended question. Such questions are frequent in questionnaires, because of

better response rate and time factor.

Sample questions that can be used to evaluate user’s skills:

 What is your result of G.C.E O/L Mathematics ?
Ans: 1. A 2. B 3. C 4. S 5. W

 What is the short cut key used to perform “Cut” operation in MS Excel application?
Ans: 1. Ctrl + C 2. Alt + X 3. Ctrl + X 4. Ctrl + V

 “Scale” command of a graphic design software is used …
Ans: 1. To rotate an object 2. To erase an object 3. To change the size of an
object

 Select the applications you already have experience. If you mark “Other”, please
mention the name in the given space.
 Auto CAD Solid Works Illustrator CorelDRAW Other
……………………….

 Which hand you operate the mouse?
Ans: 1. Left hand 2. Right hand

33

6.2.4 Goal setting

After evaluating the eligibility of primary actor, tasks which are based on system

functionalities are given to the actors in order to check whether particular user is capable of

completing such tasks effectively. Outcome of such evaluation is used to improve the user

interface of the application.

Task evaluation is conducted based on a format shown below.

Actor name:
No Task Result Spent time Comments
1 Launch the application
2 Open the given Gerber data file
3 Zooming the graphic objects
4 Move the given graphic object to the center of

the screen

5 Obtain center coordinates of given graphic
object

6 Change the size of given object
7 Move a graphic object to given coordinate point
8 Undo the previous operation
9 Save changes as new Gerber file
10 Exit the application

Table 5: User evaluation template

Result field can be either “Success” or “Failure” depending upon how the actor achieves the
goal.

Spent time field indicate the time in seconds which taken by the actor to perform a given task.

Comment field is allocated for any observations captured during respective task carrying out
period.

6.2.5 User performance evaluation
Standard time is defined for each activity mentioned above as follows.

No Task Std time (Sec)
1 Launch the application 30
2 Open the given Gerber data file 45
3 Zooming the graphic objects 30
4 Move the given graphic object to the center of the screen 45
5 Obtain center coordinates of given graphic object 60
6 Change the size of given object 90
7 Move a graphic object to given coordinate point 60
8 Undo the previous operation 30
9 Save changes as new Gerber file 45
10 Exit the application 30

Table 6: Standard Task List

34

User performance is evaluated based on the scores obtained by all the users for the above
mentioned activity evaluation score card.

For each “Success” score is given 10 marks whereas “Failure” is given 0 marks.

The score for an activity is calculated as follows.

Score = (10 * [Success | Failure]) * Performance Factor

Where, [Success | Failure] takes values either 0 (for Failure) or 1 (for Success).

Performance Factor is calculated based on the time taken to perform a particular task.

If the Spent time < Std time, performance factor = 1

Else, Performance Factor = 1 – (Spent time – Std time) / Std time

User can obtain maximum of 100 marks if all the activities are successfully completed. If the

average score is more than 85marks, the selected groups of users have the fitness to use the

system. If the average score is greater than 70 marks, system is fairly well and users need

training about the system. If the average score is less than 55, system interface should be

improved.

6.2.6 Conclusion

Group of eligible primary actors is selected based on the user knowledge evaluation criteria

mentioned above. Then pre-determined list of goals are given to the selected actors as per the

Standard activity list. Performance of each actor is monitored and recorded in the defined

evaluation score card. Final grading is obtained based on the formula mentioned in the

previous section. Final decision is made based upon the result of evaluation criteria.

35

6.3 Testing plan

6.3.1 Introduction
Testing is conducted in three basic levels.

1. Unit testing: Each individual component is tested by changing input parameters.
Output is monitored with respect to each combination of input parameters.

2. Integration testing: Combine two or many components together and check whether
components are responding to the message interactions under basic level
functionalities.

3. Usability / Acceptance testing: Final or prototype version with proper user interface
is tested by using selected group of primary actors.

6.3.2 Unit testing

Unit testing is performed for each and every individual component. This test ensures that

control logic in all code paths are executed properly for wide range of input values. This is a

kind of white box testing procedure. In practice it is not possible to test all possible input

values. Therefore critical set of input values were selected and check the outcome is

performed.

In order to perform above mentioned testing procedure, test cases and expected test result

should be created. To make all the test cases consistence, standard format is used to create all

the test cases.

Test Suite ID The ID of the test suite which the test case is belongs to.
Test Case ID Unique identifier of the test case in particular test suite
Test Case Summary Goal of the test case in summarized form
Prerequisites Any pre-conditions which should satisfy before execute the test
Test Procedure Steps of carrying out the test
Test Data Input parameters which requires to perform the test
Expected Result The result that expecting from the component under given input
Actual Result Result received after execution of the test
Status Final decision of the test. Status could be “Pass” or “Fail”
Remarks Any comment about test case or test result
Created By Name of the author of the test case
Date of Creation Created date of the test case
Executed By Name of the person who execute the test
Date of Execution Test case executed date

Test Environment Hardware / Software / Network environment where the test is
executed

Table 7: Test Case Template

36

To design test cases for individual components, it is required to identify all the individual

components in the system and their methods which can be accessed externally. It is easily

captured from the class diagram of the system.

In Gerber Data Editing Application, below mentioned individual components were captured

from class diagram.

Components used in Standard Aperture set

Component Name Public Properties or Methods
Circle Diameter
 GetOutline()

RectangleA GetOutline()

Obround GetOutline()

Polygon OuterDiameter
 Vertices
 Rotation
 GetOutline()

StdAperture MidX
 MidY
 Name
 Width
 Height
 HoleDiameter
 Polarity
 Fault
 GetCenter()

Components used in Macro Aperture set

Component Name Public Properties or Methods
PrimCircle Diameter
 CenterX
 CenterY
 GetOutline()

PrimVline StartX
 StartY
 EndX
 EndY
 LineWidth
 GetOutline()

PrimCline CenterX
 CenterY

37

 Width
 Height
 GetOutline()

PrimOline Vertices
 CodPoints
 GetOutline()

PrimPolygon Vertices
 OuterDiameter
 CenterX
 CenterY
 GetOutline()

MacroPrimitive Exposure
 Comment
 Rotation

Object nodes:

Component Name Public Properties or Methods
ListNode NextNode
 Polarity

FlashNode MidX
 MidY

DrawNode StartX
 StartY
 EndX
 EndY

ArcNode StartX
 StartY
 EndX
 EndY
 CenterX
 CenterY

38

Since all test cases create this document too much lengthy, sample test case is described in
details in this report. All remaining test cases should follow the similar procedure.

Test the “GetOutline” method in “Polygon” class

Test Suite ID TS015
Test Case ID TC008
Test Case
Summary

To check whether the Polygon object return correct outline when
“GetOutline” method is called.

Prerequisites An instance of a polygon object should be created

Test Procedure

1. Create an instance of polygon object by providing input
parameters to polygon class.

2. Inspect the output parameters by introducing program break
points

3. Visualize the output on the screen

Test Data

Instance-1: MidX = 50, MidY = 50, OuterDiameter=60, Vertices = 6,
Rotation= 0
Instance-2: MidX = 50, MidY = 50, OuterDiameter = 60, HoleDiameter
= 20, Vertices = 6, Rotation = 30
Instance-3: MidX = 50, MidY = 50, OuterDiameter = 60, Vertices = 3,
Rotation= 0
Instance-4: MidX = 50, MidY = 50, OuterDiameter = 60, Vertices = 2,
Rotation=0
Instance-5: MidX = 50, MidY = 50, OuterDiameter = 60, Vertices = 13,
Rotation=0

Expected Result

Instance-1:
P0=(80,50), P1=(65,24), P2=(35,24), P3=(20,50), P4=(35,76),
P5=(65,76)

Actual Result

Instance-1:
P0=(80.0,50.0), P1=(65.0,24.02), P2=(35.0,24.02), P3=(20.0,50.0),
P4=(35.0,75.98), P5=(65.0,75.98). Output is included in the appendix.

Status Pass
Remarks Only the first instance is evaluated.
Created By Damith
Date of Creation 12.01.2018
Executed By Damith
Date of
Execution 12.01.2018

Test Environment OS: Windows 7
Environment: Microsoft Visual Studio Express - 2010

Table 8: Test case template

39

Appendix: Test results

Test Suite ID: TS015

Test Case ID: TC008

Instance-1:

Application branch output:

Figure 20: TC008 Output

Screen output:

Figure 21: TC008 Screen Output

6.3.3 Integration testing

Integration testing is planned to perform for combined objects which are composed of two or

more basic components. Same testing procedure which was described under the unit testing is

extended for integration testing. In this section, more weight is given to the methods in which

interaction of messages involved between objects rather than parameter testing.

40

As described in previous section, secondary level of object also derived from class diagram of

the system. Interactions are captured from the activity diagram of the system. Then new set of

test cases are developed for secondary level to perform the integration testing.

Secondary level of objects exist in the proposed system is listed as follows.

Component Name Public Properties or Methods
ApertureCollection AddCircle()
 AddRectangle()
 AddObround()
 AddPolygon()
 AddMacro()
 GetObject()

ObjectCollection CircleTree
 RectTree
 ObrTree
 PolyTree
 MacroTree

ObjectTree Nodes
 IsEmpty()
 GetFirstNode()
 AddNode()
 DeleteNode()
 FindNode()

TreeNode NodeName
 LeftMostChild
 RightSibling
 FlashList
 DrawList
 ArcList

SinglyLinkedList IsEmpty()
 GetFirstNode()
 FindNode()
 DeleteNode()
 EditNode()

Gfile Name
 Unit
 Format
 ApertureCollection
 ObjectCollection
 OpenFile()
 ReadApertures()
 ReadObjects()

41

6.3.4 Alpha testing

Alpha testing is the last testing procedure planned for this software solution. Full functional

system is given to a selected set of users who selected from user selection criteria mentioned

in previous section. A task list is given to the selected users and observes the performance of

each user during the completion of the tasks. Difficulties and errors which will occur during

the testing are recorded for system improvement. This testing is mainly focused on usability

related aspects. Improvement in the user interface is tolerated after alpha testing. Component

level changes would be less frequent during this test.

Task list which is planned for the alpha test as follows:

All the users will be given a sample Gerber data file.

Users will have to do below mentioned activities.

1. Open the given Gerber data file.

2. Select the given graphic objects

3. Perform the given modification for the selected objects

4. Save the modified file as new Gerber file.

Evaluation is carried out during the test as well as after the test. During the test, any difficulty

encountered by any user or any error occurred during the test is captured. The accuracy of the

work is checked after the test by evaluating resulting Gerber files created by each user.

6.3.5 Summary

In practice, getting completely bug free solution is merely impossible. But proper control of

the activities carried out during software development life cycle will lead to minimize the

amount and severity of bug existence. If any bug is identified, it should be corrected before

next stage. So most of the software development projects follow the iterative incremental

approach, while minimizing bug and fulfilling expected requirements.

42

Chapter 7: Conclusion and Future Work

Unlike development of traditional software applications such as Access Control Systems,

Payroll System, Library System which has plenty of examples of similar systems, this project

was really hard at the beginning and every component had to be developed from scratch. But

the enthusiasm of facing this challenge drove me to achieve the goal successfully at the end.

Evolutionary prototyping software development approach was followed throughout this

project to build the system in order to meet the expected requirements.

Gerber data file has a standard format and file structure is completely defined in the Gerber

Format. So the application should be strictly adhere to the format and the Bible of this

application is the Gerber Format Specification. So initially it was decided to follow the object

oriented programming concept for the development lifecycle of this application. At the initial

stage basic graphic objects which are defined in the Gerber Format was developed. Then the

required properties and methods were embedded into the objects. Finally all the components

were integrated together in order to meet the functional requirements.

The development process was stuck several times for few weeks due to the technical issues

encountered. When developing macro objects, project was halted for two weeks. Macro

objects had a complex data structure than normal standard objects. To generate the proper

shape of macro objects on the screen was tedious task because single macro object is

composed of several primitive shapes. Finally region object of the GDI+ framework was used

to render such complex objects on the screen. The boundary of such region objects are not

sharp as basic shapes in which Graphics Path object is used to render the shape.

Creating the selection method inside each and every graphic object also made big trouble

during the development stage. Especially for macro objects consist of outline primitives. That

problem was solved after investigation of new algorithm. Struggling with such stuff

supported to gain massive experience and confidence about the learnt concepts and theories in

the classroom.

Due to the limited number of hours that could be allocated for the project, each and every

feature defined in the Gerber Format specification was unable to integrate into the application.

However basic functional requirements such as Open and display a Gerber file, provision of

editing facilities and save the edited file in Gerber format was included into the developed

evolutionary prototype. There is a room kept in the design of the application in order to

integrate rest of the features. Now the system is fully functional for the flash objects which are

43

defined in the specification. In future, draw objects and arc objects need to be integrated into

the application. Editing feature of macro objects also planned to introduce in future.

Furthermore layer object will be introduced in order to manipulate two or more Gerber files

together. Finally a user is given a capability to create new graphic objects and deleting

existing graphics objects while complying with Gerber Format with the aid of toolbars.

Finally involving in this project not only causes to gain lots of experience and knowledge but

also practice me to face challenges and solve problems logically. Some times when I was

stuck with some technical issues, project was a headache but somehow a solution found, it

was real amusement and generate a motivation to achieve the target even better.

44

References

[1] Ucamco Development Staff, The Gerber Format Specification, Ucamco NV, 2017.

[2] Mahesh Chand. Graphics programming with GDI+. 1st Edition. Boston, MA. Addison-
Wesley. 2005

[3] GraphiCode, USA. [Online]. Available:

https://www.graphicode.com/GC-Prevue

[4] Viewplot. [Online]. Available:

http://www.viewplot.com/

	Chapter 1: Introduction
	1.1 Overview
	1.2 Problem
	1.3 Aim
	1.4 Objective
	1.5 Scope

	Chapter 2: Background and Literature Review
	2.1 About Gerber Format
	2.2 Graphic Objects Defined in the Gerber Format
	2.3 Requirements Analysis of the proposed System
	2.4 Review of Similar Systems

	Chapter 3: Analysis
	3.1 Software Requirement Specification
	3.1.1 Purpose
	3.1.2 Scope
	3.1.3 Overview

	3.2 Functional Requirements
	3.3 User interface requirements
	3.4 Other requirements

	Chapter 4: Design and Methodology
	4.1 Object model
	4.1.1 Standard apertures
	4.1.2 Macro apertures

	4.2 Aperture Collection Object Structure
	4.3 Graphics Object Collection Structure
	4.4 Document object
	4.5 System Class Diagram

	Chapter 5: Implementation
	5.1 Selection of the development plat form
	5.2 Design Considerations
	5.3 Implementation of the User Interface
	5.4 Special Implementation Requirements
	5.4.1 Point inside a Triangle
	5.4.2 Point inside an arbitrary Line Object

	Chapter 6: User Evaluation and Testing
	6.1 Scope
	6.2 User evaluation
	6.2.1 Primary actor
	6.2.2 Actor selection criteria
	6.2.3 User knowledge evaluation
	6.2.4 Goal setting
	6.2.5 User performance evaluation
	6.2.6 Conclusion

	6.3 Testing plan
	6.3.1 Introduction
	6.3.2 Unit testing
	6.3.3 Integration testing
	6.3.4 Alpha testing
	6.3.5 Summary

	Chapter 7: Conclusion and Future Work
	References

